Skip to main content

Advertisement

Log in

Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Hereditary spastic paraplegia (HSP) is a syndrome designation describing inherited disorders in which lower extremity weakness and spasticity are the predominant symptoms. There are more than 50 genetic types of HSP. HSP affects individuals of diverse ethnic groups with prevalence estimates ranging from 1.2 to 9.6 per 100,000. Symptoms may begin at any age. Gait impairment that begins after childhood usually worsens very slowly over many years. Gait impairment that begins in infancy and early childhood may not worsen significantly. Postmortem studies consistently identify degeneration of corticospinal tract axons (maximal in the thoracic spinal cord) and degeneration of fasciculus gracilis fibers (maximal in the cervico-medullary region). HSP syndromes thus appear to involve motor-sensory axon degeneration affecting predominantly (but not exclusively) the distal ends of long central nervous system (CNS) axons. In general, proteins encoded by HSP genes have diverse functions including (1) axon transport (e.g. SPG30/KIF1A, SPG10/KIF5A and possibly SPG4/Spastin); (2) endoplasmic reticulum morphology (e.g. SPG3A/Atlastin, SPG4/Spastin, SPG12/reticulon 2, and SPG31/REEP1, all of which interact); (3) mitochondrial function (e.g. SPG13/chaperonin 60/heat-shock protein 60, SPG7/paraplegin; and mitochondrial ATP6); (4) myelin formation (e.g. SPG2/Proteolipid protein and SPG42/Connexin 47); (5) protein folding and ER-stress response (SPG6/NIPA1, SPG8/K1AA0196 (Strumpellin), SGP17/BSCL2 (Seipin), “mutilating sensory neuropathy with spastic paraplegia” owing to CcT5 mutation and presumably SPG18/ERLIN2); (6) corticospinal tract and other neurodevelopment (e.g. SPG1/L1 cell adhesion molecule and SPG22/thyroid transporter MCT8); (7) fatty acid and phospholipid metabolism (e.g. SPG28/DDHD1, SPG35/FA2H, SPG39/NTE, SPG54/DDHD2, and SPG56/CYP2U1); and (8) endosome membrane trafficking and vesicle formation (e.g. SPG47/AP4B1, SPG48/KIAA0415, SPG50/AP4M1, SPG51/AP4E, SPG52/AP4S1, and VSPG53/VPS37A). The availability of animal models (including bovine, murine, zebrafish, Drosophila, and C. elegans) for many types of HSP permits exploration of disease mechanisms and potential treatments. This review highlights emerging concepts of this large group of clinically similar disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Abou Jamra R, Philippe O, Raas-Rothschild A et al (2011) Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature. Am J Hum Genet 88:788–795

    PubMed  CAS  Google Scholar 

  2. Abou-áJamra R, Philippe O, Raas-Rothschild A et al (2011) Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature. Am J Hum Genet 88:788–795

    Google Scholar 

  3. Abou-Donia MB (1981) Organophosphorus ester-induced delayed neurotoxicity. Ann Rev Pharmacol Toxicol 21:511–548

    CAS  Google Scholar 

  4. Ahmed FE, Qureshi IM, Wooldridge MAW, Pejaver RK (1996) Hereditary spastic paraplegia and Evans’s syndrome. Acta Paediat 85:879–881

    PubMed  CAS  Google Scholar 

  5. Al-Saif A, Bohlega S, Al-Mohanna F (2012) Loss of ERLIN2 function leads to juvenile primary lateral sclerosis. Ann Neurol 72:510–516

    PubMed  CAS  Google Scholar 

  6. Al-Yahyaee S, Al-Gazali LI, De Jonghe P et al (2006) A novel locus for hereditary spastic paraplegia with thin corpus callosum and epilepsy. Neurology 66:1230–1234

    PubMed  CAS  Google Scholar 

  7. Al-Yahyaee S, Al-Gazali LI, De JP et al (2006) A novel locus for hereditary spastic paraplegia with thin corpus callosum and epilepsy. Neurology 66:1230–1234

    PubMed  CAS  Google Scholar 

  8. Alazami AM, Adly N, Al DH, Alkuraya FS (2011) A nullimorphic ERLIN2 mutation defines a complicated Hereditary Spastic Paraplegia locus (SPG18). Neurogenetics 12:333–336

    PubMed  CAS  Google Scholar 

  9. Aldahmesh MA, Mohamed J, Alkuraya H et al (2011) Recessive mutations in ELOVL4 Cause ichthyosis, intellectual disability, and spastic quadriplegia. Am J Hum Genet 89:745–750

    PubMed  CAS  Google Scholar 

  10. Allan W, Herndon CN, Dudley FC (1944) Some examples of the inheritance of mental deficiency: apparently sex-linked idiocy and microcephaly. Am J Ment Defic 48:325–334

    Google Scholar 

  11. Anderson FH (1979) Nerofibrillary degeneration on Guam. Brain 102:65–77

    PubMed  CAS  Google Scholar 

  12. Anheim M, Lagier-Tourenne C, Stevanin G et al (2009) SPG11 spastic paraplegia. A new cause of juvenile Parkinsonism. J Neurol 256:104–108

    PubMed  Google Scholar 

  13. Antonicka H, Oÿstergaard E, Sasarman F et al (2010) Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect. Am Journal Hum Genet 87:115–122

    CAS  Google Scholar 

  14. Aparicio-Erriu IM, Prehn JH (2012) Molecular mechanisms in amyotrophic lateral sclerosis: the role of angiogenin, a secreted RNase. Front Neurosci 6:167

    PubMed  Google Scholar 

  15. Arnoldi A, Tonelli A, Crippa F et al (2008) A clinical, genetic, and biochemical characterization of SPG7 mutations in a large cohort of patients with hereditary spastic paraplegia. Hum Mutat 29:522–531

    PubMed  CAS  Google Scholar 

  16. Ashley-Koch A, Kail ME, Nance M, Gaskell P, Svenson I, Marchuck DA, Pericack-Vance MA, Zuchner S (2005) A new locus for autosomal dominant hereditary spastic paraplegia (SPG29) maps to chromosome. Am J Hum Genet 2:12

    Google Scholar 

  17. Atkins J, Glynn P (2000) Membrane association of and critical residues in the catalytic domain of human neuropathy target esterase. J Biol Chem 275:24477–24483

    PubMed  CAS  Google Scholar 

  18. Atorino L, Silvestri L, Koppen M et al (2003) Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia. J Cell Biol 163:777–787

    PubMed  CAS  Google Scholar 

  19. Auer-Grumbach M, Schlotter-Weigel B, Lochmuller H et al (2005) Phenotypes of the N88S Berardinelli-Seip congenital lipodystrophy 2 mutation. Ann Neurol 57:415–424

    PubMed  CAS  Google Scholar 

  20. Bakowska JC, Jenkins R, Pendleton J, Blackstone C (2005) The Troyer syndrome (SPG20) protein spartin interacts with Eps15. Biochem Biophys Res Comm 334(4):1042–1048

    PubMed  CAS  Google Scholar 

  21. Barlowe C (2009) Atlasin GTPases shape up ER networks. Dev Cell 17:157–158

    PubMed  CAS  Google Scholar 

  22. Bateman A, Jouet M, MacFarlane J, Du JS, Kenwrick S, Chothia C (1996) Outline structure of the human L1 cell adhesion molecule and the sites where mutations cause neurological disorders. EMBO J 15:6050–6059

    PubMed  CAS  Google Scholar 

  23. Bauer P, Leshinsky-Silver E, Blumkin L et al (2012) Mutation in the AP4B1 gene cause hereditary spastic paraplegia type 47 (SPG47). Neurogenetics 13:73–76

    PubMed  CAS  Google Scholar 

  24. Beetz C, Schule R, Deconinck T et al (2008) REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31. Brain 131:1078–1086

    PubMed  Google Scholar 

  25. Behan W, Maia M (1974) Strumpell’s familial spastic paraplegia: genetics and neuropathology. J Neurol Neurosurg Psychiatry 37:8–20

    PubMed  CAS  Google Scholar 

  26. Behrends C, Sowa ME, Gygi SP, Harper JW (2010) Network organization of the human autophagy system. Nature 466:68–76

    PubMed  CAS  Google Scholar 

  27. Bettencourt da Cruz A, Wentzell J, Kretzschmar D (2008) Swiss cheese, a protein involved in progressive neurodegeneration, acts as a noncanonical regulatory subunit for PKA-C3. J Neurosci 28:10885–10892

    PubMed  CAS  Google Scholar 

  28. Bialer MG, Lawrence L, Stevenson RE et al (1992) Allan-Herndon-Dudley syndrome: clinical and linkage studies on a second family. Am J Med Genet 43:491–497

    PubMed  CAS  Google Scholar 

  29. Bian X, Klemm RW, Liu TY et al (2011) Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes.In: Proceedings of National Academy of Sciences of USA

  30. Biancheri R, Ciccolella M, Rossi A et al (2009) White matter lesions in spastic paraplegia with mutations in SPG5/CYP7B1. Neuromuscul Disord 19:62–65

    PubMed  Google Scholar 

  31. Bien-Willner R, Sambuughin N, Holley H, Bodensteiner J, Sivakumar K (2006) Childhood-onset spastic paraplegia with NIPA1 gene mutation. J Child Neurol 21:974–977

    PubMed  Google Scholar 

  32. Blair MA, Ma S, Hedera P (2006) Mutation in KIF5A can also cause adult-onset hereditary spastic paraplegia. Neurogenetics 7:47–50

    PubMed  CAS  Google Scholar 

  33. Blumen SC, Bevan S, Abu-Mouch S et al (2003) A locus for complicated hereditary spastic paraplegia maps to chromosome 1q24-q32. Ann Neurol 54:796–803

    PubMed  Google Scholar 

  34. Blumkin L, Lerman-Sagie T, Lev D, Yosovich K, Leshinsky-Silver E (2011) A new locus (SPG47) maps to 1p13.2-1p12 in an Arabic family with complicated autosomal recessive hereditary spastic paraplegia and thin corpus callosum. J Neurol Sci 305:67–70

    PubMed  CAS  Google Scholar 

  35. Botzolakis EJ, Zhao J, Gurba KN, Macdonald RL, Hedera P (2011) The effect of HSP-causing mutations in SPG3A and NIPA1 on the assembly, trafficking, and interaction between atlastin-1 and NIPA1. Mol Cell Neurosci 46:122–135

    PubMed  CAS  Google Scholar 

  36. Bouhouche A, Benomar A, Bouslam N, Chkili T, Yahyaoui M (2006) Mutation in the epsilon subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct5) gene causes autosomal recessive mutilating sensory neuropathy with spastic paraplegia. J Med Genet 43:441–443

    PubMed  CAS  Google Scholar 

  37. Bouhouche A, Benomar A, Bouslam N, Ouazzani R, Chkili T, Yahyaoui M (2006) Autosomal recessive mutilating sensory neuropathy with spastic paraplegia maps to chromosome 5p15.31-14.1. Eur J Hum Genet 14:249–252

    PubMed  CAS  Google Scholar 

  38. Boukhris A, Feki I, Elleuch N et al (2010) A new locus (SPG46) maps to 9p21.2-q21.12 in a Tunisian family with a complicated autosomal recessive hereditary spastic paraplegia with mental impairment and thin corpus callosum. Neurogenetics 11:441–448

    PubMed  Google Scholar 

  39. Bouslam N, Benomar A, Azzedine H et al (2005) Mapping of a new form of pure autosomal recessive spastic paraplegia (SPG28). Ann Neurol 57:567–571

    PubMed  CAS  Google Scholar 

  40. Bross P, Naundrup S, Hansen J et al (2008) The Hsp60-(p.V98I) mutation associated with hereditary spastic paraplegia SPG13 compromises chaperonin function both in vitro and in vivo. J Biol Chem 283:15694–15700

    PubMed  CAS  Google Scholar 

  41. Browman DT, Resek ME, Zajchowski LD, Robbins SM (2006) Erlin-1 and erlin-2 are novel members of the prohibitin family of proteins that define lipid-raft-like domains of the ER. J Cell Sci 119:3149–3160

    PubMed  CAS  Google Scholar 

  42. Brugman F, Scheffer H, Wokke JHJ et al (2008) Paraplegin mutations in apparently sporadic adult-onset upper motor neuron syndromes. Neurology 71:1500–1505

    PubMed  CAS  Google Scholar 

  43. Buge A, Escourolle R, Rancurel G, Gray F, Pertuiset BF (1979) Strumpell-Lorrains familial spasmodic paraplegia - anatomical and clinical review and report on a new case. Rev Neurol (Paris) 135:329–337

    CAS  Google Scholar 

  44. Burger J, Metzke H, Paternotte C, Schilling F, Hazan J, Reis A (1996) Autosomal dominant spastic paraplegia with anticipation maps to a 4-cM interval on chromosome 2p21-p24 in a large German family. Hum Genet 98:371–375

    PubMed  CAS  Google Scholar 

  45. Byrne PC, Webb S, McSweeney F, Burke T, Hutchinson M, Parfrey N (1998) Linkage of AD HSP and cognitive impairment to chromosome 2p: haplotype and phenotype analysis indicates variable expression and low or delayed penetrance. Eur J Hum Genet 6:275–282

    PubMed  CAS  Google Scholar 

  46. Cambi F, Tang XM, Cordray P, Fain PR, Keppen LD, Barker DF (1996) Refined genetic mapping and proteolipid protein mutation analysis in X-linked pure hereditary spastic paraplegia. Neurology 46:1112–1117

    PubMed  CAS  Google Scholar 

  47. Casari G, Fusco M, Ciarmatori S et al (1998) Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93:973–983

    PubMed  CAS  Google Scholar 

  48. Charvin D, Fonknechten N, Cifuentes-Diaz C, Joshi V, Hazan J, Melki J, Betuing S (2003) Mutations in SPG4 are responsible for a loss of function of spastin, an abundant neuronal protein localized to the nucleus. Am J Hum Genet 12:71–78

    CAS  Google Scholar 

  49. Chen S, Song C, Guo H, Xu P, Huang W et al (2005) Distinct novel mutations affecting the same base in the NIPA1 gene cause autosomal dominant hereditary spastic paraplegia in two Chinese families. Hum Mutat 25:135–141

    PubMed  CAS  Google Scholar 

  50. Clemen CS, Tangavelou K, Strucksberg KH et al (2010) Strumpellin is a novel valosin-containing protein binding partner linking hereditary spastic paraplegia to protein aggregation diseases. Brain 133:2920–2941

    PubMed  Google Scholar 

  51. Connell JW, Lindon C, Luzio JP, Reid E (2009) Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion. Traffic 10:42–56

    PubMed  CAS  Google Scholar 

  52. Criscuolo C, Filla A, Coppola G et al (2009) Two novel CYP7B1 mutations in Italian families with SPG5: a clinical and genetic study. J Neurol 256:1252–1257

    PubMed  Google Scholar 

  53. Crosby AH, Patel H, Patton MA, Proukakis C, Cross H (2002) Spartin, the Troyer syndrome gene, suggests defective endosomal trafficking underlies some forms of hereditary spastic paraplegia. Am J Hum Genet 71:516 (Ref Type: Abstract)

    Google Scholar 

  54. Cross HE, McKusick VA (1967) The Troyer syndrome. A recessive form of spastic paraplegia with distal muscle wasting. Arch Neurol 16:473–485

    PubMed  CAS  Google Scholar 

  55. Dalpozzo F, Rossetto MG, Boaretto MS et al (2003) Infancy onset hereditary spastic paraplegia associated with a novel atlastin mutation. Neurology 61:580–581

    PubMed  CAS  Google Scholar 

  56. de Bot ST, van de Warrenburg BP, Kremer HP, Willemsen MA (2010) Child neurology: hereditary spastic paraplegia in children. Neurology 75:e75–e79

    PubMed  Google Scholar 

  57. De Laurenzi V, Rogers GR, Hamrock DJ, Marekov LN, Steinert PM, Compton JG, Markova N, Rizzo WB (1996) Sjögren-Larsson syndrome is caused by mutations in the fatty aldehyde dehydrogenase gene. Nat Genet 12(1):52–57

    PubMed  Google Scholar 

  58. Dell’Angelica EC, Mullins C, Bonifacino JS (1999) AP-4, a novel protein complex related to clathrin adaptors. J Biol Chem 274:7278–7285

    PubMed  Google Scholar 

  59. Deluca GC, Ebers GC, Esiri MM (2004) The extent of axonal loss in the long tracts in hereditary spastic paraplegia. Neuropathol Appl Neurobiol 30:576–584

    PubMed  CAS  Google Scholar 

  60. DeMichele G, DeFusco M, Cavalcanti F et al (1998) A new locus for autosomal recessive hereditary spastic paraplegia maps to chromosome 16q24.3. Am J Hum Genet 63:135–139

    CAS  Google Scholar 

  61. Dennis SC, Green NE (1988) Hereditary spastic paraplegia. J Pediatr Orthop 8:413–417

    PubMed  CAS  Google Scholar 

  62. Dick KJ, Al-Mjeni R, Baskir W et al (2008) A novel locus for an autosomal recessive hereditary spastic paraplegia (SPG35) maps to 16q21-q23. Neurology 71:248–252

    PubMed  CAS  Google Scholar 

  63. Dick KJ, Eckhardt M, Paisan-Ruiz C et al (2010) Mutation of FA2H underlies a complicated form of hereditary spastic paraplegia (SPG35). Hum Mutat 31:E1251–E1260

    PubMed  CAS  Google Scholar 

  64. Du J, Hu YC, Tang BS et al (2011) Expansion of the phenotypic spectrum of SPG6 caused by mutation in NIPA1. Clin Neurol Neurosurg 113:480–482

    PubMed  Google Scholar 

  65. Dudek BR, Richardson RJ (1982) Evidence for the existence of neurotoxic esterase in neural and lymphatic tissue of the adult hen. Biochem Pharmacol 31:1117–1121

    PubMed  CAS  Google Scholar 

  66. Durr A, Brice A, Serdaru M et al (1994) The phenotype of “pure” autosomal dominant spastic paraplegia. Neurology 44:1274–1277

    PubMed  CAS  Google Scholar 

  67. Durr A, Davoine C-S, Paternotte C et al (1996) Phenotype of autosomal dominant spastic paraplegia linked to chromosome 2. Brain 119:1487–1496

    PubMed  Google Scholar 

  68. Dursun U, Koroglu C, Kocasoy OE, Ugur SA, Tolun A (2009) Autosomal recessive spastic paraplegia (SPG45) with mental retardation maps to 10q24.3-q25.1. Neurogenetics 10:325–331

    PubMed  Google Scholar 

  69. Evans K, Keller C, Gasgow K, Conn B, Lauring B (2006) Interaction of two hereditary spastic paraplegia gene products, spastin and atlastin, suggests a common pathway for axonal maintenance. Proc Natl Acad Sci (USA) 103:10666–10671

    CAS  Google Scholar 

  70. Evans KJ, Gomes ER, Reisenweber SM, Gundersen GG, Lauring BP (2005) Linking axonal degeneration to microtubule remodeling by Spastin-mediated microtubule severing. J Cell Biol 168:599–606

    PubMed  CAS  Google Scholar 

  71. Fassier C, Hutt JA, Scholpp S et al (2010) Zebrafish atlastin controls motility and spinal motor axon architecture via inhibition of the BMP pathway. Nat Neurosci 13:1380–1387

    PubMed  CAS  Google Scholar 

  72. Feinstein M, Markus B, Noyman I et al (2010) Pelizaeus-Merzbacher-like disease caused by AIMP1/p43 homozygous mutation. Am J Hum Genet 87:820–828

    PubMed  CAS  Google Scholar 

  73. Ferreirinha F, Quattrini A, Pirozzi M et al (2004) Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J Clin Invest 113:231–242

    PubMed  CAS  Google Scholar 

  74. Fichera M, Lo Giudice M, Falco M et al (2004) Evidence of kinesin heavy chain (KIF5A) involvement in pure hereditary spastic paraplegia. Neurology 63:1108–1110

    PubMed  CAS  Google Scholar 

  75. Fink JK (2011) In: Rimoin D (ed) Hereditary spastic paraplegia. Churchill LivingstoneElsevier, Philadelphia

    Google Scholar 

  76. Fink JK (2007) Hereditary Spastic Paraplegias. In: Schapira AHV (ed) Neurology and clinical neurosciences. Mosby Elsevier, Philadelphia, pp 899–910

    Google Scholar 

  77. Fink JK, Sharp G, Lange B et al (1995) Autosomal dominant hereditary spastic paraparesis, type I: clinical and genetic analysis of a large North American family. Neurology 45:325–331

    PubMed  CAS  Google Scholar 

  78. Fink JK, Wu C-TB, Jones SM et al (1995) Autosomal dominant familial spastic paraplegia: tight linkage to chromosome 15q. Am J Hum Genet 56:188–192

    PubMed  CAS  Google Scholar 

  79. Fontaine B, Davoine C-S, Durr A et al (2000) A new locus for autosomal dominant pure spastic paraplegia, on chromosome 2q24-q34. Am J Hum Genet 66:702–707

    PubMed  CAS  Google Scholar 

  80. Franca MC Jr, D’Abreu A, Maurer-Morelli CV et al (2007) Prospective neuroimaging study in hereditary spastic paraplegia with thin corpus callosum. Mov Disord 22:1556–1562

    PubMed  Google Scholar 

  81. Fujita Y, Fujii T, Nishio A, Tuboi K, Tsuji K, Nakamura M (1990) Familial case of May-Hegglin anomaly associated with familial spastic paraplegia. Am J Hematol 35:219–221

    PubMed  CAS  Google Scholar 

  82. Garner CC, Garner A, Huber G, Kozak C, Matus A (1990) Molecular cloning of microtubule-associated protein 1 (MAP1A) and microtubule-associated protein 5 (MAP1B): identification of distinct genes and their differential expression in developing brain. J Neurochem 55:146–154

    PubMed  CAS  Google Scholar 

  83. Gillooly DJ, Simonsen A, Stenmark H (2001) Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. Biochem J 355:249–258

    PubMed  CAS  Google Scholar 

  84. Glynn P (1999) Neuropathy target esterase. Biochem J 344:625–631

    PubMed  CAS  Google Scholar 

  85. Glynn P (2000) Neural development and neurodegeneration: two faces of neuropathy target esterase. Prog Neurobiol 61:61–74

    PubMed  CAS  Google Scholar 

  86. Guelly C, Zhu PP, Leonardis L et al (2011) Targeted high-throughput sequencing identifies mutations in atlastin-1 as a cause of hereditary sensory neuropathy type I. Am J Hum Genet 88:99–105

    PubMed  CAS  Google Scholar 

  87. Haberlova J, Claeys KG, Zamecnik J, De JP, Seeman P (2008) Extending the clinical spectrum of SPG3A mutations to a very severe and very early complicated phenotype. J Neurol 255:927–928

    PubMed  CAS  Google Scholar 

  88. Hanein S, Durr A, Ribai P et al (2007) A novel locus for autosomal dominant ‘uncomplicated’ hereditary spastic paraplegia maps to chromosome 8p21.1-q13.3. Hum Genet 122:261–273

    PubMed  CAS  Google Scholar 

  89. Hanein S, Martin E, Boukhris A et al (2008) Identification of the SPG15 gene, encoding spastizin, as a frequent cause of complicated autosomal-recessive spastic paraplegia, including Kjellin syndrome. Am J Hum Genet 82:992–1002

    PubMed  CAS  Google Scholar 

  90. Hanna MC, Blackstone C (2009) Interaction of the SPG21 protein ACP33/maspardin with the aldehyde dehydrogenase ALDH16A1. Neurogenetics 10:217–228

    PubMed  CAS  Google Scholar 

  91. Hansen J, Corydon TJ, Palmfeldt J et al (2008) Decreased expression of the mitochondrial matrix proteases Lon and ClpP in cells from a patient with hereditary spastic paraplegia (SPG13). Neuroscience 153:474–482

    PubMed  CAS  Google Scholar 

  92. Hansen JJ, Durr A, Cournu-Rebeix I et al (2002) Hereditary spastic paraplegia SPG13 is associated with a muatation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 70:1328–1332

    PubMed  CAS  Google Scholar 

  93. Harding AE (1993) Hereditary spastic paraplegias. Semin Neurol 13:333–336

    PubMed  CAS  Google Scholar 

  94. Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 1:1151–1155

    PubMed  CAS  Google Scholar 

  95. Hazan J, Fontaine B, Bruyn RPM et al (1994) Linkage of a new locus for autosomal dominant familial spastic paraplegia to chromosome 2p. Hum Mol Genet 3:1569–1573

    PubMed  CAS  Google Scholar 

  96. Hazan J, Lamy C, Melki J, Munnich A, de Recondo J, Weissenbach J (1993) Autosomal dominant familial spastic paraplegia is genetically heterogeneous and one locus maps to chromosome 14q. Nat Genet 5:163–167

    PubMed  CAS  Google Scholar 

  97. Hedera P, DiMauro S, Bonilla E, Wald J, Eldevik OP, Fink JK (1999) Phenotypic analysis of autosomal dominant hereditary spastic paraplegia linked to chromosome 8q. Neurology 53:44–50

    PubMed  CAS  Google Scholar 

  98. Hedera P, Eldevik OP, Maly P, Rainier S, Fink JK (2005) Spinal cord magnetic resonance imaging in autosomal dominant hereditary spastic paraplegia. Neuroradiology 47:730–734

    PubMed  CAS  Google Scholar 

  99. Hedera P, Rainier S, Alvarado D et al (1999) Novel locus for autosomal dominant hereditary spastic paraplegia on chromosome 8q. Am J Hum Genet 64:563–569

    PubMed  CAS  Google Scholar 

  100. Hentati A, Pericack-Vance MA, Hung W-Y, Belal S, Laing N, Boustani RM, Hentati F, Hamida MB, Siddique T (1994) Linkage of the “pure” recessive familial spastic paraplegia to chromosome 8 markers and evidence of genetic locus heterogeneity. Hum Genet 3:1263–1267

    CAS  Google Scholar 

  101. Hentati A, Pericak-Vance MA, Lennon F et al (1994) Linkage of the late onset autosomal dominant familial spastic paraplegia to chromosome 2p markers. Hum Mol Genet 3:1867–1871

    PubMed  CAS  Google Scholar 

  102. Hirst J, Barlow D, Francisco GC et al (2011) The fifth adaptor protein complex. PLoS Biol 9:e1001170

    PubMed  CAS  Google Scholar 

  103. Hirst J, Irving C, Borner GH (2013) Adaptor protein complexes AP-4 and AP-5: new players in endosomal trafficking and progressive spastic paraplegia. Traffic 14(2):153–164

    PubMed  CAS  Google Scholar 

  104. Hirst J, Bright NA, Rous B, Robinson MS (1999) Characterization of a fourth adaptor-related protein complex. Mol Biol Cell 10:2787–2802

    PubMed  CAS  Google Scholar 

  105. Hodgkinson CA, Bohlega S, Abu-Amero SN et al (2002) A novel form of autosomal recessive pure hereditary spastic paraplegia maps to chromosome 13q14. Neurology 59:1905–1909

    PubMed  CAS  Google Scholar 

  106. Hooper C, Puttamadappa SS, Loring Z, Shekhtman A, Bakowska JC (2010) Spartin activates atrophin-1-interacting protein 4 (AIP4) E3 ubiquitin ligase and promotes ubiquitination of adipophilin on lipid droplets. BMC Biol 8:72

    PubMed  Google Scholar 

  107. Hudson LD (2003) Pelizaeus-Merzbacher disease and spastic paraplegia type 2: two faces of myelin loss from mutations in the same gene. J Child Neurol 18:616–624

    PubMed  Google Scholar 

  108. Hughes CA, Byrne PC, Webb S et al (2001) SPG15, a new locus for autosomal recessive complicated HSP on chromosome 14q. Neurology 56:1230–1233

    PubMed  CAS  Google Scholar 

  109. Ito D, Fujisawa T, Iida H, Suzuki N (2008) Characterization of seipin/BSCL2, a protein associated with spastic paraplegia 17. Neurobiol Dis 31:266–277

    PubMed  CAS  Google Scholar 

  110. Ito D, Suzuki N (2007) Seipin/BSCL2-related motor neuron disease: seipinopathy is a novel conformational disease associated with endoplasmic reticulum stress. Rinsho Shinkeigaku 47:329–335

    PubMed  Google Scholar 

  111. Ito D, Suzuki N (2009) Seipinopathy: a novel endoplasmic reticulum stress-associated disease. Brain 132:8–15

    PubMed  Google Scholar 

  112. Ivanova N, Claeys KG, Deconinck T et al (2007) Hereditary spastic paraplegia 3A associated with axonal neuropathy. Arch Neurol 64:706–713

    PubMed  Google Scholar 

  113. Jagell S, Gustavson KH, Holmgren G (1981) Sjogren–Larsson syndrome in Sweden: a clinical, genetic and epidemiological study. Clin Genet 19:233–256

    PubMed  CAS  Google Scholar 

  114. Jagell S, Linden S (1982) Ichtyosis in the Sjogren–Larsson syndrome. Clin Genet 21:243–252

    PubMed  CAS  Google Scholar 

  115. Jia D, Gomez TS, Metlagel Z et al (2010) WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome protein (WASP) family are controlled by analogous structurally related complexes. Proc Natl Acad Sci USA 107:10442–10447

    PubMed  CAS  Google Scholar 

  116. Johnson MK (1974) The primary biochemical lesion leading to the delayed neurotoxic effects of some organophosphorus esters. J Neurochem 23:785–789

    PubMed  CAS  Google Scholar 

  117. Johnson MK, Glynn P (2001) Neuropathy target esterase. In: Krieger RI (ed) Handbook of pesticide toxicology. Academic Press, San Diego, pp 953–965

    Google Scholar 

  118. Jouet M, Rosenthal A, Armstrong G et al (1994) X-linked spastic paraplegia (SPG1), MASA syndrome and X-linked hydrocephalus result from mutations in the L1 gene. Nat Genet 7:402–407

    PubMed  CAS  Google Scholar 

  119. Kasher PR, De Vos KJ, Wharton SB et al (2009) Direct evidence for axonal transport defects in a novel mouse model of mutant spastin-induced hereditary spastic paraplegia (HSP) and human HSP patients. J Neurochem 110:34–44

    PubMed  CAS  Google Scholar 

  120. Kenwrick S, Watkins A, De Angelis E (2000) Neural cell recognition molecule L1: relating biological complexity to human disease mutations. Hum Mol Gen 9:879–886

    PubMed  CAS  Google Scholar 

  121. Khateeb S, Flusser H, Ofir R et al (2006) PLA2G6 mutation underlies infantile neuroaxonal dystrophy. Am J Hum Genet 79:942–948

    PubMed  CAS  Google Scholar 

  122. Kisanuki YY, Rainier S, Moore J, Saunders T, Wilkinson JE, Fink JK (2008) Animal model of SPG6 hereditary spastic paraplegia. Am J Hum Genet: 1794/T

  123. Klebe S, Azzedine H, Durr A et al (2006) Autosomal recessive spastic paraplegia (SPG30) with mild ataxia and sensory neuropathy maps to chromosome 2q37.3. Brain 129:1456–1462

    Google Scholar 

  124. Klebe S, Lossos A, Azzedine H et al (2012) KIF1A missense mutations in SPG30, an autosomal recessive spastic paraplegia: distinct phenotypes according to the nature of the mutations. Eur J Hum Genet 20:645–649

    PubMed  CAS  Google Scholar 

  125. Kobayashi H, Hoffman EP, Marks HG (1994) The rumpshaker mutation in spastic paraplegia. Nature Genet 7:351–352

    PubMed  CAS  Google Scholar 

  126. Krabbe K, Nielsen JE, Fallentin E, Fenger K, Herning M (1997) MRI of autosomal dominant pure spastic paraplegia. Neuroradiology 39:724–727

    PubMed  CAS  Google Scholar 

  127. Kruer MC, Paisan-Ruiz C, Boddaert N et al (2010) Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Ann Neurol 68:611–618

    PubMed  CAS  Google Scholar 

  128. Kurian MA, Morgan NV, MacPherson L, Foster K, Peake D, Gupta R, Philip SG, Hendriksz C, Morton JEV, Kingston HM, Rosser EM, Wassmer E, Gissen P, Maher ER (2008) Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN). Neurology 70:1623–1629

    PubMed  CAS  Google Scholar 

  129. Kuru S, Sakai M, Konagaya M, Yoshida M, Hashizume Y (2005) Autopsy case of hereditary spastic paraplegia with thin corpus callosum showing severe gliosis in the cerebral white matter. Neuropathology 25:346–352

    PubMed  Google Scholar 

  130. Lamari F, Mochel F, Sedel F, and Saudubray JM (2012) Disorders of phospholipids, sphingolipids and fatty acids biosynthesis: toward a new category of inherited metabolic diseases. J Inherit Metab Dis: 1–15

  131. Lee JA, Gao FB (2012) Neuronal functions of ESCRTs. Exp Neurobiol 21:9–15

    PubMed  Google Scholar 

  132. Lin P, Li J, Liu Q et al (2008) A missense mutation in SLC33A1, which encodes the acetyl-CoA transporter, causes autosomal-dominant spastic paraplegia (SPG42). Am J Hum Genet 83:752–759

    PubMed  CAS  Google Scholar 

  133. Lin P, Mao F, Liu Q, Shao C, Yan C, Gong Y (2010) Prenatal diagnosis of autosomal dominant hereditary spastic paraplegia (SPG42) caused by SLC33A1 mutation in a Chinese kindred. Prenat Diagn 30:485–486

    PubMed  CAS  Google Scholar 

  134. Lind GE, Raiborg C, Danielsen SA et al (2011) SPG20, a novel biomarker for early detection of colorectal cancer, encodes a regulator of cytokinesis. Oncogene 30:3967–3978

    PubMed  CAS  Google Scholar 

  135. Lo KY, Kuzmin A, Unger SM, Petersen JD, Silverman MA (2011) KIF1A is the primary anterograde motor protein required for the axonal transport of dense-core vesicles in cultured hippocampal neurons. Neuro Lett 491:168–173

    CAS  Google Scholar 

  136. Lu J, Rashid F, Byrne PC (2006) The hereditary spastic paraplegia protein spartin localises to mitochondria. J Neurochem 98:1908–1919

    PubMed  CAS  Google Scholar 

  137. Lynex C, Carr I, Leek J et al (2004) Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders. BMC Neurology 4:20

    PubMed  Google Scholar 

  138. Macedo-Souza LI, Kok F, Santos S et al (2005) Spastic paraplegia, optic atrophy, and neuropathy is linked to chromosome 11q13. Ann Neurol 57:730–737

    PubMed  CAS  Google Scholar 

  139. Macedo-Souza LI, Kok F, Santos S et al (2008) Reevaluation of a large family defines a new locus for X-linked recessive pure spastic paraplegia (SPG34) on chromosome Xq25. Neurogenetics 9:225–226

    PubMed  Google Scholar 

  140. Magre J, Delepine M, Khallouf E et al (2001) Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet 28:365–370

    PubMed  CAS  Google Scholar 

  141. Maltecca F, Magnoni R, Cerri F, Cox GA, Quattrini A, Casari G (2009) Haploinsufficiency of AFG3L2, the gene responsible for spinocerebellar ataxia type 28, causes mitochondria-mediated Purkinje cell dark degeneration. J Neurosci 29:9244–9254

    PubMed  CAS  Google Scholar 

  142. Mannan AU, Krawen P, Sauter SM et al (2006) ZFYVE27 (SPG33), a novel spastin-binding protein, is mutated in hereditary spastic paraplegia. Am J Hum Genet 79:351–357

    PubMed  CAS  Google Scholar 

  143. Maranduba CM, Friesema EC, Kok F et al (2006) Decreased cellular uptake and metabolism in Allan-Herndon-Dudley syndrome (AHDS) due to a novel mutation in the MCT8 thyroid hormone transporter. J Med Genet 43:457–460

    PubMed  CAS  Google Scholar 

  144. Martinez-Lage M, Molina-Porcel L, Falcone D et al (2012) TDP-43 pathology in a case of hereditary spastic paraplegia with a NIPA1/SPG6 mutation. Acta Neuropathol 124:285–291

    PubMed  CAS  Google Scholar 

  145. Martinez-Murillo F, Kobayashi H, Pegoraro E et al (1999) Genetic localization of a new locus for recessive spastic paraplegia to 15q13-15. Neurology 53:50–56

    PubMed  CAS  Google Scholar 

  146. Marx J (1991) Alzheimer’s research moves to mice. Science 253:266–267

    PubMed  CAS  Google Scholar 

  147. Mattiazzi M, Vijayvergiya C, Gajewski CD et al (2004) The mtDNA T8993G (NARP) mutation results in an impairment of oxidative phosphorylation that can be improved by antioxidants. Hum Mol Genet 13:869–879

    PubMed  CAS  Google Scholar 

  148. McDermott CJ, Dayaratne RK, Tomkins J et al (2001) Paraplegin gene analysis in hereditary spastic paraparesis (HSP) pedigrees in northeast England. Neurology 56:467–471

    PubMed  CAS  Google Scholar 

  149. McHale DP, Mitchell S, Bundey S et al (1999) A gene for autosomal recessive symmetrical spastic cerebral palsy maps to chromosome 2q24-25. Am J Hum Genet 64:526–532

    PubMed  CAS  Google Scholar 

  150. Meijer IA, Cossette P, Roussel J, Benard M, Toupin S, Rouleau GA (2004) A novel locus for pure recessive hereditary spastic paraplegia maps to 10q22.1-10q24.1. Ann Neurol 56:579–582

    PubMed  CAS  Google Scholar 

  151. Meilleur KG, Traore M, Sangare M et al (2010) Hereditary spastic paraplegia and amyotrophy associated with a novel locus on chromosome 19. Neurogenetics 11:313–318

    PubMed  CAS  Google Scholar 

  152. Meyer T, Schwan A, Dullinger JS et al (2005) Early-onset ALS with long-term survival associated with spastin gene mutation. Neurology 65:141–143

    PubMed  CAS  Google Scholar 

  153. Micheli F, Cersosimo MG, Zuniga RC (2006) Hereditary spastic paraplegia associated with dopa-responsive Parkinsonism. Mov Disord 21:716–717

    PubMed  Google Scholar 

  154. Milewska M, McRedmond J, Byrne PC (2009) Identification of novel spartin-interactors shows spartin is a multifunctional protein. J Neurochem 111:1022–1030

    PubMed  CAS  Google Scholar 

  155. Ming L, Rainier S, Mathay J, and Fink JK (2005) Hereditary spastic paraplegia with incomplete genetic penetrance and genetic anticipation. (Manuscript submitted to Neurology, 2005)

  156. Mitchell S, Bundey S (1997) Symmetry of neurological signs in Pakistani patients with probable inherited spastic cerebral palsy. Clin Genet 51(1):7–14

    PubMed  CAS  Google Scholar 

  157. Montenegro G, Rebelo AP, Connell J et al (2012) Mutations in the ER-shaping protein reticulon 2 cause the axon-degenerative disorder hereditary spastic paraplegia type 12. J Clin Invest 122:538–544

    PubMed  CAS  Google Scholar 

  158. Moreno-De-Luca A, Helmers SL, Mao H et al (2011) Adaptor protein complex-4 (AP-4) deficiency causes a novel autosomal recessive cerebral palsy syndrome with microcephaly and intellectual disability. J Med Genet 48:141–144

    PubMed  CAS  Google Scholar 

  159. Mroue RM, El-Sabban ME, Talhouk RS (2011) Connexins and the gap in context. Integr Biol (Camb) 3:255–266

    CAS  Google Scholar 

  160. Muglia M, Criscuolo C, Magariello A et al (2004) Narrowing of the critical region in autosomal recessive spastic paraplegia linked to the SPG5 locus. Neurogenetics 5:49–54

    PubMed  CAS  Google Scholar 

  161. Murphy S, Gorman G, Beetz C et al (2009) Dementia in SPG4 hereditary spastic paraplegia: clinical, genetic, and neuropathologic evidence. Neurology 73:378–384

    PubMed  CAS  Google Scholar 

  162. Najmabadi H, Hu H, Garshasbi M et al (2011) Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478:57–63

    PubMed  CAS  Google Scholar 

  163. Nielsen JE, Johnsen B, Koefoed P et al (2004) Hereditary spastic paraplegia with cerebellar ataxia: a complex phenotype associated with a new SPG4 gene mutation. Eur J Neurol 11:817–824

    PubMed  CAS  Google Scholar 

  164. Nielsen JE, Koefoed P, Abell K et al (1997) CAG repeat expansion in autosomal dominant pure spastic paraplegia linked to chromosome 2p21-p24. Hum Mol Genet 6:1811–1816

    PubMed  CAS  Google Scholar 

  165. Nimityongskul P, Anderson LD, Sri P (1992) Hereditary spastic paraplegia. Orthop Rev 21:643–646

    PubMed  CAS  Google Scholar 

  166. Nomura H, Koike F, Tsuruta Y, Iwaki A, Iwaki T (2001) Autopsy case of autosomal recessive hereditary spastic paraplegia with reference to the muscular pathology. Neuropathology 21:212–217

    PubMed  CAS  Google Scholar 

  167. Orlacchio A, Babalini C, Borreca A et al (2010) SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis. Brain 133:591–598

    PubMed  Google Scholar 

  168. Orlacchio A, Gaudiello F, Totaro A et al (2004) A new SPG4 mutation in a variant form of spastic paraplegia with congenital arachnoid cysts. Neurology 62:1875–1878

    PubMed  CAS  Google Scholar 

  169. Orlacchio A, Kawarai T, Totaro A et al (2004) Hereditary spastic paraplegia: clinical genetic study of 15 families. Arch Neurol 61:849–855

    PubMed  Google Scholar 

  170. Orlacchio A, Montieri P, Babalini C, Gaudiello F, Bernardi G, Kawarai T (2011) Late-onset hereditary spastic paraplegia with thin corpus callosum caused by a new SPG3A mutation. J Neurol 258:1361–1363

    PubMed  Google Scholar 

  171. Orlacchio A, Patrono C, Gaudiello F et al (2008) Silver syndrome variant of hereditary spastic paraplegia: a locus to 4p and allelism with SPG4. Neurology 70:1959–1966

    PubMed  CAS  Google Scholar 

  172. Orthmann-Murphy JL, Salsano E, Abrams CK et al (2009) Hereditary spastic paraplegia is a novel phenotype for GJA12/GJC2 mutations. Brain 132:426–438

    PubMed  Google Scholar 

  173. Oz-Levi D, Ben-Zeev B, Ruzzo E et al (2012) Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis. Am J Hum Genet 91:1065–1072

    PubMed  CAS  Google Scholar 

  174. Park SH, Zhu P–P, Parker RL, Blackstone C (2010) Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J Clin Invest 120:1097–1110

    PubMed  CAS  Google Scholar 

  175. Park SH, Zhu PP, Parker RL, Blackstone C (2010) Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J Clin Invest 120:1097–1110

    PubMed  CAS  Google Scholar 

  176. Patel H, Cross H, Proukakis C et al (2002) SPG20 is mutated in Troyer syndrome, an hereditary spastic paraplegia. Nat Genet 31:347–348

    PubMed  CAS  Google Scholar 

  177. Patel H, Hart PE, Warner TT et al (2001) The silver syndrome variant of hereditary spastic paraplegia maps to chromosome 11q12-q14, with evidence for genetic heterogeneity within this subtype. Am J Hum Genet 69:209–215

    PubMed  CAS  Google Scholar 

  178. Paternotte C, Rudnicki D, Fizames C et al (1998) Quality assessment of whole genome mapping data in the refined familial spastic paraplegia interval on chromosome 14q. Genome Res 8:1216–1227

    PubMed  CAS  Google Scholar 

  179. Pratt AJ, Getzoff ED, Perry JJP (2012) Amyotrophic lateral sclerosis: update and new developments. Degener Neurol Neuromuscular Dis 2:1–14

    Google Scholar 

  180. Proukakis C, Cross H, Patel H, Patton MA, Valentine A, Crosby AH (2004) Troyer syndrome revisited. A clinical and radiological study of a complicated hereditary spastic paraplegia. J Neurol 251:1105–1110

    PubMed  Google Scholar 

  181. Rainier S, Bui M, Mark E et al (2008) Neuropathy target esterase gene mutations cause motor neuron disease. Am J Hum Genet 82:780–785

    PubMed  CAS  Google Scholar 

  182. Rainier S, Chai J-H, Tokarz D, Nicholls RD, Fink JK (2003) NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6). Am J Hum Genet 73:967–971

    PubMed  CAS  Google Scholar 

  183. Rainier S, Fink JK (2005) Hereditary spastic paraplegia: clinical features and animal models. In: Ledoux M (ed) Animal models of movement disorders. Elseivier Academic Press, New York, pp 687–690

    Google Scholar 

  184. Rainier S, Sher C, Reish O, Thomas D, Fink JK (2006) De novo occurrence of novel SPG3A/atlastin mutation presenting as cerebral palsy. Arch Neurol 63:445–447

    PubMed  Google Scholar 

  185. Raskind WH, Pericak-Vance MA, Lennon F, Wolff J, Lipe HP, Bird TD (1997) Familial spastic paraparesis: evaluation of locus heterogeneity, anticipation and haplotype mapping of the SPG4 locus on the short arm of chromosome 2. Am J Hum Genet 74:26–36

    CAS  Google Scholar 

  186. Reddy PL, Seltzer WK, Grewal RP (2007) Possible anticipation in hereditary spastic paraplegia type 4 (SPG4). Can J Neurol Sci 34:208–210

    PubMed  Google Scholar 

  187. Reid E, Connell J, Edwards S, Duley S, Brown SE, Sanderson CM (2005) The hereditary spastic paraplegia protein spastin interacts with the ESCRT-III complex-associated endosomal protein CHMP1B. Hum Mol Gen 14:19–38

    PubMed  CAS  Google Scholar 

  188. Reid E, Dearlove AM, Osborn M, Rogers T, Rubinsztein DC (2000) A locus for autosomal dominant “Pure” hereditary spastic paraplegia maps to chromosome 19q13. Am J Hum Genet 66:728–732

    PubMed  CAS  Google Scholar 

  189. Reid E, Dearlove AM, Rhodes M, Rubinsztein DC (1999) A new locus for autosomal dominant ‘pure’ hereditary spastic paraplegia mapping to chromosome 12q13 and evidence for further genetic heterogeneity. Am J Hum Genet 65:757–763

    PubMed  CAS  Google Scholar 

  190. Reid E, Grayson C, Rubinsztein DC, Rogers MT, Rubinsztein JS (1999) Subclinical cognitive impairment in autosomal dominant ‘pure’ hereditary spastic paraplegia. J Med Genet 36:797–798

    PubMed  CAS  Google Scholar 

  191. Ribai P, Stevanin G, Bouslam N et al (2006) A new phenotype linked to SPG27 and refinement of the critical region on chromosome. J Neurol 253:714–719

    PubMed  Google Scholar 

  192. Richardson RJ, Davis CS, Johnson MK (1979) Subcellular distribution of marker enzymes and of neurotoxic esterase in adult hen brain. J Neurochem 32:607–615

    PubMed  CAS  Google Scholar 

  193. Rismanchi N, Soderblom C, Stadler J, Zhu P–P, Blackstone C (2008) Atlastin GTPases are required for Golgi apparatus and ER morphogenesis. Hum Mol Gen 17:1591–1604

    PubMed  CAS  Google Scholar 

  194. Roll-Mecak A, Vale RD (2005) The drosophila homologue of the hereditary spastic paraplegia protein, spastin, severs and disassembles microtubules. Curr Biol 15:650–655

    PubMed  CAS  Google Scholar 

  195. Roll-Mecak A, Vale RD (2008) Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin. Nature 451:363–367

    PubMed  CAS  Google Scholar 

  196. Ropers F, Derivery E, Hu H et al (2011) Identification of a novel candidate gene for non-syndromic autosomal recessive intellectual disability: the WASH complex member SWIP. Hum Mol Genet 20:2585–2590

    PubMed  CAS  Google Scholar 

  197. Sack GH, Huether CA, Garg N (1978) Familial spastic paraplegia: clinical and pathologic studies in a large kindred. Johns Hopkins Med J 143:117–121

    PubMed  CAS  Google Scholar 

  198. Sanderson CM, Connell JW, Edwards TL et al (2006) Spastin and atlastin, two proteins mutated in autosomal dominant hereditary spastic paraplegia, are binding partners. Hum Mol Gen 15:307–318

    PubMed  CAS  Google Scholar 

  199. Sargiannidou I, Markoullis K, Kleopa KA (2010) Molecular mechanisms of gap junction mutations in myelinating cells. Histol Histopathol 25:1191–1206

    PubMed  CAS  Google Scholar 

  200. Saugier-Veber P, Munnich A, Bonneau D et al (1994) X-linked spastic paraplegia and Pelizaeus-Merzbacher disease are allelic disorders at the proteolipid protein locus. Nature Genet 6:257–262

    PubMed  CAS  Google Scholar 

  201. Schlipf NA, Beetz C, Schule R et al (2010) A total of 220 patients with autosomal dominant spastic paraplegia do not display mutations in the SLC33A1 gene (SPG42). Eur J Hum Genet 18:1065–1067

    PubMed  CAS  Google Scholar 

  202. Schule R, Bonin M, Durr A et al (2009) Autosomal dominant spastic paraplegia with peripheral neuropathy maps to chr12q23-24. Neurology 72:1893–1898

    PubMed  CAS  Google Scholar 

  203. Schuurs-Hoeijmakers J, Geraghty M, Kamsteeg EJ et al (2012) Mutations in DDHD2, encoding an intracellular phospholipase A1, cause a recessive form of complex hereditary spastic paraplegia. Am J Hum Genet 91:1073–1081

    PubMed  CAS  Google Scholar 

  204. Schwarz GA (1952) Hereditary (familial) spastic paraplegia. AMA Arch Neurol Psychiatry 68:655–682

    PubMed  CAS  Google Scholar 

  205. Schwarz GA, Liu C-N (1956) Hereditary (familial) spastic paraplegia. Further clinical and pathologic observations. AMA Arch Neurol Psychiatry 75:144–162

    PubMed  CAS  Google Scholar 

  206. Seri M, Cusano R, Forabosco P et al (1999) Genetic mapping to 10q23.3-q24.2, in a large Italian pedigree, of a new syndrome showing bilateral cataracts, gastroesophageal reflux, and spastic paraparesis with amyotrophy. Am J Hum Genet 64:586–593

    PubMed  CAS  Google Scholar 

  207. Shimazaki H, Takiyama Y, Ishiura H et al (2012) A homozygous mutation of C12orf65 causes spastic paraplegia with optic atrophy and neuropathy (SPG55). J Med Genet 49:777–784

    PubMed  CAS  Google Scholar 

  208. Simpson MA, Cross H, Proukakis C et al (2003) Maspardin is mutated in Mast syndrome, a complicated form of hereditary spastic paraplegia associated with dementia. Am J Hum Genet 73:1147–1156

    PubMed  CAS  Google Scholar 

  209. Slabicki M, Theis M, Krastev DB et al (2010) A genome-scale DNA repair RNAi screen identifies SPG48 as a novel gene associated with hereditary spastic paraplegia. PLoS Biol 8:e1000408

    PubMed  Google Scholar 

  210. Sperfeld AD, Baumgartner A, Kassubek J (2005) Magnetic resonance investigation of the upper spinal cord in pure and complicated hereditary spastic paraparesis. Eur Neurol 54:181–185

    PubMed  Google Scholar 

  211. Sporkrl O, Uschkureit T, Bussow H, Stoffel W (2002) Oligodendrocytes expressing exclusively the DM20 isoform of the proteolipid protein gene: myelination and development. Glia 37:19–30

    Google Scholar 

  212. Steinmuller R, Lantingua-Cruz A, Carcia-Garcia R, Kostrzewa M, Steinberger D, Muller U (1997) Evidence of a third locus in X-linked recessive spastic paraplegia [letter]. Hum Genet 100:287–289

    PubMed  CAS  Google Scholar 

  213. Stevanin G, Santorelli FM, Azzedine H et al (2007) Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nature Genet 39:366–372

    PubMed  CAS  Google Scholar 

  214. Subramony SH, Nguyen TV, Langford L, Lin X, Parent AD, Zhang J (2009) Identification of a new form of autosomal dominant spastic paraplegia. Clin Genet 76:113–116

    PubMed  CAS  Google Scholar 

  215. Suzuki SO, Iwaki T, Arakawa K, Furuya H, Fujii N, Iwaki A (2011) An autopsy case of adult-onset hereditary spastic paraplegia type 2 with a novel mutation in exon 7 of the proteolipid protein 1 gene. Acta Neuropathol 122:755–781

    Google Scholar 

  216. Svenstrup K, Moller RS, Christensen J, Budtz-Jorgensen E, Gilling M, Nielsen JE (2013) NIPA1 mutation in complex hereditary spastic paraplegia with epilepsy. Eur J Neurol 18:1197–1199

    Google Scholar 

  217. Tamagaki A, Shima M, Tomita R et al (2000) Segregation of a pure form of spastic paraplegia and NOR insertion into Xq11.2. Am J Med Genet 94:5–8

    PubMed  CAS  Google Scholar 

  218. Tang BS, Chen X, Zhao GH et al (2004) Clinical features of hereditary spastic paraplegia with thin corpus callosum: report of 5 Chinese cases. Chin Med J (Engl) 117:1002–1005

    Google Scholar 

  219. Tesson C, Nawara M, Salih M et al (2012) Alteration of fatty-acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic paraplegia. Am J Hum Genet 91:1051–1064

    PubMed  CAS  Google Scholar 

  220. Thomsen B, Nissen PH, Agerholm JS, Bendixen C (2010) Congenital bovine spinal dysmyelination is caused by a missense mutation in the SPAST gene. Neurogenetics 11:175–183

    PubMed  CAS  Google Scholar 

  221. Tsang HT, Edwards TL, Wang X et al (2009) The hereditary spastic paraplegia proteins NIPA1, spastin and spartin are inhibitors of mammalian BMP signalling. Hum Mol Genet 18:3805–3821

    PubMed  CAS  Google Scholar 

  222. Tsaousidou MK, Ouahchi K, Warner TT et al (2008) Sequence alterations within CYP7B1 implicate defective cholesterol homeostasis in motor-neuron degeneration. Am J Hum Genet 82:510–515

    PubMed  CAS  Google Scholar 

  223. Tuck RR, O’Neill BP, Gharib H, Mulder DW (1983) Familial spastic paraplegia with Kallmann’s syndrome. J Neurol, Neurosurg, Psych 46:671–674

    CAS  Google Scholar 

  224. Uttner I, Baumgartner A, Sperfeld AD, Kassubek J (2007) Cognitive performance in pure and complicated hereditary spastic paraparesis: a neuropsychological and neuroimaging study. Neurosci Lett 419:158–161

    PubMed  CAS  Google Scholar 

  225. Valdmanis PN, Meijer IA, Reynolds A et al (2007) Mutations in the KIAA0196 gene at the SPG8 locus cause hereditary spastic paraplegia. Am J Hum Genet 80:152–161

    PubMed  CAS  Google Scholar 

  226. Valente EM, Brancati F, Caputo V, Patrono C, Costanti D, Dallapiccola B (2002) Novel locus for autosomal dominant pure heredtiary spastic paraplegia (SPG19) maps to chromosome 9q22-q34. Ann Neurol 51:681–685

    PubMed  CAS  Google Scholar 

  227. Vassilopoulos D, Spengos M, Zoumbou V, Scarpalezos S (1981) The spinal canal in famlial spastic paraplegia. Eur Neurol 20:110–114

    PubMed  CAS  Google Scholar 

  228. Vazza GZM, Boaretto F, Micaglio GF, Sartori V, Mostacciuolo ML (2000) A new locus for autosomal recessive spastic paraplegia associated with mental retardation and distal motor neuropathy SPG14, maps to chromosome 3q27–q28. Am J Hum Genet 67:504–509

    PubMed  CAS  Google Scholar 

  229. Verkerk AJ, Schot R, Dumee B et al (2009) Mutation in the AP4M1 gene provides a model for neuroaxonal injury in cerebral palsy. Am J Hum Genet 85:40–52

    PubMed  CAS  Google Scholar 

  230. Verny C, Guegen N, Desquiret V et al (2011) Hereditary spastic paraplegia-like disorder due to a mitochondrial ATP6 gene point mutation. Mitochondrion 11:70–75

    PubMed  CAS  Google Scholar 

  231. Vose SC, Fujioka K, Gulevich AG, Lin AY, Holland NT, Casida JE (2008) Cellular function of neuropathy target esterase in lysophosphatidylcholine action. Toxicol Appl Pharmacol 232:376–383

    PubMed  CAS  Google Scholar 

  232. Wakabayashi K, Kobayashi H, Kawasaki S, Kondo H, Takahashi H (2001) Autosomal recessive spastic paraplegia with hypoplastic corpus callosum, multisystem degeneration and ubiquitinated eosinophilic granules. Acta Neuropathol 101:69–73

    PubMed  CAS  Google Scholar 

  233. Wang G, Liu G, Wang X et al (2012) ERLIN2 promotes breast cancer cell survival by modulating endoplasmic reticulum stress pathways. BMC Cancer 12:225

    PubMed  CAS  Google Scholar 

  234. Warnecke T, Duning T, Schirmacher A et al (2010) A novel splice site mutation in the SPG7 gene causing widespread fiber damage in homozygous and heterozygous subjects. Mov Disord 25:413–420

    PubMed  Google Scholar 

  235. Webb S, Coleman D, Byrne P et al (1998) Autosomal dominant hereditary spastic paraparesis with cognitive loss linked to chromosome 2p. Brain 121:601–609

    PubMed  Google Scholar 

  236. Wharton SB, McDermott CJ, Grierson AJ et al (2003) The cellular and molecular pathology of the motor system in hereditary spastic paraparesis due to mutation of the spastin gene. J Neuropathol Exp Neurol 62:1166–1177

    PubMed  CAS  Google Scholar 

  237. White KD, Ince PG, Lusher M et al (2000) Clinical and pathologic findings in hereditary spastic paraparesis with spastin mutation. Neurology 55:89–94

    PubMed  CAS  Google Scholar 

  238. Wild NJ, Rosenbloom L (1986) Familial cerebral palsy associated with normal intelligence. Postgrad Med J 62:827–830

    PubMed  CAS  Google Scholar 

  239. Wilkinson PA, Crosby AH, Turner C et al (2003) A clinical and genetic study of SPG5A linked autosomal recessive hereditary spastic paraplegia. Neurology 61:235–238

    PubMed  CAS  Google Scholar 

  240. Wilkinson PA, Simpson MA, Bastaki L et al (2005) A new locus for autosomal recessive complicated hereditary spastic paraplegia (SPG26) maps to chromosome 12p11.1–12q14. J Med Genet 42:80–82

    PubMed  CAS  Google Scholar 

  241. Windpassinger C, Auer-Grumbach M, Irobi J et al (2004) Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome. Nat Genet 36:271–276

    PubMed  CAS  Google Scholar 

  242. Winner B, Uyanik G, Gross C et al (2004) Clinical progression and genetic analysis in hereditary spastic paraplegia with thin corpus callosum in spastic gait gene 11 (SPG11). Arch Neurol 61:117–121

    PubMed  Google Scholar 

  243. Winrow CJ, Hemming ML, Allen DM, Quistad GB, Casida JE, Barlow C (2003) Loss of neuropathy target esterase in mice links organophosphate exposure to hyperactivity. Nature Genet 33:477–485

    PubMed  CAS  Google Scholar 

  244. Woehrer A, Laszlo L, Finsterer J et al (2012) Novel crystalloid oligodendrogliopathy in hereditary spastic paraplegia. Acta Neuropathol 124:583–591

    PubMed  Google Scholar 

  245. Xia CH, Roberts EA, Her LS et al (2003) Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain K1F5A. J Cell Biol 161:55–66

    PubMed  CAS  Google Scholar 

  246. Yamashita A, Kumazawa T, Koga H, Suzuki N, Oka S, Sugiura T (2010) Generation of lysophosphatidylinositol by DDHD domain containing 1 (DDHD1): possible involvement of phospholipase D/phosphatidic acid in the activation of DDHD1. Biochimica et Biophysica Acta (BBA)—Mol Cell Biol Lipids 1801:711–720

    CAS  Google Scholar 

  247. Zaccheo O, Dinsdale D, Meacock PA, Glynn P (2004) Neuropathy target esterase and its yeast homologue degrade phosphatidylcholine to glycerophosphocholine in living cells. J Bio Chem 279:24024–24033

    CAS  Google Scholar 

  248. Zhang L (2010) CRASH syndrome: does it teach us about neurotrophic functions of cell adhesion molecules? Neuroscientist 16:470–474

    PubMed  Google Scholar 

  249. Zhao GH, Hu ZM, Shen L et al (2008) A novel candidate locus on chromosome 11p14.1-p11.2 for autosomal dominant hereditary spastic paraplegia. Chin Med J (Engl) 121:430–434

    CAS  Google Scholar 

  250. Zhao J, Matthies DS, Botzolakis EJ, Macdonald RL, Blakely RD, Hedera P (2008) Hereditary spastic paraplegia-associated mutations in the NIPA1 gene and its Caenorhabditis elegans homolog trigger neural degeneration in vitro and in vivo through a gain-of-function mechanism. J Neurosci 28:13938–13951

    PubMed  CAS  Google Scholar 

  251. Zhao X, Alvarado D, Rainier S et al (2001) Mutations in a novel GTPase cause autosomal dominant hereditary spastic paraplegia. Nat Genet 29:326–331

    PubMed  CAS  Google Scholar 

  252. Zhu PP, Soderblom C, Tao-Cheng J-H, Stadler J, Blackstone C (2006) SPG3A protein atlastin-1 is enriched in growth cones and promotes axon elongation during neuronal development. Human Mol Gen 15:1343–1353

    CAS  Google Scholar 

  253. Zivony-Elboum Y, Westbroek W, Kfir N et al (2012) A founder mutation in Vps37A causes autosomal recessive complex hereditary spastic paraparesis. J Med Genet 49:462–472

    PubMed  CAS  Google Scholar 

  254. Zortea M, Vettori A, Trevisan CP et al (2002) Genetic mapping of a susceptibility locus for disc herniation and spastic paraplegia on 6q23.3-q24.1. J Med Genet 39:387–390

    PubMed  CAS  Google Scholar 

  255. Zuchner S, Kail ME, Nance M et al (2006) A new locus for dominant hereditary spastic paraplegia maps to chromosome 2p12. Neurogenetics 7:127–129

    PubMed  Google Scholar 

  256. Zuchner S, Wang G, Tran-Viet KN et al (2006) Mutations in the novel mitochondrial protein REEP1 cause hereditary spastic paraplegia type 31. Am J Hum Genet 79:365–369

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the National Institutes of Health (R01 NS069700), Department of Veterans Affairs (Merit Review Award), the Spastic Paraplegia Foundation, the Geriatric Research Education and Clinical Center, Ann Arbor Veterans Affairs Medical Center, the generous support from the Katzman Family Fund, and the participation of subjects with hereditary spastic paraplegia and their family members.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John K. Fink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fink, J.K. Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol 126, 307–328 (2013). https://doi.org/10.1007/s00401-013-1115-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-013-1115-8

Keywords

Navigation