Skip to main content

Advertisement

Log in

The effect of fluvastatin on cardiac fibrosis and angiotensin-converting enzyme-2 expression in glucose-controlled diabetic rat hearts

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Independently of the lipid-lowering effects, statin has been reported to attenuate the development of diabetic cardiomyopathy. However, the effect of statin in glucose-controlled diabetic condition has not been demonstrated. We evaluated the effect of fluvastatin on cardiac function, fibrosis, and angiotensin-converting enzyme-2 (ACE2) expression in glucose-controlled diabetic rats. Male Wistar rats were randomly divided into four groups: control (Group C), diabetes (Group D), diabetes with insulin (Group I), and diabetes with insulin and fluvastatin (Group I+F). Diabetes was induced by a single injection of streptozotocin (65 mg/kg). After 8 weeks, the hearts were extracted following echocardiographic evaluation. Cardiac fibrosis was analyzed using Masson’s trichrome stain. Collagens I and III and ACE2 expressions were evaluated by immunohistochemistry and western blot. Group D showed reduced cardiac systolic function compared to the other groups (all P < 0.05). However, diastolic function estimated by E/A ratio was significantly decreased in groups D and I (median: 0.88 and 1.45, respectively) compared to groups C and I+F (2.97 and 2.15) (all P < 0.05). Cardiac fibrosis was more severe in groups D and I than in groups C and I+F (all P < 0.05) on Masson’s trichrome stain. On immunohistochemistry, ACE2 expression was significantly decreased only in group D (all P < 0.05). However, collagen I and III showed higher expressions in group D compared to groups C and I+F while no significant difference was observed compared with group I (all P < 0.05). On western blot, collagen I and ACE2 expressions in group D (median: 1.78 and 0.35, respectively) were significantly different from groups C (references: 1) and I+F (0.76 and 1.21) (all P < 0.05), but not from group I (1.19 and 0.92). Our study suggested a combination of fluvastatin and insulin would be more effective than insulin alone in diabetic hearts. However, the exact mechanism remains to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, Mitch W, Smith SC Jr, Sowers JR (1999) Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 100:1134–1146

    Article  CAS  PubMed  Google Scholar 

  2. Pappachan JM, Varughese GI, Sriraman R, Arunagirinathan G (2013) Diabetic cardiomyopathy: pathophysiology, diagnostic evaluation and management. World J Diabetes 4:177–189

    PubMed  PubMed Central  Google Scholar 

  3. Falcao-Pires I, Leite-Moreira AF (2012) Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev 17:325–344

    Article  CAS  PubMed  Google Scholar 

  4. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602

    Article  CAS  PubMed  Google Scholar 

  5. Bell DS (2003) Diabetic cardiomyopathy. Diabetes Care 26:2949–2951

    Article  PubMed  Google Scholar 

  6. Di Bonito P, Cuomo S, Moio N, Sibilio G, Sabatini D, Quattrin S, Capaldo B (1996) Diastolic dysfunction in patients with non-insulin-dependent diabetes mellitus of short duration. Diabet Med 13:321–324

    Article  PubMed  Google Scholar 

  7. Di Bonito P, Moio N, Cavuto L, Covino G, Murena E, Scilla C, Turco S, Capaldo B, Sibilio G (2005) Early detection of diabetic cardiomyopathy: usefulness of tissue Doppler imaging. Diabet Med 22:1720–1725

    Article  PubMed  Google Scholar 

  8. Nicolino A, Longobardi G, Furgi G, Rossi M, Zoccolillo N, Ferrara N, Rengo F (1995) Left ventricular diastolic filling in diabetes mellitus with and without hypertension. Am J Hypertens 8:382–389

    Article  CAS  PubMed  Google Scholar 

  9. Schannwell CM, Schneppenheim M, Perings S, Plehn G, Strauer BE (2002) Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy. Cardiology 98:33–39

    Article  CAS  PubMed  Google Scholar 

  10. Dong B, Yu QT, Dai HY, Gao YY, Zhou ZL, Zhang L, Jiang H, Gao F, Li SY, Zhang YH, Bian HJ, Liu CX, Wang N, Xu H, Pan CM, Song HD, Zhang C, Zhang Y (2012) Angiotensin-converting enzyme-2 overexpression improves left ventricular remodeling and function in a rat model of diabetic cardiomyopathy. J Am Coll Cardiol 59:739–747

    Article  CAS  PubMed  Google Scholar 

  11. Singh VP, Baker KM, Kumar R (2008) Activation of the intracellular renin-angiotensin system in cardiac fibroblasts by high glucose: role in extracellular matrix production. Am J Physiol Heart Circ Physiol 294:H1675–H1684

    Article  CAS  PubMed  Google Scholar 

  12. Imai Y, Kuba K, Ohto-Nakanishi T, Penninger JM (2010) Angiotensin-converting enzyme 2 (ACE2) in disease pathogenesis. Circ J 74:405–410

    Article  CAS  PubMed  Google Scholar 

  13. Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, Oliveira-dos-Santos AJ, da Costa J, Zhang L, Pei Y, Scholey J, Ferrario CM, Manoukian AS, Chappell MC, Backx PH, Yagil Y, Penninger JM (2002) Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417:822–828

    Article  CAS  PubMed  Google Scholar 

  14. Der Sarkissian S, Huentelman MJ, Stewart J, Katovich MJ, Raizada MK (2006) ACE2: a novel therapeutic target for cardiovascular diseases. Prog Biophys Mol Biol 91:163–198

    Article  Google Scholar 

  15. Tikellis C, Pickering R, Tsorotes D, Du XJ, Kiriazis H, Nguyen-Huu TP, Head GA, Cooper ME, Thomas MC (2012) Interaction of diabetes and ACE2 in the pathogenesis of cardiovascular disease in experimental diabetes. Clin Sci (Lond) 123:519–529

    Article  CAS  Google Scholar 

  16. Bindom SM, Lazartigues E (2009) The sweeter side of ACE2: physiological evidence for a role in diabetes. Mol Cell Endocrinol 302:193–202

    Article  CAS  PubMed  Google Scholar 

  17. Liao JK (2005) Effects of statins on 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition beyond low-density lipoprotein cholesterol. Am J Cardiol 96:24F–33F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shida T, Nozawa T, Sobajima M, Ihori H, Matsuki A, Inoue H (2014) Fluvastatin-induced reduction of oxidative stress ameliorates diabetic cardiomyopathy in association with improving coronary microvasculature. Heart Vessels 29:532–541

    Article  PubMed  Google Scholar 

  19. Aguilar C, Ventura F, Rodriguez-Delfin L (2011) Atorvastatin induced increase in homologous angiotensin I converting enzyme (ACE2) mRNA is associated to decreased fibrosis and decreased left ventricular hypertrophy in a rat model of diabetic cardiomyopathy. Rev Peru Med Exp Salud Publica 28:264–272

    Article  PubMed  Google Scholar 

  20. Li YH, Wang QX, Zhou JW, Chu XM, Man YL, Liu P, Ren BB, Sun TR, An Y (2013) Effects of rosuvastatin on expression of angiotensin-converting enzyme 2 after vascular balloon injury in rats. J Geriatr Cardiol 10:151–158

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Adameova A, Dhalla NS (2014) Role of microangiopathy in diabetic cardiomyopathy. Heart Fail Rev 19:25–33

    Article  PubMed  Google Scholar 

  22. American Diabetes Association (2015) Cardiovascular disease and risk management. Diabetes Care 38 Suppl:S49–57

  23. Eldor R, Raz I (2009) American Diabetes Association indications for statins in diabetes: is there evidence? Diabetes Care 32(Suppl 2):S384–S391

    Article  PubMed  PubMed Central  Google Scholar 

  24. Van Linthout S, Riad A, Dhayat N, Spillmann F, Du J, Dhayat S, Westermann D, Hilfiker-Kleiner D, Noutsias M, Laufs U, Schultheiss HP, Tschope C (2007) Anti-inflammatory effects of atorvastatin improve left ventricular function in experimental diabetic cardiomyopathy. Diabetologia 50:1977–1986

    Article  PubMed  Google Scholar 

  25. Chen YH, Feng B, Chen ZW (2012) Statins for primary prevention of cardiovascular and cerebrovascular events in diabetic patients without established cardiovascular diseases: a meta-analysis. Exp Clin Endocrinol Diabetes 120:116–120

    Article  CAS  PubMed  Google Scholar 

  26. Bai T, Wang F, Mellen N, Zheng Y, Cai L (2016) Diabetic Cardiomyopathy: role of the E3 Ubiquitin Ligase. Am J Physiol Endocrinol Metab 310(7):E473–E483

    Article  PubMed  Google Scholar 

  27. Cosson S, Kevorkian JP (2003) Left ventricular diastolic dysfunction: an early sign of diabetic cardiomyopathy? Diabetes Metab 29:455–466

    Article  CAS  PubMed  Google Scholar 

  28. Nunoda S, Genda A, Sugihara N, Nakayama A, Mizuno S, Takeda R (1985) Quantitative approach to the histopathology of the biopsied right ventricular myocardium in patients with diabetes mellitus. Heart Vessels 1:43–47

    Article  CAS  PubMed  Google Scholar 

  29. Regan TJ, Lyons MM, Ahmed SS, Levinson GE, Oldewurtel HA, Ahmad MR, Haider B (1977) Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest 60:884–899

    Article  CAS  PubMed  Google Scholar 

  30. Fukui M, Goda A, Komamura K, Nakabo A, Masaki M, Yoshida C, Hirotani S, Lee-Kawabata M, Tsujino T, Mano T, Masuyama T (2016) Changes in collagen metabolism account for ventricular functional recovery following beta-blocker therapy in patients with chronic heart failure. Heart Vessels 31:173–182

    Article  PubMed  Google Scholar 

  31. Fein FS, Strobeck JE, Malhotra A, Scheuer J, Sonnenblick EH (1981) Reversibility of diabetic cardiomyopathy with insulin in rats. Circ Res 49:1251–1261

    Article  CAS  PubMed  Google Scholar 

  32. Dai QM, Lu J, Liu NF (2011) Fluvastatin attenuates myocardial interstitial fibrosis and cardiac dysfunction in diabetic rats by inhibiting over-expression of connective tissue growth factor. Chin Med J (Engl) 124:89–94

    Google Scholar 

  33. Ihori H, Nozawa T, Sobajima M, Shida T, Fukui Y, Fujii N, Inoue H (2016) Waon therapy attenuates cardiac hypertrophy and promotes myocardial capillary growth in hypertensive rats: a comparative study with fluvastatin. Heart Vessels 31:1361–1369

    Article  PubMed  Google Scholar 

  34. Nishimura RA, Tajik AJ (1997) Evaluation of diastolic filling of left ventricle in health and disease: doppler echocardiography is the clinician’s Rosetta Stone. J Am Coll Cardiol 30:8–18

    Article  CAS  PubMed  Google Scholar 

  35. Hurrell DG, Nishimura RA, Ilstrup DM, Appleton CP (1997) Utility of preload alteration in assessment of left ventricular filling pressure by Doppler echocardiography: a simultaneous catheterization and Doppler echocardiographic study. J Am Coll Cardiol 30:459–467

    Article  CAS  PubMed  Google Scholar 

  36. Ikeda Y, Inomata T, Fujita T, Iida Y, Kaida T, Nabeta T, Ishii S, Maekawa E, Yanagisawa T, Mizutani T, Naruke T, Koitabashi T, Takeuchi I, Ako J (2016) Higher hemoglobin A1c levels are associated with impaired left ventricular diastolic function and higher incidence of adverse cardiac events in patients with nonischemic dilated cardiomyopathy. Heart Vessels. doi:10.1007/s00380-016-0895-x

    PubMed Central  Google Scholar 

  37. Mizushige K, Yao L, Noma T, Kiyomoto H, Yu Y, Hosomi N, Ohmori K, Matsuo H (2000) Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation 101:899–907

    Article  CAS  PubMed  Google Scholar 

  38. Ferreira AJ, Shenoy V, Qi Y, Fraga-Silva RA, Santos RA, Katovich MJ, Raizada MK (2011) Angiotensin-converting enzyme 2 activation protects against hypertension-induced cardiac fibrosis involving extracellular signal-regulated kinases. Exp Physiol 96:287–294

    Article  CAS  PubMed  Google Scholar 

  39. Simoes e Silva AC, Silveira KD, Ferreira AJ, Teixeira MM (2013) ACE2, angiotensin-(1–7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol 169:477–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bambace C, Sepe A, Zoico E, Telesca M, Olioso D, Venturi S, Rossi A, Corzato F, Faccioli S, Cominacini L, Santini F, Zamboni M (2014) Inflammatory profile in subcutaneous and epicardial adipose tissue in men with and without diabetes. Heart Vessels 29:42–48

    Article  PubMed  Google Scholar 

  41. Erdos B, Snipes JA, Tulbert CD, Katakam P, Miller AW, Busija DW (2006) Rosuvastatin improves cerebrovascular function in Zucker obese rats by inhibiting NAD(P)H oxidase-dependent superoxide production. Am J Physiol Heart Circ Physiol 290:H1264–H1270

    Article  CAS  PubMed  Google Scholar 

  42. Hsueh W, Abel ED, Breslow JL, Maeda N, Davis RC, Fisher EA, Dansky H, McClain DA, McIndoe R, Wassef MK, Rabadan-Diehl C, Goldberg IJ (2007) Recipes for creating animal models of diabetic cardiovascular disease. Circ Res 100:1415–1427

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Faculty Research Fund, Sunkyunkwan University, 2011 (S-2011-1338-000). Novartis Pharma AG (Basel) Switzerland donated the fluvastatin used in this study. The authors have no commercial, proprietary, or financial interest in the products or companies described in this article except for the above-mentioned donation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Hwan Lee.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Additional information

Y. H. Shin and J. J. Min contributed equally as the co-first author of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, Y.H., Min, J.J., Lee, JH. et al. The effect of fluvastatin on cardiac fibrosis and angiotensin-converting enzyme-2 expression in glucose-controlled diabetic rat hearts. Heart Vessels 32, 618–627 (2017). https://doi.org/10.1007/s00380-016-0936-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-016-0936-5

Keywords

Navigation