Skip to main content

Advertisement

Log in

Resveratrol inhibits TNF-α-induced IL-1β, MMP-3 production in human rheumatoid arthritis fibroblast-like synoviocytes via modulation of PI3kinase/Akt pathway

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Resveratrol (trans-3,4′-trihydroxystilbene), a natural phytoalexin, possesses anti-inflammatory, anti-proliferative, and immunomodulatory properties and has the potential for treating inflammatory disorders. The present study was designed to investigate the effects of resveratrol on TNF-α-induced inflammatory cytokines production of IL-1β and MMP3 in Rheumatoid arthritis (RA) Fibroblast-like synoviocytes (FLS) and further to explore the role of PI3K/Akt signaling pathway by which resveratrol modulates those cytokines production. The levels of IL-1β, MMP-3 in cultural supernatants among groups were measured by enzyme-linked immunosorbent assay. Messenger RNA expression of IL-1β and MMP-3 in RA FLS was analyzed using a reverse transcription-polymerase chain reaction. Western blot analysis was used to detect proteins expression in RA FLS intervened by resveratrol. Resveratrol inhibited both mRNA and proteins expressions of IL-1β and MMP-3 on RA FLS in a dose-dependent manner. Resveratrol also decreased significantly the expression of phosphorylated Akt dose dependently. Activation of PI3K/Akt signaling pathway exists in TNF-α-induced production of IL-1β and MMP3 on RA FLS, which is hampered by PI3K inhibitor LY294002. Immunofluorescence staining showed that TNF-α alone increased the production of P-Akt, whereas LY294002 and 50 μM resveratrol suppressed the TNF-α-stimulated expression of P-Akt. Resveratrol attenuates TNF-α-induced production of IL-1β and MMP-3 via inhibition of PI3K-Akt signaling pathway in RA FLS, suggesting that resveratrol plays an anti-inflammatory role and might have beneficial effects in preventing and treating RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Noss EH, Brenner MB (2008) The role and therapeutic implications of fibroblast-like synoviocytes in inflammation and cartilage erosion in rheumatoid arthritis. Immunol Rev 223:252–270

    Article  PubMed  CAS  Google Scholar 

  2. Feldmann M (2001) Pathogenesis of arthritis: recent research progression. Nat Immunol 2:771–773

    Article  PubMed  CAS  Google Scholar 

  3. Zhang HG, Wang Y, Xie JF, Liang X, Liu D, Yang P et al (2001) Regulation of tumor necrosis factor alpha-mediated apoptosis of rheumatoid arthritis synovial fibroblasts by the protein kinase Akt. Arthr Rheum 44:1555–1567

    Article  CAS  Google Scholar 

  4. Reedquist KA, Ludikhuize J, Tak PP (2006) Phosphoinositide 3-kinase signalling and FoxO transcription factors in rheumatoid arthritis. Biochem Soc Trans 34:727–730

    Article  PubMed  CAS  Google Scholar 

  5. Morel J, Audo R, Hahne M et al (2005) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces rheumatoid arthritis synovial fibroblast proliferation through mitogen-activated protein kinases and phosphatidylinositol 3-kinase/Akt. J Biol Chem 280(16):15709–15718

    Article  PubMed  CAS  Google Scholar 

  6. Kim G, Jun JB, Elkon KB (2002) Necessary role of phosphatidylinositol 3-kinase in transforming growth factor beta-mediated activation of Akt in normal and rheumatoid arthritis synovial fibro blasts. Arthr Rheum 46(6):1504–1511

    Article  CAS  Google Scholar 

  7. Pap T, Franz JK, Hummel KM et al (2000) Activation of synovial fibroblasts in rheumatoid arthritis: lack of Expression of the tumour suppressor PTEN at sites of invasive growth and destruction. Arthr Res 2(1):59–64

    Article  CAS  Google Scholar 

  8. Xu H, He X, Yang X et al (2007) Anti-malarial agent artesunate inhibits TNF-α induced production of proinflammatory cytokines via inhibition of NF-κB and PI3kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology 46:920–926

    Article  PubMed  CAS  Google Scholar 

  9. Dhaouadi T, Sfar I, Abelmoula L et al (2007) Role of immune system, apoptosis and angiogenesis in pathogenesis of rheumatoid arthritis and joint destruction, a systematic review. Tunis Med 85:991–998

    PubMed  Google Scholar 

  10. Harris SJ, Foster JG (2009) Ward SG. PI3K isoforms as drug targets in inflammatory diseases: lessons from pharmacological and genetic strategies. Curr Opin Investig Drugs 10:1151–1162

    PubMed  CAS  Google Scholar 

  11. Marone R, Cmiljanovic V, Giese B et al (2008) Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta 1784(1):159–185

    Article  PubMed  CAS  Google Scholar 

  12. Ameriks MK, Venable JD (2009) Small molecule inhibitors of phosphoinositide 3-kinase (PI3K) delta and gamma. Curr Top Med Chem 9(8):738–753

    Article  PubMed  CAS  Google Scholar 

  13. Harikumar KB, Aggarwal BB (2008) Resveratrol: a multitargeted agent for age-associated chronic diseases. Cell Cycle 15:1020–1035

    Article  Google Scholar 

  14. Fröjdö S, Cozzone D, Vidal H et al (2007) Resveratrol is a class IA phosphoinositide 3-kinase inhibitor. Biochem J 406(3):511–518

    Article  PubMed  Google Scholar 

  15. Byun HS, Song JK, Kim YR et al (2008) Caspase-8 has an essential role in resveratrol-induced apoptosis of rheumatoid fibroblast-like synoviocytes. Rheumatology 47:301–308

    Article  PubMed  CAS  Google Scholar 

  16. Nakayama H, Yaguchi T, Yoshiya S et al (2012) Resveratrol induces apoptosis MH7A human rheumatoid arthritis synovial cells in a sirtuin 1-dependent manner. Rheumatol Int 32:151–157

    Article  PubMed  CAS  Google Scholar 

  17. Tang LL, Gao JS, Chen XR et al (2006) Inhibitory effect of resveratrol on the proliferation of synoviocytes in rheumatoid arthritis and its mechanism in vitro. Zhong Nan Da Xue Xue Bao Yi Xue Ban 31:528–533

    PubMed  CAS  Google Scholar 

  18. Tian J, Gao J, Chen J, Li F et al (2010) Effects of resveratrol on proliferation and apoptosis of TNF-alpha induced rheumatoidarthritis fibroblast-like synoviocytes. Zhongguo Zhong Yao Za Zhi 35:1878–1882

    PubMed  CAS  Google Scholar 

  19. Arnett FC, Edworthy SM, Bloch DA et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthr Rheum 31:315–324

    Article  CAS  Google Scholar 

  20. McInnes IB, O’Dell JR (2010) State-of-the-art: rheumatoid arthritis. Ann Rheum Dis 69:1898–1906

    Article  PubMed  CAS  Google Scholar 

  21. Bongartz T, Sutton AJ, Sweeting MJ et al (2006) Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 295:2275–2285

    Article  PubMed  CAS  Google Scholar 

  22. Khanna D, Sethi G, Ahn KS et al (2007) Natural products as a gold mine for arthritis treatment. Curr Opin Pharmacol 7:344–351

    Article  PubMed  CAS  Google Scholar 

  23. Elmali N, Baysal O, Harma A et al (2007) Effects of resveratrol in inflammatory arthritis. Inflammation 30:1–6

    Article  PubMed  CAS  Google Scholar 

  24. Xuzhu G, Komai-Koma M, Leung BP et al (2012) Resveratrol modulates murine collagen-induced arthritis by inhibiting Th17 and B-cell function. Ann Rheum Dis 71:129–135

    Article  PubMed  Google Scholar 

  25. Roy S, Sannigrahi S, Majumdar S et al. (2011) Resveratrol regulates antioxidant status, inhibits cytokine expression and restricts apoptosis in carbon tetrachloride induced rat hepatic injury. Oxid Med Cell Longev 703676

  26. Culpitt SV, Rogers DF, Fenwick PS et al (2003) Inhibition by red wine extract, resveratrol, of cytokine release by alveolar macrophages in COPD. Thorax 58:942–946

    Article  PubMed  CAS  Google Scholar 

  27. Kang OH, Jang HJ, Chae HS et al (2009) Anti-inflammatory mechanisms of resveratrol in activated HMC-1 cells: pivotal roles of NF-kappaB and MAPK. Pharmacol Res 59:330–337

    Article  PubMed  CAS  Google Scholar 

  28. Poolman TM, Ng LL, Farmer PB et al (2005) Inhibition of the respiratory burst by resveratrol in human monocytes: correlation with inhibition of PI3K signaling. Free Radic Biol Med 39:118–132

    Article  PubMed  CAS  Google Scholar 

  29. Jiang H, Shang X, Wu H et al (2009) Resveratrol downregulates PI3K/Akt/mTOR signaling pathways in human U251 glioma cells. J Exp Ther Oncol 8:25–33

    PubMed  Google Scholar 

  30. Roy P, Kalra N, Prasad S et al (2009) Chemopreventive potential of resveratrol in mouse skin tumors through regulation of mitochondrial and PI3K/AKT signaling pathways. Pharm Res 26:211–217

    Article  PubMed  CAS  Google Scholar 

  31. Benitez DA, Pozo-Guisado E, Clementi M et al (2007) Non-genomic action of resveratrol on androgen and oestrogen receptors in prostate cancer: modulation of the phosphoinositide 3-kinase pathway. Br J Cancer 96:1595–1604

    Article  PubMed  CAS  Google Scholar 

  32. Camps M, Ruckle T, Ji H et al (2005) Blockade of PI3Kγ suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat Med 11:936–943

    PubMed  CAS  Google Scholar 

  33. Randis TM, Puri KD, Zhou H et al (2008) Role of PI3Kδ and PI3Kγ in inflammatory arthritis and tissue localization of neutrophils. Eur J Immunol 38:1215–1224

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a grant for Administration of Traditional Chinese medicine of Hunan Province, China (No. 2009065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-wei Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, J., Chen, Jw., Gao, Js. et al. Resveratrol inhibits TNF-α-induced IL-1β, MMP-3 production in human rheumatoid arthritis fibroblast-like synoviocytes via modulation of PI3kinase/Akt pathway. Rheumatol Int 33, 1829–1835 (2013). https://doi.org/10.1007/s00296-012-2657-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-012-2657-0

Keywords

Navigation