Skip to main content

Advertisement

Log in

Early FDG PET at 10 or 20 Gy under chemoradiotherapy is prognostic for locoregional control and overall survival in patients with head and neck cancer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Our study aimed to explore the optimal timing as well as the most appropriate prognostic parameter of 18F-fluorodeoxyglucose positron emission tomography (FDG PET) during chemoradiotherapy (CRT) for an early prediction of outcome for patients with head and neck squamous cell carcinoma (HNSCC).

Methods

Serial PET data (before and three times during CRT) of 37 patients with advanced stage HNSCC, receiving combined CRT between 2005 and 2009, were evaluated. The maximum standardized uptake value (SUVmax), the average SUV (SUVmean) and the gross tumour volume determined by FDG PET (GTV PET), based on a source to background algorithm, were analysed. Stratified actuarial analysis was performed for overall survival (OS), disease-free survival (DFS) and locoregional control (LRC). The median follow-up time was 26 months (range 8–50).

Results

For all patients, OS was 51%, DFS 44% and LRC 55% after 2 years. The 2-year OS (88%) and 2-year LRC (88%) were higher for patients whose SUVmax of the primary tumour decreased 50% or more from the beginning (0 Gy) to week 1 or 2 (10 or 20 Gy) of CRT (ΔSUVmax10/20 ≥ 50%) than for patients with ΔSUVmax20 < 50% (2-year OS = 38%; p = 0.02; 2-year LRC 40%; p = 0.06). A pretreatment GTV PET below the median of 10.2 ml predicted a better 2-year OS (34% for GTV PET ≥ 10.2 ml vs 83% for GTV PET < 10.2 ml; p = 0.02).

Conclusion

The decrease of SUVmax from before (0 Gy) to week 1 or 2 (10 or 20 Gy) of CRT is a potential prognostic marker for patients with HNSCC. Because GTV PET depends on the applied method of analysis, we suggest the use of SUVmax, especially ΔSUVmax10/20, for an early estimation of therapy outcome. Confirmatory studies are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Conway DI, Hashibe M, Boffetta P, INHANCE consortium, Wunsch-Filho V, Muscat J, et al. Enhancing epidemiologic research on head and neck cancer: INHANCE—the international head and neck cancer epidemiology consortium. Oral Oncol 2009;45:743–6.

    Article  PubMed  Google Scholar 

  2. Kotzerke J, Oehme L, Lindner O, Hellwig D, Arbeitsausschuss PET der DGN. Positron emission tomography 2008 in Germany—results of the query and current status. Nuklearmedizin 2010;49:58–64.

    Article  PubMed  CAS  Google Scholar 

  3. Hustinx R, Lucignani G. PET/CT in head and neck cancer: an update. Eur J Nucl Med Mol Imaging 2010;37:645–51.

    Article  PubMed  Google Scholar 

  4. Troost EG, Schinagl DA, Bussink J, Oyen WJ, Kaanders JH. Clinical evidence on PET-CT for radiation therapy planning in head and neck tumours. Radiother Oncol 2010;96:328–34.

    Article  PubMed  Google Scholar 

  5. MacManus M, Nestle U, Rosenzweig KE, Carrio I, Messa C, Belohlavek O, et al. Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol 2009;91:85–94.

    Article  PubMed  Google Scholar 

  6. Denis F, Garaud P, Bardet E, Alfonsi M, Sire C, Germain T, et al. Final results of the 94–01 French Head and Neck Oncology and Radiotherapy Group randomized trial comparing radiotherapy alone with concomitant radiochemotherapy in advanced-stage oropharynx carcinoma. J Clin Oncol 2004;22:69–76.

    Article  PubMed  Google Scholar 

  7. Malone JP, Gerberi MA, Vasireddy S, Hughes LF, Rao K, Shevlin B, et al. Early prediction of response to chemoradiotherapy for head and neck cancer: reliability of restaging with combined positron emission tomography and computed tomography. Arch Otolaryngol Head Neck Surg 2009;135:1119–25.

    Article  PubMed  Google Scholar 

  8. Yao M, Smith RB, Hoffman HT, Funk GF, Lu M, Menda Y, et al. Clinical significance of postradiotherapy [18F]-fluorodeoxyglucose positron emission tomography imaging in management of head-and-neck cancer-a long-term outcome report. Int J Radiat Oncol Biol Phys 2009;74:9–14.

    Article  PubMed  CAS  Google Scholar 

  9. Moeller BJ, Rana V, Cannon BA, Williams MD, Sturgis EM, Ginsberg LE, et al. Prospective risk-adjusted [18F]fluorodeoxyglucose positron emission tomography and computed tomography assessment of radiation response in head and neck cancer. J Clin Oncol 2009;27:2509–15.

    Article  PubMed  Google Scholar 

  10. Kao J, Vu HL, Genden EM, Mocherla B, Park EE, Packer S, et al. The diagnostic and prognostic utility of positron emission tomography/computed tomography-based follow-up after radiotherapy for head and neck cancer. Cancer 2009;115:4586–94.

    Article  PubMed  Google Scholar 

  11. Lee SW, Nam SY, Im KC, Kim JS, Choi EK, Ahn SD, et al. Prediction of prognosis using standardized uptake value of 2-[(18)F] fluoro-2-deoxy-d-glucose positron emission tomography for nasopharyngeal carcinomas. Radiother Oncol 2008;87:211–6.

    Article  PubMed  CAS  Google Scholar 

  12. Seol YM, Kwon BR, Song MK, Choi YJ, Shin HJ, Chung JS, et al. Measurement of tumor volume by PET to evaluate prognosis in patients with head and neck cancer treated by chemo-radiation therapy. Acta Oncol 2010;49:201–8.

    Article  PubMed  CAS  Google Scholar 

  13. Geets X, Tomsej M, Lee JA, Duprez T, Coche E, Cosnard G, et al. Adaptive biological image-guided IMRT with anatomic and functional imaging in pharyngo-laryngeal tumors: impact on target volume delineation and dose distribution using helical tomotherapy. Radiother Oncol 2007;85:105–15.

    Article  PubMed  Google Scholar 

  14. Zoephel K, Appold S, Abolmaali N. PET / CT-basierte Bestrahlungsplanung bei Patienten mit Kopf-Hals-Tumoren. Nuklearmedizin 2008;31:55–9.

    Article  Google Scholar 

  15. Hentschel M, Appold S, Schreiber A, Abramyuk A, Abolmaali N, Kotzerke J, et al. Serial FDG-PET on patients with head and neck cancer: implications for radiation therapy. Int J Radiat Biol 2009;85:796–804.

    Article  PubMed  CAS  Google Scholar 

  16. Budach V, Stuschke M, Budach W, Baumann M, Geismar D, Grabenbauer G, et al. Hyperfractionated accelerated chemoradiation with concurrent fluorouracil-mitomycin is more effective than dose-escalated hyperfractionated accelerated radiation therapy alone in locally advanced head and neck cancer: final results of the radiotherapy cooperative clinical trials group of the German Cancer Society 95–06 Prospective Randomized Trial. J Clin Oncol 2005;23:1125–35.

    Article  PubMed  CAS  Google Scholar 

  17. Grégoire V, Levendag P, Ang KK, Bernier J, Braaksma M, Budach V, et al. CT-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC, NCIC, RTOG consensus guidelines. Radiother Oncol 2003;69:227–36.

    Article  PubMed  Google Scholar 

  18. Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 2010;37:181–200.

    Article  PubMed  Google Scholar 

  19. Nestle U, Kotzerke J. PTV–PET traced volume? Nuklearmedizin 2009;48:127–9.

    PubMed  CAS  Google Scholar 

  20. Cox DR, Oakes D. Analysis of survival data. London: Chapman & Hall; 1984.

    Google Scholar 

  21. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958;53:457–81.

    Article  Google Scholar 

  22. Bruechner K, Bergmann R, Santiago A, Mosch B, Yaromina A, Hessel F, et al. Comparison of [18F]FDG uptake and distribution with hypoxia and proliferation in FaDu human squamous cell carcinoma (hSCC) xenografts after single dose irradiation. Int J Radiat Biol 2009;85:772–80.

    Article  PubMed  CAS  Google Scholar 

  23. Kubota K, Kubota R, Yamada S. FDG accumulation in tumor tissue. J Nucl Med 1993;34:419–21.

    PubMed  CAS  Google Scholar 

  24. Westerterp M, Sloof GW, Hoekstra OS, Ten Kate FJ, Meijer GA, Reitsma JB, et al. 18FDG uptake in oesophageal adenocarcinoma: linking biology and outcome. J Cancer Res Clin Oncol 2008;134:227–36.

    Article  PubMed  Google Scholar 

  25. Brun E, Kjellén E, Tennvall J, Ohlsson T, Sandell A, Perfekt R, et al. FDG PET studies during treatment: prediction of therapy outcome in head and neck squamous cell carcinoma. Head Neck 2002;24:127–35.

    Article  PubMed  Google Scholar 

  26. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 1977;28:897–916.

    Article  PubMed  CAS  Google Scholar 

  27. Rhodes CG, Wise RJ, Gibbs JM, Frackowiak RS, Hatazawa J, Palmer AJ, et al. In vivo disturbance of the oxidative metabolism of glucose in human cerebral gliomas. Ann Neurol 1983;14:614–26.

    Article  PubMed  CAS  Google Scholar 

  28. Geworski L, Knoop BO, de Wit M, Ivancević V, Bares R, Munz DL. Multicenter comparison of calibration and cross calibration of PET scanners. J Nucl Med 2002;43:635–9.

    PubMed  Google Scholar 

  29. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007;48:932–45.

    Article  PubMed  Google Scholar 

  30. Schwartz DL, Rajendran J, Yueh B, Coltrera MD, Leblanc M, Eary J, et al. FDG-PET prediction of head and neck squamous cell cancer outcomes. Arch Otolaryngol Head Neck Surg 2004;130:1361–7.

    Article  PubMed  Google Scholar 

  31. Kim SY, Roh JL, Kim MR, Kim JS, Choi SH, Nam SY, et al. Use of 18F-FDG PET for primary treatment strategy in patients with squamous cell carcinoma of the oropharynx. J Nucl Med 2007;48:752–7.

    Article  PubMed  Google Scholar 

  32. Allal AS, Slosman DO, Kebdani T, Allaoua M, Lehmann W, Dulguerov P. Prediction of outcome in head-and-neck cancer patients using the standardized uptake value of 2-[18F]fluoro-2-deoxy-D-glucose. Int J Radiat Oncol Biol Phys 2004;59:1295–300.

    Article  PubMed  CAS  Google Scholar 

  33. Giovacchini G, Picchio M, Schipani S, Landoni C, Gianolli L, Bettinardi V, et al. Changes in glucose metabolism during and after radiotherapy in non-small cell lung cancer. Tumori 2009;95:177–84.

    PubMed  Google Scholar 

  34. Greven KM, Williams III DW, McGuirt Sr WF, Harkness BA, D’Agostino Jr RB, Keyes Jr JW, et al. Serial positron emission tomography scans following radiation therapy of patients with head and neck cancer. Head Neck 2001;23:942–6.

    Article  PubMed  CAS  Google Scholar 

  35. Vernon MR, Maheshwari M, Schultz CJ, Michel MA, Wong SJ, Campbell BH, et al. Clinical outcomes of patients receiving integrated PET/CT-guided radiotherapy for head and neck carcinoma. Int J Radiat Oncol Biol Phys 2008;70:678–84.

    Article  PubMed  Google Scholar 

  36. Schütze C, Bergmann R, Yaromina A, Hessel F, Kotzerke J, Steinbach J, et al. Effect of increase of radiation dose on local control relates to pre-treatment FDG uptake in FaDu tumours in nude mice. Radiother Oncol 2007;83:311–5.

    Article  PubMed  Google Scholar 

  37. Schinagl DA, Vogel WV, Hoffmann AL, van Dalen JA, Oyen WJ, Kaanders JH. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer. Int J Radiat Oncol Biol Phys 2007;69:1282–9.

    Article  PubMed  CAS  Google Scholar 

  38. Chung MK, Jeong HS, Park SG, Jang JY, Son YI, Choi JY, et al. Metabolic tumor volume of [18F]-fluorodeoxyglucose positron emission tomography/computed tomography predicts short-term outcome to radiotherapy with or without chemotherapy in pharyngeal cancer. Clin Cancer Res 2009;15:5861–8.

    Article  PubMed  CAS  Google Scholar 

  39. La TH, Filion EJ, Turnbull BB, Chu JN, Lee P, Nguyen K, et al. Metabolic tumor volume predicts for recurrence and death in head-and-neck cancer. Int J Radiat Oncol Biol Phys 2009;74:1335–41.

    Article  PubMed  Google Scholar 

  40. Greco C, Nehmeh SA, Schöder H, Gönen M, Raphael B, Stambuk HE, et al. Evaluation of different methods of 18F-FDG-PET target volume delineation in the radiotherapy of head and neck cancer. Am J Clin Oncol 2008;31:439–45.

    Article  PubMed  Google Scholar 

  41. Blodgett TM, Fukui MB, Snyderman CH, Branstetter BF, McCook BM, Townsend DW, et al. Combined PET-CT in the head and neck: part 1. Physiologic, altered physiologic, and artifactual FDG uptake. Radiographics 2005;25:897–912.

    Article  PubMed  Google Scholar 

  42. Fukui MB, Blodgett TM, Snyderman CH, Johnson JJ, Myers EN, Townsend DW, et al. Combined PET-CT in the head and neck: part 2. Diagnostic uses and pitfalls of oncologic imaging. Radiographics 2005;25:913–30.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the 6th framework EU-project ‘BioCare’, proposal #505785 and by the German Federal Ministry of Education and Research (BMBF 03ZIK342).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Zöphel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hentschel, M., Appold, S., Schreiber, A. et al. Early FDG PET at 10 or 20 Gy under chemoradiotherapy is prognostic for locoregional control and overall survival in patients with head and neck cancer. Eur J Nucl Med Mol Imaging 38, 1203–1211 (2011). https://doi.org/10.1007/s00259-011-1759-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-1759-3

Keywords

Navigation