Skip to main content

Advertisement

Log in

Non-traumatic anterior cruciate ligament abnormalities and their relationship to osteoarthritis using morphological grading and cartilage T2 relaxation times: data from the Osteoarthritis Initiative (OAI)

Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objectives

The aim of this work was to study anterior cruciate ligament (ACL) degeneration in relation to MRI-based morphological knee abnormalities and cartilage T2 relaxation times in subjects with symptomatic osteoarthritis.

Methods

Two radiologists screened the right knee MRI of 304 randomly selected participants in the Osteoarthritis Initiative cohort with symptomatic OA, for ACL abnormalities. Of the 52 knees with abnormalities, 28 had mucoid degeneration, 12 had partially torn ACLs, and 12 had completely torn ACLs. Fifty-three randomly selected subjects with normal ACLs served as controls. Morphological knee abnormalities were graded using the WORMS score. Cartilage was segmented and compartment-specific T2 values were calculated.

Results

Compared to normal ACL knees, those with ACL abnormalities had a greater prevalence of, and more severe, cartilage, meniscal, bone marrow, subchondral cyst, and medial collateral ligament lesions (all p < 0.05). T2 measurements did not significantly differ by ACL status.

Conclusions

ACL abnormalities were associated with more severe degenerative changes, likely because of greater joint instability. T2 measurements may not be well suited to assess advanced cartilage degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;58(1):26–35.

    Article  PubMed  Google Scholar 

  2. Lane NE, Thompson JM. Management of osteoarthritis in the primary-care setting: an evidence-based approach to treatment. Am J Med. 1997;103(6A):25S–30S.

    Article  PubMed  CAS  Google Scholar 

  3. Cooper C, Snow S, McAlindon TE, Kellingray S, Stuart B, Coggon D, et al. Risk factors for the incidence and progression of radiographic knee osteoarthritis. Arthritis Rheum. 2000;43(5):995–1000.

    Article  PubMed  CAS  Google Scholar 

  4. Tanamas S, Hanna FS, Cicuttini FM, Wluka AE, Berry P, Urquhart DM. Does knee malalignment increase the risk of development and progression of knee osteoarthritis? A systematic review. Arthritis Rheum. 2009;61(4):459–67.

    Article  PubMed  Google Scholar 

  5. Chitnavis J, Sinsheimer JS, Clipsham K, Loughlin J, Sykes B, Burge PD, et al. Genetic influences in end-stage osteoarthritis. Sibling risks of hip and knee replacement for idiopathic osteoarthritis. J Bone Joint Surg Br. 1997;79(4):660–4.

    Article  PubMed  CAS  Google Scholar 

  6. Zantop T, Petersen W, Sekiya JK, Musahl V, Fu FH. Anterior cruciate ligament anatomy and function relating to anatomical reconstruction. Knee Surg Sports Traumatol Arthrosc. 2006;14(10):982–92.

    Article  PubMed  Google Scholar 

  7. Hill CL, Seo GS, Gale D, Totterman S, Gale ME, Felson DT. Cruciate ligament integrity in osteoarthritis of the knee. Arthritis Rheum. 2005;52(3):794–9.

    Article  PubMed  Google Scholar 

  8. Kumar A, Bickerstaff D, Grimwood J. Mucoid cystic degeneration of the cruciate ligament. J Bone Joint Surg Br. 1999;81:304–5.

    Article  PubMed  CAS  Google Scholar 

  9. Melloni P, Valls R, Yuguero M, Saez A. Mucoid degeneration of the anterior cruciate ligament with erosion of the lateral femoral condyle. Skeletal Radiol. 2004;33(6):359–62.

    Article  PubMed  Google Scholar 

  10. Daniel DM, Stone ML, Dobson BE, Fithian DC, Rossman DJ, Kaufman KR. Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med. 1994;22(5):632–44.

    Article  PubMed  CAS  Google Scholar 

  11. Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 2004;50(10):3145–52.

    Article  PubMed  CAS  Google Scholar 

  12. Maletius W, Messner K. Eighteen- to twenty-four-year follow-up after complete rupture of the anterior cruciate ligament. Am J Sports Med. 1999;27(6):711–7.

    PubMed  CAS  Google Scholar 

  13. Wong S, Steinbach L, Zhao J, Stehling C, Ma CB, Link TM. Comparative study of imaging at 3.0 T versus 1.5 T of the knee. Skeletal Radiol. 2009;38(8):761–9.

    Article  PubMed  Google Scholar 

  14. Link TM, Sell CA, Masi JN, Phan C, Newitt D, Lu Y, et al. 3.0 vs 1.5 T MRI in the detection of focal cartilage pathology--ROC analysis in an experimental model. Osteoarthritis Cartilage. 2006;14(1):63–70.

    Article  PubMed  CAS  Google Scholar 

  15. Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D, et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage. 2004;12(3):177–90.

    Article  PubMed  CAS  Google Scholar 

  16. Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis. 2008;67(2):206–11.

    Article  PubMed  CAS  Google Scholar 

  17. Stahl R, Luke A, Li X, Carballido-Gamio J, Ma CB, Majumdar S, et al. T1rho, T2 and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients--a 3.0-Tesla MRI study. Eur Radiol. 2009;19(1):132–43.

    Article  PubMed  Google Scholar 

  18. Mosher TJ, Liu Y, Torok CM. Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running. Osteoarthritis Cartilage. 2010;18(3):358–64.

    Article  PubMed  CAS  Google Scholar 

  19. Mamisch TC, Hughes T, Mosher TJ, Mueller C, Trattnig S, Boesch C, et al. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study. Skeletal Radiol. 2012;41(3):287–92.

    Article  PubMed  Google Scholar 

  20. Washburn RA, Smith KW, Jette AM, Janney CA. The Physical Activity Scale for the Elderly (PASE): development and evaluation. J Clin Epidemiol. 1993;46(2):153–62.

    Article  PubMed  CAS  Google Scholar 

  21. Stehling C, Liebl H, Krug R, Lane NE, Nevitt MC, Lynch J, et al. Patellar cartilage: T2 values and morphologic abnormalities at 3.0-T MR imaging in relation to physical activity in asymptomatic subjects from the osteoarthritis initiative. Radiology. 2010;254(2):509–20.

    Article  PubMed  Google Scholar 

  22. Goldstein MG, Pinto BM, Marcus BH, Lynn H, Jette AM, Rakowski W, et al. Physician-based physical activity counseling for middle-aged and older adults: a randomized trial. Ann Behav Med. 1999;21(1):40–7.

    Article  PubMed  CAS  Google Scholar 

  23. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16(4):494–502.

    Article  PubMed  CAS  Google Scholar 

  24. Peterfy CG, Schneider E, Nevitt M. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage. 2008;16(12):1433–41.

    Article  PubMed  CAS  Google Scholar 

  25. McIntyre J, Moelleken S, Tirman P. Mucoid degeneration of the anterior cruciate ligament mistaken for ligamentous tears. Skeletal Radiol. 2001;30(6):312–5.

    Article  PubMed  CAS  Google Scholar 

  26. Bergin D, Morrison WB, Carrino JA, Nallamshetty SN, Bartolozzi AR. Anterior cruciate ligament ganglia and mucoid degeneration: coexistence and clinical correlation. AJR Am J Roentgenol. 2004;182(5):1283–7.

    PubMed  Google Scholar 

  27. Lawrance JA, Ostlere SJ, Dodd CA. MRI diagnosis of partial tears of the anterior cruciate ligament. Injury. 1996;27(3):153–5.

    Article  PubMed  CAS  Google Scholar 

  28. Van Dyck P, De Smet E, Veryser J, Lambrecht V, Gielen JL, Vanhoenacker FM, et al. Partial tear of the anterior cruciate ligament of the knee: injury patterns on MR imaging. Knee Surg Sports Traumatol Arthrosc. 2012;20(2):256–61.

    Article  PubMed  Google Scholar 

  29. Bining J, Andrews G, Forster BB. The ABCs of the anterior cruciate ligament: a primer for magnetic resonance imaging assessment of the normal, injured and surgically repaired anterior cruciate ligament. Br J Sports Med. 2009;43(11):856–62.

    Article  PubMed  CAS  Google Scholar 

  30. Duryea J, Neumann G, Brem MH, Koh W, Noorbakhsh F, Jackson RD, et al. Novel fast semi-automated software to segment cartilage for knee MR acquisitions. Osteoarthritis Cartilage. 2007;15(5):487–92.

    Article  PubMed  CAS  Google Scholar 

  31. Link TM, Steinbach LS, Ghosh S, Ries M, Lu Y, Lane N, et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology. 2003;226(2):373–81.

    Article  PubMed  Google Scholar 

  32. Hernigou P, Garabedian JM. Intercondylar notch width and the risk for anterior cruciate ligament rupture in the osteoarthritic knee: evaluation by plain radiography and CT scan. Knee. 2002;9(4):313–6.

    Article  PubMed  Google Scholar 

  33. Cushner FD, La Rosa DF, Vigorita VJ, Scuderi GR, Scott WN, Insall JN. A quantitative histologic comparison: ACL degeneration in the osteoarthritic knee. J Arthroplasty. 2003;18(6):687–92.

    Article  PubMed  Google Scholar 

  34. Almekinders LC, Pandarinath R, Rahusen FT. Knee stability following anterior cruciate ligament rupture and surgery. The contribution of irreducible tibial subluxation. J Bone Joint Surg Am. 2004;86-A(5):983–7.

    PubMed  Google Scholar 

  35. Georgoulis AD, Papadonikolakis A, Papageorgiou CD, Mitsou A, Stergiou N. Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. Am J Sports Med. 2003;31(1):75–9.

    PubMed  Google Scholar 

  36. Amin S, Guermazi A, Lavalley MP, Niu J, Clancy M, Hunter DJ, et al. Complete anterior cruciate ligament tear and the risk for cartilage loss and progression of symptoms in men and women with knee osteoarthritis. Osteoarthritis Cartilage. 2008;16(8):897–902.

    Article  PubMed  CAS  Google Scholar 

  37. Murrell GA, Maddali S, Horovitz L, Oakley SP, Warren RF. The effects of time course after anterior cruciate ligament injury in correlation with meniscal and cartilage loss. Am J Sports Med. 2001;29(1):9–14.

    PubMed  CAS  Google Scholar 

  38. Bellabarba C, Bush-Joseph CA, Bach Jr BR. Patterns of meniscal injury in the anterior cruciate-deficient knee: a review of the literature. Am J Orthop (Belle Mead NJ). 1997;26(1):18–23.

    CAS  Google Scholar 

  39. Allen CR, Wong EK, Livesay GA, Sakane M, Fu FH, Woo SL. Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. J Orthop Res. 2000;18(1):109–15.

    Article  PubMed  CAS  Google Scholar 

  40. David-Vaudey E, Ghosh S, Ries M, Majumdar S. T2 relaxation time measurements in osteoarthritis. Magn Reson Imaging. 2004;22(5):673–82.

    Article  PubMed  Google Scholar 

  41. Van Dyck P, Vanhoenacker FM, Gielen JL, Dossche L, Van Gestel J, Wouters K, et al. Three tesla magnetic resonance imaging of the anterior cruciate ligament of the knee: can we differentiate complete from partial tears? Skeletal Radiol. 2011;40(6):701–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The OAI is a public-private partnership comprised of five contracts (N01-AR-2-2258; N01-AR-2-2259; N01-AR-2-2260; N01-AR-2-2261; N01-AR-2-2262) funded by the National Institutes of Health, a branch of the Department of Health and Human Services, and conducted by the OAI Study Investigators. This study was also funded in part by the Intramural Research Program of the National Institute on Aging. Private funding partners include Pfizer, Inc.; Novartis Pharmaceuticals Corporation; Merck Research Laboratories; and GlaxoSmithKline. Private sector funding for the OAI is managed by the Foundation for the National Institutes of Health. In addition, the analyses performed in this study were funded through the National Institute of Arthritis and Musculoskeletal and Skin Diseases NIH U01AR059507-01. This manuscript has received the approval of the OAI Publications Committee based on a review of its scientific content and data interpretation.

The authors would like to thank our colleagues John A. Lynch, PhD, and Bryan Haughom for their contributions during the early stages of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza Alizai.

Additional information

Keegan K. Hovis and Hamza Alizai contributed equally to this study and should be designated joint first-coauthors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hovis, K.K., Alizai, H., Tham, SC. et al. Non-traumatic anterior cruciate ligament abnormalities and their relationship to osteoarthritis using morphological grading and cartilage T2 relaxation times: data from the Osteoarthritis Initiative (OAI) . Skeletal Radiol 41, 1435–1443 (2012). https://doi.org/10.1007/s00256-012-1379-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-012-1379-4

Keywords

Navigation