Skip to main content

Advertisement

Log in

Neurodevelopmental Outcomes Following Congenital Heart Surgery

  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Advances in both surgical techniques and perioperative care have led to improved survival outcomes in infants and children undergoing surgery for complex congenital heart disease. An awareness is emerging that early and late neurological morbidities complicate the outcome of these operations. Adverse neurological outcomes after neonatal and infant cardiac surgery are related to both fixed and modifiable mechanisms. Fixed factors include many variables specific to the individual patient, including genetic predisposition, gender, race, socioeconomic status, and in utero central nervous system development. Modifiable factors include not only intraoperative variables (cardiopulmonary bypass, deep hypothermic circulatory arrest, and hemodilution) but also such variables as hypoxemia, hypotension, and low cardiac output. The purpose of this review is to examine these mechanisms as they relate to available outcome data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Annttila V, Hagino I, Zurakowski D, Lidov HG, Jonas RA (2004) Higher bypass temperature correlates with increased while cell activation in the cerebral microcirculation. J Thorac Cardiovasc Surg 127:1781–1788

    Article  Google Scholar 

  2. Ashwal S, Perkin RM, Thompson JR, et al. (1991) CBF and CBF/PCO2 reactivity in childhood strangulation. Pediatric Neurol 7:369–374

    Article  CAS  Google Scholar 

  3. Ashwal S, Stringer W, Tomasi L, et al. (1990) Cerebral blood flow and carbon dioxide reactivity in children with bacterial meningitis. J Pediatr 117:523–530

    Article  PubMed  CAS  Google Scholar 

  4. Barnea-Goraly N, Menon V, Krasnow B, et al. (2003) Investigation of white matter structure in velocardiofacial syndrome: a diffusion tensor imaging study. Am J Psychiatr 160:1863–1869

    Article  PubMed  Google Scholar 

  5. Bassan H, Gauvreau K, Newburger JW, et al. (2005) Identification of pressure passive cerebral perfusion and its mediators after infant cardiac surgery. Pediatr Res 57:35–41

    Article  PubMed  Google Scholar 

  6. Bellinger DC, Jonas RA, Rappaport LA, et al. (1995) Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med 332:549–555

    Article  PubMed  CAS  Google Scholar 

  7. Bellinger DC, Wypij D, du Plessis AJ, et al. (2003) Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg 126:1385–1396

    Article  PubMed  Google Scholar 

  8. Bellinger DC, Wypij D, du Plessis AJ, et al. (2001) Developmental and neurologic effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg 121:374–383

    Article  PubMed  CAS  Google Scholar 

  9. Bellinger DC, Wypij D, Kuban KC, et al. (1999) Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. Circulation 100:526–532

    PubMed  CAS  Google Scholar 

  10. Chiron C, Raynaud C, Maziere B, et al. (1992) Changes in regional cerebral blood flow during brain maturation in children and adolescents. J Nucl Med 33:696–703

    PubMed  CAS  Google Scholar 

  11. Chowdhury AH, Yokoyama T, Kokubo Y, et al. (2001) Apolipoprotein E genetic polymorphism and stroke subtypes in a Bangladeshi hospital based study. J Epidemiol 11:131–138

    PubMed  CAS  Google Scholar 

  12. Cooper JR, Slogoff S (1993) Hemodilution and priming solutions for cardiopulmonary bypass. In: Garvlee GP, Davis RF, Utley JR (eds), Cardiopulmonary Bypass Principles and Practice. Williams & Wilkins, Baltimore, pp 124–137

    Google Scholar 

  13. Cottrell SM, Morris KP, Davies P, et al. (2004) Early postoperative body temperature and developmental outcome after open heart surgery in infants. Ann Thorac Surg 77:66–71

    Article  PubMed  Google Scholar 

  14. Davis DW, Burns BM, Wilkerson SA, Steichen JJ (2005) Visual perceptual skills in children born with very low birth weights. J Pediatr Health Care 19:363–368

    Article  PubMed  Google Scholar 

  15. du Plessis AJ, Jonas RA, Wypij D, et al. (1997) Perioperative effects of alpha-stat versus pH-stat stratifies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovaisc Surg 114:991–1001

    Article  CAS  Google Scholar 

  16. Forbes JM, Visconti KJ, Bellinger D, Howe RJ, Jonas RA (2002) Neurodevelopmental outcomes after biventricular repair of congenital heart defects. J Thorac Cardiovaisc Surg 123:631–639

    Article  Google Scholar 

  17. Forbes JM, Visconti KJ, Hancock-Friesen C, et al. (2002) Neurodevelopmental outcome after congenital heart surgery: results from an institutional registry. Circulation 106(Suppl I):I95–I102

    Google Scholar 

  18. Franceschini P, Guala A, Vardeu MP, et al. (1996) The Williams syndrome: an Italian collaborative study. Minerva Pediatr 48:421–428

    PubMed  CAS  Google Scholar 

  19. Friedman G,Groom P, Sazbon L, et al. (1999) Apolipoprotein E ε4 genotype predicts a poor outcome in survivors of traumatic brain injury. Neurology 52:244–248

    PubMed  CAS  Google Scholar 

  20. Galli KK, Zimmerman RA, Jarvik GP, et al. (2004) Periventricular leukomalacia is common after neonatal cardiac surgery. J Thorac cardiovasc Surg 127:692–704

    Article  PubMed  Google Scholar 

  21. Gaynor JW, Gerdes M, Zachai EH, et al. (2003) Apolipoprotein E genotype and neurodevelopmental sequelae of infant cardiac surgery. J Thorac Cardiovasc Surg 126:1736–1745

    Article  PubMed  CAS  Google Scholar 

  22. Gaynor JW, Jarvik GP, Bernbaum J, et al. (2006) The relationship of postoperative electrographic seizures to neurodevelopmental outcome at 1 year of age after neonatal and infant cardiac surgery. J Thorac Cardiovasc Surg 131:181–189

    Article  PubMed  Google Scholar 

  23. Gaynor JW, Nicolson SC, Jarvik GP, et al. (2005) Increasing duration of deep hypothermic circulatory arrest is associated with an increased incidence of postoperative electroencephalographic seizures. J Thorac Cardiovasc Surg 130:1278–1286

    Article  PubMed  Google Scholar 

  24. Glauser TA, Rorke LB, Weinberg PM, Clancy RR (1990) Congenital brain anomalies associated with the hypoplastic left heart syndrome. Pediatrics 85:984–990

    PubMed  CAS  Google Scholar 

  25. Gold JP, Charlson ME, Williams-Russo P, et al. (1995) Improvement of outcomes after coronary artery bypass. A randomized trial comparing intraoperative high versus low mean arterial pressure. J Thorac Cardiovasc Surg 110:1302–1311

    Article  PubMed  CAS  Google Scholar 

  26. Hoffman TM, Wernovsky G, Atz AM, et al. (2003) Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation 107:996–1002

    Article  PubMed  CAS  Google Scholar 

  27. Hövels-Gürich HH, Konrad K, Skorzenski D, (2006) Long-term neurodevelopmental outcome and exercise capacity after corrective surgery for tetralogy of Fallot or ventricular septal defect in infancy. Ann Thorac Surg 81:958–966

    Article  PubMed  Google Scholar 

  28. Huang SC, Wu ET, Chen YS, et al. (2005) Experience with extracorporeal life support in pediatric patients after cardiac surgery. ASAIO 51:5l7–521

    Google Scholar 

  29. Ichord RN, Kirsch JR, Helfaer MA, Haun S, Traystman RJ (1991) Age related differences in recovery of blood flow and metabolism after cerebral ischemia in swine. Stroke 22:626–634

    PubMed  CAS  Google Scholar 

  30. Inder TE, Volpe JJ (2000) Mechanisms of perinatal brain injury. Semin Neonatol 5:3–16

    Article  PubMed  CAS  Google Scholar 

  31. Jarvik GP (1997) Genetic predictors of common disease: apolipoprotein E genotype as a paradigm. Ann Epidemiol 7:357–362

    Article  PubMed  CAS  Google Scholar 

  32. Jonas RA, Bellinger DC, Rappaport LA, et al. (1993) Relation of pH strategy and developmental outcome after hypothermic circulatory arrest. J Thorac Cardiovasc Surg 106:362–368

    PubMed  CAS  Google Scholar 

  33. Jonas RA, Wypij D, Roth SJ, et al. (2003) The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: results of a randomized trial in infants. J Thorac Cardiovasc Surg 126:1765–1774

    Article  PubMed  Google Scholar 

  34. Laskowitz DT, Horsburgh K, Roses AD (1998) Apolipoprotein E and the CNS response to injury. J Cereb Blood Flow Metab 18:465–471

    Article  PubMed  CAS  Google Scholar 

  35. Licht DJ, Wang J, Silvestre DW, et al. (2004) Preoperative cerebral blood flow is diminished in neonates with severe congenital heart defects. J.Thorac Cardiovasc Surg 128:841–849

    Article  PubMed  Google Scholar 

  36. Mahle WT, Clancy RR, McGaurn SP, Goin JE, Clark BJ (2001) Impact of prenatal diagnosis on survival and early neurologic morbidity in neonates with the hypoplastic left heart syndrome. Pediatrics 107:1277–1282

    Article  PubMed  CAS  Google Scholar 

  37. Mahle MT, Tvani F, Zimmerman RA, et al. (2002) An MRI study of neurological injury before and after congenital heart surgery. Circulation 106(Suppl I):I109–I114

    PubMed  Google Scholar 

  38. Mahle WT, Visconti KJ, Freier MC, et al. (2006) Pediatrics relationship of surgical approach to neurodevelopmental outcomes in hypoplastic left heart syndrome. Pediatrics 117:e90–e97

    Article  PubMed  Google Scholar 

  39. Mahle WT, Wernovsky G (2004) Neurodevelopmental outcomes in hypoplastic left heart syndrome. Semin Throac Cardivasc Surg Pediatr Cardiac Surg Ann 7:39–47

    Google Scholar 

  40. Majnemer A, Limeropoulos C, Shevell M, et al. (2006) Long-term neuromotor outcome at school entry of infants with congenital heart defects requiring open-heart surgery. J Pediatr 148:72–77

    Article  PubMed  Google Scholar 

  41. McCarron M, Delong D, Alberts MJ (1999) APOE genotype as a risk factor for ischemic cerebrovascular disease. Neurology 53:1308–1311

    PubMed  CAS  Google Scholar 

  42. McCarron MO, Muir KW, Weir CJ, et al. (1998) The apolipoprotein E ε4 allele and outcome in cerebrovascular disease. Stroke 29:1882–1887

    CAS  Google Scholar 

  43. McCarron MO, Nicoll JAR, Stewart J, et al. (1999) The apolipoprotein E ε4 allele and the pathological features in cerebral amyloid angiopathy-related hemorrhage. J Neuropathol Exp Neurol 58:711–718

    PubMed  CAS  Google Scholar 

  44. Miller G, Eggli KD, Contant C, Baylen BG, Myers JL (1995) Postoperative neurologic complications after open heart surgery on young infants. Arch Pediatr Adolesc Med 149:764–768

    PubMed  CAS  Google Scholar 

  45. Moss EM, Batshaw ML, Solot CB, et al. (1999) Psychoeducational profile of the 22q11.2 microdeletion: a complex pattern. J Pediatr 134:193–198

    Article  PubMed  CAS  Google Scholar 

  46. Murkin JM, Martzke JS, Buchan AM, Bentley C, Wong CJ (1995) A randomized study of the influence of perfusion technique and pH management strategy in 316 patients undergoing coronary artery bypass surgery: II. Neurologic and cognitive outcomes. J. Thorac. Cardiovasc Surg 110:349–362

    Article  PubMed  CAS  Google Scholar 

  47. Nathan HJ, Wells GA, Munson JL, Wozny D (2001) Neuroprotective effect of mild hypothermia in patients undergoing coronary artery surgery with cardiopulmonary bypass: a randomized trial. Circulation 104(Suppl I):I85–I91

    PubMed  CAS  Google Scholar 

  48. Neptune WB, Bougas JA, Panico FB (1960) Open heart surgery without the need for donor blood priming in the pump oxygenator. N Engl J Med 263:111–115

    Article  PubMed  CAS  Google Scholar 

  49. Newburger JW, Jonas RA, Wernovsky G, et al. (1993) A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery. N EnglJ J Med 329:1057–1064

    Article  CAS  Google Scholar 

  50. Newburger JWS, Wypij D, Bellinger DC, et al. (2003) Length of stay after infant heart surgery is related to cognitive outcome at age 8 years. J Pediatr 143:67–73

    Article  PubMed  Google Scholar 

  51. Newman MF, Kirchner JF, Phillips-Bute B, et al. (2001) Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med 344:395–402

    Article  PubMed  CAS  Google Scholar 

  52. Nussmeier NA, Arlund C, Slogoff ST (1986) Neuropsychiatric complications after cardiopulmonary bypass: cerebral protection by a barbiturate. Anesthesia 64:165–170

    Article  CAS  Google Scholar 

  53. Patel RL, Turtle MR, Chambers DJ, et al, (1996) Alpha-stat acid base regulation during cardiopulmonary bypass improves neuropsyphologic outcome in patients undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg 111:1267–1279

    Article  PubMed  CAS  Google Scholar 

  54. Perlman JM (1998) White matter injury in the preterm infant: an important determination of abnormal neurodevelopment outcome. Early Hum Dev 53:99–120

    Article  PubMed  CAS  Google Scholar 

  55. Pesonen EJ, Peltola Kl, Korpela RE, et al. (1999) Delayed impairment of cerebral oxygenation after deep hypothermic circulatory arrest in children. Ann Thorac Surg 67:1765–1770

    Article  PubMed  CAS  Google Scholar 

  56. Raqbi F, Le BC, Morisseau-Durand MP, et al. (2003) Early prognostic factors for intellectual outcome in CHARGE syndrome. Dev Med Child Neurol 45:483–488

    Article  PubMed  CAS  Google Scholar 

  57. Ravishankar C, Dominguez TE, Kreutzer J, et al. (2006) Extracorporeal membrane oxygenation after stage 1 reconstruction. Pediatric Critical Care Med 7(4):319–323

    Article  Google Scholar 

  58. Robson MJA, Alston RP, Andrews PJD, et al. (2002) Apolipoprotein E and neurocognitive outcome from coronary artery surgery. J Neurol Neurosurg Psychiatr 72:675–676

    Article  PubMed  CAS  Google Scholar 

  59. Satomi G, Yasukochi S, Shimizu T, Takigiku K, Ishii T (1999) Has fetal echocardiography improved the prognosis of congenital heart disease? Comparison of patients with hypoplastic left heart syndrome with and without prenatal diagnosis. Pediatr Int 41:728–732

    Article  PubMed  CAS  Google Scholar 

  60. Schiefermeier M, Kollegger H, Madi C, et al. (2003) Apolipoprotein E polymorphism survival and neurological outcome after cardiopulmonary resuscitation. Stroke 31:2068–2073

    Google Scholar 

  61. Shin’oka T, Shum-Tim D, Jonas RA, et al. (1996) Higher hematocrit improves cerebral outcome after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg 112:1610–1620

    Article  PubMed  CAS  Google Scholar 

  62. Skaryak LA, Kirshbom PM, DiBernardo LR, et al. (1995) Modified ultrafiltration improves cerebral metabolic recovery after circulatory arrest. J Thorac Cardiovasc Surg 109:744–752

    Article  PubMed  CAS  Google Scholar 

  63. Stavinoha PL, Fixler DE, Mahony L (2003) Cardiopulmonary bypass to repair an atrial septal defect does not affect cognitive function in children. Circulation 107:2722–2725

    Article  PubMed  Google Scholar 

  64. Steed L, Kong R, Stygall J, et al. (2001) The role of apolipoprotein E in cognitive decline after cardiac operation. Ann Throac Surg 71:823–826

    Article  CAS  Google Scholar 

  65. Strittmatter WJ, Bova Hill C (2002) Molecular biology of apolipoprotein E. Curr Opin Lipidol 13:119–123

    Article  PubMed  CAS  Google Scholar 

  66. Sungurtekin H, Cook DJ, Orszulak TA, Daly RC, Mullany CJ (1999) Cerebral response to hemodilution during hypothermic cardiopulmonary bypass in adults. Anesth Analg 89:1078–1083

    Article  PubMed  CAS  Google Scholar 

  67. Swillen A, Vogels A, Devriendt K, Fryns JP (2000) Chromosome 22q11 deletion syndrome: update and review of the clinical features, cognitive–behavioral spectrum, and psychiatric complicatidns. Am J Med Genet 97:128–135

    Article  PubMed  CAS  Google Scholar 

  68. Tardiff E, Newman MF, Saunders AM, et al. (1997) Preliminary report of a genetic basis for cognitive decline after cardiac operations. Ann Thorac Surg 64:715–720

    Article  PubMed  CAS  Google Scholar 

  69. Taylor KM (1998) Brain damage during cardiopulmonary bypass. Ann Thorac Surg 65:S20–S26

    Article  PubMed  CAS  Google Scholar 

  70. Trittenwein G, Nardi A, Pansi H, et al. (2003) Early postoperative prediction of cerebral damage after pediatric cardiac surgery. Ann Thorac Surg 76:576–580

    Article  PubMed  Google Scholar 

  71. Tworetzky W, McElhinney DB, Reddy VM, et al. (2001) Improved surgical outcome after fetal diagnosis of hypoplastic left heart syndrome. Circulation 103:1269–1273

    PubMed  CAS  Google Scholar 

  72. Ungerleider RM, Shen I, Yeh T, et al. (2004) Routine mechanical ventricular assist following the Norwood procedure—Improved neurologic outcome and excellent hospital survival. Ann J Thorac Surg 77:18–22

    Article  Google Scholar 

  73. van Amelsvoort T, Henry J, Morris R, et al. (2004) Cognitive deficits associated with schizophrenia in velo-cardio-facial syndrome. Schizophr Res 70:223–232

    Article  PubMed  Google Scholar 

  74. Visconti KJ, Bichell DP, Jonas RA, Newburger JW, Bellinger DC (1999) Developmental outcome after surgical versus interventional closure of secundum atrial septal defect in children. Circulation 100:II145–II150

    PubMed  CAS  Google Scholar 

  75. Volpe JJ (1997) Brain injury in the premature infant—from pathogenesis to prevention. Brain Dev 19:519–534

    Article  PubMed  CAS  Google Scholar 

  76. Volpe JJ (2001) Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 50:553–562

    Article  PubMed  CAS  Google Scholar 

  77. Walti U (1973) Intelligence profile in children with trisomy 21. Helv Paediatri Acta 30(Suppl 9):38–39

    Google Scholar 

  78. Wernovsky G, Stiles KM, Gauvreau K, et al. (2000) Cognitive development after Fontan operation. Circulation 102:883–889

    PubMed  CAS  Google Scholar 

  79. Wernovsky G, Wypij D, Jonas RA, et al. (1995) Postoperative course and hemodynamic profile after the arterial switch operation in neonates and infants. A comparison of low-flow cardiopulmonary bypass and circulatory arrest. Circulation 92:2226–2235

    PubMed  CAS  Google Scholar 

  80. Wong PC, Barlow CF, Hickey PR (1992) Factors associated with choreoathetosis after cardiopulmonary bypass in children with congenital heart disease. Circulation 86(Suppl II):II118–II126

    PubMed  CAS  Google Scholar 

  81. Wood A, Massarano A, Super M, Harrington R (1995) Behavioral aspects and psychiatric findings in Noonan’s syndrome. Arch Dis Child 72:153–155

    Article  PubMed  CAS  Google Scholar 

  82. Wypij D, Newburger JW, Rappaport LA, et al. (2003) The effect of duration of deep hypothermic circulatory arrest in infant heart surgery on late neurodevelopment: The Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg 126:1397–1403

    Article  PubMed  Google Scholar 

  83. Yonezawa M, Back SA, Gan X, Rosenberg PA, Volpe JJ (1996) Cystine deprivation induces oligodendroglial death: rescue by free radical scavengers and by a diffusible glial factor. J Neurochem 67:566–573

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. William Gaynor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballweg, J.A., Wernovsky, G. & Gaynor, J.W. Neurodevelopmental Outcomes Following Congenital Heart Surgery. Pediatr Cardiol 28, 126–133 (2007). https://doi.org/10.1007/s00246-006-1450-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-006-1450-9

Keywords

Navigation