Skip to main content
Log in

Why Can’t Vertebrates Synthesize Trehalose?

  • Review
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The non-reducing disaccharide trehalose is a singular molecule, which has been strictly conserved throughout evolution in prokaryotes (bacteria and archaea), lower eukaryotes, plants, and invertebrates, but is absent in vertebrates and—more specifically—in mammals. There are notable differences regarding the pivotal roles played by trehalose among distantly related organisms as well as in the specific metabolic pathways of trehalose biosynthesis and/or hydrolysis, and the regulatory mechanisms that control trehalose expression genes and enzymatic activities. The success of trehalose compared with that of other structurally related molecules is attributed to its exclusive set of physical properties, which account for its physiological roles and have also promoted important biotechnological applications. However, an intriguing question still remains: why are vertebrates in general, and mammals in particular, unable (or have lost the capacity) to synthesize trehalose? The search for annotated genomes of vertebrates reveals the absence of any functional trehalose synthase gene. Indeed, this is also true for the human genome, which contains, however, two genes encoding for isoforms of the hydrolytic activity (trehalase). Although we still lack a convincing answer, this striking difference might reflect the divergent evolutionary lineages followed by invertebrates and vertebrates. Alternatively, some clinical data point to trehalose as a toxic molecule when stored inside the human body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Argüelles JC (2000) Physiological roles of trehalose in bacteria and yeast: a comparative analysis. Archiv Microbiol 174:217–224

    Article  Google Scholar 

  • Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109

    Article  PubMed Central  PubMed  Google Scholar 

  • Avonce N, Wuyts J, Verschooten K, Vandesteene L, Van Dijck P (2010) The Cytophaga hutchinsonii ChTPSP: first characterized bifunctional TPS–TPP protein as putative ancestor of all eukaryotic trehalose biosynthesis proteins. Mol Biol Evol 27:359–369

    Article  CAS  PubMed  Google Scholar 

  • Buts JP, Stilman C, Bernasconi P, Neirinck C, De Keyser N (2008) Characterization of α, α-trehalase released in the intestinal lumen by probiotic Saccharomyces boulardii. Scand J Gastroenterol 43:1489–1496

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Hadadd GG (2004) Role of trehalose phosphate synthase and trehalose during hypoxia: from flies to mammals. J Exp Biol 207:3125–3129

    Article  CAS  PubMed  Google Scholar 

  • Collins CH, Clegg JS (2004) A small heat-shock protein, p26, from the crustacean Artemia franciscana protects mammalian cells (Cos-1) against oxidative damage. Cell Biol Internatl 28:449–455

    Article  CAS  Google Scholar 

  • Crowe JH (2007) Trehalose as a “chemical chaperone”: fact and fantasy. Adv Exp Med Biol 594:143–158

    Article  PubMed  Google Scholar 

  • Delorge I, Janiak M, Carpentier S, Van Dijck P (2014) Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants. Frontiers Plant Sci 14:147

    Google Scholar 

  • Eastmond P, Graham IA (2003) Trehalose metabolism: a regulatory role for trehalose-6-phosphate a regulator of sugar metabolism in plants? Curr Opin Plant Biol 6:231–235

    Article  CAS  PubMed  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17–27

    Article  Google Scholar 

  • González-Párraga P, Sánchez-Fresneda R, Zaragoza O, Argüelles JC (2011) Amphotericin B induces trehalose synthesis and simultaneously activates and antioxidant enzymatic response in Candida albicans. Biochim Biophys Acta 1810:777–783

    Article  PubMed  Google Scholar 

  • Guo N, Puhlev I, Brown DR, Mansbridge J, Levine F (2000) Trehalose expression confers desiccation tolerance on human cells. Nat Biotechnol 18:168–171

    Article  CAS  PubMed  Google Scholar 

  • Honda Y, Tanaka M, Honda S (2010) Trehalose extends longevity in the nematode Caenorhabditis elegans. Aging Cell 9:558–569

    Article  CAS  PubMed  Google Scholar 

  • Ishihara R, Taketani S, Sasai-Takedatsu M, Kino M, Tokunaga R, Kobayashi Y (1997) Molecular cloning, sequencing and expression of cDNA encoding human trehalase. Gene 202:69–74

    Article  CAS  PubMed  Google Scholar 

  • Kandror O, DeLeon A, Goldberg AL (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci USA 99:9727–9732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M (2014) Trehalose metabolism in plants. Plant J 79:544–567

    Article  CAS  PubMed  Google Scholar 

  • Mattos Martins MC, Hejazi M, Fettke J, Steup M, Feil R et al (2013) Feedback inhibition of starch degradation in Arabidopsis leaves mediated by trehalose-6-phosphate. Plant Physiol 163:1142–1163

    Article  Google Scholar 

  • Nunes C, Schuelpmann H, Delatte TL, Wingler A, Silva AB et al (2013) Regulation of growth by the trehalose pathway: relationship to temperature and sucrose. Plant Signal Behav 8:e26626

    Article  PubMed Central  PubMed  Google Scholar 

  • Ohtake S, Wang J (2011) Trehalose: current use and future applications. J Pharm Sci 100:2020–2053

    Article  CAS  PubMed  Google Scholar 

  • Pellereone FJ, Archer SK, Behm CA, Grant WN, Lacey MJ, Somerville AC (2003) Trehalose metabolism genes in Caenorhabditis elegans and filarial nematodes. Int J Parasitol 33:1195–1206

    Article  Google Scholar 

  • Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek APM, Waalkens-Berendsen DH, Arai S, Kurimoto M (2002) Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol 40:871–898

    Article  CAS  PubMed  Google Scholar 

  • Sacktor B (1968) Trehalase and the transport of glucose in the mammalian kidney and intestine. Proc Natl Acad Sci USA 60:1007–1014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sánchez-Fresneda R, Martínez-Esparza M, Maicas S, Argüelles JC, Valentín E (2014) In Candida parapsilosis the ATC1 gene encodes for an acid trehalase involved in trehalose hydrolysis, stress resistance and virulence. PLoS One 9:e99113

    Article  PubMed Central  PubMed  Google Scholar 

  • Scheibling RE (1980) Carbohydrases of the pyloric caeca of Oraester reticulatus (L.) (Echinodermata: asteroidea). Comp Biochem Physiolol 67:297–300

    Google Scholar 

  • Schluepmann H, Pellny T, Van Dijen A, Smeekens S, Paul M (2003) Trehalose-6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6849–6854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vivo and in vitro. Mol Cell 1:639–648

    Article  CAS  PubMed  Google Scholar 

  • Tournu H, Fior A, Van Dijck P (2013) Relevance of trehalose in pathogenicity: some general rules, yet many exceptions. PLoS Pathog 9:e1003447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Handel E (1969) Does trehalose and trehalase function in renal glucose transport? Science 163:1075–1076

    Article  PubMed  Google Scholar 

  • Vandesteene l, López-Galvis L, Vanneste K, Feil R, Maere S, Lammens W, Rolland F, Lunn JE, Avonce N, Beecjman T, Van Dijck P (2012) Expansive evolution of the trehalose-6-phosphate phosphatase gene family in Arabidopsis. Plant Physiol 60:884–896

    Article  Google Scholar 

  • Wegener G, Macho C, Schlöder P, Kamp G, Ando O (2010) Long-term effects ofthe trehalase inhibitor trehazolin on trehalase activity in locust flight muscle. J Exp Biol 213:3852–3857

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Bao B, Zhang Z-F, Yi Y, Xu W-H (2009) Identification of a novel gene encoding the trehalose phosphate synthase in the cotton bollworm Helicoverpa armigera. Glycobiology 19:250–257

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Zhang H, Zhu G (2010) Plant-type trehalose synthetic pathway in Cryptosporidium and some other apicomplexans. PLoS One 5:e12593

    Article  PubMed Central  PubMed  Google Scholar 

  • Zaparty M, Hagemann A, Bräsen C, Hensel R, Lupas AN, Brinkmanann H, Siebers B (2013) The first prokaryotic trehalose synthase complex identified in the hyperthermophilic crenarcheon Thermoproteus tenax. PLoS One 8:e61354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I wish to thank my colleague Dr. D. García (Dept. of Zoology) for her critical reading of the manuscript and fruitful discussions, and to J. P. Guirao-Abad for his help with the graphics. I am truly indebted to Dr. M. J. López-Andreo (SAI, Universidad de Murcia) for her long and patient work with the genomic analysis. The experimental work was supported by Grant PI12/01797 (Ministerio de Economía y Competitividad, ISCIII, Spain). I am also indebted to the financial contract provided by Cespa Servicios Urbanos de Murcia, S.A.

Conflict of interest

The author declares no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan-Carlos Argüelles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argüelles, JC. Why Can’t Vertebrates Synthesize Trehalose?. J Mol Evol 79, 111–116 (2014). https://doi.org/10.1007/s00239-014-9645-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-014-9645-9

Keywords

Navigation