Skip to main content
Log in

The effect of cortico-spinal tract damage on primary sensorimotor cortex activation after rehabilitation therapy

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Recently, it was shown that patients have different functional activation patterns within affected primary sensorimotor cortex (SMC) after intensive rehabilitation therapy. This individual difference was supposed to depend on the integrity of the cortico-spinal fibres from the primary motor cortex. In this study, we considered whether patients with different fMRI activation patterns after intensive rehabilitation therapy suffered from different cortico-spinal fibre lesions. To comprehend this circumstance a lesion subtraction analysis was used. To verify these results with the use of transcranial magnetic stimulation motor evoked potentials was also derived. Patients were treated after a modified version of constraint-induced movement therapy (modCIMT; 3 h daily for 4 weeks). Increased and decreased SMC activation showed similar individual patterns as described previously. These activation differences depend on the integrity of the cortico-spinal tract, which was measured via lesion subtraction analysis between patient groups, and was supported by affected motor evoked potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BOLD:

Blood oxygenation level dependent

CIMT:

Constraint-induced movement therapy

CMCT:

Central motor conduction times

fMRI:

Functional magnetic resonance imaging

MAL-AoU:

Motor activity log with amount of use

MAL-QoM:

Motor activity log with quality of movement

MEP:

Motor evoked potentials

modCIMT:

Modified version of constraint-induced movement therapy

SMC:

Primary sensorimotor cortex

TMS:

Transcranial magnetic stimulation

WMFT-FA:

Wolf motor function test with functional ability

WMFT-sec:

Wolf motor function test with number of seconds

References

  • Cohen J (1988) Statistical power analysis for the behavioral science. Lawerance Erlbaum Associates, Hillsdale

    Google Scholar 

  • Dettmers C, Teske U, Hamzei F, Uswatte G, Taub E, Weiller C (2005) Distributed form of constraint-induced movement therapy improves functional outcome and quality of life after stroke. Arch Phys Med Rehabil 86:204–209

    Article  PubMed  Google Scholar 

  • Escudero JV, Sancho J, Bautista D, Escudero M, Lopez-Trigo J (1998) Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke. Stroke 29:1854–1859

    PubMed  CAS  Google Scholar 

  • Evans AC, Kamber M, Collins DL, Macdonald D (1994) An MRI-based probabilistic atlas of neuroanatomy. In: Shorvon S, Fish D, Andermann F, Bydder GM, Stefan H (eds) Magnetic resonance scanning and epilepsy. Plenum, New York, pp 263–274

    Google Scholar 

  • Fink GR, Frackowiak RS, Pietrzyk U, Passingham RE (1997) Multiple nonprimary motor areas in the human cortex. J Neurophysiol 77:2164–2174

    PubMed  CAS  Google Scholar 

  • Fries W, Danek A, Scheidtmann K, Hamburger C (1993) Motor recovery following capsular stroke. Role of descending pathways from multiple motor areas. Brain 116:369–382

    Article  PubMed  Google Scholar 

  • Friston KJ, Ashburner J, Frith CD, Poline J-B, Heather JD, Frackowiak RS (1995a) Spatial registration and normalization of images. Hum Brain Map 2:1–25

    Google Scholar 

  • Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RS (1995b) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Map 2:189–210

    Article  Google Scholar 

  • Friston KJ, Ashburner J, Poline JB, Frith CD, Heather JD, Frackowiak RS (1997) Spatial realignment and normalization of images. Hum Brain Map 2:165–189

    Google Scholar 

  • Hamzei F, Knab R, Weiller C, Rother J (2003a) The influence of extra- and intracranial artery disease on the BOLD signal in FMRI. Neuroimage 20:1393–1399

    Article  PubMed  Google Scholar 

  • Hamzei F, Rijntjes M, Dettmers C, Glauche V, Weiller C, Büchel C (2003b) The human action recognition system and its relationship to Broca’s area: an fMRI study. Neuroimage 19:637–644

    Article  PubMed  Google Scholar 

  • Hamzei F, Liepert J, Dettmers C, Weiller C, Rijntjes M (2006) Two different reorganization patterns after rehabilitative therapy: an exploratory study with fMRI and TMS. Neuroimage 31:710–720

    Article  PubMed  Google Scholar 

  • Johansen-Berg H, Dawes H, Guy C, Smith SM, Wade DT, Matthews PM (2002) Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain 125:2731–2742

    Article  PubMed  Google Scholar 

  • Karnath HO, Fruhmann Berger M, Kuker W, Rorden C (2004) The anatomy of spatial neglect based on voxelwise statistical analysis: a study of 140 patients. Cereb Cortex 14:1164–1172

    Article  PubMed  Google Scholar 

  • Lee CC, Jack CR Jr, Riederer SJ (1998) Mapping of the central sulcus with functional MR: active versus passive activation tasks. AJNR 19:847–852

    PubMed  CAS  Google Scholar 

  • Liepert J, Storch P, Fritsch A, Weiller C (2000) Motor cortex disinhibition in acute stroke. Clin Neurophysiol 111:671–676

    Article  PubMed  CAS  Google Scholar 

  • Loubinoux I, Carel C, Alary F, Boulanouar K, Viallard G, Manelfe C, Rascol O, Chollet F (2001) Within-session and between session reproducibility of cerebral sensorimotor activation: a test–retest effect evidenced with functional magnetic resonance imaging. J Cereb Blood Flow Meta 21:592–607

    Article  CAS  Google Scholar 

  • Loubinoux I, Carel C, Pariente J, Dechaumont S, Albucher JF, Marque P, Manelfe C, Chollet F (2003) Correlation between cerebral reorganization and motor recovery after subcortical infarcts. NeuroImage 20:2166–2180

    Article  PubMed  Google Scholar 

  • Mark VW, Taub E, Morris DM (2006) Neuroplasticity and constraint-induced movement therapy. Eura Medicophys 42:269–284

    PubMed  CAS  Google Scholar 

  • Miltner WH, Bauder H, Sommer M, Dettmers C, Taub E (1999) Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke: a replication. Stroke 30:586–592

    PubMed  CAS  Google Scholar 

  • Morecraft RJ, Herrick JL, Stilwell-Morecraft KS, Louie JL, Schroeder CM, Ottenbacher JG, Schoolfield MW (2002) Localization of arm representation in the corona radiata and internal capsule in the non-human primate. Brain 125:176–198

    Article  PubMed  Google Scholar 

  • Murase N, Duque J, Mazzocchio R, Cohen LG (2004) Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55:400–409

    Article  PubMed  Google Scholar 

  • Nelles G, Jentzen W, Jueptner M, Muller S, Diener HC (2001) Arm training induced brain plasticity in stroke studied with serial positron emission tomography. Neuroimage 13:1146–1154

    Article  PubMed  CAS  Google Scholar 

  • Newton JM, Ward NS, Parker GJ, Deichmann R, Alexander DC, Friston KJ, Frackowiak RS (2006) Non-invasive mapping of corticofugal fibres from multiple motor areas—relevance to stroke recovery. Brain 129:1844–1858

    Article  PubMed  Google Scholar 

  • Niehaus L, Bajbouj M, Meyer BU (2003) Impact of interhemispheric inhibition on excitability of the non-lesioned motor cortex after acute stroke. Suppl Clin Neurophysiol 56:181–186

    Article  PubMed  Google Scholar 

  • Pereon Y, Aubertin P, Guiheneuc P (1995) Prognostic significance of electrophysiological investigations in stroke patients: somatosensory and motor evoked potentials and sympathetic skin response. Neurophysiol Clin 25:146–157

    Article  PubMed  CAS  Google Scholar 

  • Rijntjes M, Hobbeling V, Hamzei F, Dohse S, Ketels G, Liepert J, Weiller C (2005) Individual factors in constraint-induced movement therapy after stroke. Neurorehabil Neural Repair 19:238–249

    Article  PubMed  Google Scholar 

  • Rorden C, Brett M (2000) Stereotaxic display of brain lesions. Behav Neurol 12:191–200

    PubMed  Google Scholar 

  • Schaechter JD, Kraft E, Hilliard TS, Dijkhuizen RM, Benner T, Finklestein SP, Rosen BR, Cramer SC (2002) Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: a preliminary study. Neurorehabil Neural Repair 16:326–338

    PubMed  Google Scholar 

  • Sterr A, Elbert T, Berthold I, Kolbel S, Rockstroh B, Taub E (2002) Longer versus shorter daily constraint-induced movement therapy of chronic hemiparesis: an exploratory study. Arch Phys Med Rehabil 83:1374–1377

    Article  PubMed  Google Scholar 

  • Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD (2007) Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130:170–180

    Article  PubMed  Google Scholar 

  • Szaflarski JP, Page SJ, Kissela BM, Lee JH, Levine P, Strakowski SM (2006) Cortical reorganization following modified constraint-induced movement therapy: a study of 4 patients with chronic stroke. Arch Phys Med Rehabil 87:1052–1058

    Article  PubMed  Google Scholar 

  • Taub E, Miller NE, Novack TA, Cook EW III, Fleming WC, Nepomuceno CS, Connell JS, Crgo JE (1993) Technique to improve chronic motor deficits after stroke. Arch Phys Med Rehabil 74:347–354

    PubMed  CAS  Google Scholar 

  • Taub E, Uswatte G, Mark VW, Morris DM (2006a) The learned nonuse phenomenon: implications for rehabilitation. Eura Medicophys 42:241–256

    PubMed  CAS  Google Scholar 

  • Taub E, Uswatte G, King DK, Morris D, Crago JE, Chatterjee A (2006b) A placebo-controlled trial of constraint-induced movement therapy for upper extremity after stroke. Stroke 37:1045–1049

    Article  PubMed  Google Scholar 

  • Tombari D, Loubinoux I, Parinete J, Gerdelat A, Albucher J-F, Tardy J, Cassol E, Chollet F (2004) A longitudinal fMRI study: in recovering and then in clinically stable sub-cotical stroke patients. NeuroImage 23:827–839

    Article  PubMed  Google Scholar 

  • Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2006) Longitudinal changes in cerebral response to proprioceptive input in individual patients after stroke: an FMRI study. Neurorehabil Neural Repair 20:398–405

    Article  PubMed  Google Scholar 

  • Weiller C, Jueptner M, Fellows S, Rijntjes M, Leonhardt G, Kiebel S, Muller S, Diener HC, Thilmann AF (1996) Brain representation of active and passive movements. Neuroimage 4:105–110

    Article  PubMed  CAS  Google Scholar 

  • Wittenberg GF, Chen R, Ishii K, Bushara KO, Eckloff S, Croarkin E, Taub E, Gerber LH, Hallett M, Cohen LG (2003) Constraint-induced therapy in stroke: magnetic-stimulation motor maps and cerebral activation. Neurorehabil Neural Repair 17:48–57

    Article  PubMed  Google Scholar 

  • Wohrle JC, Behrens S, Mielke O, Hennerici MG (2004) Early motor evoked potentials in acute stroke: adjunctive measure to MRI for assessment of prognosis in acute stroke within 6 hours. Cerebrovasc Dis 18:130–134

    Article  PubMed  Google Scholar 

  • Wolf SL, Lecrew DE, Barton LA, Jann BB (1989) Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol 104:125–132

    Article  PubMed  CAS  Google Scholar 

  • Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, Giuliani C, Light KE, Nichols-Larsen D (2006) Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 296:2095–2104

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to P.T. Alleyne-Dettmers, Ph.D. for editing the text. We thank C. Büchel for his comments during preparation of the study’s design and an early version of the manuscript and Thomas Wolbers and Volkmar Glauche for his statistical support. We are grateful to all individuals who participated in this study, particularly to Ulrike Teske how performed the training sessions. CW was supported by DFG, BMBF (GFGO 0 123 7301—01GO 0105; DFG: WE 1352/13-1), EU (QLK6 CT 1999 02140) and by the Competence network stroke (01GI9917).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farsin Hamzei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamzei, F., Dettmers, C., Rijntjes, M. et al. The effect of cortico-spinal tract damage on primary sensorimotor cortex activation after rehabilitation therapy. Exp Brain Res 190, 329–336 (2008). https://doi.org/10.1007/s00221-008-1474-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1474-x

Keywords

Navigation