Skip to main content

Advertisement

Log in

Sensitive determination of prohibited drugs in dried blood spots (DBS) for doping controls by means of a benchtop quadrupole/Orbitrap mass spectrometer

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In the present study, a new type of mass spectrometer combining a quadrupole mass filter, a higher collision dissociation (HCD) cell and an Orbitrap detector, was evaluated for the analysis of dried blood spots (DBS) in doping controls. DBS analysis is characterized by the necessity to detect prohibited compounds in sub-nanogram-per-milliliter levels with high identification capacity. After extraction of DBS with an organic solvent and liquid chromatographic separation (using a regular C18-RP-analytical UHPLC-column) of target analytes, mass spectrometry is performed with a high-resolution full scan in positive and negative mode by means of electrospray ionisation. Single-product ion mass spectra are acquired using the data-dependent analysis mode (employing an inclusion list) for previously selected precursors of known prohibited compounds with fixed retention time ranges. Besides, a sensitive screening in a targeted approach, non-targeted analysis for retrospective data evaluation is thus possible. The chosen experimental design enables the determination of various drugs from different classes with one generic sample preparation which is shown for 26 selected model compounds (Δ9-tetrahydrocannabinol (THC), tetrahydrocannabinol-9-carboxylic acid (THC-COOH), methylhexaneamine, methylphenidate, cocaine, nikethamide, 3,4-methylenedioxyamphetamine, N-methyl-3,4-methylenedioxyamphetamine, strychnine, mesocarb, salbutamol, formoterol, clenbuterol, metandienone, stanozolol, bisoprolol, propranolol, metoprolol, anastrazole, clomiphene, exemestane, dexamethasone, budesonide, selective androgen receptor modulator (SARM) S4 (andarine), SARM S1, hydrochlorothiazide). Generally, only qualitative result interpretation was focussed upon, but for target analytes with deuterium-labelled internal standards (salbutamol, clenbuterol, cocaine, dexamethasone, THC-COOH and THC) quantitative analysis was also possible. Especially the most challenging analytes, THC and its carboxy metabolite, were detected in DBS at relevant concentrations (<0.5 ng/mL) using targeted HCD experiments. The method was validated for the parameters: specificity, linearity (0–20 ng/mL), precision (<25%), recovery (mean 60%), limit of detection/quantification, ion suppression, stability and accuracy (80–120%). Six isotope-labelled analogues used as internal standards facilitate a quantitative result interpretation which is of utmost importance especially for in-competition drug sports testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Danaceau JP, Scott Morrison M, Slawson MH (2008) J Mass Spectrom 43:993–1000

    Article  CAS  Google Scholar 

  2. Moulard Y, Bailly-Chouriberry L, Boyer S, Garcia P, Popot MA, Bonnaire Y (2011) Anal Chim Acta 700:126–136

    Article  CAS  Google Scholar 

  3. Clarke A, Scarth J, Teale P, Pearce C, Hillyer L (2011) Drug Test Anal 3:74–87

    Article  CAS  Google Scholar 

  4. Jiwan JL, Wallemacq P, Herent MF (2011) Clin Biochem 44:136–147

    Article  CAS  Google Scholar 

  5. Thomas A, Guddat S, Kohler M, Krug O, Schänzer W, Petrou M, Thevis M (2010) Rapid Commun Mass Spectrom 24:1124–1132

    Article  CAS  Google Scholar 

  6. Thomas A, Höppner S, Geyer H, Schänzer W, Petrou M, Kwiatkowska D, Pokrywka A, Thevis M (2011) Anal Bioanal Chem 401:507–516

    Article  CAS  Google Scholar 

  7. Thomas A, Kohler M, Mester J, Geyer H, Schänzer W, Petrou M, Thevis M (2010) Drug Test Anal 2:144–148

    CAS  Google Scholar 

  8. Peters FT (2011) Clin Biochem 44:54–65

    Article  CAS  Google Scholar 

  9. Maurer HH (2011) Ther Drug Monit 32:324–327

    Article  Google Scholar 

  10. Thevis M, Makarov AA, Horning S, Schänzer W (2005) Rapid Commun Mass Spectrom 19:3369–3378

    Article  CAS  Google Scholar 

  11. Michalski A, Damoc E, Hauschild JP, Lange O, Wieghaus A, Makarov A, Nagaraj N, Cox J, Mann M, Horning S Mol Cell Proteomics 10: doi:10.1074/mcp.M111.011015

  12. Scigelova M, Hornshaw M, Giannakopulos A, Makarov A (2011) Mol Cell Proteomics 10: doi: 10.1074/mcp.M111.009431

  13. Thomas A, Geyer H, Guddat S, Schänzer W, Thevis M Drug Test Anal doi:10.1002/dta.342

  14. Abu-Rabie P, Spooner N (2009) Anal Chem 81:10275–10284

    Article  CAS  Google Scholar 

  15. Aldenhoven M, de Koning TJ, Verheijen FW, Prinsen BH, Wijburg FA, van der Ploeg AT, de Sain-van der Velden MG, Boelens J (2010) Biol Blood Marrow Transplant 16:701–704

    Article  CAS  Google Scholar 

  16. Carducci C, Santagata S, Leuzzi V, Artiola C, Giovanniello T, Battini R, Antonozzi I (2006) Clin Chim Acta 364:180–187

    Article  CAS  Google Scholar 

  17. Clavijo CF, Hoffman KL, Thomas JJ, Carvalho B, Chu LF, Drover DR, Hammer GB, Christians U, Galinkin JL (2011) Anal Bioanal Chem 400:715–728

    Article  CAS  Google Scholar 

  18. Deglon J, Lauer E, Thomas A, Mangin P, Staub C (2010) Anal Bioanal Chem 396:2523–2532

    Article  CAS  Google Scholar 

  19. Deglon J, Thomas A, Cataldo A, Mangin P, Staub C (2009) J Pharm Biomed Anal 49:1034–1039

    Article  CAS  Google Scholar 

  20. Li W, Tse FL (2010) Biomed Chromatogr 24:49–65

    Article  Google Scholar 

  21. Mather J, Rainville PD, Spooner N, Evans CA, Smith NW, Plumb RS (2011) Bioanalysis 3:411–420

    Article  CAS  Google Scholar 

  22. McDade TW, Williams S, Snodgrass JJ (2007) Demography 44:899–925

    Article  Google Scholar 

  23. Parker DR, Bargiota A, Cowan FJ, Corrall RJ (1997) Clin Endocrinol (Oxf) 47:679–683

    Article  CAS  Google Scholar 

  24. Patel P, Tanna S, Mulla H, Kairamkonda V, Pandya H, Lawson G (2010) J Chromatogr B Analyt Technol Biomed Life Sci 878:3277–3282

    Article  CAS  Google Scholar 

  25. Therrell BL, Hannon WH, Pass KA, Lorey F, Brokopp C, Eckman J, Glass M, Heidenreich R, Kinney S, Kling S, Landenburger G, Meaney FJ, McCabe ER, Panny S, Schwartz M, Shapira E (1996) Biochem Mol Med 57:116–124

    Article  CAS  Google Scholar 

  26. Wong P, Pham R, Bruenner BA, James CA (2010) Bioanalysis 2:1787–1789

    Article  CAS  Google Scholar 

  27. Thevis M, Thomas A, Fusshöller G, Beuck S, Geyer H, Schänzer W (2010) Rapid Commun Mass Spectrom 24:2245–2254

    Article  CAS  Google Scholar 

  28. Thevis M, Geyer H, Kamber M, Schänzer W (2009) Drug Test Anal 1:387–392

    Article  CAS  Google Scholar 

  29. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Anal Chem 75:3019–3030

    Article  CAS  Google Scholar 

  30. Brenneisen R, Meyer P, Chtioui H, Saugy M, Kamber M (2010) Anal Bioanal Chem 396:2493–2502

    Article  CAS  Google Scholar 

  31. König S, Aebi B, Lanz S, Gasser M, Weinmann W (2011) Anal Bioanal Chem 400:9–16

    Article  Google Scholar 

  32. Schwope DM, Scheidweiler KB, Huestis MA (2011) Anal Bioanal Chem 401:1273–1283

    Article  CAS  Google Scholar 

  33. Zhang H, Zhu M, Ray KL, Ma L, Zhang D (2008) Rapid Commun Mass Spectrom 22:2082–2088

    Article  CAS  Google Scholar 

  34. http://www.wada-ama.org/en/World-Anti-Doping-Program/Sports-and-Anti-Doping-Organizations/International-Standards/Prohibited-List/ (2011) Vol. 2011, WADA

  35. Saugy M, Robinson N, Saudan C (2009) Drug Test Anal 1:474–478

    Article  CAS  Google Scholar 

  36. http://www.wada-ama.org/Documents/World_Anti-Doping_Program/WADP-IS-Laboratories/WADA_Int.Standard_Laboratories_2009_EN.pdf (2011) Vol. 2011, WADA

  37. Thevis M (2010) Mass spectrometry in sports drug testing. Wiley, New Jersey

    Book  Google Scholar 

  38. Spooner N, Ramakrishnan Y, Barfield M, Dewit O, Miller S (2011) Bioanalysis 2:1515–1522

    Article  Google Scholar 

  39. Denniff P, Spooner N (2011) Bioanalysis 2:1385–1395

    Article  Google Scholar 

  40. Abu-Rabie P, Spooner N (2011) Bioanalysis 2:1373–1384

    Article  Google Scholar 

  41. Youhnovski N, Bergeron A, Furtado M, Garofolo F (2011) Rapid Commun Mass Spectrom 25:2951–2958

    Article  CAS  Google Scholar 

  42. Thevis M, Thomas A, Kohler M, Beuck S, Schänzer W (2009) J Mass Spectrom 44:442–460

    Article  CAS  Google Scholar 

  43. Thevis M, Schänzer W (2007) Mini Rev Med Chem 7:531–537

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was carried out with support of Antidoping Switzerland (Berne, Switzerland), the Manfred Donike Institute for Doping Analysis, Cologne, and the Federal Ministry of the Interior of the Federal Republic of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Thomas.

Additional information

Published in the special issue High-Resolution Mass Spectrometry with guest editors Hans H. Maurer and David C. Muddiman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, A., Geyer, H., Schänzer, W. et al. Sensitive determination of prohibited drugs in dried blood spots (DBS) for doping controls by means of a benchtop quadrupole/Orbitrap mass spectrometer. Anal Bioanal Chem 403, 1279–1289 (2012). https://doi.org/10.1007/s00216-011-5655-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5655-2

Keywords

Navigation