Skip to main content
Log in

Direct quantification of cannabinoids and cannabinoid glucuronides in whole blood by liquid chromatography–tandem mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The first method for quantifying cannabinoids and cannabinoid glucuronides in whole blood by liquid chromatography–tandem mass spectrometry (LC–MS/MS) was developed and validated. Solid-phase extraction followed protein precipitation with acetonitrile. High-performance liquid chromatography separation was achieved in 16 min via gradient elution. Electrospray ionization was utilized for cannabinoid detection; both positive (Δ9-tetrahydrocannabinol [THC] and cannabinol [CBN]) and negative (11-hydroxy-THC [11-OH-THC], 11-nor-9-carboxy-THC [THCCOOH], cannabidiol [CBD], THC-glucuronide, and THCCOOH-glucuronide) polarity were employed with multiple reaction monitoring. Calibration by linear regression analysis utilized deuterium-labeled internal standards and a 1/x 2 weighting factor, yielding R 2 values >0.997 for all analytes. Linearity ranged from 0.5 to 50 μg/L (THC-glucuronide), 1.0–100 μg/L (THC, 11-OH-THC, THCCOOH, CBD, and CBN), and 5.0–250 μg/L (THCCOOH-glucuronide). Imprecision was <10.5% CV, recovery was >50.5%, and bias within ±13.1% of target for all analytes at three concentrations across the linear range. No carryover and endogenous or exogenous interferences were observed. This new analytical method should be useful for quantifying cannabinoids in whole blood and further investigating cannabinoid glucuronides as markers of recent cannabis intake.

LC–MS/MS MRM ion chromatograms of extracted blank whole blood and cannabinoid analytes at limits of quantification

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Compton R, Berning A (2009) Results of the 2007 national roadside survey of alcohol and drug use by drivers. DOT HS 811 175. NHTSA, Washington, DC

  2. Huestis MA, Henningfield JE, Cone EJ (1992) J Anal Toxicol 16:276–282

    CAS  Google Scholar 

  3. Kauert GF, Ramaekers JG, Schneider E, Moeller MR, Toennes SW (2007) J Anal Toxicol 31:288–293

    CAS  Google Scholar 

  4. Niedbala RS, Kardos KW, Fritch DF, Kardos S, Fries T, Waga J, Robb J, Cone EJ (2001) J Anal Toxicol 25(5):289–303

    CAS  Google Scholar 

  5. Matsunaga T, Iwawaki Y, Watanabe K, Yamamoto I, Kageyama T, Yoshimura H (1995) Life Sci 56:2089–2095

    Article  CAS  Google Scholar 

  6. Watanabe K, Yamaori S, Funahashi T, Kimura T, Yamamoto I (2007) Life Sci 80:1415–1419

    Article  CAS  Google Scholar 

  7. Halldin MM, Carlsson S, Kanter SL, Widman M, Agurell S (1982) Arzneim Forsch 32:764–768

    CAS  Google Scholar 

  8. Williams PL, Moffat AC (1980) J Pharm Pharmacol 32:445–448

    Article  CAS  Google Scholar 

  9. Wall ME, Sadler BM, Brine D, Taylor H, Perez-Reyes M (1983) Clin Pharmacol Ther 34:352–363

    Article  CAS  Google Scholar 

  10. Mareck U, Haenelt N, Geyer H, Guddat S, Kamber M, Brenneisen R, Thevis M, Schänzer W (2009) Drug Test Anal 1:505–510

    Article  CAS  Google Scholar 

  11. Skopp G, Pötsch L, Ganßmann B, Mauden M, Richter B, Aderjan R, Mattern R (1999) Z Rechtsmed 10:21–28

    Article  Google Scholar 

  12. Abraham TT, Lowe RH, Pirnay SO, Darwin WD, Huestis MA (2007) J Anal Toxicol 31:477–485

    CAS  Google Scholar 

  13. Stout PR, Horn CK, Klette KL (2001) J Anal Toxicol 25:550–554

    CAS  Google Scholar 

  14. Dietz L, Glaz-Sandberg A, Nguyen H, Skopp G, Mikus G, Aderjan R (2007) Ther Drug Monit 29:368–372

    Article  CAS  Google Scholar 

  15. Schwilke EW, Schwope DM, Karschner EL, Lowe RH, Darwin WD, Kelly DL, Goodwin RS, Gorelick DA, Huestis MA (2009) Clin Chem 55:2180–2189

    Article  CAS  Google Scholar 

  16. Gray TR, Barnes AB, Huestis MA (2010) Anal Bioanal Chem 397:2335–2347

    Article  CAS  Google Scholar 

  17. ElSohly M, Feng S (1998) J Anal Toxicol 22:329–335

    CAS  Google Scholar 

  18. Moore C, Rana S, Coulter C, Day D, Vincent M, Soares J (2007) J Anal Toxicol 31:187–194

    CAS  Google Scholar 

  19. Kemp PM, Abukhalaf IK, Manno JE, Manno BR, Alford DD, McWilliams ME, Nixon FE, Fitzgerald MJ, Reeves RR, Wood MJ (1995) J Anal Toxicol 19:292–298

    CAS  Google Scholar 

  20. Kemp PM, Abukhalaf IK, Manno JE, Manno BR, Alford DD, Abusada GA (1995) J Anal Toxicol 19:285–291

    CAS  Google Scholar 

  21. Stephanson N, Josefsson M, Kronstrand R, Beck O (2008) J Chromatogr B: Anal Technol Biomed Life Sci 871:101–108

    Article  CAS  Google Scholar 

  22. Huestis MA (2007) Chem Biodivers 4:1770–1804

    Article  CAS  Google Scholar 

  23. Jagerdeo E, Schaff JE, Montgomery MA, LeBeau MA (2009) Rapid Commun Mass Spectrom 23:2697–2705

    Article  CAS  Google Scholar 

  24. Teixeira H, Verstraete A, Proenca P, Corte-Real F, Monsanto P, Vieira DN (2007) Forensic Sci Int 170:148–155

    Article  CAS  Google Scholar 

  25. Coulter C, Miller E, Crompton K, Moore C (2008) J Anal Toxicol 32:653–658

    CAS  Google Scholar 

  26. Peters FT, Maurer HH (2002) Accredit Qual Assur 7:441–449

    Article  CAS  Google Scholar 

  27. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Anal Chem 75:3019–3030

    Article  CAS  Google Scholar 

  28. Scurlock RD, Ohlson GB, Worthen DK (2006) J Anal Toxicol 30:262–266

    CAS  Google Scholar 

  29. Chu MH, Drummer OH (2002) J Anal Toxicol 26:575–581

    CAS  Google Scholar 

  30. Kintz P, Cirimele V (1997) Biomed Chromatogr 11:371–373

    Article  CAS  Google Scholar 

  31. König S, Aebi B, Lanz S, Gasser M, Weinmann W (2011) Anal Bioanal Chem 400:9–16

    Article  Google Scholar 

  32. Schwilke EW, Karschner EL, Lowe RH, Gordon AM, Cadet JL, Herning R, Huestis MA (2009) Clin Chem 55:1188–1195

    Article  CAS  Google Scholar 

  33. Skopp G, Potsch L (2002) Clin Chem 48:301–306

    CAS  Google Scholar 

  34. Farrell LJ, Kerrigan S, Logan BK (2007) J Forensic Sci 52:1214–1218

    Article  CAS  Google Scholar 

  35. Pil K, Raes E, Van den Neste T, Verstraete A (2007) In Working paper: Uniform design and protocols for carrying out case-control studies. Driving Under the Influence of Drugs, Alcohol and Medicines (DRUID), Bergisch Gladbach, Germany, pp 10

  36. Xia YQ, Jemal M (2009) Rapid Commun Mass Spectrom 23:2125–2138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Allan Barnes, Erin Karschner, Teresa Gray, Amanda Rigdon, and the clinical staff of the NIDA Intramural Research Program for technical assistance. This work was supported by the Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn A. Huestis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwope, D.M., Scheidweiler, K.B. & Huestis, M.A. Direct quantification of cannabinoids and cannabinoid glucuronides in whole blood by liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 401, 1273–1283 (2011). https://doi.org/10.1007/s00216-011-5197-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5197-7

Keywords

Navigation