Skip to main content
Log in

Evidenzbasierte Armrehabilitation

Eine systematische Literaturübersicht

  • Übersicht
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Basierend auch einer systematischen MEDLINE-Recherche und informellen Literaturquellen wurden 40 Referenzen identifiziert, die als systematischer Review, Metaanalyse, randomisierte kontrollierte Studie oder kontrollierte Kohortenstudie klinische Prüfungen übungstherapeutischer oder neuromuskulär elektrisch stimulierender Verfahren bei Patienten mit Armlähmungen nach zerebrovaskulären Insult beinhalten. Die Ergebnisse lassen sich in 3 Bereiche zusammenfassen: Vergleich physiotherapeutischer Schulen, Effekt der Trainingsintensität und spezifische Methoden für Patientensubgruppen. Bis auf das "Motor Relearning Programme", einem aufgabenorientierten Training, fanden sich keine Hinweise auf eine unterschiedliche Wirksamkeit der etablierten physiotherapeutischer Schulen. Eine Steigerung der Trainingsintensität kann die motorische Erholung beschleunigen. Für spezifische Subgruppen von Patienten stehen wirksame spezifische Armrehabilitationsmethoden zur Verfügung: für Patienten mit leichten Defiziten der Fein- und Zielmotorik das Armfähigkeitstraining, für Patienten mit partiellen funktionellen Einschränkungen und gelerntem Nichtgebrauch des betroffenen Armes die "constrained-induced movement therapy" (Taub-Training) und für Patienten mit schwerer Armlähmung und erheblich beeinträchtigter Willkürinnervation repetitive sensomotorische Trainingsverfahren, EMG-Biofeedback, funktionelle Elektrostimulation und Robot-assistierte Trainingsverfahren.

Summary

Based on a systematic MEDLINE search and informal sources, 40 references were identified that evaluate training therapy or neuromuscular electric stimulation for arm paresis after stroke and describe either a systematic review, meta-analysis, randomised controlled trial, or controlled cohort study. The evidence was grouped into three areas of interest: comparison of physiotherapy schools, effects of intensity of training, and efficacy of specific arm rehabilitation techniques. The only physiotherapy school with evidence of superior efficacy was the task-oriented 'motor relearning programme'. Higher intensities of motor rehabilitation can accelerate motor recovery. Various training techniques with demonstrated efficacy are available for specific patient subgroups: arm ability training for mildly affected patients with reduced efficiency of motor control, constrained-induced movement therapy for patients with partial functional deficits and learned nonuse of the affected arm, and repetitive sensorimotor training techniques, EMG-biofeedback, functional electrical stimulation, and robot-assisted training for patients with severe arm paresis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT (1997) The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch Neurol 54:443–446

    CAS  PubMed  Google Scholar 

  2. Altschuler EL, Wisdom SB, Stone L, Foster C, Galasko D, Llewellyn DM, Ramachandran VS (1999) Rehabilitation of hemiparesis after stroke with a mirror. Lancet 353:2035–2036

    Article  CAS  PubMed  Google Scholar 

  3. Ärztliche Zentralstelle für Qualitätssicherung (2001) Das Leitlinien-Manual von AWMF und ÄZQ. ZaeFQ 95 [Suppl I]

  4. Basmajian JV, Gowland CA, Finlayson MA et al. (1987) Stroke treatment: comparison of integrated behavioral-physical therapy vs traditional physical therapy programs. Arch Phys Med Rehabil 68:267–272

    CAS  PubMed  Google Scholar 

  5. Bowman BR, Baker LL, Waters RL (1979) Positional feedback and electrical stimulation: an automated treatment for the hemiplegic wrist. Arch Phys Med Rehabil 60:497–502

    CAS  PubMed  Google Scholar 

  6. Bütefisch C, Hummelsheim H, Denzler P, Mauritz K-H (1995) Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J Neurol Sci 130:59–68

    Article  PubMed  Google Scholar 

  7. Cauraugh JH, Kim S (2002) Two coupled motor recovery protocols are better than one: electromyogram-triggered neuromuscular stimulation and bilateral movements. Stroke 33:1589–1594

    Article  PubMed  Google Scholar 

  8. Chae J, Bethoux F, Bohine T, Dobos L, Davis T, Friedl A (1998) Neuromuscular stimulation for upper extremity motor and functional recovery in acute hemiplegia. Stroke 29:975–979

    CAS  PubMed  Google Scholar 

  9. Crow JL, Lincoln NB, Nouri FM, De Weerdt W (1989) The effectiveness of EMG biofeedback in the treatment of arm function after stroke. Int Disabil Studies 11:155–160.

    CAS  Google Scholar 

  10. Dickstein R, Hocherman S, Pillar T, Shaham R (1986) Stroke rehabilitation. Three exercise therapy approaches. Phys Ther 66:1233–1238

    CAS  PubMed  Google Scholar 

  11. Dromerick AW, Edwards DF, Hahn M (2000) Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke? Stroke 31:2984–2988

    Google Scholar 

  12. Elbert T, Rockstroh B, Bulach D, Meinzer M, Taub E (2003). Die Fortentwicklung der Neurorehabilitation auf verhaltensneurowissenschaftlicher Grundlage. Beispiel Constraint-induced-Therapie. Nervenarzt 74:334–342.

    PubMed  Google Scholar 

  13. Faghri PD, Rodgers MM, Glaser RM, Bors JG, Ho C, Akuthota P (1994) The effects of functional electrical stimulation on shoulder subluxation, arm function recovery, and shoulder pain in hemiplegic stroke patients. Arch Phys Med Rehabil 75:73–79

    CAS  PubMed  Google Scholar 

  14. Feys HM, De Weerdt WJ, Selz BE et al. (1998) Effect of a therapeutic intervention for the hemiplegic upper limb in the acute phase after stroke: a single-blind, randomized, controlled multicenter trial. Stroke 29:785–792

    CAS  PubMed  Google Scholar 

  15. Francisco G, Chae J, Chawla H, Kirshblum S, Zorowitz R, Lewis G, Pang S (1998) Electromyogram-triggered neuromuscular stimulation for improving the arm function of acute stroke survivors: a randomized pilot study. Arch Phys Med Rehabil 79:570–575

    CAS  PubMed  Google Scholar 

  16. Glanz M, Klawansky S, Stason W, Berkey C, Chalmers TC (1996) Functional electrostimulation in poststroke rehabilitation: a meta-analysis of the randomized controlled trials. Arch Phys Med Rehabil 77:549–553

    CAS  PubMed  Google Scholar 

  17. Greenberg S, Fowler RS Jr (1980) Kinesthetic biofeedback: a treatment modality for elbow range of motion in hemiplegia. Am J Occup Ther 34:738–743

    CAS  PubMed  Google Scholar 

  18. Guyatt GH, Sackett DL, Sinclair JC, Hayward R, Cook DJ, Cook RJ (1995) Users' guides to the medical literature, IX, A method for grading health care recommendations. JAMA 274:1800–1804

    Article  CAS  PubMed  Google Scholar 

  19. Inglis J, Donald MW, Monga TN, Sproule M, Young MJ (1984) Electromyographic biofeedback and physical therapy of the hemiplegic upper limb. Arch Phys Med Rehabil 65:755–759

    CAS  PubMed  Google Scholar 

  20. Jeannerod M (1997) The cognitive neuroscience of action. Blackwell Publishers, Oxford

  21. Karni A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider LG (1995) Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377:155–158

    CAS  PubMed  Google Scholar 

  22. Kraft GH, Fitts SS, Hammond MC (1992) Techniques to improve function of the arm and hand in chronic hemiplegia. Arch Phys Med Rehabil 73:220–227

    CAS  PubMed  Google Scholar 

  23. de Kroon JR, van der Lee JH, Ijzerman MJ, Lankhorst GJ (2002) Therapeutic electrical stimulation to improve motor control and functional abilities of the upper extremity after stroke: a systematic review. Clin Rehabil 16:350–360

    Article  PubMed  Google Scholar 

  24. Kwakkel G, Wagenaar RC, Koelman TW, Lankhorst GJ, Koetsier JC (1997) effects of intensity of rehabilitation after stroke. A research synthesis. Stroke 28:1550–1556

    CAS  PubMed  Google Scholar 

  25. Kwakkel G, Wagenaar RC, Twisk JWR, Lankhorst GJ, Koetsier JC (1999) Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. Lancet 354:191–196

    Article  CAS  PubMed  Google Scholar 

  26. Kwakkel G, Kollen BJ, Wagenaar RC (2002) Long term effects of upper and lower limb training after stroke: a randomised trial. JNNP 72:473–479

    CAS  Google Scholar 

  27. Kwakkel G, Wagenaar RC (2002) Effect of duration of upper- and lower-extremity rehabilitation sessions and walking speed on recovery of interlimb coordination in hemiplegic gait. Phys Ther 82:432–448

    PubMed  Google Scholar 

  28. Langhammer B, Stanghelle JK (2000) Bobath or motor relearning programme? A comparison of two different approaches of physiotherapy in stroke rehabilitation: a randomized controlled study. Clin Rehabil 14:361–369

    CAS  PubMed  Google Scholar 

  29. van der Lee JH, Wagenaar RC, Lankhorst GJ, Vogelaar TW, Deville WL, Bouter LM (1999) Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial. Stroke 30:2369–2375

    PubMed  Google Scholar 

  30. Lincoln NB, Parry RH, Vass CD (1999) Randomized, controlled trial to evaluate increased intensity of physiotherapy treatment of arm function after stroke. Stroke 30:573–579

    CAS  PubMed  Google Scholar 

  31. Lord JP, Hall K (1986) Neuromuscular reeducation versus traditional programs for stroke rehabilitation. Arch Phys Med Rehabil 67:88–91

    CAS  PubMed  Google Scholar 

  32. Lum PS, Burgar CG, Shor PC, Majmundar M, Van der LM (2002) Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil 83:952–959

    Article  PubMed  Google Scholar 

  33. Miltner WHR, Bauder H, Sommer M, Dettmers C, Taub E (1999) Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke. A replication. Stroke 30:586–592.

    CAS  PubMed  Google Scholar 

  34. Mudie MH, Matyas TA (2000) Can simultaneous bilateral movement involve the undamaged hemisphere in reconstruction of neural networks damaged by stroke? Disabil Rehabil 22:23–37

    Google Scholar 

  35. Nudo RJ, Wise BM, SiFuentes F, Milliken GW (1996) Neural substrates for the effects of rehabilitative training on motor recovery following ischemic infarct. Science 272:1791–1794

    CAS  Google Scholar 

  36. Pascual-Leone A, Dang N, Cohen L, Brasil-Neto JP, Cammarota A, Hallett M (1995) Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol 74:1037–1045

    PubMed  Google Scholar 

  37. Page SJ, Levine P, Sisto SA, Johnston MV (2001) Mental practice combined with physical practice for upper-limb motor deficit in subacute stroke. Phys Ther 81:1455–1462

    CAS  PubMed  Google Scholar 

  38. Parry RH, Lincoln NB, Vass CD (1999) Effect of severity of arm impairment on response to additional physiotherapy early after stroke. Clin Rehabil 13:187–198

    Article  CAS  PubMed  Google Scholar 

  39. Passingham R (1997) Functional organization of the motor system. In: Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Mazziotta JC (eds) Human brain function. Academic Press, San Diego, pp 243–274

  40. Platz T, Bock S, Prass K (2001). Reduced skilfulness of arm motor behaviour among motor stroke patients with good clinical recovery: Does it indicate reduced automaticity ? Can it be improved by unilateral or bilateral training ? A kinematic motion analysis study. Neuropsychologia 39:687–698

    Article  CAS  PubMed  Google Scholar 

  41. Platz T, Winter T, Muller N, Pinkowski C, Eickhof C, Mauritz KH (2001) Arm ability training for stroke and traumatic brain injury patients with mild arm paresis: a single-blind, randomized, controlled trial. Arch Phys Med Rehabil 82:961–968

    Article  CAS  PubMed  Google Scholar 

  42. Powell J, Pandyan AD, Granat M, Cameron M, Stott DJ (1999) Electrical stimulation of wrist extensors in poststroke hemiplegia. Stroke 30:1384–1389

    CAS  PubMed  Google Scholar 

  43. Sackett DL, Rosenberg WMC, Gray JAM, Haynes RB, Richardson WS (1996) Evidence based medicine: what it is and what it isn't. BMJ 312:71–72

    CAS  PubMed  Google Scholar 

  44. Schieber MH (1999) Voluntary descending control. In: Zigmond MJ, Bloom FE, Landis SC, Roberts JL, Squire LR (eds) Fundamental neuroscience. Academic Press, San Diego, pp 931–949

  45. Schleenbaker RE, Mainous AG, III (1993) Electromyographic biofeedback for neuromuscular reeducation in the hemiplegic stroke patient: a meta-analysis. Arch Phys Med Rehabil 74:1301–1304

    CAS  PubMed  Google Scholar 

  46. Sonde L, Gip C, Fernaeus SE, Nilsson CG, Viitanen M (1998) Stimulation with low frequency (1.7 Hz) transcutaneous electric nerve stimulation (low-tens) increases motor function of the post-stroke paretic arm. Scand J Rehabil Med 30:95–99

    Article  CAS  PubMed  Google Scholar 

  47. Sonde L, Kalimo H, Fernaeus SE, Viitanen M (2000) Low TENS treatment on post-stroke paretic arm: a three-year follow-up. Clin Rehabil 14:14–19

    Article  CAS  PubMed  Google Scholar 

  48. Sunderland A, Tinson DJ, Bradley EL, Fletcher D, Langton HR, Wade DT (1992) Enhanced physical therapy improves recovery of arm function after stroke. A randomised controlled trial. J Neurol Neurosurg Psychiatry 55:530–535

    CAS  PubMed  Google Scholar 

  49. Sunderland A, Fletcher D, Bradley EL, Tinson DJ, Langton HR, Wade DT (1994) Enhanced physical therapy for arm function after stroke: a one year follow up study. J Neurol Neurosurg Psychiatry 57:856–858

    CAS  PubMed  Google Scholar 

  50. Sterr A, Elbert T, Berthold I, Kölbel S, Rockstroh B, Taub E (2002) Longer versus shorter constraint-induced movement therapy of chronic hemiparesis: an exploratory study. Arch Phys Med Rehabil 83:1374–1377

    Article  PubMed  Google Scholar 

  51. Taub E (1994). Overcoming learned nonuse. A new approach to treatment in physical medicine. In: Carlson JG, Seifert SR, Birbaumer N (eds) Clinical applied psychophysiology. Plenum, New York, pp 185–220

  52. Taub E, Miller NE, Novack TA et al. (1993) Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil 74:347–354

    CAS  PubMed  Google Scholar 

  53. Volpe BT, Krebs HI, Hogan N, Edelstein OL, Diels C, Aisen M (2000) A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation. Neurology 54:1938–1944

    CAS  PubMed  Google Scholar 

  54. Wagenaar RC, Meijer OG, van Wieringen PC et al. (1990) The functional recovery of stroke: a comparison between neuro-developmental treatment and the Brunnstrom method. Scand J Rehabil Med 22:1-8

    CAS  PubMed  Google Scholar 

  55. Wolf SL, Binder-MacLeod SA (1983) Electromyographic biofeedback applications to the hemiplegic patient. Changes in upper extremity neuromuscular and functional status. Phys Ther 63:1393–1403

    CAS  PubMed  Google Scholar 

Download references

Danksagung

Diese Arbeit wurde unterstützt durch das BMBF im Rahmen des Kompetenznetzes "Schlaganfall".

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Platz, T. Evidenzbasierte Armrehabilitation. Nervenarzt 74, 841–849 (2003). https://doi.org/10.1007/s00115-003-1549-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-003-1549-7

Schlüsselwörter

Keywords

Navigation