Skip to main content

Advertisement

Log in

Spontaneous arterial dissection: phenotype and molecular pathogenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Arterial dissection (AD) is defined as the longitudinal splitting up of the arterial wall caused by intramural bleeding. It can occur as a spontaneous event in all large and medium sized arteries. The histological hallmark of AD is medial degeneration. Histological investigations, gene expression profiling and proteome studies of affected arteries reveal disturbances in many different biological processes including inflammation, proteolytic activity, cell proliferation, apoptosis and smooth muscle cell (SMC) contractile function. Medial degeneration can be caused by various rare dominant Mendelian disorders. Genetic linkage analysis lead to the identification of mutations in different disease-causing genes involved in the biosynthesis of the extracellular matrix (FBN1, COL3A1), in transforming growth factor (TGF) beta signaling (FBN1, TGFBR1, TGFBR2) and in the SMC contractile system (ACTA2, MYH11). Genome wide association studies suggest that the CDKN2A/CDKN2B locus plays a role in the etiology AD and other arterial diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tsai TT, Trimarchi S, Nienaber CA (2009) Acute aortic dissection: perspectives from the International Registry of Acute Aortic Dissection (IRAD). Eur J Vasc Endovasc Surg 37:149–159

    CAS  PubMed  Google Scholar 

  2. Schievink WI (2001) Spontaneous dissection of the carotid and vertebral arteries. N Engl J Med 344:898–906

    CAS  PubMed  Google Scholar 

  3. Bickerstaff LK, Pairolero PC, Hollier LH, Melton LJ, Van Peenen HJ, Cherry KJ, Joyce JW, Lie JT (1982) Thoracic aortic aneurysms: a population-based study. Surgery 92:1103–1108

    CAS  PubMed  Google Scholar 

  4. Lee VH, Brown RD, Mandrekar JN, Mokri B (2006) Incidence and outcome of cervical artery dissection: a population-based study. Neurology 67:1809–1812

    PubMed  Google Scholar 

  5. Trimarchi S, Tsai T, Eagle KA, Isselbacher EM, Froehlich J, Cooper JV, Rampoldi V, Upchurch GR Jr, International Registry of Acute Aortic Dissection (IRAD) investigators (2007) Acute abdominal aortic dissection: insight from the International Registry of Acute Aortic Dissection (IRAD). J Vasc Surg 46:913–919

    PubMed  Google Scholar 

  6. Dittrich R, Nassenstein I, Bachmann R, Maintz D, Nabavi DG, Heindel W, Kuhlenbaumer G, Ringelstein EB (2007) Polyarterial clustered recurrence of cervical artery dissection seems to be the rule. Neurology 69:180–186

    CAS  PubMed  Google Scholar 

  7. Debette S, Leys D (2009) Cervical-artery dissections: predisposing factors, diagnosis, and outcome. Lancet Neurol 8:668–678

    PubMed  Google Scholar 

  8. Patel PD, Arora RR (2008) Pathophysiology, diagnosis, and management of aortic dissection. Ther Adv Cardiovasc Dis 2:439–468

    PubMed  Google Scholar 

  9. Smith GD, Timpson N, Ebrahim S (2008) Strengthening causal inference in cardiovascular epidemiology through Mendelian randomization. Ann Med 40:524–541

    PubMed  Google Scholar 

  10. Bochud M (2008) On the use of Mendelian randomization to infer causality in observational epidemiology. Eur Heart J 29:2456–2457

    PubMed  Google Scholar 

  11. Brandt T, Grond-Ginsbach C (2002) Spontaneous cervical artery dissection: from risk factors towards pathogenesis. Stroke 33:657–658

    PubMed  Google Scholar 

  12. Rubinstein SM, Peerdeman SM, van Tulder MW, Riphagen I, Haldeman S (2005) A systematic review of the risk factors for cervical artery dissection. Stroke 36:1575–1580

    PubMed  Google Scholar 

  13. Rothwell DM, Bondy SJ, Williams JI (2001) Chiropractic manipulation and stroke: a population-based case-control study. Stroke 32:1054–1060

    CAS  PubMed  Google Scholar 

  14. Saeed IM, Braverman AC (2007) Approach to the athlete with thoracic aortic disease. Curr Sports Med Rep 6:101–107

    PubMed  Google Scholar 

  15. Iqbal FM, Goparaju M, Yemme S, Lewis BE (2009) Renal artery dissection following marathon running. Angiology 60:122–126

    PubMed  Google Scholar 

  16. Choi JW, Davidson CJ (2002) Spontaneous multivessel coronary artery dissection in a long-distance runner successfully treated with oral antiplatelet therapy. J Invasive Cardiol 14:675–678

    PubMed  Google Scholar 

  17. Hatzaras I, Tranquilli M, Coady M, Barrett PM, Bible J, Elefteriades JA (2007) Weight lifting and aortic dissection: more evidence for a connection. Cardiology 107:103–106

    CAS  PubMed  Google Scholar 

  18. Houser OW, Mokri B, Sundt TM, Baker HL, Reese DF (1984) Spontaneous cervical cephalic arterial dissection and its residuum: angiographic spectrum. Am J Neuroradiol 5:27–34

    CAS  PubMed  Google Scholar 

  19. Vertinsky AT, Schwartz NE, Fischbein NJ, Rosenberg J, Albers GW, Zaharchuk G (2008) Comparison of multidetector CT angiography and MR imaging of cervical artery dissection. Am J Neuroradiol 29:1753–1760

    CAS  PubMed  Google Scholar 

  20. Evangelista A, Mukherjee D, Mehta RH, O’Gara PT, Fattori R, Cooper JV, Smith DE, Oh JK, Hutchison S, Sechtem U, Isselbacher EM, Nienaber CA, Pape LA, Eagle KA, International Registry of Aortic Dissection (IRAD) Investigators (2005) Acute intramural hematoma of the aorta: a mystery in evolution. Circulation 111:1063–1070

    PubMed  Google Scholar 

  21. Hering D, Piper C, Hohmann C, Schultheiss HP, Horstkotte D (1998) Incidence, etiology, therapy of spontaneous coronary artery dissection. A prospective monocenter study of 3800 consecutive patients. Z Kardiol 87:961–970

    CAS  PubMed  Google Scholar 

  22. Metso TM, Metso AJ, Helenius J, Haapaniemi E, Salonen O, Porras M, Hernesniemi J, Kaste M, Tatlisumak T (2007) Prognosis and safety of anticoagulation in intracranial artery dissections in adults. Stroke 38:1837–1842

    CAS  PubMed  Google Scholar 

  23. Lasica RM, Perunicic J, Mrdovic I, Tesic BV, Stojanovic R, Milic N, Simic D, Vasiljevic Z (2006) Temporal variations at the onset of spontaneous acute aortic dissection. Int Heart J 47:585–595

    PubMed  Google Scholar 

  24. Paciaroni M, Georgiadis D, Arnold M, Gandjour J, Keseru B, Fahrni G, Caso V, Baumgartner RW (2006) Seasonal variability in spontaneous cervical artery dissection. J Neurol Neurosurg Psychiatry 77:677–679

    CAS  PubMed  Google Scholar 

  25. Benninger DH, Georgiadis D, Kremer C, Studer A, Nedeltchev K, Baumgartner RW (2004) Mechanism of ischemic infarct in spontaneous carotid dissection. Stroke 35:482–485

    CAS  PubMed  Google Scholar 

  26. Smith BM, Holcomb GW 3rd, Richie RE, Dean RH (1984) Renal artery dissection. Ann Surg 200:134–146

    CAS  PubMed  Google Scholar 

  27. Huang YC, Chen YF, Wang YH, Tu YK, Jeng JS, Liu HM (2009) Cervicocranial arterial dissection: experience of 73 patients in a single center. Surg Neurol Jan 14. (Epub ahead of print). doi:10.1016/j.surneu.2008.10.002

  28. Pezzini A, Caso V, Zanferrari C, Del Zotto E, Paciaroni M, Bertolino C, Grassi M, Agnelli G, Padovani A (2006) Arterial hypertension as risk factor for spontaneous cervical artery dissection. A case-control study. J Neurol Neurosurg Psychiatry 77:95–97

    CAS  PubMed  Google Scholar 

  29. Sakata N, Takebayashi S, Kojima M, Masawa N, Suzuki K, Takatama M (2000) Pathology of a dissecting intracranial aneurysm. Neuropathology 20:104–108

    CAS  PubMed  Google Scholar 

  30. Elefteriades JA (2008) Thoracic aortic aneurysm: reading the enemy’s playbook. World J Surg 32:366–374

    PubMed  Google Scholar 

  31. Kalaga RV, Malik A, Thompson PD (2007) Exercise-related spontaneous coronary artery dissection: case report and literature review. Med Sci Sports Exerc 39:1218–1220

    PubMed  Google Scholar 

  32. Haldeman S, Kohlbeck FJ, McGregor M (1999) Risk factors and precipitating neck movements causing vertebrobasilar artery dissection after cervical trauma and spinal manipulation. Spine 24:785–794

    CAS  PubMed  Google Scholar 

  33. Jaigobin C, Silver FL (2000) Stroke and pregnancy. Stroke 31:2948–2951

    CAS  PubMed  Google Scholar 

  34. Cini R, Iezzi F, Sordini P, Pasceri V (2008) Spontaneous left main coronary artery dissection. Interact Cardiovasc Thorac Surg 7:943–944

    PubMed  Google Scholar 

  35. Arnold M, Camus-Jacqmin M, Stapf C, Ducros A, Viswanathan A, Berthet K, Bousser MG (2008) Postpartum cervicocephalic artery dissection. Stroke 39:2377–2379

    PubMed  Google Scholar 

  36. Nasiell J, Norman M, Lindqvist PG, Malmstedt J, Bottinga R, Blennow M (2009) Aortic dissection in pregnancy: a life-threatening disease and a diagnosis of worth considering. Acta Obstet Gynecol Scand Aug 25:1–4 (Epub ahead of print). doi:10.1080/00016340903214965

    Google Scholar 

  37. Azam M, Roberts D, Logan W (1995) Spontaneous coronary dissection associated with oral contraceptive use. Int J Cardiol 48:195–198

    CAS  PubMed  Google Scholar 

  38. Farooq MU, Bhatt A, Patel M (2009) Neurotoxic and cardiotoxic effects of cocaine and ethanol. J Med Toxicol 5:134–138

    PubMed  Google Scholar 

  39. De Giorgio F, Vetrugno G, Fucci N, Rainio J, Tartaglione T, Di Lazzaro V, Carbone A (2007) Fatal stroke in a young cocaine drug addict: chemical hair analysis and cervical artery examination twenty months after death. Folia Neuropathol 45:149–152

    PubMed  Google Scholar 

  40. Edmondson DA, Towne JB, Foley DW, Abu-Hajir M, Kochar MS (2004) Cocaine-induced renal artery dissection and thrombosis leading to renal infarction. WMJ 103:66–69

    PubMed  Google Scholar 

  41. Bizzarri F, Mondillo S, Guerrini F, Barbati R, Frati G, Davoli G (2003) Spontaneous acute coronary dissection after cocaine abuse in a young woman. Can J Cardiol 19:297–299

    PubMed  Google Scholar 

  42. Steinhauer JR, Caulfield JB (2001) Spontaneous coronary artery dissection associated with cocaine use: a case report and brief review. Cardiovasc Pathol 10:141–145

    CAS  PubMed  Google Scholar 

  43. Hsue PY, Salinas C, Bolger AF, Benowitz NL, Waters DD (2002) Acute aortic dissection related to crack cocaine. Circulation 105:1592–1595

    PubMed  Google Scholar 

  44. Nusair M, Abuzetun JY, Khaja A, Dohrmann M (2008) A case of aortic dissection in a cocaine abuser: a case report and review of literature. Cases J 1:369

    PubMed  Google Scholar 

  45. Forster K, Poppert H, Conrad B, Sander D (2006) Elevated inflammatory laboratory parameters in spontaneous cervical artery dissection as compared to traumatic dissection: a retrospective case-control study. J Neurol 253:741–745

    PubMed  Google Scholar 

  46. Genius J, Dong-Si T, Grau AP, Lichy C (2005) Postacute C-reactive protein levels are elevated in cervical artery dissection. Stroke 36:42–44

    Google Scholar 

  47. Grau AJ, Brandt T, Buggle F, Orberk E, Mytilineos J, Werle E, Conradt I, Krause M, Winter R, Hacke W (1999) Association of cervical artery dissection with recent infection. Arch Neurol 56:851–856

    CAS  PubMed  Google Scholar 

  48. Guillon B, Berthet K, Benslamia L, Bertrand M, Bousser MG, Tzourio C (2003) Infection and the risk of spontaneous cervical artery dissection: a case-control study. Stroke 34:79–81

    Google Scholar 

  49. Amlie-Lefond C, Bernard TJ, Sébire G, Friedman NR, Heyer GL, Lerner NB, DeVeber G, Fullerton HJ, International Pediatric Stroke Study Group (2009) Predictors of cerebral arteriopathy in children with arterial ischemic stroke: results of the International Pediatric Stroke Study. Circulation 119:1417–1423

    PubMed  Google Scholar 

  50. Pfefferkorn T, Saam T, Hacker M, Rominger A, Cyran C, Nikolaou K, Dichgans M (2009) Perivascular inflammation in spontaneous cervical artery dissection: preliminary results of a prospective observational PET and MRI study. Cerebrovasc Dis 27(Suppl 6):61

    Google Scholar 

  51. Sakalihasan N, Hustinx R, Limet R (2004) Contribution of PET scanning to the evaluation of abdominal aortic aneurysm. Semin Vasc Surg 17:144–153

    PubMed  Google Scholar 

  52. Defawe OD, Hustinx R, Defraigne JO, Limet R, Sakalihasan N (2005) Distribution of F-18 fluorodeoxyglucose (F-18 FDG) in abdominal aortic aneurysm: high accumulation in macrophages seen on PET imaging and immunohistology. Clin Nucl Med 30:340–341

    PubMed  Google Scholar 

  53. Truijers M, Kurvers HA, Bredie SJ, Oyen WJ, Blankensteijn JD (2008) In vivo imaging of abdominal aortic aneurysms: increased FDG uptake suggests inflammation in the aneurysm wall. J Endovasc Ther 15:462–467

    PubMed  Google Scholar 

  54. Kuehl H, Eggebrecht H, Boes T, Antoch G, Rosenbaum S, Ladd S, Bockisch A, Barkhausen J, Erbel R (2008) Detection of inflammation in patients with acute aortic syndrome: comparison of FDG-PET/CT imaging and serological markers of inflammation. Heart 94:1472–1477

    CAS  PubMed  Google Scholar 

  55. Schlatmann TJ, Becker AE (1977) Histologic changes in the normal aging aorta: implications for dissecting aortic aneurysm. Am J Cardiol 39:13–20

    CAS  PubMed  Google Scholar 

  56. Allaire E, Schneider F, Saucy F, Dai J, Cochennec F, Michineau S, Zidi M, Becquemin JP, Kirsch M, Gervais M (2009) New insight in aetiopathogenesis of aortic diseases. Eur J Vasc Endovasc Surg 37:531–537

    CAS  PubMed  Google Scholar 

  57. Olin JW, Pierce M (2008) Contemporary management of fibromuscular dysplasia. Curr Opin Cardiol 23:527–536

    PubMed  Google Scholar 

  58. Plouin PF, Perdu J, La Batide-Alanore A, Boutouyrie P, Gimenez-Roqueplo AP, Jeunemaitre X (2007) Fibromuscular dysplasia. Orphanet J Rare Dis 2:28

    PubMed  Google Scholar 

  59. Ihling C, Szombathy T, Nampoothiri K, Haendeler J, Beyersdorf F, Uhl M, Zeiher AM, Schaefer HE (1999) Cystic medial degeneration of the aorta is associated with p53 accumulation, Bax upregulation, apoptotic cell death, and cell proliferation. Heart 82:286–293

    CAS  PubMed  Google Scholar 

  60. He R, Guo D-C, Estrera AL, Safi HJ, Huynh TT, Yin Z, Cao S-N, Lin J, Kurian T, Buja LM, Geng Y-J, Milewicz DM (2006) Characterization of the inflammatory and apoptotic cells in the aortas of patients with ascending thoracic aortic aneurysms and dissections. J Thorac Cardiovasc Surg 131:671–678

    PubMed  Google Scholar 

  61. Cheung S, Mithani V, Watson RM (2000) Healing of spontaneous coronary dissection in the context of glycoprotein IIB/IIIA inhibitor therapy: a case report. Catheter Cardiovasc Interv 51:95–100

    CAS  PubMed  Google Scholar 

  62. Guo DC, Papke CL, He R, Milewicz DM (2006) Pathogenesis of thoracic and abdominal aortic aneurysms. Ann N Y Acad Sci 1085:339–352

    CAS  PubMed  Google Scholar 

  63. Fontaine V, Jacob M-P, Houard X, Rossignol P, Plissonnier D, Angles-Cano E, Michel J-B (2002) Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms. Am J Pathol 161:1701–1710

    CAS  PubMed  Google Scholar 

  64. Raffetto JD, Khalil RA (2008) Matrix metalloproteinases and their inhibitors in vascular remodelling and vascular disease. Biochem Pharmacol 75:346–359

    CAS  PubMed  Google Scholar 

  65. Zhang X, Shen YH, LeMaire SA (2009) Thoracic aortic dissection: are matrix metalloproteinases involved? Vascular 17:147–157

    PubMed  Google Scholar 

  66. Barbour JR, Spinale FG, Ikonomidis JS (2007) Proteinase systems and thoracic aortic aneurysm progression. J Surg Res 139:292–307

    CAS  PubMed  Google Scholar 

  67. Manabe T, Imoto K, Uchida K, Doi C, Takanashi Y (2004) Decreased tissue inhibitor of metalloproteinase-2/matrix metalloproteinase ratio in the acute phase of aortic dissection. Surg Today 34:220–225

    CAS  PubMed  Google Scholar 

  68. Borges LF, Touat Z, Leclercq A, Zen AA, Jondeau’ G, Franc B, Philippe M, Meilhac O, Gutierrez PS, Michel JB (2009) Tissue diffusion and retention of metalloproteinases in ascending aortic aneurysm and dissections. Hum Pathol 40:306–313

    CAS  PubMed  Google Scholar 

  69. Müller BT, Modlich O, Prisack HB, Bojar H, Schipke JD, Goecke T, Feindt P, Petzold T, Gams E, Müller W, Hort W, Sandmann W (2002) Gene expression profiles in the acutely dissected human aorta. Eur J Vasc Endovasc Surg 24:356–364

    PubMed  Google Scholar 

  70. Weis-Müller BT, Modlich O, Drobinskaya I, Unay D, Huber R, Bojar H, Schipke JD, Feindt P, Gams E, Müller W, Goecke T, Sandmann W (2006) Gene expression in acute Stanford type A dissection: a comparative microarray study. J Transl Med 4:29

    PubMed  Google Scholar 

  71. Choke E, Cockerill GW, Laing K, Dawson J, Wilson WR, Loftus IM, Thompson MM (2009) Whole genome-expression profiling reveals a role for immune and inflammatory response in abdominal aortic aneurysm rupture. Eur J Vasc Endovasc Surg 37:305–310

    CAS  PubMed  Google Scholar 

  72. Absi TS, Sundt TM 3rd, Tung WS, Moon M, Lee JK, Damiano RR Jr, Thompson RW (2003) Altered patterns of gene expression distinguishing ascending aortic aneurysms from abdominal aortic aneurysms: complementary DNA expression profiling in the molecular characterization of aortic disease. J Thorac Cardiovasc Surg 126:344–357

    CAS  PubMed  Google Scholar 

  73. Tung WS, Lee JK, Thompson RW (2001) Simultaneous analysis of 1176 gene products in normal human aorta and abdominal aortic aneurysms using a membrane-based complementary DNA expression array. J Vasc Surg 34:143–150

    CAS  PubMed  Google Scholar 

  74. Shi C, Awad IA, Jafari N, Lin S, Du P, Hage ZA, Shenkar R, Getch CC, Bredel M, Batjer HH, Bendok BR (2009) Genomics of human intracranial aneurysm wall. Stroke 40:1252–1261

    PubMed  Google Scholar 

  75. Völker W, Besselmann M, Dittrich R, Navabi D, Konrad C, Dziewas R, Evers S, Grewe S, Krämer C, Bachmann R, Stögbauer F, Ringelstein EB, Kuhlenbäumer G (2005) Generalized arteriopathy in patients with cervical artery dissection. Neurology 64:1508–1513

    PubMed  Google Scholar 

  76. Yoshida T, Owens GK (2005) Molecular determinants of vascular smooth muscle cell diversity. Circ Res 96:280–291

    CAS  PubMed  Google Scholar 

  77. Hao H, Gabbiani G, Bochaton-Piallat ML (2003) Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development. Arterioscler Thromb Vasc Biol 23:1510–1520

    CAS  PubMed  Google Scholar 

  78. Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, Puffenberger EG, Hamosh A, Nanthakumar EJ, Curristin SM, Stetten G, Meyers DA, Francomano CA (1991) Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352:337–339

    CAS  PubMed  Google Scholar 

  79. Callewaert B, Malfait F, Loeys B, De Paepe A (2008) Ehlers-Danlos syndromes and Marfan syndrome. Best Pract Res Clin Rheumatol 22:165–189

    CAS  PubMed  Google Scholar 

  80. Faivre L, Collod-Beroud G, Loeys BL, Child A, Binquet C, Gautier E, Callewaert B, Arbustini E, Mayer K, Arslan-Kirchner M, Kiotsekoglou A, Comeglio P, Marziliano N, Dietz HC, Halliday D, Beroud C, Bonithon-Kopp C, Claustres M, Muti C, Plauchu H, Robinson PN, Adès LC, Biggin A, Benetts B, Brett M, Holman KJ, De Backer J, Coucke P, Francke U, De Paepe A, Jondeau G, Boileau C (2007) Effect of mutation type and location on clinical outcome in 1, 013 probands with Marfan syndrome or related phenotypes and FBN1 mutations: an international study. Am J Hum Genet 81:454–466

    CAS  PubMed  Google Scholar 

  81. Trotter ES, Olsen EGJ (1991) Marfan’s Disease and Erdheim’s cystic medionecrosis. A study of their pathology. Eur Heart J 12:83–87

    CAS  PubMed  Google Scholar 

  82. Pepin M, Schwarze U, Superti-Furg A, Byers PH (2000) Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N Engl J Med 342:673–680

    CAS  PubMed  Google Scholar 

  83. Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, De Backer JF, Oswald GL, Symoens S, Manouvrier S, Roberts AE, Faravelli F, Greco MA, Pyeritz RE, Milewicz DM, Coucke PJ, Cameron DE, Braverman AC, Byers PH, De Paepe AM, Dietz HC (2006) Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med 355:788–798

    CAS  PubMed  Google Scholar 

  84. Maleszewski JJ, Miller DV, Lu J, Dietz HC, Halushka MK (2009) Histopathologic findings in ascending aortas from individuals with Loeys-Dietz syndrome (LDS). Am J Surg Pathol 33:194–201

    PubMed  Google Scholar 

  85. Bondy CA (2008) Aortic dissection in Turner syndrome. Curr Opin Cardiol 23:519–526

    PubMed  Google Scholar 

  86. El-Mansoury M, Barrenäs ML, Bryman I, Hanson C, Larsson C, Wilhelmsen L, Landin-Wilhelmsen K (2007) Chromosomal mosaicism mitigates stigmata and cardiovascular risk factors in Turner syndrome. Clin Endocrinol (Oxf) 66:744–751

    CAS  Google Scholar 

  87. Elsheikh M, Dunger DB, Conway GS, Wass JA (2002) Turner’s syndrome in adulthood. Endocr Rev 23:120–140

    CAS  PubMed  Google Scholar 

  88. Gravholt CH, Landin-Wilhelmsen K, Stochholm K, Hjerrild BE, Ledet T, Djurhuus CB, Sylvén L, Baandrup U, Kristensen BØ, Christiansen JS (2006) Clinical and epidemiological description of aortic dissection in Turner’s syndrome. Cardiol Young 16:430–436

    PubMed  Google Scholar 

  89. Kuivaniemi H, Shibamura H, Arthur C, Berguer R, Cole CW, Juvonen T, Kline RA, Limet R, Mackean G, Norrgård O, Pals G, Powell JT, Rainio P, Sakalihasan N, van Vlijmen-van Keulen C, Verloes A, Tromp G (2003) Familial abdominal aortic aneurysms: collection of 233 multiplex families. J Vasc Surg 37:340–345

    PubMed  Google Scholar 

  90. Elefteriades JA (2002) Natural history of thoracic aortic aneurysms: indications for surgery, and surgical versus nonsurgical risks. Ann Thorac Surg 74:1877–1880

    Google Scholar 

  91. Milewicz DM, Guo DC, Tran-Fadulu V, Lafont AL, Papke CL, Inamoto S, Kwartler CS, Pannu H (2008) Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction. Annu Rev Genomics Hum Genet 9:283–302

    CAS  PubMed  Google Scholar 

  92. Bromberg JEC, Rinkel GJE, Algra A, Greebe P, van Duyn CM, Hasan D, Limburg M, ter Berg HW, Wijdicks EF, van Gijn J (1995) Subarachnoid haemorrhage in first and second degree relatives of patients with subarachnoid haemorrhage. BMJ 311:288–289

    CAS  PubMed  Google Scholar 

  93. Martin JJ, Hausser I, Lyrer P, Busse O, Schwarz R, Schneider R, Brandt T, Kloss M, Schwaninger M, Engelter S, Grond-Ginsbach C (2006) Familial cervical artery dissections: clinical, morphologic and genetic studies. Stroke 37:2924–2929

    PubMed  Google Scholar 

  94. Mayer SA, Rubin BS, Starman BJ, Byers PH (1996) Spontaneous multivessel cervical artery dissection in a patient with a substitution of alanine for glycine (G13A) in the alpha 1(I) chain of type I collagen. Neurology 47:552–556

    CAS  PubMed  Google Scholar 

  95. Wagner C, Kloss M, Lichy C, Grond-Ginsbach C (2008) A glycine-valine substitution in alpha2 type V procollagen associated with recurrent cervical artery dissection. J Neurol 255:1421–1422

    PubMed  Google Scholar 

  96. Brandt T, Orberk E, Weber R, Werner I, Busse O, Muller B, Wigger F, Grau A, Grond-Ginsbach C, Hausser I (2001) Pathogenesis of cervical artery dissections: association with connective tissue abnormalities. Neurology 57:24–30

    CAS  PubMed  Google Scholar 

  97. Hausser I, Muller U, Engelter S, Lyrer P, Pezzini A, Padovani A, Moormann B, Busse O, Weber R, Brandt T, Grond-Ginsbach C (2004) Different types of connective tissue alterations associated with cervical artery dissections. Acta Neuropathol (Berl) 107:509–514

    Google Scholar 

  98. Grond-Ginsbach C, Schnippering H, Hausser I, Weber R, Werner I, Steiner H, Lüttgen N, Busse O, Grau A, Brandt T (2002) Ultrastructural connective tissue aberrations in patients with intracranial aneurysms. Stroke 33:2192–2196

    PubMed  Google Scholar 

  99. Grond-Ginsbach C, Debette S (2009) The association of connective tissue disorders with cervical artery dissections. Curr Mol Med 9:210–214

    CAS  PubMed  Google Scholar 

  100. Wiest T, Grond-Ginsbach C, Werner I, Kotelis D, Geisbuesch P, Boeckler D (2009) No evidence for a potential role of mutations in the acta2 gene in the etiology of cervical artery dissections and thoracic aortic aneurysms. Cerebrovasc Dis 27(Suppl 6):119

    Google Scholar 

  101. Faivre L, Collod-Beroud G, Callewaert B, Child A, Loeys BL, Binquet C, Gautier E, Arbustini E, Mayer K, Arslan-Kirchner M, Kiotsekoglou A, Comeglio P, Grasso M, Beroud C, Bonithon-Kopp C, Claustres M, Stheneur C, Bouchot O, Wolf JE, Robinson PN, Adès L, De Backer J, Coucke P, Francke U, De Paepe A, Boileau C, Jondeau G (2009) Pathogenic FBN1 mutations in 146 adults not meeting clinical diagnostic criteria for Marfan syndrome: further delineation of type 1 fibrillinopathies and focus on patients with an isolated major criterion. Am J Med Genet A 149A:854–860

    CAS  PubMed  Google Scholar 

  102. Brooke BS, Karnik SK, Li DY (2003) Extracellular matrix in vascular morphogenesis and disease: structure versus signal. Trends Cell Biol 13:51–56

    CAS  PubMed  Google Scholar 

  103. de Wit MC, Kros JM, Halley DJ, de Coo IF, Verdijk R, Jacobs BC, Mancini GM (2009) Filamin A mutation, a common cause for periventricular heterotopia, aneurysms and cardiac defects. J Neurol Neurosurg Psychiatry 80:426–428

    PubMed  Google Scholar 

  104. Hart AW, Morgan JE, Schneider J, West K, McKie L, Bhattacharya S, Jackson IJ, Cross SH (2006) Cardiac malformations and midline skeletal defects in mice lacking filamin A. Hum Mol Genet 15:2457–2467

    CAS  PubMed  Google Scholar 

  105. Pilop C, Aregger F, Gorman RC, Brunisholz R, Gerrits B, Schaffner T, Gorman JH 3rd, Matyas G, Carrel T, Frey BM (2009) Proteomic analysis in aortic media of patients with marfan syndrome reveals increased activity of calpain 2 in aortic aneurysms. Circulation 120:983–991

    CAS  PubMed  Google Scholar 

  106. Delbosc S, Haloui M, Louedec L, Dupuis M, Cubizolles M, Podust VN, Fung ET, Michel JB, Meilhac O (2008) Proteomic analysis permits the identification of new biomarkers of arterial wall remodeling in hypertension. Mol Med 14:383–394

    CAS  PubMed  Google Scholar 

  107. Tran-Fadulu V, Pannu H, Kim DH, Vick GW 3rd, Lonsford CM, Lafont AL, Boccalandro C, Smart S, Peterson KL, Hain JZ, Willing MC, Coselli JS, LeMaire SA, Ahn C, Byers PH, Milewicz DM (2009) Analysis of multigenerational families with thoracic aortic aneurysms and dissections due to TGFBR1 or TGFBR2 mutations. J Med Genet 46:607–613

    CAS  PubMed  Google Scholar 

  108. Goumans MJ, Liu Z, ten Dijke P (2009) TGF-beta signaling in vascular biology and dysfunction. Cell Res 19:116–127

    CAS  PubMed  Google Scholar 

  109. Chaudhry SS, Cain SA, Morgan A, Dallas SL, Shuttleworth CA, Kielty CM (2007) Fibrillin-1 regulates the bioavailability of TGFbeta1. J Cell Biol 176:355–367

    CAS  PubMed  Google Scholar 

  110. Pereira L, Lee SY, Gayraud B, Andrikopoulos K, Shapiro SD, Bunton T, Biery NJ, Dietz HC, Sakai LY, Ramirez F (1999) Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc Natl Acad Sci USA 96:3819–3823

    CAS  PubMed  Google Scholar 

  111. Guo G, Booms P, Halushka M, Dietz HC, Ney A, Stricker S, Hecht J, Mundlos S, Robinson PN (2006) Induction of macrophage chemotaxis by aortic extracts of the mgR Marfan mouse model and a GxxPG-containing fibrillin-1 fragment. Circulation 114:1855–1862

    CAS  PubMed  Google Scholar 

  112. Chung AW, Au Yeung K, Sandor GG, Judge DP, Dietz HC, van Breemen C (2007) Loss of elastic fiber integrity and reduction of vascular smooth muscle contraction resulting from the upregulated activities of matrix metalloproteinase-2 and -9 in the thoracic aortic aneurysm in Marfan syndrome. Circ Res 101:512–522

    CAS  PubMed  Google Scholar 

  113. Chung AWY, Yang HHC, Radomski MW, van Breemen C (2008) Long-term doxycycline is more effective than atenololto prevent thoracic aortic aneurysm in Marfan syndrome through the inhibition of matrix metalloproteinase-2 and -9. Circ Res 102:e73–e85

    CAS  PubMed  Google Scholar 

  114. Robinson PN, Arteaga-Solis E, Baldock C, Collod-Béroud G, Booms P, De Paepe A, Dietz HC, Guo G, Handford PA, Judge DP, Kielty CM, Loeys B, Milewicz DM, Ney A, Ramirez F, Reinhardt DP, Tiedemann K, Whiteman P, Godfrey M (2006) The molecular genetics of Marfan syndrome and related disorders. J Med Genet 43:769–787

    CAS  PubMed  Google Scholar 

  115. Gavazzi G, Deffert C, Trocme C, Schäppi M, Herrmann FR, Krause KH (2007) NOX1 deficiency protects from aortic dissection in response to angiotensin II. Hypertension 50:189–196

    CAS  PubMed  Google Scholar 

  116. Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, Myers L, Klein EC, Liu G, Calvi C, Podowski M, Neptune ER, Halushka MK, Bedja D, Gabrielson K, Rifkin DB, Carta L, Ramirez F, Huso DL, Dietz HC (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312:117–121

    CAS  PubMed  Google Scholar 

  117. Gambarin FI, Favalli V, Serio A, Regazzi M, Pasotti M, Klersy C, Dore R, Mannarino S, Viganò M, Odero A, Amato S, Tavazzi L, Arbustini E (2009) Rationale and design of a trial evaluating the effects of losartan vs. nebivolol vs. the association of both on the progression of aortic root dilation in Marfan syndrome with FBN1 gene mutations. J Cardiovasc Med (Hagerstown) 10:354–362

    Google Scholar 

  118. Guo DC, Papke CL, Tran-Fadulu V, Regalado ES, Avidan N, Johnson RJ, Kim DH, Pannu H, Willing MC, Sparks E, Pyeritz RE, Singh MN, Dalman RL, Grotta JC, Marian AJ, Boerwinkle EA, Frazier LQ, LeMaire SA, Coselli JS, Estrera AL, Safi HJ, Veeraraghavan S, Muzny DM, Wheeler DA, Willerson JT, Yu RK, Shete SS, Scherer SE, Raman CS, Buja LM, Milewicz DM (2009) Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am J Hum Genet 84:617–627

    CAS  PubMed  Google Scholar 

  119. Presley C, Guo D, Estrera AL, Safi HJ, Brasier AR, Vick GW, Marian AJ, Raman CS, Buja LM, Milewicz DM (2007) MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II. Hum Mol Genet 16:2453–2462

    PubMed  Google Scholar 

  120. Lesauskaite V, Tanganelli P, Sassi C, Neri E, Diciolla F, Ivanoviene L, Epistolato MC, Lalinga AV, Alessandrini C, Spina D (2001) Smooth muscle cells of the media in the dilatative pathology of ascending thoracic aorta: morphology, immunoreactivity for osteopontin, matrix metalloproteinases, and their inhibitors. Hum Pathol 32:1003–1101

    CAS  PubMed  Google Scholar 

  121. Lesauskaite V, Epistolato MC, Castagnini M, Urbonavicius S, Tanganelli P (2006) Expression of matrix metalloproteinases, their tissue inhibitors, and osteopontin in the wall of thoracic and abdominal aortas with dilatative pathology. Hum Pathol 37:1076–1084

    CAS  PubMed  Google Scholar 

  122. Chew DKW, Conte MS, Khalil RA (2004) Matrix metalloproteinase-specific inhibition of Ca2+ entry mechanisms of vascular contraction. J Vasc Surg 40:1001–1010

    PubMed  Google Scholar 

  123. Katoh H, Suzuki T, Hiroi Y, Ohtaki E, Suzuki S, Yazaki Y, Nagai R (1995) Diagnosis of aortic dissection by immunoassay for circulating smooth muscle myosin. Lancet 345:191–192

    CAS  PubMed  Google Scholar 

  124. Karakaya O, Barutcu I, Esen AM, Dogan S, Saglam M, Karapinar H, Akgun T, Karavelioglu Y, Esen O, Ozdemir N, Turkmen S, Kaymaz C (2006) Relationship between circulating plasma matrix metalloproteinase-9 (gelatinase-B) concentration and aortic root dilatation. Am J Hypertens 19:361–365

    CAS  PubMed  Google Scholar 

  125. Ioannidis JP (2005) Why most published research findings are false. PLoS Med 2:124

    Google Scholar 

  126. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG (2001) Replication validity of genetic association studies. Nat Genet 29:306–309

    CAS  PubMed  Google Scholar 

  127. Helgadottir A, Thorleifsson G, Magnusson KP, Grétarsdottir S, Steinthorsdottir V, Manolescu A, Jones GT, Rinkel GJ, Blankensteijn JD, Ronkainen A, Jääskeläinen JE, Kyo Y, Lenk GM, Sakalihasan N, Kostulas K, Gottsäter A, Flex A, Stefansson H, Hansen T, Andersen G, Weinsheimer S, Borch-Johnsen K, Jorgensen T, Shah SH, Quyyumi AA, Granger CB, Reilly MP, Austin H, Levey AI, Vaccarino V, Palsdottir E, Walters GB, Jonsdottir T, Snorradottir S, Magnusdottir D, Gudmundsson G, Ferrell RE, Sveinbjornsdottir S, Hernesniemi J, Niemelä M, Limet R, Andersen K, Sigurdsson G, Benediktsson R, Verhoeven EL, Teijink JA, Grobbee DE, Rader DJ, Collier DA, Pedersen O, Pola R, Hillert J, Lindblad B, Valdimarsson EM, Magnadottir HB, Wijmenga C, Tromp G, Baas AF, Ruigrok YM, van Rij AM, Kuivaniemi H, Powell JT, Matthiasson SE, Gulcher JR, Thorgeirsson G, Kong A, Thorsteinsdottir U, Stefansson K (2008) The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet 40:217–224

    CAS  PubMed  Google Scholar 

  128. Bilguvar K, Yasuno K, Niemelä M, Ruigrok YM, von Und Zu Fraunberg M, van Duijn CM, van den Berg LH, Mane S, Mason CE, Choi M, Gaál E, Bayri Y, Kolb L, Arlier Z, Ravuri S, Ronkainen A, Tajima A, Laakso A, Hata A, Kasuya H, Koivisto T, Rinne J, Ohman J, Breteler MM, Wijmenga C, State MW, Rinkel GJ, Hernesniemi J, Jääskeläinen JE, Palotie A, Inoue I, Lifton RP, Günel M (2008) Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nat Genet 40:1472–1477

    CAS  PubMed  Google Scholar 

  129. Björck HM, Länne T, Alehagen U, Persson K, Rundkvist L, Hamsten A, Dahlström U, Eriksson P (2009) Association of genetic variation on chromosome 9p21.3 and arterial stiffness. J Intern Med 265:373–381

    PubMed  Google Scholar 

  130. Schunkert H, Götz A, Braund P, McGinnis R, Tregouet DA, Mangino M, Linsel-Nitschke P, Cambien F, Hengstenberg C, Stark K, Blankenberg S, Tiret L, Ducimetiere P, Keniry A, Ghori MJ, Schreiber S, El Mokhtari NE, Hall AS, Dixon RJ, Goodall AH, Liptau H, Pollard H, Schwarz DF, Hothorn LA, Wichmann HE, König IR, Fischer M, Meisinger C, Ouwehand W, Deloukas P, Thompson JR, Erdmann J, Ziegler A, Samani NJ, Cardiogenics Consortium (2008) Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease. Circulation 117:1675–1684

    PubMed  Google Scholar 

  131. Consortium MyocardialInfarctionGenetics, Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D, Mannucci PM, Anand S, Engert JC, Samani NJ, Schunkert H, Erdmann J, Reilly MP, Rader DJ, Morgan T, Spertus JA, Stoll M, Girelli D, McKeown PP, Patterson CC, Siscovick DS, O’Donnell CJ, Elosua R, Peltonen L, Salomaa V, Schwartz SM, Melander O, Altshuler D, Ardissino D, Merlini PA, Berzuini C, Bernardinelli L, Peyvandi F, Tubaro M, Celli P, Ferrario M, Fetiveau R, Marziliano N, Casari G, Galli M, Ribichini F, Rossi M, Bernardi F, Zonzin P, Piazza A, Mannucci PM, Schwartz SM, Siscovick DS, Yee J, Friedlander Y, Elosua R, Marrugat J, Lucas G, Subirana I, Sala J, Ramos R, Kathiresan S, Meigs JB, Williams G, Nathan DM, MacRae CA, O’Donnell CJ, Salomaa V, Havulinna AS, Peltonen L, Melander O, Berglund G, Voight BF, Kathiresan S, Hirschhorn JN, Asselta R, Duga S, Spreafico M, Musunuru K, Daly MJ, Purcell S, Voight BF, Purcell S, Nemesh J, Korn JM, McCarroll SA, Schwartz SM, Yee J, Kathiresan S, Lucas G, Subirana I, Elosua R, Surti A, Guiducci C, Gianniny L, Mirel D, Parkin M, Burtt N, Gabriel SB, Samani NJ, Thompson JR, Braund PS, Wright BJ, Balmforth AJ, Ball SG, Hall AS, Wellcome Trust Case Control Consortium, Schunkert H, Erdmann J, Linsel-Nitschke P, Lieb W, Ziegler A, König I, Hengstenberg C, Fischer M, Stark K, Grosshennig A, Preuss M, Wichmann HE, Schreiber S, Schunkert H, Samani NJ, Erdmann J, Ouwehand W, Hengstenberg C, Deloukas P, Scholz M, Cambien F, Reilly MP, Li M, Chen Z, Wilensky R, Matthai W, Qasim A, Hakonarson HH, Devaney J, Burnett MS, Pichard AD, Kent KM, Satler L, Lindsay JM, Waksman R, Epstein SE, Rader DJ, Scheffold T, Berger K, Stoll M, Huge A, Girelli D, Martinelli N, Olivieri O, Corrocher R, Morgan T, Spertus JA, McKeown P, Patterson CC, Schunkert H, Erdmann E, Linsel-Nitschke P, Lieb W, Ziegler A, König IR, Hengstenberg C, Fischer M, Stark K, Grosshennig A, Preuss M, Wichmann HE, Schreiber S, Hólm H, Thorleifsson G, Thorsteinsdottir U, Stefansson K, Engert JC, Do R, Xie C, Anand S, Kathiresan S, Ardissino D, Mannucci PM, Siscovick D, O’Donnell CJ, Samani NJ, Melander O, Elosua R, Peltonen L, Salomaa V, Schwartz SM, Altshuler D (2009) Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 41:334–341

    Google Scholar 

  132. Gizard F, Amant C, Barbier O, Bellosta S, Robillard R, Percevault F, Sevestre H, Krimpenfort P, Corsini A, Rochette J, Glineur C, Fruchart JC, Torpier G, Staels B (2005) PPAR alpha inhibits vascular smooth muscle cell proliferation underlying intimal hyperplasia by inducing the tumor suppressor p16INK4a. J Clin Invest 115:3228–3238

    CAS  PubMed  Google Scholar 

  133. Westhoff JH, Hilgers KF, Steinbach MP, Hartner A, Klanke B, Amann K, Melk A (2008) Hypertension induces somatic cellular senescence in rats and humans by induction of cell cycle inhibitor p16INK4a. Hypertension 52:123–129

    CAS  PubMed  Google Scholar 

  134. Hannon GJ, Beach D (1994) p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 371:257–261

    CAS  PubMed  Google Scholar 

  135. Coselli JS, Wilcken DL, Wang XL, LeMaire SA (2006) A single nucleotide polymorphism in the matrix metalloproteinase 9 gene (−8202A/G) is associated with thoracic aortic aneurysms and thoracic aortic dissection. J Thorac Cardiovasc Surg 131:1045–1052

    PubMed  Google Scholar 

  136. Wang Y, Zhang W, Zhang Y, Yang Y, Sun L, Hu S, Chen J, Zhang C, Zheng Y, Zhen Y, Sun K, Fu C, Yang T, Wang J, Sun J, Wu H, Glasgow WC, Hui R (2006) VKORC1 haplotypes are associated with arterial vascular diseases (stroke, coronary heart disease, and aortic dissection). Circulation 113:1615–1621

    PubMed  Google Scholar 

  137. Worrall BB, Foroud T, Brown RD Jr, Connolly ES, Hornung RW, Huston J 3rd, Kleindorfer D, Koller DL, Lai D, Moomaw CJ, Sauerbeck L, Woo D, Broderick JP, Familial Intracranial Aneurysm Study Investigators (2009) Genome screen to detect linkage to common susceptibility genes for intracranial and aortic aneurysms. Stroke 40:71–76

    PubMed  Google Scholar 

  138. Thompson AR, Golledge J, Cooper JA, Hafez H, Norman PE, Humphries SE (2009) Sequence variant on 9p21 is associated with the presence of abdominal aortic aneurysm disease but does not have an impact on aneurysmal expansion. Eur J Hum Genet 17:391–394

    CAS  PubMed  Google Scholar 

  139. Giusti B, Saracini C, Bolli P, Magi A, Sestini I, Sticchi E, Pratesi G, Pulli R, Pratesi C, Abbate R (2008) Genetic analysis of 56 polymorphisms in 17 genes involved in methionine metabolism in patients with abdominal aortic aneurysm. J Med Genet 45:721–730

    CAS  PubMed  Google Scholar 

  140. McColgan P, Sharma P (2008) The genetics of carotid dissection: meta-analysis of a MTHFR/C677T common molecular variant. Cerebrovasc Dis 25:561–565

    PubMed  Google Scholar 

  141. Grond-Ginsbach C, Debette S, Pezzini A (2005) Genetic approaches in the study of risk factors for cervical artery dissection. Front Neurol Neurosci 20:30–43

    PubMed  Google Scholar 

  142. Debette S, Markus H (2009) The genetics of cervical artery dissection: a systematic review. Stroke 40:e459–e466

    CAS  PubMed  Google Scholar 

  143. Debette S, Metso TM, Pezzini A, Engelter S, Leys D, Lyrer P, Metso AJ, Brandt T, Kloss M, Lichy C, Hausser I, Touzé E, Markus HS, Abboud S, Caso V, Bersano A, Grau AJ, Altintas A, Amouyel P, Tatlisumak T, Dallongeville J, Grond-Ginsbach C (2009) CADISP-genetics: an International project searching for genetic risk factors of cervical artery dissections. Int J Stroke 4:224–230

    CAS  PubMed  Google Scholar 

  144. Censori B, Agostinis C, Partziguian T, Guagliumi G, Bonaldi G, Poloni M (2004) Spontaneous dissection of carotid and coronary arteries. Neurology 63:1122–1123

    CAS  PubMed  Google Scholar 

  145. Ritzenthaler T, Derex L, Cakmak S, Garrier O, Doumbé J, Nighoghossian N, Trouillas P (2008) Spontaneous dissections of the carotid arteries in a patient with recent coronary artery dissection. Eur Neurol 59:324–326

    CAS  PubMed  Google Scholar 

  146. Marshman LA, Ball L, Jadun CK (2007) Spontaneous bilateral carotid and vertebral artery dissections associated with multiple disparate intracranial aneurysms, subarachnoid hemorrhage and spontaneous resolution. Case report and literature review. Clin Neurol Neurosurg 109:816–820

    PubMed  Google Scholar 

  147. Wakino S, Tawarahara K, Tsuchiya N, Kurosawa Y, Sugihara T, Ando K (2005) Spontaneous multiple arterial dissections presenting with renal infarction and subarachnoid hemorrhage in a patient under treatment for infertility. Circ J 69:368–372

    PubMed  Google Scholar 

  148. Engelter ST, Brandt T, Debette S, Caso V, Lichy C, Pezzini A, Abboud S, Bersano A, Dittrich R, Grond-Ginsbach C, Hausser I, Kloss M, Grau A, Tatlisumak T, Leys D, Lyrer PA (2007) Antiplatelets versus anticoagulation in cervical artery dissection: pathophysiological considerations, observational data, systematic review findings and conclusions by analogy. Stroke 38:2605–2611

    PubMed  Google Scholar 

  149. Nadig S, Barnwell S, Wax MK (2009) Pseudoaneurysm of the external carotid artery–review of literature. Head Neck 31:136–139

    PubMed  Google Scholar 

  150. Ahmad F, Turner SA, Torrie P, Gibson M (2008) Iatrogenic femoral artery pseudoaneurysms–a review of current methods of diagnosis and treatment. Clin Radiol 63:1310–1316

    CAS  PubMed  Google Scholar 

  151. Renard D, Milhaud D (2007) Images in clinical medicine. Dissecting aneurysm of the posterior cerebral artery. N Engl J Med 357:e27

    PubMed  Google Scholar 

  152. Harradine KA, Akhurst RJ (2006) Mutations of TGFbeta signaling molecules in human disease. Ann Med 38:403–414

    CAS  PubMed  Google Scholar 

  153. ten Dijke P, Arthur HM (2007) Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol 8:857–869

    CAS  PubMed  Google Scholar 

  154. Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massagué J (2001) TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 3:400–408

    CAS  PubMed  Google Scholar 

  155. Liu P, Zhang C, Feng JB, Zhao YX, Wang XP, Yang JM, Zhang MX, Wang XL, Zhang Y (2008) Cross talk among Smad, MAPK, and integrin signaling pathways enhances adventitial fibroblast functions activated by transforming growth factor-beta1 and inhibited by Gax. Arterioscler Thromb Vasc Biol 28:725–731

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Marie-Luise Arnold and Stefan Engelter for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caspar Grond-Ginsbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grond-Ginsbach, C., Pjontek, R., Aksay, S.S. et al. Spontaneous arterial dissection: phenotype and molecular pathogenesis. Cell. Mol. Life Sci. 67, 1799–1815 (2010). https://doi.org/10.1007/s00018-010-0276-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0276-z

Keywords

Navigation