Skip to main content
Log in

Oxidative stress in malaria; implications for prevention and therapy

  • Review
  • Published:
Pharmacy World and Science Aims and scope Submit manuscript

Abstract

Malaria affects world-wide more than 200 million people, of which 1–2 million die every year. New drugs and treatment strategies are needed to face the rapidly increasing problems of drug resistance.

During a malaria infection, both host and parasite are under oxidative stress. Increased production levels of reactive oxygen species (ROS, e.g. superoxide anion and the hydroxyl radical) are produced by activated neutrophils in the host and during degradation of haemoglobin in the parasite.

The effects of ROS in malaria can be both beneficial and pathological, depending on the amount and place of production. Enhanced ROS production after the administration of pro-oxidants, which is directed against the intra-erythrocytic parasite, inhibits the infection bothin vitro andin vivo. However, ROS are also involved in pathological changes in host tissue like damage of the vascular endothelial lining during a malaria infection (cerebral malaria).

Pro-oxidants support the host defense against the parasite when working in or near the infected cell but potentially cause vascular damage when working on or near the vascular lining. Examples of pro-oxidants are found among xenobiotics and food components. Important new drugs belonging to the class of pro-oxidants are artemisinin and its derivatives. Anti-oxidants potentially counteract these agents.

Treatment with anti-oxidants or chelators of metals to prevent their catalytic function in the generation of ROS may prevent vascular pathology. In addition, the iron chelator desferrioxamine, exhibits an antiparasitic activity, because iron is also essential for the proliferation of the parasite.

Cytokines play an important role in ROS-related pathology of malaria, though their mechanism of action is not completely elucidated. This field might bring up new treatment concepts and drugs.

Drugs which prevent host pathology, such as the cerebral complications might be life saving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BCNU:

1,3-bis(2-chloroethyl)-1-nitrosourea (a GSH-R inhibitor)

BHA:

butylated hydroxyanisole (a radical scavenger)

CM:

cerebral malaria

CD36:

cluster of difference 36 (integral membrane glycoprotein)

DFO:

desferrioxamine, deferoxamine, desferal (a chelator)

ELAM-1:

endothelial leukocyte adhesion molecule-1

G6PD:

glucose-6-phosphate dehydrogenase

GSH:

glutathione (reduced)

GSH-P:

glutathione peroxidase

GSH-R:

glutathione reductase

GSSG:

glutathione (oxidised)

HeCNU:

1-(2-chloroethyl)-3-(2-hydroxyethyl)-1-nitrosourea (a GSH-R inhibitor)

HMS:

hexose monophosphate shunt

HRP:

histidine-rich proteins

ICAM-1:

intercellular adhesion molecule-1

IFN-g:

interceron-gamma (a cytokine)

Il-j:

interleukine-1 (a cytokine)

IRBC:

infected red blood cells

NADPH:

nicotinamide-adenine-dinucleotide phosphate (reduced)

O2 :

superoxide radical

OH:

hydroxyl radical

P:

Plasmodium

PE:

parasitised erythrocytes

PEG:

polyethylene glycol

PTEMP1:

Plasmodium falciparum erythrocyte major protein 1

PMN's:

polymorphonuclear cells

R:

secondary radical

ROS:

reactive oxygen species

SOD:

superoxide dismutase

TNF:

tumour necrosis factor (a cytokine)

VCAM-1:

vascular adhesion molecule-1

References

  1. Wernsdorfer G, Wernsdorfer WH. Social and economic aspects of malaria and its control. In: Wernsdorfer WH, McGregor Sir I, eds. Malaria. Edinburgh: Churchill Livingstone, 1992;2(ch 47): 1421–71.

    Google Scholar 

  2. Cook, GC. Infection Today. Prevention and treatment of malaria. Lancet 1988;jan2/9:32–7.

    Google Scholar 

  3. Webster LTJr. Drugs used in the chemotherapy of protozoal infections. Malaria. In: Goodman Gilman A, Rall TW, Nies AS, Taylor P (eds) The pharmacological basis of therapeutics New York: Pergamon Press, 1990:ch 41;978–98.

    Google Scholar 

  4. Warrell DA, Molyneux ME, Beales PF (eds). Severe and complicated malaria. Trans Roy Soc Trop Med Hyg 1990;84(suppl 2):1–65.

  5. Eling WMC, Sauerwein RW. Severe and cerebral malaria. Common or distinct pathophysiology? Rev Med Microbiology 1995;6(1):17–25.

    Google Scholar 

  6. Garnham P.C.C. Malaria parasites and other Haemosporidia. Oxford, Blackwell Scientific Publ., 1966:1–1114.

    Google Scholar 

  7. Gilbert DL (ed). Oxygen and Living Processes. An Interdisciplinary Approach. New York, Springer Verlag, 1981.

    Google Scholar 

  8. Saltman P. Oxidative stress: A Radical View. Semin in Hematol 1989;26(4):249–56.

    Google Scholar 

  9. Clark IA, Chaudhri G, Cowden WB. Some roles of free radicals in malaria. Review article. Free Radical Biol Med 1989;6:315–21.

    Google Scholar 

  10. Kharazmi A, Jepsen S, Andersen BJ. Generation of reactive oxygen radicals by human phagocytic cells activated byP. falciparum. Scand J Immunol 1987;25:335–41.

    Google Scholar 

  11. Jayshree RS, Ganguli NK, Dubey ML, Mohan K, Mahajan RC. Generation of reactive oxygen species by blood monocytes during acuteP. knowlesi infection in rhesus monkeys. APMIS 1993; 101:762–6.

    Google Scholar 

  12. Hunt NH, Stocker R. Oxidative stress and the redox status of malaria-infected erythrocytes. Blood Cells 1990;16:499–526.

    Google Scholar 

  13. Rice-Evans C, Bruckdorfer KR. Free radicals, lipoproteins and cardiovascular dysfunction. Molec Aspects Med 1992;13:1–111.

    Google Scholar 

  14. Halliwell B. Drug Antioxidant Effects: A Basis for Drug Selection. Drugs 1991;42(4):569–605.

    Google Scholar 

  15. Proctor PH, Reynolds ES. A Review: Free radicals and disease in man. Physiol Chem Phys Med NMR 1984;16:175–95.

    Google Scholar 

  16. Curnutte JT, Babior BM. Chronic granulomatous disease. Adv Hum Genet 1987;16:229–45.

    Google Scholar 

  17. Halliwell B, Gutteridge JMC. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 1990a; 186:1–86.

    Google Scholar 

  18. Imlay JA, Linn S. DNA damage and oxygen radical toxicity. Science 1988;240:1302–9.

    Google Scholar 

  19. Esterbauer H, Striegl G, Puhl H, Rotheneder M. Continuous monitoring ofin vitro oxidation of human low density lipoprotein. Free Rad Res Comm 1989;6:67–75.

    Google Scholar 

  20. Frei B, stocker R, Ames B. Antioxidant defences and lipid peroxidation in human blood plasma. Proc Natl Acad Sci 1989;85:9748–52.

    Google Scholar 

  21. Aruoma OI, Halliwell B. Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Biochem J 1987;241:273–8.

    Google Scholar 

  22. Gutteridge JMC, Stocks J. Caeruloplasmin: physiological and pathological perspectives. Crit Rev Clin Lab Sci 1981;14:257–329.

    Google Scholar 

  23. Etkin NL, Eaton JW. Malaria-induced erythrocyte oxidant sensitivity. In: Brewer GJ ed. Erythrocyte structure and function. New York;A.R. Liss 1975;219–34.

    Google Scholar 

  24. Nakornchai S, Anantavara S. Oxygen free radicals in malaria. In: Ong ASH, Packer L eds. Lipid-Soluble Antioxidants, Biochemistry and Clinical Applications. Basel: Birkhauser Verlag, 1993;355–62.

    Google Scholar 

  25. Atamna H, Ginburg H. Origin of reactive oxygen species in erythrocytes infected withP. falciparum. Mol Biochem Parasitol 1993;61:231–42.

    Google Scholar 

  26. Winterbourn CC. Reactions of superoxide with haemoglobin. In: Greenwald RA ed. CRC Handbook of methods for oxygen radical research. Boca Raton, FL CRC Press 1985;137–41.

    Google Scholar 

  27. Golenser J, Marva E, Har-EI R, Chevion M. Induction of oxidant stress by iron available in advanced forms ofP. falciparum. Free Radical Res Commun 1991;12–13:639–43.

    Google Scholar 

  28. VanderJagt DL, Hunsaker LA, Campos NM, Scaletti JV. Localisation and characterisation of haemoglobin-degrading aspartic proteinases from the malarial parasitePlasmodium falciparum. Biochim Biophys Acta 1992;1122:256–64.

    Google Scholar 

  29. Descamps-Latascha B, Lunel-Fabiani F, Karabinis A, Druilhe P. Generation of reactive oxygen species in whole blood from patients with acutefalciparum malaria. Parasite Immunol 1987;9:275–9.

    Google Scholar 

  30. Dubey ML, Rai SK, Ganguly NK, Kalra A, Verma SC, Mahajan RC. Generation of reactive oxygen species by blood monocytes in humanP. falciparum andP. vivax infections. APMIS 1991;99:210–2.

    Google Scholar 

  31. Trager W, Jensen JB. Human malaria parasites in continuous culture. Science 1976;193:673–5.

    Google Scholar 

  32. Orjih AU, Chevli R, Fitch CD. Toxic haeme in sickle cells: an explanation for death of malaria parasites. Am Soc Trop Med Hyg 1985;34(2):223–7.

    Google Scholar 

  33. Brockleman CR, Wongsattayonant B, Tan-Ariya P, Fuchareon S. Thalassemic erythrocytes inhibitin vitro growth ofPlasmodium falciparum. J Clin Microbiol 1987;25:56–60.

    Google Scholar 

  34. Miller J, Golenser J, Spira DT. Plasmodium falciparum: thiol status and growth in normal and glucose-6-dehydrogenase deficient human erythrocytes. Exp Parasitol 1984;57:239–47.

    Google Scholar 

  35. Ginsburg H, Atamna H. The redox status of malaria-infected erythrocytes: an overview with an emphasis on unresolved problems. Parasite 1994;1:5–13.

    Google Scholar 

  36. Ockenhouse CF, Shear HL. Oxidative killing of the intraerythrocytic malaria parasiteP. yoelii by activated macrophages. J Immunol 1984;132:424–31.

    Google Scholar 

  37. Wozencraft AO, Dockrell HM, Taverne J, Targett GAT, Playfair JHL. Killing of human malaria parasites by macrophage secretory products. Infect Immun 1984;43:664–9.

    Google Scholar 

  38. Nnalue NA, Friedman MJ. Evidence for a neutrophil-mediated protective response in malaria. Parasite Immunol 1988;10:47–58.

    Google Scholar 

  39. Mohan K, Dubey ML, Ganguly NK, Mahajan RC.Plasmodium falciparum: Role of activated blood monocytes in erythrocyte membrane damage and red cell loss during malaria. Exp Parasitol 1995;80:54–63.

    Google Scholar 

  40. Golenser J, Marva E, Chevion M. The survival ofPlasmodium under oxidant stress. Parasitol Today 1991;7(6):142–6.

    Google Scholar 

  41. Zhang Y, Konig I, Schirmer RH. Glutathione reductase-deficient erythrocytes as host cells of malarial parasites. Biochem Pharmacol 1988;37:861–5.

    Google Scholar 

  42. Roth EF, Puprecht RM, Schulman S, Vandenberg J, Olson JA. Ribose metabolism and nucleic acid synthesis in normal and glucose-6-phosphate dehydrogenase-deficient human erythrocytes infected withP. falciparum. J Clin Invest 1986;77:1129–35.

    Google Scholar 

  43. Bhattacharya J. Erythrocytic GSH level and stability in P.vivax malaria. In: Ong ASH, Packer L, eds. Lipid-soluble antioxidants: Biochemistry and Clinical Applications. Basel: Birkhauser Verlag, 1992;373–96.

    Google Scholar 

  44. Eckman JR, Eaton JW. Dependence of plasmodial glutathione metabolism on the host cell. Nature 1979;278:754–6.

    Google Scholar 

  45. Scheibel LW. Plasmodial metabolism and related organellar function during various stages of the life cycle carbohydrates. In: Wensdorfer WH, Mc Gregor I, eds. Malaria: principles and practices of malariology. Edinburgh: Churchill Livingstone, 1988;199–212.

    Google Scholar 

  46. Becuwe P, Slomianny C, Camus D, Dive D. Presence of an endogenous superoxide dismutase activity in three rodent malaria species. Parasitol Res 1993;79:349–52.

    Google Scholar 

  47. Fairfield AS, Abusch A, Ranz A, Eaton JW, Meshnick SR. Oxidant defense enzymes ofP. falciparum. Mol Biochem Parasitol 1988;30:77–82.

    Google Scholar 

  48. Howard RJ, Andrutis AT, Leech JH, Ellis WY, Cohen LA, Kirk KL. Inhibitory effects of histidine analogues on growth and protein synthesis byP. falciparum in vivo. Biochem Pharmacol 1986;35:1589–96.

    Google Scholar 

  49. Kilejian A. A unique histidine-rich polypeptide from the malaria parasiteP. Lophurae. J Biol Chem 1974;249:4650–5.

    Google Scholar 

  50. Ravetch JV, Feder R, Pavlovec A, Blobel G. Primary structure and genomic organisation of the histidine-rich protein of the malaria parasiteP. Lophurae. Nature 1984;312:616–20.

    Google Scholar 

  51. Golenser J, Marva E, Chevion M. The survival ofPlasmodium under oxidant stress. Parsitol Today 1991;7(6):142–6.

    Google Scholar 

  52. Chevion M. A site-specific mechanism for free radical induced biological damage: the essential role of redoxactive transition metals. Free Radical Biol Med 1988;5:27–37.

    Google Scholar 

  53. Schubert J, Watson JA, Baecker JM. Formation of a histidineperoxide adduct by hydrogen peroxide or ionising radiation on histidine. Int J Radiat Biol 1968;14:577–83.

    Google Scholar 

  54. Polder TW, Eling WMC, Curfs JHAJ, Jerusalem CR, Wijers-Rouw M. Ultrastructural changes in the blood-brain barrier of mice infected withP. berghei. Acta Leiden 1992;60(2):31–46.

    Google Scholar 

  55. Polder T, Jerusalem C, Eling W. Topographical distribution of the cerebral lesions in mice infected withP. berghei. Tropenmed Parasitol 1983;34:235–43.

    Google Scholar 

  56. Curfs JHAJ, Schetters TPM, Hermsen CC, Jerusalem CR, Eling WMC. Immunological aspects of cerebral lesions in murine malaria. Clin Exp Immunol 1989;75:136–40.

    Google Scholar 

  57. Porta J, Carota A, Pizzolato GP, et al. Immunopathological changes in human cerebral malaria. Clin Neuropathol 1993;12(2):142–6.

    Google Scholar 

  58. Berendt AR, Turner GDH, Newbold CI. Cerebral malaria: The sequestration hypothesis. Parasitol Today 1994;10(10):412–4.

    Google Scholar 

  59. Aikawa M. Morphological changes in erythrocytes induced by malarial parasites. Biol Cell 1988;64:173–81.

    Google Scholar 

  60. Ockenhouse CF, Ho M, Tandon NN, et al. Molecular basis of sequestration in severe and uncomplicatedP. falciparum malaria: differential adhesion of infected erythrocytes to CD36 and ICAM-1. J Infect Dis 1991;164(1):163–9.

    Google Scholar 

  61. Pongponratn E, Riganti M, Punpoowong B, Aikawa M. Microvascular sequestration of parasitised erythrocytes in humanfalciparum malaria: a pathological study. Am J Trop Med Hyg 1991;44:168–75.

    Google Scholar 

  62. Ockenhouse CF, Tegoshi T, Maeno Y, et al. Human vascular endothelial cell adhesion receptors ofP. falciparum-infected erythrocytes: Role for endothelial leukocyte adhesion molecule 1 and vascular cell adhesion molecule 1. J Exp Med 1992;176:1183–9.

    Google Scholar 

  63. Clark IA, Rockett KA. The cytokine theory of human cerebral malaria. Parasitol Today 1994;10(10):410–2.

    Google Scholar 

  64. Finley RW, Mackay LJ, Lambert P-H. VirulentP. berghei malaria: prolonged survival and decreased cerebral pathology in T-cell nude deficient nude mice. J Immunol 1982;129:2213–8.

    Google Scholar 

  65. Grau GE, Piguet P-F, Engers JD, Louis JA, Vassalli P, Lambert P-H. L3T4+T lymphocytes play a major role in the pathogenesis of murine cerebral malaria. J Immunol 1986;137:2348–54.

    Google Scholar 

  66. Curfs JHAJ, Schetters TPM, Hermsen CC, Jerusalem CR, vanZon AAJC, Eling WMC. Immunological aspects of cerebral lesions in murine malaria. Clin Exp Immunol 1989;75:136–40.

    Google Scholar 

  67. Grau GE, Kindler V, Piguet P-F, Lambert P-H, Vassalli P. Prevention of experimental cerebral malaria by anticytokine antibodies. J Exp Med 1988; 168:1499–504.

    Google Scholar 

  68. Curfs JHAJ, Hermsen CC, Kremsner P, et al. Tumour necrosis factor-α and macrophages inP. berghei-induced cerebral malaria. Parasitology 1993;107:125–34.

    Google Scholar 

  69. Grau GE, Bieler G, Pointaire P, et al. Significance of cytokne production and adhesion molecules in malaria immunopathology. Immunol Lett 1990;25:189–94.

    Google Scholar 

  70. Eling WMC, Kremsner PG. Cytokines in malaria, pathology and protection. Biotherapy 1994;7:211–21.

    Google Scholar 

  71. Kwiatkowski D, Hill AVS, Sambou I, et al. TNF concentration in fatal cerebral, non-fatal cerebral and uncomplicatedP. falciparum malaria. Lancet 1990;336:1201–4.

    Google Scholar 

  72. Shaffer N, Grau GE, Hedberg K, et al. Tumour necrosis factor and severe malaria. J Infect Dis 1991;163:96–101.

    Google Scholar 

  73. DeKossodo S, Grau GE. Profiles of cytokine production in relation with susceptibility to cerebral malaria. J Immunol 1993;151(9):4811–20.

    Google Scholar 

  74. Grau GE, Piguet P-F, Vassalli P, Lambert P-H. Tumor-necrosis factor and other cytokines in cerebral malaria: Experimental and clinical data. Immunol Rev 1989;112:49–70.

    Google Scholar 

  75. Grau GE, Piguet P-F, Vassalli P, Lambert P-H. Involvement of tumour necrosis factor and other cytokines in immunemediated vascular pathology. Int Arch Allergy Appl Immunol 1989;88:34–9.

    Google Scholar 

  76. Goldring JD, Hommel M. Variation in the cytoadherence characteristics of malaria parasites: Is this a true virulence factor? Mem Inst Oswaldo Cruz 1992;87:313–22.

    Google Scholar 

  77. Klebanoff SJ, Vadas MA, Harlan J, et al. Stimulation of neutrophils by tumour necrosis factor. J Immunol 1980;136:4220–5.

    Google Scholar 

  78. Shparber M, Nathan C. Autocrine activation of macrophages by recombinant tumour necrosis factor but not recombinant interleukine-1. Blood 1986;86(suppl 1):86a.

    Google Scholar 

  79. Clark IA, Chaudhri G, Cowden WB. Interplay of reactive oxygen-species and tumour necrosis factor in tissue injury. In: Cerutti P, Fridovich I, Mc Cord J, eds. UCLA Symp Mol Cell Biol, New Ser. New York: Alan R Liss, 1988;82:53–60.

    Google Scholar 

  80. Das BS, Mohanty S, Mishra SK, et al.. Increased cerebrospinal fluid protein and lipid peroxidation products in patients with cerebral malaria. Trans R Soc Trop Med Hyg 1991;85:733–4.

    Google Scholar 

  81. Clark IA, Hunt NH, Cowden WB. Oxygen-derived free radicals in the pathogenesis of parasitic disease. In: Baker JR, Muller R, eds. Advances in Parasitology. Academic Press, 1986;25:1–45.

  82. Gannon DE, Varani J, Phan SH, et al. Source of iron in neutrophil-mediated killing of endothelial cells. Lab Invest 1987;57(1):37–44.

    Google Scholar 

  83. Chan PH, Schmidley JW, Fishman RA, Longar SM. Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals. Neurology 1984;34:315–20.

    Google Scholar 

  84. Palmer C, Roberts RL, Bero C. Deferoxamine posttreatment reduces ischemic brain injury in neonatal rats. Stroke 1994;25(5):1039–45.

    Google Scholar 

  85. Denicole A, Souza JM, Gatti RM, Augusto O, Radi R. Desferrioxamine inhibition of the hydroxyl radical-like reactivity of peroxynitrite: Role of the hydroxamic groups. Free Rad Biol Med 1995;1:11–9.

    Google Scholar 

  86. Clark IA, Hunt NH. Evidence for reactive oxygen intermediates causing hemolysis and parasite death in malaria. Inf Immun 1983;39(1):1–6.

    Google Scholar 

  87. Clark IA, Hunt NH, Cowden WB, Maxwell LE, Mackie EJ. Radical-mediated damage to parasites and erythrocytes inPlasmodium vinckei infected mice after injection of t-butyl hydroperoxide. Clin Exp Immunol 1984;56:524–30.

    Google Scholar 

  88. Woerdenbag HJ, Lugt CB, Pras N.Artemisia annua L: a source of novel antimalarial drugs. Pharm Weekbl (Sci) 1990;12:169–81.

    Google Scholar 

  89. Titulaer HAC, Zuidema J, Lugt ChB. Formulation and pharmacokinetics of artemisinin and its derivatives. Int J Pharm 1991;69:83–92

    Google Scholar 

  90. Titulaer HAC, Zuidema J, Kager PA, Wetsteyn JCFM, Lugt ChB, Merkus FWHM. The pharmacokinetics of artemisinin after oral, intramuscular and rectal administration to human volunteers. J Pharm Pharmacol 1990;42:810–3.

    Google Scholar 

  91. Zhang Y, Hempelmann E, Schirmer RH. Glutathione reductase inhibitors as potential antimalarial drugs. Effects of nitrosureas onPlasmodium falciparum in vitro. Biochem Pharmacol 1988;37(5):855–60.

    Google Scholar 

  92. Thumwood CM, Hunt NH, Cowden WB, Clark IA. Antioxidants can prevent cerebral malaria inP. berghei-infected mice. Br J Exp Pathol 1989;70:293–303.

    Google Scholar 

  93. Gordeuk V, Thuma P, Brittenham G. et al. Effect of iron chelation therapy on recovery from deep coma in children with cerebral malaria. N Eng J Med 1992;327(21):1473–7.

    Google Scholar 

  94. Levander OA, Ager AL, Morris VC, May RG.P. yoelii: comparative antimalarial activities of dietary fish oils and fish oil concentrates in vitamin E-deficient mice. Exp Parasitol 1990;70:323–9.

    Google Scholar 

  95. Levander OA, Ager AL, Morris VC, May RG. Menhaden-fish oil in a vitamin E-deficient diet: protection against chloroquine-resistant malaria in mice. Am J Clin Nutr 1989;50:1237–9.

    Google Scholar 

  96. Levander, OA, Ager, AL, Morris, VC, Fontela, R, May, RG. Menhaden oil (MO) protects against malaria in mice fed ground chow. FASEB J 1992;6:A1212

  97. Blok WE, Vogels MTE, Curfs JHAJ, Eling WMC, Buurman WA, Van derMeer JWM. Dietary fish-oil supplementation in experimental gram-negative infection and in cerebral malaria in mice. J Infect Dis 1992;165:898–903.

    Google Scholar 

  98. Levander OA, Ager AL. Malarial parasites and antioxidant nutrients. Parasitology 1993;107:S95–106.

    Google Scholar 

  99. Ohnishi ST, Ohnishi N, Oda Y, Katsuoka M. Prostaglandin derivatives inhibit the growth of malarial parasites in mice. Cell Biochem Funct 1989;7:105–9.

    Google Scholar 

  100. Eaton JW, Eckman JR, Berger E, Jacob HS. Suppression of malaria infection by oxidant-sensitive host erythrocytes. Nature 1976;264:758–60.

    Google Scholar 

  101. Marva E, Golenser J, Cohen A, Kitrossky N, Harel R, Chevion M. The effects of ascorbate-induced free radicals onP. falciparum. Trop Med Parasitol 1992;43:17–23.

    Google Scholar 

  102. Levander OA, Fontela R, Morris VC, Ager ALJr. Protection against murine cerebral malaria by dietary-induced oxidative stress. J Parasitol 1995;81(1):99–103.

    Google Scholar 

  103. Curfs JHAJ, van derMeer JWM, Sauerwein RW, Eling WMC. Low dosages of interleukin-1 protect mice against lethal cerebral malaria. J Exp Med 1990;72:1287–91.

    Google Scholar 

  104. Hunt NH, Manduci N, Thumwood CM. Amelioration of murine cerebral malaria by dietary restriction. Parasitol 1993;107:471–6.

    Google Scholar 

  105. Hien TT, White NJ. Qinghaosu. Lancet 1993;341(6):603–8.

    Google Scholar 

  106. Maeno Y, Brown AE, Dahlem Smith C, et al. A nonhuman primate model for human cerebral malaria: effects of artesunate (qinghaosu derivative) on rhesus monkeys experimentally infected withPlasmodium coatneyi. Am J Trop Med Hyg 1993;49(6):726–34.

    Google Scholar 

  107. Meshnick SR, Yang YZ, Scott MD, Kuypers F. Biochemical effects of artemisinin on the red cell. XIII International Congress on Tropical Medicine and Malaria, Pattaya, 1992, abstr 1:86–7.

    Google Scholar 

  108. Meshnick SR. The mode of action of antimalarial endoperoxides. Trans Roy Soc Trop Med Hyg 1994;88(suppl 1):31–2.

    Google Scholar 

  109. Krungkrai SR, Yuthavong Y. The antimalarial action of qinghaosu and artesunate in combination with agents that modulate oxidant stress. Trans Roy Soc Trop Med Hyg 1987;81:710–4.

    Google Scholar 

  110. Meshnick SR, Tsang TW, Lin FB, et al. Activated oxygen mediates the antimalarial activity of qinghaosu. Prog Clin Biol Res 1989;313:95–104.

    Google Scholar 

  111. Levander OA, Ager ALJr, Morris VC, May RG. Qinghaosu, dietary vitamin E, selenium, and cod-liver oil: effect on the susceptibility of mice to the malarial parasitePlasmodium yoelii. Am J Clin Nutr 1989;50:346–52.

    Google Scholar 

  112. Meshnick SR, Thomas A, Ranz A, Xu C-M, Pan H-Z. Artemisinin (qinghaosu): the role of intracellular hemin in its mechanism of antimalarial action. Mol Biochem Parasitol 1991;49:181–90.

    Google Scholar 

  113. Meshnick SR, Yang YZ, Lima V, Kuypers F, Kamchonwarypaisan S, Yuthavong Y. Iron-dependent free radical generation from the antimalarial agent artemisinin (qinghaosu). Antimicrob Agents Chemother 1993;37:1108–14.

    Google Scholar 

  114. Zhang F, Gosser D, Meshnick SR. Hemin-catalysed decomposition of artemisinin (qinghaosu). Biochem Pharmacol 1992;43:1805–9.

    Google Scholar 

  115. Stahel E, Druilhe P, Gentilini M. Antagonism of chloroquine with other antimalarials. Trans Roy Soc Trop Med Hyg 1988;82:221.

    Google Scholar 

  116. Schapira A, Beales PF, Halloran ME, Malaria: Living with drug resistance. Parasitol Today 1993;9(5):168–74.

    Google Scholar 

  117. Tanner M, Teuscher T, Alonso PL. SPf66-The first malaria vaccine. Parasitol Today 1995;11(1):10–3.

    Google Scholar 

  118. Dalessandro U, Leach A, Drakeley CJ, et al. Efficacy trial of malaria vaccine SPf66 in Gambian infants. Lancet 1995;346 (aug 19):8973.

    Google Scholar 

  119. Hershko C Iron chelators in medicine. Molec Aspects Med 1992;13:113–65.

    Google Scholar 

  120. Pollack S, Rossan RN, Davidson DE, Escajadillo A. Desferrioxamine suppressesPlasmodium falciparum in Aotus Monkeys. Proc Soc Exp Biol Med 1987;184:162–4.

    Google Scholar 

  121. Traore O, Carnevale P, Kaptue-Noche L, et al. Preliminary report on the use of desferrioxamine in the treatment ofPlasmodium falciparum malaria. Am J Hematol 1991;37:206–8.

    Google Scholar 

  122. Loyevsky M, Lytton SD, Mester B, Libman J, Shanzer A, Cabantchik ZI. The antimalarial action on desferal involves a direct access route to erythrocytic (Plasmodium falciparum) parasites. J Clin Invest 1993;91:218–24.

    Google Scholar 

  123. Keystone JS. Prevention of malaria. Drugs 1990;39(3):337–54.

    Google Scholar 

  124. Panisko DM, Keystone JS. Treatment of malaria-1990. Drugs 1990;39(2):160–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Postma, N.S., Zuidema, J., Mommérs, E.C. et al. Oxidative stress in malaria; implications for prevention and therapy. Pharm World Sci 18, 121–129 (1996). https://doi.org/10.1007/BF00717727

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00717727

Keywords

Navigation