SUPPLEMENTARY MATERIAL

Running on empty: A longitudinal global study of psychological well-being among runners during the COVID-19 pandemic

Helene Tilma Vistisen^{1,2}, Kim Mannemar Sønderskov^{3,4}, Peter Thisted Dinesen⁵,
René Børge Korsgaard Brund⁶, Rasmus Østergaard Nielsen^{7,8},
Søren Dinesen Østergaard^{1,2}

¹ Department of Affective Disorders, Aarhus University Hospital, Aarhus, Denmark;

² Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

³ Department of Political Science, Aarhus University, Aarhus, Denmark

⁴ Centre for the Experimental-Philosophical Study of Discrimination, Aarhus University, Aarhus, Denmark

⁵ Department of Political Science, University of Copenhagen, Copenhagen, Denmark

⁶ Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark

⁷ Department of Public Health, Aarhus University, Aarhus, Denmark

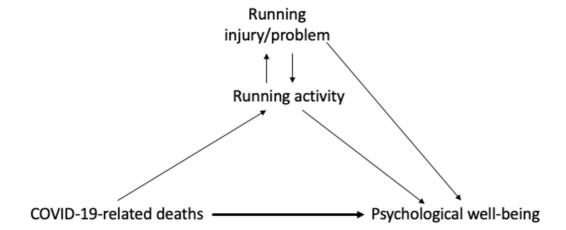
⁸ Research Unit for General Practice, Aarhus, Denmark

Supplementary Methods

Specification of square root-, natural logarithmic- and quadratic models:

The square root and natural log models were based on the following equation:

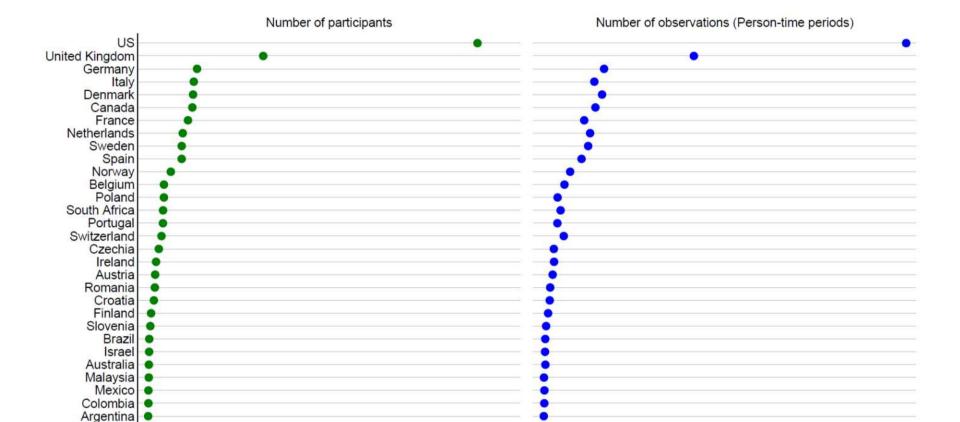
$$WHO5_{it} = \beta_0 + \beta_1 Deaths_{it} + \beta_2 RunningActicity_{it} + \beta_3 Injury_{it} + a_i + u_t + \epsilon_{it}$$


In the square root model, *Deaths* is replaced by $\sqrt{\text{deaths}/10,000}$. In the natural log model, *Deaths* is replaced by Ln((deaths/10,000)+0.01). Due to zero-values, 0.01 is added to the number of deaths per 10,000 before log-transformation.

The quadratic model was defined as follows:

$$WHO5_{it} = \beta_0 + \beta_{1a} Deaths_{it} + \beta_{1b} deaths_{it}^2 + \beta_2 RunningActicity_{it} + \beta_3 Injury_{it} + a_i + u_t + \epsilon_{it}$$

In all three models, Deaths is a numerical discrete variable measuring the number of deaths per 10,000 inhabitants in i's country of residence at time period t (t represents periods of 14 days), $RunningActivity_{it}$ is a continuous variable measuring i's running activity (total meters) at time period t, $Injury_{it}$ measures the number of days where activity was affected by a running injury or problem at time period t. The three remaining terms represent unobserved factors affecting $WHOS_{it}$: a_i is time-invariant and individual-specific; u_t is unit-invariant and time-specific; and e_{it} represents unobserved determinants of $WHOS_{it}$ that vary across both individual and time. To remove a_t , we included a full set of individual-level fixed effects, and to remove u_t we included time-fixed effects.


Supplementary Figure 1.

1000

Thailand

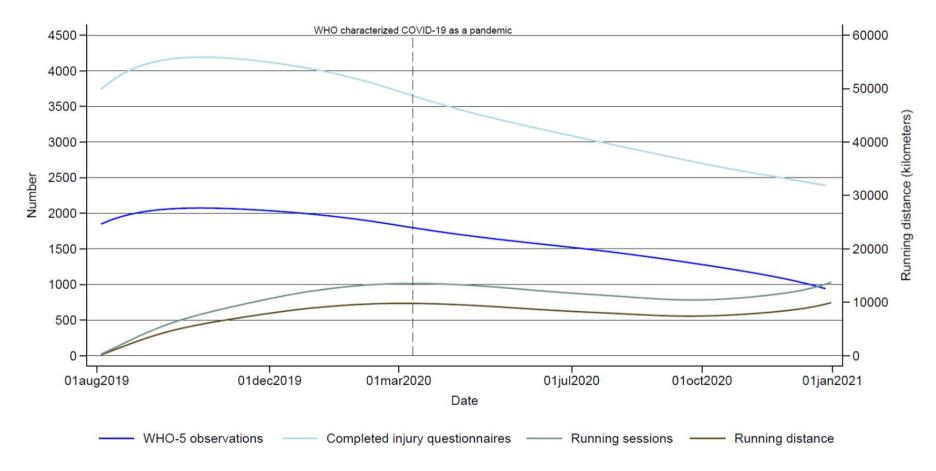
Supplemental material

Note: Countries with less than five participants are not included in the graph. A total of 55 countries have less than five participants, and together they account for 105 participants and 1400 WHO-5 records.

2000

3000

10000

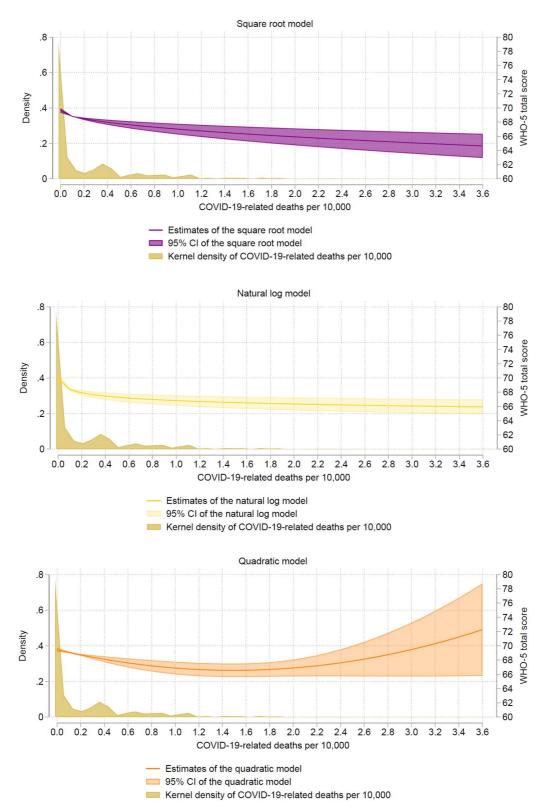

20000

30000

40000

Supplemental material

Supplementary Figure 3. Number of WHO-5 observations, completed injury-questionnaires, running sessions, and total running distance over the course of the study period


Note: The number of WHO-5 observations, injury questionnaires, running sessions and running distance are generated using a lowess smoother.

Supplementary Table 1. Individual fixed-effects linear-regression analyses with time fixed effects and excluding one country at the time (linear specification*). US and Belgium are reported separately, as they account for the highest proportion of participants and the highest number of COVID-19 related deaths per 10,000, respectively.

	Regression coefficient ($\beta_1 Deaths_{it}$) (95% CI)	p-value
Leave-one-out		
(min/max of regression coefficient excl. the 95% CI)	-1.67 / -1.12	All ≤0.001
Excluding US	-1.12 (-1.62; -0.62)	<0,001
Excluding Belgium	-1.62 (-2.49; -0.76)	<0,001

^{*}Model: $WHO5_{it} = \beta_0 + \beta_1 Deaths_{it} + \beta_2 RunningActicity_{it} + \beta_3 Injury_{it} + a_i + u_t + \epsilon_{it}$ where Death is a continuous variable measuring the number of deaths per 10,000 inhabitants (cf. Table 1) in i's country of residence at time period t (t represents periods of 14 days), $RunningActivity_{it}$ is a continuous variable measuring i's running activity (total meters) at time period t, Injury measures the number of days where activity was affected by a running injury or problem at time period t. The three remaining terms represent unobserved factors affecting $WHO5_{it}$: α_i is time-invariant and individual-specific; α_i is unit-invariant and time-specific; and ϵ_{it} represents unobserved determinants of $WHO5_{it}$ that vary across both individual and time. To remove α_i , we included a full set of individual-level fixed effects, and to remove α_i we included time-fixed effects.

Supplementary Figure 4. Non-linear association between COVID-19-related deaths per 10,000 and psychological well-being (WHO-5 total score), based on a square root model (top figure), a natural log model (middle figure), and a quadratic model (bottom figure).

Supplementary Table 2. Individual fixed-effects linear-regression analyses with time-fixed effects exploring non-linear associations.

Model	Regression coefficient ($\beta_1 Deaths_{it}$) (95% CI)	p-value
Square root*:		
DEATHS = $\sqrt{\text{deaths}/10,000}$	-2.72 (-3.84; -1.61)	<0.001
Natural log*:		
DEATHS = Ln((deaths/10,000)+0.01)**	-0.70 (-0.95; -0.44)	<0.001
Quadratic***:		
DEATHS = deaths/10.000	-3.86 (-5.96; -1.77)	<0,001
DEATHS = (deaths/10,000) ²	1.29 (0.27; 2.31)	0.013

Observations: 84,679. Individuals: 6,222.

^{*}Model: $WHO5_{it} = \beta_0 + \beta_1 DEATHS_{it} + \beta_2 RunningActicity_{it} + \beta_3 Injury_{it} + a_i + u_t + \epsilon_{it}$

^{**} Due to zero-values, 0.1 is added to the number of deaths per 10,000 before log-transformation

^{***} Model: $WHO5_{it} = \beta_0 + \beta_{1a}DEATHS_{it} + \beta_{1b}DEATHS_{it}^2 + \beta_2 RunningActicity_{it} + \beta_3 Injury_{it} + a_i + u_t + \epsilon_{it}$ where Death is a numerical discrete variable measuring the number of deaths per 10,000 inhabitants (cf. Table 1) in i's country of residence at time period t (t represents periods of 14 days), RunningActivity is a continuous variable measuring i's running activity (total meters) at time period t, Injury measures the number of days where activity was affected by a running injury or problem at time period t. The three remaining terms represent unobserved factors affecting WHO5: α_i is time-invariant and individual-specific; α_i is unit-invariant and time-specific; and ϵ_{it} represents unobserved determinants of WHO5 that vary across both individual and time. To remove α_i we included a full set of individual-level fixed effects, and to remove α_i we included time-fixed effects.