SUPPLEMENTARY MATERIAL

Running on empty: A longitudinal global study of psychological well-being among runners during the COVID-19 pandemic

Helene Tilma Vistisen ${ }^{1,2}$, Kim Mannemar Sønderskov ${ }^{3,4}$, Peter Thisted Dinesen ${ }^{5}$, René $B ø$ rge Korsgaard Brund ${ }^{6}$, Rasmus \emptyset stergaard Nielsen ${ }^{7,8}$, Søren Dinesen \emptyset stergaard ${ }^{1,2}$
${ }^{1}$ Department of Affective Disorders, Aarhus University Hospital, Aarhus, Denmark; ${ }^{2}$ Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
${ }^{3}$ Department of Political Science, Aarhus University, Aarhus, Denmark
${ }^{4}$ Centre for the Experimental-Philosophical Study of Discrimination, Aarhus University, Aarhus, Denmark
${ }^{5}$ Department of Political Science, University of Copenhagen, Copenhagen, Denmark
${ }^{6}$ Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
${ }^{7}$ Department of Public Health, Aarhus University, Aarhus, Denmark
${ }^{8}$ Research Unit for General Practice, Aarhus, Denmark

Supplementary Methods

Specification of square root-, natural logarithmic- and quadratic models:

The square root and natural log models were based on the following equation:
WHO5 $_{i t}=\beta_{0}+\beta_{1}$ Deaths $_{i t}+\beta_{2}$ RunningActicity $_{i t}+\beta_{3}$ Injury $_{i t}+a_{i}+u_{t}+\epsilon_{i t}$

In the square root model, Deaths is replaced by $\sqrt{\text { deaths } / 10,000}$. In the natural log model, Deaths is replaced by $\operatorname{Ln}((d e a t h s / 10,000)+0.01)$. Due to zero-values, 0.01 is added to the number of deaths per 10,000 before logtransformation.

The quadratic model was defined as follows:
WHO5 $_{i t}=\beta_{0}+\beta_{1 a}$ Deaths $_{i t}+\beta_{1 b}$ deaths $_{i t}^{2}+\beta_{2}$ RunningActicity $_{i t}+\beta_{3}$ Injury $_{i t}+a_{i}+u_{t}+\epsilon_{i t}$

In all three models, Deaths is a numerical discrete variable measuring the number of deaths per 10,000 inhabitants in i's country of residence at time period t (t represents periods of 14 days), RunningActivity $y_{i t}$ is a continuous variable measuring i's running activity (total meters) at time period t, Injuryit measures the number of days where activity was affected by a running injury or problem at time period t. The three remaining terms represent unobserved factors affecting $W H O 5_{i t}: a_{i}$ is time-invariant and individual-specific; u_{t} is unit-invariant and time-specific; and $\epsilon_{i t}$ represents unobserved determinants of $\mathrm{WHO}_{i t}$ that vary across both individual and time. To remove a, we included a full set of individual-level fixed effects, and to remove u_{t} we included timefixed effects.

Supplementary Figure 1.

Supplementary Figure 2. Number of participants and WHO-5 observations per country

Note: Countries with less than five participants are not included in the graph. A total of 55 countries have less than five participants, and together they account for 105 participants and 1400 WHO- 5 records.

Supplementary Figure 3. Number of WHO-5 observations, completed injury-questionnaires, running sessions, and total running distance over the course of the study period

Note: The number of WHO-5 observations, injury questionnaires, running sessions and running distance are generated using a lowess smoother.

Supplementary Table 1. Individual fixed-effects linear-regression analyses with time fixed effects and excluding one country at the time (linear specification*). US and Belgium are reported separately, as they account for the highest proportion of participants and the highest number of COVID-19 related deaths per 10,000 , respectively.

	Regression coefficient $\left(\beta_{1}\right.$ Deaths $\left.{ }_{i t}\right)$ $(95 \% \mathrm{CI})$	p -value
Leave-one-out (min/max of regression coefficient excl. the $95 \% \mathrm{CI})$	$-1.67 /-1.12$	All ≤ 0.001
Excluding US	$-1.12(-1.62 ;-0.62)$	$<0,001$
Excluding Belgium	$-1.62(-2.49 ;-0.76)$	$<0,001$

*Model: WHO5 $_{i t}=\beta_{0}+\beta_{1}$ Deaths $_{i t}+\beta_{2}$ RunningActicity $_{i t}+\beta_{3}$ Injury $_{i t}+a_{i}+u_{t}+\epsilon_{i t}$
where Death is a continuous variable measuring the number of deaths per 10,000 inhabitants (cf. Table 1) in i's country of residence at time period t (t represents periods of 14 days), RunningActivity $y_{i t}$ is a continuous variable measuring i's running activity (total meters) at time period t, Injury measures the number of days where activity was affected by a running injury or problem at time period t. The three remaining terms represent unobserved factors affecting $W H O 5_{i t}$: a_{i} is time-invariant and individual-specific; u_{t} is unit-invariant and time-specific; and $\epsilon_{i t}$ represents unobserved determinants of WHOS ${ }_{i t}$ that vary across both individual and time. To remove a, we included a full set of individual-level fixed effects, and to remove u_{t} we included time-fixed effects.

Supplementary Figure 4. Non-linear association between COVID-19-related deaths per 10,000 and psychological well-being (WHO-5 total score), based on a square root model (top figure), a natural log model (middle figure), and a quadratic model (bottom figure).

Supplementary Table 2. Individual fixed-effects linear-regression analyses with time-fixed effects exploring non-linear associations.

Model	Regression coefficient $\left(\beta_{1}\right.$ Deaths $\left.{ }_{i t}\right)$ $(95 \% \mathrm{Cl})$	p -value
Square root*:	$-2.72(-3.84 ;-1.61)$	<0.001
DEATHS $=\sqrt{\text { deaths/10,000 }}$		
Natural log*:	$-0.70(-0.95 ;-0.44)$	<0.001
DEATHS $=$ Ln((deaths/10,000)+0.01)**	$-3.86(-5.96 ;-1.77)$	$<0,001$
Quadratic***:	$1.29(0.27 ; 2.31)$	0.013
DEATHS $=$ deaths $/ 10.000$		
DEATHS $=(\text { deaths } / 10,000)^{2}$		

Observations: 84,679. Individuals: 6,222.
*Model: WHO5 $_{i t}=\beta_{0}+\beta_{1}$ DEATHS $_{i t}+\beta_{2}$ RunningActicity $_{i t}+\beta_{3}$ Injury $_{i t}+a_{i}+u_{t}+\epsilon_{i t}$
** Due to zero-values, 0.1 is added to the number of deaths per 10,000 before log-transformation
${ }^{* * *}$ Model: WHO5 $_{i t}=\beta_{0}+\beta_{1 a}$ DEATHS $_{i t}+\beta_{1 b}$ DEATHS $_{i t}^{2}+\beta_{2}$ Running Acticity $_{i t}+\beta_{3}$ Injury $_{i t}+a_{i}+u_{t}+\epsilon_{i t}$ where Death is a numerical discrete variable measuring the number of deaths per 10,000 inhabitants (cf. Table 1) in i 's country of residence at time period $t(t$ represents periods of 14 days), RunningActivity is a continuous variable measuring i's running activity (total meters) at time period t, Injury measures the number of days where activity was affected by a running injury or problem at time period t. The three remaining terms represent unobserved factors affecting WHO5: a_{i} is time-invariant and individual-specific; u_{t} is unit-invariant and time-specific; and $\epsilon_{i t}$ represents unobserved determinants of $W H O 5$ that vary across both individual and time. To remove a, we included a full set of individual-level fixed effects, and to remove u_{t} we included time-fixed effects.

