SUPPLEMENTARY INFORMATION

Supplementary Table 1. Full search phrases used for MEDLINE and EMBASE on 4 August 2020

Ovid MEDLINE	
Cervical spine concept	
1	exp Cervical Vertebrae/ or exp Cervical Cord/ or cervical.tw
DCM concept	
2	Exp Spinal Cord Diseases/ or Exp Spinal Diseases/
3	degenerat*.tw
4	2 and 3
5	Myelopath*.tw
6	Myeloradiculopath*.tw
7	Radiculopath*.tw
8	Exp Spinal Cord Compression/
9	Exp "Ossification of the Posterior Longitudinal Ligament"/
10	Ossification of the Posterior Longitudinal Ligament.tw
11	OPLL.tw
12	Exp Spinal Stenosis/
13	Cervical stenosis.tw
14	Exp Spondylosis/
15	Spondylosis.tw
16	Spondylotic.tw
17	Degenerative cervical myelopathy.tw
18	DCM.tw
19	Cervical spondylotic myelopathy.tw
20	CSM.tw
21	4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20
22	1 and 21
Tools for function concept (neurological/gait/mobility centric) concept	
23	Japanese Orthopaedic Association score.tw
24	JOA.tw
25	modified JOA.tw
26	mJOA.tw
27	Graded Redefined Assessment of Sensation Strength and Prehension.tw

31	Myelopathy Disability Index.tw
32	MDI.tw
33	Nurick score.tw
34	Neck functional disability scale.tw
35	NFDS.tw
36	Neck Disability Index.tw
37	NDI.tw
38	Cooper myelopathy scale.tw
39	CMS.tw
40	European myelopathy score.tw
41	EMS.tw
42	Bournemouth questionnaire.tw
43	BQ.tw
44	Cervical spine outcomes questionnaire.tw
45	CSOQ.tw
46	Patient specific functional scale.tw
47	PSFS.tw
48	World Health Organization Quality of Life Instruments.tw
49	WHOQOL.tw
50	Grip and release test.tw
51	GRT.tw
52	Grip Dynamometer.tw
53	Triangle step test.tw
54	Foot tapping test.tw
55	30 m walking test.tw
56	30MWT.tw
57	10 m walking test.tw
58	10MWT.tw
59	Berg Balance Scale.tw
60	BBS.tw
61	GAITRite.tw
62	10 second step test.tw
63	9 hole peg test.tw
64	Prolo.tw
65	Mental component score.tw
66	MCS.tw
67	Physical component score.tw
68	PCS.tw

69	Hospital anxiety depression scale.tw
70	HADS.tw
71	Global rating of change.tw
72	GROC.tw
73	23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43 or 44 or 45 or 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56 or 57 or 58 or 59 or 60 or 61 or 62 or 63 or 64 or 65 or 66 or 67 or 68 or 69 or 70 or 71 or 72
Tools for QOL concept (including pain) concept	
74	Exp "Quality of Life"/ or exp "Surveys and Questionnaires"/
75	Short Form Health Survey.tw
76	SF-36.tw
77	SF-12.tw
78	EQ-5D.tw
79	Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire.tw
80	JOACMEQ.tw
81	Visual Analogue Scale.tw
82	VAS.tw
83	Likert scale.tw
84	Numeric pain rating scale.tw
85	NPRS.tw
86	North American Spine Satisfaction.tw
87	NASS.tw
88	74 or 75 or 76 or 77 or 78 or 79 or 80 or 81 or 82 or 83 or 84 or 85 or 86 or 87
Psychometric concept	
89	Exp Psychometrics/
90	Pyschometr**tw
91	(clinimetr* or clinometr*).tw.
92	Outcome assessment*.tw
93	exp Health Status Indicators/
94	Exp "Reproducibility of Results"/
95	Reproducib*.tw
96	Exp Validation Study/
97	exp Discriminant Analysis/
98	(reliab* or unreliab* or valid* or coefficient or homogeneity or homogeneous or internal consistency).tw
99	(cronbach* and (alpha or alphas)).tw.
100	(item and (correlation* or selection* or reduction*)).tw

(agreement or precision or imprecision or precise values or test-retest).tw (reliab* and (test or retest)).tw
(stability or interrater or inter-rater or intrarater or intra-rater or intertester or inter-tester or intratester or intra-tester or interobserver or inter-observer or intraobserver or intraobserver or intertechnician or inter-technician or intratechnician or intra-technician or interexaminer or inter-examiner or intraexaminer or intra-examiner or interassay or interassay or intraassay or intra-assay or interindividual or inter-individual or intraindividual or intra-individual or interparticipant or inter-participant or intraparticipant or intra-participant or kappa or kappas or repeatab*).tw
((replicab* or repeated) and (measure or measures or findings or result or results or test or tests)).tw
(generaliza* or generalisa* or concordance).tw
(intraclass and correlation*).tw
Exp Observer Variation/
Observer variation.tw
(multitrait and scaling and (analysis or analyses)).tw
Measurement error*.tw
(item discriminant or interscale correlation* or error or errors or individual variability).tw
(variability and (analysis or values)).tw
(uncertainty and (measurement or measuring)).tw
Exp Diagnostic Errors/
Exp Data accuracy/
Exp Dimensional Measurement Accuracy/
Accuracy.tw
((minimal or minimally or clinical or clinically) and (important or significant or detectable) and (change or difference)).tw

Minimally clinically important difference*.tw
MCID.tw
(small* and (real or detectable) and (change or difference)).tw
(meaningful change or ceiling effect or floor effect or Item response model or IRT or Rasch or Differential item functioning or DIF or computer adaptive testing or item bank or crosscultural equivalence).tw

Exp Bias/ or \exp Selection Bias/
Bias.tw
Exp "Predictive Value of Test"/

12689 or 90 or 91 or 92 or 93 or 94 or 95 or 96 or 97 or 98 or 99 or 100 or 101 or 102 or 103 or 104 or 105 or 106 or 107 or 108 or 109 or 110 or 111 or 112 or 113 or 114 or 115 or 116 or 117 or 118 or 119 or 120 or 121 or 122 or 123 or 124 or 125

Combined concepts

12773 or 88
12822 and 126 and 127
EMBASE

Cervical spine concept

1 exp Cervical Vertebra/ or cervical spine/ or exp Cervical spinal cord/ or cervical.tw DCM concept
2 Exp Spinal Cord Disease/ or Exp Spine Disease/
3 Exp degeneration/
4 degenerat*.tw
$5 \quad 3$ or 4
$6 \quad 2$ and 5
7 Myelopath*.tw
8 Myeloradiculopath*.tw
9 Exp radiculopathy/
10 Radiculopath*.tw
11 Exp Spinal Cord Compression/
12 Exp Posterior Longitudinal Ligament/ and exp ossification/
13 Ossification of the Posterior Longitudinal Ligament.tw
14 OPLL.tw
15 Exp vertebral canal stenosis/
16 Cervical stenosis.tw
17 Exp Cervical Spondylosis/
18 Exp Spondylosis/
19 Spondylosis.tw
20 Spondylotic.tw
21 Exp Cervical myelopathy/
22 Degenerative cervical myelopathy.tw
23 DCM.tw
24 Exp Cervical spondylotic myelopathy/
25 Cervical spondylotic myelopathy.tw
26 CSM.tw
276 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26

281 and 27

Tools for function concept (neurological/gait/mobility centric) concept	
29	Exp Japanese Orthopaedic Association score/
30	Japanese Orthopaedic Association score.tw
31	JOA.tw
32	modified JOA.tw
33	mJOA.tw
34	Exp "Disabilities of the Arm, Shoulder and Hand (score)"/
35	Graded Redefined Assessment of Sensation Strength and Prehension.tw
36	GRASSP.tw
37	Quick Disability of the Arm Shoulder and Hand.tw
38	QuickDASH.tw
39	Myelopathy Disability Index.tw
40	MDI.tw
41	Exp "Nurick (grade)"/
42	Nurick score.tw
43	Neck functional disability scale.tw
44	NFDS.tw
45	Exp Neck Disability Index/
46	Neck Disability Index.tw
47	NDI.tw
48	Cooper myelopathy scale.tw
49	CMS.tw
50	European myelopathy score.tw
64	EMS.tw
64	Friangle step test.tw
54	Gournemouth questionnaire.tw
53	BQ.tw
54	Cervical spine outcomes questionnaire.tw test.tw
55	CSOQ.tw
56	Patient specific functional scale.tw
57	PSFS.tw
58	World Health Organization Quality of Life Instruments.tw

65	30 m walking test.tw
66	30MWT.tw
67	10 m walking test.tw
68	10MWT.tw
69	Berg Balance Scale.tw
70	BBS.tw
71	GAITRite.tw
72	10 second step test.tw
73	9 hole peg test.tw
74	Prolo.tw
75	Mental component score.tw
76	MCS.tw
77	Physical component score.tw
78	PCS.tw
79	Hospital anxiety depression scale.tw
80	HADS.tw
81	Global rating of change.tw
82	GROC.tw
83	29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43 or 44 or 45 or 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56 or 57 or 58 or 59 or 60 or 61 or 62 or 63 or 64 or 65 or 66 or 67 or 68 or 69 or 70 or 71 or 72 or 73 or 74 or 75 or 76 or 77 or 78 or 79 or 80 or 81 or 82
Tools for QOL concept (including pain) concept	
84	Short Form Health Survey.tw
85	Exp Short Form 36/
86	SF-36.tw
87	Exp Short Form 12/
88	SF-12.tw
89	Exp "European Quality of Life 5 Dimensions questionnaire"/
90	EQ-5D.tw
91	Exp Japanese Orthopaedic Association Cervical Myelopathy Evaluation/
92	Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire.tw
93	JOACMEQ.tw
94	Exp visual analog scale/
95	Visual Analogue Scale.tw
96	VAS.tw
97	Exp Likert scale/
98	Likert scale.tw

Numeric pain rating scale.tw

84 or 85 or 86 or 87 or 88 or 89 or 90 or 91 or 92 or 93 or 94 or 95 or 96 or 97 or 98 or 99 or 100 or 101 or 102

Psychometric concept

104 Exp Psychometry/
105 Pyschometr*.tw
106 (clinimetr* or clinometr*).tw.
(stability or interrater or inter-rater or intrarater or intra-rater or intertester or inter-tester or intratester or intra-tester or interobserver or inter-observer or intraobserver or intraobserver or intertechnician or inter-technician or intratechnician or intra-technician or interexaminer or inter-examiner or intraexaminer or intra-examiner or interassay or interassay or intraassay or intra-assay or interindividual or inter-individual or intraindividual or intra-individual or interparticipant or inter-participant or intraparticipant or intra-participant or kappa or kappas or repeatab*).tw
NPRS.tw
North American Spine Satisfaction.tw
NASS.tw

Outcome assessment*.tw
exp Health Status Indicator/
Exp Reproducibility/
Reproducib*.tw
Exp Validation Study/
exp Discriminant Analysis/
(reliab* or unreliab* or valid* or coefficient or homogeneity or homogeneous or internal consistency).tw
(cronbach* and (alpha or alphas)).tw.
(item and (correlation* or selection* or reduction*)).tw
(agreement or precision or imprecision or precise values or test-retest).tw
(reliab* and (test or retest)).tw ((replicab* or repeated) and (measure or measures or findings or result or results or test or tests)).tw
(generaliza* or generalisa* or concordance).tw
(intraclass and correlation*).tw
Exp Observer Variation/
Observer variation.tw
(multitrait and scaling and (analysis or analyses)).tw
Measurement error*.tw
(item discriminant or interscale correlation* or error or errors or individual variability).tw

127 (variability and (analysis or values)).tw
128 (uncertainty and (measurement or measuring)).tw
129 Exp Diagnostic Error/
130 Exp Data accuracy/
131 Exp Dimensional Measurement Accuracy/
132 ((minimal or minimally or clinical or clinically) and (important or significant or detectable) and (change or difference)).tw
133 Minimally clinically important difference*.tw
134 MCID.tw
135 (small* and (real or detectable) and (change or difference)).tw
136 (meaningful change or ceiling effect or floor effect or Item response model or IRT or Rasch or Differential item functioning or DIF or computer adaptive testing or item bank or crosscultural equivalence).tw

Exp Bias/ or exp Selection Bias/
138 Bias.tw
139104 or 105 or 106 or 107 or 108 or 109 or 110 or 111 or 112 or 113 or 114 or 115 or 116 or 117 or 118 or 119 or 120 or 121 or 122 or 123 or 124 or 125 or 126 or 127 or 128 or 129 or 130 or 131 or 132 or 133 or 134 or 135 or 136 or 137 or 138

Combined concepts

$140 \quad 83$ or 103
14128 and 139 and 140

Supplementary Table 2. Study characteristics

Study	Country	$\begin{array}{r} \text { Sample } \\ \text { size } \end{array}$	Psychometric properties	Outcome measures
Auffinger, Lall (1)	United States	30	MCID/SCB Measurement error	NDI VAS for pain SF-36
Augusto, Diniz (2)	Brazil	30	Cross-cultural validity/Measurement invariance Reliability Responsiveness	$\begin{aligned} & \text { JOA } \\ & \text { NDI } \end{aligned}$
Azimi, Rezaei (3)	Iran	87	Cross-cultural validity/Measurement invariance Responsiveness	JOACMEQ
Badhiwala, Witiw (4)	Canada	606	MCID/SCB	$\begin{aligned} & \text { SF-36 } \\ & \text { mJOA } \\ & \text { Nurick Scale } \\ & \text { NDI } \\ & \hline \end{aligned}$
Bohm, Fehlings (5)	Multicenter/ Global	601	Reliability Hypotheses testing for construct validity Responsiveness	```Walking tests (timed or steps) mJOA Nurick Scale NDI SF-36```
Carreon, Glassman (6)	United States	505	MCID/SCB	NDI SF-36 "Numeric rating scale" for pain
Chang, Kong (7)	Korea	108	Reliability	CT / CTM
Chiba, Kato (8)	Japan		Reliability	X-rays
Chien, Lai (9)	Taiwan	45	Responsiveness MCID/SCB	$\begin{aligned} & \text { JOACMEQ } \\ & \text { NDI } \\ & \hline \end{aligned}$
Chiu and Pang (10)	Hong Kong	72	Internal consistency Reliability Content validity Hypotheses testing for construct validity Criterion validity Measurement error	$\begin{aligned} & \text { BBS } \\ & \text { mJOA } \end{aligned}$

Responsiveness				
Fukui, Chiba (11)	Japan	368	Content validity	JOACMEQ
Fukui, Chiba (12)	Japan	201	Reliability	JOACMEQ
Goyal, Murphy (13)	United States	118	Responsiveness	$\begin{aligned} & \text { NDI } \\ & \text { SF-12 } \end{aligned}$
Gwinn, Iannotti (14)	United States	20	Reliability	X-rays Cobb's method
Hosono, Sakaura (15)	Japan	30	Reliability Criterion validity	Grip-and-release test JOA
Hosono, Takenaka (16)	Japan	48	Responsiveness	Grip-and-release test JOA
Kang, Lee (17)	Korea	82	Reliability	MRI (not DTI)
Kato, Oshima (18)	Japan	92	Measurement error Hypotheses testing for construct validity Responsiveness	$\begin{aligned} & \text { JOA } \\ & \text { mJOA } \\ & \text { JOACMEQ } \\ & \text { NDI } \\ & \text { SF-12 } \\ & \hline \end{aligned}$
Kato, Oshima (19)	Japan	101	Measurement error Criterion validity MCID/SCB	JOA Likert scale
Kato, Oshima (20)	Japan	101	Measurement error Criterion validity MCID/SCB	$\begin{aligned} & \hline \text { JOACMEQ } \\ & \text { NDI } \\ & \text { EQ-5D } \\ & \text { SF-36 } \\ & \text { Likert scale } \end{aligned}$
King and Roberts (21)	United States	88	Internal consistency	SF-36
Ko, Choi (22)	Korea	357	Reliability	MRI (not DTI)
Kopjar, Tetreault (23)	USA	277	Responsiveness Hypotheses testing for construct validity Internal consistency	mJOA Nurick Scale NDI SF-36 Walking tests (timed or steps)
Latimer, Haden (24)	England	70	Responsiveness	$\begin{aligned} & \text { SF-36 } \\ & \text { NDI } \end{aligned}$

				VAS for pain MDI
Longo, Berton (25)	Italy	75	Cross-cultural validity/Measurement invariance Reliability Internal consistency Hypotheses testing for construct validity Responsiveness Criterion validity	mJOA Nurick Scale NDI SF-36
Lubelski, Alvin (26)	United States	119	Hypotheses testing for construct validity Responsiveness Criterion validity	mJOA Nurick Scale EQ-5D
Mihara, Kondo (27)	Japan	270	Hypotheses testing for construct validity	Grip-and-release test Triangle step test
Nakamoto, Oshima (28)	Japan	94	Internal consistency Hypotheses testing for construct validity Criterion validity	
Nakashima, Yukawa (29)	Japan	101	Hypotheses testing for construct validity	
Nicholson, Millhouse (30)	United States	235	Hypotheses testing for construct validity	$\begin{aligned} & \text { MRI (not DTI) } \\ & \text { mJOA } \\ & \text { NDI } \\ & \text { SF-12 } \end{aligned}$ "Numeric rating scale" for pain Isihara's Cervical Curvature Index
Nikaido, Kikuchi (31)	Japan	87	Hypotheses testing for construct validity)	$\begin{aligned} & \text { JOACMEQ } \\ & \text { SF-36 } \end{aligned}$
Numasawa, Ono (32)	Japan	126	Hypotheses testing for construct validity Responsiveness Reliability	JOA Foot tapping test Grip-and-release test
Olindo, Signate (33)	France	40	Reliability	9-Hole peg test MRI (not DTI) Nurick Scale mJOA Walking tests (timed or steps)

Park, Kim (34)	Korea	100	Reliability	MRI (not DTI)
Pratali, Smith (35)	Brazil		Cross-cultural validity	mJOA
Pratali, Smith (36)	Brazil	55	Reliability	mJOA
Rhee, Shi (37)	United States	100	Criterion validity	RJOA
			Reliability	
Content validity				

			Responsiveness MCID/SCB	Nurick Scale
Wada, Fukui (47)	Japan	137	Responsiveness	$\begin{aligned} & \text { JOACMEQ } \\ & \text { JOA } \\ & \text { 10-s step test } \end{aligned}$
Witayakom, Paholpak (48)	Thailand	70	Cross-cultural validity/Measurement invariance Reliability Internal consistency Hypotheses testing for construct validity	$\begin{aligned} & \text { JOACMEQ } \\ & \text { SF-36 } \end{aligned}$
Yonenobu, Abumi (49)	Japan	29	Reliability	JOA
Yukawa, Kato (50)	Japan	163	Hypotheses testing for construct validity Reliability Criterion validity	$\begin{aligned} & \text { 10-s step test } \\ & \text { JOA } \\ & \text { Grip-and-release test } \end{aligned}$
Zhang, Zhou (51)	China	142	Internal consistency Responsiveness MCID/SCB	$\begin{aligned} & \text { SF-36 } \\ & \text { mJOA } \end{aligned}$
Zhou, Zhang (52)	China	113	MCID/SCB Measurement error	$\begin{aligned} & \hline \text { mJOA } \\ & \text { SF-36 } \end{aligned}$

Supplementary Table 3. Interpretability (i.e., MCID and SCB).

Instrument	Result summary	Overall rating
EQ-5D	MCID: 0.05; total sample size: 101	Sufficient
JOA	MCID: 2.5; total sample size: 101	Sufficient
JOACMEQ		
Bladder function	MCID: 6.0; total sample size: 78	Sufficient
Cervical spine function	MCID: 2.5; total sample size: 179	Sufficient
Lower extremity function	MCID range 2.5-9.4; total sample size: 179	Sufficient
QOL	MCID range 8.5-9.5; total sample size: 179	Sufficient
Upper extremity function	MCID range 2.5-13.0; total sample size: 179	Sufficient
mJOA	MCID range 1.3-3.1; total sample size: 868	Sufficient
	SCB: 14; total sample size: 35	Indeterminate
NDI	MCID range 5-13; total sample size: 108	Sufficient
	SCB range 9.5-36; total sample size: 65	Indeterminate
Pain, "Numeric rating scale" (Arm pain)	MCID: 2.5; total sample size: 30 SCB: 3.5; total sample size: 30	Indeterminate
Pain, "Numeric rating scale" (Neck pain)	MCID: 2.5; total sample size: 30 SCB: 3.5; total sample size: 30	Indeterminate

MCS	SCB: 51.5; total sample size: 35	Indeterminate
PCS	SCB: 30.1; total sample size: 35	Indeterminate
SF-36		
MCS	MCID range 3.0-7.4; total sample size: 749	Sufficient
PCS	"MCID range 3.9-9.6; total sample size: 890 SCB: 16; total sample size: 30"	Sufficient
VAS for pain	MCID range 0.4-2.7; total sample size: 30	Sufficient
	SCB: 1.1; total sample size: 30	Indeterminate

Supplementary Table 4. Feasibility assessment.

Tool	Time (min)	Equipment	Training	License	Money	Ease of administration	Overall assessment
10-s step test	5	Minimal	No	No	No	Minimal barriers	Minimal barriers
30MWT	5	Minimal	No	No	No	Minimal barriers	Minimal barriers
9-Hole peg test	5	Yes	No	No	No	Barriers	Barriers
Berg Balance Scale	>15	Yes	Yes	No	No	Barriers	Barriers
Cobb's method (C2-C7)	5	Minimal	No	No	No	Minimal barriers	Minimal barriers
CT (Tsuyama's classification, 2D \&							
3D)	5	Minimal	No	No	No	Minimal barriers	Minimal barriers
CT (Tsuyama's classification, lateral							
+ axial)	5	Minimal	No	No	No	Minimal barriers	Minimal barriers
EQ-5D	5	Minimal	No	Yes	Yes	Minimal barriers	Minimal barriers
European							
Myelopathy Scale	5	Minimal	No	No	No	Minimal barriers	Minimal barriers
Foot tapping test	5	Minimal	No	No	No	Minimal barriers	Minimal barriers
Grip-and-release test Isihara's Cervical	5	Minimal	No	No	No	Minimal barriers	Minimal barriers
Curvature Index	5	Minimal	No	No	No	Minimal barriers	Minimal barriers
JOA	5	No	No	No	No	No barriers	No barriers

JOACMEQ	$5-15$	Minimal	No	No	No	Minimal barriers	Minimal barriers
MDI							
mJOA							
MRI							
(Depiction of							
intramedullary							
hyperintensity at							
eight cervical disc							
levels, T2W, 1.5-T or							
3-T)	5	Minimal	No	No	No	Minimal barriers	Minimal barriers

Arm pain score

	5	No	No	No	No	No barriers	No barriers
Neck pain score							
	5	No	No	No	No	No barriers	No barriers
QuickDASH	5	Minimal	No	Yes	Yes	Minimal barriers	Barriers
Ranawat							
disease severity	5	No	No	No	No	No barriers	No barriers
SF-12	5	Minimal	No	Yes	Yes	Minimal barriers	Barriers
SF-36	5-15	Minimal	No	Yes	Yes	Minimal barriers	Barriers
Triangle step test	5	Minimal	No	No	No	Minimal barriers	Minimal barriers
VAS for pain	5	Minimal	No	No	No	Minimal barriers	Minimal barriers
WHOQOL-Bref	5-15	Minimal	No	No	No	Minimal barriers	Minimal barriers
X-rays							
(Computer-assisted							
length \& thickness)	5-15	Minimal	No	No	No	Minimal barriers	Minimal barriers

Supplementary Table 5. Content validity.

Instrument	Result summary	Overall rating	Quality of evidence
BBS	Patient comprehensibility: Item discrimination index >0.589	Indeterminate	Very low
JOACMEQ	Patient comprehensibility: "No questions elicited no answer or "I am not sure" in more than 5% of patients"	Indeterminate	Very low
P-mJOA	Patient comprehensibility: "In patients preferring to complete the mJOA them- selves, the most popular answers were: "ease of answering the questions" ($n=33$), "understanding of the questions" ($n=17$)"	Indeterminate	Very low

Supplementary Table 6. Internal consistency.

Instrument	Result summary	Overall rating	Quality of evidence
BBS	Cronbach's alpha range 0.95-0.98; consistent; total sample size: 72	Indeterminate	Moderate
European Myelopathy Scale	Cronbach's alpha: 0.68; consistent; total sample size: 100	Indeterminate	Low
JOA	Cronbach's alpha: 0.72; consistent; total sample size: 100	Indeterminate	Low
JOACMEQ	Cronbach's alpha: 0.91; total sample size: 70	Indeterminate	Moderate
Bladder function	Cronbach's alpha range 0.77-0.78; consistent; total sample size: 157	Indeterminate	High
Cervical spine function	Cronbach's alpha range 0.75-0.88; consistent; total sample size: 157	Indeterminate	High
QOL	Cronbach's alpha range 0.80-0.86; consistent; total sample size: 157	Indeterminate	High
Upper extremity function	Cronbach's alpha range 0.72-0.74; consistent; total sample size: 157	Indeterminate	High
MDI	Cronbach's alpha: 0.92; consistent; total sample size: 100	Indeterminate	Low
mJOA	Cronbach's alpha range 0.60-0.63; consistent; total sample size: 352	Indeterminate	High
QuickDASH	Cronbach's alpha: 0.94; consistent; total sample size: 94	Indeterminate	Very low
SF-12	Cronbach's alpha: 0.77; consistent; total sample size: 105	Indeterminate	n/a

SF-36	Cronbach's alpha range	Indeterminate	n / a
	$0.79-0.93$; consistent;		
	total sample size: 473		n / a
WHOQOL-Bref	Cronbach's alpha range	Indeterminate	
	$0.86-0.87 ;$ consistent;		
	total sample size: 38		

$\mathrm{n} / \mathrm{a}=$ No info available

Supplementary Table 7. Cross-cultural validity.

Instrument	Result summary	Overall rating	Quality of evidence
JOA	Forward-backward	Indeterminate	Very low
	translation [Brazilian		
	Portuguese]		
	Comprehension rate:		
	$>81.2 \%$		
	Forward-backward	Indeterminate	Very low
	translation [Persian and		
	Thai]		
	No info available		
	Forward-backward	Indeterminate	Very low
	translation [Brazilian		
	Portuguese and Italian]		
	No info available		

Supplementary Table 8. Reliability.

Instrument	Result summary	Overall rating	Quality of evidence
10-s step test	Test-retest stability: Spearman's rank correlation: 0.89; total sample size: 163	Indeterminate	Low
30MWT	Test-retest stability: Pearson's correlation range 0.89-1.00; total sample size: 16	Indeterminate	Very low
9-Hole peg test	Intra-observer reliability: ICC range 0.97-0.98; consistent; total sample size: 41 Inter-observer reliability: ICC range 0.97-0.99; consistent; total sample size: 41	Sufficient	Very low
BBS*	Test-retest stability: ICC: 0.99; total sample size: 32 Inter-observer reliability: ICC: 0.99; total sample size: 32	Sufficient	Very low
	Test-retest stability: Kappa: 0.67; total sample size: 32 Inter-observer reliability: Kappa: 0.43; total sample size: 32	Insufficient	Very low
Cobb's method	Intra-observer reliability: ICC: 0.84 ; total sample size: 20 Inter-observer reliability: ICC: 0.77; total sample size: 20	Sufficient	Very low
CT	Intra-observer reliability:	Sufficient	Moderate

(Tsuyama's classification, 2D \& 3D)	Kappa range 0.85-		
	0.86; consistent; total		
	sample size: 108		
	Inter-observer reliability:		
	Kappa range 0.71-		
	0.76 ; consistent; total sample size 108		
CT (Tsuyama's classification, lateral + axial)	Intra-observer reliability:	Insufficient	Moderate
	Kappa: 0.67; total		
	sample size: 108		
	Inter-observer reliability:		
	Kappa: 0.51; total sample size: 108		
Foot tapping test	Test-retest stability:	Indeterminate	Low
	Pearson's correlation		
	range 0.90-0.93; total		
	sample size: 126		
Grip-and-release test	Inter-observer reliability: ICC. 0.99; total sample	Sufficient	Very low
	size: 30		
JOA	Inter-observer reliability:	Sufficient	Very low
	ICC: 0.81; total sample		
	size: 29		
Bladder function		Insufficient	Very low
	Kappa: 0.64; total		
	sample size: 29		
	Inter-observer reliability:		
	Kappa: 0.47; total		
	sample size: 29		
Motor function of fingers	Intra-observer reliability:	Insufficient	Very low
	Kappa: 0.68; total		
	sample size: 29		
	Inter-observer reliability:		
	Kappa: 0.53; total		
	sample size: 29		
Motor function of	Intra-observer reliability:	Insufficient	Very low
	Kappa: 0.50; total		
	sample size: 29		

shoulder and elbow	Inter-observer reliability: Kappa: 0.31; total sample size: 29		
Motor function of Iower extremity	Intra-observer reliability: Kappa: 0.55; total sample size: 29 Inter-observer reliability: Kappa: 0.49; total sample size: 29	Insufficient	Very low
Sensory function of lower extremity	Intra-observer reliability: Kappa: 0.44; total sample size: 29 Inter-observer reliability: Kappa: 0.34; total sample size: 29	Insufficient	Very low
Sensory function of trunk	Intra-observer reliability: Kappa: 0.54; total sample size: 29 Inter-observer reliability: Kappa: 0.58; total sample size: 29	Insufficient	Very low
Sensory function of upper extremity	Intra-observer reliability: Kappa: 0.51; total sample size: 29 Inter-observer reliability: Kappa: 0.42; total sample size: 29	Insufficient	Very low
JOACMEQ			
Bladder function	Test-retest stability: ICC: 0.62; total sample size: 70	Insufficient	Very low
Cervical spine function	Test-retest stability: ICC: 0.63; total sample size: 70	Insufficient	Very low
Lower extremity function	Test-retest stability: ICC: 0.93; total sample size: 70	Sufficient	Very low
QOL	Test-retest stability:	Sufficient	Very low

	ICC: 0.83; total sample size: 70		
Upper extremity function	Test-retest stability: ICC: 0.93; total sample size: 70	Sufficient	Very low
mJOA	Test-retest stability: Spearman's rank correlation: 0.91; total sample size: 75	Indeterminate	Very low
	Intra-observer reliability: ICC: 0.87 ; total sample size: 55	Sufficient	Very low
	Inter-observer reliability: ICC: 0.97; total sample size: 55 Kappa: 0.80; total sample size: 75	Sufficient	Low
Motor dysfunction of lower extremities	Inter-observer reliability: ICC: 0.73; total sample size: 75	Sufficient	Low
Motor dysfunction of upper extremities	Inter-observer reliability: ICC: 0.77; total sample size: 75	Sufficient	Low
Sensory dysfunction of sphincter dysfunction	Inter-observer reliability: ICC: 0.78; total sample size: 75	Sufficient	Low
Sensory dysfunction of upper extremities	Inter-observer reliability: ICC: 0.93; total sample size: 75	Sufficient	Low
MRI (Depiction of intramedullary hyperintensity at eight cervical disc	Inter-observer reliability: Kendall's W range 0.72-0.78; total sample size: 79	Indeterminate	Very low

levels, T2W, 1.5-T or 3-T)			
MRI (Kang's classification, 1.5-T or 3-T)	Intra-observer reliability: Kappa: 0.67; total sample size: 439 ICC: 0.77 , total sample size: 82 Inter-observer reliability: Kappa range 0.60- 0.93 ; total sample size: 539 ICC range 0.74-0.75; total sample size: 82	Inconsistent	n/a
MRI (Muhle's classification, $1.5-\mathrm{T}$)	Intra-observer reliability: Kappa: 0.72; total sample size: 357 Inter-observer reliability: Kappa range 0.61; total sample size: 357	Inconsistent	n/a
MRI (Vaccaro's classification, $1.5-\mathrm{T}$)	Intra-observer reliability: Kappa: 0.71; total sample size: 357 Inter-observer reliability: Kappa range 0.69; total sample size: 357	Sufficient	Moderate
P-mJOA Motor dysfunction of lower extremities	Inter-observer reliability: Kappa: 0.61; total sample size: 755	Insufficient	Moderate
Motor dysfunction of upper extremities	Inter-observer reliability: Kappa: 0.66; total sample size: 755	Insufficient	Moderate
Sensory dysfunction of sphincter dysfunction	Inter-observer reliability: Kappa: 0.55; total sample size: 755	Insufficient	Moderate

Sensory dysfunction of upper extremities	Inter-observer reliability: Kappa: 0.55; total sample size: 755	Insufficient	Moderate
X-rays (Computer-assisted measurement of length)	Intra-observer reliability: ICC: 0.94; total sample size: 9 Inter-observer reliability: ICC: 0.93; total sample size: 9	Sufficient	Very low
X-rays (Computer-assisted measurement of thickness)	Intra-observer reliability: ICC: 0.96; total sample size: 9 Inter-observer reliability: ICC: 0.97; total sample size: 9	Sufficient	Very low

[^0]
Supplementary Table 9. Measurement error.

Instrument	Result summary	Overall rating	Quality of evidence
BBS	MDC or SDC Distribution: 1.5; total sample size: 32	Indeterminate	n/a
EQ-5D	MDC or SDC Distribution: 0.13; total sample size: 101 Anchor: 0.04; total sample size: 101	Inconsistent	n/a
JOA	MDC or SDC Distribution: 1.0; total sample size: 101 Anchor: 2.5; total sample size: 101 LOA 1.2 (-1.2, 3.6); total sample size: 92	Sufficient	Very low
JOACMEQ			
Bladder function	MDC or SDC Distribution: 7.7; total sample size: 101	Insufficient	Very low
Cervical spine function	MDC or SDC Distribution: 12.9; total sample size: 101 Anchor: 12.5; total sample size: 101	Insufficient	Very low
Lower extremity function	MDC or SDC Distribution: 7.3; total sample size: 101 Anchor: 9.4; total sample size: 101	Inconsistent	n/a
QOL	MDC or SDC Distribution: 6.6; total sample size: 101 Anchor: 8.5; total sample size: 101	Sufficient	Very low

Upper extremity function	MDC or SDC Distribution: 9.5; total sample size: 101 Anchor: 6.1; total sample size: 101	Sufficient	Very low
mJOA	MDC or SDC Distribution: 2.1; total sample size: 113	Inconsistent	Very low
	MCID range; total sample size: 868 Distribution: 1.2-1.4	Sufficient	High
NDI	MDC or SDC Distribution: 6.2\%; total sample size: 101 Anchor: 5.2\%; total sample size: 101	Insufficient	Very low
SF-36			
MCS	MDC or SDC Distribution: 3.3-5.7; total sample size: 244	Inconsistent	n/a
	MCID; total sample size: 748 Distribution: 3.4-6.8	Inconsistent	n/a
PCS	MDC or SDC Distribution: 5.2-5.7; total sample size: 214 Anchor: 4.9; total sample size: 101	Inconsistent	n/a
	MCID range; total sample size: 861 Distribution: 2.9-5.5 MCID; total sample size: 51 Distribution: 10	Inconsistent	n/a
VAS for pain	MDC or SDC Distribution: 3.1; total sample size: 30	Insufficient	Very low

	MCID range 24.0-30.0; total sample size: 51	Insufficient	Very low
WHOQOL-Bref			
PH	MCID Distribution: 8.2; total sample size: 38	Indeterminate	n/a
PS	MCID Distribution: 7.9; total sample size: 38	Indeterminate	n/a
SR	MCID Distribution: 8.0; total sample size: 38	Indeterminate	n/a
EN	MCID Distribution: 5.6; total sample size: 38	Indeterminate	n/a
PF	MCID Distribution: 10.5; total sample size: 38	Indeterminate	n/a
RP	MCID Distribution: 17.2; total sample size: 38	Indeterminate	n/a
BP	MCID Distribution: 13.2; total sample size: 38	Indeterminate	n/a
GH	MCID Distribution: 12.3; total sample size: 38	Indeterminate	n/a
VT	MCID Distribution: 10.8; total sample size: 38	Indeterminate	n/a
SF	MCID Distribution: 13.6; total sample size: 38	Indeterminate	n/a
RE	MCID Distribution: 18.0; total sample size: 38	Indeterminate	n/a
MH	MCID	Indeterminate	n/a

Distribution: 11.2; total
sample size: 38
$\mathrm{n} / \mathrm{a}=$ No info available

Supplementary Table 10. Criterion validity.

Instrument	Result summary*	Overall rating	Quality of evidence
10-s step test	JOA Spearman's rank correlation: 0.66; total sample size: 163	Insufficient	High
BBS	$\begin{aligned} & \text { mJOA } \\ & \text { AUC range } 0.88-0.94 ; \\ & \text { total sample size: } 31 \end{aligned}$	Sufficient	Low
Foot tapping test	JOA Pearson's correlation: 0.66 ; total sample size: 126 JOA MFLE Pearson's correlation: 0.70 ; total sample size: 126	Insufficient	High
Grip-and-release test	JOA Pearson's correlation: 0.72 ; total sample size: 30	Sufficient	Low
JOA	Likert scale, "Health transition question" AUC: 0.59; total sample size: 101 Likert scale, "Patient satisfaction question" AUC: 0.62; total sample size: 101	Insufficient	Very low
JOACMEQ			
Cervical spine function	Likert scale, "Health transition question" AUC: 0.58; total sample size: 101 Likert scale, "Patient satisfaction question"	Insufficient	Very low

	AUC: 0.58; total sample size: 101		
Upper extremity function	Likert scale, "Health transition question" AUC: 0.66; total sample size: 101 Likert scale, "Patient satisfaction question" AUC: 0.65; total sample size: 101	Insufficient	Very low
Lower extremity function	Likert scale, "Health transition question" AUC: 0.61; total sample size: 101 Likert scale, "Patient satisfaction question" AUC: 0.66; total sample size: 101	Insufficient	Very low
QOL	Likert scale, "Health transition question" AUC: 0.70; total sample size: 101 Likert scale, "Patient satisfaction question" AUC: 0.66; total sample size: 101	Insufficient	Very low
mJOA	Nurick scale [convergent] Spearman's rank correlation: -0.41 ; tota sample size: 119 Pearson's correlation range: -0.62 to -0.63 ; total sample size: 352	Sufficient	High
Motor dysfunction of upper extremities	Nurick scale [convergent] Pearson's correlation range -0.42 to -0.42 ; total sample size: 352	Insufficient	High

Motor dysfunction of lower extremities	Nurick scale [convergent] Pearson's correlation: -0.65 to -0.68 ; total sample size: 352	Sufficient	High
Sensory dysfunction of upper extremities	Nurick scale [convergent] Pearson's correlation: -0.23 ; total sample size: 277	Insufficient	High
Sensory dysfunction of sphincter dysfunction	Nurick scale [convergent] Pearson's correlation: -0.25 ; total sample size: 277	Insufficient	High
NDI	Likert scale, "Health transition question" AUC: 0.66; total sample size: 101 Likert scale, "Patient satisfaction question" AUC: 0.75; total sample size: 101	Inconsistent	n/a
P-mJOA	mJOA Spearman's rank correlation: 0.83 ; total sample size: 755	Sufficient	High
QuickDASH	JOA MFSE Spearman's rank correlation: -0.50 ; total sample size: 94 JOA SFUE Spearman's rank correlation: -0.32 ; total sample size: 94	Insufficient	Moderate
SF-36			
PCS	Likert scale, "Health transition question" AUC: 0.67; total sample size: 101	Insufficient	Very low

	Likert scale, "Patient satisfaction question" AUC: 0.69; total sample size: 101		
WHOQOL-Bref			
PH	SF-36 PCS Pearson's correlation: 0.51 ; total sample size: 38 SF-36 MCS Pearson's correlation: 0.30 ; total sample size: 38	Inconsistent	n/a
PS	SF-36 PCS Pearson's correlation: 0.34 ; total sample size: 38 SF-36 MCS Pearson's correlation: 0.23 ; total sample size: 38	Insufficient	Low
SR	SF-36 PCS Pearson's correlation: 0.35 ; total sample size: 38 SF-36 MCS Pearson's correlation: 0.28 ; total sample size: 38	Insufficient	Low
EN	SF-36 PCS Pearson's correlation: 0.05 ; total sample size: 38 SF-36 MCS Pearson's correlation: 0.03 ; total sample size: 38	Insufficient	Low

n/a = No info available
*Instruments listed are comparators

Supplementary Table 11. Construct validity.

Instrument	Result summary*	Overall rating	Quality of evidence
10-s step test	Grip-and-release test [convergent] Spearman's rank correlation: 0.53 ; total sample size: 163	Sufficient	Moderate
30MWT	mJOA [convergent] Pearson's correlation: -0.44; total sample size: 16 MDI [convergent] Spearman's rank correlation: 0.65 ; total sample size: 41 Nurick scale [convergent] Pearson's correlation: 0.50 ; total sample size: 16 Spearman's rank correlation: 0.61; total sample size: 41	Sufficient	Moderate
	NDI Pearson's correlation: 0.21 ; total sample size: 16	Sufficient	Low
	SF-36 PCS Pearson's correlation: -0.35 ; total sample size: 16	Sufficient	Low
	SF-36 MCS Pearson's correlation: -0.20; total sample size: 16	Sufficient	Low
BBS	mJOA [convergent] Spearman's rank correlation: 0.81; total sample size: 72	Sufficient	Moderate

EQ-5D	mJOA	Insufficient	High
	AUC: 0.68; total sample size: 119		
	Nurick scale		
	AUC: 0.61; total sample size: 119		
Foot tapping test	Grip-and-release test [convergent]	Sufficient	High
	Pearson's correlation:		
	0.58 ; total sample size:		
	126		
Isihara's Cervical	mJOA	Sufficient	High
Curvature Index	Pearson's correlation:		
	0.04 ; total sample size:		
	235		
	SF-12 PCS	Sufficient	High
	Pearson's correlation:		
	0.06 ; total sample size:		
	235		
	SF-12 MCS		
	Pearson's correlation:		
	0.11 ; total sample size:		
	235		
	Pain, "Numeric rating scale" (Arm pain score)	Sufficient	High
	Pearson's correlation:		
	-0.28 ; total sample		
	size: 235		
	Pain, "Numeric rating scale" (Neck pain scores)		
	Pearson's correlation:		
	-0.27 ; total sample		
	size: 235		
	NDI		
	Pearson's correlation:		
	-0.10; total sample		
	size: 235		
JOA	mJOA [convergent]	Sufficient	Low

	Spearman's rank correlation: 0.87 ; total sample size: 92		
	JOACMEQ QOL [convergent] Spearman's rank correlation: 0.41; total sample size: 92	Sufficient	Low
	SF-12 PCS Spearman's rank correlation: 0.50; total sample size: 92	Sufficient	Low
	SF-12 MCS Spearman's rank correlation: -0.05; total sample size: 92	Sufficient	Low
	NDI Spearman's rank correlation range 0.50 to -0.76 ; total sample size: 122	Sufficient	Moderate
JOACMEQ			
QOL	NDI Spearman's rank correlation: -0.66; total sample size: 92	Sufficient	Low
QOL	SF-12 PCS Spearman's rank correlation: 0.29; total sample size: 92 SF-12 MCS Spearman's rank correlation: 0.40; total sample size: 92	Insufficient	Low
MDI	Nurick scale [convergent] Spearman's rank correlation: 0.66; total sample size: 41	Sufficient	Low

mJOA	30MWT [convergent] Pearson's correlation: -0.38; total sample size: 193	Insufficient	High
	JOACMEQ QOL [convergent] Spearman's rank correlation: 0.41; total sample size: 92	Insufficient	Low
	EQ-5D Spearman's rank correlation: 0.42; total sample size: 119	Insufficient	High
	SF-36 PCS Pearson's correlation range: 0.30-0.30; total sample size: 338 SF-12 PCS Spearman's rank correlation: 0.47; total sample size: 92	Sufficient	High
	SF-36 MCS Pearson's correlation: 0.25-0.25; total sample size: 338 SF-12 MCS Spearman's rank correlation: 0.03; total sample size: 92	Sufficient	High
	NDI Spearman's rank correlation: -0.51; total sample size: 92 Pearson's correlation rage -0.33 to -0.34 ; total sample size: 336	Sufficient	High
Motor dysfunction	30MWT [convergent]	Insufficient	High

of lower extremities	Pearson's correlation: -0.43 ; total sample size: 193		
	SF-36 PCS Pearson's correlation range: 0.31-0.50; total sample size: 338	Sufficient	High
	SF-36 MCS Pearson's correlation: 0.21 ; total sample size: 268	Sufficient	High
	NDI Pearson's correlation: -0.31; total sample size: 261	Sufficient	High
Motor dysfunction of upper extremities	30MWT [convergent] Pearson's correlation: -0.21; total sample size: 193	Insufficient	High
	SF-36 PCS Pearson's correlation: 0.22 ; total sample size: 268	Insufficient	High
	SF-36 MCS Pearson's correlation: 0.20 ; total sample size: 268	Sufficient	High
	NDI Pearson's correlation: -0.24; total sample size: 261	Sufficient	High
Sensory dysfunction of sphincter dysfunction	30MWT [convergent] Pearson's correlation: -0.23; total sample size: 193	Insufficient	High
	SF-36 PCS	Sufficient	High

\begin{tabular}{|c|c|c|c|}
\hline \& Pearson's correlation: -0.40 ; total sample size: 235 \& \& \\
\hline \& \begin{tabular}{l}
Pain, "Numeric rating scale" (Arm pain score) \\
Pearson's correlation: \\
0.68 ; total sample size: \\
235 \\
Pain, "Numeric rating scale" (Neck pain scores) \\
Pearson's correlation: \\
0.64 ; total sample size: \\
235
\end{tabular} \& Sufficient \& High \\
\hline Nurick scale \& \begin{tabular}{l}
EQ-5D \\
Spearman's rank correlation: -0.28 ; total sample size: 119
\end{tabular} \& Sufficient \& High \\
\hline Pain, "Numeric rating scale" (Arm pain scores) \& \begin{tabular}{l}
mJOA \\
Pearson's correlation: \\
-0.19; total sample \\
size: 235 \\
Pain, "Numeric rating scale" (Neck pain score) [convergent] \\
Pearson's correlation: \\
0.72 ; total sample size: \\
235
\end{tabular} \& Sufficient

Sufficient \& High
High

\hline | Pain, "Numeric rating scale" |
| :--- |
| (Neck pain scores) | \& | mJOA |
| :--- |
| Pearson's correlation: -0.07; total sample size: 235 | \& Sufficient \& High

\hline QuickDASH \& | SF-36 |
| :--- |
| Spearman's rank correlation: -0.75 ; total sample size: 94 | \& Sufficient \& Moderate

\hline \& NDI and Pain, "Numeric rating scale" [convergent] \& Sufficient \& Moderate

\hline
\end{tabular}

	Spearman's rank correlation range 0.69-0.83; total sample size: 94		
SF-12			
MCS	$\begin{aligned} & \text { mJOA } \\ & \quad \text { Pearson's correlation: } \\ & 0.19 \text {; total sample size: } \\ & 235 \end{aligned}$	Sufficient	High
	Pain, "Numeric rating scale" (Arm pain score) Pearson's correlation: -0.23 ; total sample size: 235 Pain, "Numeric rating scale" (Neck pain score) Pearson's correlation: -0.28; total sample size: 235	Sufficient	High
	NDI Spearman's rank correlation: -0.17; total sample size: 92	Sufficient	Moderate
	$\begin{aligned} & \text { SF-12 PCS } \\ & \quad \text { Pearson's correlation: } \\ & \text { 0.01; total sample size: } \\ & 235 \end{aligned}$	Sufficient	High
PCS	mJOA Pearson's correlation: 0.43 ; total sample size: 235	Sufficient	High
	Pain, "Numeric rating scale" (Arm pain score) Pearson's correlation: -0.44 ; total sample size: 235 Pain, "Numeric rating scale" (Neck pain score)	Sufficient	High

	Pearson's correlation: -0.41; total sample size: 235		
	NDI Spearman's rank correlation: -0.49; total sample size: 92	Sufficient	Moderate
	SF-12 MCS Spearman's rank correlation: -0.29; total sample size: 92	Sufficient	Low
Triangle step test	Grip-and-release test [convergent] Spearman's rank correlation: 0.55 ; total sample size: 270	Sufficient	High

*Instruments listed are comparators

Supplementary Table 12. Responsiveness.

Instrument	Result summary*	Overall rating	Quality of evidence
30MWT	30MWT SRM: 0.3; total sample size: 484	Insufficient	High
BBS	mJOA Sensitivity range 77.480.0; total sample size: 31 Specificity range 87.892.9; total sample size: 31	Sufficient	Low
EQ-5D	EQ-5D Mean change score: 0.06 ; total sample size: 108	Indeterminate	High
European Myelopathy Scale	EMS Normalised change: 0.18 ; total sample size: 99	Indeterminate	Very low
Foot tapping test	Foot tapping test Mean change score: 6; total sample size: 6	Indeterminate	Very low
Grip-and-release test	Grip-and-release test Spearman's rank correlation: 0.69; total sample size: 48	Sufficient	Very low
	JOA Spearman's rank correlation: 0.32; total sample size: 48	Insufficient	Low
JOA	mJOA Spearman's rank correlation: 0.75 ; total sample size: 92	Sufficient	Very low
	JOA	Indeterminate	Very low

Mean change score
range 4.6; total sample
size: 126
Normalised change:
0.21 ; total sample size:

99
JOA MFLE
Mean change score
range 0.6 ; total sample
size: 126

JOACMEQ			
Bladder function	JOACMEQ BF AUC: 0.82; total sample size: 78	Sufficient	Moderate
	JOACMEQ BF Mean change score: 18.0; total sample size: 87	Indeterminate	Very low
	JOACMEQ BF Effect size: 0.33; total sample size: 78	Insufficient	Moderate
Cervical spine function	JOACMEQ CF AUC: 0.72; total sample size: 78	Sufficient	Moderate
	JOACMEQ CF Mean change score: 25.8; total sample size: 87	Indeterminate	Very low
	JOACMEQ CF Effect size: 0.28 ; total sample size: 78	Insufficient	Moderate
Lower extremity function	JOACMEQ LEF AUC: 0.75; total sample size: 78	Sufficient	Moderate
	JOACMEQ LEF Mean change score: 28.4; total sample size:	Indeterminate	Very low

	JOACMEQ LEF Effect size: 0.02; total sample size: 78	Insufficient	Moderate
Upper extremity function	JOACMEQ UEF AUC: 0.74; total sample size: 78	Sufficient	Moderate
	JOACMEQ UEF Mean change score: 10.7; total sample size: 87	Indeterminate	Very low
	JOACMEQ UEF Effect size: 0.17; total sample size: 78	Insufficient	Moderate
QOL	JOACMEQ QOL AUC: 0.83; total sample size: 78	Sufficient	Moderate
	JOACMEQ QOL Mean change score: 23.7; total sample size: 87	Indeterminate	Very low
	JOACMEQ QOL Effect size: 0.46; total sample size: 78	Insufficient	Moderate
MDI	MDI Normalised change: 0.52 ; total sample size: 99	Indeterminate	Very low
mJOA	$\begin{aligned} & \text { mJOA } \\ & \text { Effect size range } 0.87- \\ & 1.0 ; \text { total sample size: } \\ & 352 \end{aligned}$	Sufficient	High
	mJOA Normalised change: 1.47; total sample size: 42	Indeterminate	Very low
NDI	Anchor-based approach AUC: 0.66; total sample size: 78	Insufficient	Moderate

	Effect size: 0.44; total sample size: 78		
	NDI Mean change score: 15.8; total sample size: 118	Indeterminate	Very low
Nurick scale	Nurick scale Normalised change: 0.42 ; total sample size: 99 Mean change score range -0.76 to -1.3 ; total sample size: 93	Indeterminate	Very low
Ranawat classification of disease severity	Ranawat classification of disease severity Normalised change: 0.34 ; total sample size: 99	Indeterminate	Very low
SF-12			
PCS	SF-12 PCS Mean change score: 8.17; total sample size: 118	Indeterminate	Very low
SF-36	SF-36 Normalised change: 0.32 ; total sample size: 99	Indeterminate	Very low
PCS	SF-36 PCS Effect size range: 0.84; total sample size: 142	Sufficient	Low
	SF-36 PCS Sensitivity: 0.85 ; total sample size: 105	Sufficient	Moderate
MCS	SF-36 MCS Effect size range: 0.81; total sample size: 142	Sufficient	Low
	SF-36 MCS	Sufficient	Moderate

Sensitivity: 0.67; total
sample size: 105

WHOQOL-Bref			
PH	WHOQOL-Bref PH Effect size: 0.68 ; total sample size: 38	Insufficient	Low
PS	WHOQOL-Bref PS Effect size: 0.39; total sample size: 38	Insufficient	Low
SR	WHOQOL-Bref SR Effect size: 0.03; total sample size: 38	Insufficient	Low
EN	WHOQOL-Bref EN Effect size: 0.45 ; total sample size: 38	Insufficient	Low

*Instruments listed are comparators

REFERENCES

1. Auffinger BM, Lall RR, Dahdaleh NS, Wong AP, Lam SK, Koski T, et al. Measuring surgical outcomes in cervical spondylotic myelopathy patients undergoing anterior cervical discectomy and fusion: assessment of minimum clinically important difference. PLoS One. 2013;8(6):e67408.
2. Augusto MT, Diniz JM, Dantas FLR, Oliveira MF, Rotta JM, Botelho RV. Development of the Portuguese Version of the Modified Japanese Orthopaedic Association Score: CrossCultural Adaptation, Reliability, Validity, and Responsiveness. World Neurosurg. 2018;116:e1092-e7.
3. Azimi P, Rezaei O, Montazeri A. An outcome measure of functionality and quality of life in patients with cervical myelopathy. Iran Red Crescent Med J. 2014;16(6):e8102.
4. Badhiwala JH, Witiw CD, Nassiri F, Akbar MA, Jaja B, Wilson JR, et al. Minimum Clinically Important Difference in SF-36 Scores for Use in Degenerative Cervical Myelopathy. Spine (Phila Pa 1976). 2018;43(21):E1260-e6.
5. Bohm PE, Fehlings MG, Kopjar B, Tetreault LA, Vaccaro AR, Anderson KK, et al. Psychometric properties of the $30-\mathrm{m}$ walking test in patients with degenerative cervical myelopathy: results from two prospective multicenter cohort studies. Spine J. 2017;17(2):211-7.
6. Carreon LY, Glassman SD, Campbell MJ, Anderson PA. Neck Disability Index, short form-36 physical component summary, and pain scales for neck and arm pain: the minimum clinically important difference and substantial clinical benefit after cervical spine fusion. Spine J. 2010;10(6):469-74.
7. Chang H, Kong CG, Won HY, Kim JH, Park JB. Inter- and intra-observer variability of a cervical OPLL classification using reconstructed CT images. Clin Orthop Surg. 2010;2(1):8-12.
8. Chiba K, Kato Y, Tsuzuki N, Nagata K, Toyama Y, Iwasaki M, et al. Computer-assisted measurement of the size of ossification in patients with ossification of the posterior longitudinal ligament in the cervical spine. J Orthop Sci. 2005;10(5):451-6.
9. Chien A, Lai DM, Cheng CH, Wang SF, Hsu WL, Wang JL. Responsiveness of the Chinese versions of the Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire and Neck Disability Index in postoperative patients with cervical spondylotic myelopathy. Spine (Phila Pa 1976). 2015;40(17):1315-21.
10. Chiu AY, Pang MY. Assessment of psychometric properties of various balance assessment tools in persons with cervical spondylotic myelopathy. journal of orthopaedic \& sports physical therapy. 2017;47(9):673-82.
11. Fukui M, Chiba K, Kawakami M, Kikuchi S, Konno S, Miyamoto M, et al. Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire (JOACMEQ): Part 2. Endorsement of the alternative item. J Orthop Sci. 2007;12(3):241-8.
12. Fukui M, Chiba K, Kawakami M, Kikuchi S, Konno S, Miyamoto M, et al. Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire: part 3. Determination of reliability. J Orthop Sci. 2007;12(4):321-6.
13. Goyal DKC, Murphy HA, Hollern DA, Divi SN, Nicholson K, Stawicki C, et al. Is the Neck Disability Index an Appropriate Measure for Changes in Physical Function After Surgery for Cervical Spondylotic Myelopathy? Int J Spine Surg. 2020;14(1):53-8.
14. Gwinn DE, lannotti CA, Benzel EC, Steinmetz MP. Effective lordosis: analysis of sagittal spinal canal alignment in cervical spondylotic myelopathy. J Neurosurg Spine. 2009;11(6):66772.
15. Hosono N, Sakaura H, Mukai Y, Kaito T, Makino T, Yoshikawa H. A simple performance test for quantifying the severity of cervical myelopathy. J Bone Joint Surg Br. 2008;90(9):12103.
16. Hosono N, Takenaka S, Mukai Y, Makino T, Sakaura H, Miwa T, et al. Postoperative 24hour result of 15 -second grip-and-release test correlates with surgical outcome of cervical compression myelopathy. Spine (Phila Pa 1976). 2012;37(15):1283-7.
17. Kang Y, Lee JW, Koh YH, Hur S, Kim SJ, Chai JW, et al. New MRI grading system for the cervical canal stenosis. AJR Am J Roentgenol. 2011;197(1):W134-40.
18. Kato S, Oshima Y, Oka H, Chikuda H, Takeshita Y, Miyoshi K, et al. Comparison of the Japanese Orthopaedic Association (JOA) score and modified JOA (mJOA) score for the assessment of cervical myelopathy: a multicenter observational study. PloS one. 2015;10(4):e0123022.
19. Kato S, Oshima Y, Matsubayashi Y, Taniguchi Y, Tanaka S, Takeshita K. Minimum Clinically Important Difference and Patient Acceptable Symptom State of Japanese Orthopaedic Association Score in Degenerative Cervical Myelopathy Patients. Spine (Phila Pa 1976). 2019;44(10):691-7.
20. Kato S, Oshima Y, Matsubayashi Y, Taniguchi Y, Tanaka S, Takeshita K. Minimum clinically important difference in outcome scores among patients undergoing cervical laminoplasty. Eur Spine J. 2019;28(5):1234-41.
21. King JT, Jr., Roberts MS. Validity and reliability of the Short Form-36 in cervical spondylotic myelopathy. J Neurosurg. 2002;97(2 Suppl):180-5.
22. Ko S, Choi W, Chae S. Comparison of inter- and intra-observer reliability among the three classification systems for cervical spinal canal stenosis. Eur Spine J. 2017;26(9):2290-6.
23. Kopjar B, Tetreault L, Kalsi-Ryan S, Fehlings M. Psychometric properties of the modified Japanese Orthopaedic Association scale in patients with cervical spondylotic myelopathy. Spine (Phila Pa 1976). 2015;40(1):E23-8.
24. Latimer M, Haden N, Seeley HM, Laing RJ. Measurement of outcome in patients with cervical spondylotic myelopathy treated surgically. Br J Neurosurg. 2002;16(6):545-9.
25. Longo UG, Berton A, Denaro L, Salvatore G, Denaro V. Development of the Italian version of the modified Japanese orthopaedic association score (mJOA-IT): cross-cultural adaptation, reliability, validity and responsiveness. Eur Spine J. 2016;25(9):2952-7.
26. Lubelski D, Alvin MD, Nesterenko S, Sundar SJ, Thompson NR, Benzel EC, et al. Correlation of quality of life and functional outcome measures for cervical spondylotic myelopathy. Journal of Neurosurgery: Spine. 2016;24(3):483-9.
27. Mihara H, Kondo S, Murata A, Ishida K, Niimura T, Hachiya M. A new performance test for cervical myelopathy: the triangle step test. Spine (Phila Pa 1976). 2010;35(1):32-5.
28. Nakamoto H, Oshima Y, Takeshita K, Chikuda H, Ono T, Taniguchi Y, et al. Usefulness of QuickDASH in patients with cervical laminoplasty. J Orthop Sci. 2014;19(2):218-22.
29. Nakashima H, Yukawa Y, Ito K, Machino M, Kanbara S, Morita D, et al. Validity of the 10-s step test: prospective study comparing it with the 10-s grip and release test and the 30m walking test. Eur Spine J. 2011;20(8):1318-22.
30. Nicholson KJ, Millhouse PW, Pflug E, Woods B, Schroeder GD, Anderson DG, et al. Cervical Sagittal Range of Motion as a Predictor of Symptom Severity in Cervical Spondylotic Myelopathy. Spine (Phila Pa 1976). 2018;43(13):883-9.
31. Nikaido T, Kikuchi S, Yabuki S, Otani K, Konno S. Surgical treatment assessment using the Japanese orthopedic association cervical myelopathy evaluation questionnaire in patients
with cervical myelopathy: a new outcome measure for cervical myelopathy. Spine (Phila Pa 1976). 2009;34(23):2568-72.
32. Numasawa T, Ono A, Wada K, Yamasaki Y, Yokoyama T, Aburakawa S, et al. Simple foot tapping test as a quantitative objective assessment of cervical myelopathy. Spine (Phila Pa 1976). 2012;37(2):108-13.
33. Olindo S, Signate A, Richech A, Cabre P, Catonne Y, Smadja D, et al. Quantitative assessment of hand disability by the Nine-Hole-Peg test (9-HPT) in cervical spondylotic myelopathy. Journal of Neurology, Neurosurgery \& Psychiatry. 2008;79(8):965-7.
34. Park H-J, Kim SS, Chung E-C, Lee S-Y, Park N-H, Rho M-H, et al. Clinical correlation of a new practical MRI method for assessing cervical spinal canal compression. American Journal of Roentgenology. 2012;199(2):W197-W201.
35. Pratali RR, Smith JS, Motta RL, Martins SM, Motta MM, Rocha RD, et al. A Brazilian Portuguese cross-cultural adaptation of the modified JOA scale for myelopathy. Clinics. 2017;72:103-5.
36. Pratali RR, Smith JS, Rocha RD, Matos TD, Defino HLA, Herrero C. RELIABILITY OF A BRAZILIAN PORTUGUESE TRANSLATED AND CROSS-CULTURALLY ADAPTED VERSION OF THE MJOA SCALE. Acta Ortop Bras. 2018;26(5):335-7.
37. Rhee JM, Shi WJ, Cyriac M, Kim JY, Zhou F, Easley KA, et al. The P-mJOA: A Patientderived, Self-reported Outcome Instrument for Evaluating Cervical Myelopathy: Comparison with the mJOA. Clin Spine Surg. 2018;31(2):E115-e20.
38. Sato T, Horikoshi T, Watanabe A, Uchida M, Ishigame K, Araki T, et al. Evaluation of cervical myelopathy using apparent diffusion coefficient measured by diffusion-weighted imaging. AJNR Am J Neuroradiol. 2012;33(2):388-92.
39. Shim E, Lee JW, Lee E, Kang Y, Kang HS, Kang WY, et al. Cervical spondylotic myelopathy: diagnostic performance of radiologists with varying levels of experience in comparing MR images acquired using field strengths of 1.5 and 3 Tesla. Acta Radiol. 2019;60(10):1314-20.
40. Singh A, Crockard HA. Comparison of seven different scales used to quantify severity of cervical spondylotic myelopathy and post-operative improvement. J Outcome Meas. 2001;5(1):798-818.
41. Singh A, Crockard HA. Quantitative assessment of cervical spondylotic myelopathy by a simple walking test. Lancet. 1999;354(9176):370-3.
42. Singh A, Gnanalingham K, Casey A, Crockard A. Quality of life assessment using the Short Form-12 (SF-12) questionnaire in patients with cervical spondylotic myelopathy: comparison with SF-36. Spine (Phila Pa 1976). 2006;31(6):639-43.
43. Spurgas MP, Abbas SF, Szewczyk BS, Yim B, Ata A, German JW. The effect of length of follow-up on substantial clinical benefit thresholds in patients undergoing surgery for cervical degenerative myelopathy. Journal of Clinical Neuroscience. 2019;62:88-93.
44. Tetreault L, Nouri A, Kopjar B, Côté P, Fehlings MG. The Minimum Clinically Important Difference of the Modified Japanese Orthopaedic Association Scale in Patients with Degenerative Cervical Myelopathy. Spine (Phila Pa 1976). 2015;40(21):1653-9.
45. Thakar S, Rajshekhar V. Evaluation of pain as a preference-based health status measure in patients with cervical spondylotic myelopathy undergoing central corpectomy. Acta Neurochir (Wien). 2012;154(2):335-40.
46. Thakar S, Christopher S, Rajshekhar V. Quality of life assessment after central corpectomy for cervical spondylotic myelopathy: comparative evaluation of the 36-Item Short

Form Health Survey and the World Health Organization Quality of Life-Bref. J Neurosurg Spine. 2009;11(4):402-12.
47. Wada E, Fukui M, Takahashi K, Takeuchi D, Hashizume H, Kanamori M, et al. Japanese orthopaedic association cervical myelopathy evaluation questionnaire (JOACMEQ): Part 5. Determination of responsiveness. Journal of Orthopaedic Science. 2019;24(1):57-61.
48. Witayakom W, Paholpak P, Jirarattanaphochai K, Kosuwon W, Sirichativapee W, Wisanuyotin T , et al. Validation of the reliability of the Thai version of the Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire (JOACMEQ). Journal of Orthopaedic Science. 2016;21(2):124-7.
49. Yonenobu K, Abumi K, Nagata K, Taketomi E, Ueyama K. Interobserver and intraobserver reliability of the japanese orthopaedic association scoring system for evaluation of cervical compression myelopathy. Spine (Phila Pa 1976). 2001;26(17):1890-4; discussion 5. 50. Yukawa Y, Kato F, Ito K, Horie Y, Nakashima H, Masaaki M, et al. "Ten second step test" as a new quantifiable parameter of cervical myelopathy. Spine (Phila Pa 1976). 2009;34(1):826.
51. Zhang Y, Zhou F, Sun Y. Assessment of health-related quality of life using the SF-36 in Chinese cervical spondylotic myelopathy patients after surgery and its consistency with neurological function assessment: a cohort study. Health Qual Life Outcomes. 2015;13(1):17.
52. Zhou F, Zhang Y, Sun Y, Zhang F, Pan S, Liu Z. Assessment of the minimum clinically important difference in neurological function and quality of life after surgery in cervical spondylotic myelopathy patients: a prospective cohort study. Eur Spine J. 2015;24(12):291823.

[^0]: *Result ratings for BBS were split by statistic used due to their associated differences in sufficiency.

