RT Journal Article SR Electronic T1 Identifying clinical features in primary care electronic health record studies: methods for codelist development JF BMJ Open JO BMJ Open FD British Medical Journal Publishing Group SP e019637 DO 10.1136/bmjopen-2017-019637 VO 7 IS 11 A1 Jessica Watson A1 Brian D Nicholson A1 Willie Hamilton A1 Sarah Price YR 2017 UL http://bmjopen.bmj.com/content/7/11/e019637.abstract AB Objective Analysis of routinely collected electronic health record (EHR) data from primary care is reliant on the creation of codelists to define clinical features of interest. To improve scientific rigour, transparency and replicability, we describe and demonstrate a standardised reproducible methodology for clinical codelist development.Design We describe a three-stage process for developing clinical codelists. First, the clear definition a priori of the clinical feature of interest using reliable clinical resources. Second, development of a list of potential codes using statistical software to comprehensively search all available codes. Third, a modified Delphi process to reach consensus between primary care practitioners on the most relevant codes, including the generation of an ‘uncertainty’ variable to allow sensitivity analysis.Setting These methods are illustrated by developing a codelist for shortness of breath in a primary care EHR sample, including modifiable syntax for commonly used statistical software.Participants The codelist was used to estimate the frequency of shortness of breath in a cohort of 28 216 patients aged over 18 years who received an incident diagnosis of lung cancer between 1 January 2000 and 30 November 2016 in the Clinical Practice Research Datalink (CPRD).Results Of 78 candidate codes, 29 were excluded as inappropriate. Complete agreement was reached for 44 (90%) of the remaining codes, with partial disagreement over 5 (10%). 13 091 episodes of shortness of breath were identified in the cohort of 28 216 patients. Sensitivity analysis demonstrates that codes with the greatest uncertainty tend to be rarely used in clinical practice.Conclusions Although initially time consuming, using a rigorous and reproducible method for codelist generation ‘future-proofs’ findings and an auditable, modifiable syntax for codelist generation enables sharing and replication of EHR studies. Published codelists should be badged by quality and report the methods of codelist generation including: definitions and justifications associated with each codelist; the syntax or search method; the number of candidate codes identified; and the categorisation of codes after Delphi review.