Appendices

Note: the annual datset and core code is available from the Dryad Digital Repository: http://dx.doi.org/[TBC]²²

A: Data Discontinuities

Start date	Type of	Details	Mortality	Analysis Oct-Sept
	change		affected	year steps*
	ICD &	Counts included non-civilians	ALL	1957
1958	population	ICD-6		1958
1965	London	Inner London (similar to London Area	ALL	1964
	Boundary	County but includes small part of		1965
		Woolwich)		
1966	London	Greater London – incorporates Outer	ALL	1965
	Boundary	London boroughs		1966
1968	ICD	ICD-8 introduced, cardiovascular	CVD	1967(CVD-RESP)
		category widened		1968(CVD-RESP)
1976	Data	From weekly death registrations to daily	ALL	1974
	collection	death counts		1975
1984	ICD	Change in interpretation of rule 3 –	RESP	1983(CVD-RESP)
	interpretation	fewer deaths attributed to respiratory		1984(CVD-RESP)
		causes		
1993	ICD	Reverse of rule 3 interpretation more	RESP	Bridging
	interpretation	respiratory deaths		adjustment
2001	ICD	ICD-10 introduced: 22% fewer	RESP	Bridging
		respiratory deaths, especially	CVD	adjustment
		pneumonia; some respiratory		
		diseases (~5%), assigned to		
		circulatory diseases		

* two analysis years were affected for each Jan 1 change; bolded entries indicate used in main model, otherwise in sensitivity analyses only. ICD bridging correction factors were from Brock 2006¹.

CVD=cardiovascular; Inflpneu=Influenza & Pneumonia; RESP=Respiratory

Paper & setting	Focus: cold or heat?	Threshold (measure of daily temperature used)	Notes regarding methodology used.
Keatinge et al ² Multicity incl. London 1988 – 1992	Combined heat and cold	19.3 to 22.3 °C (mean)	Used the 3°C band of minimum mortality. Incorporates 3 day lag for cold.
Carson et al ³ London 1900-1996	Combined heat and cold	15 °C (mean)	Cold & heat threshold common throughout century of 15.0°C, although 1986-1996 cold threshold was 19.5°C. Incorporates 14 day lag for cold.
Pattenden et al ⁴ London & Sofia 1993-1996	Combined heat and cold	18 °C (mean)	Threshold common to London & Sofia. Incorporates 2 day lag for heat; 2 week lag for cold. 10 th & 90 th percentiles: 5.2°C to 21°C
Hajat et al ⁵ London, Delhi & Sao Paulo 1991-1994	Heat (but threshold for both)	20 °C (mean)	Threshold common to London, Delhi & Sao Paulo. Incorporates 2 week lag for cold.
Armstrong et al ⁶ London 1993-2006	Both – individual thresholds	Cold: 12.1 °C (mean) Heat: 22.3 °C (mean)	Incorporates zero lags.
Eurowinter 1997 ⁷ Multicity incl. London 1988-1992	Cold	Cold: 18 °C (mean)	Common threshold. Incorporated 3 day lag.
Kovats et al ⁸ London 1994-2000	Heat	Heat: 12 °C (mean)	All-cause admissions
Hajat et al ⁹ London 1976-1996	Heat	Heat: 21.5 °C (mean)	Threshold determined by 97 th percentile. Increased mortality visible above 19°C
Hajat et al ¹⁰ Multicity incl. London 1976-2003	Heat	Heat: 20.5 °C (mean)	
Baccini et al ¹¹ Multicity incl. London 1992-2000	Heat	Heat: 23.9 °C (max)	Apparent temperature
Ishigami et al ¹² London 1993-2003	Heat	Heat: 20.4 °C (mean)	
Armstrong et al ¹³ England & Wales 1993-2006	Heat	Heat: 24.7 °C (max)	Common threshold at 93 rd percentile across England & Wales.

B: Previously identified cold and heat thresholds for London.

C : Model details

Main model

$E(Y_i)=exp(\beta_{cold}(annual-cold) + \beta_{heat}(annual-heat) + steps(years 1965,6) + NCS(year,6 knots)$

+ λ (influenza%))

Where, for 52-week years starting i=1949...2005, days j:

- Y_i = annual death count
- $annual_cold = \frac{\sum \max[(T_C t_{ij}), 0]}{364}$
- $annual_heat = \frac{\sum \max[(t_{ij} T_H), 0]}{364}$
- steps(years 1965,6): indicator variable for year>=1965 and year>=1966 (boundary change)
- *NCS*(year, 6knots): a natural cubic spline with six total knots (5df)
- influenza% : proportion of deaths coded as due to influenza; ICD7-8 equivalent
 - for 1949-1974 these were from the London weekly data
 - for 1975-2006 counts of influenza deaths among London residents were obtained directly from the Office of National Statistics.

The year starting Oct 1965 had one 6-day week due to reporting changes. For this year all counts were adjusted by a multiple 364/363.

Deaths counts were assumed to follow a Poisson distribution with scale overdispersion

In analyses of deaths due to respiratory and cardiovascular causes, additional steps were included in the model to allow for changes in ICD and coding known to affect one or the other of these categories.

D: Residual analysis

These were carried out with x variables as for the main model but using the simple regression model for simplicity and in view of the similar result in this and the Poisson model. In the plots below stress standard for standardised residual.

Di: Distribution of residuals by calendar year

Dii: n of residuals by fitted log count

References

- 1. Brock A, Griffiths C, Rooney C. The impact of introducing ICD-10 on analysis of respiratory mortality trends in England and Wales. *Health Stat Q* 2006(29):9-17.
- Keatinge WR, Donaldson GC, Cordioli E, Martinelli M, Kunst AE, Mackenbach JP, et al. Heat related mortality in warm and cold regions of Europe: observational study. *BMJ* 2000;321(7262):670-3.
- 3. Carson C, Hajat S, Armstrong B, Wilkinson P. Declining vulnerability to temperature-related mortality in London over the 20th century. *American Journal of Epidemiology* 2006;164(1):77-84.
- 4. Pattenden S, Nikiforov B, Armstrong BG. Mortality and temperature in Sofia and London. *Journal of Epidemiology & Community Health* 2003;57(8):628-33.
- 5. Hajat S, Armstrong BG, Gouveia N, Wilkinson P. Mortality displacement of heat-related deaths: a comparison of Delhi, Sao Paulo, and London. *Epidemiology* 2005;16(5):613-20.
- 6. Armstrong B. Models for the relationship between ambient temperature and daily mortality. *Epidemiology* 2006;17(6):624-31.
- 7. Eurowinter G. Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. The Eurowinter Group. *Lancet* 1997;349(9062):1341-6.
- 8. Kovats RS, Hajat S, Wilkinson P. Contrasting patterns of mortality and hospital admissions during hot weather and heat waves in Greater London, UK. *Occupational & Environmental Medicine* 2004;61(11):893-8.
- 9. Hajat S, Kovats RS, Atkinson RW, Haines A. Impact of hot temperatures on death in London: a time series approach. *Journal of Epidemiology & Community Health* 2002;56(5):367-72.
- 10. Hajat S, Armstrong B, Baccini M, Biggeri A, Bisanti L, Russo A, et al. Impact of high temperatures on mortality: is there an added heat wave effect? *Epidemiology* 2006;17(6):632-8.
- 11. Baccini M, Biggeri A, Accetta G, Kosatsky T, Katsouyanni K, Analitis A, et al. Heat effects on mortality in 15 European cities. *Epidemiology* 2008;19(5):711-9.
- 12. Ishigami A, Hajat S, Kovats RS, Bisanti L, Rognoni M, Russo A, et al. An ecological time-series study of heat-related mortality in three European cities. *Environ Health* 2008;7:5.
- 13. Armstrong BG, Chalabi Z, Fenn B, Hajat S, Kovats S, Milojevic A, et al. Association of mortality with high temperatures in a temperate climate: England and Wales. *J Epidemiol Community Health* 2011;65(4):340-5.