

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Clinicopathologic Risk Factors for Gastric Cancer: A Retrospective Cohort Study in China

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-030639
Article Type:	Research
Date Submitted by the Author:	26-Mar-2019
Complete List of Authors:	Hu, Kongwang ; First Affiliated Hospital of Anhui Medical University, Department of General Surgery Wang, Shuaili ; University of Science and Technology of China, School of Life Sciences Wang, Zikun ; Indiana University Bloomington Li, Longlong ; First Affiliated Hospital of Anhui Medical University, Department of General Surgery Huang, Zhiguo ; First Affiliated Hospital of Anhui Medical University, Department of General Surgery Yu, Weiqiang ; University of Science and Technology of China, School of Life Sciences Chen, Zhongxue; Indiana University Bloomington, Wu, Qing-Fa ; University of Science and Technology of China, School of Life Sciences
Keywords:	Gastric carcinoma, Clinicopathologic risk factors, Clinical stage, Lymph node metastasis rate
	·

BMJ Open

Clinicopathologic Risk Factors for Gastric Cancer: A Retrospective Cohort Study in China

Kongwang Hu¹, Shuaili Wang², Zikun Wang³, Longlong Li¹, Zhiguo Huang¹, Weiqiang Yu², Zhongxue Chen^{3, *}, Qing-Fa Wu^{2,4,*}

1. Division of Gastrointestinal Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

2. Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China

3. Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington.

4. School of Data Science, University of Science and Technology of China, Hefei 230026, China

* Correspondence author:

Zhongxue Chen: zc3@indiana.edu, Tel.: 1-812-855-1163

Qing-Fa Wu: wuqf@ustc.edu.cn, Tel.: 86-551-63607631

Abstract

Objective: To examine the potential clinicopathologic factors affecting the prognosis of patients with stomach cancer after surgical treatment in China.

Design: This was a retrospective cohort study.

Participants: All participants were recruited from China.

Methods: Between January 1st, 2001 to December 31st, 2012, 716 patients aged 22–84 years with gastric cancer were enrolled in the study. Kaplan-Meier method and Cox proportional hazard regression models were applied to evaluate the prognostic significance of clinicopathological characteristics in terms of survival time.

Results: Of the twenty-three demographic and pathological variables collected in the data, 18 unfavorable prognostic factors of gastric cancer were found to have the remarkable influence on survival time from the unadjusted analyses. The adjusted analysis furtherly revealed that age, lymph node metastasis rate, tumor size, surgical type II, and clinical stage were independent and important prognosis and clinicopathologic factors for gastric cancer in Chinese.

Conclusion: Gastric cancer remains a disease with low survival rate and identification of these prognostic factors usually depend on a large part of the postoperative histological examinations, which may not be available to a surgeon at the time of treatment. Results from the current analyses can be used to assist clinical decisionmaking, and serve as a benchmark for the planning of future prognosis and therapy for patients with gastric carcinoma.

Keywords: Gastric carcinoma; Clinicopathologic risk factors, Clinical stage, Lymph

1	
2	
2	
5	
3 4	
5	
6	
0	
7	
0	
8	
9	
10	
11	
11	
12	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
20 21 22	
21	
<u> </u>	
22	
22	
23	
24	
25	
24 25 26 27 28 29	
27	
27	
28	
20	
29	
30	
50	
31	
32	
52	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
55	
51	
52	
52	
53	
54	
55	
50	
56	
57	
58	
59	

node metastasis rate.

Strengths and limitations of this study

- This was a retrospective cohort study including seven hundred and sixteen participants.
- We followed up participants for at least five years.
- Data from twenty-three independent variables were collected.
- This study has some limitations, for instance, there were missing values for some of the variables; for some subjects, the exact death time was not available and then estimated instead.

1. Introduction

Gastric cancer is a heterogeneous, multifactorial disease, which is known as the fifth most common cancer and the thrid leading cause of cancer-related death worldwide in 2018.^{1,2} The incidence and mortality of gastric carcinoma were varying geographically and were dramatically different between Western countries and Eastern countries³. According to reports, approximately, 0.7 million people died because of gastric cancer each year ^{3,4}, the second highest incidence and mortality rate after lung cancer, in which alone accounts for 42% of all gastric cancer cases worldwide ⁵. About 70% of the case translates into a high fatality, significantly higher than other cancers such as liver and breast cancers.⁶ China is most notable among these countries having the highest incidence and mortality of gastric cancer. It was reported from WHO that there were approximately 456,124 new cancer cases and more than 390,128 ⁷cancer deaths in 2018 and the overall estimated age-standardized (World) incidence rate in 2018 was 23.7 per 100,000 in China. ^{1,7}

The epidemiological and clinicopathological characteristics of gastric cancer still largely remain unknown, although some risk factors have been identified in the previous literature. It has been reported that the incidence ratio of gastric cancer could vary wildly in different gender and across different geography; For example, the incidence rate was 2~3-folds higher in men compared to women; ⁸ Among different countries, the relatively highest incidence rates were found in East Asia, East Europe, and part of South America, whereas the lowest rates were reported in North America, United Kingdom and most parts of Africa.⁹ Furthermore, the survival rates were poorer

Page 5 of 24

BMJ Open

among smokers, alcohol drinkers, obesity, and people who have the symptom of esophageal acid reflux and consume pickled, salty and smoked food. ¹⁰⁻¹² Studies also reported that the incidence rate of gastric cancer was highly correlated with age, especially among patients aged between 50 and 70 years old.¹³⁻¹⁵ Of those cases confirmed between 2005 and 2009 in the United States, around 1% of patients ages from 20 to 34 years occurred and the disease considerably raised to 29% among people who were between 75 and 84 years old ¹⁶. In comparison, cases in patients younger than 30 years are very rare. On the other hand, gastric carcinoma is one of the heaviest burdens of cancer-related cost.⁴ Recently, with the advancement of medical standards, the trend of declining incidence and mortality rate of gastric cancer have been reported. However, the absolute numbers of gastric cancer cases and the prognosis remain big issues in the health programs. Moreover, survival times of gastric cancer patients remained dismal, and the overall five-year relative survival rate was only about 35% in the most area of the world.¹⁷ For the therapy of stomach cancer, most of the current methods are still surgery combined with chemotherapy. Surgery is the most preferred treatment for gastric carcinoma, but the survival rate of patients undergoing surgery remains very low. Many studies have revealed that the average survival time of advanced gastric cancer is less than 12 months¹⁸⁻²¹. Therefore, how to timely assess the condition, to judge the prognosis, and to develop a reasonable postoperative care program become a vital part of gastric cancer treatment.²²⁻²⁴ However, there are many factors influenced on the prognosis in patients with gastric carcinoma, mainly due to clinicopathological Based on the some features. literature. the major

clinicopathological features related to the prognosis of gastric cancer include clinical stage, tumor size, infiltration depth, Lauren classification, and lymph node metastasis rate^{21,25,26}.

Although there are numerous factors have been shown to be related to the prognosis of stomach cancer, most of the previous cohort studies focused on the effect of a single pathological factor on the prognosis with small sample size²¹. It is not easy to identify the most significant factors concerning prognosis because of the high correlations among those variables. Therefore, in order to get a further systematically understanding of gastric carcinoma and to identify the effects of various risk variables on postoperative survival of gastric cancer patients, we collected and analyzed the data from patients with stomach carcinoma undergoing surgical treatment during the period from January 1st,2001 to December 31th,2012 in the First Affiliated Hospital of Anhui Medical University.

In the present study, we grouped the data according to the classification criteria of each pathological factor. On the basis of sufficient follow-ups, survival analysis was used to analyze the various pathological factors.

2. Method

Study cohort

Between January 1st, 2001 and December 31th, 2012, seven hundred and sixteen patients aged between 22–84 years with gastrectomy were registered with gastric adenocarcinoma and underwent surgery in the First Affiliated Hospital of Anhui Medical University in Anhui, China.

BMJ Open

The WHO classification criteria and the 7th edition of the American Joint Committee on Cancer (AJCC) ²⁷ were used for gastric cancer macroscopic and histological classifications

Categorical and continuous clinicopathologic variables were collected and examined to determine prognostic factors as listed in Table 1. Data on age (24-88), age square, gender (male, female), Borrmann's type (types I-IV), Lauren's classification (intestinal type, diffuse type, others), clinical stage (0-4), T stage (I-IV, Tis), N stage (0-3), M stage (0/1), tumor location (proximal, body, distal, more than two sites), type I surgical (all stomach, proximal, distal), surgical type II groups (radical, palliative), and lymphovascular invasion (no, yes), were collected for each patient.

Other clinicopathologic variables, such as positive lymph nodes number, total lymph nodes number, lymph node metastasis rate, surgical margin, tumor size, invasion degree tumor nodes number were originally recorded as continuous variables and subsequently categorized for the current analysis. Accordingly, categorical variables: positive lymph nodes number (0, 1-6,7-15, \geq 16), surgical margin (negative, positive), tumor size(\leq 4cm, 4-8cm, \geq 8cm), invasion degree (mucosa, submucosa, muscular, all layer), lymph node metastasis rate (0, \leq 0.35, 0.35-0.73, \geq 0.74), and total lymph nodes number (0,1-6,7-15, \geq 16) were also used in the analyses.

The current study complied with the of Strengthening the reporting of observational studies in epidemiology (STROBE) reporting guidelines for observational studies.

Ethics statement

The current study complied with the principles of the Declaration of Helsinki and was overseen by the human ethics committees at the First Affiliated Hospital of Anhui Medical University in China, as well as by a data and safety monitoring board (IRB approval number: PJ-2019-01-14). All patient in the present study were informed and acknowledged that their medical records were potentially recorded for scientific research and that their confidentiality would be maintained.

Patient and Public Involvement

Patients and public were not involved in the study design, nor the recruitment.

Statistics analyses

 In all of the analyses, the survival time defined as the period between the dates of surgery and death (or last follow-up) would be the dependent variable. Firstly, an unadjusted analysis was performed for each of the independent variables. Specifically, for each independent variable, Kaplan-Meier method ²⁸ was applied to see whether it is associated with the dependent variable. Then a Cox proportional hazard regression model with backward variable selection was performed to determine which prognostic variables independently affected gastric cancer and to estimate the adjusted hazard ratios (HR) at the same time.²⁹ 95% confidence intervals were examined, and two-sided p-values <0.05 were defined as statistically significant in the present study. All endpoints were updated in 2018 June to 2019 January, that makes every case have enough time for follow-up (≥5years). For this study, all analyses were performed using SAS (SAS Institute Inc., Cary, NC, USA) and SAS (r) Proprietary Software 9.4 (TS1M2).

3. Results

Results from the unadjusted analyses

Univariable analyses were performed to evaluate significant relationships between each clinicopathological feature and the patient's survival time. The results were reported in Table 1. Of the 23 demographic and pathological variables entered in this study, 18 of them were found to have a significant influence on survival time. This cohort was composed of 553 males and 163 females. Based on the clinical TNM classification, the numbers of patients in stage II, and III cancer were 155 and 411, respectively. Most patients (N=612) did not have the lymphovascular invasion. Gastric lesions were located on the proximal of the stomach for 400 patients, on the body of the stomach for 164 patients, on the distal of stomach for 97, and more than two sites among 52 participants. Among the entire patients, 673 patients were proceeded to radical resection, and 41 proceed to palliative resection. About 569 patients had all layer invasion of their stomachs. In addition, a total of 580 patients had received stomach surgery. 253 participants had 0 lymph node metastasis rate, 200 patients had lymph node metastasis rate smaller than 0.35, 149 had lymph node metastasis rate between 0.35-0.7, and the rest of them had lymph node metastasis rate greater than 0.7. Furthermore, in this study, 299 patients had tumor sizes smaller than 4cm, 275 of the total cohort had tumor sizes between 4-8cm, and 129 patients' tumor sizes were larger than 8 cm.

Unfavorable prognostic factors of gastric cancer included the Borrmann's type, the margin, M stage, N stage, T stage, lymph node metastasis rate, surgical type II groups,

clinical stage, tumor size, invasion degree, tumor location, positive lymph nodes number, total lymph nodes number and tumor nodes number. Those factors had prognostic significance (p<0.05) from the unadjusted analyses. However, there were no significant differences in survival rate among age, age square, Lauren's classification, surgical type I groups, lymphovascular invasion, lymph node metastasis rate, and gender in the current unadjusted analysis according to their larger p-values (p-value >0.05).

Results from the adjusted analysis

 The Cox's proportional hazard model was applied to identify the most important independent prognostic factors among the 23 variables. The results of the estimated regression coefficients and standard error were displayed in Table 2. Adjusted analysis revealed that survival time was independently correlated with five factors. In summary, the important prognosis and clinicopathologic factors retained were the following: age (HR=0.891, p-value=0.0017, 95% CI: 0.829-0.958), age square (HR =1.001, p-value< 0.0007, 95% CI: 1.000-1.002), lymph node metastasis rate (HR for ≤ 0.35 , 0.35-0.73, ≥ 0.74 : 0.592, 1.016, and 1.276, respectively; p-value<0.0001, 95% CI: 0.377-0.930, 0.641-1.612, 0.791-2.060, respectively), surgical type II groups (HR for Palliative is 1.587, p-value = 0.0319, 95% CI: 1.041-2.421), tumor size (HR for 4-8cm and $\geq 8cm$: 1.303 and 1.529, respectively, p-value =0.0134, 95% CI: 1.022-1.679, 1.141-2.049, respectively), and clinical stage (HR for 1, 2, and 3: 0.201, 0.376 and 0.791 respectively, p-value < 0.0001, 95% CI: 0.106-0.384, 0.215-0.658, 0.486-1.289, respectively).

4. Discussion

BMJ Open

In this study with total 716 gastric cancer patients, we identified the following clinicopathologic factors which were independently significantly associated with gastric carcinoma in term of the adjusted analysis: age, lymph node metastasis rate, tumor size, type II Surgery, and clinical stage. The adjusted analysis revealed that other variables, such as gender, Borrmann's type, TMN stage, tumor location, surgical type I groups, surgical margin, lymphovascular invasion, and total lymph nodes number, might not independently play a major role in the prognosis. For the factor age, we found it had a non-linear effect on the outcome: both age and its square were statistically significantly assocaited with survival time.

In our current study, among these potential risk factors, the prognosis of patients with gastric carcinoma was seen strongly affected by the rate of metastatic lymph nodes, which also has been emphasized in previous studies performed in different countries^{30,31}. The result from the study by Kim, Lee et al. indicated that the survival rate was remarkably decreased in association to increased metastatic lymph nodes rate.³² Msika et al. also found that lymph node metastasis played an important role and was the only independent prognostic risk factor in their study among 86 participants who underwent curative resection.³³ Furthermore, the German Gastric Carcinoma Study (GGCS)³⁴ suggested that the lymph node ratio should be considered as the significant independent prognostic variables among patients underwent resected stomach carcinoma, and indicated that extended lymph node dissection was the most critical treatment among patients with radical gastrectomy for long-term survival.

The clinical stages, which were defined by the "depth of tumor invasion (T), the

location of perigastric lymph node metastases (N), and the presence or absence of distant metastases (M)" ³⁵, was seen significantly associated with stomach cancer in the present study. Based on the results, the hazard ratios of gastric cancer were very small on stage 0, I, II III compared to stage IV; this could be caused by late presentation of symptoms combined to the lack of pathognomonic signs together with the absence of a screening programme. The prognostic significance of a more advanced stage in our adjusted analysis was comparable to results from other studies.^{36,37,38} Specifically, the AJCC was formally applied the TNM, and now it is the most remarkable instrument for treatment planning in oncology and also efficient for evaluating the patient's prognosis in 1970.

Our results also displayed a significant reversed effect (HR=0.869, p-value=0.002) among young patients with gastric cancer, compared to older participants. A review for the white population from 1974 to 2006 in the U.S. displayed similar trends: the incidence of gastric cancer in patients aged 25–39 had raised from 0.27 to 0.45 per 100,000 individuals whereas the incidence had been declining for older populations. More specifically, among patients aged between 60 and 84, the incidence of gastric carcinoma had dropped from 19.8 to 12.8 per 100,000.³⁹ Some studies provided possible explanation why younger patients with stomach carcinoma have an unfavorable prognosis than older patients: younger patients could have a larger percentage with advanced tumors stage due to lower suspicion of malignant disease and aggressive tumor biology.^{40,41}

According to our adjusted analysis results, we found that tumor size was an

Page 13 of 24

BMJ Open

independent risk factor for prognostic. In fact, tumor size is a valuable risk factor since it can be examined quite easily before the surgery, although the prognostic risk of tumor size among patients with stomach carcinoma maintains inconsistent. Some researches suggested that tumor size is not an independent prognostic variable in patients who had stomach carcinoma. ^{42,43,44} However, other previous studies have displayed that tumor size should be considered as a risk feature for long-term survival after resection of gastric carcinoma^{45-48,49}, and there was a significant relationship between larger tumor size and lesion resectability. Tumor size of gastric cancer was a vital variable that affects the success of enbloc resection so that patients need a higher level of expertise and experience for their treatment. There was also a trend that tumor size can raise with the depth of tumor invasion and the extent of lymph node metastasis: the size of the tumor is profoundly associated to "Borrmann's type IV, adjacent organ invasion (T4) and higher lymph node and distant metastasis rate". ^{43,50} The possible reason for this is that most patients with stage III or stage IV cancers had a relatively lower radical resection and remained a lower 5-year survival rate in many cases.⁵¹

Additionally, our results show that poorer prognosis among patients who had palliative gastrectomy with a higher risk of gastric cancer compared with radical gastrectomy. Although, the results from Dutch clinical randomize trial ⁵² suggested that palliative gastrectomy could be beneficial for younger patients (age<70) whose tumor load was restricted to one metastatic site, another previous study⁵³ indicated that "palliative gastrectomy has no survival benefit (p-value = 0.705, 0.331, respectively) in the peritoneal dissemination and multi-organ metastases groups". Furthermore,

palliative gastrectomy showed no obvious favorable effect on the long-term survival or improvement of the quality of life among patients with gastric cancer.⁵⁴ Currently, bursectomy has become a vital part of radical gastrectomy with extended lymphadenectomy as a therapy for advanced gastric carcinoma in Japan.⁵⁵ Moreover, Maruyama K et al. also suggested that radical gastrectomy remains the only curative treatment option for gastric cancer.⁵⁶

There were several strengths, and limitations of our current study should be considered. We used the Cox proportional hazard regression model, which is one of the most reliable and generally used methods for multivariable analyses. Our findings showed that tumor size encompasses powerful prognostic information for gastric cancer. From Jun K.H et al., ⁵⁷ a statistically significant independent association has been found to prove the association between tumor size and stomach carcinoma-related survival and it was a vital predictor for advanced gastric cancer, but may not be detectable in early gastric carcinoma. In addition, our dataset includes patients with long-term follow-up duration, which was rare for other current studies conducted in China, from January 1st to December 31th 2012. However, all the patients in this study were from Anhui, a province of China. This fact could lead to a lack of generalizability of our findings to the general Chinese population. Finally, the present study is subject to limitations inherent to all observational studies. For instance, some potential residual confounders may not be recognized in the analysis and possible selection bias due to loss to follow up.

5. Conclusion

BMJ Open

In our study, five prognostic risk characteristics have been identified in patients with gastric carcinoma. However, the survival rate for stomach carcinoma patients remains very low. As a result, identifying and predicting important and useful prognosis indicators before treatment are critical for gastric cancer patients. Since these prognostic factors usually depend largely on the postoperative histological examination, they may not be available to a surgeon at the time of treatment. Therefore, a useful, simple prognostic index could be produced with distinct survival rates in specific risk groups. The findings from the current study can be applied to help clinical decisionmaking, and to be considered as a benchmark for planning future prognosis and treatment. Finally, it is of substantial vital to improve early detection and to investigate the feasibility and survival benefit of therapy for patients with stomach carcinoma.

Acknowledgments: The authors thank Dr. Qiang Wu, Dr. Hao Li, and Dr. Xianghong Chen at Department of Pathology, the First Affiliated Hospital of Anhui Medical University for providing excellent technical support that greatly improved the manuscript. The authors are also extremely grateful all the persons who contributed to the construction of the cohort.

Funding: This work was supported in part by the Hefei National Laboratory for Physical Sciences at Microscale. The funders played no role in the study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest: The authors declare no conflict of interest in this study.

Patient consent for publication: Not required.

Ethics approval: This study was approved by the Institutional Review Board of the

First Affiliated Hospital of Anhui Medical University in China (IRB approval number:

PJ-2019-01-14).

Data sharing statement: No additional data are available.

Contributors: KH, ZC, QW designed and oversaw the study; SW, ZW, LL, ZH, WY

contributed to data collection and analysis; KH, SW, ZW, ZC, and QW drafted the

manuscript. All authors participated in discussion and approved the final manuscript.

Reference

- 1. WHO. International Agency for Research on Cancer. Cancer Today. 2018; http://gco.iarc.fr/today/. Accessed 2.10, 2019.
- 2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *Ca-Cancer J Clin.* 2018;68(6):394-424.
- 3. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. *J Clin Oncol.* 2006;24(14):2137-2150.
- 4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin.* 2018.
- 5. Parkin DM WS, Ferlay WJ, Teppo L, Thomas DB. Cancer Incidence in five continents *IARC Scientific Publication No 155*.VIII.
- 6. Guggenheim DE, Shah MA. Gastric cancer epidemiology and risk factors. *J Surg Oncol.* 2013;107(3):230-236.
- 7. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. *CA Cancer J Clin.* 2016;66(2):115-132.
- Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. *Int J Cancer*. 2010;127(12):2893-2917.
- 9. Forman D, Burley VJ. Gastric cancer: global pattern of the disease and an overview of environmental risk factors. *Best Pract Res Clin Gastroenterol*. 2006;20(4):633-649.
- 10. Lindblad M, Rodriguez LA, Lagergren J. Body mass, tobacco and alcohol and risk of esophageal, gastric cardia, and gastric non-cardia adenocarcinoma

1		
2 3		
4		among men and women in a nested case-control study. Cancer Causes Control.
5		2005;16(3):285-294.
6	11.	Lagergren J, Bergstrom R, Lindgren A, Nyren O. Symptomatic
7		gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N Engl
8		J Med. 1999;340(11):825-831.
9	10	
10	12.	Strumylaite L, Zickute J, Dudzevicius J, Dregval L. Salt-preserved foods and
11		risk of gastric cancer. Medicina (Kaunas). 2006;42(2):164-170.
12 13	13.	Liang YX, Deng JY, Guo HH, et al. Characteristics and prognosis of gastric
14		cancer in patients aged >/= 70 years. World J Gastroenterol. 2013;19(39):6568-
15		6578.
16	14.	
17	14.	Crew KD, Neugut AI. Epidemiology of gastric cancer. <i>World J Gastroenterol</i> .
18		2006;12(3):354-362.
19	15.	Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric
20		cancer: descriptive epidemiology, risk factors, screening, and prevention.
21		Cancer Epidemiol Biomarkers Prev. 2014;23(5):700-713.
22 23	16.	Howlader NJhscgc. SEER cancer statistics review, 1975-2008. 2011.
23		
25	17.	Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in
26		cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37
27		513 025 patients diagnosed with one of 18 cancers from 322 population-based
28		registries in 71 countries. Lancet. 2018;391(10125):1023-1075.
29	18.	Strong VE, Song KY, Park CH, et al. Comparison of gastric cancer survival
30	10.	following R0 resection in the United States and Korea using an internationally
31		
32		validated nomogram. Ann Surg. 2010;251(4):640-646.
33 34	19.	Song KY, Park YG, Jeon HM, Park CH. A nomogram for predicting individual
35		survival of patients with gastric cancer who underwent radical surgery with
36		extended lymph node dissection. Gastric Cancer. 2014;17(2):287-293.
37	20.	Wagner AD, Grothe W, Haerting J, Kleber G, Grothey A, Fleig WE.
38	20.	Chemotherapy in advanced gastric cancer: a systematic review and meta-
39		
40		analysis based on aggregate data. J Clin Oncol. 2006;24(18):2903-2909.
41	21.	Qiu MZ, Cai MY, Zhang DS, et al. Clinicopathological characteristics and
42		prognostic analysis of Lauren classification in gastric adenocarcinoma in China.
43 44		J Transl Med. 2013;11:58.
45	22.	Penson DF. Re: variation in surgical-readmission rates and quality of hospital
46	<i></i> .	care. J Urol. 2014;191(5):1363-1364.
47	22	
48	23.	Lee KG, Lee HJ, Yang JY, et al. Risk factors associated with complication
49		following gastrectomy for gastric cancer: retrospective analysis of prospectively
50		collected data based on the Clavien-Dindo system. J Gastrointest Surg.
51		2014;18(7):1269-1277.
52	24.	Paulino Filho A, Paulino F, de LC. [Preoperative and postoperative care of
53 54	<i>∠</i> r.	patients with gastric cancer]. <i>Hospital (Rio J)</i> . 1961;59:201-209.
55	25	
56	25.	Vauhkonen M, Vauhkonen H, Sipponen P. Pathology and molecular biology of
57		gastric cancer. Best Pract Res Clin Gastroenterol. 2006;20(4):651-674.
58	26.	Smith DD, Schwarz RR, Schwarz RE. Impact of total lymph node count on
59		staging and survival after gastrectomy for gastric cancer: data from a large US-
60		
		17

	population database. J Clin Oncol. 2005;23(28):7114-7124.
-	27. Edge SB, Cancer AJCo. <i>AJCC cancer staging handbook: from the AJCC cancer</i>
2	staging manual. Vol 2010: Springer New York; 2010.
~	28. Kaplan EL, Meier PJJotAsa. Nonparametric estimation from incomplete
2	observations. 1958;53(282):457-481.
~	
-	0. Lee WJ, Lee PH, Yue SC, Chang KC, Wei TC, Chen KM. Lymph node
	metastases in gastric cancer: significance of positive number. <i>Oncology</i> . 1995;52(1):45-50.
3	1. Yokota T, Ishiyama S, Saito T, et al. Lymph node metastasis as a significant
	prognostic factor in gastric cancer: a multiple logistic regression analysis. 2004;39(4):380-384.
2	22. Kim J-P, Lee J-H, Kim S-J, Yu H-J, Yang H-KJGc. Clinicopathologic
-	characteristics and prognostic factors in 10 783 patients with gastric cancer.
	1998;1(2):125-133.
-	
2	3. Msika S, Benhamiche AM, Jouve JL, Rat P, Faivre J. Prognostic factors after
	curative resection for gastric cancer. A population-based study. <i>Eur J Cancer</i> .
-	2000;36(3):390-396.
2	4. Roder JD, Böttcher K, Siewert JR, et al. Prognostic factors in gastric carcinoma.
~	Results of the German Gastric Carcinoma Study 1992. 1993;72(7):2089-2097.
3	5. Kennedy BJ. T N M classification for stomach cancer. <i>Cancer</i> . 1970;26(5):971- 983.
3	6. Andrew R, Tiggemann M, Clark L. Positive body image and young women's
	health: Implications for sun protection, cancer screening, weight loss and
	alcohol consumption behaviours. J Health Psychol. 2016;21(1):28-39.
3	7. Costa ML, de Cassia Braga Ribeiro K, Machado MA, Costa AC, Montagnini
	AL. Prognostic score in gastric cancer: the importance of a conjoint analysis of
	clinical, pathologic, and therapeutic factors. Ann Surg Oncol. 2006;13(6):843-
	850.
3	8. Cunningham SC, Kamangar F, Kim MP, et al. Survival after gastric
	adenocarcinoma resection: eighteen-year experience at a single institution.
	2005;9(5):718-725.
3	9. Anderson WF, Camargo MC, Fraumeni JF, Jr., Correa P, Rosenberg PS, Rabkin
	CS. Age-specific trends in incidence of noncardia gastric cancer in US adults.
	JAMA. 2010;303(17):1723-1728.
۷	0. Tso PL, Bringaze WL, 3rd, Dauterive AH, Correa P, Cohn I, Jr. Gastric
	carcinoma in the young. Cancer. 1987;59(7):1362-1365.
Z	1. Zhang J, Gan L, Xu MD, et al. The prognostic value of age in non-metastatic
	gastric cancer after gastrectomy: a retrospective study in the U.S. and China. J
	Cancer. 2018;9(7):1188-1199.
Z	2. Michelassi F, Takanishi DM, Jr., Pantalone D, Hart J, Chappell R, Block GE.
	Analysis of clinicopathologic prognostic features in patients with gastric
	adenocarcinoma. Surgery. 1994;116(4):804-809; discussion 809-810.
Z	3. Yokota T IS, Saito T, Teshima S, Yamada Y, Iwamoto K, et al. Is tumor size a
	10
	10

BMJ Open

prognostic indicator for gastric carcinoma? . *Anticancer Res* 2002. 2002;22:3673–3677(Nov-Dec;22(6B):3673-7.).

- 44. Yu CC, Levison DA, Dunn JA, et al. Pathological prognostic factors in the second British Stomach Cancer Group trial of adjuvant therapy in resectable gastric cancer. *Br J Cancer*. 1995;71(5):1106-1110.
- 45. Isomoto H, Shikuwa S, Yamaguchi N, et al. Endoscopic submucosal dissection for early gastric cancer: a large-scale feasibility study. *Gut.* 2009;58(3):331-336.
- 46. Oda I, Gotoda T, Hamanaka H, et al. Endoscopic submucosal dissection for early gastric cancer: technical feasibility, operation time and complications from a large consecutive series. 2005;17(1):54-58.
- 47. Dassen A, Lemmens V, Van De Poll-franse L, et al. Trends in incidence, treatment and survival of gastric adenocarcinoma between 1990 and 2007: a population-based study in the Netherlands. 2010;46(6):1101-1110.
- 48. Adachi Y, Oshiro T, Mori M, Maehara Y, Sugimachi KJAoso. Tumor size as a simple prognostic indicator for gastric carcinoma. 1997;4(2):137-140.
- 49. Giuliani A, Caporale A, Di Bari M, et al. Maximum gastric cancer diameter as a prognostic indicator: univariate and multivariate analysis. 2003;22(4):531-538.
- 50. Shiraishi N, Sato K, Yasuda K, Inomata M, Kitano S. Multivariate prognostic study on large gastric cancer. *J Surg Oncol.* 2007;96(1):14-18.
- 51. Yasuda K, Shiraishi N, Adachi Y, Inomata M, Sato K, Kitano S. Risk factors for complications following resection of large gastric cancer. *Br J Surg.* 2001;88(6):873-877.
- 52. Hartgrink HH, Putter H, Klein Kranenbarg E, Bonenkamp JJ, van de Velde CJ, Dutch Gastric Cancer G. Value of palliative resection in gastric cancer. *Br J Surg.* 2002;89(11):1438-1443.
- 53. Chen S, Li YF, Feng XY, Zhou ZW, Yuan XH, Chen YB. Significance of palliative gastrectomy for late-stage gastric cancer patients. *J Surg Oncol.* 2012;106(7):862-871.
- 54. Ouchi K, Sugawara T, Ono H, et al. Therapeutic significance of palliative operations for gastric cancer for survival and quality of life. *J Surg Oncol.* 1998;69(1):41-44.
- 55. Maruyama K, Okabayashi K, Kinoshita T. Progress in gastric cancer surgery in Japan and its limits of radicality. *World J Surg.* 1987;11(4):418-425.
- 56. Sano T, Sasako M, Yamamoto S, et al. Gastric cancer surgery: morbidity and mortality results from a prospective randomized controlled trial comparing D2 and extended para-aortic lymphadenectomy-Japan Clinical Oncology Group study 9501. 2004;22(14):2767-2773.
- 57. Jun KH, Jung H, Baek JM, Chin HM, Park WB. Does tumor size have an impact on gastric cancer? A single institute experience. *Langenbecks Arch Surg.* 2009;394(4):631-635.

Tables

Table 1. Results from unadjusted analyses of clinical and pathologic variables.

Variable	Frequency	X ² ab	DF	P-value
Gender		0.70	1	0.40
Female	163			
male	553			
Borrmann's Type		12.32	5	0.030*
Туре І	29			
Туре II	510			
Type III	56			
Type IV	76			
Type V	32			
Surgical margin		7.80	2	0.020*
negative	641			
positive	46			
Lauren's classification		1.88	3	0.39
Intestinal type	206			
Diffuse type	460			
Others	27			
M stage		19.21	2	<.0001 *
0	685			
1	28			
N stage		107.14	4	< 0.0001*
0	253			
1	170	4		
2	176			
3	115			
T stage		59.60	4	< 0.0001*
1	63			
2	74			
4	566			
Tis	11			
Lymph node metastasis rate		118.64	4	<.0001*
0	253			
≤0.35	200			
0.35-0.7	149			
≥0.7	108			
Surgical type I groups	100	5.52	3	0.13
All Stomach	580	5.52		0.15
Proximal	28			
Distal	101			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 21 of 24

BMJ Open

Surgical type II groups		45.35	2	<.0001*
Radical	673			
Palliative	41			
Lymphovascular invasion		0.34	2	0.56
No	612			
Yes	98			
Clinical stage		107.73	5	<.0001
0	11			
1	108			
2	155			
3	411			
4	29			
Tumor nodes number		22.30	3	<.0001*
0	638			
1-2	55			
≥3	15			
Tumor size		60.78	3	<.0001*
≤4cm	299			
4-8cm	275			
≥8cm	129			
Invasion degree		52.68	4	<.0001
Mucosa	25			
Submucosa	38	•		
Muscular	82			
All layer	569			
Positive lymph nodes number		99.45	4	<.0001
0	258			
1-6	338			
7-15	99			
≥16	18			
Tumor location		14.18	4	0.0067
Proximal	400			
Body	164			
Distal	97			
More than two sites	52			
Total lymph nodes number		8.13	5	0.15
0	2		-	
1-6	196			
7-15	394			
≥16	117			
Age	716	1.98	1	0.19
Age ²	716	3.42	1	0.064
<u>**</u> 5*	713	79.65	1	<.0001

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Total lymph nodes number	710	5.97	1	0.015*
Lymph node metastasis rate	710	1.59	1	0.21
Tumor nodes number	708	27.24	1	<.0001*

*: P-value<0.05; a: Test of Equality over Strata; b: Log Rank Test.

Table 2. Results from	adjusted analysis of	prognostic variables.
I doit 2. Itesuits II oin	aujustea analysis or	prostic variables.

Variables	Estimated	Estimated	Estimated	95% CI of HR	P-value
	coefficient	SE	HR		
Age	-0.115	0.037	0.891	0.829-0.958	0.0017
Age square	0.001	0.00032	1.001	1.000-1.002	0.0007
Lymph node					<.0001
metastasis rate					
0 (reference)		-	1.000	-	
≤0.35	-0.524	0.230	0.592	0.377-0.930	
0.35-0.7	0.0159	0.235	1.016	0.641-1.612	
≥0.7	0.244	0.244	1.276	0.791-2.060	
Surgical type					0.032
II groups					
Radical	-	-	1.000	-	
Palliative	0.462	0.215	1.587	1.041-2.421	
Tumor size					0.013
≤4cm	-	-	1.000	-	
(reference)			1		
4-8cm	0.270	0.126	1.310	1.022-1.679	
≥8cm	0.424	0.149	1.529	1.141-2.049	
Clinical Stage				7	<.0001
4 (reference)	-	-	1.000	-	
0	-12.796	309.130	0.000	(-, -)	
1	-1.602	0.329	0.201	0.106-0.384	
2	-0.979	0.285	0.376	0.215-0.658	
3	-0.234	0.248	0.791	0.486-1.289	

BMJ Open

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	2
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-6
Objectives	3	State specific objectives, including any prespecified hypotheses	1,6
Methods			
Study design	4	Present key elements of study design early in the paper	2
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
	- C	recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	6
- muorpanie	Ũ	participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7
	,	effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	6-7
measurement	0	assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	7-8
Study size	10	Explain how the study size was arrived at	6-7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	7
-		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	8
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(e) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	9
1		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	9
1		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
			1

2
3
4
5
6
7
,
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
24 25
20 26
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
42 43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

1

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	9-10
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	14
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	11-
		multiplicity of analyses, results from similar studies, and other relevant evidence	14
Generalisability	21	Discuss the generalisability (external validity) of the study results	11-
			14
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	15
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

Clinicopathologic Risk Factors for Gastric Cancer: A Retrospective Cohort Study in China

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-030639.R1
Article Type:	Original research
Date Submitted by the Author:	19-Jun-2019
Complete List of Authors:	Hu, Kongwang ; First Affiliated Hospital of Anhui Medical University, Department of General Surgery Wang, Shuaili ; University of Science and Technology of China, School of Life Sciences Wang, Zikun ; Indiana University Bloomington Li, Longlong ; First Affiliated Hospital of Anhui Medical University, Department of General Surgery Huang, Zhiguo ; First Affiliated Hospital of Anhui Medical University, Department of General Surgery Yu, Weiqiang ; University of Science and Technology of China, School of Life Sciences Chen, Zhongxue; Indiana University Bloomington, Wu, Qing-Fa ; University of Science and Technology of China, School of Life Sciences
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Gastroenterology and hepatology
Keywords:	Gastric carcinoma, Clinicopathologic risk factors, Clinical stage, Lymph node metastasis rate

BMJ Open

Clinicopathologic Risk Factors for Gastric Cancer: A Retrospective Cohort Study in China

Kongwang Hu¹, Shuaili Wang², Zikun Wang³, Longlong Li¹, Zhiguo Huang¹, Weiqiang Yu², Zhongxue Chen^{3, *}, Qing-Fa Wu^{2,4,*}

1. Division of Gastrointestinal Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

2. Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China

3. Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington.

School of Data Science, University of Science and Technology of China, Hefei
 230026, China

* Correspondence author:

Zhongxue Chen: zc3@indiana.edu, Tel.: 1-812-855-1163

Qing-Fa Wu: wuqf@ustc.edu.cn, Tel.: 86-551-63607631

Abstract

Objective: To examine the potential clinicopathologic factors affecting the prognosis of patients with stomach cancer after surgical treatment in China.

Methods: Between January 1st, 2001 and December 31st, 2012, a total of 716 patients aged 22–84 years with gastric cancer were enrolled in the study. Survival analysis techniques including log rank test and Cox proportional hazard regression model were applied to evaluate the prognostic significance of clinicopathological characteristics in terms of survival time.

Results: Of the twenty-four demographic and pathological variables collected in the data, 16 prognostic factors of gastric cancer were found to have statistically significant influences on survival time from the unadjusted analyses. The adjusted analysis furtherly revealed that age, age square, lymph node metastasis rate group, tumor size group, surgical type II and clinical stage were important prognosis and clinicopathologic factors for gastric cancer in Chinese.

Conclusion: Our study with relatively large sample size and many potential risk factors enable us to identify independent risk factors associated with the prognosis of gastric cancer. Findings from the current study can be used to assist clinical decision-making, and serve as a benchmark for the planning of future prognosis and therapy for patients with gastric carcinoma.

Keywords: Gastric carcinoma, Clinicopathologic risk factors, Clinical stage, Lymph node metastasis rate.

Strengths and limitations of this study

- This was a retrospective cohort study, including seven hundred and sixteen participants.
- We followed up all participants for at least five years.
- Data of twenty-four independent variables were collected.
- This study has some limitations, for instance, there were missing values for some of the variables; for some subjects, the exact death time was not available and then estimated instead.

1. Introduction

Gastric cancer is a heterogeneous, multifactorial disease, which is known as the fifth most common cancer and the third leading cause of cancer-related death worldwide in 2018.^{1,2} According to previous reports, approximately 0.7 million people died because of gastric cancer each year³, and about 70% of the gastric cancer cases had high fatality, significantly higher than other cancers such as the liver and breast cancers⁴. However, the incidence and mortality of gastric carcinoma vary geographically; they were dramatically different between Western and Eastern countries³. The highest incidence rates were found in East Asia, East Europe, and part of South America, whereas the lowest rates were reported in North America, United Kingdom and most parts of Africa.⁵ China is most notable among these countries having the highest incidence and mortality risk of gastric cancer. WHO reported that China had approximately 456,124 new gastric cancer cases and more than 390,128 gastric cancer deaths, with an estimated overall age-standardized incidence rate of 23.7 per 100,000 in 2018.^{1,6}

The epidemiological and clinicopathological characteristics of gastric cancer still largely remain uncertain, although some risk factors have been identified in the literature. It has been reported that the survival rates were lower among smokers, alcohol drinkers, obesity, and people who have the symptom of esophageal acid reflux and consume pickled, salty, and smoked food. ⁷⁻⁹ Studies also suggested that the incidence rate of gastric cancer was highly correlated with age, especially among patients aged between 50 and 70 years old.¹⁰⁻¹³ It has been reported that gastric

BMJ Open

carcinoma is one of the heaviest burdens of cancer-related cost, the absolute numbers of gastric cancer cases and the prognosis remain big issues in the health programs¹⁴.

The current most popular therapy for stomach cancer is surgery combined with chemotherapy. Surgery is the most preferred treatment for gastric carcinoma, but the survival rate of patients undergoing surgery remains very low. Previous studies have revealed that the average survival time of patients with advanced gastric cancer is less than 12 months¹⁵⁻¹⁸. Therefore, how to timely assess the condition, judge the prognosis risk after therapy, and develop a reasonable postoperative care program becomes a vital part of gastric cancer treatment.¹⁹⁻²¹

Many clinicopathological factors, including clinical stage, tumor size, infiltration depth, Lauren classification, and lymph node metastasis rate, might jointly influence the prognosis in patients with gastric carcinoma^{18,22,23}. However, most of the previous cohort studies in this area had small sample sizes and each focused on the effect of a single pathological factor¹⁸. It is important but challenging to identify the most significant and independent factors associated with prognosis since many factors are hihgly correlated. To have a systematically comprehension of gastric carcinoma and to identify independent risk factors on gastric cancer patients, we conducted the current study.

2. Method

Design

This was a retrospective cohort study.

Participants

All participants were recruited from Anhui, China.

Ethics statement

The current study complied with the principles of the Declaration of Helsinki and was overseen by the human ethics committees at the First Affiliated Hospital of Anhui Medical University in China, as well as by a data and safety monitoring board (IRB approval number: PJ-2019-01-14). All patients in the present study were informed and acknowledged that their medical records were potentially recorded for scientific research and that their confidentiality would be maintained.

Patient and Public Involvement

Patients and the public were not involved in the study design, nor the recruitment.

Study cohort

Between January 1st, 2001 and December 31th, 2012, seven hundred and sixteen patients aged between 22 and 84 years with gastrectomy were registered with gastric adenocarcinoma and underwent surgery in the First Affiliated Hospital of Anhui Medical University in Anhui, China.

The WHO classification criteria and the 7th edition of the American Joint Committee on Cancer (AJCC)²⁴ were used for gastric cancer macroscopic and histological classifications. Categorical and continuous clinicopathologic variables were collected and analyzed. Data on age (24-88), gender (male, female), Borrmann's type (I-V), Lauren's classification (intestinal type, diffuse type, others), clinical stage (0-4), T stage (I-IV, Tis), N stage (0-3), M stage (0,1), tumor location (proximal, body, distal, more than two sites), type I surgical (all stomach, proximal, distal), surgical type

BMJ Open

II group (radical, palliative), and lymphovascular invasion (yes, no), were collected for each patient. Moreover, age square was added to investigate the potential nonlinear effect of age.

Other clinicopathologic variables, such as positive lymph nodes number, total lymph nodes number (the total number of lymph nodes), lymph node metastasis rate (the metastasis rate of lymph nodes), surgical margin, tumor size, tumor nodes number (number of tumor nodes), invasion degree were also collected. For those variables originally recorded as continuous were also categorized for the current analysis. Accordingly, categorical variables: positive lymph nodes number group (0, 1-6,7-15,>16), surgical margin (negative, positive), tumor size group (\leq 4cm, 4-8cm, \geq 8cm), invasion degree (mucosa, submucosa, muscular, all layer), lymph node metastasis rate group (0, \leq 0.35, 0.35-0.73, \geq 0.74), and total lymph nodes number group (0,1-6,7-15,>16) were also used in the analyses. However, some variables may have missing values.

The current study complied with the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guidelines.

Statistics analyses

In all of the analyses, the survival time defined as the period between the dates of surgery and death (or last follow-up) would be the dependent variable. All endpoints were updated between June 2018 and January 2019, which resulted in an at least 5 years follow-up for each participant. First, an unadjusted analysis was performed for each independent variable. Specifically, for each categorical (continuous) independent

variable, the log rank test (the Cox proportional hazard model) was applied to see whether it is associated with the dependent variable without adjusting for any other independent variables. Then the Cox proportional hazard regression model with backward variable selection was performed to identify factors independently assocaited with the survival time, and to estimate their adjusted hazard ratios (HR). The 95% confidence intervals (CIs) of the HR for significant effects were also reported. In this study, the two-sided p-values <0.05 were used to define statistical significance and all analyses were performed using SAS (SAS Institute Inc., Cary, NC, USA) and SAS (r) Proprietary Software 9.4 (TS1M2).

3. Results

Results from the unadjusted analyses

The results from the univariable analyses were reported in Table 1. Table 1 also listed the frequencies for each variable. This cohort was composed of 553 males and 163 females. Based on the clinical TNM classification, the numbers of gastric cancer patients in stage 0, I, II, III, and IV were 11, 108,155, 411, and 29, respectively. 98 patients had lymphovascular invasion while 612 did not. Gastric lesions were located on the proximal of the stomach for 400 patients, on the body of the stomach for 164 patients, on the distal of the stomach for 97, and 52 participants had more than two sites gastric lesions. Moreover, 673 patients proceeded to radical resection, and 41 proceed to palliative resection. 569 patients had all layer invasion of their stomachs. In addition, 580, 28, and 101 patients received all stomach, proximal, and distal gastric surgery, respectively. The numbers of participants whose lymph node metastasis rate were 0,

BMJ Open

between 0 and 0.35, between 0.35 and 0.7, and greater than 0.7 were 253, 200, 149, and 108, respectively. Furthermore, in this study, there were 299, 275, and 129 patients whose tumor sizes were smaller than 4cm, between 4 and 8cm, and larger than 8 cm, respectively.

Sixteen significant prognostic factors of gastric cancer including Borrmann's type, surgical margin, M stage, N stage, T stage, lymph node metastasis rate group, surgical type II group, clinical stage, tumor nodes number group, tumor size group, invasion degree, positive lymph nodes number group, tumor location, positive lymph nodes number, total lymph nodes number, and tumor nodes number were identified (p<0.05) from the unadjusted analyses. However, there were no significant associations between survival time and gender, Lauren's classification, surgical type I group, lymphovascular invasion, total lymph node number, age, age square, and lymph node metastasis rate from the unadjusted analysis according to their large p-values (>0.05).

Results from the adjusted analysis

The results of the estimated hazar ratios and their 95% confidence interval from the adjusted analysis were reported in Table 2. The adjusted analysis identified six variables, each was independently associated with survival time. These variables and their estiamted adjusted HR after adjusting for the other effects in the model were: age (HR=0.891, p-value=0.0017, 95% CI: 0.829-0.958), age square (HR =1.001, p-value= 0.0007, 95% CI: 1.000-1.002), lymph node metastasis rate group (HR for ≤ 0.35 , 0.35-0.73, ≥ 0.74 : 0.592, 1.016, and 1.276, respectively; p-value< 0.0001, 95% CI: 0.377-0.930, 0.641-1.612, 0.791-2.060, respectively), surgical type II group (HR=1.587, pvalue = 0.0319, 95% CI: 1.041-2.421), tumor size group (HR for 4-8cm and ≥8cm: 1.303 and 1.529, respectively, p-value =0.0134, 95% CI: 1.022-1.679, 1.141-2.049, respectively), and clinical stage (HR for 1, 2, and 3: 0.201, 0.376 and 0.791 respectively, p-value < 0.0001, 95% CI: 0.106-0.384, 0.215-0.658, 0.486-1.289, respectively).

4. Discussion

 In this study with total 716 gastric cancer patients, we identified the following clinicopathologic factors which were independently associated with gastric carcinoma from the adjusted analysis: age (and age square), lymph node metastasis rate, tumor size, type II surgery, and clinical stage. The adjusted analysis revealed that other variables, such as gender, Borrmann's type, TMN stage, tumor location, surgical type I group, surgical margin, lymphovascular invasion, and total lymph nodes number, might not independently play a major role in the prognosis. For the variable "age", we found that it had a non-linear effect on the outcome: both age and its square were significantly associated with survival time.

In our current study, among these identified risk factors, the prognosis of patients with gastric carcinoma was seen strongly affected by the rate of metastatic lymph nodes, which also has been emphasized in previous studies performed in different countries^{25,26}. The result from the study by Kim, Lee et al. indicated that the survival rate was remarkably decreased with metastatic lymph nodes rate increased.²⁷ Msika et al. also found that lymph node metastasis played an important role and was the only independent prognostic risk factor among 86 participants who underwent curative resection in their study.²⁸ Furthermore, the German Gastric Carcinoma Study (GGCS)²⁹

BMJ Open

suggested that the lymph node metastasis rate should be considered as the significant independent prognostic variables among patients underwent resected stomach carcinoma, and indicated that extended lymph node dissection was the most critical treatment among patients with radical gastrectomy for long-term survival.

The clinical stages, which were defined by the "depth of tumor invasion (T), the location of perigastric lymph node metastases (N), and the presence or absence of distant metastases (M)" ³⁰, was found significantly associated with stomach cancer in the present study. Based on the results, the hazard ratios of gastric cancer were minima on stage 0, I, II III compared to stage IV; this could be caused by the late presentation of symptoms combined to the lack of pathognomonic signs together with the absence of a screening program. The prognostic significance of a more advanced stage in our adjusted analysis was comparable to results from other studies.^{31,32,33}

Based on our adjusted analysis, age had a significant nonlinear effect on the survival time. We also found that tumor size was an independent risk factor for prognostic. In fact, tumor size is a valuable risk factor since it can be examined quite easily before the surgery, although the prognostic risk of tumor size among patients with stomach carcinoma maintains inconsistent. Some researches suggested that tumor size is not an independent prognostic variable in patients who had stomach carcinoma. ^{34,35,36} However, other previous studies have displayed that tumor size should be considered as a risk feature for long-term survival after resection of gastric carcinoma ^{37-40,41}, and there was a significant relationship between larger tumor size and lesion resectability. Tumor size of gastric cancer was a vital variable that affects the success

of enbloc resection; patients with larger tumor sizes need higher level of expertise and experience for their treatment. Tumor size could raise with the depth of tumor invasion and the extent of lymph node metastasis increase: the size of the tumor is profoundly associated to "Borrmann's type IV, adjacent organ invasion (T4) and higher lymph node and distant metastasis rate". ^{35,42} A possible explaination is that most patients with stage III or stage IV cancers had a relatively lower radical resection and remaind a lower 5-year survival rate.⁴³

Our results also showed that patients who received palliative gastrectomy had poorer prognosis and higher risks compared to patients with radical gastrectomy. The results from Dutch clinical randomize trial ⁴⁴ suggested that palliative gastrectomy could be beneficial for younger patients (age<70) whose tumor load was restricted to one metastatic site. On the contrary, a previous study⁴⁵ indicated that "palliative gastrectomy has no survival benefit (p-value = 0.705, 0.331, respectively) in the peritoneal dissemination and multi-organ metastases group". Another study found that palliative gastrectomy showed no obvious favorable effect on long-term survival or improvement of the quality of life among patients with gastric cancer.⁴⁶ Moreover, Maruyama K et al. suggested that radical gastrectomy remained the only curative treatment option for gastric cancer.⁴⁷

There were several strengths and limitations in our current study. We used the Cox proportional hazard regression model, which is one of the most commonly used methods for multivariable analyses with survival time as dependent variable. Our findings showed that tumor size encompasses important prognostic information for Page 13 of 20

BMJ Open

gastric cancer. Based on Jun K.H et al., ⁴⁸ the tumor size was statistically significantly and independently associated with stomach carcinoma-related survival, and this risk factor was a vital predictor for advanced gastric cancer, although it may not be detectable in early gastric carcinoma. In addition, our study includes patients with a long-term follow-up duration, which was rarely seen from other studies conducted in China. However, all the patients in this study were recruited from Anhui, a province of China. This fact could lead to a lack of generalizability of our findings to the general Chinese population. Finally, the present study has limitations inherent to all observational studies. For instance, some potential confounders may not be recognized and included in the study and selection bias could exist due to loss to follow up.

5. Conclusion

Currently, identifying and predicting important prognosis indicators before treatment are critical for gastric cancer patients. In our study, five independent prognostic risk characteristics have been identified in patients with gastric carcinoma. The findings from our study are useful and applicable for clinical decision-making. They also provide a benchmark for planning future prognosis and treatment for gastric cancer patients. Our findings can also be used to improve early detection and to investigate the feasibility and survival benefit of therapy for patients with stomach carcinoma.

Acknowledgments: The authors would like to thank Drs. Qiang Wu, Hao Li, and Xianghong Chen from the Department of Pathology at the First Affiliated Hospital of Anhui Medical University for providing excellent technical support of this study. The authors are grateful to the reviewers for their helpful comments which result in an improved presentation of this report.

Funding: This work was supported in part by the Hefei National Laboratory for Physical Sciences at Microscale. The funders played no role in the study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest: The authors declare no conflict of interest in this study.

Patient consent for publication: Not required.

Ethics approval: This study was approved by the Institutional Review Board of the First Affiliated Hospital of Anhui Medical University in China (IRB approval number:

PJ-2019-01-14).

Data sharing statement: No additional data are available.

Contributors: KH, ZC, QW designed and oversaw the study; SW, ZW, LL, ZH, WY contributed to data collection and analysis; KH, SW, ZW, ZC, and QW drafted the manuscript. All authors participated in the discussion and approved the final manuscript.

Reference

- WHO. International Agency for Research on Cancer. Cancer Today. 2018; <u>http://gco.iarc.fr/today/</u>. Accessed 2.10, 2019.
- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *Ca-Cancer J Clin.* 2018;68(6):394-424.
- 3. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. *J Clin Oncol.* 2006;24(14):2137-2150.
- 4. Guggenheim DE, Shah MA. Gastric cancer epidemiology and risk factors. *J Surg Oncol.* 2013;107(3):230-236.
- 5. Forman D, Burley VJ. Gastric cancer: global pattern of the disease and an overview of environmental risk factors. *Best Pract Res Clin Gastroenterol.* 2006;20(4):633-649.
- 6. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. *CA Cancer J Clin.* 2016;66(2):115-132.

Page 15 of 20

BMJ Open

2		
3	7.	Lindblad M, Rodriguez LA, Lagergren J. Body mass, tobacco and alcohol and risk of esophageal,
4		gastric cardia, and gastric non-cardia adenocarcinoma among men and women in a nested
5 6		case-control study. <i>Cancer Causes Control.</i> 2005;16(3):285-294.
7	0	
8	8.	Lagergren J, Bergstrom R, Lindgren A, Nyren O. Symptomatic gastroesophageal reflux as a risk
9		factor for esophageal adenocarcinoma. N Engl J Med. 1999;340(11):825-831.
10	9.	Strumylaite L, Zickute J, Dudzevicius J, Dregval L. Salt-preserved foods and risk of gastric cancer.
11		Medicina (Kaunas). 2006;42(2):164-170.
12	10.	Liang YX, Deng JY, Guo HH, et al. Characteristics and prognosis of gastric cancer in patients
13 14		aged >/= 70 years. World J Gastroenterol. 2013;19(39):6568-6578.
14	11.	Crew KD, Neugut AI. Epidemiology of gastric cancer. <i>World J Gastroenterol.</i> 2006;12(3):354-
16	11.	
17		362.
18	12.	Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric cancer: descriptive
19		epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomarkers Prev.
20		2014;23(5):700-713.
21 22	13.	Howlader NJhscgc. SEER cancer statistics review, 1975-2008. 2011.
23	14.	Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018:
24		GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
25		CA Cancer J Clin. 2018.
26	4 -	
27	15.	Strong VE, Song KY, Park CH, et al. Comparison of gastric cancer survival following R0 resection
28		in the United States and Korea using an internationally validated nomogram. Ann Surg.
29 30		2010;251(4):640-646.
31	16.	Song KY, Park YG, Jeon HM, Park CH. A nomogram for predicting individual survival of patients
32		with gastric cancer who underwent radical surgery with extended lymph node dissection.
33		Gastric Cancer. 2014;17(2):287-293.
34	17.	Wagner AD, Grothe W, Haerting J, Kleber G, Grothey A, Fleig WE. Chemotherapy in advanced
35		gastric cancer: a systematic review and meta-analysis based on aggregate data. J Clin Oncol.
36 37		
38		2006;24(18):2903-2909.
39	18.	Qiu MZ, Cai MY, Zhang DS, et al. Clinicopathological characteristics and prognostic analysis of
40		Lauren classification in gastric adenocarcinoma in China. <i>J Transl Med.</i> 2013;11:58.
41	19.	Penson DF. Re: variation in surgical-readmission rates and quality of hospital care. J Urol.
42		2014;191(5):1363-1364.
43 44	20.	Lee KG, Lee HJ, Yang JY, et al. Risk factors associated with complication following gastrectomy
44 45		for gastric cancer: retrospective analysis of prospectively collected data based on the Clavien-
46		Dindo system. J Gastrointest Surg. 2014;18(7):1269-1277.
47	24	
48	21.	Paulino Filho A, Paulino F, de LC. [Preoperative and postoperative care of patients with gastric
49		cancer]. Hospital (Rio J). 1961;59:201-209.
50	22.	Vauhkonen M, Vauhkonen H, Sipponen P. Pathology and molecular biology of gastric cancer.
51 52		Best Pract Res Clin Gastroenterol. 2006;20(4):651-674.
53	23.	Smith DD, Schwarz RR, Schwarz RE. Impact of total lymph node count on staging and survival
54		after gastrectomy for gastric cancer: data from a large US-population database. J Clin Oncol.
55		2005;23(28):7114-7124.
56	24.	
57	۷4.	Edge SB, Cancer AJCo. <i>AJCC cancer staging handbook: from the AJCC cancer staging manual.</i>
58 50		Vol 2010: Springer New York; 2010.
59 60	25.	Lee WJ, Lee PH, Yue SC, Chang KC, Wei TC, Chen KM. Lymph node metastases in gastric cancer:

	significance of positive number. Oncology. 1995;52(1):45-50.
26.	Yokota T, Ishiyama S, Saito T, et al. Lymph node metastasis as a significant prognostic factor in
	gastric cancer: a multiple logistic regression analysis. 2004;39(4):380-384.
27.	Kim J-P, Lee J-H, Kim S-J, Yu H-J, Yang H-KJGc. Clinicopathologic characteristics and prognostic
	factors in 10 783 patients with gastric cancer. 1998;1(2):125-133.
28.	Msika S, Benhamiche AM, Jouve JL, Rat P, Faivre J. Prognostic factors after curative resection
	for gastric cancer. A population-based study. <i>Eur J Cancer</i> . 2000;36(3):390-396.
29.	Roder JD, Böttcher K, Siewert JR, et al. Prognostic factors in gastric carcinoma. Results of the
	German Gastric Carcinoma Study 1992. 1993;72(7):2089-2097.
30.	Kennedy BJ. T N M classification for stomach cancer. Cancer. 1970;26(5):971-983.
31.	Andrew R, Tiggemann M, Clark L. Positive body image and young women's health: Implications
	for sun protection, cancer screening, weight loss and alcohol consumption behaviours. J Health
	Psychol. 2016;21(1):28-39.
32.	Costa ML, de Cassia Braga Ribeiro K, Machado MA, Costa AC, Montagnini AL. Prognostic score
	in gastric cancer: the importance of a conjoint analysis of clinical, pathologic, and therapeutic
	factors. Ann Surg Oncol. 2006;13(6):843-850.
33.	Cunningham SC, Kamangar F, Kim MP, et al. Survival after gastric adenocarcinoma resection:
	eighteen-year experience at a single institution. 2005;9(5):718-725.
34.	Michelassi F, Takanishi DM, Jr., Pantalone D, Hart J, Chappell R, Block GE. Analysis of
	clinicopathologic prognostic features in patients with gastric adenocarcinoma. Surgery.
	1994;116(4):804-809; discussion 809-810.
35.	Yokota T IS, Saito T, Teshima S, Yamada Y, Iwamoto K, et al. Is tumor size a prognostic indicator
	for gastric carcinoma? . Anticancer Res 2002. 2002;22:3673–3677(Nov-Dec;22(6B):3673-7.).
36.	Yu CC, Levison DA, Dunn JA, et al. Pathological prognostic factors in the second British Stomach
	Cancer Group trial of adjuvant therapy in resectable gastric cancer. Br J Cancer.
	1995;71(5):1106-1110.
37.	Isomoto H, Shikuwa S, Yamaguchi N, et al. Endoscopic submucosal dissection for early gastric
	cancer: a large-scale feasibility study. Gut. 2009;58(3):331-336.
38.	Oda I, Gotoda T, Hamanaka H, et al. Endoscopic submucosal dissection for early gastric cancer:
	technical feasibility, operation time and complications from a large consecutive series.
	2005;17(1):54-58.
39.	Dassen A, Lemmens V, Van De Poll-franse L, et al. Trends in incidence, treatment and survival
	of gastric adenocarcinoma between 1990 and 2007: a population-based study in the
	Netherlands. 2010;46(6):1101-1110.
40.	Adachi Y, Oshiro T, Mori M, Maehara Y, Sugimachi KJAoso. Tumor size as a simple prognostic
	indicator for gastric carcinoma. 1997;4(2):137-140.
41.	Giuliani A, Caporale A, Di Bari M, et al. Maximum gastric cancer diameter as a prognostic
	indicator: univariate and multivariate analysis. 2003;22(4):531-538.
42.	Shiraishi N, Sato K, Yasuda K, Inomata M, Kitano S. Multivariate prognostic study on large
	gastric cancer. J Surg Oncol. 2007;96(1):14-18.
43.	Yasuda K, Shiraishi N, Adachi Y, Inomata M, Sato K, Kitano S. Risk factors for complications
	following resection of large gastric cancer. Br J Surg. 2001;88(6):873-877.
44.	Hartgrink HH, Putter H, Klein Kranenbarg E, Bonenkamp JJ, van de Velde CJ, Dutch Gastric
	Cancer G. Value of palliative resection in gastric cancer. Br J Surg. 2002;89(11):1438-1443.

- 45. Chen S, Li YF, Feng XY, Zhou ZW, Yuan XH, Chen YB. Significance of palliative gastrectomy for late-stage gastric cancer patients. J Surg Oncol. 2012;106(7):862-871.
- Ouchi K, Sugawara T, Ono H, et al. Therapeutic significance of palliative operations for gastric 46. cancer for survival and quality of life. J Surg Oncol. 1998;69(1):41-44.
- 47. Sano T, Sasako M, Yamamoto S, et al. Gastric cancer surgery: morbidity and mortality results from a prospective randomized controlled trial comparing D2 and extended para-aortic lymphadenectomy-Japan Clinical Oncology Group study 9501. 2004;22(14):2767-2773.
- 48. Jun KH, Jung H, Baek JM, Chin HM, Park WB. Does tumor size have an impact on gastric cancer? A single institute experience. Langenbecks Arch Surg. 2009;394(4):631-635.

Tables

Tables			
Table 1. Results from unadjusted analys	es of clinical and	l pathologic v	ariables.
Variable	Encouran	Dualua	

Variable	Frequency	P-value
Gender		0.40
Female	163	
Male	553	
Borrmann's Type		0.030*
I	29	
Ш	510	
III	56	
IV	76	
V	32	
Missing	13	
Surgical margin		0.020*
Negative	641	
Positive	46	
Missing	29	0
Lauren's classification		0.39
Intestinal type	206	
Diffuse type	460	
Others	27	
Missing	23	
M stage		<.0001 *
0	685	
1	28	
Missing	3	
N stage		<.0001*
0	253	
1	170	
2	176	
3	115	
Missing	2	
	47	

T stage		<.0001*
1	63	
2	74	
4	566	
Tis	11	
Missing	2	
Lymph node metastasis rate group		<.0001*
0	253	
≤0.35	200	
0.35-0.7	149	
≥0.7	108	
Missing	6	
Surgical type I group		0.13
All Stomach	580	
Proximal	28	
Distal	101	
Missing	7	
Surgical type II group		<.0001*
Radical	673	
Palliative	41	
Missing	2	
Lymphovascular invasion		0.56
No	612	
Yes	98	
Missing	6	
Clinical stage	1	<.0001*
0	11	
1	108	0.
2	155	
3	411	
4	29	
Missing	2	
Tumor nodes number group		<.0001*
0	638	
	55	
1-2	1.5	
<u>1-2</u> ≥3	15	
	8	
≥3		<.0001*
≥3 Missing		<.0001*
≥3 Missing Tumor size group	8	<.0001*
≥3 Missing Tumor size group ≤4cm	8 299	<.0001*

1 2
3
4 5
5 6 7 8 9 10
8 9
10 11
12 12
12 13 14 15
15 16 17
18
19 20
21 22
23 24
25 25
20 21 22 23 24 25 26 27 28 29
28 29
30 31
32 33
34 35
36 37
38 39
40
41 42
43 44
45 46
47 48
49 50
50 51 52
53
54 55
56 57
58 59

		1
Invasion degree group		<.0001*
Mucosa	25	
Submucosa	38	
Muscular	82	
All layer	569	
Missing	2	
Positive lymph nodes number group		<.0001*
0	258	
1-6	338	
7-15	99	
≥16	18	
Missing	3	
Tumor location		0.0067*
Proximal	400	
Body	164	
Distal	97	
More than two sites	52	
Missing	3	
Total lymph nodes number group		0.15
1-6	198	
7-15	394	
≥16	118	
Missing	6	
Age	716	0.19
Age square	716	0.064
Positive lymph nodes number	713	<.0001*
(Missing=3)	L	
Total lymph nodes number	710	0.015*
(Missing=6)		
Lymph node metastasis rate	710	0.21
(Missing=6)		
Tumor nodes number	708	<.0001*
(Missing=8)		

Table 2. Results from adjusted analysis of prognostic variables.

Variables	Estimated coefficient	Estimated SE	Estimated HR	95% CI of HR	P-value
Age	-0.115	0.037	0.891	0.829-0.958	0.0017
Age square	0.001	0.00032	1.001	1.000-1.002	0.0007
Lymph node					<.0001
metastasis rate					<.0001
0 (reference)	-	-	1.000	-	
≤0.35	-0.524	0.230	0.592	0.377-0.930	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

0.35-0.7	0.0159	0.235	1.016	0.641-1.612	
≥0.7	0.244	0.244	1.276	0.791-2.060	
Surgical type					0.022
II group					0.032
Radical	-	-	1.000	-	
Palliative	0.462	0.215	1.587	1.041-2.421	
Tumor size					0.013
≤4cm			1.000		
(reference)	-	-	1.000	-	
4-8cm	0.270	0.126	1.310	1.022-1.679	
≥8cm	0.424	0.149	1.529	1.141-2.049	
Clinical Stage					<.0001
4 (reference)		-	1.000	-	
0	-12.796	309.130	0.000	(-, -)	
1	-1.602	0.329	0.201	0.106-0.384	
2	-0.979	0.285	0.376	0.215-0.658	
3	-0.234	0.248	0.791	0.486-1.289	

-0.234 0.248 0.791 0.486-1.289

BMJ Open

Clinicopathologic Risk Factors for Gastric Cancer: A Retrospective Cohort Study in China

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-030639.R2
Article Type:	Original research
Date Submitted by the Author:	08-Aug-2019
Complete List of Authors:	Hu, Kongwang ; First Affiliated Hospital of Anhui Medical University, Department of General Surgery Wang, Shuaili ; University of Science and Technology of China, School of Life Sciences Wang, Zikun ; Indiana University Bloomington Li, Longlong ; First Affiliated Hospital of Anhui Medical University, Department of General Surgery Huang, Zhiguo ; First Affiliated Hospital of Anhui Medical University, Department of General Surgery Yu, Weiqiang ; University of Science and Technology of China, School of Life Sciences Chen, Zhongxue; Indiana University Bloomington, Wu, Qing-Fa ; University of Science and Technology of China, School of Life Sciences
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Gastroenterology and hepatology
Keywords:	Gastric carcinoma, Clinicopathologic risk factors, Clinical stage, Lymph node metastasis rate

Clinicopathologic Risk Factors for Gastric Cancer: A Retrospective Cohort Study in China

Kongwang Hu¹, Shuaili Wang², Zikun Wang³, Longlong Li¹, Zhiguo Huang¹, Weiqiang Yu², Zhongxue Chen^{3, *}, Qing-Fa Wu^{2,4,*}

1. Division of Gastrointestinal Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

2. Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China

3. Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington.

4. School of Data Science, University of Science and Technology of China, Hefei 230026, China

* Correspondence author:

Zhongxue Chen: zc3@indiana.edu, Tel.: 1-812-855-1163

Qing-Fa Wu: wuqf@ustc.edu.cn, Tel.: 86-551-63607631

Abstract

Objective: To examine the potential clinicopathologic factors affecting the prognosis of patients with gastric cancer after surgical treatment in China.

Methods: Between January 1st, 2001 and December 31st, 2012, a total of 716 patients aged 22–84 years with gastric cancer were enrolled in the study. Survival analysis techniques including log rank test and Cox proportional hazard regression model were applied to evaluate the prognostic significance of clinicopathological characteristics in terms of survival time.

Results: Of the twenty-four demographic and pathological variables collected in the data, 16 prognostic factors of gastric cancer were found to have statistically significant influences on survival time from the unadjusted analyses. The adjusted analysis furtherly revealed that age, age square, lymph node metastasis rate group, tumor size group, surgical type II, number of cancer nodules, invasion depth group, and the interaction between surgical type II and tumor size group were important prognosis and clinicopathologic factors for gastric cancer in Chinese.

Conclusion: Our study with relatively large sample size and many potential risk factors enable us to identify independent risk factors associated with the prognosis of gastric cancer. Findings from the current study can be used to assist clinical decision-making, and serve as a benchmark for the planning of future prognosis and therapy for patients with gastric carcinoma.

Keywords: Gastric carcinoma, Clinicopathologic risk factors, Clinical stage, Lymph node metastasis rate.

Strengths and limitations of this study

- This was a retrospective cohort study, including seven hundred and sixteen participants.
- We followed up all participants for at least five years.
- Data of twenty-four independent variables were collected.
- This study has some limitations, for instance, there were missing values for some of the variables; for some subjects, the exact death time was not available and then estimated

BMJ Open: first published as 10.1136/bmjopen-2019-030639 on 20 September 2019. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

instead.

1. Introduction

Gastric cancer is a heterogeneous, multifactorial disease, which is known as the fifth most common cancer and the third leading cause of cancer-related death worldwide in 2018.^{1,2} According to previous reports, approximately 0.7 million people died because of gastric cancer each year³, and about 70% of the gastric cancer cases had high fatality, significantly higher than other cancers such as the liver and breast cancers⁴. However, the incidence and mortality of gastric carcinoma vary geographically; they were dramatically different between Western and Eastern countries³. The highest incidence rates were found in East Asia, East Europe, and part of South America, whereas the lowest rates were reported in North America, the United Kingdom and most parts of Africa.⁵ China is most notable among these countries having the highest incidence and mortality risk of gastric cancer. WHO reported that China had approximately 456,124 new gastric cancer cases and more than 390,128 gastric cancer deaths, with an estimated overall age-standardized incidence rate of 23.7 per 100,000 in 2018.^{1,6}

The epidemiological and clinicopathological characteristics of gastric cancer still largely remain uncertain, although some risk factors have been identified in the literature. It has been reported that the survival rates were lower among smokers, alcohol drinkers, obesity, and people who have the symptom of esophageal acid reflux and consume pickled, salty, and smoked food. ⁷⁻⁹ Studies also suggested that the incidence rate of gastric cancer was highly correlated with age, especially among patients aged between 50 and 70 years old.¹⁰⁻¹³ It has been reported that gastric cancer cases and the prognosis remain big issues in the health programs¹⁴.

The current most popular therapy for gastric cancer is surgery combined with chemotherapy. Surgery is the most preferred treatment for gastric carcinoma, but the survival rate of patients undergoing surgery remains very low. Previous studies have revealed that the average survival time of patients with advanced gastric cancer is less than 12 months^{15,16}. Therefore, how to timely assess the condition, judge the prognosis risk after therapy, and develop a reasonable postoperative care program becomes a vital part of gastric cancer treatment.¹⁷⁻¹⁹

Many clinicopathological factors, including clinical stage, tumor size, infiltration depth, Lauren classification, and lymph node metastasis rate, might jointly influence the prognosis in patients with gastric carcinoma²⁰⁻²². It is important but challenging to identify the most significant and independent factors associated with prognosis since many factors are highly correlated. To have a systematic comprehension of gastric carcinoma and to identify independent risk factors on gastric cancer patients, we conducted the current study.

2. Method

Design: This was a retrospective cohort study.

Participants: All participants were recruited from Anhui, China.

Ethics statement

The current study complied with the principles of the Declaration of Helsinki and was overseen by the human ethics committees at the First Affiliated Hospital of Anhui Medical University in China, as well as by a data and safety monitoring board (IRB approval number: PJ-2019-01-14). All patients in the present study were informed and acknowledged that their medical records were potentially recorded for scientific research and that their confidentiality would be maintained.

BMJ Open: first published as 10.1136/bmjopen-2019-030639 on 20 September 2019. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Patient and Public Involvement

Patients and the public were not involved in the study design, nor the recruitment.

Study cohort

Between January 1st, 2001 and December 31th, 2012, seven hundred and sixteen patients aged between 22 and 84 years with gastrectomy were registered with gastric adenocarcinoma and underwent surgery in the First Affiliated Hospital of Anhui Medical University in Anhui, China.

The WHO classification criteria and the 7th edition of the American Joint Committee on Cancer (AJCC)²³ were used for gastric cancer macroscopic and histological classifications. Categorical and continuous clinicopathologic variables were collected and analyzed. Data on age (24-88), gender (male, female), Borrmann's type (I-V), Lauren's classification (intestinal type, diffuse type, others), clinical stage (0-4), T stage (I-IV, Tis), N stage (0-3), M stage (0,1), tumor location (proximal, body, distal, more than two sites), surgical type I (all stomach, proximal, distal), surgical type II group (radical, palliative), and lymphovascular invasion (yes, no), were collected for each patient. Moreover, age square was added to investigate the potential nonlinear effect of age.

Other clinicopathologic variables, such as positive lymph nodes number, number of retrieved lymph nodes, lymph node metastasis rate (the metastasis rate of lymph nodes), surgical margin, tumor size, number of cancer nodules, invasion depth were also collected. For those variables originally recorded as continuous were also categorized for the current analysis. Accordingly, categorical variables: number of cancer nodules group(0,1-2, \geq 3), positive lymph nodes number group (0, 1-6,7-15, \geq 16), surgical margin (negative, positive), tumor size group (\leq 4cm, 4-8cm, \geq 8cm), invasion depth (mucosa, submucosa, muscular, all layer), lymph node metastasis rate group

BMJ Open

 $(0, \leq 0.35, 0.35-0.73, \geq 0.74)$, and number of retrieved lymph node group $(0,1-6,7-15,\geq 16)$ were also used in the analyses. However, some variables may have missing values.

The current study complied with the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guidelines.

Statistics analyses

In all of the analyses, the survival time defined as the period between the dates of surgery and death (or last follow-up) would be the dependent variable. All endpoints were updated between June 2018 and January 2019, which resulted in an at least 5 years follow-up for each participant. First, an unadjusted analysis was performed for each independent variable. Specifically, for each categorical (continuous) independent variable, the log rank test (the Cox proportional hazard model) was applied to see whether it is associated with the dependent variable without adjusting for any other independent variables. Then the Cox proportional hazard regression model with backward variable selection was performed to identify factors independently associated with the survival time, and to estimate their adjusted hazard ratios (HR). In the adjusted analysis, all possible two-way interactiosn were considered in the Cox model. The 95% confidence intervals (CIs) of the HR for significant effects were also reported. In this study, the two-sided p-values <0.05 were used to define statistical significance and all analyses were performed using SAS (SAS Institute Inc., Cary, NC, USA) and SAS (r) Proprietary Software 9.4 (TS1M2).

3. Results

Results from the unadjusted analyses

In this cohort, the total number of events of death is 400, and the overall median survival time is 4.74 years. The results from the univariable analyses were reported in Table 1. Table 1 also

BMJ Open: first published as 10.1136/bmjopen-2019-030639 on 20 September 2019. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

listed the frequencies for each variable. This cohort was composed of 552 males and 163 females. Based on the clinical TNM classification, the numbers of gastric cancer patients in stage 0, I, II, III, and IV were 11, 109, 296, 269, and 28, respectively. 98 patients had lymphovascular invasion while 611 did not. Gastric lesions were located on the proximal of the stomach for 399 patients, on the body of the stomach for 164 patients, on the distal of the stomach for 99, and 52 participants had more than two sites gastric lesions. Moreover, 672 patients proceeded to radical resection, and 42 proceed to palliative resection. 565 patients had all layer invasion of their stomachs. In addition, 579, 28, and 101 patients received all stomach, proximal, and distal gastric surgery, respectively. The numbers of participants whose lymph node metastasis rate were 0, between 0 and 0.35, between 0.35 and 0.7, and greater than 0.7 were 253, 201, 157, and 95, respectively. Furthermore, in this study, there were 299, 275, and 128 patients whose tumor sizes were smaller than 4cm, between 4 and 8cm, and larger than 8 cm, respectively.

Sixteen significant prognostic factors of gastric cancer including Borrmann's type, surgical margin, M stage, N stage, T stage, lymph node metastasis rate group, surgical type II group, clinical stage, number of cancer nodules group, tumor size group, invasion depth group, positive lymph nodes number group, tumor location, positive lymph nodes number, number of retrieved lymph nodes, and number of cancer nodules were identified (p<0.05) from the unadjusted analyses. However, there were no significant associations between survival time and gender, Lauren's classification, surgical type I group, lymphovascular invasion, number of retrieved lymph nodes group, age, age square, and lymph node metastasis rate from the unadjusted analysis according to their large p-values (>0.05).

Results from the adjusted analysis

The results of the estimated hazard ratios and their 95% confidence interval from the adjusted analysis were reported in Table 2. The adjusted analysis identified seven variables and an interation that were associated with survival time. These variables and their estimated adjusted HR after adjusting for the other effects in the model were: age (HR=0.888, p-value=0.0016, 95% CI: 0.825-0.956), age square (HR =1.001, p-value= 0.0005, 95% CI: 1.000-1.002), number of cancer nodules (HR=1.108, p-value=0.0106, 95%CI:1.024-1.199), lymph node metastasis rate group (HR for ≤ 0.35 , 0.35-0.73, ≥ 0.74 : 1.033, 1.780, and 2.491, respectively; p-value<0.0001, 95% CI: 0.768-1.390, 1.320-2.401,1.774-3.497, respectively), invasion depth group (HR for Muscosa, Muscular, and All layer: 0.415, 1.291, and 2.095 respectively, p-value < 0.0001, 95% CI: 0.091-1.898, 0.625-2.669, and 1.089-4.032, respectively), surgical type II group (p-value<0.0001), tumor size group (p-value=0.0010), and the interaction between surgical type II and tumor size.

4. Discussion

In this study with total 716 gastric cancer patients, we identified the following clinicopathologic factors which were independently associated with gastric carcinoma from the adjusted analysis: age (and age square), number of cancer nodules, lymph node metastasis rate, tumor size, type II surgery, invasion depth group and interaction between surgical type II and tumor size. The adjusted analysis revealed that other variables, such as gender, Borrmann's type, TMN stage, tumor location, surgical type I group, surgical margin, lymphovascular invasion, and number of retrieved lymph node, might not independently play a major role in the prognosis. For the variable "age", we found that it had a non-linear effect on the outcome: both age and its square were significantly associated with survival time.

BMJ Open: first published as 10.1136/bmjopen-2019-030639 on 20 September 2019. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

In our current study, among these identified risk factors, the prognosis of patients with gastric carcinoma was seen strongly affected by the rate of metastatic lymph nodes, which also has been emphasized in previous studies performed in different countries^{24,25}. The result from the study by Kim, Lee et al. indicated that the survival rate was remarkably decreased with metastatic lymph nodes rate increased.²⁶ Msika et al. also found that lymph node metastasis played an important role and was the only independent prognostic risk factor among 86 participants who underwent curative resection in their study.²⁷ Furthermore, the German Gastric Carcinoma Study (GGCS)²⁸ suggested that the lymph node metastasis rate should be considered as the significant independent prognostic variables among patients underwent resected gastric carcinoma, and indicated that extended lymph node dissection was the most critical treatment among patients with radical gastrectomy for long-term survival. Of the many factors relevant to survival time, depth of invasion also has been identified as one of the major prognostic factors from our current adjusted analysis. This finding is consistant with those from the literature.²⁹⁻³².

Based on our adjusted analysis, age had a significant nonlinear effect on the survival time. We also found that tumor size and the number of cancer nodules were independent risk factors for prognostic. These two variables are recognized as tumor burden, which are related to poor prognosis susceptibility in another study as well.³³ One Chinese cohort provided that a poorer prognosis in patients with gastric cancer whose number of cancer nodules were more than 3.³⁴ In addition, a Turkish study stated that cancer nodules are more observed in patients with the intestinal type and vascular invasive gastric cancers.³⁵ On the other hand, tumor size is a valuable risk factor since it can be examined quite easily before the surgery, although the prognostic risk of tumor size among patients with gastric carcinoma maintains inconsistent. Some researches suggested that tumor size is not an independent prognostic variable in patients who had gastric

carcinoma. ^{36,37,38} However, other previous studies have displayed that tumor size should be considered as a risk feature for long-term survival after resection of gastric carcinoma ^{39,42,43}, and there was a significant relationship between larger tumor size and lesion resectability. Tumor size of gastric cancer was a vital variable that affects the success of enbloc resection; patients with larger tumor sizes need higher level of expertise and experience for their treatment. Tumor size could raise with the depth of tumor invasion and the extent of lymph node metastasis increase: the size of the tumor is profoundly associated to "Borrmann's type IV, adjacent organ invasion (T4) and higher lymph node and distant metastasis rate". ^{37,44} A possible explaination is that most patients with stage III or stage IV cancers had a relatively lower radical resection and remained a lower 5-year survival rate.⁴⁵

Our results also showed that patients who received palliative gastrectomy had poorer prognosis and higher risks compared to patients with radical gastrectomy. The results from Dutch clinical randomize trial ⁴⁶ suggested that palliative gastrectomy could be beneficial for younger patients (age<70) whose tumor load was restricted to one metastatic site. On the contrary, a previous study⁴⁷ indicated that "palliative gastrectomy has no survival benefit (p-value = 0.705, 0.331, respectively) in the peritoneal dissemination and multi-organ metastases group". Another study found that palliative gastrectomy showed no obvious favorable effect on long-term survival or improvement of the quality of life among patients with gastric cancer.⁴⁸ Moreover, Maruyama K et al. suggested that radical gastrectomy remained the only curative treatment option for gastric cancer.⁴⁹ The interaction between tumor size and surgical type II was found significant from our adjusted analysis. It showed that patients who had tumor size ≤ 4 cm and palliative gastrectomy had tumor size ≤ 4 cm and palliative gastrectomy had tumor size ≤ 4 cm and palliative gastrectomy had the lowest risk while the highest risk was found in patients who had tumor size ≤ 4 cm and

BMJ Open: first published as 10.1136/bmjopen-2019-030639 on 20 September 2019. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

palliative gastrectomy. On the contrary, patients who had larger tumor size (\geq 8cm) with palliative gastrectomy have the second lowest prognosis risk.

There were several strengths and limitations in our current study. We used the Cox proportional hazard regression model, which is one of the most commonly used methods for adjusted analyses with survival time as the dependent variable. Our findings showed that tumor size, interacted with surgical type II, encompasses important prognostic information for gastric cancer. Based on Jun K.H et al., ⁵⁰ the tumor size was statistically significantly and independently associated with gastric carcinoma-related survival, and this risk factor was a vital predictor for advanced gastric cancer, although it may not be detectable in early gastric carcinoma. In addition, our study includes patients with a long-term follow-up duration, which was rarely seen from other studies conducted in China. However, all the patients in this study were recruited from Anhui, a province of China. This fact could lead to a lack of generalizability of our findings to the general Chinese population. Finally, the present study has limitations inherent to all observational studies. For instance, some potential confounders may not be recognized and included in the study and selection bias could exist due to loss to follow up.

5. Conclusion

Currently, identifying and predicting important prognosis indicators before treatment are critical for gastric cancer patients. In our study, seven prognostic risk characteristics and one interaction have been identified in patients with gastric carcinoma. The findings from our study are useful and applicable for clinical decision-making. They also provide a benchmark for planning future prognosis and treatment for gastric cancer patients. Our findings can also be used to improve

BMJ Open

early detection and to investigate the feasibility and survival benefit of therapy for patients with gastric carcinoma.

Acknowledgments: The authors would like to thank Drs. Qiang Wu, Hao Li, and Xianghong Chen from the Department of Pathology at the First Affiliated Hospital of Anhui Medical University for providing excellent technical support of this study. The authors are grateful to the reviewers for their helpful comments which result in an improved presentation of this report.

Funding: This work was supported in part by the Hefei National Laboratory for Physical Sciences at Microscale. The funders played no role in the study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest: The authors declare no conflict of interest in this study.

Patient consent for publication: Not required.

Ethics approval: This study was approved by the Institutional Review Board of the First Affiliated Hospital of Anhui Medical University in China (IRB approval number: PJ-2019-01-14).

Data sharing statement: No additional data are available.

Contributors: KH, ZC, QW designed and oversaw the study; SW, ZW, LL, ZH, WY contributed to data collection and analysis; KH, SW, ZW, ZC, and QW drafted the manuscript. All authors participated in the discussion and approved the final manuscript.

Reference

- 1. WHO. International Agency for Research on Cancer. Cancer Today. 2018; <u>http://gco.iarc.fr/today/</u>. Accessed 2.10, 2019.
- 2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *Ca-Cancer J Clin.* 2018;68(6):394-424.
- 3. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five

4.	<i>Clin Oncol.</i> 2006;24(14):2137-2150. Guggenheim DE, Shah MA. Gastric cancer epidemiology and risk factors. <i>J Surg Oncol.</i> 2013;107(3):23
4. 5.	Forman D, Burley VJ. Gastric cancer: global pattern of the disease and an overview of environmen factors. <i>Best Pract Res Clin Gastroenterol</i> . 2006;20(4):633-649.
6.	Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. <i>CA Cancer J Clin.</i> 2016;66(2):115-
7.	Lindblad M, Rodriguez LA, Lagergren J. Body mass, tobacco and alcohol and risk of esophageal, gastric and gastric non-cardia adenocarcinoma among men and women in a nested case-control study.
8.	Causes Control. 2005;16(3):285-294. Lagergren J, Bergstrom R, Lindgren A, Nyren O. Symptomatic gastroesophageal reflux as a risk fac esophageal adenocarcinoma. N Engl J Med. 1999;340(11):825-831.
9.	Strumylaite L, Zickute J, Dudzevicius J, Dregval L. Salt-preserved foods and risk of gastric cancer. <i>MacKaunas</i>). 2006;42(2):164-170.
10.	Liang YX, Deng JY, Guo HH, et al. Characteristics and prognosis of gastric cancer in patients aged years. <i>World J Gastroenterol.</i> 2013;19(39):6568-6578.
11.	Crew KD, Neugut AI. Epidemiology of gastric cancer. World J Gastroenterol. 2006;12(3):354-362.
12.	Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric cancer: descriptive epidem risk factors, screening, and prevention. <i>Cancer Epidemiol Biomarkers Prev.</i> 2014;23(5):700-713.
13.	Howlader NJhscgc. SEER cancer statistics review, 1975-2008. 2011.
14. 15.	Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOE estimates of incidence and mortality worldwide for 36 cancers in 185 countries. <i>CA Cancer J Clin.</i> 20 Magalhães H, Fontes-Sousa M, Machado M. Immunotherapy in advanced gastric Cancer: an overv
10.	the emerging strategies. Canadian Journal of Gastroenterology and Hepatology. 2018;2018.
16.	Ajani JA. Is the addition of cisplatin to S-1 better than S-1 alone for patients with advanced gastroesop cancer? <i>Nature Reviews Clinical Oncology</i> . 2008;5(9):508.
17.	Penson DF. Re: variation in surgical-readmission rates and quality of hospital care. <i>J Urol.</i> 2014;191(5) 1364.
18.	Lee KG, Lee HJ, Yang JY, et al. Risk factors associated with complication following gastrectomy for cancer: retrospective analysis of prospectively collected data based on the Clavien-Dindo sys <i>Gastrointest Surg.</i> 2014;18(7):1269-1277.
19.	Paulino Filho A, Paulino F, de LC. [Preoperative and postoperative care of patients with gastric c <i>Hospital (Rio J)</i> . 1961;59:201-209.
20.	Qiu MZ, Cai MY, Zhang DS, et al. Clinicopathological characteristics and prognostic analysis of classification in gastric adenocarcinoma in China. <i>J Transl Med.</i> 2013;11:58.
21.	Vauhkonen M, Vauhkonen H, Sipponen P. Pathology and molecular biology of gastric cancer. <i>Best Pro</i> <i>Clin Gastroenterol.</i> 2006;20(4):651-674.
22.	Smith DD, Schwarz RR, Schwarz RE. Impact of total lymph node count on staging and surviva gastrectomy for gastric cancer: data from a large US-population database. <i>J Clin Oncol.</i> 2005;23(28) 7124.
23.	Edge SB, Cancer AJCo. <i>AJCC cancer staging handbook: from the AJCC cancer staging manual.</i> Vol Springer New York; 2010.
24.	Lee WJ, Lee PH, Yue SC, Chang KC, Wei TC, Chen KM. Lymph node metastases in gastric cancer: signif of positive number. <i>Oncology</i> . 1995;52(1):45-50.
25.	Yokota T, Ishiyama S, Saito T, et al. Lymph node metastasis as a significant prognostic factor in gastric a multiple logistic regression analysis. 2004;39(4):380-384.
26.	Kim J-P, Lee J-H, Kim S-J, Yu H-J, Yang H-KJGc. Clinicopathologic characteristics and prognostic factor 783 patients with gastric cancer. 1998;1(2):125-133.
27. 28.	Msika S, Benhamiche AM, Jouve JL, Rat P, Faivre J. Prognostic factors after curative resection for cancer. A population-based study. <i>Eur J Cancer</i> . 2000;36(3):390-396. Roder JD, Böttcher K, Siewert JR, et al. Prognostic factors in gastric carcinoma. Results of the German
-0.	Carcinoma Study 1992. 1993;72(7):2089-2097.
29.	Shimizu H, Ichikawa D, Komatsu S, et al. The decision criterion of histological mixed type in "T1/T2" carcinomacomparison between TNM classification and Japanese Classification of Gastric Cancer.

30.	Ikeda M, Furukawa H, Imamura H, et al. Poor prognosis associated with thrombocytosis in patie gastric cancer. Ann Surg Oncol. 2002;9(3):287-291.
31.	Han SL, Tang HJ, Hua YW, Ji SQ, Lin DX. Expression of COX-2 in stomach cancers and its relation
32.	biological features. <i>Dig Surg.</i> 2003;20(2):107-114. Joo YE, Oh WT, Rew JS, Park CS, Choi SK, Kim SJ. Cyclooxygenase-2 expression is associated w
33.	differentiated and intestinal-type pathways in gastric carcinogenesis. <i>Digestion.</i> 2002;66(4):222-2 Chu DZ, Lang NP, Thompson C, Osteen PK, Westbrook KC. Peritoneal carcinomatosis in nongy
	malignancy. A prospective study of prognostic factors. <i>Cancer.</i> 1989;63(2):364-367.
34.	Quanwen. L, Zhengfang., Zhou, Jianxin., Cui. Hongqing.,Xi. Bing., Chen. The value of cancer ne staging and prognosis evaluation of gastric cancer patients. <i>Chinese Journal of Gastrointestinal</i> 2017;2017,20(3) 277-282.
35.	Ersen A, Unlu MS, Akman T, et al. Tumor deposits in gastric carcinomas. <i>Pathol Res Pract.</i> 2014;21 570.
36.	Michelassi F, Takanishi DM, Jr., Pantalone D, Hart J, Chappell R, Block GE. Analysis of clinicop prognostic features in patients with gastric adenocarcinoma. <i>Surgery</i> . 1994;116(4):804-809; discus 810.
37.	Yokota T IS, Saito T, Teshima S, Yamada Y, Iwamoto K, et al. Is tumor size a prognostic indicator f carcinoma? . Anticancer Res 2002. 2002;22:3673–3677(Nov-Dec;22(6B):3673-7.).
38.	Yu CC, Levison DA, Dunn JA, et al. Pathological prognostic factors in the second British Stomac Group trial of adjuvant therapy in resectable gastric cancer. <i>Br J Cancer</i> . 1995;71(5):1106-1110.
39.	Isomoto H, Shikuwa S, Yamaguchi N, et al. Endoscopic submucosal dissection for early gastric
40.	large-scale feasibility study. <i>Gut.</i> 2009;58(3):331-336. Oda I, Gotoda T, Hamanaka H, et al. Endoscopic submucosal dissection for early gastric cancer: feasibility, operation time and complications from a large consecutive series. 2005;17(1):54-58.
41.	Dassen A, Lemmens V, Van De Poll-franse L, et al. Trends in incidence, treatment and survival adenocarcinoma between 1990 and 2007: a population-based study in the Netherlands. 2010;46 1110.
42.	Adachi Y, Oshiro T, Mori M, Maehara Y, Sugimachi KJAoso. Tumor size as a simple prognostic ind gastric carcinoma. 1997;4(2):137-140.
43.	Giuliani A, Caporale A, Di Bari M, et al. Maximum gastric cancer diameter as a prognostic i univariate and multivariate analysis. 2003;22(4):531-538.
44.	Shiraishi N, Sato K, Yasuda K, Inomata M, Kitano S. Multivariate prognostic study on large gastric Surg Oncol. 2007;96(1):14-18.
45.	Yasuda K, Shiraishi N, Adachi Y, Inomata M, Sato K, Kitano S. Risk factors for complications
46.	resection of large gastric cancer. <i>Br J Surg.</i> 2001;88(6):873-877. Hartgrink HH, Putter H, Klein Kranenbarg E, Bonenkamp JJ, van de Velde CJ, Dutch Gastric Cancer
47.	of palliative resection in gastric cancer. <i>Br J Surg.</i> 2002;89(11):1438-1443. Chen S, Li YF, Feng XY, Zhou ZW, Yuan XH, Chen YB. Significance of palliative gastrectomy for la
48.	gastric cancer patients. <i>J Surg Oncol.</i> 2012;106(7):862-871. Ouchi K, Sugawara T, Ono H, et al. Therapeutic significance of palliative operations for gastric c
49.	survival and quality of life. <i>J Surg Oncol</i> . 1998;69(1):41-44. Sano T, Sasako M, Yamamoto S, et al. Gastric cancer surgery: morbidity and mortality result
	prospective randomized controlled trial comparing D2 and extended para-aortic lymphadenector Clinical Oncology Group study 9501. 2004;22(14):2767-2773.
50.	Jun KH, Jung H, Baek JM, Chin HM, Park WB. Does tumor size have an impact on gastric cancer institute experience. <i>Langenbecks Arch Surg.</i> 2009;394(4):631-635.

Tables

Table 1. Results from unadjusted analyses of clinical and pathologic variables. (N=716)

Variable	Frequency	Event number	Median survival- time (year)	Hazard ratio	P-value
Gender					0.40
Female	163	86	4.94	1.00	
Male	552	314	4.59	1.10	
Missing	1	-	-	-	
Borrmann's Type					0.030*
Type I	29	16	4.40	1.00	
Type II	514	288	4.63	1.06	
Type III	57	31	5.06	1.02	
Type IV	76	49	2.04	1.49	
Type V	32	11	-	0.51	
Missing	8	-	-	-	
Surgical margin					0.020*
Negative	648	353	4.94	1.00	
Positive	46	34	1.55	1.71	
Missing	22	-	-	-	
Lauren's classification					0.39
Intestinal type	214	116	5.67	1.00	
Diffuse type	468	267	4.30	1.19	
Others	32	16	8.95	1.03	
Missing	2		-	-	
M stage					<.0001 *
0	684	373	5.06	1.00	
1	28	25	1.34	2.79	
Missing	4	-	-	-	
N stage					<.0001*
0	257	101	8.98	1.00	
1	169	90	5.17	1.74	
2	169	114	2.36	2.00	
3	117	94	1.56	3.95	
Missing	4	-	-	-	
T stage					<.0001*
1	63	16	12.29	1.00	
2	73	25	10.02	1.52	
3	533	336	3.19	4.04	
4	33	20	3.93	3.77	
Tis	11	2	8.95	0.79	
Missing	3	-	-	-	- 00012
Lymph node metastasis rate group					<.0001*
0	253	101	8.98	1.00	
≤0.35	201	101	5.64	1.53	
0.35-0.7	157	109	2.11	2.86	
≥0.7	95	81	1.50	4.25	

BMJ Open

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	37 12 48 - 63 36 - 644 55 - 230 48 94 25 - 447 36 13 - 31 70 95 -	4.27 6.74 8.69 - 5.25 1.13 - 4.74 4.61 - 8.95 12.29 5.84 2.05 1.34 - 5.17 1.92 1.38 - 8.69 3.16 1.90	1.00 0.78 0.59 - 1.00 3.19 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.41 3.36 7.12 11.53 - 1.00 1.63 2.86 - 1.00 1.84 2.54	<.0001*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 48 - 63 36 - 644 55 - 2 30 48 94 25 - 447 36 13 - 31 70 95	6.74 8.69 - 5.25 1.13 - 4.74 4.61 - 8.95 12.29 5.84 2.05 1.34 - 5.17 1.92 1.38 - 8.69 3.16 1.90	0.78 0.59 - - 1.00 3.19 - - - 1.00 1.41 3.36 7.12 11.53 - - 1.00 1.63 2.86 - - 1.00 1.84	<.0001*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 48 - 63 36 - 644 55 - 2 30 48 94 25 - 447 36 13 - 31 70 95	6.74 8.69 - 5.25 1.13 - 4.74 4.61 - 8.95 12.29 5.84 2.05 1.34 - 5.17 1.92 1.38 - 8.69 3.16 1.90	0.78 0.59 - - 1.00 3.19 - - - 1.00 1.41 3.36 7.12 11.53 - - 1.00 1.63 2.86 - - 1.00 1.84	0.56
4 30 31 32 33 14 19 34 33 11 12 13 14 15 16 17 17 19 9	48 - - - - - - - - - - - - -	8.69 - 5.25 1.13 - 4.74 4.61 - 8.95 12.29 5.84 2.05 1.34 - 5.17 1.92 1.38 - 8.69 3.16 1.90	0.59 1.00 3.19 - 1.00 1.09 - 1.00 1.41 3.36 7.12 11.53 - 1.00 1.63 2.86 - 1.00 1.84	0.56
	- - - - - - - - - - - - - -	- 5.25 1.13 - 4.74 4.61 - 8.95 12.29 5.84 2.05 1.34 - 5.17 1.92 1.38 - 5.17 1.92 1.38 - 8.69 3.16 1.90		0.56
3 3 3 5 3 3 1 4 1 9	36 - 44 55 - 2 30 48 94 25 - 447 36 13 - 31 70 95	5.25 1.13 - 4.74 4.61 - 8.95 12.29 5.84 2.05 1.34 - 5.17 1.92 1.38 - 8.69 3.16 1.90	3.19 - 1.00 1.09 - 1.00 1.41 3.36 7.12 11.53 - 1.00 1.63 2.86 - 1.00 1.84	0.56
3 3 3 5 3 3 1 4 1 9	36 - 44 55 - 2 30 48 94 25 - 447 36 13 - 31 70 95	1.13 - 4.74 4.61 - 8.95 12.29 5.84 2.05 1.34 - 5.17 1.92 1.38 - 8.69 3.16 1.90	3.19 - 1.00 1.09 - 1.00 1.41 3.36 7.12 11.53 - 1.00 1.63 2.86 - 1.00 1.84	0.56
3 3 3 5 3 3 1 4 1 9	36 - 44 55 - 2 30 48 94 25 - 447 36 13 - 31 70 95	1.13 - 4.74 4.61 - 8.95 12.29 5.84 2.05 1.34 - 5.17 1.92 1.38 - 8.69 3.16 1.90	3.19 - 1.00 1.09 - 1.00 1.41 3.36 7.12 11.53 - 1.00 1.63 2.86 - 1.00 1.84	<.0001*
33 34 14 19 2 34 34 34 34 34 34 34 34 34 34 34 34 34	55 - 2 30 48 94 25 - 47 36 13 - 31 70 95	- 4.74 4.61 - 8.95 12.29 5.84 2.05 1.34 - 5.17 1.92 1.38 - 8.69 3.16 1.90		<.0001*
33 34 14 19 2 34 34 34 34 34 34 34 34 34 34 34 34 34	55 - 2 30 48 94 25 - 47 36 13 - 31 70 95	4.61 - 8.95 12.29 5.84 2.05 1.34 - 5.17 1.92 1.38 - 8.69 3.16 1.90	1.09 - 1.00 1.41 3.36 7.12 11.53 - 1.00 1.63 2.86 - 1.00 1.84	<.0001*
33 34 14 19 2 34 34 34 34 34 34 34 34 34 34 34 34 34	55 - 2 30 48 94 25 - 47 36 13 - 31 70 95	4.61 - 8.95 12.29 5.84 2.05 1.34 - 5.17 1.92 1.38 - 8.69 3.16 1.90	1.09 - 1.00 1.41 3.36 7.12 11.53 - 1.00 1.63 2.86 - 1.00 1.84	<.0001*
	- 2 30 48 94 25 - 47 36 13 - 31 70 95			<.0001*
	- 2 30 48 94 25 - 47 36 13 - 31 70 95			<.0001*
3 14 19 2 34 34 34 34 34 34 34 34 34 34	30 48 94 25 - 47 36 13 - 31 70 95	12.29 5.84 2.05 1.34 - 5.17 1.92 1.38 - 8.69 3.16 1.90	1.41 3.36 7.12 11.53 - - 1.00 1.63 2.86 - - 1.00 1.84	<.0001*
3 14 19 2 34 34 34 34 34 34 34 34 34 34	30 48 94 25 - 47 36 13 - 31 70 95	12.29 5.84 2.05 1.34 - 5.17 1.92 1.38 - 8.69 3.16 1.90	1.41 3.36 7.12 11.53 - - 1.00 1.63 2.86 - - 1.00 1.84	<.0001*
14 19 2 34 34 34 34 34 11 11 11 9	48 94 25 - 47 36 13 - 31 70 95	12.29 5.84 2.05 1.34 - 5.17 1.92 1.38 - 8.69 3.16 1.90	1.41 3.36 7.12 11.53 - - 1.00 1.63 2.86 - - 1.00 1.84	<.0001*
11 2 34 3 1 1 1 1 9	94 25 - 447 36 13 - 31 70 95	2.05 1.34 - 5.17 1.92 1.38 - 8.69 3.16 1.90	3.36 7.12 11.53 - 1.00 1.63 2.86 - 1.00 1.84	<.0001*
11 2 34 3 1 1 1 1 9	94 25 - 447 36 13 - 31 70 95	2.05 1.34 - 5.17 1.92 1.38 - 8.69 3.16 1.90	7.12 11.53 - 1.00 1.63 2.86 - - 1.00 1.84	<.0001*
2 34 3 1 1 1 1 9	25 - 47 36 13 - 31 70 95	1.34 - 5.17 1.92 1.38 - 8.69 3.16 1.90	11.53 - 1.00 1.63 2.86 - - 1.00 1.84	<.0001*
	- 47 36 13 - 31 70 95	- 5.17 1.92 1.38 - 8.69 3.16 1.90		<.0001*
3 1 1 1 1 9	36 13 - 31 70 95	1.92 1.38 - 8.69 3.16 1.90	1.63 2.86 - 1.00 1.84	<.0001*
3 1 1 1 1 9	36 13 - 31 70 95	1.92 1.38 - 8.69 3.16 1.90	1.63 2.86 - 1.00 1.84	
3 1 1 1 1 9	36 13 - 31 70 95	1.92 1.38 - 8.69 3.16 1.90	1.63 2.86 - 1.00 1.84	
11 11 11 9	- 31 70 95	1.38 - 8.69 3.16 1.90	2.86 - 1.00 1.84	
1: 1: 9	31 70 95			
1'	70 95	3.16 1.90	1.84	
1'	70 95	3.16 1.90	1.84	
1'	70 95	3.16 1.90	1.84	
9	95	1.90		
			-	
				<.0001*
4	4	-	1.00	
	12	12.29	1.79	
	29	10.02	2.48	
	54	3.21	6.24	
	-		-	
				<.0001*
10	01	8.98	1.00	
	204	3.58	2.06	
	81	1.50	4.12	
		1.90	3.04	
			-	
				0.0067*
	17	4.00	1.00	
2				
		1	-	0.10
	-			1 1110
				0.10
	2	13 - 217 96 48 38	217 4.88 96 4.61 48 6.14 38 1.60	217 4.88 1.00 96 4.61 1.07 48 6.14 0.91 38 1.60 1.83

1-6	196	103	6.10	1.77	
7-15	391	221	4.27	2.13	
≥16	116	72	3.17	2.48	
Missing	7	-	-	-	
Age(Missing=1)	715			1.01	0.144
Age ² (Missing=1)	715			1.00	0.056
Positive lymph nodes number	712			1.08	<.0001*
(Missing=4)					
Number of retrieved Lymph	709			1.02	0.014*
Nodes group (Missing=7)					
Lymph node metastasis rate (Missing=7)	709			1.04	0.232
Number of cancer nodules (707			1.18	<.0001*
Missing=9)			1		

Table 2. Results from adjusted analysis of prognostic variables.

1-6		196	103	6.10	1.77	
7-15		391	221	4.27	2.13	
≥16		116	72	3.17	2.48	
Missing		7	-	-	-	
Age(Missing=1)		715			1.01	0.144
Age ² (Missing=1)		715			1.01	0.056
Positive lymph nodes nu	mher	712			1.00	<.0001
(Missing=4)	mber	/12			1.00	\$.0001
Number of retrieved Ly	mnh	709			1.02	0.014*
Nodes group (Missing	•	105			1.02	0.014
Lymph node metastasis		709			1.04	0.232
(Missing=7)	Tutte	105			1.01	0.232
Number of cancer nodu	ıles (707			1.18	<.0001*
Missing=9)						
Table 2. Results from Variables	Estimated	Estimated	Estimated	95% CI of	P-value	
	coefficient	SE	HR	HR		_
Age	-0.119	0.038	0.888	0.825-0.956	0.0016	_
Age square	0.001	0.0003	1.001	1.000-1.002	0.0005	_
Number of cancer	0.103	0.040	1.108	1.024-1.199	0.0106	
nodules					< 0.001	_
Lymph node metastasis					<.0001	
rate			1.000			_
0 (reference)	-	0.152		-		_
<u>≤0.35</u>	-0.033		1.033	0.768-1.390		_
0.35-0.7	0.577	0.153	1.780	1.320-2.401		_
≥0.7	0.825	0.169	2.491	1.774-3.497	0.0041	_
					0.0041	_
Invasion depth group			1 000			
Submucosa	-	-	1.000	<u>(-, -)</u>		
Submucosa Mucosa	-0.880	- 0.776	0.415	0.091-1.898		_
Submucosa Mucosa Muscular	-0.880 0.256	0.370	0.415 1.291	0.091-1.898 0.625-2.669		
Submucosa Mucosa Muscular All layer	-0.880		0.415	0.091-1.898	< 0001	
Submucosa Mucosa Muscular All layer Surgical type	-0.880 0.256	0.370	0.415 1.291	0.091-1.898 0.625-2.669	<.0001	
Submucosa Mucosa Muscular All layer Surgical type II group	-0.880 0.256	0.370	0.415 1.291	0.091-1.898 0.625-2.669	<.0001	
Submucosa Mucosa Muscular All layer Surgical type Il group Radical	-0.880 0.256 0.740	0.370 0.334	0.415 1.291	0.091-1.898 0.625-2.669	<.0001	
Submucosa Mucosa Muscular All layer Surgical type II group Radical Palliative	-0.880 0.256	0.370	0.415 1.291	0.091-1.898 0.625-2.669		
Submucosa Mucosa Muscular All layer Surgical type II group Radical Palliative Tumor size	-0.880 0.256 0.740 - 1.757	0.370 0.334	0.415 1.291	0.091-1.898 0.625-2.669	<.0001	
Submucosa Mucosa Muscular All layer Surgical type II group Radical Palliative Tumor size ≤4cm (reference)	-0.880 0.256 0.740 - 1.757 -	0.370 0.334 - 0.364	0.415 1.291	0.091-1.898 0.625-2.669		
Submucosa Mucosa Muscular All layer Surgical type II group Radical Palliative Tumor size ≤4cm (reference) 4-8cm	-0.880 0.256 0.740 - 1.757 - 0.240	0.370 0.334 - 0.364 - 0.132	0.415 1.291	0.091-1.898 0.625-2.669		
Submucosa Mucosa Muscular All layer Surgical type II group Radical Palliative Tumor size ≤4cm (reference) 4-8cm ≥8cm	-0.880 0.256 0.740 - 1.757 -	0.370 0.334 - 0.364	0.415 1.291	0.091-1.898 0.625-2.669	0.0010	
Submucosa Mucosa Muscular All layer Surgical type II group Radical Palliative Tumor size ≤4cm (reference) 4-8cm ≥8cm Surgical type	-0.880 0.256 0.740 - 1.757 - 0.240	0.370 0.334 - 0.364 - 0.132	0.415 1.291	0.091-1.898 0.625-2.669		
Submucosa Mucosa Muscular All layer Surgical type II group Radical Palliative Surgical type 4.8cm ≥8cm Surgical type II group* Tumor size	-0.880 0.256 0.740 - 1.757 - 0.240	0.370 0.334 - 0.364 - 0.132	0.415 1.291	0.091-1.898 0.625-2.669	0.0010	
Submucosa Mucosa Muscular All layer Surgical type II group Radical Palliative Tumor size ≤4cm (reference) 4-8cm ≥8cm Surgical type II group* Tumor size Palliative vs radical	-0.880 0.256 0.740 - 1.757 - 0.240 0.566	0.370 0.334 	0.415 1.291	0.091-1.898 0.625-2.669	0.0010	
Submucosa Mucosa Muscular All layer Surgical type II group Radical Palliative Surgical type 4.8cm ≥8cm Surgical type II group* Tumor size	-0.880 0.256 0.740 - 1.757 - 0.240 0.566	0.370 0.334 	0.415 1.291	0.091-1.898 0.625-2.669	0.0010	

BMJ Open

Clinicopathologic Risk Factors for Gastric Cancer: A Retrospective Cohort Study in China

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-030639.R3
Article Type:	Original research
Date Submitted by the Author:	28-Aug-2019
Complete List of Authors:	Hu, Kongwang ; First Affiliated Hospital of Anhui Medical University, Department of General Surgery Wang, Shuaili ; University of Science and Technology of China, School of Life Sciences Wang, Zikun ; Indiana University Bloomington Li, Longlong ; First Affiliated Hospital of Anhui Medical University, Department of General Surgery Huang, Zhiguo ; First Affiliated Hospital of Anhui Medical University, Department of General Surgery Yu, Weiqiang ; University of Science and Technology of China, School of Life Sciences Chen, Zhongxue; Indiana University Bloomington, Wu, Qing-Fa ; University of Science and Technology of China, School of Life Sciences
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Gastroenterology and hepatology
Keywords:	Gastric carcinoma, Clinicopathologic risk factors, Clinical stage, Lymph node metastasis rate

Clinicopathologic Risk Factors for Gastric Cancer: A Retrospective Cohort Study in China

Kongwang Hu¹, Shuaili Wang², Zikun Wang³, Longlong Li¹, Zhiguo Huang¹, Weiqiang Yu², Zhongxue Chen^{3, *}, Qing-Fa Wu^{2,4,*}

1. Division of Gastrointestinal Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

2. Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China

3. Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington.

4. School of Data Science, University of Science and Technology of China, Hefei 230026, China

* Correspondence author:

Zhongxue Chen: zc3@indiana.edu, Tel.: 1-812-855-1163

Qing-Fa Wu: wuqf@ustc.edu.cn, Tel.: 86-551-63607631

Abstract

Objective: To examine the potential clinicopathologic factors affecting the prognosis of patients with gastric cancer after surgical treatment in China.

Methods: Between January 1st, 2001 and December 31st, 2012, a total of 716 patients aged 22–84 years with gastric cancer were enrolled in the study. Survival analysis techniques including log rank test and Cox proportional hazard regression model were applied to evaluate the prognostic significance of clinicopathological characteristics in terms of survival time.

Results: Of the twenty-four demographic and pathological variables collected in the data, 16 prognostic factors of gastric cancer were found to have statistically significant influences on survival time from the unadjusted analyses. The adjusted analysis furtherly revealed that age, age square, lymph node metastasis rate group, tumor size group, surgical type II, number of cancer nodules, invasion depth group, and the interaction between surgical type II and tumor size group were important prognosis and clinicopathologic factors for gastric cancer in Chinese.

Conclusion: Our study with relatively large sample size and many potential risk factors enable us to identify independent risk factors associated with the prognosis of gastric cancer. Findings from the current study can be used to assist clinical decision-making, and serve as a benchmark for the planning of future prognosis and therapy for patients with gastric carcinoma.

Keywords: Gastric carcinoma, Clinicopathologic risk factors, Clinical stage, Lymph node metastasis rate.

Strengths and limitations of this study

- This was a retrospective cohort study, including seven hundred and sixteen participants.
- We followed up all participants for at least five years.
- Data of twenty-four independent variables were collected.
- This study has some limitations, for instance, there were missing values for some of the variables; for some subjects, the exact death time was not available and then estimated

BMJ Open: first published as 10.1136/bmjopen-2019-030639 on 20 September 2019. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

instead.

1. Introduction

Gastric cancer is a heterogeneous, multifactorial disease, which is known as the fifth most common cancer and the third leading cause of cancer-related death worldwide in 2018.^{1,2} According to previous reports, approximately 0.7 million people died because of gastric cancer each year³, and about 70% of the gastric cancer cases had high fatality, significantly higher than other cancers such as the liver and breast cancers⁴. However, the incidence and mortality of gastric carcinoma vary geographically; they were dramatically different between Western and Eastern countries³. The highest incidence rates were found in East Asia, East Europe, and part of South America, whereas the lowest rates were reported in North America, the United Kingdom and most parts of Africa.⁵ China is most notable among these countries having the highest incidence and mortality risk of gastric cancer. WHO reported that China had approximately 456,124 new gastric cancer cases and more than 390,128 gastric cancer deaths, with an estimated overall age-standardized incidence rate of 23.7 per 100,000 in 2018.^{1,6}

The epidemiological and clinicopathological characteristics of gastric cancer still largely remain uncertain, although some risk factors have been identified in the literature. It has been reported that the survival rates were lower among smokers, alcohol drinkers, obesity, and people who have the symptom of esophageal acid reflux and consume pickled, salty, and smoked food. ⁷⁻⁹ Studies also suggested that the incidence rate of gastric cancer was highly correlated with age, especially among patients aged between 50 and 70 years old.¹⁰⁻¹³ It has been reported that gastric cancer cases and the prognosis remain big issues in the health programs¹⁴.

The current most popular therapy for gastric cancer is surgery combined with chemotherapy. Surgery is the most preferred treatment for gastric carcinoma, but the survival rate of patients undergoing surgery remains very low. Previous studies have revealed that the average survival time of patients with advanced gastric cancer is less than 12 months^{15,16}. Therefore, how to timely assess the condition, judge the prognosis risk after therapy, and develop a reasonable postoperative care program becomes a vital part of gastric cancer treatment.¹⁷⁻¹⁹

Many clinicopathological factors, including clinical stage, tumor size, infiltration depth, Lauren classification, and lymph node metastasis rate, might jointly influence the prognosis in patients with gastric carcinoma²⁰⁻²². It is important but challenging to identify the most significant and independent factors associated with prognosis since many factors are highly correlated. To have a systematic comprehension of gastric carcinoma and to identify independent risk factors on gastric cancer patients, we conducted the current study.

2. Method

Design: This was a retrospective cohort study.

Participants: All participants were recruited from Anhui, China.

Ethics statement

The current study complied with the principles of the Declaration of Helsinki and was overseen by the human ethics committees at the First Affiliated Hospital of Anhui Medical University in China, as well as by a data and safety monitoring board (IRB approval number: PJ-2019-01-14). All patients in the present study were informed and acknowledged that their medical records were potentially recorded for scientific research and that their confidentiality would be maintained.

BMJ Open: first published as 10.1136/bmjopen-2019-030639 on 20 September 2019. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Patient and Public Involvement

Patients and the public were not involved in the study design, nor the recruitment.

Study cohort

Between January 1st, 2001 and December 31th, 2012, seven hundred and sixteen patients aged between 22 and 84 years with gastrectomy were registered with gastric adenocarcinoma and underwent surgery in the First Affiliated Hospital of Anhui Medical University in Anhui, China.

The WHO classification criteria and the 7th edition of the American Joint Committee on Cancer (AJCC)²³ were used for gastric cancer macroscopic and histological classifications. Categorical and continuous clinicopathologic variables were collected and analyzed. Data on age (24-88), gender (male, female), Borrmann's type (I-V), Lauren's classification (intestinal type, diffuse type, others), clinical stage (0-4), T stage (I-IV, Tis), N stage (0-3), M stage (0,1), tumor location (proximal, body, distal, more than two sites), surgical type I (all stomach, proximal, distal), surgical type II group (radical, palliative), and lymphovascular invasion (yes, no), were collected for each patient. Moreover, age square was added to investigate the potential nonlinear effect of age.

Other clinicopathologic variables, such as positive lymph nodes number, number of retrieved lymph nodes, lymph node metastasis rate (the metastasis rate of lymph nodes), surgical margin, tumor size, number of cancer nodules, invasion depth were also collected. For those variables originally recorded as continuous were also categorized for the current analysis. Accordingly, categorical variables: number of cancer nodules group(0,1-2, \geq 3), positive lymph nodes number group (0, 1-6,7-15, \geq 16), surgical margin (negative, positive), tumor size group (\leq 4cm, 4-8cm, \geq 8cm), invasion depth (mucosa, submucosa, muscular, all layer), lymph node metastasis rate group

BMJ Open

 $(0, \leq 0.35, 0.35-0.74, \geq 0.74)$, and number of retrieved lymph node group $(0,1-6,7-15,\geq 16)$ were also used in the analyses. However, some variables may have missing values.

The current study complied with the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guidelines.

Statistics analyses

In all of the analyses, the survival time defined as the period between the dates of surgery and death (or last follow-up) would be the dependent variable. All endpoints were updated between June 2018 and January 2019, which resulted in an at least 5 years follow-up for each participant. First, an unadjusted analysis was performed for each independent variable. Specifically, for each categorical (continuous) independent variable, the log rank test (the Cox proportional hazard model) was applied to see whether it is associated with the dependent variable without adjusting for any other independent variables. Then the Cox proportional hazard regression model with backward variable selection was performed to identify factors independently associated with the survival time, and to estimate their adjusted hazard ratios (HR). In the adjusted analysis, all possible two-way interactiosn were considered in the Cox model. The 95% confidence intervals (CIs) of the HR for significant effects were also reported. In this study, the two-sided p-values <0.05 were used to define statistical significance and all analyses were performed using SAS (SAS Institute Inc., Cary, NC, USA) and SAS (r) Proprietary Software 9.4 (TS1M2).

3. Results

Results from the unadjusted analyses

In this cohort, the total number of events of death is 400, and the overall median survival time is 4.74 years. The results from the univariable analyses were reported in Table 1. Table 1 also

BMJ Open: first published as 10.1136/bmjopen-2019-030639 on 20 September 2019. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

listed the frequencies for each variable. This cohort was composed of 552 males and 163 females. Based on the clinical TNM classification, the numbers of gastric cancer patients in stage 0, I, II, III, and IV were 11, 109, 296, 269, and 28, respectively. 98 patients had lymphovascular invasion while 611 did not. Gastric lesions were located on the proximal of the stomach for 399 patients, on the body of the stomach for 164 patients, on the distal of the stomach for 99, and 52 participants had more than two sites gastric lesions. Moreover, 672 patients proceeded to radical resection, and 42 proceed to palliative resection. 565 patients had all layer invasion of their stomachs. In addition, 579, 28, and 101 patients received all stomach, proximal, and distal gastric surgery, respectively. The numbers of participants whose lymph node metastasis rate were 0, between 0 and 0.35, between 0.35 and 0.74, and greater than 0.74 were 257, 200, 159, and 95, respectively. Furthermore, in this study, there were 299, 275, and 128 patients whose tumor sizes were smaller than 4cm, between 4 and 8cm, and larger than 8 cm, respectively.

Sixteen significant prognostic factors of gastric cancer including Borrmann's type, surgical margin, M stage, N stage, T stage, lymph node metastasis rate group, surgical type II group, clinical stage, number of cancer nodules group, tumor size group, invasion depth group, positive lymph nodes number group, tumor location, positive lymph nodes number, number of retrieved lymph nodes, and number of cancer nodules were identified (p<0.05) from the unadjusted analyses. However, there were no significant associations between survival time and gender, Lauren's classification, surgical type I group, lymphovascular invasion, number of retrieved lymph nodes group, age, age square, and lymph node metastasis rate from the unadjusted analysis according to their large p-values (>0.05).

Results from the adjusted analysis

The results of the estimated hazard ratios and their 95% confidence interval from the adjusted analysis were reported in Table 2. The adjusted analysis identified seven variables and an interation that were associated with survival time. These variables and their estimated adjusted HR after adjusting for the other effects in the model were: age (HR=0.888, p-value=0.0016, 95% CI: 0.825-0.956), age square (HR =1.001, p-value= 0.0005, 95% CI: 1.000-1.002), number of cancer nodules (HR=1.108, p-value=0.0106, 95%CI:1.024-1.199), lymph node metastasis rate group (HR for ≤ 0.35 , 0.35-0.74, ≥ 0.74 : 1.033, 1.780, and 2.491, respectively; p-value<0.0001, 95% CI: 0.768-1.390, 1.320-2.401,1.774-3.497, respectively), invasion depth group (HR for Muscosa, Muscular, and All layer: 0.415, 1.291, and 2.095 respectively, p-value < 0.0001, 95% CI: 0.091-1.898, 0.625-2.669, and 1.089-4.032, respectively), surgical type II group (p-value<0.0001), tumor size group (p-value=0.0010), and the interaction between surgical type II and tumor size.

4. Discussion

In this study with total 716 gastric cancer patients, we identified the following clinicopathologic factors which were independently associated with gastric carcinoma from the adjusted analysis: age (and age square), number of cancer nodules, lymph node metastasis rate, tumor size, type II surgery, invasion depth group and interaction between surgical type II and tumor size. The adjusted analysis revealed that other variables, such as gender, Borrmann's type, TMN stage, tumor location, surgical type I group, surgical margin, lymphovascular invasion, and number of retrieved lymph node, might not independently play a major role in the prognosis. For the variable "age", we found that it had a non-linear effect on the outcome: both age and its square were significantly associated with survival time.

BMJ Open: first published as 10.1136/bmjopen-2019-030639 on 20 September 2019. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

In our current study, among these identified risk factors, the prognosis of patients with gastric carcinoma was seen strongly affected by the rate of metastatic lymph nodes, which also has been emphasized in previous studies performed in different countries^{24,25}. The result from the study by Kim, Lee et al. indicated that the survival rate was remarkably decreased with metastatic lymph nodes rate increased.²⁶ Msika et al. also found that lymph node metastasis played an important role and was the only independent prognostic risk factor among 86 participants who underwent curative resection in their study.²⁷ Furthermore, the German Gastric Carcinoma Study (GGCS)²⁸ suggested that the lymph node metastasis rate should be considered as the significant independent prognostic variables among patients underwent resected gastric carcinoma, and indicated that extended lymph node dissection was the most critical treatment among patients with radical gastrectomy for long-term survival. Of the many factors relevant to survival time, depth of invasion also has been identified as one of the major prognostic factors from our current adjusted analysis. This finding is consistant with those from the literature.²⁹⁻³².

Based on our adjusted analysis, age had a significant nonlinear effect on the survival time. We also found that tumor size and the number of cancer nodules were independent risk factors for prognostic. These two variables are recognized as tumor burden, which are related to poor prognosis susceptibility in another study as well.³³ One Chinese cohort provided that a poorer prognosis in patients with gastric cancer whose number of cancer nodules were more than 3.³⁴ In addition, a Turkish study stated that cancer nodules are more observed in patients with the intestinal type and vascular invasive gastric cancers.³⁵ On the other hand, tumor size is a valuable risk factor since it can be examined quite easily before the surgery, although the prognostic risk of tumor size among patients with gastric carcinoma maintains inconsistent. Some researches suggested that tumor size is not an independent prognostic variable in patients who had gastric

carcinoma. ^{36,37,38} However, other previous studies have displayed that tumor size should be considered as a risk feature for long-term survival after resection of gastric carcinoma ^{39,42,43}, and there was a significant relationship between larger tumor size and lesion resectability. Tumor size of gastric cancer was a vital variable that affects the success of enbloc resection; patients with larger tumor sizes need higher level of expertise and experience for their treatment. Tumor size could raise with the depth of tumor invasion and the extent of lymph node metastasis increase: the size of the tumor is profoundly associated to "Borrmann's type IV, adjacent organ invasion (T4) and higher lymph node and distant metastasis rate". ^{37,44} A possible explaination is that most patients with stage III or stage IV cancers had a relatively lower radical resection and remained a lower 5-year survival rate.⁴⁵

Our results also showed that patients who received palliative gastrectomy had poorer prognosis and higher risks compared to patients with radical gastrectomy. The results from Dutch clinical randomize trial ⁴⁶ suggested that palliative gastrectomy could be beneficial for younger patients (age<70) whose tumor load was restricted to one metastatic site. On the contrary, a previous study⁴⁷ indicated that "palliative gastrectomy has no survival benefit (p-value = 0.705, 0.331, respectively) in the peritoneal dissemination and multi-organ metastases group". Another study found that palliative gastrectomy showed no obvious favorable effect on long-term survival or improvement of the quality of life among patients with gastric cancer.⁴⁸ Moreover, Maruyama K et al. suggested that radical gastrectomy remained the only curative treatment option for gastric cancer.⁴⁹ The interaction between tumor size and surgical type II was found significant from our adjusted analysis. It showed that patients who had tumor size ≤ 4 cm and palliative gastrectomy had tumor size ≤ 4 cm and palliative gastrectomy had tumor size ≤ 4 cm and palliative gastrectomy had the lowest risk while the highest risk was found in patients who had tumor size ≤ 4 cm and

BMJ Open: first published as 10.1136/bmjopen-2019-030639 on 20 September 2019. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

palliative gastrectomy. On the contrary, patients who had larger tumor size (\geq 8cm) with palliative gastrectomy have the second lowest prognosis risk.

There were several strengths and limitations in our current study. We used the Cox proportional hazard regression model, which is one of the most commonly used methods for adjusted analyses with survival time as the dependent variable. Our findings showed that tumor size, interacted with surgical type II, encompasses important prognostic information for gastric cancer. Based on Jun K.H et al., ⁵⁰ the tumor size was statistically significantly and independently associated with gastric carcinoma-related survival, and this risk factor was a vital predictor for advanced gastric cancer, although it may not be detectable in early gastric carcinoma. In addition, our study includes patients with a long-term follow-up duration, which was rarely seen from other studies conducted in China. However, all the patients in this study were recruited from Anhui, a province of China. This fact could lead to a lack of generalizability of our findings to the general Chinese population. Finally, the present study has limitations inherent to all observational studies. For instance, some potential confounders may not be recognized and included in the study and selection bias could exist due to loss to follow up.

5. Conclusion

Currently, identifying and predicting important prognosis indicators before treatment are critical for gastric cancer patients. In our study, seven prognostic risk characteristics and one interaction have been identified in patients with gastric carcinoma. The findings from our study are useful and applicable for clinical decision-making. They also provide a benchmark for planning future prognosis and treatment for gastric cancer patients. Our findings can also be used to improve

BMJ Open

early detection and to investigate the feasibility and survival benefit of therapy for patients with gastric carcinoma.

Acknowledgments: The authors would like to thank Drs. Qiang Wu, Hao Li, and Xianghong Chen from the Department of Pathology at the First Affiliated Hospital of Anhui Medical University for providing excellent technical support of this study. The authors are grateful to the reviewers for their helpful comments which result in an improved presentation of this report.

Funding: This work was supported in part by the Hefei National Laboratory for Physical Sciences at Microscale. The funders played no role in the study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest: The authors declare no conflict of interest in this study.

Patient consent for publication: Not required.

Ethics approval: This study was approved by the Institutional Review Board of the First Affiliated Hospital of Anhui Medical University in China (IRB approval number: PJ-2019-01-14).

Data sharing statement: No additional data are available.

Contributors: KH, ZC, QW designed and oversaw the study; SW, ZW, LL, ZH, WY contributed to data collection and analysis; KH, SW, ZW, ZC, and QW drafted the manuscript. All authors participated in the discussion and approved the final manuscript.

Reference

- 1. WHO. International Agency for Research on Cancer. Cancer Today. 2018; <u>http://gco.iarc.fr/today/</u>. Accessed 2.10, 2019.
- 2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *Ca-Cancer J Clin.* 2018;68(6):394-424.
- 3. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five

4.	<i>Clin Oncol.</i> 2006;24(14):2137-2150. Guggenheim DE, Shah MA. Gastric cancer epidemiology and risk factors. <i>J Surg Oncol.</i> 2013;107(3):23
4. 5.	Forman D, Burley VJ. Gastric cancer: global pattern of the disease and an overview of environmen factors. <i>Best Pract Res Clin Gastroenterol.</i> 2006;20(4):633-649.
6.	Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. <i>CA Cancer J Clin.</i> 2016;66(2):115-
7.	Lindblad M, Rodriguez LA, Lagergren J. Body mass, tobacco and alcohol and risk of esophageal, gastric and gastric non-cardia adenocarcinoma among men and women in a nested case-control study. <i>Causes Control.</i> 2005;16(3):285-294.
8.	Lagergren J, Bergstrom R, Lindgren A, Nyren O. Symptomatic gastroesophageal reflux as a risk fac esophageal adenocarcinoma. N Engl J Med. 1999;340(11):825-831.
9.	Strumylaite L, Zickute J, Dudzevicius J, Dregval L. Salt-preserved foods and risk of gastric cancer. <i>MacKaunas</i>). 2006;42(2):164-170.
10.	Liang YX, Deng JY, Guo HH, et al. Characteristics and prognosis of gastric cancer in patients aged years. <i>World J Gastroenterol.</i> 2013;19(39):6568-6578.
11.	Crew KD, Neugut AI. Epidemiology of gastric cancer. World J Gastroenterol. 2006;12(3):354-362.
12.	Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric cancer: descriptive epidem risk factors, screening, and prevention. <i>Cancer Epidemiol Biomarkers Prev.</i> 2014;23(5):700-713.
13.	Howlader NJhscgc. SEER cancer statistics review, 1975-2008. 2011.
14. 15.	Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOE estimates of incidence and mortality worldwide for 36 cancers in 185 countries. <i>CA Cancer J Clin.</i> 20 Magalhães H, Fontes-Sousa M, Machado M. Immunotherapy in advanced gastric Cancer: an overv
10.	the emerging strategies. Canadian Journal of Gastroenterology and Hepatology. 2018;2018.
16.	Ajani JA. Is the addition of cisplatin to S-1 better than S-1 alone for patients with advanced gastroesop cancer? <i>Nature Reviews Clinical Oncology</i> . 2008;5(9):508.
17.	Penson DF. Re: variation in surgical-readmission rates and quality of hospital care. <i>J Urol.</i> 2014;191(5 1364.
18.	Lee KG, Lee HJ, Yang JY, et al. Risk factors associated with complication following gastrectomy for cancer: retrospective analysis of prospectively collected data based on the Clavien-Dindo sys <i>Gastrointest Surg.</i> 2014;18(7):1269-1277.
19.	Paulino Filho A, Paulino F, de LC. [Preoperative and postoperative care of patients with gastric c <i>Hospital (Rio J)</i> . 1961;59:201-209.
20.	Qiu MZ, Cai MY, Zhang DS, et al. Clinicopathological characteristics and prognostic analysis of classification in gastric adenocarcinoma in China. <i>J Transl Med.</i> 2013;11:58.
21.	Vauhkonen M, Vauhkonen H, Sipponen P. Pathology and molecular biology of gastric cancer. <i>Best Pro</i> <i>Clin Gastroenterol.</i> 2006;20(4):651-674.
22.	Smith DD, Schwarz RR, Schwarz RE. Impact of total lymph node count on staging and surviva gastrectomy for gastric cancer: data from a large US-population database. <i>J Clin Oncol.</i> 2005;23(28) 7124.
23.	Edge SB, Cancer AJCo. AJCC cancer staging handbook: from the AJCC cancer staging manual. Vo Springer New York; 2010.
24.	Lee WJ, Lee PH, Yue SC, Chang KC, Wei TC, Chen KM. Lymph node metastases in gastric cancer: signif of positive number. <i>Oncology</i> . 1995;52(1):45-50.
25.	Yokota T, Ishiyama S, Saito T, et al. Lymph node metastasis as a significant prognostic factor in gastric a multiple logistic regression analysis. 2004;39(4):380-384.
26.	Kim J-P, Lee J-H, Kim S-J, Yu H-J, Yang H-KJGc. Clinicopathologic characteristics and prognostic factor 783 patients with gastric cancer. 1998;1(2):125-133.
27. 28.	Msika S, Benhamiche AM, Jouve JL, Rat P, Faivre J. Prognostic factors after curative resection for cancer. A population-based study. <i>Eur J Cancer.</i> 2000;36(3):390-396. Roder JD, Böttcher K, Siewert JR, et al. Prognostic factors in gastric carcinoma. Results of the German
20.	Carcinoma Study 1992. 1993;72(7):2089-2097.
29.	Shimizu H, Ichikawa D, Komatsu S, et al. The decision criterion of histological mixed type in "T1/T2" carcinomacomparison between TNM classification and Japanese Classification of Gastric Cancer.

30.	Ikeda M, Furukawa H, Imamura H, et al. Poor prognosis associated with thrombocytosis in patie gastric cancer. Ann Surg Oncol. 2002;9(3):287-291.
31.	Han SL, Tang HJ, Hua YW, Ji SQ, Lin DX. Expression of COX-2 in stomach cancers and its relation
32.	biological features. <i>Dig Surg</i> . 2003;20(2):107-114. Joo YE, Oh WT, Rew JS, Park CS, Choi SK, Kim SJ. Cyclooxygenase-2 expression is associated v
33.	differentiated and intestinal-type pathways in gastric carcinogenesis. <i>Digestion.</i> 2002;66(4):222-2 Chu DZ, Lang NP, Thompson C, Osteen PK, Westbrook KC. Peritoneal carcinomatosis in nongy
	malignancy. A prospective study of prognostic factors. <i>Cancer.</i> 1989;63(2):364-367.
34.	Quanwen. L, Zhengfang., Zhou, Jianxin., Cui. Hongqing.,Xi. Bing., Chen. The value of cancer ne staging and prognosis evaluation of gastric cancer patients. <i>Chinese Journal of Gastrointestinal</i> 2017;2017,20(3) 277-282.
35.	Ersen A, Unlu MS, Akman T, et al. Tumor deposits in gastric carcinomas. <i>Pathol Res Pract.</i> 2014;21 570.
36.	Michelassi F, Takanishi DM, Jr., Pantalone D, Hart J, Chappell R, Block GE. Analysis of clinicop prognostic features in patients with gastric adenocarcinoma. <i>Surgery</i> . 1994;116(4):804-809; discus 810.
37.	Yokota T IS, Saito T, Teshima S, Yamada Y, Iwamoto K, et al. Is tumor size a prognostic indicator f carcinoma? . Anticancer Res 2002. 2002;22:3673–3677(Nov-Dec;22(6B):3673-7.).
38.	Yu CC, Levison DA, Dunn JA, et al. Pathological prognostic factors in the second British Stomac Group trial of adjuvant therapy in resectable gastric cancer. <i>Br J Cancer</i> . 1995;71(5):1106-1110.
39.	Isomoto H, Shikuwa S, Yamaguchi N, et al. Endoscopic submucosal dissection for early gastric large-scale feasibility study. <i>Gut.</i> 2009;58(3):331-336.
40.	Oda I, Gotoda T, Hamanaka H, et al. Endoscopic submucosal dissection for early gastric cancer: feasibility, operation time and complications from a large consecutive series. 2005;17(1):54-58.
41.	Dassen A, Lemmens V, Van De Poll-franse L, et al. Trends in incidence, treatment and survival adenocarcinoma between 1990 and 2007: a population-based study in the Netherlands. 2010;46 1110.
42.	Adachi Y, Oshiro T, Mori M, Maehara Y, Sugimachi KJAoso. Tumor size as a simple prognostic ind gastric carcinoma. 1997;4(2):137-140.
43.	Giuliani A, Caporale A, Di Bari M, et al. Maximum gastric cancer diameter as a prognostic univariate and multivariate analysis. 2003;22(4):531-538.
44.	Shiraishi N, Sato K, Yasuda K, Inomata M, Kitano S. Multivariate prognostic study on large gastric Surg Oncol. 2007;96(1):14-18.
45.	Yasuda K, Shiraishi N, Adachi Y, Inomata M, Sato K, Kitano S. Risk factors for complications resection of large gastric cancer. <i>Br J Surg.</i> 2001;88(6):873-877.
46.	Hartgrink HH, Putter H, Klein Kranenbarg E, Bonenkamp JJ, van de Velde CJ, Dutch Gastric Cancer of palliative resection in gastric cancer. <i>Br J Surg.</i> 2002;89(11):1438-1443.
47.	Chen S, Li YF, Feng XY, Zhou ZW, Yuan XH, Chen YB. Significance of palliative gastrectomy for I gastric cancer patients. <i>J Surg Oncol.</i> 2012;106(7):862-871.
48.	Ouchi K, Sugawara T, Ono H, et al. Therapeutic significance of palliative operations for gastric c survival and quality of life. <i>J Surg Oncol.</i> 1998;69(1):41-44.
49.	Sano T, Sasako M, Yamamoto S, et al. Gastric cancer surgery: morbidity and mortality result prospective randomized controlled trial comparing D2 and extended para-aortic lymphadenector
50.	Clinical Oncology Group study 9501. 2004;22(14):2767-2773. Jun KH, Jung H, Baek JM, Chin HM, Park WB. Does tumor size have an impact on gastric cancera institute experience. <i>Langenbecks Arch Surg</i> . 2009;394(4):631-635.

Tables

Table 1. Results from unadjusted analyses of clinical and pathologic variables. (N=716)

Frequency	Event number	Median survival- time (year)	Hazard ratio	P-value
				0.40
163	86	4.94	1.00	
552	314	4.59	1.10	
1	-	-	-	
				0.030*
	16	4.40	1.00	
		2.04		
	11	-		
8	-	-	-	
6				0.020*
46	34	1.55	1.71	
22	-	-	-	
				0.39
214	116	5.67	1.00	
468	267	4.30	1.19	
32	16	8.95	1.03	
2		-	-	
				<.0001 *
684	373	5.06	1.00	
28	25	1.34	2.79	
4	-	-	-	
				<.0001*
	101	8.98	1.00	
169	114	2.36	2.00	
	94	1.56	3.95	
4	-	-	-	
				<.0001*
63				
11				ļ
3	-	-	-	
				<.0001*
257	101	8.98	1.00	1
200	101	5.64	1.53	
159	109	2.11	2.86	+
	$ \begin{array}{r} 552 \\ 1 \\ 29 \\ 514 \\ 57 \\ 76 \\ 32 \\ 8 \\ 648 \\ 46 \\ 22 \\ 214 \\ 468 \\ 32 \\ 2 \\ 214 \\ 468 \\ 32 \\ 2 \\ 2 \\ 684 \\ 28 \\ 4 \\ 257 \\ 169 \\ 169 \\ 117 \\ 4 \\ 63 \\ 73 \\ 533 \\ 33 \\ 11 \\ 3 \\ 257 \\ 200 \\ 257 \\ 200 $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Missing	5	-	-	-	
Surgical type I group					0.13
All Stomach	579	337	4.27	1.00	0.15
Proximal	28	12	6.74	0.78	
Distal	101	48	8.69	0.59	
Missing	7	-	-	-	
Surgical type II group	/				<.0001*
Radical	672	363	5.25	1.00	\$.0001
Palliative	42	36	1.13	3.19	
Missing	2	-	-	-	
Lymphovascular invasion	2				0.56
No	611	344	4.74	1.00	0.50
Yes	98	55	4.61	1.09	
Missing	7	-	-	-	
Clinical stage	,				<.0001*
0	11	2	8.95	1.00	
1	109	30	12.29	1.41	
2	296	148	5.84	3.36	
3	269	194	2.05	7.12	
4	28	25	1.34	11.53	
Missing	3	-	-	-	
Number of cancer nodules group					<.0001*
0	637	347	5.17	1.00	
1-2	55	36	1.92	1.63	
>3	15	13	1.38	2.86	
Missing	9	-	-	-	
Tumor size group					<.0001*
≤4cm	299	131	8.69	1.00	
4-8cm	275	170	3.16	1.84	
≥8cm	128	95	1.90	2.54	
Missing	120	-	-	-	
Invasion depth group	11				<.0001*
Mucosa	25	4	-	1.00	
Submucosa	40	12	12.29	1.79	
Muscular	83	29	10.02	2.48	
All layer	565	354	3.21	6.24	
Missing	3	-	-	-	
Positive lymph nodes number group					<.0001*
0	257	101	8.98	1.00	
1-6	338	204	3.58	2.06	
7-15	99	81	1.50	4.12	
≥16	18	13	1.90	3.04	
Missing	4	-	-	_	
Tumor location					0.0067*
Proximal	399	217	4.88	1.00	
Body	164	96	4.60	1.00	
Distal	99	48	6.14	0.91	
More than two sites	52	38	1.60	1.83	
Missing	32	-	-	-	
Number of retrieved Lymph Nodes group			-	-	0.10
0	6	2	_	1.00	1

1-6	196	103	6.10	1.77	
7-15	391	221	4.27	2.13	
>16	116	72	3.17	2.48	
Missing	7	-	-	-	
Age(Missing=1)	715			1.01	0.144
Age ² (Missing=1)	715			1.00	0.056
Positive lymph nodes number	712			1.08	<.0001*
(Missing=4)					
Number of retrieved Lymph	709			1.02	0.014*
Nodes (Missing=7)					
Lymph node metastasis rate	711			1.04	0.232
(Missing=5)					
Number of cancer nodules (707			1.18	<.0001*
Missing=9)					

Table 2. Results from adjusted analysis of prognostic variables.

	196	103	6.10	1 77	
		-	-		0.144
					0.144
mhor					<.0001*
mber	/12			1.00	<.0001
mnh	700			1.02	0.014*
	/09			1.02	0.014*
	711			1.04	0.232
Tate	/11			1.04	0.232
ules (707			1.18	<.0001'
	/0/			1.10	\$.0001
Estimated	nalysis of prog	gnostic varia	bles. 95% CI of	P-value	
coefficient	SE	HR	HR		
-0.119	0.038	0.888	0.825-0.956	0.0016	
0.001	0.0003	1.001	1.000-1.002	0.0005	
0.103	0.040	1.108	1.024-1.199	0.0106	
				<.0001	
-	-	1.000	-		
-0.033	0.152	1.033	0.768-1.390		
0.577	0.153	1.780	1.320-2.401		
0.825	0.169	2.491	1.774-3.497		
				0.0041	
-	-		(-, -)		
-0.880	0.776	0.415			
0.256	0.370	1.291	0.625-2.669		
0.740	0.334	2.095	1.089-4.032		
				<.0001	
			-		_
-	-				_
1.757	0.364			0.0010	_
				0.0010	
0.566	0.152			0.0002	
				0.0003	
	-	1			
-					
-1.026	0.453				
	rate lles (n adjusted an Estimated coefficient -0.119 0.001 0.103 - -0.033 0.577 0.825 - -0.880 0.256	mph 709 rate 711 iles (707 adjusted analysis of program Estimated coefficient Estimated SE -0.119 0.038 0.001 0.0003 0.103 0.040 - - -0.33 0.152 0.577 0.153 0.825 0.169 - - -0.380 0.776 0.256 0.370 0.740 0.334 - - 1.757 0.364 - - 0.240 0.132	391 221 116 72 7 - 715 - mber 712 mph 709 rate 711 les (707 set (88 0.001 0.038 0.825 0.888 0.001 0.0003 1.000 1.001 - 1.000 -0.033 0.152 0.825 0.169 2.491 - - - - -	391 221 4.27 116 72 3.17 7 - - 715 - - 715 - - mber 712 - - mph 709 - - rate 711 - - rate 707 - - es (707 - - 0.19 0.038 0.888 0.825-0.956 0.001 0.0003 1.001 1.002-1.002 0.103 0.040 1.108 1.024-1.199 - - 1.000 - -0.033 0.152 1.033 0.768-1.390 0.577 0.153 1.780 1.320-2.401 0.825 0.169 2.491 1.774-3.497 - - 1.000 - - - 1.000 (-, -) - - 1.000 (-, -) - - 1.000 (-, -) - - 1.000 (-, -) <td>391 221 4.27 2.13 116 72 3.17 2.48 7 - - 715 1.01 715 1.00 mber 712 1.08 rate 711 1.02 rate 707 1.02 rate 707 1.08 es (707 1.08 n adjusted analysis of prognostic variables. 1.04 les (707 1.18 -0.119 0.038 0.825 0.801 0.103 0.040 1.108 1.024-1.199 0.0106 - - 1.000 - - -0.033 0.152 1.033 0.768-1.390 - 0.577 0.153 1.780 1.320-2.401 - - - 1.000 - - - - 1.000 (-, -) - - - - - 1.000 - - - - - 0.0015 0.091-1.898 -</td>	391 221 4.27 2.13 116 72 3.17 2.48 7 - - 715 1.01 715 1.00 mber 712 1.08 rate 711 1.02 rate 707 1.02 rate 707 1.08 es (707 1.08 n adjusted analysis of prognostic variables. 1.04 les (707 1.18 -0.119 0.038 0.825 0.801 0.103 0.040 1.108 1.024-1.199 0.0106 - - 1.000 - - -0.033 0.152 1.033 0.768-1.390 - 0.577 0.153 1.780 1.320-2.401 - - - 1.000 - - - - 1.000 (-, -) - - - - - 1.000 - - - - - 0.0015 0.091-1.898 -