

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

A population-based case-control study of the effect of sun glare on pedestrian fatalities in Taiwan

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-028350
Article Type:	Research
Date Submitted by the Author:	04-Dec-2018
Complete List of Authors:	Pai, Chih-Wei; Taipei Medical University, Graduate Institute of Injury Prevention and Control
Keywords:	ACCIDENT & EMERGENCY MEDICINE, PUBLIC HEALTH, EPIDEMIOLOGY

BMJ Open

2		
3		
4 5	1	A population-based case-control study of the effect of sun glare on pedestrian
6		
7	•	
8	2	fatalities in Taiwan
9		
10	2	Chile Wei Dail *
11	3	Chih-Wei Pai ^{a,} *
12		
13	4	^a Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei
14	4	Oraduate institute of injury rice ention and control, conege of rubite ricatin, raiper
15		
16	5	Medical University, Taiwan ROC
17	5	Wedlear Oniversity, Talwan Koe
18		
19	6	* Corresponding author
20	Ū	Concepting aution
21		
22	7	Email: <u>cpai@tmu.edu.tw</u>
23		
24		
25	8	+886 02-27361661 ext.6575 🔿
26		
27		
28	9	Address: Graduate Institute of Injury Prevention and Control, College of Public
29		6
30		
31	10	Health, Taipei Medical University, 250 Wuxing St, Taipei City, Taiwan 110.
32		
33		
34 35	11	
36		
37	40	
38	12	Word count: 4416
39		
40	10	
41	13	
42		
43	14	Abstract
44	14	Abstract
45		
46	15	Introduction
47	10	
48		
49	16	Sun glare poses serious driving hazards and increases accident risks. Relatively few
50	•	
51		
52	17	studies, however, have been conducted to examine the effects of sun glare on
53		
54		
55	18	pedestrian fatalities, given that an accident has occurred.
56		
57		
58	19	Objectives
59		

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
57	
38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

20	The primary objective of this study was to investigate the effect of sun glare on
21	pedestrian fatalities.
22	Methods
23	Using the Taiwan National Traffic Crash Data and sunrise and sunset data from the
24	National Oceanic and Atmospheric Association (NOAA) for the period 2003–2016,
25	this study investigated whether sun glare results in pedestrian fatalities resulting from
26	motor vehicle crashes. Pedestrian crashes were classified into glare-related (case) and
27	nonglare-related crashes (control). To account for unobserved heterogeneity, mixed
28	logit models were estimated to identify the determinants of pedestrian fatalities
29	specifically in sun-glare-related crashes.
30	Results
31	Of the 100,411 pedestrians involved in crashes during 2003–2016, 13,355 and 87,056
32	cases of glare-related and nonglare-related crashes, respectively, were reported.
33	Pedestrians involved in glare crashes tended to be more fatally injured than those in
34	nonglare crashes. Other contributory factors to fatal injuries among pedestrians were
35	older pedestrians, male drivers, older drivers, intoxicated motorists, rural roadways,
36	car overtaking manoeuvres, a heavy vehicle as the crash partner, and sunset hours.

- 37 Walking against traffic appeared to be beneficial in decreasing injury severity.
 - 38 Conclusions

BMJ Open

3 4 5	39	Sun glare was associated with pedestrian fatalities. Older pedestrians, male drivers,
6 7 8	40	older drivers, and intoxicated motorists were prevalent determinants of pedestrian
9 10 11	41	fatalities in glare-related crashes.
12 13 14	42	Keywords: Sun glare; Pedestrian fatalities; Crashes; Injury
15 16 17	43	
18 19 20	44	Strengths and limitations of this study
21 22 23	45	• This is a comprehensive study using the linked data from the two datasets.
24 25 26	46	• Our results derived from the linked datasets can be more reliable than those
27 28 29	47	using a single database alone.
30 31 32	48	• Limitations of this study include the data that are unavailable from the two
33 34 35	49	datasets such as geographic characteristics.
36 37 38	50	
39 40 41	51	
42 43 44	52	Introduction
45 46 47	53	
48 49 50	54	Driving is a highly visual task that involves visual function and processing for
51 52 53	55	establishing the effective control over a vehicle. ¹ Research ^{2 3} has suggested that bright
54 55 56	56	sunlight was ideal for driving because it increases the contrast, resolution, and
57 58 59	57	luminosity of the surrounding landscapes. As a result, drivers may misinterpret the
60		

2
3
•
4
5
6
7
7 8
9
10
11
12
12 13 14 15
13
14
15
16 17 18
17
17
18
19
20
21
23
24
25
25
26 27 28
27
28
29
30
31
32
33
34 35
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52 53
54
55
56
57
58
59
60

> 58 speed at which the surrounding landscape is approaching and gauge their travel velocity to be illusively slow, which would in turn prompt drivers to compensate by 59 accelerating.45 60 Generally, bright sunlight causes temporary blindness when the sun is at a 61 relatively low altitude and its rays fall directly in an individual's line of sight (e.g., 62 just after sunrise or before sunset when the sun is above the horizon). By using a 63 simulator, Gray and Regan⁶ assessed the driving performance in both the absence and 64 presence of a simulated low sun. They reported that sun glare resulted in a significant 65 reduction in the safety margin accepted by drivers; the mean number of crashes was 66 significantly higher during conditions of glare than during those of without glare, and 67 68 older drivers exhibited a significantly greater reduction in the safety margin than did 69 younger drivers. Another simulation study was conducted by Theeuwes et al.⁷, who 70 reported that low glare sources resulted in participants (drivers) exhibiting a significant drop in the ability to detect simulated pedestrians along the roadside. 71 Theeuwes et al.⁷ also pointed out that older participants reduced their driving speed 72 73 the most and exhibited the largest drop in successful pedestrian detection. 74 Churchill et al.⁸ employed a geometric model for examining whether sun glare affects the speeds of drivers on roadways and concluded that changes in speed as a 75 76 result of sun glare was a factor in highway congestion. Jurado-Piña and Pardillo

Page 5 of 31

BMJ Open

Mayora⁹, in an attempt to investigate the maximum tolerable sun glare caused by the angle between the sun and driving direction, pointed out that glare occurs when there is a specific angular distance between the driver's line of sight and the sun; this angular distance is 19° for a 40-year-old driver and 25 ° for a 60-year-old driver. Anue¹⁰ suggested that in general no sun glare occurs if the angular distance is greater than 25°. Several studies have investigated whether a direct relationship exists between sun glare and crashes by using data from police report or hospital. In a longitudinal study of patients who had been hospitalised as a consequence of a motor-vehicle crash, Redelmeier and Raza¹¹ concluded that bright sunlight was associated with an increased risk of life-threatening motor-vehicle crashes in Canada. By analysing police-reported crash data from Arizona, Mitra and Washington¹² indicated that sun glare was a crucial omitted variable that could explain intersection crash occurrence and that including this variable improved the explanatory power of statistical models. By linking police-reported crash data from Arizona with sunrise and sunset data from NOAA, Mitra³ concluded that the odds of glare causing a crash were higher at intersections with roadways running eastbound and westbound than at those running northbound and southbound. Mitra3 further indicated that rear-end and angle crashes at signalised intersections were affected by sun glare, and, furthermore, the severity of

96	motorist injury was unaffected by sun glare. A study that analysed traffic-accident
97	database of Chiba, Japan, Hagita and Mori ¹³ revealed a higher occurrence of crashes
98	involving pedestrians or bicycles at intersections where the sun was below 45° above
99	the horizon in the driving direction. Sun et al. ¹⁴ , who analysed police-reported crash
100	data in Edmonton, Canada, reported similar findings, concluding that sun glare
101	significantly contributed to crash occurrence, especially at intersections. Furthermore,
102	they also indicated that the effect of sun glare on crash occurrence during the
103	mornings on eastbound roads and evenings on westbound roads was significantly
104	greater during the spring and autumn months and that certain crash types (e.g., crashes
105	related to signal violation, failure to yield to pedestrians/cyclists, improper turning,
106	and lane changing) were more likely to occur during periods of sun glare. By
107	analysing police-reported crash data, Choi and Singh ¹⁵ pointed out that elderly
108	motorists tended to have a greater propensity for striking other vehicles in conditions
109	of sun glare, especially on roadways that were not physically divided.
110	Based on our literature review, a significant gap remains in the comprehensive
111	understanding of the relationship between sun glare and pedestrian fatalities,
112	conditioned on that a pedestrian crash has occurred. The primary research hypothesis

of the present study is that pedestrian injury severity increases in accordance with

restricted visibility (i.e., sun glare). As a result, the primary aim of this study was to

BMJ Open

∠ 3
4
5
6
7
8
9
10
11
12
13
14 15
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
35 36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

investigate whether sun glare is associated with pedestrian fatalities. This study also
aimed to investigate the determinants of pedestrian fatalities specifically in crashes
related to sun glare.

118

119 Materials and Methods

120 Data source

By using the Taiwan National Traffic Crash Data as well as sunrise and sunset data 121 122 from the National Oceanic and Atmospheric Association (NOAA) for the period from 2003 to 2016 (National Oceanic Earth System Research Laboratory and Atmospheric 123 Administration 16. Accessed: 2018-08-22), the current study examined the effect of 124 125 sun glare on pedestrian fatalities, given that an accident involving a vehicle and 126 pedestrian has occurred. The Taiwan National Traffic Crash Data comprise two files: an accident file and a vehicle and victim file. Accident files contain general 127 information on the times and dates of crashes; weather, road; and lighting conditions, 128 and road type. Vehicle and victim files contain vehicle-related information, such 129 130 vehicle type, manoeuvres, first point of impact, and orientation, as well as driver and casualty characteristics, such as age, sex, and injury severity. Injury severity is 131 classified into two levels: fatality and injury. Victims who die within 24 h as a result 132 of an accident are classified as cases of fatality, whereas victims who sustain injuries, 133

134 whether mild or severe, are classified as cases of injury.

Data on daily sunrise and sunset times and orientation are available from the NOAA. The information on the sunrise and sunset orientation for Taiwan is presented in online supplementary appendix 1. By using the data on the temporal characteristics (i.e., time and date) and orientation of vehicle crashes from the Taiwan National Traffic Crash Data, pedestrian crashes were matched with the sunrise and sunset data of the NOAA and subsequently classified into glare-related or nonglare-related trashes.

A glare-related crash is defined as a crash in which the following conditions are satisfied: the car was travelling in a direction towards the sunrise or sunset, and the angular distance between the driver's line of sight and the sun was between 0° and 45°. The angular distances were adjusted according to the time of the crash (available from the National Traffic Crash Dataset) and daily sunrise and sunset times daily (available from the NOAA). For example, a crash in which a car driver headed northeast collided with a pedestrian at 06:18 (A.M.) on 18 June, 2016, was classified as a glare-related crash. Notably, the angular distances, ranging from 0° to 45°, were reported¹³ to cause sun glare and potentially affect on traffic safety. We therefore adopted the angular distance, range of 0-45°, as the threshold for defining a

glare-related crash.

BMJ Open

1 2 3	
4 5 6 7	
8 9 10	
11 12 13 14	
15 16 17 18	
19 20 21	
22 23 24 25	
26 27 28 29	
30 31 32	
33 34 35 36	
37 38 39	
40 41 42 43	
44 45 46 47	
48 49 50	
51 52 53 54	
55 56 57 58	
58 59 60	

154	A flow-chart of the sample selection from the Taiwan Traffic Crash Dataset for the
155	period from 2003 to 2016 is presented in online supplementary Appendix 2. A total of
156	195,258 pedestrian casualties from traffic crashes were extracted from during this
157	period. This study focused on pedestrian crashes where the crash partner was a
158	motorcycle, car, taxi, heavy-goods vehicle, bus, or coach. Crashes that occurred
159	during adverse weather conditions, such as rain or fog, were excluded ($n = 45,712$). A
160	total of 917 cases had missing data with regard to accident date and time and vehicle
161	orientation. Because these cases (adverse weather conditions and missing data) were
162	not mutually exclusive, the total number of cases excluded was 45,365, yielding a
163	total of 149,839 valid cases for pedestrian casualties. These valid cases were matched
164	with the NOAA sunrise and sunset data. After excluding crashes that had occurred
165	before sunrise and after sunset ($n = 49,428$), 100,411 cases of pedestrian causalities
166	remained. Of the 100,411 pedestrians that were matched with the sunrise and sunset
167	data from the NOAA, 13,355 were glare-related cases (treated as cases), and 87,056
168	were nonglare-related cases (treated as controls), respectively.
169	
170	
171	
172	
173	

175 Definition of variables

177	The following demographic data were collected for casualties: sex, age (four
178	groups: <18, 18–40, 41–64, and \geq 65 years), alcohol use (yes: breathalyser test results
179	\geq 0.15 mL/L or blood-alcohol consumption [BAC] level > 0.03%; no: breathalyser
180	test results < 0.15 mL/L or BAC level \leq 0.03%), licence status (licensed: with a valid
181	licence; or unlicensed: without a valid licence), and pedestrian crossing manner
182	(facing traffic: pedestrians walking towards traffic; back to traffic: pedestrians
183	walking back to the traffic; crossing: pedestrians crossing the street). In Taiwan, those
184	under the age 18 are identified as teenagers who are unable to legally ride motorcycles
185	or drive car. Those aged 65 years or older were identified as the elderly individual.
186	For individuals aged 18–40 and 41–64, we classified the remaining ages into two even
187	age intervals. BAC data were obtained by police who conducted breathalyser tests or
188	followed up for blood tests at hospitals. According to Taiwanese law, drivers with
189	either breathalyser test >= 0.15 mL/L or BAC level > 0.03% were considered to be
190	drunk-driving. Data from breathalyser tests or BAC levels were available only for
191	motorists not for pedestrians because, by law, only motorists involved in crashes are
192	mandated to be tested for alcohol consumption.

193 The vehicle attribute considered was the crash partner (motorcycle, car, taxi, and

BMJ Open

194	heavy vehicles such as buses and coaches). The following road factors were
195	considered: sun glare (yes: affected by sun glare; no: unaffected by sun glare) and
196	crash location (rural: roadways with speed limits of \geq 51km/h, and urban: roadways
197	with speed limits of \leq 50km/h). Two temporal factors, month of the crash
198	(spring/summer: March-August or autumn/winter: September-February) and days of
199	crash (weekday: Monday–Friday or weekend: Saturday–Sunday) were examined.
200	
201	Statistical analysis
202	
203	The distribution of pedestrian injury severity according to a set of variables (e.g.,
204	human attributes, environmental factors, and vehicle characteristics) is reported in this
205	study. Chi-square tests were conducted to examine the association between the
206	independent variables and pedestrian injury severity. Because the dependent variable
207	was binary (fatal vs. injury), the binary mixed logit models, which allow parameter
208	coefficients to have distribution rather than fixed across the individuals, were
209	estimated. Using the chi-square tests, the variables discovered to be significantly
210	associated with the outcome (p < 0.2) were then incorporated into the multivariate
211	mixed logit models. To detect the multi-collinearity among the variables (all
212	categorical), a chi-square independent test was conducted and Cramer's $V^{17}\xspace$ was

estimated. To determine whether sun glare was associated with pedestrian fatalities, one overall model that includes sun glare as one of the variables was utilised. One additional model was subsequently estimated to investigate the determinants of pedestrian fatalities, specifically in sun-glare-related crashes. Mixed logit models were estimated to account for unobserved heterogeneity that may have arisen as a consequence of unmeasured variables, such as risk perception, behavioural factors, and other socioeconomic factors not available in the crash data from police reports. One example of a behavioural factor is distraction by phone use that may result in risk-taking inclinations and consequently an increased risk of injury.¹⁸ ¹⁹ Ignoring the effects of unobserved variables may lead to inconsistent estimates in non-linear models.²⁰ In the present study, the utility of the injury severity i for a crash n is defined as follows: $IS_{in} = \beta'_{in} X_{in} + \varepsilon_{in}$ Eq. (1) where IS_{in} is an injury-severity function determining the injury-severity category n(fatal or injury) for an individual pedestrian i, X_{in} is a vector of the observed

230 variables, such as pedestrian and driver attributes, vehicle characteristics, and

231 environmental or temporal variables, β_n is a vector of the parameters associated

with X_{in} , and ε_{in} is the error term. The mixed logit model uses β_n as a vector of estimable parameters for the discrete outcome n, which varies across the observed pedestrians. The variation is observed with density $f(\beta|\theta)$, where θ is a vector of the parameters of the density distribution. In most applications, mixed models specify that the density f has a continuous distribution, such as a normal, lognormal, triangular, or uniform distribution.

Given error terms that are independent and identically Gumbel distributed²¹, the unconditional probability of one alternative n (from the set of injury-severity categories I) is the integral of the conditional probability with a multinomial logit form over the parameter β of density f:

242
$$P_{in} = \int \left(\frac{\exp(\beta' X_{in})}{\sum_{I} \exp(\beta' X_{in})}\right) f(\beta|\theta) d\beta \qquad \text{Eq. (2)}$$

All parameters are first assumed to be random and then their estimated standard deviations are evaluated using a zero-based (asymptotic) *t*-test for each parameter. One study²⁰ pointed out that a simulation-based maximum likelihood with 200 Halton draws may provide a more efficient distribution of draws for numerical integration and requires fewer draws to achieve convergence. Attempts were made in the present study to obtain more significant results by increasing the number of Halton draws, and the results appeared stable with the use of 1000 Halton draws.

253	Table 1 lists the distribution of pedestrian injury severity according to a set of
254	variables. Of the 13,355 glare-related cases, 329 pedestrians (2.46%) sustained fatal
255	injuries, which is higher than those in nonglare-related crashes (1.83%). Additionally,
256	the majority of pedestrian crashes involved motorists with valid licences (85.65%),
257	sober motorists (85.97%), urban roadways (89.57%), pedestrians who were hit while
258	crossing the street (65.85%), and nonglare conditions (86.70%) and occurred on
259	weekdays (74.83%).
260	
261	Table 1: Distribution of pedestrian injury severity according to a set of variables for
262	the period 2003–2016.

251	Results				
252					
253	Table 1 lists t	he distribution of peo	destrian injury	severity according	g to a se
254	variables. Of the	13,355 glare-related	cases, 329 pede	strians (2.46%) su	ustained
255	injuries, which is	higher than those in r	nonglare-related	crashes (1.83%).	Addition
256	the majority of p	pedestrian crashes invo	olved motorists	with valid licenc	es (85.6
257	sober motorists (85.97%), urban roadw	/ays (89.57%), p	bedestrians who w	vere hit v
258	crossing the stre	eet (65.85%), and not	nglare condition	ns (86.70%) and	occurre
259	weekdays (74.839	%).			
260					
261	Table 1: Distribut	tion of pedestrian inju	ry severity accor	ding to a set of va	riables f
262	the period 2003–2			C	
	-		Fatal	Injury	χ^2 test
		Ν	n(%)	n(%)	p-valu
Total		100411	1925(1.92)	98486(98.08)	1
Sun g	lare		~ /		
-	Yes	13355(13.30)	329(2.46)	13026(97.54)	< 0.01
1	No	87056(86.70)	1596(1.83)	85460(98.17)	~0.01
Pedes	strian gender				<0.01
N					~0.01
I	Male	50942(50.73)	1015(1.99)	49927(98.01)	0.08
Drive	Male Female	50942(50.73) 49469(49.27)	1015(1.99) 910(1.84)	49927(98.01) 48559(98.16)	
		· · · · · ·			0.08
	Female	· · · · · ·			0.08
Ν	Female er gender	49469(49.27)	910(1.84)	48559(98.16)	0.08
N H	Female er gender Male	49469(49.27) 53351(53.13)	910(1.84) 1132(2.12)	48559(98.16) 52219(97.88)	0.08
N H Pedes	Female er gender Male Female	49469(49.27) 53351(53.13)	910(1.84) 1132(2.12)	48559(98.16) 52219(97.88)	0.08 <0.01
N F Pedes <	Female er gender Male Female strian age	49469(49.27) 53351(53.13) 47060(46.87)	910(1.84) 1132(2.12) 793(1.69)	48559(98.16) 52219(97.88) 46267(98.31)	0.08 <0.01
N F Pedes < 1	Female er gender Male Female strian age <18	49469(49.27) 53351(53.13) 47060(46.87) 3644(3.63)	910(1.84) 1132(2.12) 793(1.69) 67(1.84)	48559(98.16) 52219(97.88) 46267(98.31) 3577(98.16)	
N Pedes < 1 4	Female er gender Male Female strian age <18 18-40	49469(49.27) 53351(53.13) 47060(46.87) 3644(3.63) 25851(25.75)	910(1.84) 1132(2.12) 793(1.69) 67(1.84) 154(0.60)	48559(98.16) 52219(97.88) 46267(98.31) 3577(98.16) 25697(99.40)	0.08 <0.01

Page 15 of 31

		Fatal	Injury	χ^2 test
	Ν	n(%)	n(%)	p-value
Driver age				
<18	4458(4.44)	103(2.31)	4355(97.69)	< 0.01
18-40	25808(25.70)	295(1.14)	25513(98.86)	
41-64	32523(32.39)	474(1.46)	32049(98.54)	
≥65	37622(37.47)	1033(2.75)	36589(97.25)	
Driver licence				0.01
Licensed	86007(85.65)	1609(1.87)	84398(98.13)	
Unlicensed	14404(14.35)	316(2.19)	14088(97.81)	
Alcohol use for driver				
No	86322(85.97)	1512(1.75)	84810(98.25)	< 0.01
Yes	14089(14.03)	413(2.93)	13676(97.07)	
Months				
Spring/summer	47671(47.48)	914(1.92)	46757(98.08)	0.99
Autumn/winter	52740(52.52)	1011(1.92)	51729(98.08)	
Crash location				
Rural	10475(10.43)	352(3.36)	10123(96.64)	< 0.01
Urban	89936(89.57)	1573(1.75)	88363(98.25)	
Crash partner				
Motorcycle	33221(33.09)	643(1.94)	32578(98.06)	< 0.01
Car	45963(45.77)	801(1.74)	45162(98.26)	
Taxi	9655(9.62)	208(2.15)	9447(97.85)	
Heavy vehicles	11572(11.52)	356(3.08)	11216(96.92)	
Pedestrian's movement				
Facing traffic	9704(9.66)	172(1.77)	9532(98.23)	< 0.01
Back to traffic	24584(24.48)	623(2.53)	23961(97.47)	
Crossing	66123(65.85)	1130(1.71)	64993(98.29)	
Car's manoeuvre				
Straight	50836(50.63)	862(1.70)	49974(98.30)	< 0.01
Changing lane	15625(15.56)	257(1.64)	15368(98.36)	
Overtaking	21339(21.25)	601(2.82)	20738(97.18)	
Turning	12611(12.56)	205(1.63)	12406(98.37)	
Weekdays				
Weekday	70366(70.08)	1267(1.80)	69099(98.20)	< 0.01
Weekend	30045(29.92)	658(2.19)	29387(97.81)	

3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13 14 15 16 17 18	
14	
15	
10	
10	
17	
18	
19	
20	
21 22 23	
22	
23	
24	
25	
25	
26 27	
27	
28	
29	
29	
30	
30 31 32 33 34 35	
32	
33	
24	
54	
35	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

60

Weekend

Random parameter Male motorists

Male motorists

Car overtaking manoeuvre

Standard deviation of distribution

1 2

265	associated with the outcome: sun glare	; pedestrian and	driver sex and	l age; driver	
266	license possession, alcohol consumption; crash month, location, and partner;				
267	pedestrian movement; car manoeuvre; and day of the week. These factors were then				
268	incorporated into the mixed logit models.				
269	Table 2 presents the estimation results	of the mixed log	t model of pede	estrian injury	
270	severity. Parameters that were determine	ned to be random	n were those th	nat produced	
271	statistically significant standard errors	for the assumed	distributions; i	n this study,	
272	random parameters were male motorists and heavy vehicle as crash partners, with a				
273	uniform distribution that appears to provide the best statistical fit.				
274					
275	Table 2: Mixed logit estimation results for pedestrian injury severity during the period				
276	2003-2016 a (n = 100,411).				
	Variable	Parameter	Standard error	<i>t</i> -value	
	Fatal injury	E			
	Fixed parameter				
	Constant	-0.531	0.215	-2.47	
	Sun-glare-related crash	0.527	0.164	3.21	
	Pedestrians facing traffic	-0.304	0.110	-2.76	
	Pedestrians aged 65+	0.553	0.237	2.33	
	Motorists aged 65+	0.218	0.102	2.14	
	Rural roadways	0.985	0.251	3.92	
	Intoxicated motorist	0.606	0.213	2.85	
	XX 7 1 1	0.124	0.053	0.50	

0.134

0.472

0.360

0.053

0.132

0.116

2.53

3.58

3.10

BMJ Open

2		
3 4		Standard deviation of distribution 0.467 0.173 2.70
5		Restricted log-likelihood (constant only): -8,116.7
6 7		Log-likelihood at convergence: -5,867.2
8 9 10		$ ho^2 = 0.277$
11	277	^a The outcome "injury" is the baseline case with its parameters set at zero.
12 13	278	
14 15 16	279	Considering the results listed in Table 2, sun-glare-related crashes was found to be
17 18 19	280	significant, and the estimated parameter was fixed across the observed pedestrians
20 21 22	281	(the standard error for this parameter, when allowed to be random, was statistically
23 24 25	282	nonsignificant). The parameter implies that sun a sun-glared-related crash was more
26 27 28	283	likely to result in fatal injuries among pedestrians than a nonglare-related crash. Other
29 30 31	284	factors discovered to have fixed effects on observed pedestrians and increase the
32 33 34	285	likelihood of fatal injuries were pedestrians aged 65 or older, motorists aged 65 years
35 36 37	286	or older, rural roadways, intoxicated motorist, weekend, and car overtaking
38 39 40	287	manoeuvre.
41 42 43	288	The parameter for the variable of male motorist appeared to be random, with a
44 45 46	289	uniform distribution with a mean of 0 and standard deviation of 0.360 (see Table 2),
47 48 49	290	indicating that individual pedestrians being struck by male motorists had different
50 51 52	291	parameters. Given the estimates (a mean of 0 and standard deviation of 0.360),
53 54 55	292	approximately half of all pedestrians have a higher probability of sustaining fatal
56 57 58	293	injuries when all other variables remain constant. Another parameter found to have a
59 60	294	nonlinear effect across the sample of pedestrians was the variable of a heavy vehicle 17

as the crash partner (with a uniform distribution). This parameter had a mean of 0 and standard deviation of 0.467 (see Table 2), indicating that individual pedestrians struck by heavy vehicles have different parameters, with half of the distributions resulting in a positive parameter (increasing the likelihood of fatal injuries) and half resulting in negative parameter (decreasing the likelihood of fatal injuries). The non-uniformity of the effects of male motorists and heavy vehicles is likely a consequence of other unmeasured factors, such as driver experiences; for some male drivers or more experienced drivers operating heavy vehicles (factors would reduce the effect of sun glare), injuries sustained by pedestrians were likely to be minor once a crash had occurred. The movement of pedestrians towards traffic was also discovered to be significantly affect pedestrian fatalities. This fixed parameter suggests that pedestrians who faced traffic while walking were less likely to sustain fatal injuries than those undertaking other movements, such as walking back to traffic or crossing the street. Table 3 presents the estimation results of the mixed logit model of pedestrian injury severity specifically in sun-glare-related crashes. For this model, the only random parameter (with a uniform distribution) was significant for the variable of heavy vehicle as the crash partner. The heterogeneous effect indicates that certain crashes involving heavy vehicles were associated with both higher and lower likelihoods of

Page 19 of 31

BMJ Open

314	pedestrians sustaining fatal injuries. We speculate that this heterogeneous effect may
315	be caused by variance in the experience level among certain driver groups, with more
316	experienced drivers exhibiting a decreased likelihood of causing fatal injuries. In
317	other words, heavy vehicles are normally operated by professional drivers, with the
318	majority of drivers in this group being men and middle-aged or older individuals. To
319	confirm this speculation, the interaction between the variable of heavy vehicle and
320	other variables, such as male and middle-aged or older motorists, were added to the
321	model specification, but were dropped from the model because all were determined to
322	be insignificantly different from zero at the 0.1 level. The heterogeneity identified for
323	the variable of heavy vehicle presented another argument in favour of estimating a
324	mixed logit model of pedestrian injury severity because such effects are difficult to
325	identify when using a logit framework with numerous interaction terms.
326	
327	Table 3: Mixed logit estimation results for pedestrian injury severity specifically for
328	sun-glare–related crashes during the period 2003–2015 a (n = 13,355).
	Variable Parameter Standard <i>t</i> -value

, allasio	Parameter	Standard	<i>t</i> -value	
		error		
Fatal injury				
Fixed parameter				
Constant	-0.262	0.127	-2.06	
Sunset	0.336	0.090	3.73	
Pedestrians facing traffic	-0.417	0.112	-3.72	
Pedestrians aged 65+	0.510	0.183	2.79	
Motorists aged 65+	0.468	0.137	3.42	
Rural roadways	0.660	0.164	4.02	
Car overtaking manoeuvre	0.367	0.107	3.43	

	Random parameter
	Heavy vehicle as crash partner
	Standard deviation of distribution 0.396 0.154 2.57
	Restricted log-likelihood (constant only): -4,327.2
	Log-likelihood at convergence: -3,286.5
	$\rho^2 = 0.241$
329	^a The outcome "injury" is constituted the baseline, with its parameters set at zero
330	
331	In this mixed logit model specifically for sun-glare-related crashes, the parame
332	for the variable sunset was discovered to be significant and fixed across the observ
333	pedestrians. This parameter implies that injuries sustained by pedestrians were mo
334	likely to be fatal under sunset conditions than under sunrise conditions. Other fix
335	and significant factors that increased the likelihood of fatal injuries were pedestria
336	aged 65 or older, motorists aged 65 or older, rural roadways, and car overtaki
337	manoeuvre. Similar to the overall mixed logit model of pedestrian injury severi
338	facing traffic in a glare-related crash was determined to be a protective factor
339	reducing pedestrian fatalities. This fixed parameter suggests that the effect of faci
340	traffic on pedestrian injury severity was uniform across the observed pedestrians.
341	
342	Discussions
343	
344	By using the National Traffic Crash Data and sunrise and sunset data from t
345	NOAA, the present study examined whether sun glare was associated with pedestri 20

Page 21 of 31

BMJ Open

fatalities involved in motor vehicle crashes. This research may constitute a valuable contribution to the growing literature on pedestrian safety as well as fill a major research gap regarding the effect of sun glare on pedestrian fatalities. Regarding methodological contributions, the proposed models offer methodological flexibility for identifying individual-specific heterogeneity that may arise as a result of other unmeasured factors related to motorist experience, behaviour, and geometric characteristics. When developing intervention strategies for improving pedestrian safety in sun-glare conditions, the heterogeneous effects of certain variables (which cannot be uncovered by using traditional logit models) should be considered. The empirical contributions of this research comprise those research findings that are related to the factors affecting pedestrian fatalities. The identification of these risk factors may provide policy-makers with information for establishing suitable policies and strategies that may further reduce the risk of crashes in general or severity in particular. The following findings merit further discussion. Most drivers commute during hours of extreme sun glare. It is therefore not surprising that more crashes occurs on roadways where there is a significant portion of traffic during peak morning (sunrise) and afternoon (sunset) hours. The adverse effect of sun glare on crash occurrence has been well documented in relevant literature.³ ¹⁴ Mitra³ pointed out that motorist injury severity, however, was not

2	
3	
4	
5 6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
1/ 10	
19	
20	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	
22	
23 24	
24 25	
26	
27	
28	
22 23 24 25 26 27 28 29 30	
31	
32	
32 33 34 35 36 37 38	
34	
35	
37	
38	
39	
40	
41 42	
42	
44	
45	
46	
47 48	
49	
50	
51	
52 53	
53 54	
54 55	
56	
57	
58	
59 60	
00	

365	increased in glare conditions, possibly as a consequence of reduced travel speed.8
366	Such a protective effect of sun glare on the associated motorist injury severity does
367	not apply to pedestrians; our study concludes that glare conditions (as indicated in the
368	overall model) were associated with pedestrian fatalities. In our study, it is evident
369	that this adverse effect of sun glare was greater on rural roadways where collision
370	impacts can be higher and motorists may not expect to encounter a pedestrian as much
371	as they would on urban roadways. One commonly-adopted engineering measure is the
372	use of variable message signs to warn drivers of the risk of sun glare at the times
373	when and locations (i.e., rural roadways) where sun-glare conditions occur.9
374	Mitra ³ pointed out that the odds of glare causing crashes at intersections were
375	higher during the morning hours, and in autumn and winter months in Arizona,
376	United States. In our study, the effect of seasons on pedestrian fatalities was not
377	significant. Adding to the research conducted by Hagita and Mori ²² , who concluded
378	that the rate of pedestrian crashes shortly after sunset was higher than that of any
379	other time in Japan, our study revealed that compared with sunrise times, the adverse
380	effect of sun glare on pedestrian fatalities was greater during sunset hours in Taiwan.
381	It is therefore evident here that sun glare during the sunset hours may not only
382	increase pedestrian crashes, as indicated by Hagita and Mori ²² , but also the resulting
383	injury severity.

Page 23 of 31

BMJ Open

Studies have suggested that intoxicated motorists were more likely to leave pedestrians unattended by leaving the crash scene, thereby increasing pedestrian injury severity; and furthermore, alcohol use has been discovered to be a more prevalent factor for hit-and-runs at nights and during the weekend.^{23 24} Our study revealed that the combined effects of alcohol consumption and sun glare were associated with pedestrian fatalities. Similar to other studies²³ ²⁴, our research highlights, in particular, the effect of motorist alcohol consumption on fatal injuries and on the weekends. Other studies have consistently reported that elderly motorists were the group most affected by sun glare. For example, two simulation studies conducted by Gray and Regan⁶ and Theeuwes et al.⁷ reported that in conditions of sun glare, older drivers executing a turning manoeuvre demonstrated a significantly greater reduction in safety margin than did younger drivers; and older drivers demonstrated the most significant decrease in the ability to successfully detect pedestrians. Studies analysing real-life police-reported crash data¹⁵ have indicated that in conditions of sun glare, older drivers were more likely to strike other vehicles. Our study contributes to the literature on pedestrian safety literature by concluding that older motorists, when affected by sun glare, cause fatal injuries to pedestrians once a crash has occurred. Advance warning signs or educational efforts to increase older driver's awareness of

sun-glare conditions may either temper the likelihood of vehicle crashes or reduce

pedestrian injury severity. Considerable work has consistently concluded that older pedestrians were more likely to be fatally or severely injured in crashes, both during daytime and night conditions.²⁵ Our research has provided ample evidence to suggest that injuries sustained by older pedestrians in crashes caused by sun glare are more fatal than those sustained by younger pedestrians. It is unclear whether the reduced conspicuity of pedestrians (particularly older pedestrians) under conditions of sun glare (twilight) plays a role in this effect. However, enhancing the conspicuity of pedestrians through the use of visibility aids, not only in night conditions²⁶ but also in twilight conditions, may be beneficial for reducing crash risk or severity. Adding to the research conducted by Sun et al.¹⁴, who reported that crashes related to improper turning or lane changing were more likely to occur during periods of sun glare, this present study concludes that an association exists between the execution of overtaking manoeuvres during periods of sun glare and pedestrian fatalities. It is not uncommon for injuries sustained in crashes caused by vehicle overtaking to be severe because motorists must accelerate to overtake other vehicles. In Taiwan, it is common that motorists execute overtaking manoeuvres by using roadway shoulders where there are pedestrians. Motorists should be aware of the risk they pose to pedestrians

Page 25 of 31

BMJ Open

422 when overtaking other vehicles, particularly during periods of sun glare.

423 Studies have reported that facing traffic is beneficial for preventing pedestrian
424 crashes²⁷ and decreasing the severity of related injuries²⁵. Our study complements
425 these two studies by concluding that walking against the traffic was associated with
426 decreased injury severity. Information expressing the necessity facing traffic while
427 walking along a street, particularly in conditions of sun glare, should be supplemented
428 with specific information regarding its safety benefits.

Although differing for observed pedestrians, being struck by heavy vehicles increased the likelihood of fatal injuries. Although this finding agrees with those of other studies^{28 29} reporting the tendency of injuries sustained by pedestrians to be fatal or more severe when struck by a heavy vehicle, we concluded that the effect of heavy vehicles was greater in conditions of sun glare. Notably, drivers of heavy vehicles tend to be professional. It is unclear whether drivers of this particular group, in combination with undertaking longer hours of travel than those undertaken by a car driver, are more susceptible to problems related to sun glare. Educational efforts can be directed towards drivers of heavy vehicles regarding their susceptibility to sun glare, and on roadways with pedestrians in particular.

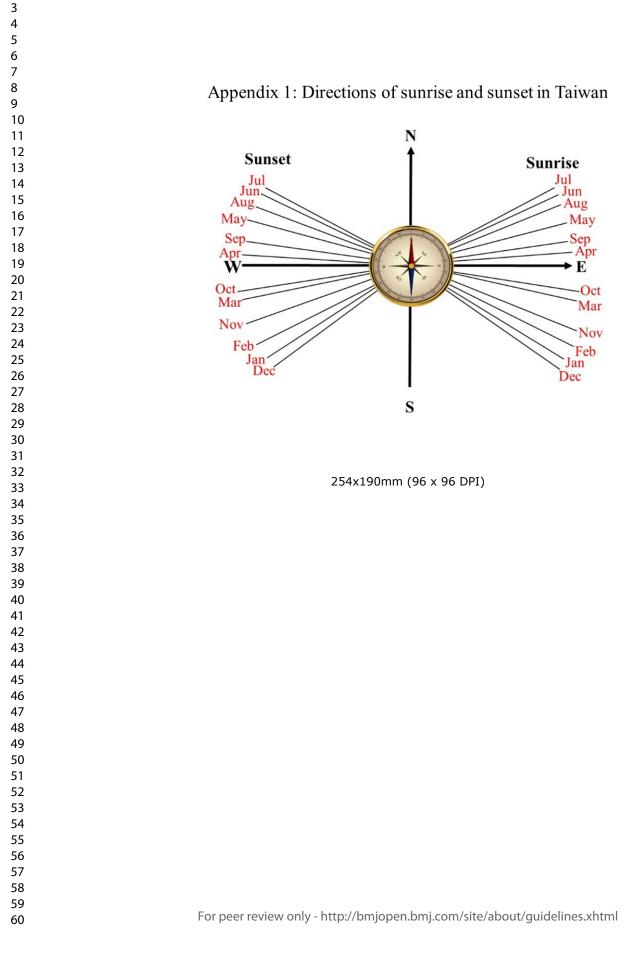
This study had the following research limitations. First, our study did not considersurrounding topography; it is possible that motorists travelling through some areas

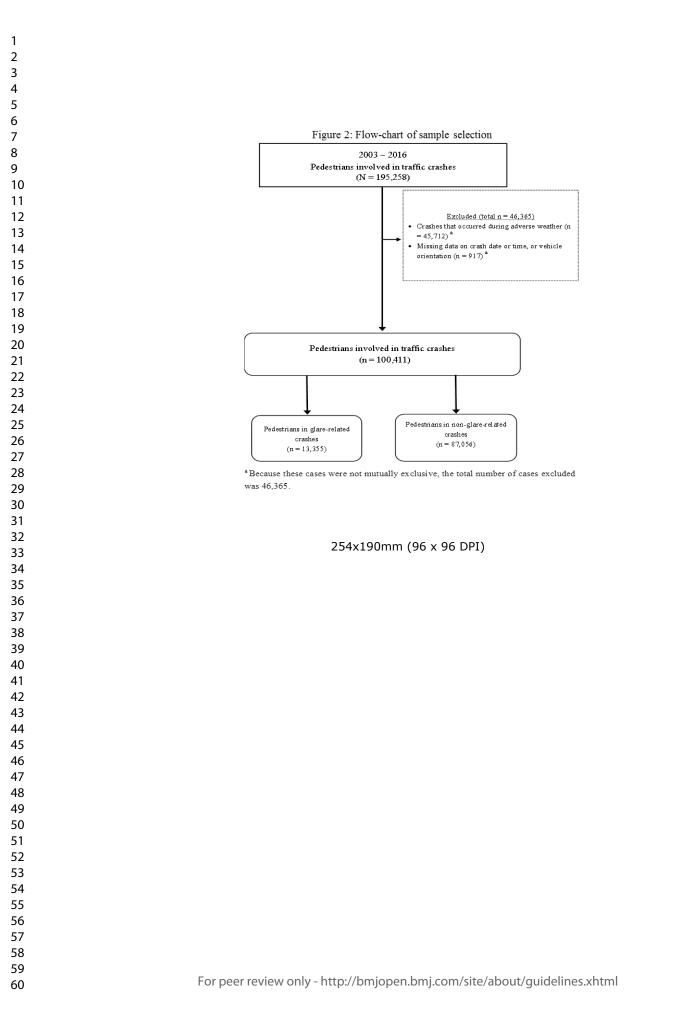
1 2 3 4 5 6	
7 8 9 10 11 12 13	
14 15 16 17 18 19	
20 21 22 23 24 25 26	
27 28 29 30 31 32 33	
34 35 36 37 38 39	
40 41 42 43 44 45 46	
47 48 49 50 51 52	
53 54 55 56 57 58 59	
60	

441	with buildings or mountains, for example, are less susceptible to sun glare because the
442	sun is occluded. By analysing geographic data and data from police reports, likely
443	locations for sun glare can be predicted, and motorists can be well informed regarding
444	where to expect sun glare. Furthermore, we classified a crash as being glare-related
445	when the angular distance between the driver's line of sight and the sun was between
446	0° and 45°. Further investigations should be conducted concerning the angular
447	distances at which sun glare affects motorists, as well as the variance of this effect for
448	motorists of different ages, as indicated by Jurado-Piña and Pardillo Mayora9. Indeed,
449	sun glare is a combined spatial-temporal factor. To broaden our collective
450	understanding of factors in pedestrian safety, it is paramount that additional spatial
451	data and temporal data be collected and compared whenever possible. Finally, the
452	empirical results obtained in this study may be unique to Taiwan because of its unique
453	sunrise and sunset times and orientations. As a result, until additional analyses are
454	conducted using data from other jurisdictions to determine whether sun glare is a
455	salient factor to pedestrian fatalities, caution should be exercised in generalising our
456	findings for application in other settings.
457	
458	Acknowledgements
459	Pai CW contributes to the design of the work, data analysis, interpretation of the data,

460 drafting the manuscript and final approval of the version to be published.

1 2		
3 4 5	461	The authors declare to have no conflict of interests.
6		
7 8 9	462	The research was funded by research grants from Ministry of Science and
9 10 11 12	463	Technology, Taiwan (105-222-E-038 -013-MY3).
13 14	464	The data sources used in the present study were the National Traffic Accident Dataset
15 16 17	465	and the NOAA.
18	466	
19 20	467	Reference
21	468	
22 23	469	1. Owsley C, Mcgwin G Jr. Vision and driving. Vision Research 2010; 50(23):
24	470	2348-2361.
25 26	471	2. Tversky A, Kahneman D. Judgment under uncertainty heuristics and biases.
27	472	Science 1974; 185(4157): 1124-1131.
28 29	473	3. Mitra S. Sun glare and road safety: an empirical investigation of intersection
30	474	crashes. Safety Science 2014; 70: 246-254.
31 32	475	 Donald AR, Robert JT. Why cars in the next lane seem to go faster. <i>Nature</i> 1999;
33	476	401: 35-36.
34 35	477	5. Redelmeier DA, Raza S. Optical illusions and life-threatening traffic crashes: a
36	478	perspective on aerial perspective. <i>Medical Hypotheses</i> 2018; 114: 23-27.
37 38	479	 6. Gray R, Regan D. Glare susceptibility test results correlate with temporal safety
39	480	margin when executing turns across approaching vehicles in simulated low-sun
40 41	481	conditions. <i>Ophthalmic and Physiological Optics</i> 2007; 27(5): 440-450.
41	481	 Theeuwes J, Alferdinck JW, Perel M. Relation between glare and driving
43 44	482	performance. <i>Human Factors</i> 2002; 44(1): 95-107.
44 45	485 484	 Churchill AM, Tripodis Y, Lovell DJ. Sun glare impacts on freeway congestion:
46 47	484 485	geometric model and empirical analysis. <i>Journal of Transportation Engineering</i>
47 48		
49	486	2012; 138: 1196-1204.
50 51	487	9. Jurado-Piña R, Pardillo Mayora JM. Methodology to predict driver vision
52	488	impairment situations caused by sun glare. <i>Transportation Research Record:</i>
53 54	489	<i>Journal of the Transportation Research Board</i> 2009; 2120:, 12-17.
55	490	10. Anue K. Sun glare detection and visualization. 2017. Master's degree in
56 57	491	Computer Science. Department of Computer Science. Norwegian University of
58	492	Science and Technology, 2017.
59 60	493	11. Redelmeier DA, Raza S. Life-threatening motor vehicle crashes in bright


12. Mitra S, Washington S. On the significance of omitted variables in intersection


sunlight. Medicine 2017; 96(1): e5710.

crash modeling. Accident Analysis and Prevention 2012; 49: 439-448. 13. Hagita K, Mori K. The effect of sun glare on traffic accidents in Chiba prefecture, Japan. Asian Transport Studies 2014; 3(2): 205-219. 14. Sun D, El-Basyouny K, Kwon TJ. Sun glare: Network characterization and safety effects. Transportation Research Record: Journal of the Transportation Research Board 2018. 15. Choi EH, Santokh S. Statistical assessment of the glare issue – human and natural elements. Proceeding of 2005 FCSM Conference, Federal Committee on Statistical Methodology, Arlington, VA, 2005; 1-8. 16. National Oceanic Earth System Research Laboratory and Atmospheric Administration. https://www.esrl.noaa.gov/gmd/grad/solcalc/ Accessed: 2018-08-22. 17. Mchugh ML. The chi-square test of independence. Biochemia Medica 2013; 23(2): 143-149. 18. Barbieri S, Vettore G, Pietrantonio V, Snenghi R, Tredese A, Bergamini M, Previato S, Stefanati A, Gaudio RM, Feltracco P. Pedestrian inattention blindness while playing Pokemon Go as an emerging health-risk behavior: a case report. Journal of Medical Internet Research 2017; 19(4): e86. 19. Chen PL, Pai CW. Evaluating the effects of smartphone racing games and other game types on pedestrian's risk-taking inclinations. Computers in Human Behavior 2018; 88: 78-83. 20. Bhat CR. Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model. Transportation Research Part B: Methodological 2001; 35(7): 677-693. 21. Manski CF, Mcfadden DL. A structural analysis of discrete data with econometric applications. The MIT Press, Cambridge, MA. 1981. 22. Hagita K, Mori K. Traffic accident analysis of sun glare and twilight shortly before and after sunset in Chiba prefecture, Japan. Journal of the Eastern Asia Society for Transportation Studies 2015; 11: 1999-2014. 23. Solnick SJ, Hemenway D. Hit the bottle and run: The role of alcohol in hit-and-run pedestrian fatalities. Journal of Studies on Alcohol and Drugs 1994; 55(6): 679-684. 24. Solnick SJ, Hemenway D. The hit-and-run in fatal pedestrian accidents: victims, circumstances and drivers. Accident Analysis and Prevention 1995; 27(5): 643-649. 25. Chen PL, Jou RC, Saleh W, Pai CW. Accidents involving pedestrians with their

2			
3 4	532		backs to traffic or facing traffic: an evaluation of crash characteristics and
5	533		injuries. Journal of Advanced Transportation 2016; 50(5): 736-751.
6 7	534	26.	Kwan I, Mapstone J. Interventions for increasing pedestrian and cyclist visibility
8	535		for the prevention of death and injuries. Cochrane Database of Systematic
9 10	536		Reviews 2006; (4): CD003438.
11	537	27.	Luoma J, Peltola H. Does facing traffic improve pedestrian safety? Accident
12 13	538		Analysis and Prevention 2013; 50: 1207-1210.
14	539	28.	Lefler DE, Gabler HC. The fatality and injury risk of light truck impacts with
15 16	540		pedestrians in the united states. Accident Analysis and Prevention 2004; 36(2):
17	541		295-304.
18 19	542	29.	Dong B, Ma X, Chen F. Analyzing the injury severity sustained by non-motorists
20	543		at mid-blocks considering non-motorists' pre-crash behavior. Transportation
21 22	544		Research Record: Journal of the Transportation Research Board 2018; 1-11.
23	545		
24 25	546		
26	547		
27 28	548		
29	549		
30 31	550		
32	551		Research Record: Journal of the Transportation Research Board 2018; 1-11.
33 34			
35			
36 37			
38			
39 40			
41			
42 43			
44			
45 46			
47			
48 49			
50			
51 52			
53			
54 55			
56 57			
57 58			
59 60			
00			

BMJ Open

A population-based case-control study of the effect of sun glare on pedestrian fatalities in Taiwan

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-028350.R1
Article Type:	Research
Date Submitted by the Author:	05-Mar-2019
Complete List of Authors:	Ma, Hon-Ping; Shuang Ho Hospital - Taipei Medical University, Emergency medicine Chen, Ping-Ling; Graduate Institute of Injury Prevention and Control Chen, Shang-Ku; Shuang Ho Hospital - Taipei Medical University, Emergency Medicine; Taipei Medical University, Graduate Institute of Injury Prevention and Control Chen, Liang-Hao; Taipei Medical University, Graduate Institute of Injury Prevention and Control; Wan-Fang Hospital, Taipei Medical University, Department of Emergency Medicine Linkov, Vaclav; Department of Traffic Psychology, CDV, Transport Research Centre Pai, Chih-Wei; Taipei Medical University, Graduate Institute of Injury Prevention and Control
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Epidemiology
Keywords:	ACCIDENT & EMERGENCY MEDICINE, PUBLIC HEALTH, EPIDEMIOLOGY

SCHOLARONE[™] Manuscripts

BMJ Open

2 3 4	4	
5 6	1	A population-based case-control study of the effect of sun glare on pedestrian
7 8	2	fatalities in Taiwan
9 10 11	3	Hon-Ping Ma ^{a, b, c} , Ping-Ling Chen ^a , Shang-Ku Chen ^{a, b} , Liang-Hao Chen ^{a, d} , Václav
12 13	4	Linkov ^e , Chih-Wei Pai ^{a,*}
14 15		
16 17 18	5	^a Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei
19 20	6	Medical University, Taiwan
21 22 23	7	^b Department of Emergency Medicine, Shuang-Ho Hospital, Taipei Medical
24 25 26	8	University, Taiwan
27 28 29	9	^c Department of Emergency Medicine, School of Medicine, Taipei Medical
30 31 32	10	University, Taiwan
33 34 35	11	^d Department of Emergency Medicine, Wan-Fang Hospital, Taipei Medical
36 37 38	12	University, Taiwan
39 40 41	13	^e Department of Traffic Psychology, CDV-Transport Research Centre, Brno, Czech
42 43 44	14	Republic
45 46 47	15	* Corresponding author
48 49 50	16	Email: cpai@tmu.edu.tw
51 52 53	17	+886 02-27361661 ext.6575
54 55 56	18	Address: Graduate Institute of Injury Prevention and Control, College of Public
57 58 59	19	Health, Taipei Medical University, 250 Wuxing St, Taipei City, Taiwan 110.
60		1

20 Word count: 4907

21	
22	Abstract
23	Objectives Sun glare poses serious driving hazards and increases accident risks.
24	Relatively few studies, however, have been conducted to examine the effects of sun
25	glare on pedestrian fatalities, given that an accident has occurred. The primary
26	objective of this study was to investigate the effect of sun glare on pedestrian
27	fatalities.
28	Design A population-based case-control study.
29	Setting Taiwan.
30	Participants Using the Taiwan National Traffic Crash Data and sunrise and sunset
31	data from the National Oceanic and Atmospheric Association (NOAA) for the period
32	2003–2016, 100,411 pedestrians involved in crashes were identified. Of these crashes,
33	there were 13,355 and 87,056 cases of glare-related (case) and nonglare-related
34	(control) crashes, respectively.
35	Methods To account for unobserved heterogeneity, mixed logit models were
36	estimated to identify the determinants of pedestrian fatalities.
37	Main outcome measures Pedestrian fatalities.
38	Results Pedestrians involved in glare crashes were more likely to be fatally injured

1	
2	
2	
1	
-+ 5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 1 \\ 32 \\ 33 \\ 34 \\ 35 \\ 37 \\ 37 \\ 37 \\ 37 \\ 37 \\ 37 \\ 37$	
19	
20	
21	
22	
23	
24	
27	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
47	
48 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

39	than those in nonglare crashes. Other contributory factors to fatal injuries among
40	pedestrians were older pedestrians, male drivers, older drivers, intoxicated motorists,
41	rural roadways, car overtaking manoeuvres, a heavy vehicle as the crash partner, and
42	sunset hours. Walking against traffic appeared to be beneficial in decreasing injury
43	severity.
44	Conclusions Sun glare was associated with pedestrian fatalities. Older pedestrians,
45	male drivers, older drivers, and intoxicated motorists were prevalent determinants of
46	pedestrian fatalities in glare-related crashes.
47	Keywords: Sun glare; Pedestrian fatalities; Crashes; Injury
48	
49	Strengths and limitations of this study
50	• This is the first nationwide population-based case-control study to
51	investigate the associations between pedestrian fatalities and sun glare.
52	• The large population-based dataset minimises selection bias.
53	• Glare-related crashes were defined by adjusting vehicle travel direction and
54	daily times and orientations of sunrise and sunset.
55	• Limitations of this study include the data that are unavailable from the two
56	datasets such as geographic characteristics.
57	

58 Introduction

Driving is a highly visual task that involves visual function and processing for establishing the effective control over a vehicle.¹ Research^{2 3} has suggested that bright sunlight was ideal for driving because it increases the contrast, resolution, and luminosity of the surrounding landscapes. As a result, drivers may misinterpret the speed at which the surrounding landscape is approaching and gauge their travel velocity to be illusively slow, which would in turn prompt drivers to compensate by accelerating.45 Generally, bright sunlight causes temporary blindness when the sun is at a relatively low altitude and its rays fall directly in an individual's line of sight (e.g., just after sunrise or before sunset when the sun is above the horizon). By using a simulator, Gray and Regan⁶ assessed the driving performance in both the absence and presence of a simulated low sun. They reported that sun glare resulted in a significant reduction in the safety margin accepted by drivers; the mean number of crashes was significantly higher during conditions of glare than during those of without glare, and older drivers exhibited a significantly greater reduction in the safety margin than did younger drivers. Another simulation study was conducted by Theeuwes et al.⁷, who reported that low glare sources resulted in participants (drivers) exhibiting a

Page 5 of 36

BMJ Open

77	significant drop in the ability to detect simulated pedestrians along the roadside.
78	Theeuwes et al. ⁷ also pointed out that older participants reduced their driving speed
79	the most and exhibited the largest drop in successful pedestrian detection.
80	Churchill et al.8 employed a geometric model for examining whether sun glare
81	affects the speeds of drivers on roadways and concluded that changes in speed as a
82	result of sun glare was a factor in highway congestion. Jurado-Piña and Pardillo
83	Mayora ⁹ , in an attempt to investigate the maximum tolerable sun glare caused by the
84	angle between the sun and driving direction, pointed out that glare occurs when there
85	is a specific angular distance between the driver's line of sight and the sun; this
86	angular distance is 19° for a 40-year-old driver and 25° for a 60-year-old driver.
87	Anue ¹⁰ suggested that in general no sun glare occurs if the angular distance is greater
88	than 25°.
89	Several studies have investigated whether a direct relationship exists between sun

Several studies have investigated whether a direct relationship exists between sun glare and crashes by using data from police report or hospital. In a longitudinal study of patients who had been hospitalised as a consequence of a motor-vehicle crash, Redelmeier and Raza¹¹ concluded that bright sunlight was associated with an increased risk of life-threatening motor-vehicle crashes in Canada. By analysing police-reported crash data from Arizona, Mitra and Washington¹² indicated that sun glare was a crucial omitted variable that could explain intersection crash occurrence

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
15	
16 17	
18	
19	
20	
21	
22	
22 23	
24	
25	
26	
26 27	
28	
20 29	
29 30	
30	
31	
31 32 33 34	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50 59	
60	

96	and that including this variable improved the explanatory power of statistical models.
97	By linking police-reported crash data from Arizona with sunrise and sunset data from
98	NOAA, Mitra ³ concluded that the odds of glare causing a crash were higher at
99	intersections with roadways running eastbound and westbound than at those running
100	northbound and southbound. Mitra ³ further indicated that rear-end and angle crashes
101	at signalised intersections were affected by sun glare, and, furthermore, the severity of
102	motorist injury was unaffected by sun glare. A study that analysed traffic-accident
103	database of Chiba, Japan, Hagita and Mori ¹³ revealed a higher occurrence of crashes
104	involving pedestrians or bicycles at intersections where the sun was below 45° above
105	the horizon in the driving direction. Sun et al. ¹⁴ , who analysed police-reported crash
106	data in Edmonton, Canada, reported similar findings, concluding that sun glare
107	significantly contributed to crash occurrence, especially at intersections. Furthermore,
108	they also indicated that the effect of sun glare on crash occurrence during the
109	mornings on eastbound roads and evenings on westbound roads was significantly
110	greater during the spring and autumn months and that certain crash types (e.g., crashes
111	related to signal violation, failure to yield to pedestrians/cyclists, improper turning,
112	and lane changing) were more likely to occur during periods of sun glare. By
113	analysing police-reported crash data, Choi and Singh ¹⁵ pointed out that elderly
114	motorists tended to have a greater propensity for striking other vehicles in conditions

of sun glare, especially on roadways that were not physically divided.

Based on our literature review above, a significant gap remains in the comprehensive understanding of the relationship between sun glare and pedestrian fatalities, conditioned on that a pedestrian crash has occurred. The primary research hypothesis of the present study is that pedestrian injury severity increases in accordance with restricted visibility (i.e., sun glare). As a result, the primary aim of this study was to investigate whether sun glare is associated with pedestrian fatalities. This study also aimed to investigate the determinants of pedestrian fatalities specifically in crashes related to sun glare. ê len

Materials and Methods

Data source

By using the Taiwan National Traffic Crash Data as well as sunrise and sunset data from the National Oceanic and Atmospheric Association (NOAA) for the period from 2003 to 2016 (National Oceanic Earth System Research Laboratory and Atmospheric Administration¹⁶. Accessed: 2018-08-22), the current study examined the effect of sun glare on pedestrian fatalities, given that an accident involving a vehicle and pedestrian has occurred. The Taiwan National Traffic Crash Data comprise two files: an accident file and a vehicle and victim file. Accident files contain general information on the

times and dates of crashes; weather, road; and lighting conditions, and road type. Vehicle and victim files contain vehicle-related information, such vehicle type, manoeuvres, first point of impact, and orientation, as well as driver and casualty characteristics, such as age, sex, and injury severity. Injury severity is classified into two levels: fatality and injury. Victims who die within 24 h as a result of an accident are classified as cases of fatality, whereas victims who sustain injuries, whether mild or severe, are classified as cases of injury. Data on daily sunrise and sunset times and orientation are available from the NOAA. The information on the sunrise and sunset orientation for Taiwan is presented in online supplementary appendix 1. By using the data on the temporal characteristics (i.e., time and date) and orientation of vehicle crashes from the Taiwan National Traffic Crash Data, pedestrian crashes were matched with the sunrise and sunset data of the NOAA and subsequently classified into glare-related or nonglare-related crashes. The Institutional Review Board that is affiliated with Taipei Medical University approved our study (IRB#: N201808071). Personal identification data such as name or identification number are not available in the dataset. A glare-related crash is defined as a crash in which the following conditions are satisfied: the car was travelling in a direction towards the sunrise or sunset, and the angular distance between the driver's line of sight and the sun was between 0° and

Page 9 of 36

BMJ Open

153	45°. Data on vehicle's travel path (north, south, east, or west) are available from the
154	National Traffic Crash Dataset; and data on sun directions are available from the
155	NOAA. The angular distances were adjusted according to the time of the crash
156	(available from the National Traffic Crash Dataset) and daily sunrise and sunset times
157	daily (available from the NOAA). For example, according to the Taiwan National
158	Traffic Crash Data, a car-pedestrian crash took place in Hsinchu City, where a car
159	heading to northeast collided with a pedestrian at 06:18 (A.M.) on 18 June, 2016. The
160	angular distances, ranging from 0° to 45°, were reported ¹³ in Japan to cause sun glare
161	and potentially affect traffic safety. We adopted the angular distance, range of 0–45°,
162	as the threshold for defining a glare-related crash. According to the NOAA website,
163	for this particular timing (18 June, 2016) and location (Hsinchu City with latitude of
164	24.778 and longitude of 120.988), the sun rose from northeast, and the apparent
165	sunrise and sunset times were at 05:07 and 18:47, respectively. The daytime length
166	for this particular day is 13 hours and 40 mins, which is equivalent to 820 mins. The
167	angular distances for sunrise and sunset are $0-180^\circ$; for this particular day, the sun
168	moved 0.2195° every min (180/820=0.2195). The adopted angular distance of 45° is
169	equivalent to 205 mins (45/0.2195=205); as such, the transformed angular distance of
170	$0-45^{\circ}$ for this particular crash is between 05:07 to 08:32 that has a difference of 205
171	mins. This particular crash was therefore classified as a glared-related crash because

Page 10 of 36

172	the car headed to northeast (which was the direction of the sunrise) and the time of the
173	crash (06:18) falls into the angular distance of $0-45^{\circ}$ (i.e., between 05:07 and 08:32).
174	A flow-chart of the sample selection from the Taiwan Traffic Crash Dataset for
175	the period from 2003 to 2016 is presented in online supplementary Appendix 2. A
176	total of 195,258 pedestrian casualties from traffic crashes were extracted from during
177	this period. This study considered only pedestrian crashes where the crash partner was
178	a motorcycle, car, taxi, heavy-goods vehicle, bus, or coach. Crashes that occurred
179	during adverse weather conditions, such as rain or fog, or when it was cloudy, were
180	excluded (n = $45,712$). A total of 917 cases had missing data with regard to accident
181	date and time and vehicle orientation. Because these cases (adverse weather
182	conditions and missing data) were not mutually exclusive, the total number of cases
183	excluded was 45,365, yielding a total of 149,839 valid cases for pedestrian casualties.
184	These valid cases were matched with the NOAA sunrise and sunset data. After
185	excluding crashes that had occurred after sunset and before sunrise ($n = 49,428$),
186	100,411 cases of pedestrian causalities remained. Of the 100,411 pedestrians that
187	were matched with the sunrise and sunset data from the NOAA, 13,355 were
188	glare-related cases (treated as cases), and 87,056 were nonglare-related cases (treated
189	as controls), respectively.
190	

191	Definition	of variables
-----	------------	--------------

192	The following demographic data were collected for casualties: sex, age (four
193	groups: <18, 18–40, 41–64, and \geq 65 years), alcohol use (yes: breathalyser test results
194	\geq 0.15 mg/L or blood-alcohol concentration [BAC] level > 0.03%; no: breathalyser
195	test results < 0.15 mg/L or BAC level \leq 0.03%), licence status (licensed: with a valid
196	licence; or unlicensed: without a valid licence), and pedestrian crossing manner
197	(facing traffic: pedestrians walking towards traffic; back to traffic: pedestrians
198	walking back to the traffic; crossing: pedestrians crossing the street). In Taiwan, those
199	under the age 18 are identified as teenagers who are unable to legally ride motorcycles
200	or drive car. Those aged 65 years or older were identified as the elderly individual.
201	For individuals aged 18–40 and 41–64, we classified the remaining ages into two even
202	age intervals. BAC data were obtained by police who conducted breathalyser tests or
203	followed up for blood tests at hospitals. According to Taiwanese law, drivers with
204	either breathalyser test >= 0.15 mg/L or BAC level > 0.03% were considered to be
205	drunk-driving. Data from breathalyser tests or BAC levels were available only for
206	motorists not for pedestrians because, by law, only motorists involved in crashes are
207	mandated to be tested for alcohol consumption.

208 The vehicle attribute considered was the crash partner (motorcycle, car, taxi, and209 heavy vehicles such as buses and coaches). The following road factors were

considered: sun glare (yes: affected by sun glare; no: unaffected by sun glare) and crash location (rural: roadways with speed limits of \geq 51km/h, and urban: roadways with speed limits of \leq 50km/h). Two temporal factors, month of the crash (spring/summer: March-August or autumn/winter: September-February) and days of crash (weekday: Monday-Friday or weekend: Saturday-Sunday) were examined. Patient and Public Involvement The current research analysed national police-reported crash data as well as sunrise and sunset data from the National Oceanic and Atmospheric Association, which are anonymised datasets. Patients and or public were not involved in this study. ien Statistical analysis The distribution of pedestrian injury severity according to a set of variables (e.g., human attributes, environmental factors, and vehicle characteristics) is reported in this study. Chi-square tests were conducted to examine the association between the independent variables and pedestrian injury severity. Because the dependent variable

227 coefficients to have distribution rather than fixed across the individuals, were

estimated. Using the chi-square tests, the variables discovered to be significantly

was binary (fatal vs. injury), the binary mixed logit models, which allow parameter

BMJ Open

229	associated with the outcome (p < 0.2) were then incorporated into the multivariate
230	mixed logit models. To detect the multi-collinearity among the variables (all
231	categorical), a chi-square independent test was conducted and Cramer's $V^{17}\xspace$ was
232	estimated. To determine whether sun glare was associated with pedestrian fatalities,
233	one overall model that includes sun glare as one of the variables was utilised. One
234	additional model with interaction terms of sun-glare-related crashes with other
235	variables was subsequently estimated.
236	Mixed logit models were estimated to account for unobserved heterogeneity that
237	may have arisen as a consequence of unmeasured variables, such as risk perception,
238	behavioural factors, and other socioeconomic factors not available in the crash data
239	from police reports. One example of a behavioural factor is distraction by phone use
240	that may result in risk-taking inclinations and consequently an increased risk of
241	injury. ¹⁸ ¹⁹ Ignoring the effects of unobserved variables may lead to inconsistent
242	estimates to all statistical models. ²⁰
243	In the present study, the utility of the injury severity i for a crash n is defined as
244	follows:

 $IS_{in} = \beta'_n X_{in} + \varepsilon_{in}$ Eq. (1)

247 where IS_{in} is an injury-severity function determining the injury-severity category i

248	(fatal or injury) for an individual pedestrian n , X_{in} is a vector of the observed
249	variables, such as pedestrian and driver attributes, vehicle characteristics, and
250	environmental or temporal variables, β_n is a vector of the parameters associated with
251	X_{in} , and ε_{in} is the error term. The mixed logit model uses β_n as a vector of estimable
252	parameters, which varies across the observed pedestrians. The variation is observed
253	with density $f(\beta \theta)$, where θ is a vector of the parameters of the density distribution. In
254	most applications, mixed models specify that the density f has a continuous
255	distribution, such as a normal, lognormal, triangular, or uniform distribution.
256	Given error terms that are independent and identically Gumbel distributed ²¹ , the
257	unconditional probability of one alternative i (from the set of injury-severity
258	categories I) is the integral of the conditional probability with a multinomial logit
259	form over the parameter β of density <i>f</i> :

260
$$P_{in} = \int \left(\frac{\exp(\beta' X_{in})}{\sum_{j=1}^{l} 1 + \exp(\beta' X_{nj})} \right) f(\beta|\theta) d\beta \qquad \text{Eq. (2)}$$

All parameters are first assumed to be random and then their estimated standard deviations are evaluated using a zero-based (asymptotic) *t*-test for each parameter. One study²⁰ pointed out that a simulation-based maximum likelihood with 200 Halton draws may provide a more efficient distribution of draws for numerical integration

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27 20	
28 29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48 40	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

266 and requires fewer draws to achieve convergence. Attempts were made in the present study to obtain more significant results by increasing the number of Halton draws, and 267 268 the results appeared stable with the use of 1000 Halton draws. 269 270 Results 271 Table 1 lists the distribution of pedestrian injury severity according to a set of 272 variables. Of the 13,355 glare-related cases, 329 pedestrians (2.46%) sustained fatal 273 injuries, which is higher than those in nonglare-related crashes (1.83%). Additionally, 274 the majority of pedestrian crashes involved motorists with valid licences (85.65%), 275 sober motorists (85.97%), urban roadways (89.57%), pedestrians who were hit while 276 277 crossing the street (65.85%), and nonglare conditions (86.70%) and occurred on weekdays (74.83%). 278 279 Table 1: Distribution of pedestrian injury severity according to a set of variables for 280

281 the period 2003–	2016.			
		Fatal	Injury	χ^2 test
	Ν	n(%)	n(%)	p-value
Total	100411	1925(1.92)	98486(98.08)	
Sun glare				
Yes	13355(13.30)	329(2.46)	13026(97.54)	< 0.01
No	87056(86.70)	1596(1.83)	85460(98.17)	
Pedestrian gender				
Male	50942(50.73)	1015(1.99)	49927(98.01)	0.08
Female	49469(49.27)	910(1.84)	48559(98.16)	

		Fatal	Injury	χ^2 test
	Ν	n(%)	n(%)	p-value
Driver gender				
Male	53351(53.13)	1132(2.12)	52219(97.88)	< 0.01
Female	47060(46.87)	793(1.69)	46267(98.31)	
Pedestrian age				
<18	3644(3.63)	67(1.84)	3577(98.16)	< 0.01
18-40	25851(25.75)	154(0.60)	25697(99.40)	
41-64	31283(31.15)	352(1.13)	30931(98.87)	
≥65	39633(39.47)	1352(3.41)	38281(96.59)	
Driver age				
<18	4458(4.44)	103(2.31)	4355(97.69)	< 0.01
18-40	25808(25.70)	295(1.14)	25513(98.86)	
41-64	32523(32.39)	474(1.46)	32049(98.54)	
≥65	37622(37.47)	1033(2.75)	36589(97.25)	
Driver licence				
Licensed	86007(85.65)	1609(1.87)	84398(98.13)	0.01
Unlicensed	14404(14.35)	316(2.19)	14088(97.81)	
Alcohol use for driver				
No	86322(85.97)	1512(1.75)	84810(98.25)	< 0.01
Yes	14089(14.03)	413(2.93)	13676(97.07)	
Months				
Spring/summer	47671(47.48)	914(1.92)	46757(98.08)	0.99
Autumn/winter	52740(52.52)	1011(1.92)	51729(98.08)	
Crash location				
Rural	10475(10.43)	352(3.36)	10123(96.64)	< 0.01
Urban	89936(89.57)	1573(1.75)	88363(98.25)	
Crash partner				
Motorcycle	33221(33.09)	643(1.94)	32578(98.06)	< 0.01
Car	45963(45.77)	801(1.74)	45162(98.26)	
Taxi	9655(9.62)	208(2.15)	9447(97.85)	
Heavy vehicles	11572(11.52)	356(3.08)	11216(96.92)	
Pedestrian's movement				
Facing traffic	9704(9.66)	172(1.77)	9532(98.23)	< 0.01
Back to traffic	24584(24.48)	623(2.53)	23961(97.47)	
Crossing	66123(65.85)	1130(1.71)	64993(98.29)	
Car's manoeuvre		× /		
Straight	50836(50.63)	862(1.70)	49974(98.30)	< 0.01

			Fatal	Injury	χ^2 tes
		Ν	n(%)	n(%)	p-valı
	Changing lane	15625(15.56)	257(1.64)	15368(98.36)	
(Overtaking	21339(21.25)	601(2.82)	20738(97.18)	
-	Turning	12611(12.56)	205(1.63)	12406(98.37)	
Sunse	et				
,	Sunset	8325(8.29)	214(2.57)	8109(97.41)	< 0.0
(Other daytimes	87056(86.70)	1596(1.83)	85460(98.17)	
5	Sunrise	5030(5.01)	115(2.29)	4915(97.71)	
Week	xdays				
r	Weekday	70366(70.08)	1267(1.80)	69099(98.20)	< 0.0
	Weekend	30045(29.92)	658(2.19)	29387(97.81)	
282					
284			na, madagtuian a	and driver cay on	d aga:
204	associated with th	e outcome: sun gla	re, pedestrian a	ind driver sex and	u age,
285		n, alcohol consum			-
	license possession		ption; crash n	nonth, location,	and pa
285	license possession pedestrian movem	n, alcohol consum	ption; crash n ; sunset hours;	nonth, location, and day of the	and pa
285 286	license possession pedestrian movem factors were then in	n, alcohol consum nent; car manoeuvre	ption; crash n ; sunset hours; mixed logit mod	nonth, location, and day of the dels.	and pa
285 286 287	license possession pedestrian movem factors were then in Table 2 presen	n, alcohol consum nent; car manoeuvre ncorporated into the	ption; crash n ; sunset hours; mixed logit modesults of the matrix	nonth, location, and day of the dels. ixed logit model	and pa week.
285 286 287 288	license possession pedestrian movem factors were then in Table 2 presen injury severity. P	n, alcohol consumption nent; car manoeuvre ncorporated into the nts the estimation re	ption; crash n ; sunset hours; mixed logit mod esults of the mate e determined to	nonth, location, and day of the dels. ixed logit model	and pa week.
285 286 287 288 288	license possession pedestrian movem factors were then in Table 2 presen injury severity. P produced statistica	n, alcohol consump nent; car manoeuvre ncorporated into the nts the estimation re arameters that were	ption; crash n ; sunset hours; mixed logit mod esults of the ma e determined to ard errors for th	nonth, location, and day of the dels. ixed logit model o be random wer e assumed distribu	and pa week. ' of pede re those utions; i
285 286 287 288 289 290	license possession pedestrian movem factors were then in Table 2 presen injury severity. P produced statistica study, random par	n, alcohol consump nent; car manoeuvre ncorporated into the nts the estimation re arameters that were illy significant standa	ption; crash n ; sunset hours; mixed logit mod esults of the ma e determined to ard errors for th motorists and h	nonth, location, and day of the dels. ixed logit model o be random wer e assumed distribu	and pa week. of pede re those utions; i
285 286 287 288 289 290 291	license possession pedestrian movem factors were then in Table 2 presen injury severity. P produced statistica study, random par	n, alcohol consump nent; car manoeuvre ncorporated into the nts the estimation re arameters that were ally significant standa	ption; crash n ; sunset hours; mixed logit mod esults of the ma e determined to ard errors for th motorists and h	nonth, location, and day of the dels. ixed logit model o be random wer e assumed distribu	and pa week. of pede re those utions; i
285 286 287 288 289 290 291 291	license possession pedestrian movem factors were then in Table 2 presen injury severity. P produced statistica study, random par with a uniform dist	n, alcohol consump nent; car manoeuvre ncorporated into the nts the estimation re arameters that were ally significant standa	ption; crash n ; sunset hours; mixed logit mod esults of the ma e determined to ard errors for th motorists and h	nonth, location, and day of the dels. ixed logit model o be random wer e assumed distribute eavy vehicle as crubest statistical fit.	and pa week. of pede re those utions; i rash par
285 286 287 288 289 290 291 291 292 293	license possession pedestrian movem factors were then in Table 2 presen injury severity. P produced statistica study, random par with a uniform dist	n, alcohol consump nent; car manoeuvre ncorporated into the nts the estimation re arameters that were ally significant standa rameters were male to tribution that appears git estimation results	ption; crash n ; sunset hours; mixed logit mod esults of the ma e determined to ard errors for th motorists and h	nonth, location, and day of the dels. ixed logit model o be random wer e assumed distribute eavy vehicle as crubest statistical fit.	and pa week. ' of pede re those utions; i rash par

	Fatal injury					
	Fixed parameter					
	Constant	-0.531	0.215	-2.47		
	Sun-glare-related crash	0.527	0.164	3.21		
)	Pedestrians facing traffic	-0.304	0.110	-2.76		
	Pedestrians aged 65+	0.553	0.237	2.33		
	Motorists aged 65+	0.218	0.102	2.14		
	Rural roadways	0.985	0.251	3.92		
	Intoxicated motorist	0.606	0.213	2.85		
	Weekend	0.134	0.053	2.53		
	Car overtaking manoeuvre	0.472	0.132	3.58		
	Sunset	0.162	0.074	2.19		
	Random parameter					
	Male motorists	0.324	0.139	2.33		
	Standard deviation of distribution	0.389	0.163	2.39		
	Heavy vehicles	0.274	0.110	2.49		
	Standard deviation of distribution	0.622	0.290	2.14		
	Restricted log-likelihood (constant only): -	8,267.1				
	Log-likelihood at convergence: -5,806.4					
	$\rho^2 = 0.298$					
296	^a The outcome "injury" is the baseline case	with its parame	eters set at zero).		
297						
298	Considering the results listed in Table	2, sun-glare-r	elated crashes	was found t		
299	be significant, and the estimated parameter was fixed across the observed peder					
300	(the standard error for this parameter, whe	en allowed to l	be random, wa	s statisticall		
301	nonsignificant). The parameter implies that	t sun a sun-gla	red-related cra	ish was moi		
302	likely to result in fatal injuries among pedes	onglare-related	l crash. Oth			
303	factors discovered to have fixed effects of	on observed p	edestrians and	increase th		
304	likelihood of fatal injuries were pedestrians	aged 65 or old	der, motorists a	nged 65 year		
305						

1
2
3
4
5
6
7
8 9
10
11
12
13
14
15 16
17
18
19
20
21
22
23
24 25
26
27
28
29
30
31
32 33
34
35
36
37
38
39 40
40 41
42
43
44
45
46 47
47 48
49
50
51
52
53
54 55
55 56
57
58
59

60

306	and sunset hours.
307	The parameter for the variable of male motorist appeared to be random, with a
308	normal distribution with a mean of 0.324 and standard deviation of 0.389 (see Table
309	2), indicating that individual pedestrians being struck by male motorists had different
310	parameters. Given the estimates (a mean of 0.324 and standard deviation of 0.389),
311	approximately 79.8% of all pedestrians had a higher probability of sustaining fatal
312	injuries when all other variables remain constant. Another parameter found to have a
313	random effect across the sample of pedestrians was the variable of a heavy vehicle as
314	the crash partner (with a normal distribution). This parameter had a mean of 0.274 and
315	standard deviation of 0.622 (see Table 2), indicating that individual pedestrians struck
316	by heavy vehicles have different parameters, with 67.0% of the distributions resulting
317	in a positive parameter (increasing the likelihood of fatal injuries) and 33.0% resulting
318	in negative parameter (decreasing the likelihood of fatal injuries).
319	The direction of travel of pedestrians relative to vehicular traffic was also

The direction of travel of pedestrians relative to vehicular traffic was also discovered to significantly affect pedestrian fatalities. This fixed parameter suggests that pedestrians who faced traffic while walking were less likely to sustain fatal injuries than those undertaking other movements, such as walking back to traffic or crossing the street.

Table 3 presents the estimation results of the mixed logit model of pedestrian

325	injury severity specifically in sun-glare-related crashes. For this model, the only
326	random parameter (with a uniform distribution) was significant for the variable of
327	heavy vehicle as the crash partner. The heterogeneous effect indicates that certain
328	crashes involving heavy vehicles were associated with both higher and lower
329	likelihoods of pedestrians sustaining fatal injuries. We speculate that this
330	heterogeneous effect may be caused by variance in the experience level among certain
331	driver groups, with more experienced drivers exhibiting a decreased likelihood of
332	causing fatal injuries. In other words, heavy vehicles are normally operated by
333	professional drivers, with the majority of drivers in this group being men and
334	middle-aged or older individuals. To confirm this speculation, the interaction between
335	the variable of heavy vehicle and other variables, such as male and middle-aged or
336	older motorists, were added to the model specification, but were dropped from the
337	model because all were determined to be insignificantly different from zero at the 0.1
338	level. The heterogeneity identified for the variable of heavy vehicle presented another
339	argument in favour of estimating a mixed logit model of pedestrian injury severity
340	because such effects are difficult to identify when using a logit framework with
341	numerous interaction terms.
342	
343 344	Table 3: Mixed logit estimation results for pedestrian injury severity with interaction terms of glare crashes and other variables $a (n = 100,411)$
544	VariableParameterStandard errort-value

	Fatal injury						
	Fixed parameter						
	Constant	-0.324	0.139	-2.33			
	Male motorist	0.193	0.069	2.80			
	Sunset	0.274	0.089	3.08			
	Pedestrians facing traffic × glare crashes	-0.439	0.126	-3.48			
	Pedestrians aged 65+	0.533	0.210	2.54			
	Motorists aged 65+ × glare crashes	0.432	0.143	3.02			
	Rural roadways × glare crashes	0.684	0.190	3.60			
	Intoxicated motorist	0.461	0.154	2.99			
	Weekend	0.157	0.075	2.09			
	Car overtaking manoeuvre	0.329	0.121	2.72			
	Random parameter						
	Heavy vehicle as crash partner	0.248	0.089	2.78			
	Standard deviation of distribution	0.526	0.211	2.49			
	Restricted log-likelihood (constant only): -7,302	2.7					
	_						
345		ne, with its pa	rameters set a	t zero			
	ju j	.,					
347	This mixed logit model with the interaction	on term of	glare crashes	with other			
348	variables highlight several crucial features of	glare crashe	es. For examp	ole, several			
349	interaction terms were discovered to be signi	ficant and fi	xed across th	e observed			
350	pedestrians, including facing traffic × glare cras	shes, elderly	motorists × gla	are crashes,			
351	and rural roadways × glare crashes. It appears	s that facing	traffic in a g	lare-related			
352	crash was determined to be a protective fac	tor in reduc	ing pedestria	n fatalities.			
353	Injuries to pedestrians were more likely to be	e fatal in gla	are crashes in	which the			
354	drivers were elderly. Furthermore, in glare cra	ashes that to	ok place in ru	iral setting,			
355	injuries were more likely to be fatal than otherwise.						
	352 353 354	Fixed parameter Constant Male motorist Sunset Pedestrians facing traffic × glare crashes Pedestrians aged 65+ Motorists aged 65+ × glare crashes 	Fixed parameterConstant -0.324 Male motorist 0.193 Sunset 0.274 Pedestrians facing traffic × glare crashes -0.439 Pedestrians aged 65+ 0.533 Motorists aged 65+ × glare crashes 0.432 Rural roadways × glare crashes 0.684 Intoxicated motorist 0.461 Weekend 0.157 Car overtaking manoeuvre 0.329 Random parameterHeavy vehicle as crash partnerHeavy vehicle as crash partner 0.248 Standard deviation of distribution 0.526 Restricted log-likelihood (constant only): $-7,302.7$ Log-likelihood at convergence: $-5,054.6$ $\rho^2=0.308$ 345* The outcome "injury" is constituted the baseline, with its partice346347This mixed logit model with the interaction term of348variables highlight several crucial features of glare crashes349interaction terms were discovered to be significant and fi350pedestrians, including facing traffic × glare crashes, elderly351and rural roadways × glare crashes. It appears that facing352crash was determined to be a protective factor in reduce353Injuries to pedestrians were more likely to be fatal in gla354drivers were elderly. Furthermore, in glare crashes that to	Fixed parameterConstant -0.324 0.139 Male motorist 0.193 0.069 Sunset 0.274 0.089 Pedestrians facing traffic × glare crashes -0.439 0.126 Pedestrians aged 65+ 0.533 0.210 Motorists aged 65+ x glare crashes 0.432 0.143 Rural roadways × glare crashes 0.684 0.190 Intoxicated motorist 0.461 0.154 Weekend 0.157 0.075 Car overtaking manoeuvre 0.329 0.121 Random parameterHeavy vehicle as crash partner 0.248 0.089 Standard deviation of distribution 0.526 0.211 Restricted log-likelihood (constant only): $-7,302.7$ Log-likelihood at convergence: $-5,054.6$ $p^2=0.308$ * The outcome "injury" is constituted the baseline, with its parameters set a346* This mixed logit model with the interaction term of glare crashes348variables highlight several crucial features of glare crashes. For example349interaction terms were discovered to be significant and fixed across th350pedestrians, including facing traffic × glare crashes, elderly motorists × gla351and rural roadways × glare crashes. It appears that facing traffic in a glase352crash was determined to be a protective factor in reducing pedestriant353Injuries to pedestrians were more likely to be fatal in glare crashes in354drivers were elderly. Furthermore, in glare crashes that took place in ru			

Discussions

By using the National Traffic Crash Data and sunrise and sunset data from the NOAA, the present study examined whether sun glare was associated with pedestrian fatalities involved in motor vehicle crashes. This research may constitute a valuable contribution to the growing literature on pedestrian safety as well as fill a major research gap regarding the effect of sun glare on pedestrian fatalities. Regarding methodological contributions, the proposed models offer methodological flexibility for identifying individual-specific heterogeneity that may arise as a result of other unmeasured factors related to motorist experience, behaviour, and geometric characteristics. When developing intervention strategies for improving pedestrian safety in sun-glare conditions, the heterogeneous effects of certain variables (which cannot be uncovered by using traditional logit models) should be considered. The empirical contributions of this research comprise those research findings that are related to the factors affecting pedestrian fatalities. The identification of these risk factors may provide policy-makers with information for establishing suitable policies and strategies that may further reduce the risk of crashes in general or severity in particular. The following findings merit further discussion. Most drivers commute during hours of extreme sun glare. It is therefore not

Page 23 of 36

BMJ Open

375	surprising that more crashes occurs on roadways where there is a significant portion
376	of traffic during peak morning (sunrise) and afternoon (sunset) hours. The adverse
377	effect of sun glare on crash occurrence has been well documented in relevant
378	literature.3 14 Mitra3 pointed out that motorist injury severity, however, was not
379	increased in glare conditions, possibly as a consequence of reduced travel speed.8
380	Such a protective effect of sun glare on the associated motorist injury severity does
381	not apply to pedestrians; our study concludes that glare conditions (as indicated in the
382	overall model) were associated with pedestrian fatalities. In our study, it is evident
383	that this adverse effect of sun glare was greater on rural roadways where collision
384	impacts can be higher and motorists may not expect to encounter a pedestrian as much
385	as they would on urban roadways. One commonly-adopted engineering measure is the
386	use of variable message signs to warn drivers of the risk of sun glare at the times
387	when and locations (i.e., rural roadways) where sun-glare conditions occur.9
388	Mitra ³ pointed out that the odds of glare causing crashes at intersections were
389	higher during the morning hours, and in autumn and winter months in Arizona,
390	United States. In our study, the effect of seasons on pedestrian fatalities was not
391	significant. Adding to the research conducted by Hagita and Mori ²² , who concluded
392	that the rate of pedestrian crashes shortly after sunset was higher than that of any

393 other time in Japan, our study revealed that compared with sunrise times, the adverse

> effect of sun glare on pedestrian fatalities was greater during sunset hours in Taiwan. It is therefore evident here that sun glare during the sunset hours may not only increase pedestrian crashes, as indicated by Hagita and Mori²², but also the resulting injury severity. Evening commute is often risky due to fatigue, distraction, or other unrelated factors to sun glare. In our study, we have found that injuries sustained by pedestrians were more likely to be fatal under sunset conditions than other daytime conditions. Additional research is warranted to examine whether sun glare affects pedestrian fatalities in evening commuting crashes. Studies have suggested that intoxicated motorists were more likely to leave pedestrians unattended by leaving the crash scene, thereby increasing pedestrian injury severity; and furthermore, alcohol use has been discovered to be a more prevalent factor for hit-and-runs at nights and during the weekend.^{23 24} Our study revealed that the combined effects of alcohol consumption and sun glare were associated with pedestrian fatalities. Similar to other studies²³ ²⁴, our research highlights, in particular, the effect of motorist alcohol consumption on fatal injuries and on the weekends.

Other studies have consistently reported that elderly motorists were the group
most affected by sun glare. For example, two simulation studies conducted by Gray
and Regan⁶ and Theeuwes et al.⁷ reported that in conditions of sun glare, older drivers

Page 25 of 36

BMJ Open

executing a turning manoeuvre demonstrated a significantly greater reduction in safety margin than did younger drivers; and older drivers demonstrated the most significant decrease in the ability to successfully detect pedestrians. Studies analysing real-life police-reported crash data¹⁵ have indicated that in conditions of sun glare, older drivers were more likely to strike other vehicles. Our study contributes to the literature on pedestrian safety literature by concluding that older motorists, when affected by sun glare, cause fatal injuries to pedestrians once a crash has occurred. Advance warning signs or educational efforts to increase older driver's awareness of sun-glare conditions may either temper the likelihood of vehicle crashes or reduce pedestrian injury severity. In our study, no discrepancy was found when comparing injuries in spring/summer to autumn/winter. Such a result cannot be ascertained with any certainty. However, we speculate that this is primarily because the anticipated effect of sun glare in different seasons may be offset by, for example, tropical hurricanes that strike Taiwan in summer and northeast monsoon in winter. Our result here seems different to those in other studies conducted in large countries³ where the adverse effect of sun glare was found to be greater in autumn and winter months. These studies were conducted in large countries such as the United States where climate changes significantly across areas with different latitudes, whereas Taiwan is a small

Page 26 of 36

432 country where climate does not change much across the small island.

Considerable work has consistently concluded that older pedestrians were more likely to be fatally or severely injured in crashes, both during daytime and night conditions.²⁵ Our research has provided ample evidence to suggest that injuries sustained by older pedestrians in crashes caused by sun glare are more fatal than those sustained by younger pedestrians. It is unclear whether the reduced conspicuity of pedestrians (particularly older pedestrians) under conditions of sun glare (twilight) plays a role in this effect. However, enhancing the conspicuity of pedestrians through the use of visibility aids, not only in night conditions²⁶ but also in twilight conditions, may be beneficial for reducing crash risk or severity. Adding to the research conducted by Sun et al.¹⁴, who reported that crashes related to improper turning or lane changing were more likely to occur during periods of sun glare, this present study concludes that an association exists between the execution of overtaking manoeuvres during periods of sun glare and pedestrian fatalities. It is not uncommon for injuries sustained in crashes caused by vehicle overtaking to be severe because motorists must accelerate to overtake other vehicles. In Taiwan, it is common that motorists execute overtaking manoeuvres by using roadway shoulders where there are pedestrians. Motorists should be aware of the risk they pose to pedestrians when overtaking other vehicles, particularly during periods of sun glare.

Page 27 of 36

BMJ Open

Studies have reported that facing traffic is beneficial for preventing pedestrian crashes²⁷ and decreasing the severity of related injuries²⁵. Our study complements these two studies by concluding that walking against the traffic was associated with decreased injury severity. In these cases, it is possible that pedestrians' forward views are strongly lit, which might be more favourable for them than other directions. Information expressing the necessity facing traffic while walking along a street, particularly in conditions of sun glare, should be supplemented with specific information regarding its safety benefits. Although differing for observed pedestrians, being struck by heavy vehicles increased the likelihood of fatal injuries. Although this finding agrees with those of other studies^{28 29} reporting the tendency of injuries sustained by pedestrians to be fatal or more severe when struck by a heavy vehicle, we concluded that the effect of heavy vehicles was greater in conditions of sun glare. Notably, drivers of heavy vehicles tend to be professional. It is unclear whether drivers of this particular group, in combination with undertaking longer hours of travel than those undertaken by a car driver, are more susceptible to problems related to sun glare. Educational efforts can be directed towards drivers of heavy vehicles regarding their susceptibility to sun glare, and on roadways with pedestrians in particular. This study had the following research limitations. First, our study did not consider

470	surrounding topography; it is possible that motorists travelling through some areas
471	with buildings or mountains, for example, are less susceptible to sun glare because the
472	sun is occluded. By analysing geographic data and data from police reports, likely
473	locations for sun glare can be predicted, and motorists can be well informed regarding
474	where to expect sun glare. Furthermore, we classified a crash as being glare-related
475	when the angular distance between the driver's line of sight and the sun was between
476	0° and 45°, a threshold based on the research in Japan ¹³ . Further research may attempt
477	to compare our results to those adopting more stringent thresholds of 10, 20, or 30
478	degrees, as well as the variance of this effect for motorists of different ages, as
479	indicated by Jurado-Piña and Pardillo Mayora9. Due to restricted funds, we were just
480	able to link the National Traffic Crash Dataset to the NOAA, but not to pre-hospital
481	triage system or hospital data (e.g., the National Health Insurance Research Dataset:
482	NHIRD). We recommend that future research should link our data to clinical datasets
483	that provide more details on injuries (e.g., injured body regions, hospitalisation) other
484	than fatalities examined in the present paper.
485	Indeed, sun glare is a combined spatial-temporal factor. To broaden our collective

Indeed, sun glare is a combined spatial-temporal factor. To broaden our collective understanding of factors in pedestrian safety, it is paramount that additional spatial data and temporal data be collected and compared whenever possible. Finally, the empirical results obtained in this study may be unique to Taiwan because of its unique

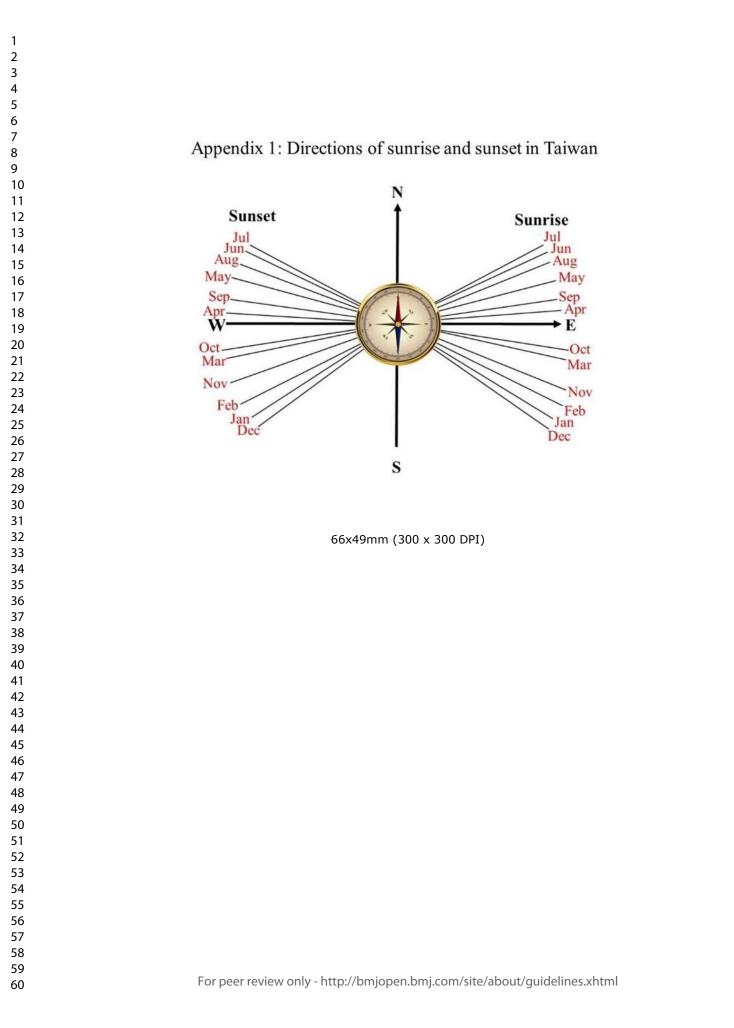
Page 29 of 36

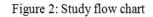
BMJ Open

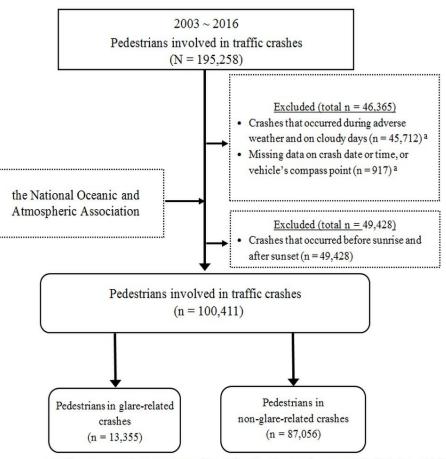
sunrise and sunset times and orientations. As a result, until additional analyses are conducted using data from other jurisdictions to determine whether sun glare is a salient factor to pedestrian fatalities, caution should be exercised in generalising our findings for application in other settings. Contributors: HPM drafted and revised the manuscript and established the theoretical supports for data analyses; PLC re-analysed the data and interpreted the results; SKC reviewed relevant literature and analysed the data; LHC analysed the data; VL edited the manuscript and reviewed relevant literature; CWP was responsible for study design, contributed to the analyzing and interpretation of data, drafted the manuscript, and strengthened discussions and conclusions. The final version of the manuscript was read and approved by each contributing author. Competing interests: None declared. Funding: This study was financially supported by grants from the Ministry of Science and Technology, Taiwan (MOST 105-2221-E-038-013-MY3) and Yuan's General Hospital and Taipei Medical University (106YGH-TMU-07). The funders had no role in the design of the study, data collection and analysis, interpretation of

2	
3	
4	
5	
6 7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
1/	
18	
19	
20	
21	
22	
21 22 23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
56	
57	
58	
59	

60


1


509	of E	ducation, Y	outh and Spo	rts within Na	tional S	Sustainability Pr	ogramme I,	a project
510	of T	ransport R&	&D Centre (I	201610), on	a resea	rch infrastructu	re acquired	from the
511	Oper	ration Pr	ogramme	Research	and	Development	for Inr	iovations
512	(CZ.	1.05/2.1.00	/03.0064).					
513								
514	Data	a sharing s	statement: O	nly citizens	of Taiv	wan who fulfill	the require	ments of
515	cond	lucting resea	arch projects	are eligible t	o apply	for the dataset.	The use of o	dataset is
516	limit	ted to resear	rch purposes	only. The a	uthors	had no special a	ccess privil	eges that
517	othe	rs would no	t have.					
518 519 520	Refe	erence						
521 522	1.	Owsley C, 2348-2361	-	Jr. Vision a	nd driv	ing. Vision Res	earch 2010	; 50(23):
523 524	2.	-	., Kahneman 74; 185(4157	-		r uncertainty he	euristics and	d biases.
525 526	3.		un glare and <i>fety Science</i> 2	-		pirical investig	ation of int	ersection
527 528	4.		r DA, Tibshi 99; 401: 35-36	-	y cars	in the next lane	e seem to g	o faster.
529	5.		·	1		and life-threaten	0	
530	6		-	1		ypotheses 2018;		
531 532	6.		•	-		esults correlate ching vehicles i	1	
533		0	e			ptics 2007; 27(5		low suit
534	7.		1	·	0	elation between	/	driving
535		performance	e. Human Fa	ectors 2002; 4	44(1): 9	5-107.		
536	8.	Churchill A	AM, Tripodis	Y, Lovell D	J. Sun g	glare impacts on	freeway con	ngestion:


537 geometric model and empirical analysis. *Journal of Transportation Engineering*

1 2			
3	538		2012; 138: 1196-1204.
4 5	539	9.	Jurado-Piña R, Pardillo Mayora JM. Methodology to predict driver vision
6	535 540).	impairment situations caused by sun glare. <i>Transportation Research Record:</i>
7 8	541		Journal of the Transportation Research Board 2009; 2120:, 12-17.
9	542	10	Anue K. Sun glare detection and visualization. 2017. Master's degree in
10 11	543	10.	Computer Science. Department of Computer Science. Norwegian University of
12	543 544		Science and Technology, 2017.
13 14	544 545	11	Redelmeier DA, Raza S. Life-threatening motor vehicle crashes in bright
15	545 546	11.	sunlight. <i>Medicine</i> 2017; 96(1): e5710.
16 17	540 547	10	
17	547 548	12.	Mitra S, Washington S. <i>On the significance of omitted variables in intersection crash modeling</i> . Accident Analysis and Prevention 2012; 49: 439-448.
19 20	548 549	12	
20 21		13.	Hagita K, Mori K. The effect of sun glare on traffic accidents in Chiba
22	550	14	prefecture, Japan. Asian Transport Studies 2014; 3(2): 205-219.
23 24	551	14.	Sun D, El-Basyouny K, Kwon TJ. Sun glare: Network characterization and
25	552		safety effects. Transportation Research Record: Journal of the Transportation
26 27	553	1.5	Research Board 2018.
28	554	15.	Choi EH, Santokh S. Statistical assessment of the glare issue – human and
29 30	555		natural elements. Proceeding of 2005 FCSM Conference, Federal Committee on
31	556	16	Statistical Methodology, Arlington, VA, 2005; 1-8.
32 33	557	16.	National Oceanic Earth System Research Laboratory and Atmospheric
34	558		Administration. <u>https://www.esrl.noaa.gov/gmd/grad/solcalc/</u> Accessed:
35 36	559	. –	2018-08-22.
37	560	17.	Mchugh ML. The chi-square test of independence. <i>Biochemia Medica</i> 2013;
38 39	561		23(2): 143-149.
40	562	18.	Barbieri S, Vettore G, Pietrantonio V, Snenghi R, Tredese A, Bergamini M,
41 42	563		Previato S, Stefanati A, Gaudio RM, Feltracco P. Pedestrian inattention
43	564		blindness while playing Pokemon Go as an emerging health-risk behavior: a case
44 45	565		report. Journal of Medical Internet Research 2017; 19(4): e86.
46	566	19.	Chen PL, Pai CW. Evaluating the effects of smartphone racing games and other
47	567		game types on pedestrian's risk-taking inclinations. Computers in Human
48 49	568		<i>Behavior</i> 2018; 88: 78-83.
50	569	20.	Bhat CR. Quasi-random maximum simulated likelihood estimation of the mixed
51 52	570		multinomial logit model. Transportation Research Part B: Methodological 2001;
53	571		35(7): 677-693.
54 55	572	21.	Manski CF, Mcfadden DL. A structural analysis of discrete data with
56	573		econometric applications. The MIT Press, Cambridge, MA. 1981.
57 58	574	22.	Hagita K, Mori K. Traffic accident analysis of sun glare and twilight shortly
59	575		before and after sunset in Chiba prefecture, Japan. Journal of the Eastern Asia
60			

3 4	576		Society for Transportation Studies 2015; 11: 1999-2014.
5	577	23.	Solnick SJ, Hemenway D. Hit the bottle and run: The role of alcohol in
6 7	578		hit-and-run pedestrian fatalities. Journal of Studies on Alcohol and Drugs 1994;
7 8	579		55(6): 679-684.
9	580	24.	Solnick SJ, Hemenway D. The hit-and-run in fatal pedestrian accidents: victims,
10 11	581		circumstances and drivers. Accident Analysis and Prevention 1995; 27(5):
12	582		643-649.
13 14	583	25	Chen PL, Jou RC, Saleh W, Pai CW. Accidents involving pedestrians with their
15	584	20.	backs to traffic or facing traffic: an evaluation of crash characteristics and
16 17	585		injuries. Journal of Advanced Transportation 2016; 50(5): 736-751.
18	586	26	
19 20		20.	Kwan I, Mapstone J. Interventions for increasing pedestrian and cyclist visibility
20 21	587		for the prevention of death and injuries. Cochrane Database of Systematic
22	588		<i>Reviews</i> 2006; (4): CD003438.
23 24	589	27.	Luoma J, Peltola H. Does facing traffic improve pedestrian safety? Accident
25	590		Analysis and Prevention 2013; 50: 1207-1210.
26 27	591	28.	Lefler DE, Gabler HC. The fatality and injury risk of light truck impacts with
28	592		pedestrians in the united states. Accident Analysis and Prevention 2004; 36(2):
29	593		295-304.
30 31	594	29.	Dong B, Ma X, Chen F. Analyzing the injury severity sustained by non-motorists
32	595		at mid-blocks considering non-motorists' pre-crash behavior. Transportation
33 34	596		Research Record: Journal of the Transportation Research Board 2018; 1-11.
35	597		
36 37	598		
38	599		
39 40	600		
40 41	601		
42	602		
43 44	603		
45			
46 47			
48			
49 50			
51			
52			
53 54			
55			
56 57			
58			
59 60			
00			

^a As these cases were not mutually exclusive, the total cases excluded were 45,365.

90x90mm (300 x 300 DPI)

STROBE Statement

Page 35 of 36			BMJ Open 3000000000000000000000000000000000000	
1				
2 3	Section/Topic	Item	Checklist of items that should be included in reports of case-control studies No Recommendation No	Reported
4 5	L	No		on Page No
6	Title and abstract	Fitle and abstract 1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
7			(b) Provide in the abstract an informative and balanced summary of what was done and what was found $\frac{9}{2}$	2–3
8 9 ·	Introduction			
10	Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4–6
11	Objectives	3	State specific objectives, including any prespecified hypotheses	7
12 13	Methods			
14	Study design	4	Present key elements of study design early in the paper	8-10
15 16	Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up and data collection	8–12
17 18 19 20 21 22 23	Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Bescribe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants.	7–9
24 25			(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case	
26 27 28	Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	11,12
29 30	Data sources/measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). $\mathbf{\underline{b}}$ escribe comparability of assessment methods if there is more than one group $\mathbf{\underline{c}}$	11,12
31 ⁻ 32	Bias	9	Describe any efforts to address potential sources of bias	9
	Study size	10	Explain how the study size was arrived at	10
34	Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which grouping evere chosen and why	11,12
35 36			(<i>a</i>) Describe all statistical methods, including those used to control for confounding	12–15
37			(b) Describe any methods used to examine subgroups and interactions	12–15
38			(c) Explain how missing data were addressed 0 (d) Cohort study If applicable, explain how loss to follow, up was addressed	12–15
39 40 41 42	Statistical methods	12	(d) Cohort study—If applicable, explain how loss to follow-up was addressed 0 Case-control study—If applicable, explain how matching of cases and controls was addressed 0 Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy 0 (e) Describe any sensitivity analyses 0	12–15
43			(e) Describe any sensitivity analyses	N/A
44 45 46			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	1

		BMJ Open 36/5 mj. open sen	Page 36 of
Section/Topic	Item No	Recommendation 2018-028	Reported on Page No
Results		350	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for Eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	10
1 articipants	15	(b) Give reasons for non-participation at each stage	10
		(c) Consider use of a flow diagram	Appendix 2
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on expositives and potential confounders	10
Descriptive data	14.	(b) Indicate number of participants with missing data for each variable of interest	10
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	N/A
		Cohort study—Report numbers of outcome events or summary measures over time	N/A
Outcome data	15*	Case-control study—Report numbers in each exposure category, or summary measures of exposure	N/A
		Cross-sectional study—Report numbers of outcome events or summary measures	15
Main manile	1.6	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	15–21
Main results	16	(b) Report category boundaries when continuous variables were categorized	N/A
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A
Discussion		< S S	
Key results	18	Summarise key results with reference to study objectives	22–29
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	27–29
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	27–29
Generalisability	21	Discuss the generalisability (external validity) of the study results	28–29
Other Information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	29
*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.			
best used in conjunction with	ith this artic	article discusses each checklist item and gives methodological background and published examples of transpared reporting. The STROBE cle (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/	necklist is g/, and
Epidemology at http://ww	epidem.et	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	2

BMJ Open

Population-based case-control study of the effect of sun glare on pedestrian fatalities in Taiwan

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-028350.R2
Article Type:	Research
Date Submitted by the Author:	25-Jul-2019
Complete List of Authors:	Ma, Hon-Ping; Shuang Ho Hospital - Taipei Medical University, Emergency medicine Chen, Ping-Ling; Graduate Institute of Injury Prevention and Control Chen, Shang-Ku; Shuang Ho Hospital - Taipei Medical University, Emergency Medicine; Taipei Medical University, Graduate Institute of Injury Prevention and Control Chen, Liang-Hao; Taipei Medical University, Graduate Institute of Injury Prevention and Control; Wan-Fang Hospital, Taipei Medical University, Department of Emergency Medicine Linkov, Vaclav; Department of Traffic Psychology, CDV, Transport Research Centre Pai, Chih-Wei; Taipei Medical University, Graduate Institute of Injury Prevention and Control
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Epidemiology, Public health, Health policy
Keywords:	ACCIDENT & EMERGENCY MEDICINE, PUBLIC HEALTH, EPIDEMIOLOGY

SCHOLARONE[™] Manuscripts

BMJ Open

2		
3	_	
4 5	1	Population-based case-control study of the effect of sun glare on pedestrian
6		
7	2	
8	2	fatalities in Taiwan
9		
10	3	Hon-Ping Ma ^{a, b, c} , Ping-Ling Chen ^a , Shang-Ku Chen ^{a, b} , Liang-Hao Chen ^{a, d} , Václav
11	5	non-ring ivia ",", ring-Ling Chen ", Shang-Ku Chen ",", Liang-riao Chen ",", vaciav
12		
13	4	Linkov ^e , Chih-Wei Pai ^{a,*}
14	-	
15		
16	5	^a Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei
17	-	
18		
19	6	Medical University, Taiwan
20		
21		
22	7	^b Department of Emergency Medicine, Shuang-Ho Hospital, Taipei Medical
23		
24	_	
25 26	8	University, Taiwan
20		
28	0	
29	9	^c Department of Emergency Medicine, School of Medicine, Taipei Medical
30		
31	10	University Toiwon
32	10	University, Taiwan
33		
34	11	^d Department of Emergency Medicine, Wan-Fang Hospital, Taipei Medical
35	11	Department of Emergency Wedleme, wan-rang Hospital, raper Wedlear
36		
37	12	University, Taiwan
38		
39		
40	13	^e Department of Traffic Psychology, CDV–Transport Research Centre, Brno, Czech
41		
42		
43	14	Republic
44		
45		
46	15	* Corresponding author
47 49		
48 49	4.6	
50	16	Email: <u>cpai@tmu.edu.tw</u>
51		
52	17	1996 02 27261661 art 6575
53	17	+886 02-27361661 ext.6575
54		
55	18	Address: Graduate Institute of Injury Prevention and Control, College of Public
56	10	radiess. Stadaate institute of injury rievention and control, concee of rubile
57		
58	19	Health, Taipei Medical University, 250 Wuxing St, Taipei City, Taiwan 110.
59	10	realized and the state of the s
60		
		1

20	Word	count:	4712
----	------	--------	------

 22 Abstract

Objectives Sun glare is a serious driving hazard and increases crash risks. Relatively few studies have examined the effects of sun glare on pedestrian fatalities, given that a crash has occurred. The primary objective of this study was to investigate the effect of sun glare on pedestrian fatalities. **Design** A population-based case–control study. Setting Taiwan. Participants Using the Taiwan National Traffic Crash Data and sunrise and sunset data from the National Oceanic and Atmospheric Administration (NOAA) for the period 2003–2016, 100,411 pedestrians involved in crashes were identified. Of these crashes, 13,355 and 87,056 were glare-related (case) and non-glare-related (control) crashes, respectively. Methods To account for unobserved heterogeneity, mixed logit models were estimated to identify the determinants of pedestrian fatalities. Main outcome measures Pedestrian fatalities. **Results** Pedestrians involved in glare-related crashes were more likely to be fatally injured than those in non-glare-related crashes ($\beta = 0.527$; t = 3.21). Other

Page 3 of 36

1	
ว	
2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 7\end{array}$	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
37	
22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
56	
57	
58	
59	
60	

39	contributory factors to fatal injuries among pedestrians were older pedestrians (β =
40	0.553; $t = 2.33$), male drivers ($\beta = 0.324$; $t = 2.33$), older drivers ($\beta = 0.218$; $t = 2.14$),
41	intoxicated motorists ($\beta = 0.606$; $t = 2.85$), rural roadways ($\beta = 0.985$; $t = 3.92$),
42	overtaking manoeuvres ($\beta = 0.472$; $t = 3.58$), heavy vehicle crash partners ($\beta = 0.248$; t
43	= 2.78), and sunset hours (β = 0.274; t = 3.08). Walking against traffic appeared
44	beneficial for decreasing injury severity ($\beta = -0.304$; $t = -2.76$).
45	Conclusions Sun glare is associated with pedestrian fatalities. Older pedestrians, male
46	drivers, older drivers, and intoxicated motorists are prevalent determinants of
47	pedestrian fatalities in glare-related crashes.
48	Keywords: Sun glare; Pedestrian fatalities; Crashes; Injury
48 49	Keywords: Sun glare; Pedestrian fatalities; Crashes; Injury
	Keywords: Sun glare; Pedestrian fatalities; Crashes; Injury Strengths and limitations of this study
49	
49 50	Strengths and limitations of this study
49 50 51	 Strengths and limitations of this study This is the first nationwide population-based case-control study of the
49 50 51 52	 Strengths and limitations of this study This is the first nationwide population-based case-control study of the associations between pedestrian fatalities and sun glare.
49 50 51 52 53	 Strengths and limitations of this study This is the first nationwide population-based case-control study of the associations between pedestrian fatalities and sun glare. Glare-related crashes were defined by adjusting vehicle travel direction and
49 50 51 52 53 54	 Strengths and limitations of this study This is the first nationwide population-based case-control study of the associations between pedestrian fatalities and sun glare. Glare-related crashes were defined by adjusting vehicle travel direction and orientations of sunrise and sunset.

2		
3 4 5	58	unavailable in the two datasets.
6 7 8	59	INTRODUCTION
9 10 11	60	
12 13 14	61	Driving is a highly visual task that involves visual function and processing for
15 16 17	62	establishing effective control over a vehicle. ¹ Research ² ³ has suggested that bright
18 19 20	63	sunlight is ideal for driving because it increases the contrast, resolution, and
21 22 23	64	luminosity of the surrounding landscape. As a result, however, drivers may
24 25 26	65	misinterpret the speed at which parts of the surrounding landscape are approaching
27 28 29	66	and underestimate their velocity, prompting them to compensate by accelerating.45
30 31 32	67	Generally, bright sunlight causes temporary blindness when the sun is at a
33 34 35	68	relatively low altitude (i.e., just after sunrise or before sunset when the sun is just
36 37 38	69	above the horizon) and its rays fall directly in an individual's line of sight. Using a
39 40 41	70	simulator, Gray and Regan ⁶ assessed driving performance in both the absence and
42 43 44	71	presence of a low sun. They reported that sun glare resulted in a significant reduction
45 46 47	72	in the safety margin accepted by drivers, the mean number of crashes was
48 49 50	73	significantly higher during conditions of glare than those without glare, and older
51 52 53	74	drivers exhibited significantly greater reductions in the safety margin than did
54 55 56	75	younger drivers. Another simulation study was conducted by Theeuwes et al., ⁷ who
57 58 59 60	76	reported that low glare resulted in their participants (drivers) exhibiting a significant

1

Page 5 of 36

BMJ Open

decrease in the ability to detect simulated pedestrians along the roadside. Theeuwes et al.⁷ also revealed that older participants reduced their driving speed the most and exhibited the largest decrease in successful pedestrian detection. Churchill et al.⁸ employed a geometric model to examine whether sun glare affects the speeds of drivers on roadways and concluded that changes in speed as a result of sun glare affected highway congestion. Jurado-Piña and Pardillo Mayora,⁹ in an investigation of the maximum tolerable sun glare determined that glare occurs when at specific angular distances between a driver's line of sight and the sun; these angular distances are 19° for a 40-year-old driver and 25° for a 60-year-old driver. Anue¹⁰ suggested that sun glare typically does not occur at angular distances greater than 25°. Several studies have investigated whether a direct relationship exists between sun glare and crashes by using data from police reports or hospitals. In a longitudinal study of patients who had been hospitalised because of a motor-vehicle crash, Redelmeier and Raza¹¹ concluded that bright sunlight was associated with an increased risk of life-threatening crashes in Canada. By analysing police-reported crash data from Arizona, Mitra and Washington¹² indicated that sun glare was a crucial overlooked variable that could explain intersection crashes and that including this variable improved the explanatory power of statistical models. By linking police-reported crash data from Arizona with sunrise and sunset data from the

2	
3	
4	
5	
6	
/	
8	
9 10	
10	
12	
13	
14	
15	
16	
17	
18	
19 20	
3 4 5 6 7 8 9 11 12 13 14 15 6 7 8 9 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 30 32 33 34 35 36 378 38 378	
∠ I 22	
22	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33 24	
24 25	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45 46	
40 47	
47 48	
49	
50	
51	
52	
53	
54	
55	
56 57	
57 58	
58 59	
60	

1

96 National Oceanic Atmospheric Administration (NOAA), Mitra³ concluded that the odds of glare causing a crash were higher on roadways running eastbound and 97 98 westbound than those running northbound and southbound. Mitra³ further indicated that rear-end and angle crashes at signalised intersections were affected by sun glare, 99 but that the severity of motorist injury was unaffected by sun glare. 100 By analysing the traffic-crash database of Chiba, Japan, Hagita and Mori¹³ revealed 101 that crashes involving pedestrians or bicycles at intersections were more likely when 102 the sun was below 45° above the horizon in the driving direction. Sun et al.,¹⁴ 103 104 analysed police-reported crash data in Edmonton, Alberta, Canada, reported similar findings, concluding that sun glare significantly contributed to crash occurrence, 105 106 especially at intersections. Furthermore, they indicated that the effect of sun glare on 107 crash occurrence during mornings on eastbound roads and evenings on westbound roads is significantly greater during the spring and autumn months and that certain 108 crash types (e.g., crashes related to signal violation, failure to yield to 109 pedestrians/cyclists, and improper turning and lane changing) are more likely during 110 periods of sun glare. By analysing police-reported crash data, Choi and Singh¹⁵ 111 revealed that, when compared to other age groups, elderly motorists tend to have a 112 greater propensity for striking other vehicles in conditions of sun glare, especially on 113 roadways that are not physically divided. 114

BMJ Open

According to our literature review, a significant gap remains in the understanding of the relationship between sun glare and pedestrian fatalities, conditional upon a pedestrian occurring. The primary research hypothesis of the present study was that pedestrian injury severity increases as visibility decreases (i.e., during sun glare). This study therefore investigated whether sun glare is associated with pedestrian fatalities. This study also examined the determinants of pedestrian fatalities in crashes related to sun glare. MATERIALS AND METHODS Data source By using the Taiwan National Traffic Crash Dataset as well as sunrise and sunset data from the NOAA for the period from 2003 to 2016 (National Oceanic Earth System Research Laboratory and Atmospheric Administration,¹⁶ accessed: 2018-08-22), the current study examined the effect of sun glare on pedestrian fatalities, given that a crash involving a vehicle and pedestrian has occurred. The Taiwan National Traffic Crash Dataset comprises two types of file: crash files and

132 dates of crashes, as well as weather, road conditions, lighting conditions, and road

133 types. Vehicle and victim files contain vehicle-related information, such vehicle type,

vehicle and victim files. Crash files contain general information on the times and

manoeuvres, first point of impact, and orientation, as well as driver and casualty
information, such as age, sex, and injury severity. Injury severity is classified into one
of two levels: fatality or injury. Victims who die within 24 h as a result of a crash are
classified as fatalities, whereas victims who sustain injuries, whether mild or severe,
are classified as cases of injury.

Daily sunrise and sunset times and orientation are available from the NOAA. The sunrise and sunset orientation data for Taiwan are presented in online supplementary Appendix 1. By using the data on the temporal characteristics (i.e., time and date) and orientation of vehicle crashes from the Taiwan National Traffic Crash Dataset, pedestrian crashes were matched with the sunrise and sunset data of the NOAA and subsequently classified into glare-related or non-glare-related crashes. The Institutional Review Board affiliated with Taipei Medical University approved our study (IRB#: N201808071). Personal identification data, such as name or identification number, are not available in the dataset.

A glare-related crash was defined as a crash in which the following two conditions were satisfied: the car was travelling in a direction towards the sunrise or sunset and the angular distance between the driver's line of sight and the sun was between 0° and 45°. Data on a vehicle's travel orientation (north, south, east, or west) are available from the National Traffic Crash Dataset, and data on sun orientation are available Page 9 of 36

BMJ Open

from the NOAA. The angular distances were adjusted according to the time of the crash (available from the National Traffic Crash Dataset) and daily sunrise and sunset times (available from the NOAA). For example, according to the Taiwan National Traffic Crash Dataset, a car-pedestrian crash occurred in Hsinchu City, where a car heading northeast collided with a pedestrian at 06:18 on 18 June, 2016. Angular distances from 0° to 45° were reported¹³ to cause sun glare and potentially affect traffic safety in Japan. We adopted these same angular distances as the threshold for defining a glare-related crash. According to the NOAA website, for this particular (18 June, 2016) and location (Hsinchu City with latitude of 24.778°N and longitude of 120.988°E), the sun rose from northeast, and the sunrise and sunset times were at 05:07 and 18:47, respectively. The daytime length for this particular day was 13 h and 40 min, equivalent to 820 min. The angular distances for sunrise and sunset are 0-180°, respectively; on this particular day, the sun moved 0.2195° every minute (180/820 = 0.2195). The adopted angular distance of 45° is equivalent to 205 min (45/0.2195 =205); therefore, the glare times transformed from the angular distances of 0° -45° for this particular crash can be between 05:07 and 08:32 (range of 205 min). This particular crash was therefore classified as a glare–related crash because the car was headed northeast (which was the direction of the sunrise) and the time of the crash

(06:18) was associated with an angular distance within 0° -45° (i.e. times between

05:07 and 08:32). A flow-chart of the sample selection from the Taiwan Traffic Crash Dataset for the period from 2003 to 2016 is presented in online supplementary Appendix 2. A total of 195,258 pedestrian casualties from traffic crashes during this period were selected from the dataset. In our sample, each pedestrian was counted. Only crashes involving a single pedestrian were considered in this study; crashes involving two or more pedestrians (accounting for 0.12% of all pedestrian crashes) were excluded. This study also considered only pedestrian crashes in which the crash partner was a motorcycle, car, taxi, or heavy vehicle (e.g. bus or coach). Crashes that occurred during adverse weather conditions, such as rain, fog, or clouds, were excluded (n =45,712). A total of 917 cases had missing data with regard to date, time, or vehicle orientation. Because these cases (adverse weather conditions and missing data) were not mutually exclusive, the total number of cases excluded was 45,365, yielding a total of 149,839 valid cases of pedestrian casualties. These valid cases were matched with the NOAA sunrise and sunset data. After crashes that had occurred after sunset or before sunrise (n = 49,428) were

that were matched with the sunrise and sunset data from the NOAA, 13,355 were

excluded, 100,411 cases of pedestrian casualties remained. Of the 100,411 pedestrians

191	glare-related cases (treated as cases), and 87,056 were non-glare-related cases (treated
192	as controls).
193	
194	Definition of variables
195	The following demographic data were collected regarding the pedestrians in cases
196	of casualties: sex, age (four groups: <18, 18–40, 41–64, and \geq 65 years), alcohol use
197	(yes: breathalyser test results of ≥ 0.15 mg/L or blood-alcohol concentration [BAC]
198	level >0.03%; no: breathalyser test results <0.15 mg/L or BAC level \leq 0.03%),
199	licence status (licensed: with a valid licence; unlicensed: without a valid licence), and
200	pedestrian crossing manner (facing traffic: pedestrians walking towards traffic; back
201	to traffic: pedestrians walking with their backs to traffic; crossing: pedestrians
202	crossing the street).
203	In Taiwan, those under the age of 18 are identified as teenagers who are unable to
204	legally ride motorcycles or drive cars. Those aged 65 years or older were identified as
205	elderly individuals. The remaining individuals aged 18-64 were classified into two
206	even age intervals: 18-40 and 41-64 years. BAC data were obtained by police who
207	conducted breathalyser tests or who ordered follow-up blood tests at hospitals.
208	According to Taiwanese law, drivers with either breathalyser test \geq 0.15 mg/L or
209	BAC level > 0.03% are considered to be drink driving. Data from breathalyser tests or

210	BAC levels were available only for motorists and not for pedestrians because, by law,
211	only motorists involved in crashes are required to be tested for alcohol consumption.
212	The vehicle attribute considered was the crash partner (motorcycle, car, taxi, or
213	heavy vehicle, such as a bus or coach). The following road factors were considered:
214	sun glare (yes: affected by sun glare; no: unaffected by sun glare) and crash location
215	(rural: roadways with speed limits of \geq 51km/h; urban: roadways with speed limits of
216	≤50km/h). Two temporal factors, the month of the crash (spring/summer: March-
217	August; autumn/winter: September-February) and days of the crash (weekday:
218	Monday-Friday; weekend: Saturday or Sunday), were examined.
219	
220	Patient and public involvement
221	The current research analysed national police-reported crash data as well as sunrise
221 222	
	The current research analysed national police-reported crash data as well as sunrise
222	The current research analysed national police-reported crash data as well as sunrise and sunset data from the NOAA, which are anonymised datasets. Neither patients nor
222 223	The current research analysed national police-reported crash data as well as sunrise and sunset data from the NOAA, which are anonymised datasets. Neither patients nor
222 223 224	The current research analysed national police-reported crash data as well as sunrise and sunset data from the NOAA, which are anonymised datasets. Neither patients nor the public were involved in this study.
222 223 224 225	The current research analysed national police-reported crash data as well as sunrise and sunset data from the NOAA, which are anonymised datasets. Neither patients nor the public were involved in this study.

Page 13 of 36

BMJ Open

229	independent variables and pedestrian injury severity. Because the dependent variable
230	was binary (fatality vs. injury), binary mixed logit models, which allow parameter
231	coefficients to have distributions rather than be fixed across individuals, were
232	estimated. The variables discovered through chi-squared testing to be associated with
233	the outcome ($p < 0.2$) were then incorporated into multivariate mixed logit models. To
234	detect multi-collinearity among the variables (all categorical), a chi-square
235	independent test was conducted, and Cramer's V17 was estimated. To determine
236	whether sun glare was associated with pedestrian fatalities, one overall model that
237	included sun glare as one of the variables was utilised. One additional model with
238	interaction terms of sun glare with other variables was subsequently estimated.
239	Mixed logit models were estimated to account for unobserved heterogeneity that
240	may have arisen because of unmeasured variables, such as risk perception,
241	behavioural factors, and other socioeconomic factors not available in the
242	police-reported crash data. One example of a behavioural factor is distraction by
243	phone use that may result in risk-taking inclinations and consequently an increased
244	risk of injury. ¹⁸ ¹⁹ Ignoring the effects of unobserved variables may lead to
245	inconsistent estimates in all statistical models. ²⁰

In the present study, the utility of the injury severity *i* for a crash *n* was defined asfollows:

 $IS_{in} = \beta_n X_{in} + \varepsilon_{in}$ Eq. (1)

where IS_{in} is an injury-severity function determining the injury-severity category i (fatal or injury) for an individual pedestrian n; X_{in} is a vector of the observed variables, such as pedestrian and driver attributes, vehicle characteristics, and environmental or temporal variables, β_n is a vector of the parameters associated with X_{in} ; and ε_{in} is the error term. The mixed logit model uses β_n as a vector of estimable parameters, which vary among pedestrians. The variation is observed with density $f(\beta/\theta)$, where θ is a vector of the parameters of the density distribution. In most applications, mixed models specify that the density f has a continuous distribution, such as a normal, lognormal, triangular, or uniform distribution. Given error terms that are independent and identically Gumbel distributed²¹, the

260 unconditional probability of one alternative *i* (from the set of injury-severity 261 categories *I*) is the integral of the conditional probability with a multinomial logit 262 form over the parameter β of density *f*:

264

$$P_{in} = \left(\frac{\exp(\beta'X_{in})}{\sum_{J=I}^{I} 1 + \exp(\beta'X_{nj})}\right) f(\beta|\theta)d\beta$$
Eq. (2)

All parameters are initially assumed to be random; then, their estimated standard 14

BMJ Open

deviations are evaluated using a zero-based (asymptotic) t test for each parameter. One study²⁰ pointed out that a simulation-based maximum likelihood with 200 Halton draws may provide a more efficient distribution of draws for numerical integration and requires fewer draws to achieve convergence. We attempted to increase the number of Halton draws, and the results appeared stable with the use of 1000 Halton draws. RESULTS Table 1 lists the distribution of pedestrian injury severity according to a set of variables. Of the 13,355 glare-related cases, 329 pedestrians (2.46%) sustained fatal injuries, which is higher than those in non-glare-related crashes (1.83%). Majority of pedestrian crashes involved motorists with valid licences (85.65%), sober motorists (85.97%), urban roadways (89.57%), pedestrians who were hit while crossing the street (65.85%), or non-glare conditions (86.70%) or occurred on weekdays (74.83%). Table 1: Distribution of pedestrian injury severity according to a set of variables for the period 2003–2016. χ^2 test Fatality Injury n(%) Ν n(%)p-value

Total	100411	1925(1.92)	98486(98.08)	
Sun glare				
Yes	13355(13.30)	329(2.46)	13026(97.54)	< 0.01

		Fatality	Injury	χ^2 test
	Ν	n(%)	n(%)	p-value
No	87056(86.70)	1596(1.83)	85460(98.17)	
Pedestrian gender	× ,			
Male	50942(50.73)	1015(1.99)	49927(98.01)	0.08
Female	49469(49.27)	910(1.84)	48559(98.16)	
Driver gender				
Male	53351(53.13)	1132(2.12)	52219(97.88)	< 0.01
Female	47060(46.87)	793(1.69)	46267(98.31)	
Pedestrian age (years)				
<18	3644(3.63)	67(1.84)	3577(98.16)	< 0.01
18-40	25851(25.75)	154(0.60)	25697(99.40)	
41-64	31283(31.15)	352(1.13)	30931(98.87)	
≥65	39633(39.47)	1352(3.41)	38281(96.59)	
Driver age (years)				
<18	4458(4.44)	103(2.31)	4355(97.69)	< 0.01
18-40	25808(25.70)	295(1.14)	25513(98.86)	
41-64	32523(32.39)	474(1.46)	32049(98.54)	
≥65	37622(37.47)	1033(2.75)	36589(97.25)	
Driver licence				
Licensed	86007(85.65)	1609(1.87)	84398(98.13)	0.01
Unlicensed	14404(14.35)	316(2.19)	14088(97.81)	
Alcohol use for driver				
No	86322(85.97)	1512(1.75)	84810(98.25)	< 0.01
Yes	14089(14.03)	413(2.93)	13676(97.07)	
Seasons				
Spring/summer	47671(47.48)	914(1.92)	46757(98.08)	0.99
Autumn/winter	52740(52.52)	1011(1.92)	51729(98.08)	
Crash location				
Rural	10475(10.43)	352(3.36)	10123(96.64)	< 0.01
Urban	89936(89.57)	1573(1.75)	88363(98.25)	
Crash partner				
Motorcycle	33221(33.09)	643(1.94)	32578(98.06)	< 0.01
Car	45963(45.77)	801(1.74)	45162(98.26)	
Taxi	9655(9.62)	208(2.15)	9447(97.85)	
Heavy vehicle	11572(11.52)	356(3.08)	11216(96.92)	
Pedestrian movement				
Facing traffic	9704(9.66)	172(1.77)	9532(98.23)	< 0.01

Page 17 of 36

			Fatality	Injury	χ^2 test
		Ν	n(%)	n(%)	p-valu
Back to t	raffic	24584(24.48)	623(2.53)	23961(97.47)	
Crossing		66123(65.85)	1130(1.71)	64993(98.29)	
Car manoeuvr	e				
Straight		50836(50.63)	862(1.70)	49974(98.30)	< 0.01
Changing	g lane	15625(15.56)	257(1.64)	15368(98.36)	
Overtakin	ng	21339(21.25)	601(2.82)	20738(97.18)	
Turning		12611(12.56)	205(1.63)	12406(98.37)	
Sunset					
Sunset		8325(8.29)	214(2.57)	8109(97.41)	< 0.01
Other tim	nes	87056(86.70)	1596(1.83)	85460(98.17)	
Sunrise		5030(5.01)	115(2.29)	4915(97.71)	
Weekdays					
Weekday	1	70366(70.08)	1267(1.80)	69099(98.20)	< 0.01
Weekend	1	30045(29.92)	658(2.19)	29387(97.81)	
288 associ	ated with the	e outcome: sun gla	re; pedestrian a	and driver sex and	d age; d
		-			-
		e outcome: sun gla and alcohol consu			-
289 license	e possession	-	imption; crash	month, location,	and par
289 license 290 pedest	e possession rian movem	and alcohol consu	imption; crash ; sunset hours;	month, location, and day of the	and par
289 license 290 pedest 291 factors	e possession rian movem s were then in	and alcohol consu ent; car manoeuvre	imption; crash ; sunset hours; mixed logit mod	month, location, and day of the dels.	and par week. T
289 license 290 pedest 291 factors 292 Ta	e possession rian movem s were then in ble 2 presen	and alcohol consu ent; car manoeuvre ncorporated into the	imption; crash ; sunset hours; mixed logit mod ssults of the mi	month, location, and day of the dels. ixed logit model	and par week. T of pedes
289 license 290 pedest 291 factors 292 Ta 293 injury	e possession rian movem s were then in ble 2 presen severity. We	and alcohol consu ent; car manoeuvre ncorporated into the its the estimation re	imption; crash ; sunset hours; mixed logit mod esults of the mi ike Information	month, location, and day of the dels. ixed logit model Criterion (AIC) o	and par week. T of pedes
289 license 290 pedest 291 factors 292 Ta 293 injury 294 when	e possession rian movem s were then in ble 2 presen severity. We determining	and alcohol consu ent; car manoeuvre neorporated into the its the estimation re e compared the Aka	imption; crash ; sunset hours; mixed logit mod sults of the mi ike Information tion and determ	month, location, and day of the dels. Exed logit model Criterion (AIC) of ining whether par	and part week. The of pedes of the manual ameters
 289 license 290 pedest 291 factors 292 Ta 293 injury 294 when 295 fixed of 	e possession rian movem s were then in ble 2 presen severity. We determining or random; m	and alcohol consu ent; car manoeuvre neorporated into the its the estimation re e compared the Aka the optimal distribut	imption; crash ; sunset hours; mixed logit mod esults of the mi like Information tion and determ avy vehicles as	month, location, and day of the dels. Exed logit model Criterion (AIC) of ining whether par crash partners we	and par week. T of pedes of the m ameters re determ

300	period 2003–2016 a (n = 100,411).		Standard	
	Variable	Parameter	Standard error	<i>t</i> -val
	Fatal injury			
	Fixed parameters			
	Constant	-0.531	0.215	-2.4
	Glare-related crash	0.527	0.164	3.2
	Pedestrian facing traffic	-0.304	0.110	-2.7
	Pedestrian aged 65+ years	0.553	0.237	2.3
	Motorist aged 65+ years	0.218	0.102	2.1
	Rural roadway	0.985	0.251	3.92
	Intoxicated motorist	0.606	0.213	2.8
	Weekend	0.134	0.053	2.5
	Overtaking manoeuvre	0.472	0.132	3.5
	Sunset	0.162	0.074	2.1
	Random parameters			
	Male motorist	0.324	0.139	2.3
	Standard deviation of distribution	0.389	0.163	2.3
	Heavy vehicle partner	0.274	0.110	2.4
	Standard deviation of distribution	0.622	0.290	2.14
	Restricted log-likelihood (constant only): -	-8,267.1		
	Log-likelihood at convergence: -5,806.4			
	$\rho^2 = 0.298$			
801	^a The outcome 'injury' is the baseline case	with its parame	eters set at zero.	
302				
03	According to the results listed in Tal	ole 2 glare-rel	ated crashes co	ontribute
		, 8		
304	fatalities $(t = 3.21)$, and the estimated	narameter was	fixed across	all obse
	in the connection of the connected			
305	pedestrians (the AIC, when fixed, was sma	ller than when	allowed to be r	andom).
				,
306	parameter implies that glared-related crash	n was more like	ely to result in	fatal inj
			-	5
307	among pedestrians than a non-glare-relate	ed crash. Other	factors discov	ered to
08	fixed effects on observed pedestrians and in	ncrease the like	lihood of fatal	injuries
55	inter enters on observer percontants and h		into a or futur	

Page 19 of 36

BMJ Open

309	pedestrians aged 65 years or older, motorists aged 65 years or older, rural roadways,
310	intoxicated motorists, weekend days, overtaking manoeuvres, and sunset hours.
311	The parameter for the parameter of male motorist appeared to be random, having a
312	normal distribution with a mean of 0.324 and standard deviation of 0.389 (see Table
313	2), indicating that individual pedestrians being struck by male motorists had different
314	parameters. Given the estimates (mean = 0.324 , standard deviation = 0.389),
315	approximately 79.8% of pedestrians had a higher probability of sustaining fatal
316	injuries when all other variables remained constant. Another parameter found to have
317	a random effect across the sample of pedestrians was the variable of a heavy vehicle
318	as the crash partner (with a normal distribution). This parameter had a mean of 0.274
319	and standard deviation of 0.622 (see Table 2), indicating that individual pedestrians
320	struck by heavy vehicles have different parameters, with 67.0% of the distributions
321	resulting in a positive parameter (increasing the likelihood of fatal injuries) and 33.0%
322	resulting in negative parameter (decreasing the likelihood of fatal injuries).
323	The direction of travel of pedestrians relative to vehicular traffic was also
324	discovered to affect pedestrian fatalities ($t = -2.76$). This fixed parameter suggests
325	that pedestrians who faced traffic while walking were less likely to sustain fatal
326	injuries than were those making other movements, such as walking with their backs to
327	traffic or crossing the street.

Sunset

Pedestrian facing traffic × glare crash

Motorists aged 65+ years × glare crash

Pedestrians aged 65+ years

328	Table 3 presents the estimation results	of the mixed	logit model of p	pedestrian
329	injury severity specifically in glare-related	crashes. For th	is model, the onl	y random
330	parameter (with a uniform distribution) wa	as the variable	of a heavy vehic	cle as the
331	crash partner. The heterogeneous effect	indicates that	crashes involvin	ng heavy
332	vehicles were associated with both higher	er and lower	likelihoods of p	edestrians
333	sustaining fatal injuries. We speculate that	t this heteroge	neous effect is c	aused by
334	variance in the experience level among cert	ain driver grou	ps, with more ex	perienced
335	drivers exhibiting a decreased likelihood of	of causing fata	l injuries. In oth	er words,
336	heavy vehicles are normally operated by p	professional dri	vers, with the m	ajority of
337	drivers in this group being men and	middle-aged o	r older individu	uals. The
338	heterogeneity of the heavy vehicle partner v	variable present	ed supporting est	timating a
339	mixed logit model of pedestrian injury sev	erity because s	uch effects are d	ifficult to
340	identify when using a logit framework with	numerous intera	action terms.	
341				
341	Table 3: Mixed logit estimation results for	nadastrian inju	w covority with i	ntornation
342 343	terms of glare-related crashes and other varia			
545		-		(1
	Variable	Parameter	Standard error	<i>t</i> -value
	Fatal injury			
	Fixed parameters			
	Constant	-0.324	0.139	-2.33
	Male motorist	0.193	0.069	2.80

0.274

-0.439

0.533

0.432

0.089

0.126

0.210

0.143

3.08

-3.48

2.54

3.02

1 2					
- 3 4		Rural roadways × glare crash	0.684	0.190	3.60
5		Intoxicated motorist	0.461	0.154	2.99
6		Weekend	0.157	0.075	2.09
7 8		Overtaking manoeuvre	0.329	0.121	2.72
9		Random parameter			
10 11		Heavy vehicle as crash partner	0.248	0.089	2.78
12		Standard deviation of distribution	0.526	0.211	2.49
13 14		Restricted log-likelihood (constant only): -7,2		0.211	,
15		Log-likelihood at convergence: -5,054.6			
16 17		$\rho^2=0.308$			
18	244	^a The outcome 'injury' constituted the baselin	a with its para	matara aat at zo	
19 20	344	* The outcome injury constituted the basenin	e, with its para	meters set at ze	
21	345				
22 23	346	This mixed logit model with interaction te	erms of glare cr	ashes with othe	er variables
23 24					
25 26	347	highlights several crucial features of glare c	rashes. For exa	ample, several	interaction
26 27				-	
28	348	terms were discovered to affect fatalities and	d fixed across	the observed p	edestrians:
29 30				1	
31	349	facing traffic × glare crash, elderly motorist	× glare crash a	and rural roady	vav × glare
32 33			8 , .		
34	350	crash. It appears that facing traffic in a gl	are-related cra	sh is a protec	tive factor
35 36			\mathbf{Q}	F	
37	351	against pedestrian fatalities. Injuries to pede	estrians were n	nore likely to	he fatal in
38 39	331	ugunist poucstrian raunnes. injunes to pouc	stituits were in	nore intery to	
40	352	glare crashes in which the drivers were eld	erly Furtherm	ore in glare c	rashes that
41 42	552	glate clushes in which the arrivers were eld	erry. I dittierin	ore, in giare e	rusiies tilat
42	353	took place in a rural setting, injuries were mor	re likely to be f	atal than other	wice
44 45	555	took place in a rular setting, injunes were not	te likely to be i		w15 C .
45 46	354				
47	554				
48 49	255	DIGCUGGIONG			
50	355	DISCUSSIONS			
51 52					
53	356				
54 55					
56	357	By using the National Traffic Crash Datas	set and sunrise	and sunset da	ta from the
57 58					
58 59	358	NOAA, the present study examined whether	sun glare was a	ssociated with	pedestrian
60					
		21			

fatalities involved in motor vehicle crashes. This research contributes to the growing literature on pedestrian safety as well as fills a major research gap regarding the effect of sun glare on pedestrian fatalities. Regarding methodological contributions, the proposed models offer methodological flexibility to identify individual-specific heterogeneity that may arise as a result of other unmeasured factors related to motorist experience or behaviour or geographic characteristics. When developing intervention strategies for improving pedestrian safety in sun-glare conditions, the heterogeneous effects of certain variables (which cannot be determined with traditional logit models) should be considered. The empirical contributions of this research are those findings related to the

The empirical contributions of this research are those findings related to the factors affecting pedestrian fatalities. The identification of these risk factors may provide policy-makers with information crucial to establishing suitable policies and strategies that may reduce the risk of crashes or severity. The following findings merit further discussion.

Most drivers commute during hours of extreme sun glare. It is therefore not surprising that more crashes occur on roadways that experience a significant portion of traffic during peak morning (sunrise) and afternoon (sunset) hours. The adverse effect of sun glare on crash occurrence has been well documented in relevant literature.³ ¹⁴ However, Mitra³ discovered that motorist injury severity was not Page 23 of 36

BMJ Open

increased in glare conditions, possibly as a consequence of reduced travel speed.⁸ Such a protective effect of sun glare against associated motorist injury severity does not apply to pedestrians; our study concludes that glare conditions (as indicated in the overall model) are associated with pedestrian fatalities. In our study, the adverse effect of sun glare was greater on rural roadways where crashes occur at higher speeds and motorists may not expect to encounter pedestrians as often as they would on urban roadways. One commonly-adopted engineering measure is the use of adjust message signs to warn drivers of the risk of sun glare at times and locations (i.e. rural roadways) prone to sun glare.⁹ Mitra³ noted that the odds of glare causing crashes at intersections were higher during the morning hours and in autumn and winter months in Arizona, United States. In our study, seasons had a negligible effect on pedestrian fatalities. Adding to the research conducted by Hagita and Mori, ²² who concluded that the rate of pedestrian crashes shortly after sunset was higher than that at any other time in Japan, our study revealed that compared with sunrise, the adverse effect of sun glare on pedestrian fatalities was greater during sunset in Taiwan. Therefore, sun glare during sunset hours may not only increase pedestrian crashes, as indicated by Hagita and Mori²², but also affect the resulting injury severity. Evening commutes are often risky due to fatigue, distraction, or other factors unrelated to sun glare. In our study, injuries

397 sustained by pedestrians were more likely to be fatal at sunset than any other daytime
398 of day. Additional research is warranted to examine whether sun glare affects
399 pedestrian fatalities in evening commuting crashes.

Studies have suggested that compared to sober motorists, intoxicated motorists are more likely to leave pedestrians unattended by leaving the crash scene, thereby increasing pedestrian injury severity. Furthermore, alcohol use has been discovered to lead to hit-and-runs at night and during the weekend.^{23 24} Our study revealed that the combined effects of alcohol consumption and sun glare were associated with pedestrian fatalities. Similar to other studies,^{23 24} our research highlights, in particular, the effect of motorist alcohol consumption on the likelihood of fatality and on the weekends.

Studies have consistently reported that elderly motorists are the group most affected by sun glare. For example, two simulation studies conducted by Gray and Regan⁶ and Theeuwes et al.⁷ reported that in conditions of sun glare, older drivers executing a turning manoeuvre demonstrated significantly greater reductions in safety margin than did younger drivers, and older drivers demonstrated the most significant decrease in the ability to successfully detect pedestrians. Studies analysing real-life police-reported crash data¹⁵ have indicated that in conditions of sun glare, older drivers are more likely to strike other vehicles. Our study contributes to the literature

Page 25 of 36

416	on pedestrian safety by concluding that older motorists, when affected by sun glare,
417	are likely to cause fatal injuries to pedestrians when crashes occur. Advance-warning
418	signs or educational efforts to increase older drivers' awareness of sun-glare
419	conditions may reduce the likelihood of vehicle crashes or pedestrian injury severity.
420	In our study, no discrepancy was found between injuries in spring/summer and
421	autumn/winter. We speculate that this is primarily because the anticipated effect of
422	sun glare in different seasons may be offset by, for example, typhoons that strike
423	Taiwan in summer and northeast monsoon in winter. Our result differs from those
424	from large country, ³ where the adverse effect of sun glare was found to be greater in
425	autumn and winter months. Such studies have been conducted in large countries such
426	as the United States, where the climate changes substantially across latitudes, whereas
427	Taiwan is a small island where climate changes little throughout the country.
428	Considerable work has concluded that older pedestrians are more likely to be
429	fatally or severely injured in crashes, both during daytime and night conditions. ²⁵ Our
430	research provides ample evidence to suggest that injuries sustained by older
431	pedestrians in crashes caused by sun glare are more likely to be fatal than those
432	sustained by younger pedestrians. Whether the reduced conspicuity of pedestrians
433	(particularly older pedestrians) under conditions of sun glare (twilight) plays a role in
434	this effect is uncertain. However, enhancing the conspicuity of pedestrians with the

use of visibility aids, not only in night conditions²⁶ but also in twilight conditions,

may be beneficial for reducing crash risk or severity. Adding to the research conducted by Sun et al.,¹⁴ who reported that crashes related to improper turning or lane changing were more likely to occur during periods of sun glare, the present study reveals an association between the execution of overtaking manoeuvres during periods of sun glare and pedestrian fatalities. Injuries sustained in crashes caused by vehicles executing overtaking manoeuvres are commonly severe because motorists must accelerate to overtake other vehicles. In Taiwan, it is common for motorists to execute overtaking manoeuvres by using roadway shoulders, where pedestrians walk. Motorists should be aware of the risk they pose to pedestrians when overtaking other vehicles, particularly during periods of sun glare. Studies have reported that facing traffic is beneficial for preventing pedestrian crashes²⁷ and reducing the severity of related injuries.²⁵ Our study complements these studies by concluding that walking against traffic is associated with decreased injury severity. In these cases, pedestrians' forward views may be well lit and thus be more favourable for pedestrians than walking in other directions. Expressing the necessity of facing traffic while walking along a street, particularly in conditions of sun glare, should be supplemented with information regarding the related safety benefits. Although it varied among the study pedestrians, being struck by heavy vehicles

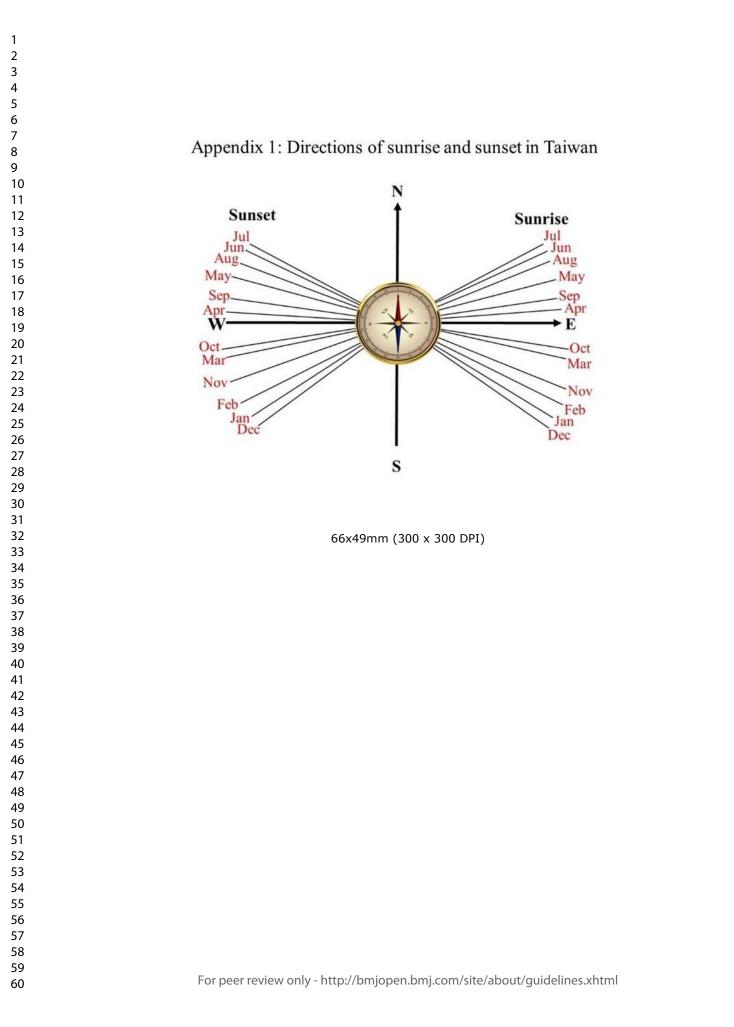
Page 27 of 36

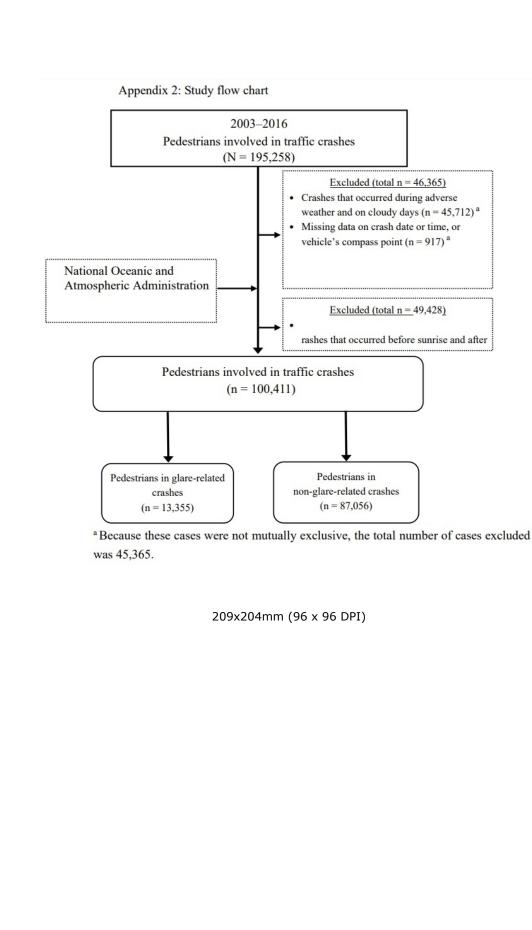
454	increased the likelihood of fatal injuries. Although this finding agrees with those of
455	other studies, ^{28 29} we additionally concluded that the effect of heavy vehicles was
456	greater in conditions of sun glare. Notably, drivers of heavy vehicles tend to be
457	professional. It is unclear whether driving this particular group of vehicles, in
458	combination with undertaking longer hours of travel compared with those undertaken
459	by a car driver, makes such drivers more susceptible to problems related to sun glare
460	than other drivers are. Educational efforts can be directed towards drivers of heavy
461	vehicles regarding driver susceptibility to sun glare, particularly on roadways with
462	pedestrians.
463	This study had the following research limitations. First, it did not consider the
464	surrounding topography; motorists travelling through areas with buildings or
465	mountains, may be less susceptible to sun glare because the sun is occluded. By
466	analysing geographic and police report data, likely times and locations for sun glare
467	can be predicted, and motorists can be well informed regarding where and when to
468	expect sun glare. Furthermore, we classified crashes as being related to glare when the
469	angular distance between the driver's line of sight and the sun was between 0° and
470	45°, a threshold based on research in Japan. ¹³ Further research adopting more
471	stringent thresholds of 10°, 20°, or 30° degrees or analysing the changes in this effect
472	for motorists of different ages may attempt to compare their results with ours, as

indicated by Jurado-Piña and Pardillo Mayora.9 Due to limited funding, we could link only the National Traffic Crash Dataset and NOAA data but not prehospital triage system or hospital data (e.g. the National Health Insurance Research Dataset: NHIRD). We recommend that future research link our data to clinical datasets that provide details on injuries (e.g. injured body regions, hospitalisation) other than the condition of fatalities examined in this study. Sun glare is a combined spatiotemporal factor. To broaden our collective understanding of factors of pedestrian safety, collecting spatial and temporal data whenever possible is paramount. The empirical results obtained in this study may be unique to Taiwan because of its unique sunrise and sunset times and orientations. As a result, until additional analyses are conducted using data from other countries to determine whether sun glare is a salient factor of pedestrian fatalities, caution should be exercised in generalising our findings for application in other settings. Contributors: HPM drafted and revised the manuscript and established the theoretical support for data analyses. PLC re-analysed the data and interpreted the results. SKC reviewed relevant literature and analysed the data. LHC analysed the data. VL edited the manuscript and reviewed relevant literature. CWP was responsible

- 491 for study design, contributed to the analysing and interpretation of data, drafted the
- 492 manuscript, and strengthened discussion and conclusion. The final version of the

1 2		
3 4	402	
5	493	manuscript was read and approved by all contributing authors.
6 7	40.4	
8	494	
9 10	405	
11	495	Competing interests: None declared.
12 12		
13 14	496	
15		
16 17	497	Funding: This study was financially supported by grants from the Ministry of
18		
19 20	498	Science and Technology, Taiwan (MOST 105-2221-E-038-013-MY3) and Yuan's
21		
22	499	General Hospital and Taipei Medical University (106YGH-TMU-07). The funders
23 24		
25	500	had no role in the design of the study, data collection and analysis, interpretation of
26 27		
28	501	data, or preparation of the manuscript. Václav Linkov was supported by the Ministry
29 30		
31	502	of Education, Youth and Sports within National Sustainability Programme I, a project
32	302	of Education, Touin and Sports within Futurina Sustainaonity Programme I, a project
33 34	503	of Transport R&D Centre (LO1610), on a research grant acquired from the
35	505	of mansport Red Centre (101010), on a research grant acquired nom the
36 37	504	Operational Programme Research and Development for Innovations
38	504	Operational Programme Research and Development for Innovations
39 40		
41	505	(CZ.1.05/2.1.00/03.0064).
42		
43 44	506	
45		
46 47	507	Data sharing statement: Only citizens of Taiwan who fulfil the requirements of
48		
49 50	508	conducting research projects are eligible to apply to use the dataset. The use of dataset
50 51		
52	509	is limited to research purposes only. The authors had no special access privileges that
53 54		
55	510	others would not have.
56 57		
58	511	
59 60	512	
00		•


3	513	Ref	erence
4 5	514		
6	515	1.	Owsley C, Mcgwin G Jr. Vision and driving. Vision Research 2010; 50(23):
7 8	516	1.	2348-2361.
9	517	2.	Tversky A, Kahneman D. Judgment under uncertainty heuristics and biases.
10 11	518	2.	Science 1974; 185(4157): 1124-1131.
12 13	519	3.	Mitra S. Sun glare and road safety: an empirical investigation of intersection
14	520		crashes. Safety Science 2014; 70: 246-254.
15 16	521	4.	Redelmeier DA, Tibshirani R. Why cars in the next lane seem to go faster.
17	522		Nature 1999; 401: 35-36.
18 10	523	5.	Redelmeier DA, Raza S. Optical illusions and life-threatening traffic crashes: a
19 20	524		perspective on aerial perspective. Medical Hypotheses 2018; 114: 23-27.
21	525	6.	Gray R, Regan D. Glare susceptibility test results correlate with temporal safety
22 23	526		margin when executing turns across approaching vehicles in simulated low-sun
24	527		conditions. Ophthalmic and Physiological Optics 2007; 27(5): 440-450.
25 26	528	7.	Theeuwes J, Alferdinck JW, Perel M. Relation between glare and driving
27	529		performance. <i>Human Factors</i> 2002; 44(1): 95-107.
28 29	530	8.	Churchill AM, Tripodis Y, Lovell DJ. Sun glare impacts on freeway congestion:
30	531		geometric model and empirical analysis. Journal of Transportation Engineering
31 32	532		2012; 138: 1196-1204.
33	533	9.	Jurado-Piña R, Pardillo Mayora JM. Methodology to predict driver vision
34 35	534		impairment situations caused by sun glare. Transportation Research Record:
36	535		Journal of the Transportation Research Board 2009; 2120:, 12-17.
37 38	536	10.	Anue K. Sun glare detection and visualization. 2017. Master's degree in
39	537		Computer Science. Department of Computer Science. Norwegian University of
40 41	538		Science and Technology, 2017.
42 43	539	11.	Redelmeier DA, Raza S. Life-threatening motor vehicle crashes in bright
44	540		sunlight. <i>Medicine</i> 2017; 96(1): e5710.
45 46	541	12.	Mitra S, Washington S. On the significance of omitted variables in intersection
47	542		crash modeling. Accident Analysis and Prevention 2012; 49: 439-448.
48 49	543	13.	Hagita K, Mori K. The effect of sun glare on traffic accidents in Chiba prefecture,
50	544		Japan. Asian Transport Studies 2014; 3(2): 205-219.
51 52	545	14.	Sun D, El-Basyouny K, Kwon TJ. Sun glare: Network characterization and
53	546		safety effects. Transportation Research Record: Journal of the Transportation
54 55	547		Research Board 2018.
56	548	15.	Choi EH, Santokh S. Statistical assessment of the glare issue - human and
57 58	549		natural elements. Proceeding of 2005 FCSM Conference, Federal Committee on
59	550		Statistical Methodology, Arlington, VA, 2005; 1-8.
60			


3 4	551	16.	National Oceanic Earth System Research Laboratory and Atmospheric
5	552		Administration. <u>https://www.esrl.noaa.gov/gmd/grad/solcalc/</u> Accessed:
6 7	553		2018-08-22.
8	554	17.	Mchugh ML. The chi-square test of independence. Biochemia Medica 2013;
9 10	555		23(2): 143-149.
11	556	18.	Barbieri S, Vettore G, Pietrantonio V, Snenghi R, Tredese A, Bergamini M,
12 13	557		Previato S, Stefanati A, Gaudio RM, Feltracco P. Pedestrian inattention
14	558		blindness while playing Pokemon Go as an emerging health-risk behavior: a case
15 16	559		report. Journal of Medical Internet Research 2017; 19(4): e86.
17	560	19.	Chen PL, Pai CW. Evaluating the effects of smartphone racing games and other
18 19	561		game types on pedestrian's risk-taking inclinations. Computers in Human
20	562		Behavior 2018; 88: 78-83.
21 22	563	20.	Bhat CR. Quasi-random maximum simulated likelihood estimation of the mixed
23	564		multinomial logit model. Transportation Research Part B: Methodological 2001;
24 25	565		35(7): 677-693.
26	566	21.	Manski CF, Mcfadden DL. A structural analysis of discrete data with
27 28	567		econometric applications. The MIT Press, Cambridge, MA. 1981.
29	568	22.	Hagita K, Mori K. Traffic accident analysis of sun glare and twilight shortly
30 31	569		before and after sunset in Chiba prefecture, Japan. Journal of the Eastern Asia
32	570		Society for Transportation Studies 2015; 11: 1999-2014.
33 34	571	23.	Solnick SJ, Hemenway D. Hit the bottle and run: The role of alcohol in
35	572		hit-and-run pedestrian fatalities. Journal of Studies on Alcohol and Drugs 1994;
36 37	573		55(6): 679-684.
38	574	24.	Solnick SJ, Hemenway D. The hit-and-run in fatal pedestrian accidents: victims,
39 40	575		circumstances and drivers. Accident Analysis and Prevention 1995; 27(5):
40	576		643-649.
42	577	25.	Chen PL, Jou RC, Saleh W, Pai CW. Accidents involving pedestrians with their
43 44	578		backs to traffic or facing traffic: an evaluation of crash characteristics and
45	579		injuries. Journal of Advanced Transportation 2016; 50(5): 736-751.
46 47	580	26.	Kwan I, Mapstone J. Interventions for increasing pedestrian and cyclist visibility
48	581		for the prevention of death and injuries. Cochrane Database of Systematic
49 50	582		<i>Reviews</i> 2006; (4): CD003438.
51	583	27.	Luoma J, Peltola H. Does facing traffic improve pedestrian safety? Accident
52 53	584		Analysis and Prevention 2013; 50: 1207-1210.
54	585	28.	Lefler DE, Gabler HC. The fatality and injury risk of light truck impacts with
55 56	586		pedestrians in the united states. Accident Analysis and Prevention 2004; 36(2):
57	587		295-304.
58 59	588	29.	Dong B, Ma X, Chen F. Analyzing the injury severity sustained by non-motorists
60		- •	

at mid-blocks considering non-motorists' pre-crash behavior. Transportation

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
12 13 14 15 16 17 18 19	
17	
18	
10	
19	
20	
21	
21 22 23 24 25	
23	
24	
25	
25	
26	
27	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
38	
39	
52	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
59	

Research Record: Journal of the Transportation Research Board 2018; 1-11. For peer teriew only

STROBE Statement

Page 35 of 36			BMJ Open 360 130 130 130 130 130 130 130 130 130 13	
1 2				
- 3 4	Section/Topic	Item No	Checklist of items that should be included in reports of case-control studies No Recommendation No (a) Indicate the study's design with a commonly used term in the title or the abstract No	Reported on Page No
5 6	Title and abstract	1		1
7	The and abstract	1	(b) Provide in the abstract an informative and balanced summary of what was done and what was found $\frac{9}{8}$	2–3
8	Introduction			
9 10	Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4–6
11	Objectives	3	State specific objectives, including any prespecified hypotheses	7
12	Methods		19.	
13 ⁻ 14	Study design	4	Present key elements of study design early in the paper	8–10
15 16	Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up $\frac{1}{6}$	8-12
17 18 19 20 21 22 23		6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Bescribe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants.	7–9
24 25			(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case	
26 27 28	Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	11,12
29 30	Data sources/measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	11,12
31 ⁻ 32	Bias	9	Describe any efforts to address potential sources of bias	9
	Study size	10	Explain how the study size was arrived at	10
34		11	Explain how quantitative variables were handled in the analyses. If applicable, describe which grouping evere chosen and why	11,12
35 36			(a) Describe all statistical methods, including those used to control for confounding	12–15
37			(b) Describe any methods used to examine subgroups and interactions	12–15
38			(c) Explain how missing data were addressed 0 (d) Cohort study If applicable, explain how loss to follow up was addressed	12–15
39 40 41 42	Statistical methods	12	(d) Cohort study—If applicable, explain how loss to follow-up was addressed 0 Case-control study—If applicable, explain how matching of cases and controls was addressed 0 Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy 0 (e) Describe any sensitivity analyses 0	12–15
43			(e) Describe any sensitivity analyses	N/A
44 45 46			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	1

		BMJ Open 36/6 mj. open se	Page 36 of 1
Section/Topic	Item No	Recommendation 8-028	Reported on Page No
Results		350	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for Bligibility, confirmed eligible, included in the study, completing follow-up, and analysed	10
1 articipants	15	(b) Give reasons for non-participation at each stage	10
		(c) Consider use of a flow diagram	Appendix 2
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on expositives and potential confounders	10
Descriptive data	14.	(b) Indicate number of participants with missing data for each variable of interest	10
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	N/A
		Cohort study—Report numbers of outcome events or summary measures over time	N/A
Outcome data	15*	Case-control study—Report numbers in each exposure category, or summary measures of exposure	N/A
		Cross-sectional study—Report numbers of outcome events or summary measures	15
Main manife	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, $\frac{9}{2}$ % confidence interval). Make clear which confounders were adjusted for and why they were included	15–21
Main results	16	(b) Report category boundaries when continuous variables were categorized	N/A
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time peried	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A
Discussion		2 S	
Key results	18	Summarise key results with reference to study objectives	22–29
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	27–29
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	27–29
Generalisability	21	Discuss the generalisability (external validity) of the study results	28–29
Other Information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	29
⁰ * <i>Give information separately for cas</i>		and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.	
best used in conjunction wi	ith this artic	article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE cl le (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.or om/). Information on the STROBE Initiative is available at www.strobe-statement.org.	necklist is g/, and
Lpidennology at http://ww	epideiii.et	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	2