

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

The SAMDAW study protocol: A clinical descriptive study on Symptoms Associated to Moisture DAmage at Workplace

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026485
Article Type:	Protocol
Date Submitted by the Author:	04-Sep-2018
Complete List of Authors:	Nynäs, Pia; Tyoterveyslaitos, Tampere; Tampereen yliopistollinen sairaala, Työlääketieteen pkl Vilpas, Sarkku; Tampereen yliopistollinen sairaala, Department of Phoniatrics Kankare, Elina; Tampereen yliopistollinen sairaala, Department of Phoniatrics Karjalainen, Jussi; Tampereen yliopistollinen sairaala, Allergy Centre Lehtimäki, Lauri; Tampereen yliopistollinen sairaala, Allergy Centre; Tampereen yliopisto Laaketieteen yksikko, Faculty of Medicine and Life Sciences Numminen, Jura; Tampereen yliopistollinen sairaala, Allergy Centre Tikkakoski, Antti; Tampereen yliopistollinen sairaala, Department of Clinical Physiology Kleemola, Leenamaija; Tampereen yliopisto Laaketieteen yksikko, Faculty of Medicine and Life Sciences Uitti, Jukka; Tampereen yliopisto Laaketieteen yksikko, Faculty of Medicine and Life Sciences; Tyoterveyslaitos
Keywords:	moisture damage, mold, Asthma < THORACIC MEDICINE, irritable larynx, respiratory symptoms
	- -

SCHOLARONE[™] Manuscripts

linical descri∣ at Workplace
² , J. Karjalaine
ne, Tampere l
e University He Hospital, Tam Tampere University ealth
asthma, irritat
mjopen.bmj.com

The SAMDAW study protocol: A clinical descriptive study on Symptoms Associated to Moisture DAmage at Workplace

P. Nynäs^{1,5,6}, S. Vilpas², E. Kankare², J. Karjalainen³, L. Lehtimäki^{3,5}, J. Numminen³,

A. Tikkakoski¹, L. Kleemola⁵, J. Uitti^{1,5,6}

¹Department of Occupational Medicine, Tampere University Hospital, Tampere, Finland

²Department of Phoniatrics, Tampere University Hospital, Tampere, Finland

³Allergy Centre, Tampere University Hospital, Tampere, Finland

⁴Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland

⁵Faculty of Medicine and Life Sciences, University of Tampere, Finland

⁶Finnish Institute of Occupational Health

Corresponding author: Pia Nynäs, pia.nynas@ttl.fi

Word count: 1422

Key words: Moisture damage, mold, asthma, irritable larynx, respiratory symptoms

Abstract

BMJ Open: first published as 10.1136/bmjopen-2018-026485 on 25 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

Introduction

Moisture damage (MD) expos work has been shown to increase the risk of new onset asthma and exacerbati thma. However, most of the studies in this field aire studies. Small proportion of MD exposed have been cross-sectional qu workers are diagnosed with a Many patients with MD exposure at work referred to secondary health port intermittent hoarseness, loss of voice or difficulty to inhale, referring to nal or organic problems of the larynx. For accurate treatment, proper dif al diagnostics is paramount. In this clinical study, we describe the prevalence o atory, voice and other symptoms related to MD at work in patients referred to lary health care.

Methods and analysis

The study sample consists of s with moisture damage exposure at work and associated respiratory tract a pice symptoms referred to Tampere University Hospital. The clinical tests co to the study patients included comprehensive lung function tests, laboratory in prick tests, imaging and clinical evaluation by specialists of respiratory med to-rhino-laryngology and phoniatrics. The d by a specialist of occupational medicine. The exposure assessment was pe study patients filled out a que ire on previous illnesses, symptoms and the study group would have different psychosocial work load. To fir background characteristics fro overall population, the same questionnaire was sent to 1500 Finnish speaking e in the same hospital district randomly selected by the Finnish Population Info n System. To explore how common laryngeal disorders and voice symptom general, a part of the tests will be conducted to 50 asymptomatic volunteers.

sure at v
on of as
uestionn
asthma.
care rep
o functio
fferentia
of respira
second
f patients
nd/or vo
onducted
/ and sk
licine, of
erformed
estionnai
nd out if
om the o
g people
ormatior
ns are in

Ethics and dissemination
The regional ethics committee of Tampere University Hospital has approved the
study. All study subjects gave their written informed consent, which is required also
from the controls. The results will be communicated locally and internationally as
conference papers and journal articles.
Strengths and limitations of this study
• This kind of comprehensive clinical study associated with moisture damage
exposure at work has not been conducted before.

- This study will increase the understanding of respiratory tract and voice symptoms, and associated clinical findings in subjects exposed to moisture damage.
- Information of moisture damage exposure at work is based on documents
 from the workplace
- Limitation of a cross-sectional study like this is that it is not possible to obtain information on causal relationships between exposure and symptoms or illnesses

BMJ Open: first published as 10.1136/bmjopen-2018-026485 on 25 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

Introduction

Indoor air quality problems are considered important risk factors for health problems worldwide¹. Indoor air associated symptoms may be interrelated with different indoor air factors such as insufficient ventilation, unfavourable temperature conditions, dry indoor air, dustiness, moisture damage (MD), volatile organic compounds (VOC), and man-made mineral/ vitreous fibres (MMMF/ MMVF). Even if we do not know the exact cause of symptoms¹ MD exposure at work has been shown to increase the risk of new onset asthma and exacerbation of asthma^{2,3}. Other illnesses or respiratory symptoms that have been associated with MD exposure include cough, wheezing, dyspnoea, rhinitis, and upper respiratory tract symptoms^{3,4}.

In Finland, located in subarctic area, MDs in residences and schools are common⁵. Workers in office buildings commonly report symptoms and complaints associated with indoor air^{6,7}. There is also a growing public concern over MDs in buildings and their possible permanent effects on dwellers' or workers' health in Finland, even if there is only a little evidence of serious or permanent illnesses other than asthma caused by exposure to dampness^{3,8}.

There are few studies describing the clinical findings in patients having symptoms when exposed to MD at work^{9,10}. However, previous studies in this field have mainly been epidemiological³, and most is known about children's risk of developing symptoms in homes or schools with MD^{11,12}. In majority of the studies, the assessment of exposure to MD or presence of symptoms or illnesses has been based on questionnaires^{13,14}. Furthermore, only a small proportion of MD exposed workers are diagnosed with asthma². To our clinical experience, many patients with MD exposure at work referred to secondary health care report intermittent

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

hoarseness, loss of voice or difficulty to inhale, which would refer to functional or organic problems of the larynx¹⁵. In the case of laryngeal disorders, asthma medication is not useful or may even worsen the symptoms if the larynx is sensitive to irritation¹⁶. Coexisting with asthma, laryngeal disorders may cause insufficient response to asthma treatment.

Studies over the past decades have provided important information on idiopathic environmental intolerance (IEI), in which a person has symptoms from different organ systems when in contact with an environmental factor that does not cause symptoms to most people¹⁷. In odour or multiple chemical sensitivity (MCS) a person reacts with symptoms in association with low levels of airborne chemicals that most people tolerate without problems¹⁸. It seems that some proportion of the patients that have indoor air associated symptoms in fact have IEI/MCS, but the frequency of this condition among these patients is not known.

Aims of the study

In patients referred to secondary health care because of respiratory tract and/ or voice symptoms associated to MD exposure at work, the aim is to:

- Describe the prevalence of different characteristics, symptoms and clinical test findings
- Find out the frequency of laryngeal symptoms and their possible effect on asthma diagnostics
- Explore the number of patients that fulfil the criteria of chemical sensitivity according to QEESI[©] question series¹⁹.

4) Find out if there are connections between above mentioned symptoms and clinical findings and if it would be possible to allocate the clinical tests according to patient's symptoms in secondary health care.

Methods and analysis

The study is conducted at Tampere University Hospital, which is a secondary level referral centre for a population of 530 000 and a tertiary level referral centre for a population of about 1 million people. Patients referred to departments of Occupational Medicine or Phoniatrics or Allergy Centre because of symptoms associated with indoor complaints at their workplace were interviewed as possible study subjects between October 2015 and June 2017. The study inclusion criteria were 1) age between 18 and 65 years, 2) upper and/or lower respiratory tract and/or voice symptoms, 3) symptoms associated to workplace, and 4) at least a strong suspicion of MD at the workplace (Table 1). The exclusion criteria were 1) severe illness (e.g. cancer) and 2) pregnancy. The study design is presented in Figure 1. After the study subjects had given their informed signed consent, the work-associated symptoms were collected by a structured interview. If the patient was not sure if the symptom was more frequent at work, it was not considered to be work-associated.

The conducted clinical tests are presented in Table 2. According to Finnish asthma guideline²⁰, diagnosis of asthma must be confirmed with a demonstration of variable airway obstruction in lung function measurements: i) peak expiratory flow (PEF) monitoring, ii) spirometry with bronchodilation test, or iii) test for bronchial hyperreactivity (Table 3). To confirm or rule out the asthma diagnosis, the patients

BMJ Open

carried out a two-week PEF monitoring, spirometry with bronchodilation test and methacholine challenge test. The PEF monitoring included PEF measurements with PinnacleTM peak flow meter for two weeks in the morning and evening before and after inhaled bronchodilator (0.4 mg salbutamol). Spirometry was performed according to European Respiratory Society/American Thoracic Society guidelines²¹ and methacholine challenge test using dosimeter with controlled tidal breathing according to Finnish guidelines²². To investigate if possible asthma is associated with work the patients performed PEF monitoring at and off work²³ with Vitalograph[®] PEF/FEV Diary device. Diffusing capacity of the lungs²⁴ and exhaled nitric oxide $(FE_{NO})^{25}$ were determined. Specialists of respiratory medicine (JK and LL), oto-rhino-laryngology (JN) and phoniatrics (SV) examined the patients. For diagnosing laryngeal disorders videolaryngostroboscopy with either rigid or fiberoptic scope was performed, voice samples were recorded and also inspirograms were recorded before and after methacholine tests. Biopsy of nasal mucosa and a blood sample were taken and preserved for later analyses.

Exposure to MD at work was assessed from the documents of the building and indoor air quality investigations made at the workplace, if available, according to Finnish guidelines²⁶. Also, MMMFs, VOCs or problems in ventilation conditions at workplace were assessed, if these had been investigated.

As a non-responder analysis, of the patients who were invited but who did not take part in the study, age, symptoms, the presence of asthma diagnosis, and exposure will be evaluated based on patient records.

To explore how common laryngeal disorders are in general, methacholine challenge test, voice recording, clinical examination of the specialist of phoniatrics including

BMJ Open: first published as 10.1136/bmjopen-2018-026485 on 25 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

videolaryngostroboscopy, FE_{NO} , and skin prick tests will be conducted to 50 asymptomatic volunteers adjusted for age and gender.

Questionnaire/ survey

The study patients and the volunteers fill out a questionnaire including questions on

- previous diseases, medication and upper and lower respiratory symptoms²⁷
- sinusitis symptoms (Sino-Nasal Outcome Test-22²⁸)
- voice symptoms (Voice Activity and Participation Profile²⁹, Voice Handicap Index³⁰, voice disorder questionnaire³¹)
- laryngeal symptoms (Newcastle laryngeal hypersensitivity questionnaire³²)
- reflux symptoms (Reflux Symptom Index³³)
- depression and anxiety symptoms (General Health Questionnaire GHQ-12^{©34};
 Generalized Anxiety Disorder 7-item scale³⁵)
- psychosocial work load³⁶, and stress symptoms³⁷
- chemical sensitivity (QEESI[©])¹⁹

To find out if the study group would have different background characteristics from the overall population, the same questionnaire was sent to 1500 Finnish speaking people in the same hospital district randomly selected by the Finnish Population Information System. The proportions of women and men and different age groups in this comparison material are similar to the study population.

Sample size and power calculation

It is estimated that a sample of 100 patients is enough to clinical deduction of the different characteristics of this patient group.

BMJ Open

Concerning the population-based comparison material, our aim was to get 400 questionnaire answers (ratio 1:4) to increase the statistical power. Taking recent rather low survey response rates into account, we sent the questionnaire to 1500 people.

To assess if findings suggesting laryngeal disorders are more frequent among those who have respiratory tract or voice symptoms associated to workplace MD, data on frequency of laryngeal findings of asymptomatic people is needed. When analyzing the findings of methacholine challenge test of 30 patients, signs of laryngeal disorders were found in 62,5%. We estimated that among under 30% of asymptomatic people there are such findings in the methacholine challenge test. In power calculation based on findings in the methacholine challenge test, the number of asymptomatic people tested would be 50 with 80% force and 90% confidence interval.

Data analyses

We will conduct standard descriptive statistics to determine the frequency of different symptoms, findings of clinical tests and their interrelations.

Ethics and dissemination

The regional ethics committee of Tampere University Hospital has approved the study (R14095). All study subjects gave their written informed consent, which is required also from the volunteers. The study adheres to good clinical research guidelines and the Helsinki Declaration³⁸.

The results will be communicated locally as well as internationally as conference papers and journal articles.

References

- WHO. WHO Guidelines for Indoor Air Quality: Dampness and Mould. Copenhagen: WHO Regional Office for Europe; 2009. http://www.euro.who.int/__data/assets/pdf_file/0017/43325/E92645.pdf.
- Karvala K, Toskala E, Luukkonen R, Uitti J, Lappalainen S, Nordman H. Prolonged exposure to damp and moldy workplaces and new-onset asthma. *Int Arch Occup Environ Health.* 2011;84(7):713-721. doi:10.1007/s00420-011-0677-9
- Mendell MJ, Mirer AG, Cheung K, Tong M, Douwes J. Respiratory and allergic health effects of dampness, mold, and dampness-related agents: a review of the epidemiologic evidence. *Environ Health Perspect*. 2011;119(6):748-756. doi:10.1289/ehp.1002410
- Jaakkola JJK, Hwang B-F, Jaakkola MS. Home Dampness and Molds as Determinants of Allergic Rhinitis in Childhood: A 6-Year, Population-based Cohort Study. *Am J Epidemiol*. 2010;172(4):451-459. doi:10.1093/aje/kwq110
- Täubel M, Karvonen AM, Reponen T, Hyvärinen A, Vesper S, Pekkanen J.
 Application of the Environmental Relative Moldiness Index in Finland. *Appl Environ Microbiol.* 2015;82(2):578-584. doi:10.1128/AEM.02785-15
- Reijula K, Sundman-Digert C, Reijula K. Assessment of indoor air problems at work with a questionnaire. *Occup Environ Med.* 2004;61(1):33-38. doi:10.1136/oem.2002.005835
- Ministry of Social Affairs and Health F. Moisture Damages in Workplaces.
 Memo of the Working Group on Moisture Damages (in Finnish). Helsinki;

	2009.
8.	Hurraß J, Heinzow B, Aurbach U, et al. Medical diagnostics for indoor mold
	exposure. Int J Hyg Environ Health. 2017;220(2):305-328.
	doi:10.1016/j.ijheh.2016.11.012
9.	White SK, Cox-Ganser JM, Benaise LG, Kreiss K. Work-related peak flow and
	asthma symptoms in a damp building. Occup Med (Chic III). 2013;63(4):287-
	290. doi:10.1093/occmed/kqt028
10.	Hellgren U-M, Hyvärinen M, Holopainen R, Reijula K. Perceived indoor air
	quality, air-related symptoms and ventilation in Finnish hospitals. Int J Occup
	Med Environ Health. 2011;24(1):48-56. doi:10.2478/s13382-011-0011-5
11.	Karvonen AM, Hyvarinen A, Korppi M, et al. Moisture Damage and Asthma: A
	Birth Cohort Study. Pediatrics. 2015;135(3):e598-e606.
	doi:10.1542/peds.2014-1239
12.	Borràs-Santos A, Jacobs JH, Täubel M, et al. Dampness and mould in schools
	and respiratory symptoms in children: the HITEA study. Occup Environ Med.
	2013;70(10):681-687. doi:10.1136/oemed-2012-101286
13.	Kim J-L, Henneberger PK, Lohman S, et al. Impact of occupational exposures
	on exacerbation of asthma: a population-based asthma cohort study. BMC
	Pulm Med. 2016;16(1):148. doi:10.1186/s12890-016-0306-1
14.	Kurth L, Virji MA, Storey E, et al. Current asthma and asthma-like symptoms
	among workers at a Veterans Administration Medical Center. Int J Hyg Environ
	Health. 2017;220(8):1325-1332. doi:10.1016/j.ijheh.2017.09.001
15.	Moscato G, Pala G, Cullinan P, et al. EAACI position paper on assessment of

BMJ Open: first published as 10.1136/bmjopen-2018-026485 on 25 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

2	
3	
4	
5	
6	
7	
8	
9	
10	
11 12	
13	
14	
14 15	
16	
17	
18	
19	
20	
21	
22	
22 23	
24	
25	
25 26	
20	
27	
28 29	
30	
31 22	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

cough in the workplace. *Allergy Eur J Allergy Clin Immunol*. 2014. doi:10.1111/all.12352

- 16. Idrees M, FitzGerald JM. Vocal cord dysfunction in bronchial asthma. A review article. *J Asthma*. 2015;52(4):327-335. doi:10.3109/02770903.2014.982288
- 17. Wolf C. Multiple chemical sensitivity (MCS). *Environ Sci Pollut Res.*1996;3(3):139-143. doi:10.1007/BF02985520

Dantoft TM, Andersson L, Nordin S, Skovbjerg S. Chemical intolerance. *Curr Rheumatol Rev.* 2015;11(2):167-184.
 http://www.ncbi.nlm.nih.gov/pubmed/26088215. Accessed May 14, 2018.

- Miller CS, Prihoda TJ. The Environmental Exposure and Sensitivity Inventory (EESI): a standardized approach for measuring chemical intolerances for research and clinical applications. *Toxicol Ind Health*. 1999;15(3-4):370-385. doi:10.1177/074823379901500311
- Haahtela T, Lehtimäki L, Ahonen E, et al. [Update on current care guidelines: asthma]. *Duodecim*. 2013;129(9):994-995.
 http://www.ncbi.nlm.nih.gov/pubmed/23786112. Accessed May 18, 2018.
- 21. Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. *Eur Respir J*. 2005;26(2):319-338. doi:10.1183/09031936.05.00034805
- Nieminen MM, Lahdensuo A, Kellomaeki L, Karvonen J, Muittari A. Methacholine bronchial challenge using a dosimeter with controlled tidal breathing. *Thorax.* 1988;43(11):896-900. http://www.ncbi.nlm.nih.gov/pubmed/3065974. Accessed May 18, 2018.
- 23. Burge PS. Use of serial measurements of peak flow in the diagnosis of

BMJ Open

1		
2 3		occupational asthma. Occup Med. 1993;8(2):279-294.
4 5		http://www.ncbi.nlm.nih.gov/pubmed/8506506. Accessed May 19, 2017.
6 7		······································
8	24.	MacIntyre N, Crapo RO, Viegi G, et al. Standardisation of the single-breath
9 10		determination of carbon monoxide uptake in the lung. Eur Respir J.
11 12		
13		2005;26(4):720-735. doi:10.1183/09031936.05.00034905
14 15	25.	Horváth I, Barnes PJ, Loukides S, et al. A European Respiratory Society
16 17		technical standard: exhaled biomarkers in lung disease. Eur Respir J.
18		
19 20		2017;49(4):1600965. doi:10.1183/13993003.00965-2016
21 22	26.	Latvala J, Karvala K, Sainio M, et al. Guidelines for Workplace and
23	20.	
24 25		Occupational Health Actions in Indoor Air Problems (Finnish).
26 27		Työterveyslaitos; 2017. http://www.julkari.fi/handle/10024/132078. Accessed
28 29		August 20, 2018.
30		
31 32	27.	Kilpelainen M, Terho EO, Helenius H, Koskenvuo M. Validation of a new
33 34		questionnaire on asthma, allergic rhinitis, and conjunctivitis in young adults.
35		Allergy. 2001;56(5):377-384. doi:10.1034/j.1398-9995.2001.056005377.x
36 37		
38 39	28.	Morley AD, Sharp HR. A review of sinonasal outcome scoring systems - which
40		is best? <i>Clin Otolaryngol</i> . 2006;31(2):103-109. doi:10.1111/j.1749-
41 42		
43 44		4486.2006.01155.x
45 46	29.	Sukanen O, Sihvo M, Rorarius E, Lehtihalmes M, Autio V, Kleemola L. Voice
47		Activity and Participation Profile (VAPP) in accessing the offects of voice
48 49		Activity and Participation Profile (VAPP) in assessing the effects of voice
50 51		disorders on patients' quality of life: Validity and reliability of the Finnish
52		version of VAPP. Logop Phoniatr Vocology. 2007;32(1):3-8.
53 54		doi:10.1080/14015430600784386
55 56		
57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- Alaluusua S JM. Psycho-social handicap of voice disorder and its rehabilitation: a pilot study of Finnish version of Voice Handicap Index [In Finnish] [master thesis]. 2003.
- Sala E, Laine A, Simberg S, Pentti J, Suonpää J. The prevalence of voice disorders among day care center teachers compared with nurses: a questionnaire and clinical study. *J Voice*. 2001;15(3):413-423. doi:10.1016/S0892-1997(01)00042-X
- Vertigan AE, Bone SL, Gibson PG. Development and validation of the Newcastle laryngeal hypersensitivity questionnaire. *Cough.* 2014;10(1):1. doi:10.1186/1745-9974-10-1
- Belafsky PC, Postma GN, Koufman JA. Validity and reliability of the reflux symptom index (RSI). *J Voice*. 2002;16(2):274-277. http://www.ncbi.nlm.nih.gov/pubmed/12150380. Accessed June 26, 2018.
- 34. Mäkikangas A, Feldt T, Kinnunen U, Tolvanen A, Kinnunen M-L, Pulkkinen L. The factor structure and factorial invariance of the 12-item General Health Questionnaire (GHQ-12) across time: evidence from two community-based samples. *Psychol Assess*. 2006;18(4):444-451. doi:10.1037/1040-3590.18.4.444
- Spitzer RL, Kroenke K, Williams JBW, Löwe B. A Brief Measure for Assessing Generalized Anxiety Disorder. *Arch Intern Med.* 2006;166(10):1092. doi:10.1001/archinte.166.10.1092
- Lahtinen M, Sundman-Digert C, Reijula K. Psychosocial work environment and indoor air problems: a questionnaire as a means of problem diagnosis. *Occup Environ Med.* 2004;61(2):143 LP-149.

http://oem.bmj.com/content/61/2/143.abstract.

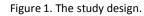
- Elo A-L, Leppänen A, Jahkola A. Validity of a single-item measure of stress symptoms. *Scand J Work Environ Health*. 2003;29(6):444-451. doi:10.5271/sjweh.752
- World Medical Association Declaration of Helsinki. JAMA. 2013;310(20):2191.
 doi:10.1001/jama.2013.281053

Authors' contributions: JU is the head of the study group and PN the principal researcher. All the writers took part in developing the study protocol; JU and PN especially planning the exposure assessment, JK, LL and AT the lung function diagnostics measures, JN the diagnostics of upper airways and SV, LK and EK the laryngeal investigations. All authors contributed to and approved the manuscript.

Funding statement: This work was supported by the Tampere Tuberculosis Foundation and the Competitive State Research Financing of the Expert Responsibility area of Tampere University Hospital (grant number 9T069).

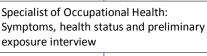
Competing interests: None.

BMJ Open

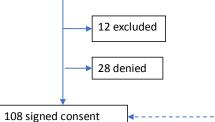

Table 1. The criteria on which moisture damage (MD) at workplace was suspected ⁷.

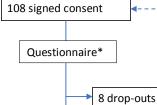
- 1. Mouldy, stuffy or chemical like odour
- Signs of MDs: visible mould, moisture spots, discolouration of surface materials, disengaging or blistering of flooring materials, crumbling of wall plastering, water leakages through ceilings (buckets on the floors), loose water on surfaces
- 3. Renovations because of MDs previously made in the building
- 4. Information of MD findings from employer or occupational and health safety personnel

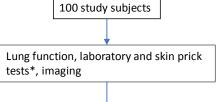
BMJ Open


Lung function tests	2-week serial PEF monitoring, PEF
	monitoring at and off work, spirometry with
	bronchodilation test, methacholine
	challenge test, exhaled nitric oxide (FE_{NO}),
	diffusing capacity of the lungs
Laboratory tests	Sedimentation rate, C-reactive protein,
	blood count, serum total IgE, serum
	allergen specific IgE (different fungi and
	storage mites Acarus Siro, Lepidoglyphus
	Destructor, Thyrophagus Putrescentiae)
Skin prick tests	Birch, timothy, mugwort, horse, dog, cat,
	Dermatophagoides Pteronyssinus house
	dust mite, latex, aspergillus fumigatus,
	storage mites Acarus Siro, Lepidoglyphus
	Destructor, Thyrophagus Putrescentiae
Imaging	Chest x-ray, cone beam computed
	tomography of the paranasal sinuses
	4
For poor raviaw only be	tp://bmjopen.bmj.com/site/about/guidelines.xhtml

Clinical test	Criteria for asthma
Two-week peak expiratory flow (PEF) monitoring	At least 3 times
	 15% and 60 mL improvements of PEF aft bronchodilator or
	- diurnal variation of PEF 20% and 60 mL
Spirometry	200 mL and 12% improvement in forced vital capacity (FVC) or forced expiratory volume in one second (FEV1)
Methacholine challenge test	Cumulative methacholine dose 0.6 mg or under results in 20% drop in FEV1 (PD20FEV1 <600 μg)
6	
For peer review only - http://bmjopen.b	pmj.com/site/about/guidelines.xhtml




Patients referred to Department of Occupational Medicine or Phoniatrics or Allergy Centre of Tampere University Hospital because of symptoms associated to workplace indoor climate



N=148

Voice recording before and after methacholine challenge test*

Interview and medical examination by: - specialist of respiratory medicine - oto-rhino-laryngologist (including nasal biopsy)

- phoniatrician (including videolaryngostroboscopy)*

Specialist of Occupational Health:

Exposure assessment, occupational asthma diagnostics 50 control patients for

evaluation of laryngeal

symptoms and signs

* Tests that will be conducted to control patients For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-026485 on 25 June 2019. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	
58 59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open

The SAMDAW study protocol: A clinical descriptive study on Symptoms Associated to Moisture DAmage at Workplace

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026485.R1
Article Type:	Protocol
Date Submitted by the Author:	06-Feb-2019
Complete List of Authors:	Nynäs, Pia; Tyoterveyslaitos, Tampere; Tampereen yliopistollinen sairaala, Työlääketieteen pkl Vilpas, Sarkku; Tampereen yliopistollinen sairaala, Department of Phoniatrics Kankare, Elina; Tampereen yliopistollinen sairaala, Department of Phoniatrics Karjalainen, Jussi; Tampereen yliopistollinen sairaala, Allergy Centre Lehtimäki, Lauri; Tampereen yliopistollinen sairaala, Allergy Centre; Tampereen yliopisto Laaketieteen yksikko, Faculty of Medicine and Life Sciences Numminen, Jura; Tampereen yliopistollinen sairaala, Allergy Centre Tikkakoski, Antti; Tampereen yliopistollinen sairaala, Department of Clinical Physiology Kleemola, Leenamaija; Tampereen yliopisto Laaketieteen yksikko, Faculty of Medicine and Life Sciences Uitti, Jukka; Tampereen yliopisto Laaketieteen yksikko, Faculty of Medicine and Life Sciences; Tyoterveyslaitos
Primary Subject Heading :	Occupational and environmental medicine
Secondary Subject Heading:	Respiratory medicine
Keywords:	moisture damage, mold, Asthma < THORACIC MEDICINE, irritable larynx, respiratory symptoms

SCHOLARONE[™] Manuscripts

BMJ Open

The SAMDAW study protocol: A clinical descriptive study on Symptoms Associated to Moisture DAmage at Workplace

P. Nynäs^{1,5,6}, S. Vilpas^{2,5}, E. Kankare^{2,5}, J. Karjalainen^{3,5}, L. Lehtimäki^{3,5}, J.

Numminen^{3,5}, A. Tikkakoski^{4,5}, L. Kleemola⁵, J. Uitti^{1,5,6}

¹Department of Occupational Medicine, Tampere University Hospital, Tampere, Finland

²Department of Phoniatrics, Tampere University Hospital, Tampere, Finland

³Allergy Centre, Tampere University Hospital, Tampere, Finland

⁴Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland

⁵Faculty of Medicine and Health Technology, Tampere University, Finland

⁶Finnish Institute of Occupational Health

Corresponding author: Pia Nynäs, pia.nynas@ttl.fi

Word count: 1542

Key words: Moisture damage, mold, asthma, irritable larynx, respiratory symptoms

Abstract

Introduction

Moisture damage (MD) exposure at work has been shown to increase the risk of new onset asthma and exacerbation of asthma. However, most of the studies in this field have been cross-sectional questionnaire studies. Small proportion of MD exposed workers are diagnosed with asthma. Many patients with MD exposure at work referred to secondary health care report intermittent hoarseness, loss of voice or difficulty to inhale, referring to functional or organic problems of the larynx. For accurate treatment, proper differential diagnostics is paramount. We present an ongoing clinical study, in which we describe the prevalence of respiratory, voice and other symptoms related to MD at work in patients referred to secondary health care.

Methods and analysis

The study sample consists of patients with MD exposure at work and associated respiratory tract and/or voice symptoms referred to Tampere University Hospital. The clinical tests conducted to the study patients included comprehensive lung function tests, laboratory and skin prick tests, imaging and clinical evaluation by specialists of respiratory medicine, oto-rhino-laryngology and phoniatrics. The exposure assessment was performed by an occupational physician. The study patients filled out a questionnaire on previous illnesses and other background factors. To find out if the study group would have different background characteristics from the overall population, the same questionnaire was sent to 1500 Finnish speaking people in the same hospital district randomly selected by the Finnish Population Information System. To explore how common laryngeal disorders and voice symptoms are in general, a part of the tests will be conducted to 50 asymptomatic volunteers.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Ethics and dissemination

The regional ethics committee of Tampere University Hospital has approved the study. All study subjects gave their written informed consent, which is required also from the controls. The results will be communicated locally and internationally as conference papers and journal articles.

Strengths and limitations of this study

- This kind of comprehensive clinical study associated with moisture damage exposure at work has not been conducted before.
- This study will increase the understanding of respiratory tract and voice symptoms and associated clinical findings in subjects exposed to moisture damage.
- Information of moisture damage exposure at work is based on documents
 from the workplace
- Limitation of a cross-sectional study like this is that it is not possible to obtain information on causal relationships between exposure and symptoms or illnesses

Introduction

BMJ Open

Indoor air quality problems are considered important risk factors for health problems worldwide¹. Indoor air associated symptoms may be interrelated with different indoor air factors such as insufficient ventilation², unfavourable temperature conditions³, dry indoor air⁴, dustiness⁵, moisture damage (MD)¹, volatile organic compounds (VOC)⁶, and man-made mineral/ vitreous fibres (MMMF/ MMVF)⁷. Even if we do not know the cause of symptoms¹ MD exposure at work has been shown to increase the risk of new onset asthma and exacerbation of asthma^{8,9}. Other illnesses or respiratory symptoms that have been associated with MD exposure include cough, wheezing, dyspnoea, rhinitis, and upper respiratory tract symptoms^{9,10}.

In Finland, located in subarctic area, MDs in residences and schools are common¹¹. Workers in office buildings commonly report symptoms and complaints associated with indoor air^{12,13}. There is also a growing public concern over MDs in buildings and their possible permanent effects on dwellers' or workers' health in Finland, even if there is minor evidence of serious or permanent illnesses other than asthma caused by exposure to MD^{9,14}.

There are few studies describing the clinical findings in patients having symptoms when exposed to MD at work^{15,16}. Previous studies in this field have mainly been epidemiological⁹, and most is known about children's risk of developing symptoms in homes or schools with MD^{17,18}. In majority of the studies, the assessment of exposure to MD or presence of symptoms or illnesses has been based on questionnaires^{19,20}. Furthermore, only a small proportion of MD exposed workers are diagnosed with asthma⁸. According to our clinical experience, many patients with work-related MD exposure and referred to secondary health care report intermittent hoarseness, loss of voice or difficulty to inhale, which would refer to functional or organic problems of the larynx²¹. In the case of laryngeal disorders, asthma

BMJ Open

medication is not useful or may even worsen the symptoms if the larynx is sensitive to irritation²². Coexisting with asthma, laryngeal disorders may be the cause of insufficient response to asthma treatment.

Studies over the past decades have provided important information on idiopathic environmental intolerance (IEI), in which a person has symptoms from different organ systems when in contact with an environmental factor that does not cause symptoms to most people^{23,24}. In odour or multiple chemical sensitivity (MCS) a person reacts with symptoms in association with low levels of airborne chemicals that most people tolerate without problems^{25,26}. It seems that some proportion of the patients that have indoor air associated symptoms in fact have IEI/MCS, but the frequency of this condition among these patients is not known²⁷.

As a conclusion, there is a need for a clinical study on patients exposed to MD at workplace focusing especially on differential diagnostics between asthma and laryngeal symptoms, evidence of exposure to MDs and other indoor air risk factors and chemical sensitivity.

Aims of the study

In patients referred to secondary health care because of respiratory tract and/ or voice symptoms associated to MD exposure at work, the aim is to:

- Describe the prevalence of different characteristics, symptoms and clinical test findings
- Find out the frequency of laryngeal symptoms and their possible influence on asthma diagnostics

- Explore the number of patients that fulfil the criteria of chemical sensitivity according to Quick Environmental Exposure and Sensitivity Inventory QEESI[©] guestion series²⁸.
- 4) Find out if there are connections between above mentioned symptoms and clinical findings and if it would be possible to allocate the clinical tests according to patient's symptoms in secondary health care.

Methods and analysis

 The study is conducted at Tampere University Hospital, which is a secondary level referral centre for a population of 530 000 and a tertiary level referral centre for a population of about 1 million people. Patients referred to departments of Occupational Medicine or Phoniatrics or Allergy Centre because of symptoms associated with indoor complaints at their workplace were interviewed as possible study subjects between October 2015 and June 2017. The study inclusion criteria were 1) age between 18 and 65 years, 2) upper and/or lower respiratory tract and/or voice symptoms, 3) symptoms associated to workplace, and 4) at least a strong suspicion of MD at the workplace (Table 1). The exclusion criteria were 1) severe illness (e.g. cancer) and 2) pregnancy. The study design is presented in Figure 1. After the study subjects had given their informed signed consent, the work-associated symptoms were collected by a structured interview. If the patient was not sure if the symptom was more frequent at work, it was not considered to be work-associated.

The conducted clinical tests are presented in Table 2. According to Finnish asthma guideline²⁹, diagnosis of asthma must be confirmed with a demonstration of variable

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 7 of 21

BMJ Open

airway obstruction in lung function measurements: i) peak expiratory flow (PEF) monitoring, ii) spirometry with bronchodilation test, or iii) test for bronchial hyperreactivity (Table 3). To confirm or rule out the asthma diagnosis, the patients carried out a two-week PEF monitoring, spirometry with bronchodilation test and methacholine challenge test. The PEF monitoring included PEF measurements with Pinnacle[™] peak flow meter for two weeks in the morning and evening before and after inhaled bronchodilator (0.4 mg salbutamol). Spirometry was performed according to European Respiratory Society/American Thoracic Society guidelines³⁰ and methacholine challenge test using dosimeter with controlled tidal breathing according to Finnish guidelines³¹. To investigate if possible asthma is associated with work the patients performed PEF monitoring at and off work³² with Vitalograph® PEF/FEV Diary device. Diffusing capacity of the lungs³³ and exhaled nitric oxide $(FE_{NO})^{34}$ were determined. Specialists of respiratory medicine (JK and LL), oto-rhinolaryngology (JN) and phoniatrics (SV) examined the patients. For diagnosing laryngeal disorders videolaryngostroboscopy with either rigid or fiberoptic scope was performed, voice samples were recorded and also inspirograms were recorded before and after methacholine tests. Biopsy of nasal mucosa and a blood sample were taken and preserved for later analyses.

Exposure to MD at work was assessed from the documents of the building and indoor air quality investigations made at the workplace, if available, according to Finnish guidelines³⁵. A confirmed MD is graded into different severity categories, if sufficient information is available. Also, MMMFs, VOCs or problems in ventilation conditions at workplace were assessed if these had been measured.

As a non-responder analysis, of the patients who were invited but who did not take part in the study, age, symptoms, the presence of asthma diagnosis, and exposure will be evaluated based on patient records.

To explore how common laryngeal disorders are in general, methacholine challenge test, voice recording, clinical examination by the specialist of phoniatrics including videolaryngostroboscopy, FE_{NO} , and skin prick tests will be conducted to 50 asymptomatic volunteers adjusted for age and gender. The gathering of the volunteers began in August 2018 and it is our estimation that all the volunteers will be examined by the end of 2019.

Questionnaire/ survey

 The study patients and the volunteers fill out a questionnaire including questions on

- previous diseases, medication and upper and lower respiratory symptoms³⁶
- sinusitis symptoms (Sino-Nasal Outcome Test-22³⁷)
- voice symptoms (Voice Activity and Participation Profile³⁸, Voice Handicap Index³⁹, voice disorder guestionnaire⁴⁰)
- laryngeal symptoms (Newcastle laryngeal hypersensitivity questionnaire⁴¹)
- reflux symptoms (Reflux Symptom Index⁴²)
- depression and anxiety symptoms (General Health Questionnaire GHQ-12^{©43};
 Generalized Anxiety Disorder 7-item scale⁴⁴)
- psychosocial work load⁴⁵, and stress symptoms⁴⁶
- chemical sensitivity (QEESI[©])²⁸

To find out if the study group would have different background characteristics from the overall population, the same questionnaire was sent to 1500 Finnish speaking

 BMJ Open

people in the same hospital district randomly selected by the Finnish Population Information System. The proportions of women and men and different age groups in this comparison material are similar to the study population.

Sample size and power calculation

We estimated that a sample of 100 patients is enough to clinical deduction of the different characteristics of this patient group.

Concerning the population-based comparison material, our aim was to get 400 questionnaire answers (ratio 1:4) to increase the statistical power. Taking recent rather low survey response rates into account, we sent the questionnaire to 1500 people.

To assess if findings suggesting laryngeal disorders are more frequent among those who have respiratory tract or voice symptoms associated to workplace MD, data on frequency of laryngeal findings of asymptomatic people is needed. When analyzing the findings of methacholine challenge test of 30 patients, signs of laryngeal disorders were found in 62,5%. We estimated that among under 30% of asymptomatic people there are such findings in the methacholine challenge test. In power calculation based on findings in the methacholine challenge test, the number of asymptomatic people tested would be 50 with 80% force and 90% confidence interval.

Data analyses

We will conduct standard descriptive statistics to determine the frequency of different symptoms, findings of clinical tests and their interrelations.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Patient and Public Involvement

Patients or public were not involved in the design of the study. The study patients have received the results of their own tests, explanations for them and necessary treatment.

Ethics and dissemination

The regional ethics committee of Tampere University Hospital has approved the study (R14095). All study subjects gave their written informed consent, which is required also from the volunteers. The study adheres to good clinical research guidelines and the Helsinki Declaration⁴⁷.

The results will be communicated locally as well as internationally as conference papers and journal articles.

References

- WHO. WHO Guidelines for Indoor Air Quality: Dampness and Mould. Copenhagen: WHO Regional Office for Europe; 2009. http://www.euro.who.int/ data/assets/pdf file/0017/43325/E92645.pdf.
- Muscatiello N, Mccarthy A, Kielb C, Hsu WH, Hwang SA, Lin S. Classroom conditions and CO2concentrations and teacher health symptom reporting in 10 New York State Schools. *Indoor Air*. 2015;25(2):157-167. doi:10.1111/ina.12136
- Skyberg K, Skulberg KR, Eduard W, Skåret E, Levy F, Kjuus H. Symptoms prevalence among office employees and associations to building characteristics. *Indoor Air*. 2003;13(3):246-252. http://www.ncbi.nlm.nih.gov/pubmed/12950587. Accessed January 15, 2019.

2 3	4.	Wolkoff P. Indoor air humidity, air quality, and health – An overview. Int J Hyg
4 5	••	
6 7		<i>Environ Health</i> . 2018;221(3):376-390. doi:10.1016/j.ijheh.2018.01.015
8 9	5.	Schneider T. Dust and fibers as a cause of indoor environment problems.
10 11 12		Scand J Work Environ Heal Suppl. 2008;(4):10-17. doi:10.5271/sjweh.1294
13 14	6.	Salonen H, Pasanen A-L, Lappalainen S, et al. Volatile Organic Compounds
15 16 17		and Formaldehyde as Explaining Factors for Sensory Irritation in Office
18 19		Environments. J Occup Environ Hyg. 2009;6(4):239-247.
20 21 22		doi:10.1080/15459620902735892
22 23 24	7.	Salonen HJ, Lappalainen SK, Riuttala HM, Tossavainen AP, Pasanen PO,
25 26 27		Reijula KE. Man-Made Vitreous Fibers in Office Buildings in the Helsinki Area.
28 29		J Occup Environ Hyg. 2009;6(10):624-631. doi:10.1080/15459620903133667
30 31 32	8.	Karvala K, Toskala E, Luukkonen R, Uitti J, Lappalainen S, Nordman H.
33 34		Prolonged exposure to damp and moldy workplaces and new-onset asthma.
35 36 37		Int Arch Occup Environ Health. 2011;84(7):713-721. doi:10.1007/s00420-011-
38 39		0677-9
40 41	9.	Mendell MJ, Mirer AG, Cheung K, Tong M, Douwes J. Respiratory and allergic
42 43 44		health effects of dampness, mold, and dampness-related agents: a review of
45 46		the epidemiologic evidence. Environ Health Perspect. 2011;119(6):748-756.
47 48 49		doi:10.1289/ehp.1002410
50 51	10.	Jaakkola JJK, Hwang B-F, Jaakkola MS. Home Dampness and Molds as
52 53 54		Determinants of Allergic Rhinitis in Childhood: A 6-Year, Population-based
55 56		Cohort Study. Am J Epidemiol. 2010;172(4):451-459. doi:10.1093/aje/kwq110
57 58 59	11.	Täubel M, Karvonen AM, Reponen T, Hyvärinen A, Vesper S, Pekkanen J.

Application of the Environmental Relative Moldiness Index in Finland. *Appl Environ Microbiol*. 2015;82(2):578-584. doi:10.1128/AEM.02785-15

- Reijula K, Sundman-Digert C, Reijula K. Assessment of indoor air problems at work with a questionnaire. *Occup Environ Med*. 2004;61(1):33-38. doi:10.1136/oem.2002.005835
- 13. Ministry of Social Affairs and Health F. Moisture Damages in Workplaces.
 Memo of the Working Group on Moisture Damages (in Finnish). Helsinki;
 2009.
- Hurraß J, Heinzow B, Aurbach U, et al. Medical diagnostics for indoor mold exposure. *Int J Hyg Environ Health*. 2017;220(2):305-328. doi:10.1016/j.ijheh.2016.11.012
- White SK, Cox-Ganser JM, Benaise LG, Kreiss K. Work-related peak flow and asthma symptoms in a damp building. *Occup Med (Chic III)*. 2013;63(4):287-290. doi:10.1093/occmed/kqt028
- 16. Hellgren U-M, Hyvärinen M, Holopainen R, Reijula K. Perceived indoor air quality, air-related symptoms and ventilation in Finnish hospitals. *Int J Occup Med Environ Health*. 2011;24(1):48-56. doi:10.2478/s13382-011-0011-5
- 17. Karvonen AM, Hyvarinen A, Korppi M, et al. Moisture Damage and Asthma: A Birth Cohort Study. *Pediatrics*. 2015;135(3):e598-e606. doi:10.1542/peds.2014-1239
- Borràs-Santos A, Jacobs JH, Täubel M, et al. Dampness and mould in schools and respiratory symptoms in children: the HITEA study. *Occup Environ Med*. 2013;70(10):681-687. doi:10.1136/oemed-2012-101286

19.	Kim J-L, Henneberger PK, Lohman S, et al. Impact of occupational exposures
	on exacerbation of asthma: a population-based asthma cohort study. BMC
	Pulm Med. 2016;16(1):148. doi:10.1186/s12890-016-0306-1
20.	Kurth L, Virji MA, Storey E, et al. Current asthma and asthma-like symptoms
	among workers at a Veterans Administration Medical Center. Int J Hyg Environ
	<i>Health</i> . 2017;220(8):1325-1332. doi:10.1016/j.ijheh.2017.09.001
21.	Moscato G, Pala G, Cullinan P, et al. EAACI position paper on assessment of
	cough in the workplace. Allergy Eur J Allergy Clin Immunol. 2014.
	doi:10.1111/all.12352
22.	Idrees M, FitzGerald JM. Vocal cord dysfunction in bronchial asthma. A review
	article. J Asthma. 2015;52(4):327-335. doi:10.3109/02770903.2014.982288
23.	Genuis SJ. Chemical sensitivity: pathophysiology or pathopsychology? Clin
	<i>Ther</i> . 2013;35(5):572-577. doi:10.1016/j.clinthera.2013.04.003
24.	Rossi S, Pitidis A. Multiple Chemical Sensitivity: Review of the State of the Art
	in Epidemiology, Diagnosis, and Future Perspectives. J Occup Environ Med.
	2018;60(2):138-146. doi:10.1097/JOM.000000000001215
25.	Dantoft TM, Andersson L, Nordin S, Skovbjerg S. Chemical intolerance. Curr
	Rheumatol Rev. 2015;11(2):167-184.
	http://www.ncbi.nlm.nih.gov/pubmed/26088215. Accessed May 14, 2018.
26.	Andersson L, Claeson A-S, Dantoft TM, Skovbjerg S, Lind N, Nordin S.
	Chemosensory perception, symptoms and autonomic responses during
	chemical exposure in multiple chemical sensitivity. Int Arch Occup Environ
	<i>Health</i> . 2016;89(1):79-88. doi:10.1007/s00420-015-1053-y

3	
4	
5	
6 7 8	
8	
9	
10	
11	
12	
13	
14	
15	
9 10 11 12 13 14 15 16 17 18 19 20 21	
17	
18	
10	
20	
20	
21	
22	
23	
24	
21 22 23 24 25 26	
26 27	
27	
28	
29 30 31 32 33 34 35	
30	
31	
32	
33	
34	
35	
36 37	
37	
- 38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
52	
52 53	
53 54	
55	
56	
57	
58	
59	
60	

- 27. Karvala K, Sainio M, Palmquist E, Claeson A-S, Nyback M-H, Nordin S.
 Building-Related Environmental Intolerance and Associated Health in the General Population. *Int J Environ Res Public Health*. 2018;15(9).
 doi:10.3390/ijerph15092047
- Miller CS, Prihoda TJ. The Environmental Exposure and Sensitivity Inventory (EESI): a standardized approach for measuring chemical intolerances for research and clinical applications. *Toxicol Ind Health*. 1999;15(3-4):370-385. doi:10.1177/074823379901500311
- Haahtela T, Lehtimäki L, Ahonen E, et al. [Update on current care guidelines: asthma]. *Duodecim*. 2013;129(9):994-995. http://www.ncbi.nlm.nih.gov/pubmed/23786112. Accessed May 18, 2018.
- 30. Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. *Eur Respir J*. 2005;26(2):319-338. doi:10.1183/09031936.05.00034805
- Nieminen MM, Lahdensuo A, Kellomaeki L, Karvonen J, Muittari A.
 Methacholine bronchial challenge using a dosimeter with controlled tidal breathing. *Thorax*. 1988;43(11):896-900.

http://www.ncbi.nlm.nih.gov/pubmed/3065974. Accessed May 18, 2018.

- Burge PS. Use of serial measurements of peak flow in the diagnosis of occupational asthma. *Occup Med*. 1993;8(2):279-294.
 http://www.ncbi.nlm.nih.gov/pubmed/8506506. Accessed May 19, 2017.
- 33. MacIntyre N, Crapo RO, Viegi G, et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. *Eur Respir J*.
 2005;26(4):720-735. doi:10.1183/09031936.05.00034905

2 3 4	34.	Horváth I, Barnes PJ, Loukides S, et al. A European Respiratory Society
5		technical standard: exhaled biomarkers in lung disease. Eur Respir J.
7 8 9		2017;49(4):1600965. doi:10.1183/13993003.00965-2016
10 11 12	35.	Latvala J, Karvala K, Sainio M, et al. Guidelines for Workplace and
13 14		Occupational Health Actions in Indoor Air Problems (Finnish).
15 16		Työterveyslaitos; 2017. http://www.julkari.fi/handle/10024/132078. Accessed
17 18 19		August 20, 2018.
20 21	36.	Kilpelainen M, Terho EO, Helenius H, Koskenvuo M. Validation of a new
22 23 24		questionnaire on asthma, allergic rhinitis, and conjunctivitis in young adults.
24 25 26 27		Allergy. 2001;56(5):377-384. doi:10.1034/j.1398-9995.2001.056005377.x
28 29	37.	Morley AD, Sharp HR. A review of sinonasal outcome scoring systems - which
30 31		is best? Clin Otolaryngol. 2006;31(2):103-109. doi:10.1111/j.1749-
32 33 34		4486.2006.01155.x
35 36	38.	Sukanen O, Sihvo M, Rorarius E, Lehtihalmes M, Autio V, Kleemola L. Voice
37 38 39		Activity and Participation Profile (VAPP) in assessing the effects of voice
40 41		disorders on patients' quality of life: Validity and reliability of the Finnish
42 43		version of VAPP. Logop Phoniatr Vocology. 2007;32(1):3-8.
44 45 46		doi:10.1080/14015430600784386
47 48 40	39.	Alaluusua S JM. Psycho-social handicap of voice disorder and its
49 50 51		rehabilitation: a pilot study of Finnish version of Voice Handicap Index [In
52 53 54		Finnish] [master thesis]. 2003.
55 56	40.	Sala E, Laine A, Simberg S, Pentti J, Suonpää J. The prevalence of voice
57 58 59		disorders among day care center teachers compared with nurses: a
60		questionnaire and clinical study. <i>J Voice</i> . 2001;15(3):413-423.

doi:10.1016/S0892-1997(01)00042-X

- Vertigan AE, Bone SL, Gibson PG. Development and validation of the Newcastle laryngeal hypersensitivity questionnaire. *Cough*. 2014;10(1):1. doi:10.1186/1745-9974-10-1
- 42. Belafsky PC, Postma GN, Koufman JA. Validity and reliability of the reflux symptom index (RSI). *J Voice*. 2002;16(2):274-277.
 http://www.ncbi.nlm.nih.gov/pubmed/12150380. Accessed June 26, 2018.
- Mäkikangas A, Feldt T, Kinnunen U, Tolvanen A, Kinnunen M-L, Pulkkinen L. The factor structure and factorial invariance of the 12-item General Health Questionnaire (GHQ-12) across time: evidence from two community-based samples. *Psychol Assess*. 2006;18(4):444-451. doi:10.1037/1040-3590.18.4.444
- 44. Spitzer RL, Kroenke K, Williams JBW, Löwe B. A Brief Measure for Assessing Generalized Anxiety Disorder. *Arch Intern Med.* 2006;166(10):1092. doi:10.1001/archinte.166.10.1092
- 45. Lahtinen M, Sundman-Digert C, Reijula K. Psychosocial work environment and indoor air problems: a questionnaire as a means of problem diagnosis. *Occup Environ Med*. 2004;61(2):143 LP-149.

http://oem.bmj.com/content/61/2/143.abstract.

- 46. Elo A-L, Leppänen A, Jahkola A. Validity of a single-item measure of stress symptoms. *Scand J Work Environ Health*. 2003;29(6):444-451.
 doi:10.5271/sjweh.752
- 47. World Medical Association Declaration of Helsinki. JAMA. 2013;310(20):2191.

BMJ Open

doi:10.1001/jama.2013.281053

Authors' contributions: JU is the head of the study group and PN the principal researcher. All the writers took part in developing the study protocol; JU and PN especially planning the exposure assessment, JK, LL and AT the lung function diagnostics measures, JN the diagnostics of upper airways and SV, LK and EK the laryngeal investigations. All authors contributed to and approved the manuscript.

Funding statement: This work was supported by the Tampere Tuberculosis Foundation and the Competitive State Research Financing of the Expert Responsibility area of Tampere University Hospital (grant number 9T069).

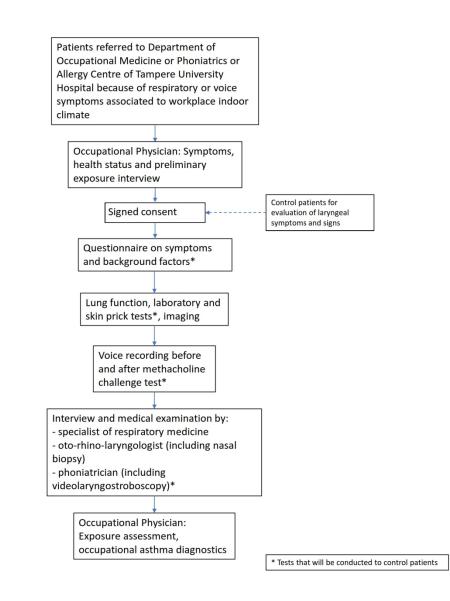
Competing interests: The study group report grants from Tampere Tuberculosis Foundation, grants from Competitive State Research Financing of the Expert Responsibility area of Tampere University Hospital, during the conduct of the study. **BMJ** Open

Figure 1. The study design of study on symptoms associated to moisture damage at workplace.

Table 1. The criteria on which moisture damage (MD) at workplace was suspected

- 1. Indoor air perceived as mouldy or stuffy or otherwise unpleasant
- 2. Signs of MDs: visible mould, moisture spots, discolouration of surface materials, disengaging or blistering of flooring materials, crumbling of wall plastering, water leakages through ceilings (buckets on the floors), loose water on surfaces
- 3. Renovations because of MDs previously made in the building
- 4. Information of MD findings from employer or occupational and health safety personnel

BMJ Open


Table 2. The clinical tests conducted to the study patients.

Lung function tests	2-week serial PEF monitoring, PEF
	monitoring at and off work, spirometry
	with bronchodilation test, methacholine
	challenge test, exhaled nitric oxide
	(FE _{NO}), diffusing capacity of the lungs
Laboratory tests	Sedimentation rate, C-reactive protein,
	blood count, serum total IgE, serum
	allergen specific IgE (different fungi and
	storage mites Acarus Siro, Lepidoglyphu
	Destructor, Thyrophagus Putrescentiae)
Skin prick tests	Birch, timothy, mugwort, horse, dog, cat
	Dermatophagoides Pteronyssinus house
	dust mite, latex, aspergillus fumigatus,
	storage mites Acarus Siro, Lepidoglyphu
	Destructor, Thyrophagus Putrescentiae
Imaging	Chest x-ray, cone beam computed
	tomography of the paranasal sinuses
	1

¢

Table 3. The criteria based on which asthma is diagnosed in different clinical tests ²⁹.

Clinical test	Criteria for asthma
Two-week peak expiratory flow (PEF) monitoring	At least 3 times
	 at least 15% and 60 L/min improvements PEF after bronchodilator or
	 diurnal variation of PEF at least 20% and L/min
Spirometry	At least 200 mL and 12% improvement in forced expiratory volume in one second (FEV1) or forced vital capacity (FVC)
Methacholine challenge test	Cumulative methacholine dose 0.6 mg or under results in 20% drop in FEV1 (PD20FEV1 <600 μg)

The study design of study on symptoms associated to moisture damage at workplace.

354x442mm (144 x 144 DPI)

BMJ Open

BMJ Open

The SAMDAW study protocol: A clinical descriptive study on Symptoms Associated to Moisture DAmage at Workplace

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026485.R2
Article Type:	Protocol
Date Submitted by the Author:	09-Apr-2019
Complete List of Authors:	Nynäs, Pia; Finnish Institute of Occupational Health; Tampere University Hospital, Department of Occupational Medicine Vilpas, Sarkku; Tampere University Hospital, Department of Phoniatrics; Tampere University, Faculty of Medicine and Health Technology Kankare, Elina; Tampere University Hospital, Department of Phoniatrics; Tampere University, Faculty of Medicine and Health Technology Karjalainen, Jussi; Tampere University Hospital, Allergy Centre; Tampere University, Faculty of Medicine and Health Technology Lehtimäki, Lauri; Tampere University Hospital, Allergy Centre; Tampere University, Faculty of Medicine and Health Technology Numminen, Jura; Tampere University Hospital, Allergy Centre; Tampere University, Faculty of Medicine and Health Technology Numminen, Jura; Tampere University Hospital, Allergy Centre; Tampere University, Faculty of Medicine and Health Technology Numminen, Jura; Tampere University Hospital, Department of Clinical Physiology; Tampere University, Faculty of Medicine and Health Technology Kleemola, Leenamaija; Tampere University, Faculty of Medicine and Health Technology Uitti, Jukka; Tampere University, Faculty of Medicine and Health Technology; Finnish Institute of Occupational Health
Primary Subject Heading :	Occupational and environmental medicine
Secondary Subject Heading:	Respiratory medicine
Keywords:	moisture damage, mold, Asthma < THORACIC MEDICINE, irritable larynx, respiratory symptoms

SCHOLARONE[™] Manuscripts

BMJ Open

The SAMDAW study protocol: A clinical descriptive study on Symptoms Associated to Moisture DAmage at Workplace

P. Nynäs^{1,5,6}, S. Vilpas^{2,5}, E. Kankare^{2,5}, J. Karjalainen^{3,5}, L. Lehtimäki^{3,5}, J.

Numminen^{3,5}, A. Tikkakoski^{4,5}, L. Kleemola⁵, J. Uitti^{1,5,6}

¹Department of Occupational Medicine, Tampere University Hospital, Tampere, Finland

²Department of Phoniatrics, Tampere University Hospital, Tampere, Finland

³Allergy Centre, Tampere University Hospital, Tampere, Finland

⁴Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland

⁵Faculty of Medicine and Health Technology, Tampere University, Finland

⁶Finnish Institute of Occupational Health

Corresponding author: Pia Nynäs, pia.nynas@ttl.fi

Word count: 1674

Key words: Moisture damage, mold, asthma, irritable larynx, respiratory symptoms

Abstract

Introduction

Moisture damage (MD) exposure at work has been shown to increase the risk of new onset asthma and exacerbation of asthma. However, most of the studies in this field have been questionnaire studies. Small proportion of MD exposed workers are diagnosed with asthma. Many patients with MD exposure at work referred to secondary health care report intermittent hoarseness, loss of voice or difficulty to inhale, referring to functional or organic problems of the larynx. For accurate treatment, proper differential diagnostics is paramount. We present an ongoing clinical study, in which we describe the prevalence of respiratory, voice and other symptoms related to MD at work in patients referred to secondary health care.

Methods and analysis

The study sample consists of patients with MD exposure at work and associated respiratory tract and/or voice symptoms referred to Tampere University Hospital. The clinical tests conducted to the study patients included comprehensive lung function tests, laboratory and skin prick tests, imaging and clinical evaluation by specialists of respiratory medicine, oto-rhino-laryngology and phoniatrics. The exposure assessment was performed by an occupational physician. The study patients filled out a questionnaire on previous illnesses and other background factors. To find out if the study group would have different background characteristics from the overall population, the same questionnaire was sent to 1500 Finnish speaking people in the same hospital district randomly selected by the Finnish Population Information System. To explore how common laryngeal disorders and voice symptoms are in general, a part of the tests will be conducted to 50 asymptomatic volunteers.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Ethics and dissemination

The regional ethics committee of Tampere University Hospital has approved the study. All study subjects gave their written informed consent, which is required also from the controls. The results will be communicated locally and internationally as conference papers and journal articles.

Strengths and limitations of this study

- This kind of comprehensive clinical study associated with moisture damage exposure at work has not been conducted before.
- This study will increase the understanding of respiratory tract and voice symptoms and associated clinical findings in subjects exposed to moisture damage.
- Information of moisture damage exposure at work is based on documents
 from the workplace
- Limitation of a cross-sectional study like this is that it is not possible to obtain information on causal relationships between exposure and symptoms or illnesses

Introduction

BMJ Open

Indoor air quality problems are considered important risk factors for health problems worldwide¹. Indoor air associated symptoms may be interrelated with different indoor air factors such as insufficient ventilation², unfavourable temperature conditions³, dry indoor air⁴, dustiness⁵, moisture damage (MD)¹, volatile organic compounds (VOC)⁶, and man-made mineral/ vitreous fibres (MMMF/ MMVF)⁷. Even if we do not know the cause of symptoms¹ MD exposure at work has been shown to increase the risk of new onset asthma and exacerbation of asthma^{8,9}. Other illnesses or respiratory symptoms that have been associated with MD exposure include cough, wheezing, dyspnoea, rhinitis, and upper respiratory tract symptoms^{9,10}.

In Finland, located in subarctic area, MDs in residences and schools are common¹¹. Workers in office buildings commonly report symptoms and complaints associated with indoor air^{12,13}. There is also a growing public concern over MDs in buildings and their possible permanent effects on dwellers' or workers' health in Finland, even if there is minor evidence of serious or permanent illnesses other than asthma caused by exposure to MD^{9,14}.

There are few studies describing the clinical findings in patients having symptoms when exposed to MD at work^{15,16}. Previous studies in this field have mainly been epidemiological⁹, and most is known about children's risk of developing symptoms in homes or schools with MD^{17,18}. In majority of the studies, the assessment of exposure to MD or presence of symptoms or illnesses has been based on questionnaires^{19,20}. Furthermore, only a small proportion of MD exposed workers are diagnosed with asthma⁸. According to our clinical experience, many patients with work-related MD exposure and referred to secondary health care report intermittent hoarseness, loss of voice or difficulty to inhale, which would refer to functional or organic problems of the larynx²¹. In the case of laryngeal disorders, asthma

BMJ Open

medication is not useful or may even worsen the symptoms if the larynx is sensitive to irritation²². Coexisting with asthma, laryngeal disorders may be the cause of insufficient response to asthma treatment.

Studies over the past decades have provided important information on idiopathic environmental intolerance (IEI), in which a person has symptoms from different organ systems when in contact with an environmental factor that does not cause symptoms to most people^{23,24}. In odour or multiple chemical sensitivity (MCS) a person reacts with symptoms in association with low levels of airborne chemicals that most people tolerate without problems^{25,26}. It seems that some proportion of the patients that have indoor air associated symptoms in fact have IEI/MCS, but the frequency of this condition among these patients is not known²⁷.

As a conclusion, there is a need for a clinical study on patients exposed to MD at workplace focusing especially on differential diagnostics between asthma and laryngeal symptoms, evidence of exposure to MDs and other indoor air risk factors and chemical sensitivity.

Aims of the study

In patients referred to secondary health care because of respiratory tract and/ or voice symptoms associated to MD exposure at work, the aim is to:

- Describe the prevalence of different characteristics, symptoms and clinical test findings
- Find out the frequency of laryngeal symptoms and their possible influence on asthma diagnostics

- Explore the number of patients that fulfil the criteria of chemical sensitivity according to Quick Environmental Exposure and Sensitivity Inventory QEESI[©] guestion series²⁸.
- 4) Find out if there are connections between above mentioned symptoms and clinical findings and if it would be possible to allocate the clinical tests according to patient's symptoms in secondary health care.

Methods and analysis

 The study is conducted at Tampere University Hospital, which is a secondary level referral centre for a population of 530 000 and a tertiary level referral centre for a population of about 1 million people. Patients referred to departments of Occupational Medicine or Phoniatrics or Allergy Centre because of symptoms associated with indoor complaints at their workplace were interviewed as possible study subjects between October 2015 and June 2017. The study inclusion criteria were 1) age between 18 and 65 years, 2) upper and/or lower respiratory tract and/or voice symptoms, 3) symptoms associated to workplace, and 4) at least a strong suspicion of MD at the workplace (Table 1). The exclusion criteria were 1) severe illness (e.g. cancer) and 2) pregnancy. The study design is presented in Figure 1. After the study subjects had given their informed signed consent, the work-associated symptoms were collected by a structured interview. If the patient was not sure if the symptom was more frequent at work, it was not considered to be work-associated.

The conducted clinical tests are presented in Table 2. According to Finnish asthma guideline²⁹, diagnosis of asthma must be confirmed with a demonstration of variable

Page 7 of 22

BMJ Open

airway obstruction in lung function measurements: i) peak expiratory flow (PEF) monitoring, ii) spirometry with bronchodilation test, or iii) test for bronchial hyperreactivity (Table 3). To confirm or rule out the asthma diagnosis, the patients carried out a two-week PEF monitoring, spirometry with bronchodilation test and methacholine challenge test. The PEF monitoring included PEF measurements with Pinnacle[™] peak flow meter for two weeks in the morning and evening before and after inhaled bronchodilator (0.4 mg salbutamol). Spirometry was performed according to European Respiratory Society/American Thoracic Society guidelines³⁰ and methacholine challenge test using dosimeter with controlled tidal breathing according to Finnish guidelines³¹. To investigate if possible asthma is associated with work the patients performed PEF monitoring at and off work³² with Vitalograph® PEF/FEV Diary device. Diffusing capacity of the lungs³³ and exhaled nitric oxide $(FE_{NO})^{34}$ were determined. Specialists of respiratory medicine (JK and LL), oto-rhinolaryngology (JN) and phoniatrics (SV) examined the patients. For diagnosing laryngeal disorders videolaryngostroboscopy with either rigid or fiberoptic scope was performed, voice samples were recorded and also inspirograms were recorded before and after methacholine tests. Biopsy of nasal mucosa and a blood sample were taken and preserved for later analyses.

Exposure to MD at work was assessed from the documents of the building and indoor air quality investigations made at the workplace, if available, according to Finnish guidelines³⁵. A confirmed MD is graded into different severity categories, if sufficient information is available. Also, MMMFs, VOCs or problems in ventilation conditions at workplace were assessed if these had been measured.

As a non-responder analysis, of the patients who were invited but who did not take part in the study, age, symptoms, the presence of asthma diagnosis, and exposure will be evaluated based on patient records.

To explore how common laryngeal disorders are in general, methacholine challenge test, voice recording, clinical examination by the specialist of phoniatrics including videolaryngostroboscopy, FE_{NO} , and skin prick tests will be conducted to 50 asymptomatic volunteers adjusted for age and gender. The gathering of the volunteers began in August 2018 and it is our estimation that all the volunteers will be examined by the end of 2019.

Questionnaire/ survey

 The study patients and the volunteers fill out a questionnaire including questions on

- previous diseases, medication and upper and lower respiratory symptoms³⁶
- sinusitis symptoms (Sino-Nasal Outcome Test-22³⁷)
- voice symptoms (Voice Activity and Participation Profile³⁸, Voice Handicap Index³⁹, voice disorder guestionnaire⁴⁰)
- laryngeal symptoms (Newcastle laryngeal hypersensitivity questionnaire⁴¹)
- reflux symptoms (Reflux Symptom Index⁴²)
- depression and anxiety symptoms (General Health Questionnaire GHQ-12^{©43};
 Generalized Anxiety Disorder 7-item scale⁴⁴)
- psychosocial work load⁴⁵, and stress symptoms⁴⁶
- chemical sensitivity (QEESI[©])²⁸

To find out if the study group would have different background characteristics from the overall population, the same questionnaire was sent to 1500 Finnish speaking

 BMJ Open

people in the same hospital district randomly selected by the Finnish Population Information System. The proportions of women and men and different age groups in this comparison material are similar to the study population.

Sample size and power calculation

We estimated that a sample of 100 patients is enough to clinical deduction of the different characteristics of this patient group.

Concerning the population-based comparison material, our aim was to get 400 questionnaire answers (ratio 1:4) to increase the statistical power. Taking recent rather low survey response rates into account, we sent the questionnaire to 1500 people.

To assess if findings suggesting laryngeal disorders are more frequent among those who have respiratory tract or voice symptoms associated to workplace MD, data on frequency of laryngeal findings of asymptomatic people is needed. When analyzing the findings of methacholine challenge test of 30 patients, signs of laryngeal disorders were found in 62,5%. We estimated that among under 30% of asymptomatic people there are such findings in the methacholine challenge test. In power calculation based on findings in the methacholine challenge test, the number of asymptomatic people tested would be 50 with 80% force and 90% confidence interval.

Data analyses

We will analyze descriptive statistics such as gender distribution and age of the patients with their lines of business. We will also analyze the frequencies of different symptoms the patients complain and how these are related to objective findings in

> different organ systems or new diagnoses of e.g. asthma or laryngeal dysfunction. We will describe the proportions of patients with significant findings in medical assessment at different specialities (ENT, pulmonary and phoniatrics). We will compare frequencies and intensities of different symptoms and clinical findings between the patients and symptomless controls. We will also compare different background factors of the study patients, such as perceived psychosocial work load, with controls of the population who answered to the same questionnaire as the study patients. Based on the relation between symptoms and different objective findings we aim to find "clinical triggers" (certain sets of symptoms) that should prompt clinicians to refer patients to certain specialities.

Patient and Public Involvement

Patients or public were not involved in the design of the study. The study patients have received the results of their own tests, explanations for them and necessary treatment.

Ethics and dissemination

The regional ethics committee of Tampere University Hospital has approved the study (R14095). All study subjects gave their written informed consent, which is required also from the volunteers. The study adheres to good clinical research guidelines and the Helsinki Declaration⁴⁷.

The results will be communicated locally as well as internationally as conference papers and journal articles.

References

1. WHO. WHO Guidelines for Indoor Air Quality: Dampness and Mould.

BMJ Open

2		
3 4		Copenhagen: WHO Regional Office for Europe; 2009.
5 6 7		http://www.euro.who.int/data/assets/pdf_file/0017/43325/E92645.pdf.
8 9	2.	Muscatiello N, Mccarthy A, Kielb C, Hsu WH, Hwang SA, Lin S. Classroom
10 11 12		conditions and CO2concentrations and teacher health symptom reporting in 10
13 14		New York State Schools. Indoor Air. 2015;25(2):157-167.
15 16 17		doi:10.1111/ina.12136
18 19	3.	Skyberg K, Skulberg KR, Eduard W, Skåret E, Levy F, Kjuus H. Symptoms
20 21		prevalence among office employees and associations to building
22 23 24		characteristics. Indoor Air. 2003;13(3):246-252.
25 26 27		http://www.ncbi.nlm.nih.gov/pubmed/12950587. Accessed January 15, 2019.
28 29	4.	Wolkoff P. Indoor air humidity, air quality, and health – An overview. Int J Hyg
30 31 32		Environ Health. 2018;221(3):376-390. doi:10.1016/j.ijheh.2018.01.015
33 34	5.	Schneider T. Dust and fibers as a cause of indoor environment problems.
35 36 37		Scand J Work Environ Heal Suppl. 2008;(4):10-17. doi:10.5271/sjweh.1294
38 39	6.	Salonen H, Pasanen A-L, Lappalainen S, et al. Volatile Organic Compounds
40 41 42		and Formaldehyde as Explaining Factors for Sensory Irritation in Office
43 44		Environments. J Occup Environ Hyg. 2009;6(4):239-247.
45 46 47		doi:10.1080/15459620902735892
48 49	7.	Salonen HJ, Lappalainen SK, Riuttala HM, Tossavainen AP, Pasanen PO,
50 51 52		Reijula KE. Man-Made Vitreous Fibers in Office Buildings in the Helsinki Area.
53 54		J Occup Environ Hyg. 2009;6(10):624-631. doi:10.1080/15459620903133667
55 56 57	8.	Karvala K, Toskala E, Luukkonen R, Uitti J, Lappalainen S, Nordman H.
58 59 60		Prolonged exposure to damp and moldy workplaces and new-onset asthma.

Int Arch Occup Environ Health. 2011;84(7):713-721. doi:10.1007/s00420-011-0677-9

- Mendell MJ, Mirer AG, Cheung K, Tong M, Douwes J. Respiratory and allergic health effects of dampness, mold, and dampness-related agents: a review of the epidemiologic evidence. *Environ Health Perspect*. 2011;119(6):748-756. doi:10.1289/ehp.1002410
- Jaakkola JJK, Hwang B-F, Jaakkola MS. Home Dampness and Molds as Determinants of Allergic Rhinitis in Childhood: A 6-Year, Population-based Cohort Study. *Am J Epidemiol*. 2010;172(4):451-459. doi:10.1093/aje/kwq110
- Täubel M, Karvonen AM, Reponen T, Hyvärinen A, Vesper S, Pekkanen J. Application of the Environmental Relative Moldiness Index in Finland. *Appl Environ Microbiol.* 2015;82(2):578-584. doi:10.1128/AEM.02785-15
- Reijula K, Sundman-Digert C, Reijula K. Assessment of indoor air problems at work with a questionnaire. *Occup Environ Med*. 2004;61(1):33-38. doi:10.1136/oem.2002.005835
- Ministry of Social Affairs and Health F. Moisture Damages in Workplaces. Memo of the Working Group on Moisture Damages (in Finnish). Helsinki; 2009.
- Hurraß J, Heinzow B, Aurbach U, et al. Medical diagnostics for indoor mold exposure. *Int J Hyg Environ Health*. 2017;220(2):305-328.
 doi:10.1016/j.ijheh.2016.11.012
- 15. White SK, Cox-Ganser JM, Benaise LG, Kreiss K. Work-related peak flow and asthma symptoms in a damp building. *Occup Med (Chic III)*. 2013;63(4):287-

BMJ Open

	290. doi:10.1093/occmed/kqt028
16.	Hellgren U-M, Hyvärinen M, Holopainen R, Reijula K. Perceived indoor air
	quality, air-related symptoms and ventilation in Finnish hospitals. Int J Occup
	Med Environ Health. 2011;24(1):48-56. doi:10.2478/s13382-011-0011-5
17.	Karvonen AM, Hyvarinen A, Korppi M, et al. Moisture Damage and Asthma: A
	Birth Cohort Study. Pediatrics. 2015;135(3):e598-e606.
	doi:10.1542/peds.2014-1239
18.	Borràs-Santos A, Jacobs JH, Täubel M, et al. Dampness and mould in schools
	and respiratory symptoms in children: the HITEA study. Occup Environ Med.
	2013;70(10):681-687. doi:10.1136/oemed-2012-101286
19.	Kim J-L, Henneberger PK, Lohman S, et al. Impact of occupational exposures
	on exacerbation of asthma: a population-based asthma cohort study. BMC
	Pulm Med. 2016;16(1):148. doi:10.1186/s12890-016-0306-1
20.	Kurth L, Virji MA, Storey E, et al. Current asthma and asthma-like symptoms
	among workers at a Veterans Administration Medical Center. Int J Hyg Environ
	<i>Health</i> . 2017;220(8):1325-1332. doi:10.1016/j.ijheh.2017.09.001
21.	Moscato G, Pala G, Cullinan P, et al. EAACI position paper on assessment of
	cough in the workplace. Allergy Eur J Allergy Clin Immunol. 2014.
	doi:10.1111/all.12352
22.	Idrees M, FitzGerald JM. Vocal cord dysfunction in bronchial asthma. A review
	article. J Asthma. 2015;52(4):327-335. doi:10.3109/02770903.2014.982288
23.	Genuis SJ. Chemical sensitivity: pathophysiology or pathopsychology? Clin
	<i>Ther</i> . 2013;35(5):572-577. doi:10.1016/j.clinthera.2013.04.003

24.	Rossi S, Pitidis A. Multiple Chemical Sensitivity: Review of the State of the Art
	in Epidemiology, Diagnosis, and Future Perspectives. J Occup Environ Med.
	2018;60(2):138-146. doi:10.1097/JOM.000000000001215
25.	Dantoft TM, Andersson L, Nordin S, Skovbjerg S. Chemical intolerance. Curr
	<i>Rheumatol Rev</i> . 2015;11(2):167-184.
	http://www.ncbi.nlm.nih.gov/pubmed/26088215. Accessed May 14, 2018.
26.	Andersson L, Claeson A-S, Dantoft TM, Skovbjerg S, Lind N, Nordin S.
	Chemosensory perception, symptoms and autonomic responses during
	chemical exposure in multiple chemical sensitivity. Int Arch Occup Environ
	<i>Health</i> . 2016;89(1):79-88. doi:10.1007/s00420-015-1053-y
27.	Karvala K, Sainio M, Palmquist E, Claeson A-S, Nyback M-H, Nordin S.
	Building-Related Environmental Intolerance and Associated Health in the
	General Population. Int J Environ Res Public Health. 2018;15(9).
	doi:10.3390/ijerph15092047
28.	Miller CS, Prihoda TJ. The Environmental Exposure and Sensitivity Inventory
	(EESI): a standardized approach for measuring chemical intolerances for
	research and clinical applications. <i>Toxicol Ind Health</i> . 1999;15(3-4):370-385.
	doi:10.1177/074823379901500311
29.	Haahtela T, Lehtimäki L, Ahonen E, et al. [Update on current care guidelines:
	asthma]. <i>Duodecim</i> . 2013;129(9):994-995.
	http://www.ncbi.nlm.nih.gov/pubmed/23786112. Accessed May 18, 2018.
30.	Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur
	Respir J. 2005;26(2):319-338. doi:10.1183/09031936.05.00034805

BMJ Open

1		
2 3 4	31.	Nieminen MM, Lahdensuo A, Kellomaeki L, Karvonen J, Muittari A.
5 6		Methacholine bronchial challenge using a dosimeter with controlled tidal
7 8		breathing. Thorax. 1988;43(11):896-900.
9 10 11		http://www.ncbi.nlm.nih.gov/pubmed/3065974. Accessed May 18, 2018.
12 13 14	32.	Burge PS. Use of serial measurements of peak flow in the diagnosis of
15 16		occupational asthma. Occup Med. 1993;8(2):279-294.
17 18		http://www.ncbi.nlm.nih.gov/pubmed/8506506. Accessed May 19, 2017.
19 20 21	33.	MacIntyre N, Crapo RO, Viegi G, et al. Standardisation of the single-breath
22 23 24		determination of carbon monoxide uptake in the lung. Eur Respir J.
25 26		2005;26(4):720-735. doi:10.1183/09031936.05.00034905
27 28 29	34.	Horváth I, Barnes PJ, Loukides S, et al. A European Respiratory Society
30 31		technical standard: exhaled biomarkers in lung disease. Eur Respir J.
32 33 34		2017;49(4):1600965. doi:10.1183/13993003.00965-2016
35 36	35.	Latvala J, Karvala K, Sainio M, et al. Guidelines for Workplace and
37 38 39		Occupational Health Actions in Indoor Air Problems (Finnish).
40 41		Työterveyslaitos; 2017. http://www.julkari.fi/handle/10024/132078. Accessed
42 43		August 20, 2018.
44 45	00	Kilpeleinen M. Terke FO, Helenius H. Keekenuus M. Velidetien efennuu
46 47	36.	Kilpelainen M, Terho EO, Helenius H, Koskenvuo M. Validation of a new
48 49		questionnaire on asthma, allergic rhinitis, and conjunctivitis in young adults.
50 51		<i>Allergy</i> . 2001;56(5):377-384. doi:10.1034/j.1398-9995.2001.056005377.x
52 53 54	37.	Morley AD, Sharp HR. A review of sinonasal outcome scoring systems - which
55 56		is best? <i>Clin Otolaryngol</i> . 2006;31(2):103-109. doi:10.1111/j.1749-
57 58 59		4486.2006.01155.x
60		

38. Sukanen O, Sihvo M, Rorarius E, Lehtihalmes M, Autio V, Kleemola L. Voice Activity and Participation Profile (VAPP) in assessing the effects of voice disorders on patients' quality of life: Validity and reliability of the Finnish version of VAPP. Logop Phoniatr Vocology. 2007;32(1):3-8. doi:10.1080/14015430600784386 39. Alaluusua S JM. Psycho-social handicap of voice disorder and its rehabilitation: a pilot study of Finnish version of Voice Handicap Index [In Finnish] [master thesis]. 2003. 40. Sala E, Laine A, Simberg S, Pentti J, Suonpää J. The prevalence of voice disorders among day care center teachers compared with nurses: a questionnaire and clinical study. J Voice. 2001;15(3):413-423. doi:10.1016/S0892-1997(01)00042-X 41. Vertigan AE, Bone SL, Gibson PG. Development and validation of the Newcastle laryngeal hypersensitivity questionnaire. Cough. 2014;10(1):1. doi:10.1186/1745-9974-10-1 42. Belafsky PC, Postma GN, Koufman JA. Validity and reliability of the reflux symptom index (RSI). J Voice. 2002;16(2):274-277. http://www.ncbi.nlm.nih.gov/pubmed/12150380. Accessed June 26, 2018. 43. Mäkikangas A, Feldt T, Kinnunen U, Tolvanen A, Kinnunen M-L, Pulkkinen L. The factor structure and factorial invariance of the 12-item General Health Questionnaire (GHQ-12) across time: evidence from two community-based samples. Psychol Assess. 2006;18(4):444-451. doi:10.1037/1040-3590.18.4.444 44. Spitzer RL, Kroenke K, Williams JBW, Löwe B. A Brief Measure for Assessing

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50 57	
57	
59	
60	

Generalized Anxiety Disorder. *Arch Intern Med.* 2006;166(10):1092. doi:10.1001/archinte.166.10.1092

45. Lahtinen M, Sundman-Digert C, Reijula K. Psychosocial work environment and indoor air problems: a questionnaire as a means of problem diagnosis. *Occup Environ Med*. 2004;61(2):143 LP-149.

http://oem.bmj.com/content/61/2/143.abstract.

- 46. Elo A-L, Leppänen A, Jahkola A. Validity of a single-item measure of stress symptoms. *Scand J Work Environ Health*. 2003;29(6):444-451.
 doi:10.5271/sjweh.752
- 47. World Medical Association Declaration of Helsinki. *JAMA*. 2013;310(20):2191. doi:10.1001/jama.2013.281053

Authors' contributions: JU is the head of the study group and PN the principal researcher. All the writers took part in developing the study protocol; JU and PN especially planning the exposure assessment, JK, LL and AT the lung function diagnostics measures, JN the diagnostics of upper airways and SV, LK and EK the laryngeal investigations. All authors contributed to and approved the manuscript.

Funding statement: This work was supported by the Tampere Tuberculosis Foundation and the Competitive State Research Financing of the Expert Responsibility area of Tampere University Hospital (grant number 9T069).

Competing interests: The study group report grants from Tampere Tuberculosis Foundation, grants from Competitive State Research Financing of the Expert Responsibility area of Tampere University Hospital, during the conduct of the study.

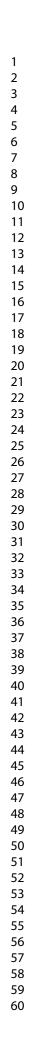
2	
3	
4	
5	
6	
7	
8	
-	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
30	
31	
31 32	
31	
31 32 33	
31 32 33 34	
31 32 33 34 35	
31 32 33 34 35 36	
31 32 33 34 35 36 37	
31 32 33 34 35 36	
31 32 33 34 35 36 37 38	
31 32 33 34 35 36 37 38 39	
31 32 33 34 35 36 37 38 39 40	
31 32 33 34 35 36 37 38 39 40 41	
31 32 33 34 35 36 37 38 39 40	
31 32 33 34 35 36 37 38 39 40 41 42	
31 32 33 34 35 36 37 38 39 40 41 42 43	
31 32 33 34 35 36 37 38 39 40 41 42 43 44	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	

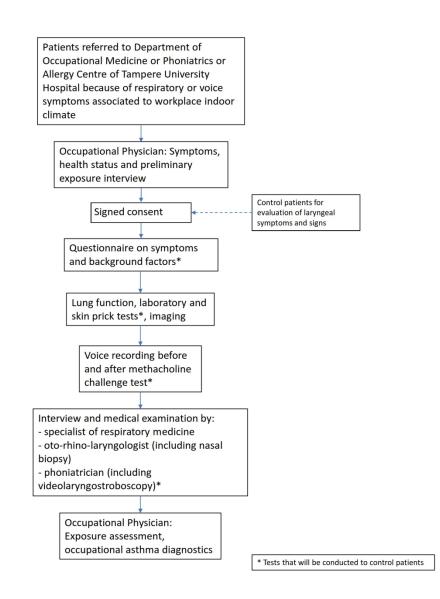
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

to beet terien ont

Figure 1. The study design of study on symptoms associated to moisture damage at workplace.

Table 1. The criteria on which moisture damage (MD) at workplace was suspected


- 1. Indoor air perceived as mouldy or stuffy or otherwise unpleasant
- 2. Signs of MDs: visible mould, moisture spots, discolouration of surface materials, disengaging or blistering of flooring materials, crumbling of wall plastering, water leakages through ceilings (buckets on the floors), loose water on surfaces
- 3. Renovations because of MDs previously made in the building
- 4. Information of MD findings from employer or occupational and health safety personnel


Table 2. The clinical tests conducted to the study patients.

∟ung function tests	2-week serial PEF monitoring, PEF
	monitoring at and off work, spirometry
	with bronchodilation test, methacholine
	challenge test, exhaled nitric oxide
	(FE_{NO}), diffusing capacity of the lungs
_aboratory tests	Sedimentation rate, C-reactive protein,
	blood count, serum total IgE, serum
	allergen specific IgE (different fungi and
	storage mites Acarus Siro, Lepidoglyphus
	Destructor, Thyrophagus Putrescentiae)
Skin prick tests	Birch, timothy, mugwort, horse, dog, cat,
	Dermatophagoides Pteronyssinus house
	dust mite, latex, aspergillus fumigatus,
	storage mites Acarus Siro, Lepidoglyphus
	Destructor, Thyrophagus Putrescentiae
maging	Chest x-ray, cone beam computed
	tomography of the paranasal sinuses
	2

Clinical test	Criteria for asthma
Two-week peak expiratory flow (PEF) monitoring	At least 3 times
	 at least 15% and 60 L/min improveme PEF after bronchodilator or
	 diurnal variation of PEF at least 20% a L/min
Spirometry	At least 200 mL and 12% improvement in force expiratory volume in one second (FEV1) or fo vital capacity (FVC)
Methacholine challenge test	Cumulative methacholine dose 0.6 mg or und results in 20% drop in FEV1 (PD20FEV1 <600 μ

¢

The study design of study on symptoms associated to moisture damage at workplace.

354x442mm (144 x 144 DPI)

BMJ Open

BMJ Open

The SAMDAW study protocol: An observational crosssectional study on Symptoms Associated to Moisture DAmage at Workplace

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026485.R3
Article Type:	Protocol
Date Submitted by the Author:	06-Jun-2019
Complete List of Authors:	Nynäs, Pia; Finnish Institute of Occupational Health; Tampere University Hospital, Department of Occupational Medicine Vilpas, Sarkku; Tampere University Hospital, Department of Phoniatrics; Tampere University, Faculty of Medicine and Health Technology Kankare, Elina; Tampere University Hospital, Department of Phoniatrics; Tampere University, Faculty of Medicine and Health Technology Karjalainen, Jussi; Tampere University Hospital, Allergy Centre; Tampere University, Faculty of Medicine and Health Technology Lehtimäki, Lauri; Tampere University Hospital, Allergy Centre; Tampere University, Faculty of Medicine and Health Technology Numminen, Jura; Tampere University Hospital, Allergy Centre; Tampere University, Faculty of Medicine and Health Technology Numminen, Jura; Tampere University Hospital, Allergy Centre; Tampere University, Faculty of Medicine and Health Technology Tikkakoski, Antti; Tampere University Hospital, Department of Clinical Physiology; Tampere University, Faculty of Medicine and Health Technology Kleemola, Leenamaija; Tampere University, Faculty of Medicine and Health Technology Uitti, Jukka; Tampere University, Faculty of Medicine and Health Technology; Finnish Institute of Occupational Health
Primary Subject Heading :	Occupational and environmental medicine
Secondary Subject Heading:	Respiratory medicine, Ear, nose and throat/otolaryngology
Keywords:	moisture damage, mold, Asthma < THORACIC MEDICINE, irritable larynx, respiratory symptoms

SCHOLARONE[™] Manuscripts

BMJ Open

The SAMDAW study protocol: An observational cross-sectional study on Symptoms Associated to Moisture DAmage at Workplace

P. Nynäs^{1,5,6}, S. Vilpas^{2,5}, E. Kankare^{2,5}, J. Karjalainen^{3,5}, L. Lehtimäki^{3,5}, J.

Numminen^{3,5}, A. Tikkakoski^{4,5}, L. Kleemola⁵, J. Uitti^{1,5,6}

¹Department of Occupational Medicine, Tampere University Hospital, Tampere, Finland

²Department of Phoniatrics, Tampere University Hospital, Tampere, Finland

³Allergy Centre, Tampere University Hospital, Tampere, Finland

⁴Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland

⁵Faculty of Medicine and Health Technology, Tampere University, Finland

⁶Finnish Institute of Occupational Health

Corresponding author: Pia Nynäs, pia.nynas@ttl.fi

Word count: 1749

Key words: Moisture damage, mold, asthma, irritable larynx, respiratory symptoms

Abstract

Introduction

Moisture damage (MD) exposure at work has been shown to increase the risk of new onset asthma and exacerbation of asthma. However, most of the studies in this field have been questionnaire studies. Small proportion of MD exposed workers are diagnosed with asthma. Many patients with MD exposure at work referred to secondary health care report intermittent hoarseness, loss of voice or difficulty to inhale, referring to functional or organic problems of the larynx. For accurate treatment, proper differential diagnostics is paramount. We present an ongoing observational study, in which we describe the prevalence of respiratory, voice and other symptoms related to MD at work in patients referred to secondary health care. Case-control setting will be used to evaluate the frequencies of the background factors, bronchial hyperreactivity and laryngeal findings.

Methods and analysis

The study sample consists of patients with workplace MD exposure and associated respiratory tract and/or voice symptoms referred to Tampere University Hospital. The clinical tests conducted to the study patients included comprehensive lung function tests, laboratory and skin prick tests, imaging and clinical evaluation by specialists of respiratory medicine, oto-rhino-laryngology and phoniatrics. The exposure assessment was performed by an occupational physician. The study patients filled out a questionnaire on previous illnesses and other background factors which for comparison was sent also to 1500 Finnish speaking people in the same hospital district randomly selected by the Finnish Population Information System. To explore

how common laryngeal disorders and voice symptoms are in general, a part of the tests will be conducted to 50 asymptomatic volunteers.

Ethics and dissemination

The regional ethics committee of Tampere University Hospital approved the study. All study subjects gave their written informed consent, which is required also from the controls. The results will be communicated locally and internationally as conference papers and journal articles.

Strengths and limitations of this study

- This kind of comprehensive clinical study associated with moisture damage exposure at work has not been conducted before.
- This study will increase the understanding of respiratory tract and voice symptoms and associated clinical findings in subjects exposed to moisture damage.
- Information of moisture damage exposure at work is based on documents
 from the workplace
- Limitation of a cross-sectional study like this is that it is not possible to obtain information on causal relationships between exposure and symptoms or illnesses

Introduction

Indoor air quality problems are considered important risk factors for health problems worldwide¹. Indoor air associated symptoms may be interrelated with different indoor air factors such as insufficient ventilation², unfavourable temperature conditions³, dry indoor air⁴, dustiness⁵, moisture damage (MD)¹, volatile organic compounds (VOC)⁶, and man-made mineral/ vitreous fibres (MMMF/ MMVF)⁷. Even if we do not know the cause of symptoms¹ MD exposure at work has been shown to increase the risk of new onset asthma and exacerbation of asthma^{8,9}. Other illnesses or respiratory symptoms that have been associated with MD exposure include cough, wheezing, dyspnoea, rhinitis, and upper respiratory tract symptoms^{9,10}.

In Finland, located in subarctic area, MDs in residences and schools are common¹¹. Workers in office buildings commonly report symptoms and complaints associated with indoor air^{12,13}. There is also a growing public concern over MDs in buildings and their possible permanent effects on dwellers' or workers' health in Finland, even if there is minor evidence of serious or permanent illnesses other than asthma caused by exposure to MD^{9,14}.

There are few studies describing the clinical findings in patients having symptoms when exposed to MD at work^{15,16}. Previous studies in this field have mainly been epidemiological⁹, and most is known about children's risk of developing symptoms in homes or schools with MD^{17,18}. In majority of the studies, the assessment of exposure to MD or presence of symptoms or illnesses has been based on questionnaires^{19,20}. Furthermore, only a small proportion of MD exposed workers are diagnosed with asthma⁸. According to our clinical experience, many patients with work-related MD exposure and referred to secondary health care report intermittent

Page 5 of 22

BMJ Open

hoarseness, loss of voice or difficulty to inhale, which would refer to functional or organic problems of the larynx²¹. In the case of laryngeal disorders, asthma medication is not useful or may even worsen the symptoms if the larynx is sensitive to irritation²². Coexisting with asthma, laryngeal disorders may be the cause of insufficient response to asthma treatment.

Studies over the past decades have provided important information on idiopathic environmental intolerance (IEI), in which a person has symptoms from different organ systems when in contact with an environmental factor that does not cause symptoms to most people^{23,24}. In odour or multiple chemical sensitivity (MCS) a person reacts with symptoms in association with low levels of airborne chemicals that most people tolerate without problems^{25,26}. It seems that some proportion of the patients that have indoor air associated symptoms in fact have IEI/MCS, but the frequency of this condition among these patients is not known²⁷.

As a conclusion, there is a need for a clinical study on patients exposed to MD at workplace focusing especially on differential diagnostics between asthma and laryngeal symptoms, evidence of exposure to MDs and other indoor air risk factors and chemical sensitivity.

Aims of the study

In patients referred to secondary health care because of respiratory tract and/ or voice symptoms associated to MD exposure at work, the aim is to:

- Describe the prevalence of different characteristics, symptoms and clinical test findings
- Find out the frequency of laryngeal symptoms and their possible influence on asthma diagnostics

- Explore the number of patients that fulfil the criteria of chemical sensitivity according to Quick Environmental Exposure and Sensitivity Inventory QEESI[©] guestion series²⁸.
- 4) Find out if there are connections between above mentioned symptoms and clinical findings and if it would be possible to allocate the clinical tests according to patient's symptoms in secondary health care.

Methods and analysis

 The study is conducted at Tampere University Hospital, which is a secondary level referral centre for a population of 530 000 and a tertiary level referral centre for a population of about 1 million people. Patients referred to departments of Occupational Medicine or Phoniatrics or Allergy Centre because of symptoms associated with indoor complaints at their workplace were interviewed as possible study subjects between October 2015 and June 2017. The study inclusion criteria were 1) age between 18 and 65 years, 2) upper and/or lower respiratory tract and/or voice symptoms, 3) symptoms associated to workplace, and 4) at least a strong suspicion of MD at the workplace (Table 1). The exclusion criteria were 1) severe illness (e.g. cancer) and 2) pregnancy. The study design is presented in Figure 1. After the study subjects had given their informed signed consent, the work-associated symptoms were collected by a structured interview. If the patient was not sure if the symptom was more frequent at work, it was not considered to be work-associated.

The conducted clinical tests are presented in Table 2. According to Finnish asthma guideline²⁹, diagnosis of asthma must be confirmed with a demonstration of variable

Page 7 of 22

BMJ Open

airway obstruction in lung function measurements: i) peak expiratory flow (PEF) monitoring, ii) spirometry with bronchodilation test, or iii) test for bronchial hyperreactivity (Table 3). To confirm or rule out the asthma diagnosis, the patients carried out a two-week PEF monitoring, spirometry with bronchodilation test and methacholine challenge test. The PEF monitoring included PEF measurements with Pinnacle[™] peak flow meter for two weeks in the morning and evening before and after inhaled bronchodilator (0.4 mg salbutamol). Spirometry was performed according to European Respiratory Society/American Thoracic Society guidelines³⁰ and methacholine challenge test using dosimeter with controlled tidal breathing according to Finnish guidelines³¹. To investigate if possible asthma is associated with work the patients performed PEF monitoring at and off work³² with Vitalograph® PEF/FEV Diary device. Diffusing capacity of the lungs³³ and exhaled nitric oxide $(FE_{NO})^{34}$ were determined. Specialists of respiratory medicine (JK and LL), oto-rhinolaryngology (JN) and phoniatrics (SV) examined the patients. For diagnosing laryngeal disorders videolaryngostroboscopy with either rigid or fiberoptic scope was performed, voice samples were recorded and also inspirograms were recorded before and after methacholine tests. Biopsy of nasal mucosa and a blood sample were taken and preserved for later analyses.

Exposure to MD at work was assessed from the documents of the building and indoor air quality investigations made at the workplace, if available, according to Finnish guidelines³⁵. A confirmed MD is graded into different severity categories, if sufficient information is available. Also, MMMFs, VOCs or problems in ventilation conditions at workplace were assessed if these had been measured.

As a non-responder analysis, of the patients who were invited but who did not take part in the study, age, symptoms, the presence of asthma diagnosis, and exposure will be evaluated based on patient records.

To explore how common laryngeal disorders are in general, methacholine challenge test, voice recording, clinical examination by the specialist of phoniatrics including videolaryngostroboscopy, FE_{NO} , and skin prick tests will be conducted to 50 asymptomatic volunteers adjusted for age and gender. The gathering of the volunteers began in August 2018 and it is our estimation that all the volunteers will be examined by the end of 2019.

Questionnaire/ survey

 The study patients and the volunteers fill out a questionnaire including questions on

- previous diseases, medication and upper and lower respiratory symptoms³⁶
- sinusitis symptoms (Sino-Nasal Outcome Test-22³⁷)
- voice symptoms (Voice Activity and Participation Profile³⁸, Voice Handicap Index³⁹, voice disorder guestionnaire⁴⁰)
- laryngeal symptoms (Newcastle laryngeal hypersensitivity questionnaire⁴¹)
- reflux symptoms (Reflux Symptom Index⁴²)
- depression and anxiety symptoms (General Health Questionnaire GHQ-12^{©43};
 Generalized Anxiety Disorder 7-item scale⁴⁴)
- psychosocial work load⁴⁵, and stress symptoms⁴⁶
- chemical sensitivity (QEESI[©])²⁸

To find out if the study group would have different background characteristics from the overall population, the same questionnaire was sent to 1500 Finnish speaking

 BMJ Open

people in the same hospital district randomly selected by the Finnish Population Information System. The proportions of women and men and different age groups in this comparison material are similar to the study population.

Sample size and power calculation

We estimated that a sample of 100 patients is enough to clinical deduction of the different characteristics of this patient group.

Concerning the population-based comparison material, our aim was to get 400 questionnaire answers (ratio 1:4) to increase the statistical power. Taking recent rather low survey response rates into account, we sent the questionnaire to 1500 people.

To assess if findings suggesting laryngeal disorders are more frequent among those who have respiratory tract or voice symptoms associated to workplace MD, data on frequency of laryngeal findings of asymptomatic people is needed. When analyzing the findings of methacholine challenge test of 30 patients, signs of laryngeal disorders were found in 62,5%. We estimated that among under 30% of asymptomatic people there are such findings in the methacholine challenge test. In power calculation based on findings in the methacholine challenge test, the number of asymptomatic people tested would be 50 with 80% force and 90% confidence interval.

Data analyses

We will analyze descriptive statistics (mean, median or proportion depending on the variable type and distribution) for variables such as gender distribution and age of the patients and their lines of business. We will also analyze the frequencies of

BMJ Open

different symptoms the patients complain and how these are related to objective findings in different organ systems or new diagnoses of e.g. asthma or laryngeal dysfunction. We will describe the proportions of patients with significant findings in medical assessment at different specialities (ENT, pulmonary and phoniatrics). We will compare frequencies and intensities of different symptoms and clinical findings between the patients and symptomless controls. We will also compare different background factors of the study patients, such as perceived psychosocial work load, with controls of the population who answered to the same questionnaire as the study patients. Dichotomous variables between two groups (patients vs controls or among patients with or without a certain finding) will be compared using χ^2 test and Fisher's exact test, while continuous variables between two groups will be analyzed by t-test or Mann-Whitney test depending on the distributions. Multiple logistic regression will be used to assess independent predictors of certain clinical findings among the patients. Based on the relation between symptoms and different objective findings we aim to find "clinical triggers" (certain sets of symptoms) that should prompt clinicians to refer patients to certain specialities.

Patient and Public Involvement

Patients or public were not involved in the design of the study. The study patients have received the results of their own tests, explanations for them and necessary treatment.

Ethics and dissemination

The regional ethics committee of Tampere University Hospital has approved the study (R14095). All study subjects gave their written informed consent, which is

BMJ Open

3	
4	
5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34 35	
36	
37	
38 39	
39 40	
40 41	
41 42	
42 43	
43 44	
44 45	
45	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

required also from the volunteers. The study adheres to good clinical research guidelines and the Helsinki Declaration⁴⁷.

The results will be communicated locally as well as internationally as conference papers and journal articles.

References

- WHO. WHO Guidelines for Indoor Air Quality: Dampness and Mould. Copenhagen: WHO Regional Office for Europe; 2009. http://www.euro.who.int/__data/assets/pdf_file/0017/43325/E92645.pdf.
- Muscatiello N, Mccarthy A, Kielb C, Hsu WH, Hwang SA, Lin S. Classroom conditions and CO2concentrations and teacher health symptom reporting in 10 New York State Schools. *Indoor Air*. 2015;25(2):157-167. doi:10.1111/ina.12136
- Skyberg K, Skulberg KR, Eduard W, Skåret E, Levy F, Kjuus H. Symptoms prevalence among office employees and associations to building characteristics. *Indoor Air*. 2003;13(3):246-252. http://www.ncbi.nlm.nih.gov/pubmed/12950587. Accessed January 15, 2019.
 - 4. Wolkoff P. Indoor air humidity, air quality, and health An overview. *Int J Hyg Environ Health*. 2018;221(3):376-390. doi:10.1016/j.ijheh.2018.01.015
 - Schneider T. Dust and fibers as a cause of indoor environment problems.
 Scand J Work Environ Heal Suppl. 2008;(4):10-17. doi:10.5271/sjweh.1294
- Salonen H, Pasanen A-L, Lappalainen S, et al. Volatile Organic Compounds and Formaldehyde as Explaining Factors for Sensory Irritation in Office Environments. *J Occup Environ Hyg.* 2009;6(4):239-247.

doi:10.1080/15459620902735892

- Salonen HJ, Lappalainen SK, Riuttala HM, Tossavainen AP, Pasanen PO, Reijula KE. Man-Made Vitreous Fibers in Office Buildings in the Helsinki Area. *J Occup Environ Hyg*. 2009;6(10):624-631. doi:10.1080/15459620903133667
- Karvala K, Toskala E, Luukkonen R, Uitti J, Lappalainen S, Nordman H.
 Prolonged exposure to damp and moldy workplaces and new-onset asthma.
 Int Arch Occup Environ Health. 2011;84(7):713-721. doi:10.1007/s00420-011-0677-9
- Mendell MJ, Mirer AG, Cheung K, Tong M, Douwes J. Respiratory and allergic health effects of dampness, mold, and dampness-related agents: a review of the epidemiologic evidence. *Environ Health Perspect*. 2011;119(6):748-756. doi:10.1289/ehp.1002410
- Jaakkola JJK, Hwang B-F, Jaakkola MS. Home Dampness and Molds as Determinants of Allergic Rhinitis in Childhood: A 6-Year, Population-based Cohort Study. *Am J Epidemiol*. 2010;172(4):451-459. doi:10.1093/aje/kwq110
- Täubel M, Karvonen AM, Reponen T, Hyvärinen A, Vesper S, Pekkanen J.
 Application of the Environmental Relative Moldiness Index in Finland. *Appl Environ Microbiol*. 2015;82(2):578-584. doi:10.1128/AEM.02785-15
- Reijula K, Sundman-Digert C, Reijula K. Assessment of indoor air problems at work with a questionnaire. *Occup Environ Med*. 2004;61(1):33-38. doi:10.1136/oem.2002.005835
- Ministry of Social Affairs and Health F. Moisture Damages in Workplaces.
 Memo of the Working Group on Moisture Damages (in Finnish). Helsinki;

1		
2 3		2000
4		2009.
5 6 7	14.	Hurraß J, Heinzow B, Aurbach U, et al. Medical diagnostics for indoor mold
8 9		exposure. Int J Hyg Environ Health. 2017;220(2):305-328.
10 11 12		doi:10.1016/j.ijheh.2016.11.012
13 14	15.	White SK, Cox-Ganser JM, Benaise LG, Kreiss K. Work-related peak flow and
15 16 17		asthma symptoms in a damp building. Occup Med (Chic III). 2013;63(4):287-
18 19		290. doi:10.1093/occmed/kqt028
20 21 22	16.	Hellgren U-M, Hyvärinen M, Holopainen R, Reijula K. Perceived indoor air
23 24		quality, air-related symptoms and ventilation in Finnish hospitals. Int J Occup
25 26 27		<i>Med Environ Health</i> . 2011;24(1):48-56. doi:10.2478/s13382-011-0011-5
28 29 30	17.	Karvonen AM, Hyvarinen A, Korppi M, et al. Moisture Damage and Asthma: A
31 32		Birth Cohort Study. Pediatrics. 2015;135(3):e598-e606.
33 34 35		doi:10.1542/peds.2014-1239
36 37	18.	Borràs-Santos A, Jacobs JH, Täubel M, et al. Dampness and mould in schools
38 39 40		and respiratory symptoms in children: the HITEA study. Occup Environ Med.
41 42		2013;70(10):681-687. doi:10.1136/oemed-2012-101286
43 44 45	19.	Kim J-L, Henneberger PK, Lohman S, et al. Impact of occupational exposures
46 47		on exacerbation of asthma: a population-based asthma cohort study. BMC
48 49 50		Pulm Med. 2016;16(1):148. doi:10.1186/s12890-016-0306-1
51 52	20.	Kurth L, Virji MA, Storey E, et al. Current asthma and asthma-like symptoms
53 54 55		among workers at a Veterans Administration Medical Center. Int J Hyg Environ
56 57		<i>Health</i> . 2017;220(8):1325-1332. doi:10.1016/j.ijheh.2017.09.001
58 59 60	21.	Moscato G, Pala G, Cullinan P, et al. EAACI position paper on assessment of

	cough in the workplace. <i>Allergy Eur J Allergy Clin Immunol</i> . 2014. doi:10.1111/all.12352
22.	Idrees M, FitzGerald JM. Vocal cord dysfunction in bronchial asthma. A review
	article. J Asthma. 2015;52(4):327-335. doi:10.3109/02770903.2014.982288
23.	Genuis SJ. Chemical sensitivity: pathophysiology or pathopsychology? Clin
	Ther. 2013;35(5):572-577. doi:10.1016/j.clinthera.2013.04.003
24.	Rossi S, Pitidis A. Multiple Chemical Sensitivity: Review of the State of the Art
	in Epidemiology, Diagnosis, and Future Perspectives. J Occup Environ Med.
	2018;60(2):138-146. doi:10.1097/JOM.000000000001215
25.	Dantoft TM, Andersson L, Nordin S, Skovbjerg S. Chemical intolerance. Curr
	<i>Rheumatol Rev</i> . 2015;11(2):167-184.
	http://www.ncbi.nlm.nih.gov/pubmed/26088215. Accessed May 14, 2018.
26.	Andersson L, Claeson A-S, Dantoft TM, Skovbjerg S, Lind N, Nordin S.
	Chemosensory perception, symptoms and autonomic responses during
	chemical exposure in multiple chemical sensitivity. Int Arch Occup Environ
	<i>Health</i> . 2016;89(1):79-88. doi:10.1007/s00420-015-1053-y
27.	Karvala K, Sainio M, Palmquist E, Claeson A-S, Nyback M-H, Nordin S.
	Building-Related Environmental Intolerance and Associated Health in the
	General Population. Int J Environ Res Public Health. 2018;15(9).
	doi:10.3390/ijerph15092047
28.	Miller CS, Prihoda TJ. The Environmental Exposure and Sensitivity Inventory
	(EESI): a standardized approach for measuring chemical intolerances for
	research and clinical applications. <i>Toxicol Ind Health</i> . 1999;15(3-4):370-385.

BMJ Open

2		
3		doi:10.1177/074823379901500311
4		
5 6 7	29.	Haahtela T, Lehtimäki L, Ahonen E, et al. [Update on current care guidelines:
8 9		asthma]. <i>Duodecim</i> . 2013;129(9):994-995.
10 11 12		http://www.ncbi.nlm.nih.gov/pubmed/23786112. Accessed May 18, 2018.
13 14 15	30.	Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur
16 17		Respir J. 2005;26(2):319-338. doi:10.1183/09031936.05.00034805
18 19 20	31.	Nieminen MM, Lahdensuo A, Kellomaeki L, Karvonen J, Muittari A.
21 22		Methacholine bronchial challenge using a dosimeter with controlled tidal
23 24 25		breathing. <i>Thorax</i> . 1988;43(11):896-900.
26 27		http://www.ncbi.nlm.nih.gov/pubmed/3065974. Accessed May 18, 2018.
28 29 30	32.	Burge PS. Use of serial measurements of peak flow in the diagnosis of
31 32		occupational asthma. Occup Med. 1993;8(2):279-294.
33 34 35		http://www.ncbi.nlm.nih.gov/pubmed/8506506. Accessed May 19, 2017.
36 37	33.	MacIntyre N, Crapo RO, Viegi G, et al. Standardisation of the single-breath
38 39 40		determination of carbon monoxide uptake in the lung. Eur Respir J.
41 42		2005;26(4):720-735. doi:10.1183/09031936.05.00034905
43 44 45	34.	Horváth I, Barnes PJ, Loukides S, et al. A European Respiratory Society
46 47		technical standard: exhaled biomarkers in lung disease. Eur Respir J.
48 49 50		2017;49(4):1600965. doi:10.1183/13993003.00965-2016
51 52 53	35.	Latvala J, Karvala K, Sainio M, et al. Guidelines for Workplace and
55 54 55		Occupational Health Actions in Indoor Air Problems (Finnish).
56 57		Työterveyslaitos; 2017. http://www.julkari.fi/handle/10024/132078. Accessed
58 59 60		August 20, 2018.

 36. Kilpelainen M, Terho EO, Helenius H, Koskenvuo M. Validation of a new guestionnaire on asthma, allergic rhinitis, and conjunctivitis in young adults. *Allergy*. 2001;56(5):377-384. doi:10.1034/j.1398-9995.2001.056005377.x 37. Morley AD, Sharp HR. A review of sinonasal outcome scoring systems - which is best? Clin Otolaryngol. 2006;31(2):103-109. doi:10.1111/j.1749-4486.2006.01155.x 38. Sukanen O, Sihvo M, Rorarius E, Lehtihalmes M, Autio V, Kleemola L. Voice Activity and Participation Profile (VAPP) in assessing the effects of voice disorders on patients' quality of life: Validity and reliability of the Finnish version of VAPP. Logop Phoniatr Vocology. 2007;32(1):3-8. doi:10.1080/14015430600784386 39. Alaluusua S JM. Psycho-social handicap of voice disorder and its rehabilitation: a pilot study of Finnish version of Voice Handicap Index [In Finnish] [master thesis]. 2003. 40. Sala E, Laine A, Simberg S, Pentti J, Suonpää J. The prevalence of voice disorders among day care center teachers compared with nurses: a questionnaire and clinical study. J Voice. 2001;15(3):413-423. doi:10.1016/S0892-1997(01)00042-X 41. Vertigan AE, Bone SL, Gibson PG. Development and validation of the Newcastle laryngeal hypersensitivity questionnaire. Cough. 2014;10(1):1. doi:10.1186/1745-9974-10-1 42. Belafsky PC, Postma GN, Koufman JA. Validity and reliability of the reflux symptom index (RSI). J Voice. 2002;16(2):274-277. http://www.ncbi.nlm.nih.gov/pubmed/12150380. Accessed June 26, 2018.

2		
3 4	43.	Mäkikangas A, Feldt T, Kinnunen U, Tolvanen A, Kinnunen M-L, Pulkkinen L.
5 6		The factor structure and factorial invariance of the 12-item General Health
7 8		Questionnaire (GHQ-12) across time: evidence from two community-based
9 10		samples. <i>Psychol Assess</i> . 2006;18(4):444-451. doi:10.1037/1040-
11 12		Sumples. 7 Sychol Assess. 2000, 10(4).444 451. 001.10.1007/1040
13		3590.18.4.444
14 15 16	44.	Spitzer RL, Kroenke K, Williams JBW, Löwe B. A Brief Measure for Assessing
17		Generalized Anxiety Disorder. Arch Intern Med. 2006;166(10):1092.
18 19		
20 21		doi:10.1001/archinte.166.10.1092
22 23	45.	Lahtinen M, Sundman-Digert C, Reijula K. Psychosocial work environment and
24 25		
26		indoor air problems: a questionnaire as a means of problem diagnosis. Occup
27 28		Environ Med. 2004;61(2):143 LP-149.
29 30		http://oem.bmj.com/content/61/2/143.abstract.
31 32		
33 34	46.	Elo A-L, Leppänen A, Jahkola A. Validity of a single-item measure of stress
35 36		symptoms. Scand J Work Environ Health. 2003;29(6):444-451.
37		doi:10.5271/sjweh.752
38 39		
40 41	47.	World Medical Association Declaration of Helsinki. JAMA. 2013;310(20):2191.
42 43		doi:10.1001/jama.2013.281053
44		
45 46		
47 48	Auth	nors' contributions: JU is the head of the study group and PN the principal
49 50	rese	archer. All the writers took part in developing the study protocol; JU and PN
51 52		
53	espe	cially planning the exposure assessment, JK, LL and AT the lung function
54 55	diagi	nostics measures, JN the diagnostics of upper airways and SV, LK and EK the
56 57	laryn	geal investigations. All authors contributed to and approved the manuscript.
58 59	-	<u>-</u>
60	Fund	ding statement: This work was supported by the Tampere Tuberculosis

Foundation and the Competitive State Research Financing of the Expert Responsibility area of Tampere University Hospital (grant number 9T069).

Competing interests: The study group report grants from Tampere Tuberculosis Foundation, grants from Competitive State Research Financing of the Expert Responsibility area of Tampere University Hospital, during the conduct of the study.

tor occr review only

Figure 1. The study design of study on symptoms associated to moisture damage at workplace.

Table 1. The criteria on which moisture damage (MD) at workplace was suspected

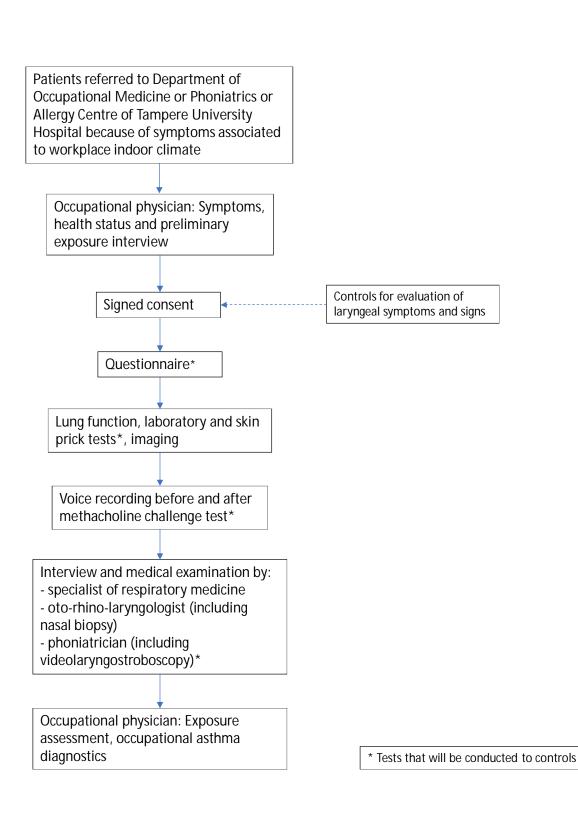

- 1. Indoor air perceived as mouldy or stuffy or otherwise unpleasant
- 2. Signs of MDs: visible mould, moisture spots, discolouration of surface materials, disengaging or blistering of flooring materials, crumbling of wall plastering, water leakages through ceilings (buckets on the floors), loose water on surfaces
- 3. Renovations because of MDs previously made in the building
- 4. Information of MD findings from employer or occupational and health safety personnel

Table 2. The clinical tests conducted to the study patients.

monitoring at and off work, spirometry with bronchodilation test, methacholine challenge test, exhaled nitric oxide (FE _{NO}), diffusing capacity of the lungs Sedimentation rate, C-reactive protein, blood count, serum total IgE, serum allergen specific IgE (different fungi and
challenge test, exhaled nitric oxide (FE_{NO}), diffusing capacity of the lungs Sedimentation rate, C-reactive protein, blood count, serum total IgE, serum
(FE _{NO}), diffusing capacity of the lungs Sedimentation rate, C-reactive protein, blood count, serum total IgE, serum
Sedimentation rate, C-reactive protein, blood count, serum total IgE, serum
blood count, serum total IgE, serum
-
allergen specific IgE (different fungi and
anergen speenie ige (unterent lungi and
storage mites Acarus Siro, Lepidoglyphus
Destructor, Thyrophagus Putrescentiae)
Birch, timothy, mugwort, horse, dog, cat,
Dermatophagoides Pteronyssinus house
dust mite, latex, aspergillus fumigatus,
storage mites Acarus Siro, Lepidoglyphus
Destructor, Thyrophagus Putrescentiae
Chest x-ray, cone beam computed
tomography of the paranasal sinuses
2

Clinical test	Criteria for asthma
Two-week peak expiratory flow (PEF) monitoring	At least 3 times
	 at least 15% and 60 L/min improveme PEF after bronchodilator or
	 diurnal variation of PEF at least 20% a L/min
Spirometry	At least 200 mL and 12% improvement in force expiratory volume in one second (FEV1) or fo vital capacity (FVC)
Methacholine challenge test	Cumulative methacholine dose 0.6 mg or und results in 20% drop in FEV1 (PD20FEV1 <600 μ

¢

