

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Prediction model comparison for hemorrhagic fever with renal syndrome

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-025773
Article Type:	Research
Date Submitted by the Author:	01-Aug-2018
Complete List of Authors:	Wang, Ya-wen; Chinese Academy of Medical Sciences / Peking Union Medical College, School of Public Health Shen, Zhong-zhou JIANG, Yu; Chinese Academy of Medical Sciences and Peking Union Medical College
Keywords:	autoregressive integrated moving average, generalized regression neural network, hemorrhagic fever with renal syndrome, prediction

SCHOLARONE[™] Manuscripts

60

BMJ Open

1	
2	
3	Prediction model comparison for hemorrhagic fever with renal syndrome
4	
5	
6	First author:
7	Ya-wen Wang
8	Address: School of Public Health, Chinese Academy of Medical Sciences / Peking Union
9	Medical College, Beijing, China.
10	
11	Tel: 86-17810259300
12	E-mail: <u>ywwang2099@163.com</u>
13	
14	Second author:
15	
16	Zhong-zhou Shen
17	Address: School of Public Health, Chinese Academy of Medical Sciences / Peking Union
18	Medical College, Beijing, China.
	Tel: 86-18310017094
19	
20	E-mail: <u>szz90123@163.com</u>
21	
22	Corresponding author:
23	Professor Yu Jiang
24	
25	Address: School of Public Health, Chinese Academy of Medical Sciences / Peking Union
26	Medical College, Beijing, China.
27	Tel: 86-13693271887
28	E-mail: jiangyu@pumc.edu.cn
29	
30	
31	Key words: autoregressive integrated moving average; generalized regression neural network;
32	hemorrhagic fever with renal syndrome; prediction
33	
34	Word count: 2818 words.
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

ABSTRACT

Objectives Hemorrhagic fever with renal syndrome (HFRS) is a serious public health threat in China, accounting for almost 90% cases reported globally. Infectious disease prediction may help in disease prevention despite some uncontrollable influence factors. This study conducted a comparison between a hybrid model with two single models in forecasting the monthly incidence of HFRS in China.

Design Time-series study.

Setting The People's Republic of China

Methods Autoregressive integrated moving average (ARIMA) model, generalized regression neural network (GRNN) model and hybrid ARIMA-GRNN model were constructed. The incidence data from January 2011 to December 2017 were adopted to test models' fitting performance. Data from January 2018 to May were used to demonstrate the models' forecasting performance. Root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) were adopted to evaluate these models' effectiveness.

Results The incidence of HFRS in the past seven years was characterized by a slight declining trend and obverse seasonal variation. The ARIMA(2,1,1)(2,1,1)12 model was selected as the optimal model in HFRS fitting. The smooth factor of the basic GRNN model and the hybrid model was 0.03 and 0.043 respectively. The hybrid model was the best in disease forecasting but was underperform in fitting part.

Conclusion The hybrid ARIMA-GRNN model was better than single ARIMA and basic GRNN model in forecasting monthly incidence of HFRS in China. It could be considered as a decision-making tool in HFRS prevention and control.

Strengths and limitations of this study

- This study examined the forecasting performances of autoregressive integrated moving average (ARIMA) model and generalized regression neural network (GRNN) model and hybrid ARIMA-GRNN model in forecasting incidence of hemorrhagic fever with renal syndrome (HFRS) in China, as a reference to choose suitable model in infectious disease prediction.
- The reported data we collected may slightly differ from the actual incidence number since reported data came from monitor, it may not include the person who was infected but not tested.
- Many factors could influence the incidence of an infectious disease. But only time factor in study period was considered in our models which may increase forecast error. Thus data should be updated to maintain the model's accuracy.

BACKGROUND

Hantaviruses, a member of family *Bunyaviridae*, contains the most important zoonotic pathogens of humans.¹ Two categories of hantaviruses are Old World (Asia and Europe) virus that cause hemorrhagic fever with renal syndrome (HFRS), and New World (Americas) virus that causes hantavirus pulmonary syndrome (HPS).^{2,3} Hantaviruses are spread through the infected mammals' urine, faces, and saliva. People can be infected mainly through respiratory tract, alimentary tract and skin/mucus membrane abrasion. The onset symptoms of HFRS are fever, circulatory collapse with hypotension, hemorrhage and acute kidney injury (AKI).^{4,5} The hallmark of HFRS is

BMJ Open

capillary leak syndrome, which causes edema and hemorrhage, even threaten people's life.^{6,7} Cases of HFRS are widely distributed in eastern Asia, particularly in China, Russia and Korea.⁸ It is reported that the number of HFRS human cases in China accounts for almost 90% of the total cases worldwide.^{9,10} Some comprehensive control activities such as effective vaccine and rodent elimination have achieved remarkable results, while the incidence of HFRS is still high owing to some uncontrollable factors.^{11,12} Thus it is important to forecast the diseases trends and take some control measure.

Statistic models such as linear regression, artificial neural network and grey model have been widely used in infectious diseases forecasting. Reliable forecasting plays an important role in diseases control before pandemic or outbreak. The autoregressive integrated moving average(ARIMA) model is one of the most popular methods in diseases prediction. The principle of the model contains filtering out the high-frequency noise in the data, detecting local trends based on liner dependence and forecasting the develop trends. The limitation of this model is that ARIMA can only analyse the liner part of infectious disease series.¹³ However, the non-linear part of epidemic data may not be white noise, which means some information may be lost by ARIMA model. To overcome the inherent defect of ARIMA model, an artificial neural network (ANN) model was adopted. ANN is a conceptualized mathematical non-linear classification model inspired by the behavior of biological networks of neurons.^{14,15} The generalized regression neural network (GRNN) is a member of ANN family with unique characteristics of accelerated learning and greater capability for non-linear fitting. The hybrid ARIMA-GRNN model has both advantages of ARIMA model and GRNN model, which means that both the linear part and non-linear part of time series are fitted.

There are some researches showing that the hybrid model provides better incidence forecasting performance than single ARIMA model and basic GRNN model in some infectious diseases, while which model is the best in predicting the incidence of HFRS in China is still unclear. Besides, some studies had compared the forecasting performance of hybrid ARIMA-GRNN model with other models.¹⁶ But the comparison between hybrid model with two single models in HFRS prediction had not been found. This study aims to develop a single ARIMA model, a basic GRNN model and a hybrid ARIMA-GRNN model to predict the monthly incidence of HFRS in China. The fitting and forecasting performance of these three models were compared to determine the best one, which is suggested to be employed in the provision of reference information for HFRS control.

METHODS

Materials Source

The monthly incidence data of HFRS in China from January 2011 to May 2018 were collected from the official website of National Health Commission of the People's Republic of China (Ministry of Health). All HFRS cases must be reported to the National Health Commission through the Infectious Disease Surveillance System within 24 hours. The data was separated into two parts: model building and model forecasting.

Single ARIMA Model

The ARIMA model is usually shown as ARIMA (p, d, q)(P,D,Q)_S while the parameters mean non-seasonal and seasonal order of auto-regression, the degree of difference and moving average

respectively. Besides, the subscript means the length of cyclical pattern. An ARIMA model is developed by time series stationary, parameter estimation and model check.¹⁷

Time stationary means no fluctuation or periodicity with time goes by. The Augmented Dickey-Fuller (ADF) unit-root test could help estimating whether the time series is stationary or not. Log transformation and differences are frequently adopted to stabilize the time series.

The parameters of p, q, P and Q are determined through the autocorrelation function (ACF) graph and partial autocorrelation (PACF) graph. D is the length of seasonal difference and d is the length of trend difference, these two parameters are determined when original series is stationaried. Generally, more than one plausible models could be combined.

Since the best model must has the highest accuracy in disease prediction, some substandard models are removed. A suitable model must show statistical significance in parameter test and a white noise sequence in residual test. Besides, the best model should have the lowest Akaike information criterion (AIC) value than other combined models.

Basic GRNN Model

The GRNN model is built on the basis of non-liner regression theory. The input layer, pattern layer, summation layer and output layer are involved in the construction of GRNN model.¹⁸ Its inherent function is to identify the relationship between each input value and output value. Smoothing factor is the only parameter of GRNN which means the network could not be affected by human factors. Generally, there are more than one possible values of smoothing factor and the best one should be determined to build an optimal GRNN model.

Initially, the original data are divided into two parts, the training set and the test set. The test set is the last two data or two random data of original series, the rest as the training set. Then the training network was tested for a series of smoothing factors. And following that, the basic GRNN model is established with the best smoothing factor, which must have the lowest root mean square error (RMSE). Finally, all the original data were adopted as input part to predict the future data by the best GRNN model.

Hybrid ARIMA-GRNN Model

The ARIMA model has advantage in extracting and fitting the linear part of the original time series, while the non-liner information in residuals is abandoned. GRNN model is combined for it can analyze the non-liner information and mine the information adequately. The hybrid ARIMA-GRNN model is developed to demonstrate if it has the highest accuracy in HFRS incidence prediction.

In the development of the hybrid model, the input variable is the fitting data of ARIMA model while the output variable is the actual data. Same with the basic GRNN model, the last two samples or two randomly selected samples of original series are set as testing set and the rest are set as training set to find optimal smoothing factor. The smoothing factor must have the minimum RMSE. Finally, the forecasted values of ARIMA model is used as the input data of hybrid model to get the output predictive values.

Model Comparison

The forecasting effects of ARIMA model, GRNN model and hybrid ARIMA-GRNN model are estimated with root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE).¹⁹ Excel 2016 was used to build the database, R 3.4.3 software was used to create the ARIMA model, the Matlab R2016a was used to create the basic GRNN model and hybrid ARIMA-GRNN model.

Ethics

Since no primary data collection was undertaken, no patient or public was involved, no formal ethical assessment or informed consent was required.

RESULTS

Single ARIMA model

The monthly incidence data of HFRS in China from January 2011 to December 2017 was used to develop the ARIMA model (Fig 1). As shown in the original time series graph, the HFRS incidence shows seasonal variation (s=12) and a slightly declining trend, which means the time series was not stationary. Trend difference (d=1) and seasonal difference (D=1) were dene to eliminate the instability. The ADF test showed that the differenced time sequence was stationary (t statistics was -4.7201, P=0.01).

Figure 1 Monthly incidence of HFRS in China from January 2011 to December 2017.

The ACF graph and PACF graph (Fig 2) were applied to explore the parameters of the ARIMA model. Four appropriate models were chosen by residual test and were filtered by AIC values. The AIC values of ARIMA $(1,1,1)(1,1,1)_1$ ARIMA $(1,1,1)(2,1,1)_1$ ARIMA $(2,1,1)(2,1,1)_1$ were 950.48, 944.68, 940.55, 936.61 respectively. The ARIMA $(2,1,1)(2,1,1)_{12}$ model had the lowest AIC value and was chosen as the most suitable model. The residual test showed white noise (Fig 3).

Figure 2 The ACF and PACF graphs of differenced HFRS incidence series. Figure 3 Residual white noise test

Basic GRNN model

The samples from January 2011 to December 2017 were adopted to develop the network. The last two samples were used as testing samples while the others were training samples. To determine the optimal smoothing factors, a series of smoothing factors were tested. The smoothing factor with the minimum RMSE of the network was selected as the optimal one. Fig 4 shows the RMSE of these smoothing factors. As shown in Fig 4, the optimal smoothing factor of the one-dimensional input and one-dimensional output GRNN model was 0.03.

Figure 4 The selection of basic GRNN model and hybrid ARIMA-GRNN model

Hybrid ARIMA-GRNN model

The fitted data of ARIMA model from January 2011 to December 2017 were used as the input samples for the GRNN model. The actual HFRS values were used as the output samples to training the hybrid ARIMA-GRNN model. The RMSE of hybrid model was the lowest when the smoothing factor was 0.043 (Fig 4). Thus 0.043 was selected to develop the GRNN model. Subsequently, the forecasting outcomes of ARIMA model from January 2018 to May 2018 were selected as the entry value of the GRNN model, and the output values were the predictive values of the combined ARIMA-GRNN model.

Finally, these three models were adopted to forecast the HFRS incidence in China from January to May 2018. The forecasting performance parameters of the three models for the fitting and forecasting parts are shown in Table 1. The fitting and forecasting curves of the three models and the actual HFRS incidence series are depicted in Fig 5.

	Table 1	. The fitting	and forecasting	g performance	of the three models.
--	---------	---------------	-----------------	---------------	----------------------

		Fitting part		Fo	recasting part	
Predicting error	MAPE	MAE	RMSE	MAPE	MAE	RMSE
ARIMA	9.1154	89.0302	138.8356	21.0212	175.7042	220.6269
GRNN	10.7332	134.596	265.7046	19.2029	177.0356	202.1684
ARIMA-GRNN	9.6083	85.0429	140.6426	17.8026	152.3013	196.4682

Figure 5 The fitting and forecasting curves of the three models and the actual HFRS incidence series

DISCUSSION

In this study, a hybrid model was constructed based on traditional ARIMA model and basic GRNN model. Three different models were compared in forecasting performance and the results showed that the hybrid ARIMA-GRNN model was the optimal model in predicting the monthly incidence of HFRS in China. Thus we consider the hybrid model as a decision-making tool to give some suggestion in public health policy decision.

The characteristic of monthly incidence of HFRS in China is suitable for ARIMA model and GRNN model. As shown in the result part, the incidence of HFRS in China has a slight decreasing trend and a bimodal seasonal cases distribution, which are same with other studies.^{20,21} The incidence reaches a peak in winter rapidly and has a longer lasting peak in Spring. Autumn to winter peak is the other peak, which is lower than the first one. People are more likely to be exposed to the disease for increased activities in these two seasons, rodent behavior changes with climate change.^{22,23} Besides, these two peaks, including the peak values, might vary with different hantaviruses types.

The hybrid ARIMA-GRNN model was superior among three models even with imperfect fitting performance. ARIMA model is one of the most commonly used methods in infectious diseases prediction and has been proved with high accuracy. In this study, the traditional ARIMA model was used as the baseline model for evaluating the performance of other models. The results showed that single ARIMA model and basic GRNN model are better than hybrid model in data fitting because of lower MAE and MAPE. It is recognized to be used in the prediction incidence of infectious disease. Even some unmeasurable factors may impact data fitting, the forecasting performance should be at the first consideration.¹⁸ The MAPE, MAE, RMSE of hybrid model in validation part were lower than single ARIMA model or basic GRNN model. Some studies showed that hybrid ARIMA-GRNN model had less error than single model both in modeling and forecasting stage, which is different with our study. These studies built the hybrid model with tuberculosis incidence or hand-foot-mouth disease incidence.^{24,25} so we hypothesis that diseases characteristics may affect the model performance.

The basic GRNN model was developed as a new potential tool for infectious diseases incidence prediction in recent years. In this study, one-dimensional input and one-dimension output GRNN model was built and same as the hybrid model. The fitting error of GRNN model is

BMJ Open

higher than the other two model, but the forecasting error just higher than the hybrid model. Here also some studies showed that basic GRNN model performs better than ARIMA model in disease prediction.¹⁶ Same as other disease prediction model, the disease control department could assess the disease developing trend with the help of the hybrid ARIAM-GRNN model. In a short term, the prediction values have same trend with the actual values. It means if the predictive values continue to rise, an outbreak should be alerted. Besides, disease prediction model is developed to evaluate the effectiveness of diseases intervention strategies like vaccine. An effective control measure will make the actual values lower than the predicted results. Something noteworthy is that these two functions are based on short terms. The incidence of infectious disease is influenced by some uncontrollable factors, like HFRS is infected by weather, climate, human activities and so on.²⁶⁻²⁸ These factors may keep stable in a short period and might change in a long run.

Several limitations of this study should be noted. As is shown above, the prediction model was merely developed for short-term forecasting. Maintaining the prediction performance for months or years requires constantly update of data and model. Besides, this study only considered the incidence of HFRS in China, weather the hybrid model is suitable for other countries is still unclear and larger samples are needed to test.

Conclusions

The hybrid ARIMA-GRNN model is superior than the single ARIMA model and basic GRNN model both in fitting part and forecasting part in monthly incidence of HFRS in China. The data should keep update to maintain the forecasting performance. This hybrid model should be considered as a decision-making tool in HFRS prevention and control.

Supporting information

S1 Table. The data of HFRS incidence in China from January 2011 to May 2018.

Contributors YJ, YW and ZS designed the study. ZS extracted the data and constructed the database. YW and ZS analyzed the data. YW drafted the manuscript. YJ and ZS made critical revision to the manuscript. All authors read and approved the final manuscript.

Funding This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES

- Schmaljohn CS, Hasty SE, Dalrymple JM, LeDuc JW, Lee HW, von Bonsdorff CH, et al. Antigenic and genetic properties of viruses linked to hemorrhagic fever with renal syndrome. Science. 1985;227:1041-1044.
- Ehelepola NDB, Basnayake BMLS, Sathkumara SMBY, Kaluphana KLR. Two Atypical Cases of Hantavirus Infections from Sri Lanka. Case Reports in Infectious Diseases. 2018;2018:1-6. doi: 10.1155/2018/4069862.
- Avsic-Zupanc T, Saksida A, Korva M. Hantavirus infections. Clin Microbiol Infect. 2015;1-11. doi: 10.1111/1469-0691.12291.

1

2

3 4

5

6

7

8 9

10

11

12

13

14 15

16

17

18

19 20

21

22

23

24

25 26

27

28

29

30 31

32

33

34

35

36 37

38

39

40

41 42

43

44

45

46 47

48

49

50

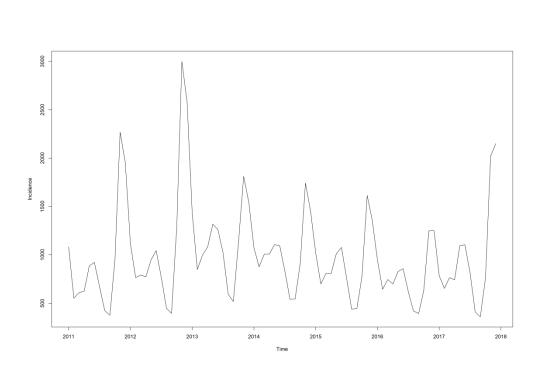
51

52 53

54

55

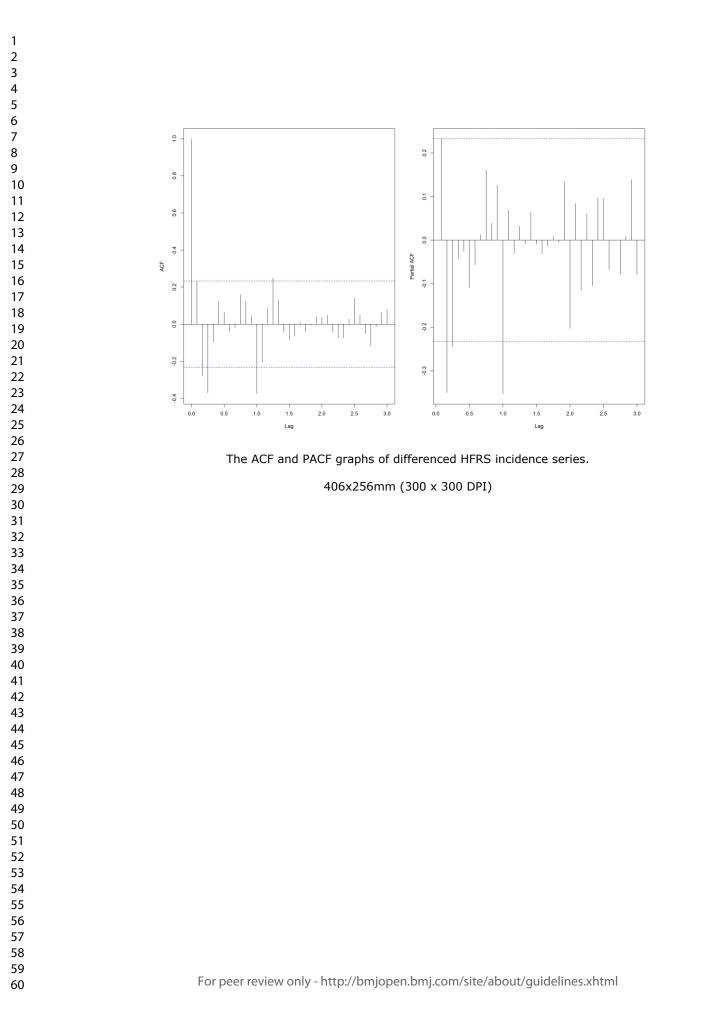
- Latus J, Schwab M, Tacconelli E, Pieper FM, Wegener D, Dippon J, et al. Clinical course and long-term outcome of hantavirus-associated nephropathia epidemica, Germany. Emerg Infect Dis. 2015;21:76-83. doi: 10.3201/eid2101.140861.
- Vaheri A, Strandin T, Hepojoki J, Sironen T, Henttonen H, Makela S, et al. Uncovering the mysteries of hantavirus infections. Nat Rev Microbiol. 2013;11:539-550. doi: 10.1038/nrmicro3066.
- 6. Hepojoki J, Vaheri A, Strandin T. The fundamental role of endothelial cells in hantavirus pathogenesis. Front Microbiol. 2014;5:727. doi: 10.3389/fmicb.2014.00727.
- Pal E, Korva M, Resman RK, Kejzar N, Bogovic P, Kurent A, et al. Sequential assessment of clinical and laboratory parameters in patients with hemorrhagic fever with renal syndrome. Plos One. 2018;13:e197661. doi: 10.1371/journal.pone.0197661.
- Bi P, Parton KA. El Niño and incidence of hemorrhagic fever with renal syndrome in China. JAMA. 2003;289:176-177.
- Zhang S, Wang S, Yin W, Liang M, Li J, Zhang Q, et al. Epidemic characteristics of hemorrhagic fever with renal syndrome in China, 2006-2012. Bmc Infect Dis. 2014;14:384. doi: 10.1186/1471-2334-14-384.
- Du H, Wang PZ, Li J, Bai L, Li H, Yu HT, et al. Clinical characteristics and outcomes in critical patients with hemorrhagic fever with renal syndrome. Bmc Infect Dis. 2014;14:191. doi: 10.1186/1471-2334-14-191.
- Zhang WY, Wang LY, Liu YX, Yin WW, Hu WB, Magalhaes RJ, et al. Spatiotemporal Transmission Dynamics of Hemorrhagic Fever with Renal Syndrome in China, 2005–2012. Plos Negl Trop Dis. 2014;8:e3344. doi: 10.1371/journal.pntd.0003344.
- He X, Wang S, Huang X, Wang X. Changes in age distribution of hemorrhagic fever with renal syndrome: An implication of China's expanded program of immunization. Bmc Public Health 2013, 13:394. doi: 10.1186/1471-2458-13-394.
- 13. Petukhova T, Ojkic D, McEwen B, Deardon R, Poljak Z. Assessment of autoregressive integrated moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and random forest (RF) time series regression models for predicting influenza a virus frequency in swine in Ontario, Canada. Plos One 2018, 13(6):e198313. doi: 10.1371/journal.pone.0198313.
- Yosipof A, Guedes RC, Garcia-Sosa AT. Data mining and machine learning models for predicting drug likeness and their disease or organ category. Front Chem. 2018;6:162. doi: 10.3389/fchem.2018.00162.
- Nair TM. Statistical and artificial neural network-based analysis to understand complexity and heterogeneity in preeclampsia. Comput Biol Chem. 2018;75:222-230. doi: 10.1016/j.compbiolchem.2018.05.011.
- Wu W, Guo J, An S, Guan P, Ren Y, Xia L, et al. Comparison of two hybrid models for forecasting the incidence of hemorrhagic fever with renal syndrome in jiangsu province, china. Plos One. 2015;10:e135492. doi: 10.1371/journal.pone.0135492.
- Rubaihayo J, Tumwesigye NM, Konde-Lule J, Makumbi F. Forecast analysis of any opportunistic infection among HIV positive individuals on antiretroviral therapy in Uganda. Bmc Public Health. 2016;16:766. doi: 10.1186/s12889-016-3455-5.
- 18. Wei W, Jiang J, Liang H, Gao L, Liang B, Huang J, et al. Application of a combined model with autoregressive integrated moving average (ARIMA) and generalized regression neural network (GRNN) in forecasting hepatitis incidence in heng county, china. Plos One. 2016;11:e156768. doi:

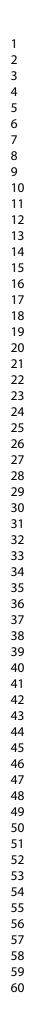

BMJ Open

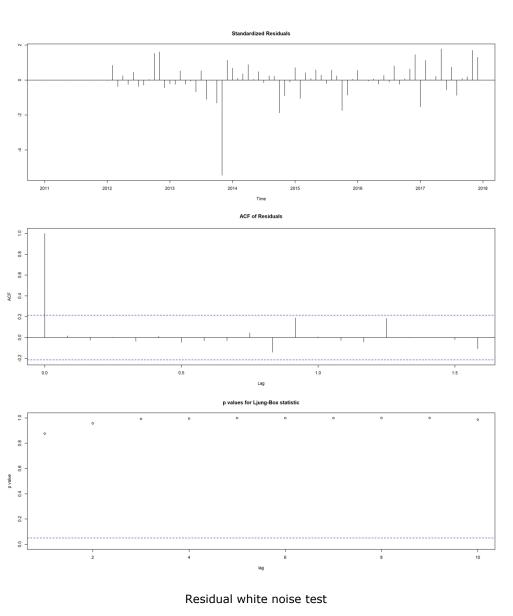
10.1371/journal.pone.0156768.

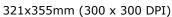
- 19. Gan R, Chen N, Huang D. Comparisons of forecasting for hepatitis in Guangxi Province, China by using three neural networks models. Peerj. 2016;4:e2684. doi: 10.7717/peerj.2684.
- Hansen A, Cameron S, Liu Q, Sun Y, Weinstein P, Williams C, et al. Transmission of haemorrhagic fever with renal syndrome in china and the role of climate factors: A review. Int J Infect Dis. 2015;33:212-218. doi: 10.1016/j.ijid.2015.02.010.
- Liu YX, Feng D, Zhang Q, Jia N, Zhao ZT, De Vlas SJ, et al. Key differentiating features between scrub typhus and hemorrhagic fever with renal syndrome in northern China. Am J Trop Med Hyg. 2007;76:801-805.
- Park YH. Absence of a seasonal variation of hemorrhagic fever with renal syndrome in yeoncheon compared to nationwide korea. Infect Chemother. 2018;50:120-127. doi: 10.3947/ic.2018.50.2. 120.
- Mills JN, Gage KL, Khan AS. Potential influence of climate change on vector-borne and zoonotic diseases: A review and proposed research plan. Environ Health Perspect. 2010;118:1507-1514. doi: 10.1289/ehp.0901389.
- Wang H, Tian CW, Wang WM, Luo XM. Time-series analysis of tuberculosis from 2005 to 2017 in China. Epidemiol Infect. 2018;146:935-939. doi: 10.1017/S0950268818001115.
- Peng Y, Yu B, Wang P, Kong DG, Chen BH, Yang XB. Application of seasonal auto-regressive integrated moving average model in forecasting the incidence of hand-foot-mouth disease in Wuhan, China. J Huazhong Univ Sci Technolog Med Sci. 2017;37:842-848. doi: 10.1007/s11596-017-1815-8.
- Joshi YP, Kim E, Cheong H. The influence of climatic factors on the development of hemorrhagic fever with renal syndrome and leptospirosis during the peak season in Korea: An ecologic study. Bmc Infect Dis. 2017;17:406. doi: 10.1186/s12879-017-2506-6.
- Han SS, Kim S, Choi Y, Kim S, Kim YS. Air pollution and hemorrhagic fever with renal syndrome in South Korea: An ecological correlation study. Bmc Public Health. 2013;13:347. doi: 10.1186/1471-2458-13-347.
- Xiang J, Hansen A, Liu Q, Tong MX, Liu X, Sun Y, et al. Impact of meteorological factors on hemorrhagic fever with renal syndrome in 19 cities in China, 2005-2014. Sci Total Environ. 2018;636:1249-1256. doi: 10.1016/j.scitotenv.2018.04.407.

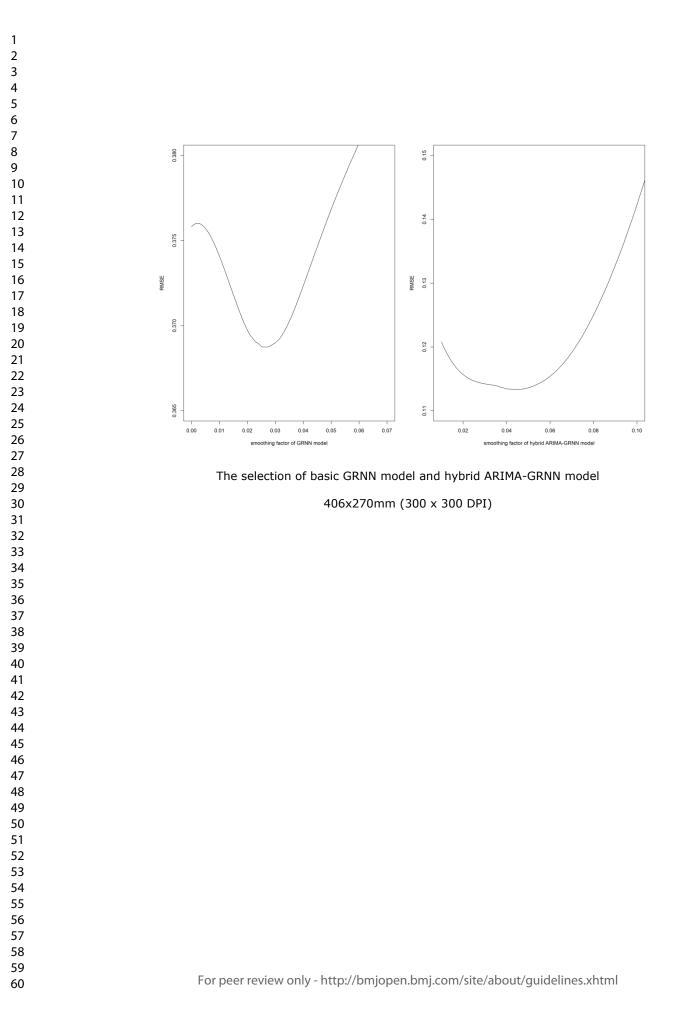
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

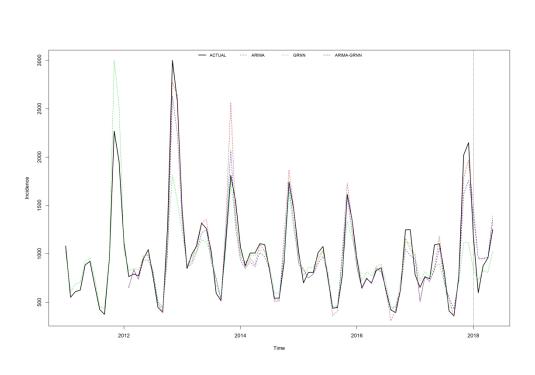





Monthly incidence of HFRS in China from January 2011 to December 2017.


406x270mm (300 x 300 DPI)


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml



The fitting and forecasting curves of the three models and the actual HFRS incidence series $406 \times 270 \text{ mm} (300 \times 300 \text{ DPI})$

					2	2		
	2011	2012	2013	2014	2015	2016	2017	2018
Jan.	1082	1115	1437	1072	1016	949	785	1180
Feb.	551	765	848	876	700	644	654	598
Mar.	609	793	998	1008	809	745	764	874
Apr.	625	773	1081	1008	808	699	742	959
May	885	947	1318	1106	1011	828	1094	1253
Jun.	923	1044	1260	1095	1077	857	1105	
Jul.	670	765	1023	836	760	617	812	
Aug.	424	447	592	541	438	420	409	
Sept.	376	395	517	544	447	394	359	
Oct.	959	1296	1136	910	777	631	764	
Nov.	2268	3000	1811	1744	1614	1248	2021	
Dec.	1951	2578	1547	1454	1355	1250	2150	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Comparison of autoregressive integrated moving average model and generalized regression neural network model for prediction of hemorrhagic fever with renal syndrome in China: a time-series study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-025773.R1
Article Type:	Research
Date Submitted by the Author:	15-Jan-2019
Complete List of Authors:	Wang, Ya-wen; Chinese Academy of Medical Sciences / Peking Union Medical College, School of Public Health Shen, Zhong-zhou JIANG, Yu; Chinese Academy of Medical Sciences and Peking Union Medical College
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Epidemiology, Infectious diseases, Public health
Keywords:	autoregressive integrated moving average, generalized regression neural network, hemorrhagic fever with renal syndrome, prediction

2		
3	1	Comparison of autoregressive integrated moving average model and generalized
4 5	2	regression neural network model for prediction of hemorrhagic fever with renal
5 6	3	syndrome in China: a time-series study
7		syndrome in China: a time-series study
8	4	
9	5	First author:
10	6	Yawen Wang
11	7	Address: School of Public Health, Chinese Academy of Medical Sciences / Peking Union
12 13	8	Medical College, Beijing, China.
14	9	Tel: 86-17810259300
15	10	E-mail: <u>ywwang2099@163.com</u>
16	11	
17	12	Second author:
18		Zhongzhou Shen
19 20	13	
21	14	Address: School of Public Health, Chinese Academy of Medical Sciences / Peking Union
22	15	Medical College, Beijing, China.
23	16	Tel: 86-18310017094
24	17	E-mail: <u>szz90123@163.com</u>
25	18	
26 27	19	Corresponding author:
28	20	Yu Jiang
29	20	Address: School of Public Health, Chinese Academy of Medical Sciences / Peking Union
30		
31	22	Medical College, Beijing, China.
32	23	Tel: 86-13693271887
33 34	24	E-mail: jiangyu@pumc.edu.cn
35	25	
36	26	Key words: autoregressive integrated moving average; generalized regression neural
37	27	network; hemorrhagic fever with renal syndrome; prediction
38	28	
39 40	29	Word count: 3290 words.
40 41	20	
42		
43		
44		
45		
46 47		
48		
49		
50		
51		
52 53		
55 54		
55		
56		
57		
58		
59 60		

30 ABSTRACT

Objectives Hemorrhagic fever with renal syndrome (HFRS) is a serious threat to public health in China, accounting for almost 90% cases reported globally. Infectious disease prediction may help in disease prevention despite some uncontrollable influence factors. This study conducted a comparison between a hybrid model and two single models in forecasting the monthly incidence of HFRS in China.

- **Design** Time-series study.
- 37 Setting The People's Republic of China

Methods Autoregressive integrated moving average (ARIMA) model, generalized regression 39 neural network (GRNN) model and hybrid ARIMA-GRNN model were constructed by R 3.4.3 40 software. The monthly reported incidence of HFRS from January 2011 to December 2017 were 41 adopted to evaluate models' fitting performance. Data from January to May 2018 were used to 42 demonstrate the models' forecasting performance. Root mean square error (RMSE), mean 43 absolute error (MAE) and mean absolute percentage error (MAPE) were adopted to evaluate 44 these models' effectiveness.

Results The monthly incidence of HFRS in the past several years showed a slight downtrend and obvious seasonal variation. A total of four plausible ARIMA models were built and $ARIMA(2,1,1)(2,1,1)_{12}$ model was selected as the optimal model in HFRS fitting. The smooth factors of the basic GRNN model and the hybrid model were 0.027 and 0.043 respectively. The RMSE of ARIMA(2,1,1)(2,1,1)₁₂ model, basic GRNN model and hybrid model were 138.8356, 265.7046 and 140.6426 respectively in fitting part and 220.6269, 202.1648 and 196.4682 respectively in forecasting part. The single ARIMA model was better in fitting while hybrid model was the best in prediction.

Conclusions The hybrid ARIMA-GRNN model was better than single ARIMA and basic GRNN
 model in forecasting monthly incidence of HFRS in China. It could be considered as a
 decision-making tool in HFRS prevention and control.

57 Strengths and limitations of this study

- The monthly incidence of hemorrhagic fever with renal syndrome (HFRS) in China showed
 an uptrend since January 2018, so it is crucial to predict the development of HFRS and
 prevent it outbreak.
- This study evaluated the performance of autoregressive integrated moving average (ARIMA)
 model and generalized regression neural network (GRNN) model and hybrid ARIMA-GRNN
 model in forecasting incidence of HFRS in China, the results could give a reference to choose
 suitable model in HFRS prediction.
- The reported data we collected may slightly differ from the actual incidence number since
 reported data came from monitor, it may not include the person who was infected but not
 went to test.
 - Many factors could influence the incidence of HFRS but only time factor in study period was considered in our models, thus data should be updated to maintain the model's accuracy.
 - There are lots of prediction model and this study only compared three of them, further comparison is needed to choose the best model for HFRS forecasting.

73 BACKGROUND

Hantavirus is a member of family Bunyaviridae which contains the most important zoonotic pathogens of humans.¹ Two categories of hantaviruses are Old World (Asia and Europe) virus that causes hemorrhagic fever with renal syndrome (HFRS), and New World (Americas) virus that causes hantavirus pulmonary syndrome (HPS).^{2, 3} Hantaviruses are spread through the infected mammals' urine, faces, and saliva. People can be infected mainly through respiratory tract, alimentary tract and skin/mucus membrane abrasion. The onset symptoms of HFRS are fever, circulatory collapse with hypotension, hemorrhage and acute kidney injury (AKI).^{4, 5} The hallmark of HFRS is capillary leak syndrome, which causes edema and hemorrhage and threatens people's life.^{6, 7} Cases of HFRS are widely distributed in eastern Asia, particularly in China, Russia and Korea.8 It is reported that the number of HFRS cases in China accounts for almost 90% of the total cases worldwide.^{9, 10} Some comprehensive control activities such as effective vaccine and rodent elimination have achieved remarkable effects, while the incidence of HFRS is still high owing to some uncontrollable factors.^{11, 12} Thus it is important to forecast the diseases trends and get early warning before disease outbreak.

Statistic models such as linear regression, artificial neural network and grey model have been widely used in time series forecasting.^{13, 14} Reliable forecasting plays an important role in infectious diseases control before pandemic or outbreak. Autoregressive integrated moving average (ARIMA) model is one of the most popular methods in diseases prediction. The principle of ARIMA model contains filtering out the high-frequency noise in the data, detecting local trends based on linear dependence and forecasting the development trends. The limitation of this model is that ARIMA can only analyze the linear part of infectious disease series.¹⁵ However, the non-linear part of epidemic data may not be white noise, which means some information may be lost by ARIMA model. To overcome the inherent defect of ARIMA model, an artificial neural network (ANN) model was adopted. ANN is a conceptualized mathematical non-linear classification model inspired by the behavior of biological networks of neurons.^{16, 17} The generalized regression neural network (GRNN) is a member of ANN family and has unique ability of accelerated learning and greater capability for non-linear fitting. The hybrid ARIMA-GRNN model has both advantages of ARIMA model and GRNN model, it means that both the linear part and non-linear part of time series could be fitted by this hybrid model.

Some researches indicated that the hybrid model had better incidence forecasting performance than single ARIMA model and basic GRNN model in infectious diseases,¹⁸ while the best model in predicting the incidence of HFRS in China is still unclear. Besides, some studies had compared the performance of hybrid ARIMA-GRNN model with other models¹⁹ despite the comparison between the hybrid model with two single models in HFRS prediction is rare. This study aims to develop a single ARIMA model, a basic GRNN model and a hybrid ARIMA-GRNN model to fit and predict the monthly incidence of HFRS in China. The fitting and forecasting performance of these three models were compared to determine the best one, which is suggested to be employed in the provision of reference information for HFRS control.

113 METHODS

115 Data sources

The monthly reported incidence data of HFRS in China from January 2011 to May 2018 werecollected from the official website of National Health Commission of the People's Republic of

China (Ministry of Health). All HFRS cases in mainland China must be reported to the National
Health Commission through the Infectious Disease Surveillance System within 24 hours. The data
was separated into model building part and model forecasting part. According to some researches,
the data from January 2011 to December 2017 were adopted to build model while data from
January to May 2018 were used for model verification.

123 Single ARIMA model

124 The ARIMA model is usually shown as ARIMA (p, d, q)(P,D,Q)_S while the parameters mean 125 non-seasonal and seasonal order of auto-regression, the degree of difference and moving average 126 respectively, the subscript means the length of cyclical pattern. An ARIMA model is developed by 127 time series stationary, parameter estimation and model check.²⁰

Time series stationary is the first requirement for ARIMA model establishment, it means no fluctuation or periodicity over time. The Augmented Dickey-Fuller (ADF) unit-root test could help estimating whether the time series is stationary or not. Log transformation and differences are frequently adopted to stabilize the time series.

The parameter D is the length of seasonal difference and d is the length of trend difference, these two parameters are determined when original series is stable. The parameters of p, q, P and Q are determined by researcher's personal experience through the autocorrelation function (ACF) graph and partial autocorrelation (PACF) graph of stationary series. Generally, more than one values may be given to each parameter so that several plausible models could be combined.

Since the best model must have the highest accuracy in disease prediction, some substandard
models are excluded. A suitable model must show statistical significance in parameter test and get
white noise sequence in residual test. Besides, the best model should have the lowest Akaike
information criterion (AIC) value than other combined models.

33 141 Basic GRNN model 34

The GRNN model is built based on non-linear regression theory. The input layer, pattern layer, summation layer and output layer are involved in the construction of GRNN model.²¹ Its inherent function is to identify the relationship between each input value and output value. Initially, the original data are divided into training set and test set. The test set can be the last two data or two random data of original series, the rest are adopted as the training set. Smoothing factor is the only parameter of GRNN which means the network could not be affected by human. A series of smoothing factors were tested by a circular program through Matlab software. Generally, there are more than one possible value of smoothing factor and the best one must have the lowest root mean square error (RMSE). Finally, all the original data were adopted as input part to predict the future data by the GRNN model which was built with the best smoothing factor.

48 152 Hybrid ARIMA-GRNN Model

The ARIMA model has advantage in extracting and fitting the linear part of the original time series, while the non-linear information in residual is abandoned. GRNN model is combined thanks to its capacity in data mining, so that the limitation of ARIMA model could be overcome. The hybrid ARIMA-GRNN model is developed to demonstrate if it has the highest accuracy in HFRS incidence prediction.

55
56
56
57158
159To develop the hybrid model, the input values are the fitting data of ARIMA model while the
output values are actual data. Same with the basic GRNN model, the last two samples or two
randomly selected samples of original series are used as testing set and the rest are used as training
set to find the best smoothing factor and rebuilt the GRNN model. Finally, the forecasted values of
60

2	
3 4	162
5	163
6	164
7 8	165
9	166
10	167
11 12	168
13	169
14	170
15 16	171
17	172
18	173
19 20	174
21	175
22	176
23 24	177
25	178 179
26	179
27 28	180
29	181
30	182
31 32	185
33	185
34	186
35 36	187
37	188
38	189
39 40	190
41	191
42	192
43 44	193
45	194
46	195
47 48	196
49	197
50	198
51 52	199
53	200
54	201
55 56	202
57	203
58	204
59 60	205

ARIMA model is used as the input data of hybrid model to get the output predictive values.

Model comparison

The forecasting effects of ARIMA model, GRNN model and hybrid ARIMA-GRNN model are estimated with RMSE, mean absolute error (MAE) and mean absolute percentage error (MAPE).²² Excel 2016 was used to build the database, R 3.4.3 software was used to create the ARIMA model, the Matlab R2016a software was used to create the basic GRNN model and hybrid ARIMA-GRNN model.

Patient and public involvement

In this study, no patients or public was involved.

Ethics

Since no primary data collection was undertaken, no patient or public was involved, no formal ethical assessment or informed consent was required.

RESULTS

Single ARIMA model

The monthly incidence data of HFRS in China from January 2011 to December 2017 was used to develop the ARIMA model (figure 1). As shown in the original time series graph, the HFRS incidence showed seasonal variation and the period was 12 months (s=12). A slightly declining trend can be seen and it means the time series was not stationary. Trend difference (d=1) and seasonal difference (D=1) were done to eliminate the instability. The ADF test showed that the differenced time sequence was stationary (t statistics was -4.7201, P=0.0100).

Figure 1 Monthly incidence of HFRS in China from January 2011 to December 2017.

The ACF graph and PACF graph (figure 2) were applied to explore the parameters of the ARIMA model. Four appropriate models were chosen by residual test and filtered by AIC value. The AIC values of $ARIMA(1,1,1)(1,1,1)_{12}$ $ARIMA(1,1,1)(2,1,1)_{12}$ $ARIMA(2,1,1)(1,1,1)_{12}$ $ARIMA(2,1,1)(2,1,1)_{12}$ were 950.48, 944.68, 940.55 and 936.61 respectively. The ARIMA $(2,1,1)(2,1,1)_1$ model had the lowest AIC value and was chosen as the most suitable model in HFRS prediction. The residual test showed white noise (figure 3).

Figure 2 The ACF and PACF graphs of differenced HFRS incidence series.

Figure 3 Residual white noise test

Basic GRNN model

The samples from January 2011 to December 2017 were adopted to develop the network. The last two samples were used as testing samples while the others were training samples. To determine the optimal smoothing factors, a series of smoothing factors were tested. The smoothing factor with the minimum RMSE was selected as the optimal one. Figure 4 shows the RMSE of these smoothing factors and it can be found that the optimal smoothing factor of the one-dimensional input and one-dimensional output GRNN model was 0.027.

Figure 4 The selection of basic GRNN model and hybrid ARIMA-GRNN model

207 Hybrid ARIMA-GRNN model

The fitted data of ARIMA model from January 2011 to December 2017 were used as the input samples for the GRNN model and the actual HFRS values were used as the output samples to training the hybrid ARIMA-GRNN model. The RMSE of hybrid model was the lowest when the smoothing factor was 0.043 (figure 4), so 0.043 was selected to develop the GRNN model. Subsequently, the forecasting outcomes of ARIMA model from January 2018 to May 2018 were selected as the entry value of the ARIMA-GRNN model, and the output values were the predictive values of the hybrid model.

Finally, all three models had forecasted the HFRS incidence in China from January to May 2018. The forecasting performance parameters of the three models for the fitting and forecasting 217 parts are shown in Table 1. The curves of the three models and the actual HFRS incidence series 218 are depicted in figure 5. In this figure, the curves were divided into fitting part and forecasting part 219 by a vertical dashed line, the left is fitting part while the forecasting part is on right.

		Fitting part		Fo	recasting part	
Predicting error	MAPE	MAE	RMSE	MAPE	MAE	RMSE
ARIMA	9.1154	89.0302	138.8356	21.0212	175.7042	220.6269
GRNN	10.7332	134.596	265.7046	19.2029	177.0356	202.1684
ARIMA-GRNN	9.6083	85.0429	140.6426	17.8026	152.3013	196.4682

Table 1. The fitting and forecasting performance of three models.

Figure 5 The fitting and forecasting curves of three models and the actual HFRS incidence series

224 DISCUSSION

In this study, a hybrid model was constructed based on traditional ARIMA model and basic GRNN model. Three different models were compared in fitting and forecasting performance and the results showed that the hybrid ARIMA-GRNN model was the best model in predicting the monthly reported incidence of HFRS in China. Thus we consider the hybrid model as a decision-making tool to give some suggestion in public health policy decision.

The characteristic of monthly incidence of HFRS in China is suitable for ARIMA model and GRNN model. As shown in the results, the incidence of HFRS in China has a slight decreasing trend and a bimodal seasonal cases distribution, which are same with other studies.^{23, 24} The incidence reaches peak in winter rapidly and has a longer lasting peak in Spring. Autumn to winter peak is the other peak, which is lower than the winter to spring one. Two reasons may could explain this seasonal distribution. People are more likely to be exposed to the disease due to increased activities in these two seasons and rodent behavior changes with climate change.^{25, 26} Besides, the distribution and peak value might change with different hantaviruses types.

53239The hybrid ARIMA-GRNN model was superior among three models even with imperfect54240fitting performance. ARIMA model is one of the most commonly used methods in infectious55241diseases prediction and has been proved with high accuracy. In this study, the traditional ARIMA57242model was used as the basic model for evaluating the performance of other models. The results58243showed that single ARIMA model and basic GRNN model were better than hybrid model in data59244fitting according to lower MAE and MAPE. Even some unmeasurable factors may impact data

fitting, the forecasting performance should be at the first consideration.²¹ The MAPE, MAE, RMSE of hybrid model in validation part were lower than single ARIMA model or basic GRNN model. Some studies built the hybrid model with tuberculosis incidence or hand-foot-mouth disease incidence^{19,27, 28} and the results showed that hybrid ARIMA-GRNN model had less error than single model both in modeling and forecasting stage, which is different with our study. Thus we hypothesis that diseases characteristics may affect the model performance and the best predictive model of each infectious disease is different. Model in this study could only fit the incidence of HFRS in China, its performance in other diseases or other nation needs further research.

The time series prediction model was developed as a new potential tool for infectious diseases incidence prediction in recent years. In this study, hybrid ARIMA-GRNN model was chose as a potential outbreak warning tool. Same with other disease prediction models, the disease control department could assess the disease developing trend with the help of the hybrid ARIAM-GRNN model. In a short term, the prediction values have same trend with the actual values. It means if the predictive values continue to rise, an outbreak should be alerted. Besides, disease prediction model is developed to evaluate the effectiveness of diseases intervention strategies like vaccine. An effective control measure will make the actual values lower than the predicted results. Something noteworthy is that these two functions are based on short terms. The incidence of infectious disease is influenced by some uncontrollable factors and HFRS is infected by weather, climate, human activities and so on.²⁹⁻³¹ These factors may keep stable in a short period and might change in a long run.

Several limitations of this study should be noted. As is shown above, the prediction model was merely developed for short-term forecasting. Maintaining the prediction performance for months or years requires constantly update of data and model. Here we build three new models whose fitting data were HFRS incidence from January 2011 to December 2015 and data from January 2016 to May 2018 were used to verification (Table S1). It showed that model with new data has higher accuracy. Besides, this study only considered the incidence of HFRS in China, weather the hybrid model is suitable for other countries is still unclear and larger samples are needed to test. At last, HFRS incidence data in this manuscript was total incidence in China, we can not explore the performance of these models in provincial incidence prediction. Spatial factor is an important factor that can affect HFRS development, so the applicability of results in this research need further study.

278 CONCLUSIONS

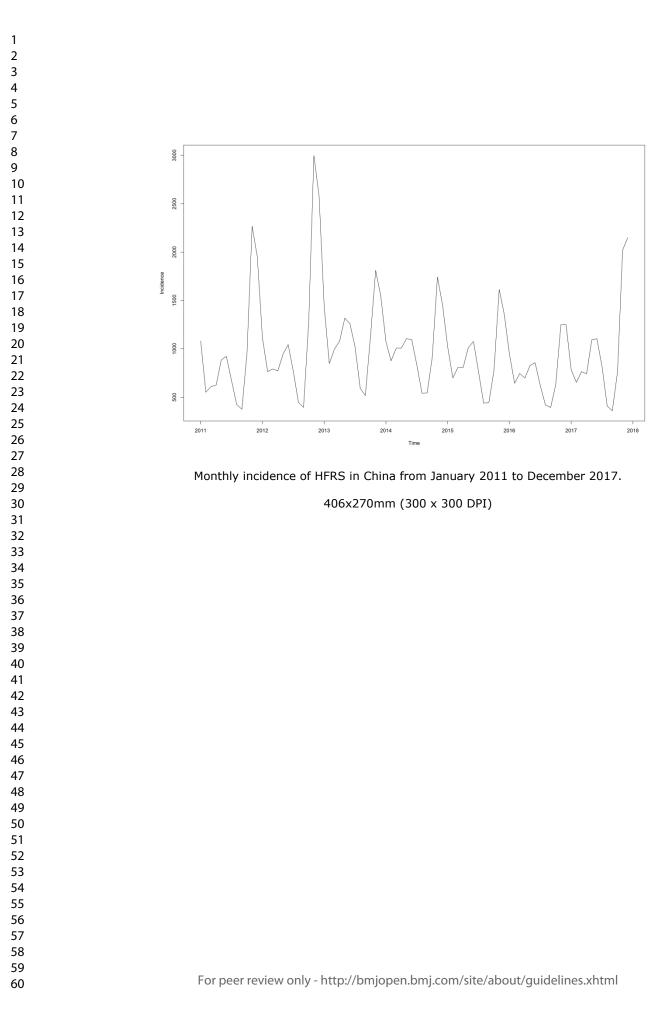
The hybrid ARIMA-GRNN model is superior than the single ARIMA model and basic GRNN
model both in fitting and forecasting of monthly incidence of HFRS in China. The data should
keep update to maintain the forecasting performance. This hybrid model should be considered as a
decision-making tool in HFRS prevention and control.

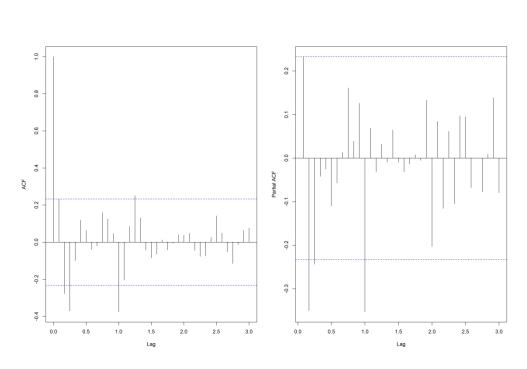
284 Supporting information

S1 Table. The fitting and forecasting performance of three new models.

287 Acknowledgement We would like to express our gratitude to professor Yin Yang for carefully
 288 revise of overall readability. We also thank peer reviewers for carefully revising and useful

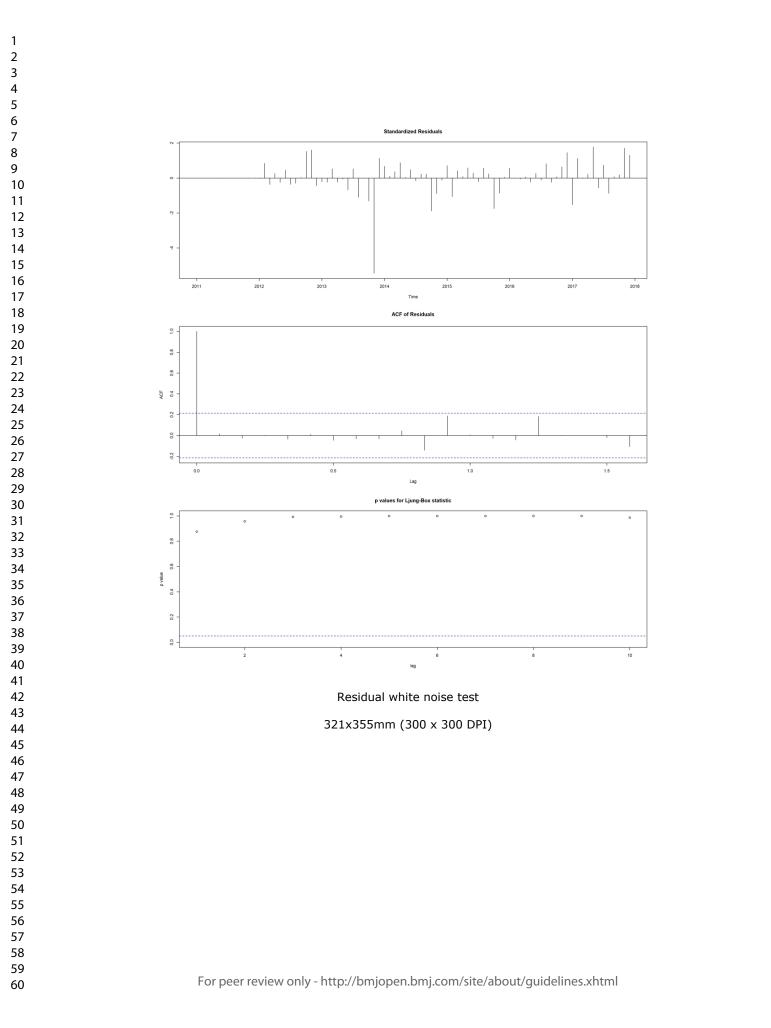
Page 8 of 18

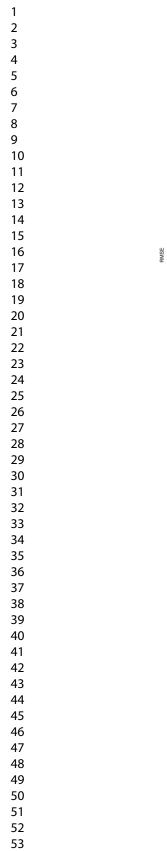

BMJ Open

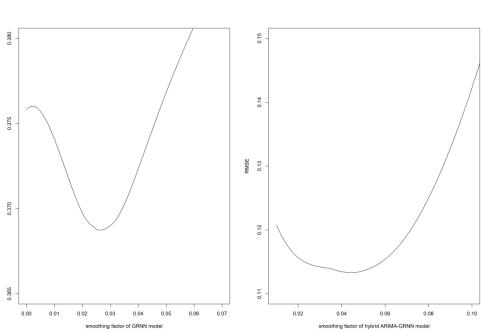

1 2		
3	289	comments.
4	200	Contributors YJ, YW and ZS designed the study. ZS extracted the data and constructed the
5 6	290	database. YW and ZS analyzed the data. YW drafted the manuscript. YJ and ZS made critical
7	291	revision to the manuscript. All authors read and approved the final manuscript.
8		
9	293	Funding This research received no specific grant from any funding agency in the public,
10 11	294	commercial or not-for-profit sectors.
12	295	Competing interests None declared.
13	296	Provenance and peer review Not commissioned; externally peer reviewed.
14	297	Data sharing statement All original data was available at the official website of National Health
15 16	298	Commission of the People's Republic of China (http://www.nhfpc.gov.cn/jkj/new_index.shtml).
17	299	
18	300	REFERENCES
19	301	1. Schmaljohn CS, Hasty SE, Dalrymple JM, et al. Antigenic and genetic properties of viruses linked
20 21	302	to hemorrhagic fever with renal syndrome. Science. 1985;227(4690):1041-1044.
22	303	2. Ehelepola NDB, Basnayake BMLS, Sathkumara SMBY, Kaluphana KLR. Two Atypical Cases of
23	304	Hantavirus Infections from Sri Lanka. Case Reports in Infectious Diseases. 2018;2018:1-6. DOI:
24	305	10.1155/2018/4069862.
25 26	306	3. Avsic-Zupanc T, Saksida A, Korva M. Hantavirus infections. Clin Microbiol Infect. 2015. DOI:
27	307	10.1111/1469-0691.12291.
28	308	4. Latus J, Schwab M, Tacconelli E, et al. Clinical course and long-term outcome of
29	309	hantavirus-associated nephropathia epidemica, Germany. Emerg Infect Dis. 2015;21(1):76-83.
30 31	310	DOI: 10.3201/eid2101.140861.
32	311	5. Vaheri A, Strandin T, Hepojoki J, et al. Uncovering the mysteries of hantavirus infections. Nat
33	312	Rev Microbiol. 2013;11(8):539-550. DOI: 10.1038/nrmicro3066.
34 35	313	6. Hepojoki J, Vaheri A, Strandin T. The fundamental role of endothelial cells in hantavirus
35 36	314	pathogenesis. Front Microbiol. 2014;5:727. DOI: 10.3389/fmicb.2014.00727.
37	315	7. Pal E, Korva M, Resman RK, et al. Sequential assessment of clinical and laboratory parameters in
38	316	patients with hemorrhagic fever with renal syndrome. Plos One. 2018;13(5):e197661. DOI:
39 40	317	10.1371/journal.pone.0197661.
40	318	8. Bi P, Parton KA. El Nino and incidence of hemorrhagic fever with renal syndrome in China.
42	319	JAMA. 2003;289(2):176-177.
43	320	9. Zhang S, Wang S, Yin W, et al. Epidemic characteristics of hemorrhagic fever with renal
44 45	321	syndrome in China, 2006-2012. <i>BMC Infect Dis.</i> 2014;14:384. DOI: 10.1186/1471-2334-14-384.
46	322	10. Du H, Wang PZ, Li J, et al. Clinical characteristics and outcomes in critical patients with
47	323	hemorrhagic fever with renal syndrome. <i>BMC Infect Dis.</i> 2014;14:191. DOI:
48 49	324	10.1186/1471-2334-14-191.
49 50	325	11. Zhang WY, Wang LY, Liu YX, Yin WW, Hu WB, Magalhaes RJ, et al. Spatiotemporal
51	325	
52	326 327	Transmission Dynamics of Hemorrhagic Fever with Renal Syndrome in China, 2005–2012. <i>Plos</i>
53 54		Negl Trop Dis. 2014;8:e3344. DOI: 10.1371/journal.pntd.0003344.
54 55	328	12. He X, Wang S, Huang X, Wang X. Changes in age distribution of hemorrhagic fever with renal
56	329	syndrome: an implication of China's expanded program of immunization. <i>BMC Public Health</i> .
57	330	2013;13:394. DOI: 10.1186/1471-2458-13-394.
58 59	331	13. Wang YW, Shen ZZ, Jiang Y. Comparison of ARIMA and GM(1,1) models for prediction of
59 60	332	hepatitis B in China. Plos One. 2018;13(9):e201987. DOI: 10.1371/journal.pone.0201987.

1			
2 3	222	14	
4	333	14.	Cao H, Wang J, Li Y, et al. Trend analysis of mortality rates and causes of death in children under
5	334		5 years old in Beijing, China from 1992 to 2015 and forecast of mortality into the future: an entire
6 7	335		population-based epidemiological study. BMJ Open. 2017;7(9):e15941. DOI:
8	336		10.1136/bmjopen-2017-015941.
9	337	15.	Petukhova T, Ojkic D, McEwen B, Deardon R, Poljak Z. Assessment of autoregressive integrated
10	338		moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and
11	339		random forest (RF) time series regression models for predicting influenza A virus frequency in
12 13	340		swine in Ontario, Canada. Plos One. 2018;13(6):e198313. DOI: 10.1371/journal.pone.0198313.
14	341	16.	Yosipof A, Guedes RC, Garcia-Sosa AT. Data Mining and Machine Learning Models for
15	342		Predicting Drug Likeness and Their Disease or Organ Category. Front Chem. 2018;6:162. DOI:
16 17	343		10.3389/fchem.2018.00162.
17	344	17.	Nair TM. Statistical and artificial neural network-based analysis to understand complexity and
19	345		heterogeneity in preeclampsia. Comput Biol Chem. 2018;75:222-230. DOI:
20	346		10.1016/j.compbiolchem.2018.05.011.
21 22	347	18.	Wei W, Jiang J, Gao L, et al. A New Hybrid Model Using an Autoregressive Integrated Moving
22	348		Average and a Generalized Regression Neural Network for the Incidence of Tuberculosis in Heng
24	349		County, China. Am J Trop Med Hyg. 2017;97(3):799-805. DOI: 10.4269/ajtmh.16-0648.
25	350	19.	Wu W, Guo J, An S, et al. Comparison of Two Hybrid Models for Forecasting the Incidence of
26 27	351		Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China. Plos One.
27	352		2015;10(8):e135492. DOI: 10.1371/journal.pone.0135492.
29	353	20	Rubaihayo J, Tumwesigye NM, Konde-Lule J, Makumbi F. Forecast analysis of any opportunistic
30	354	20.	infection among HIV positive individuals on antiretroviral therapy in Uganda. <i>BMC Public Health.</i>
31 32	355		2016;16(1):766. DOI: 10.1186/s12889-016-3455-5.
33	356	21	
34		21.	Wei W, Jiang J, Liang H, et al. Application of a Combined Model with Autoregressive Integrated
35	357		Moving Average (ARIMA) and Generalized Regression Neural Network (GRNN) in Forecasting
36 37	358		Hepatitis Incidence in Heng County, China. <i>Plos One.</i> 2016;11(6):e156768. DOI:
38	359		10.1371/journal.pone.0156768.
39	360	22.	Gan R, Chen N, Huang D. Comparisons of forecasting for hepatitis in Guangxi Province, China
40	361		by using three neural networks models. <i>Peerj.</i> 2016;4:e2684. DOI: 10.7717/peerj.2684.
41 42	362	23.	Hansen A, Cameron S, Liu Q, et al. Transmission of Haemorrhagic Fever with Renal Syndrome in
42 43	363		China and the Role of Climate Factors: A Review. Int J Infect Dis. 2015;33:212-218. DOI:
44	364		10.1016/j.ijid.2015.02.010.
45	365	24.	Liu YX, Feng D, Zhang Q, et al. Key differentiating features between scrub typhus and
46	366		hemorrhagic fever with renal syndrome in northern China. Am J Trop Med Hyg.
47 48	367		2007;76(5):801-805.
49	368	25.	Park YH. Absence of a Seasonal Variation of Hemorrhagic Fever with Renal Syndrome in
50	369		Yeoncheon Compared to Nationwide Korea. Infect Chemother. 2018;50(2):120-127. DOI:
51 52	370		10.3947/ic.2018.50.2. 120.
52 53	371	26.	Mills JN, Gage KL, Khan AS. Potential influence of climate change on vector-borne and zoonotic
54	372		diseases: a review and proposed research plan. Environ Health Perspect. 2010;118(11):1507-1514.
55	373		DOI: 10.1289/ehp.0901389.
56 57	374	27.	Wang H, Tian CW, Wang WM, Luo XM. Time-series analysis of tuberculosis from 2005 to 2017
57 58	375	•	in China. <i>Epidemiol Infect.</i> 2018;146(8):935-939. DOI: 10.1017/S0950268818001115.
59	376	28	Peng Y, Yu B, Wang P, Kong DG, Chen BH, Yang XB. Application of seasonal auto-regressive
60	270	20.	

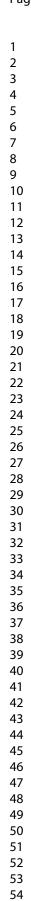
2		
3	377	integrated moving average model in forecasting the incidence of hand-foot-mouth disease in
4 5	378	Wuhan, China. J Huazhong Univ Sci Technolog Med Sci. 2017;37(6):842-848. DOI:
6	379	10.1007/s11596-017-1815-8.
7	380	29. Joshi YP, Kim E, Cheong H. The influence of climatic factors on the development of hemorrhagic
8 9	381	fever with renal syndrome and leptospirosis during the peak season in Korea: an ecologic study.
9 10	382	BMC Infect Dis. 2017;17(1). DOI: 10.1186/s12879-017-2506-6.
11	383	30. Han SS, Kim S, Choi Y, Kim S, Kim YS. Air pollution and hemorrhagic fever with renal
12	384	syndrome in South Korea: an ecological correlation study. BMC Public Health. 2013;13:347. DOI:
13 14	385	10.1186/1471-2458-13-347.
15	386	31. Xiang J, Hansen A, Liu Q, et al. Impact of meteorological factors on hemorrhagic fever with renal
16	387	syndrome in 19 cities in China 2005-2014 Sci Total Environ 2018:636:1249-1256 DOI:
17	388	10.1016/j.scitotenv.2018.04.407.
18 19	389	
20	505	
21		
22 23		10.1016/j.scitotenv.2018.04.407.
23		
25		
26		
27 28		
28		
30		
31		
32 33		
34		
35		
36 37		
38		
39		
40 41		
41 42		
43		
44		
45 46		
40		
48		
49 50		
50 51		
52		
53		
54 55		
56		
57		
58		

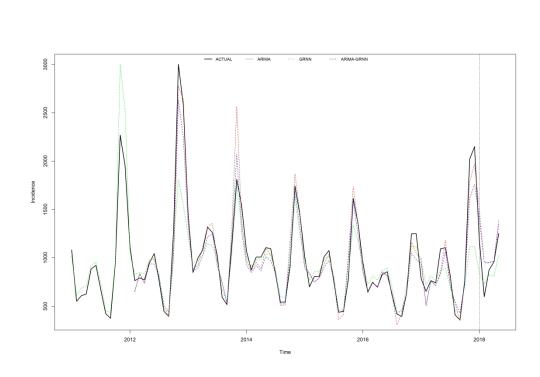

59 60





406x256mm (300 x 300 DPI)




60

The selection of basic GRNN model and hybrid ARIMA-GRNN model

406x270mm (300 x 300 DPI)

The fitting and forecasting curves of the three models and the actual HFRS incidence series

406x270mm (300 x 300 DPI)

		Fitting part		Fo	recasting part	
Predicting error	MAPE	MAE	RMSE	MAPE	MAE	RMSE
ARIMA	10.2735	105.6382	155.7399	27.9010	259.9656	359.9456
GRNN	33.4315	325.6638	512.7855	41.1768	299.8275	402.3660
ARIMA-GRNN	22.5002	213.6670	248.8867	21.3148	221.3138	336.5332

to beet terien only

 3 Table 1. Checklist of Items to Include When Reporting a Study Developing or Validating a Multivariable Prediction Model for $^{4}_{5}$ Diagnosis or Prognosis*

6 7 Section/Topic 8	ltem	Development or Validation?	Checklist Item		
9 ₁₀ Title and abstract					
1 1 12 Title 13	1	D;V	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted	1	
14 15 Abstract 16	2	D;V	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions	2	
¹⁷ Introduction					
19 20 21 ^{Background and}	3a	D;V	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models	2-3	
22objectives 23 24	3b	D;V	Specify the objectives, including whether the study describes the development or validation of the model, or both	3	
25 26 Methods					
27 28 29 30 ^S ource of data	4a	D;V	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable	3-4	
31 32	4b	D;V	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up	3-4	
3 3 34 35	5a	D;V	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres	NA	
36 Participants 37	5b	D;V	Describe eligibility criteria for participants	NA	
38	5c	D;V	Give details of treatments received, if relevant	NA	
39 40 _{4 1} Outcome	6a	D;V	Clearly define the outcome that is predicted by the prediction model, including how and when assessed	NA	
42	6b	D;V	Report any actions to blind assessment of the outcome to be predicted	NA	
13 14 15	7a	D;V	Clearly define all predictors used in developing the multivariable prediction model, including how and when they were measured	5	
45 Predictors 46 47 48	7b	D;V	Report any actions to blind assessment of predictors for the outcome and other predictors	NA	
495ample size	8	D;V	Explain how the study size was arrived at	4	
50 51Missing data 52	9	D;V	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method	NA	
53	10a	D	Describe how predictors were handled in the analyses	4	
54 55 Statistical analysis 56	10b	D	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation	4	
57 methods	10c	V	For validation, describe how the predictions were calculated	4-5	
58 59 60	10d	D;V	Specify all measures used to assess model performance and, if relevant, to compare multiple models	5	

	10e	V		done	NA
Risk groups	11	D;V		Provide details on how risk groups were created, if done	NA
Development vs.	12	V		For validation, identify any differences from the development data in setting,	3
validation				eligibility criteria, outcome, and predictors	
Results					
2				Describe the flow of participants through the study, including the number of	
3 4	13a	D;V	participants with and without the outcome and, if applicable, a summary of the	NA	
5 -				follow-up time. A diagram may be helpful	
6 Participants 7				Describe the characteristics of the participants (basic demographics, clinical	
	13b	D;V		features, available predictors), including the number of participants with	NA
8 9 -				missing data for predictors and outcome	
0	13c	V		For validation, show a comparison with the development data of the	NA
1	200	-		distribution of important variables (demographics, predictors and outcome)	
2 BModel -	14a	D		Specify the number of participants and outcome events in each analysis	5-6
4 _development	14h	D		If done, report the unadjusted association between each candidate predictor	NA
5	140	0		and outcome	
5 7				Present the full prediction model to allow predictions for individuals (i.e., all	
Model	15a	D		regression coefficients, and model intercept or baseline survival at a given time	5-6
Specification				point)	
) 1	15b	D		Explain how to use the prediction model	6-7
Model	16	D:V	D:V	Report performance measures (with CIs) for the prediction model	6
3performance	-	,			_
4 5Model updating	17	V			6
6				model performance)	
⁷ Discussion					
9 Limitations	12 13a 13b 13b 13c 14a 14b 15a 15b 16 15 16 17 18 19a 19a 19b 20 ion 21 21 22	D;V		Discuss any limitations of the study (such as nonrepresentative sample, few	-
0				events per predictor, missing data)	7
1	15b D Explain how to use the prediction model 16 D;V Report performance measures (with CIs) for the prediction model ing 17 V If done, report the results from any model updating (i.e., model specification, model performance) 18 D;V Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data) 19a V For validation, discuss the results with reference to performance in the development data, and any other validation data	6 7			
2	199	V		development data, and any other validation data	6-7
Anterpretation - 4	19b	D;V		Give an overall interpretation of the results, considering objectives, limitations,	6-7
5				results from similar studies, and other relevant evidence	
6 7	20	20 D;V		Discuss the potential clinical use of the model and implications for future	_
7 Implications 8	20			research	7
Other information					
0 Other information ¹ Supplementary				Provide information about the availability of supplementary resources, such as	
information	21	21 D;V		study protocol, Web calculator, and data sets	7
	22	D-11			N I 4
4Funding		D;V	~	Give the source of funding and the role of the funders for the present study prediction model are denoted by D, items relating solely to a validation of a pred	NA

57 58 with the TRIPOD Explanation and Elaboration document.

58 59

1

Comparison of autoregressive integrated moving average model and generalized regression neural network model for prediction of hemorrhagic fever with renal syndrome in China: a time-series study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-025773.R2
Article Type:	Research
Date Submitted by the Author:	13-Mar-2019
Complete List of Authors:	Wang, Ya-wen; Chinese Academy of Medical Sciences and Peking Union Medical College, School of Public Health Shen, Zhong-zhou; Chinese Academy of Medical Sciences and Peking Union Medical College, School of Public Health JIANG, Yu; Chinese Academy of Medical Sciences and Peking Union Medical College, School of Public Health
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Epidemiology, Infectious diseases, Public health
Keywords:	autoregressive integrated moving average, generalized regression neural network, hemorrhagic fever with renal syndrome, prediction

2		
3	1	Comparison of autoregressive integrated moving average model and generalized
4	2	regression neural network model for prediction of hemorrhagic fever with renal
5 6	3	syndrome in China: a time-series study
7		synurome in China: a time-series study
8	4	
9	5	First author:
10	6	Yawen Wang
11	7	Address: School of Public Health, Chinese Academy of Medical Sciences / Peking Union
12	8	Medical College, Beijing, China.
13 14	9	Tel: 86-17810259300
15	10	E-mail: <u>ywwang2099@163.com</u>
16	11	
17		
18	12	Second author:
19 20	13	Zhongzhou Shen
20 21	14	Address: School of Public Health, Chinese Academy of Medical Sciences / Peking Union
22	15	Medical College, Beijing, China.
23	16	Tel: 86-18310017094
24	17	E-mail: <u>szz90123@163.com</u>
25	18	
26	19	Corresponding author:
27 28		
20	20	Yu Jiang
30	21	Address: School of Public Health, Chinese Academy of Medical Sciences / Peking Union
31	22	Medical College, Beijing, China.
32	23	Tel: 86-13693271887
33	24	E-mail: jiangyu@pumc.edu.cn
34 35	25	
36	26	Key words: autoregressive integrated moving average; generalized regression neural
37	27	network; hemorrhagic fever with renal syndrome; prediction
38	28	
39	29	Word count: 3631 words.
40 41	29	
41		
43		
44		
45		
46		
47 48		
49		
50		
51		
52		
53 54		
54 55		
56		
57		
58		
59		
60		

30 ABSTRACT

Objectives Hemorrhagic fever with renal syndrome (HFRS) is a serious threat to public health in China, accounting for almost 90% cases reported globally. Infectious disease prediction may help in disease prevention despite some uncontrollable influence factors. This study conducted a comparison between a hybrid model and two single models in forecasting the monthly incidence of HFRS in China.

- **Design** Time-series study.
- 37 Setting The People's Republic of China

38 Methods Autoregressive integrated moving average (ARIMA) model, generalized regression 39 neural network (GRNN) model and hybrid ARIMA-GRNN model were constructed by R 3.4.3 40 software. The monthly reported incidence of HFRS from January 2011 to May 2018 were 41 adopted to evaluate models' performance. Root mean square error (RMSE), mean absolute error 42 (MAE) and mean absolute percentage error (MAPE) were adopted to evaluate these models' 43 effectiveness. Spatial stratified heterogeneity (SSH) of the time series was tested by month and 44 another GRNN model was built with a new series.

Results The monthly incidence of HFRS in the past several years showed a slight downtrend and obvious seasonal variation. A total of four plausible ARIMA models were built and $ARIMA(2,1,1)(2,1,1)_{12}$ model was selected as the optimal model in HFRS fitting. The smooth factors of the basic GRNN model and the hybrid model were 0.027 and 0.043 respectively. The single ARIMA model was the best in fitting part (MAPE=9.1154, MAE=89.0302, RMSE=138.8356) while the hybrid model was the best in prediction (MAPE=17.8335, MAE=152.3013, RMSE=196.4682). GRNN model was revised by building model with new series and the forecasting performance of revised model (MAPE=17.6095, MAE=163.8000, RMSE=169.4751) was better than original GRNN model (MAPE=19.2029, MAE=177.0356, RMSE=202.1684).

54 Conclusions The hybrid ARIMA-GRNN model was better than single ARIMA and basic GRNN
55 model in forecasting monthly incidence of HFRS in China. It could be considered as a
56 decision-making tool in HFRS prevention and control.

- Strengths and limitations of this study
- The monthly incidence of hemorrhagic fever with renal syndrome (HFRS) in China showed an uptrend since January 2018, so it is crucial to predict the development of HFRS and prevent it outbreak.
- This study evaluated the performance of autoregressive integrated moving average (ARIMA)
 model and generalized regression neural network (GRNN) model and hybrid ARIMA-GRNN
 model in forecasting incidence of HFRS in China, the results could give a reference to choose
 suitable model in HFRS prediction.
- The reported data we collected may slightly differ from the actual incidence number since
 reported data came from monitor, it may not include the person who was infected but not
 went to test.
- Many factors could influence the incidence of HFRS but only time factor in study period was considered in our models, thus data should be updated to maintain the model's accuracy.
 Besides, there are lots of prediction models and this study only compared three of them, further comparison is needed to choose the best model for HFRS forecasting.
- 73 Spatial stratified heterogeneity (SSH) should be tested in time series prediction research,

applying the prediction model in each spatial is an important way to improve the model's performance.

77 BACKGROUND

Hantavirus is a member of family Bunyaviridae which contains the most important zoonotic pathogens of humans.¹ Two categories of hantaviruses are Old World (Asia and Europe) virus that causes hemorrhagic fever with renal syndrome (HFRS), and New World (Americas) virus that causes hantavirus pulmonary syndrome (HPS).^{2, 3} Hantaviruses are spread through the infected mammals' urine, faces, and saliva. People can be infected mainly through respiratory tract, alimentary tract and skin/mucus membrane abrasion. The onset symptoms of HFRS are fever, circulatory collapse with hypotension, hemorrhage and acute kidney injury (AKI).^{4, 5} The hallmark of HFRS is capillary leak syndrome, which causes edema and hemorrhage and threatens people's life.^{6, 7} Cases of HFRS are widely distributed in eastern Asia, particularly in China, Russia and Korea.8 It is reported that the number of HFRS cases in China accounts for almost 90% of the total cases worldwide.^{9, 10} Some comprehensive control activities such as effective vaccine and rodent elimination have achieved remarkable effects, while the incidence of HFRS is still high owing to some uncontrollable factors.^{11, 12} Thus it is important to forecast the diseases trends and get early warning before disease outbreak.

Statistic models such as linear regression, artificial neural network and grey model have been widely used in time series forecasting.^{13, 14} Reliable forecasting plays an important role in infectious diseases control before pandemic or outbreak. Autoregressive integrated moving average (ARIMA) model is one of the most popular methods in diseases prediction. The principle of ARIMA model contains filtering out the high-frequency noise in the data, detecting local trends based on linear dependence and forecasting the development trends. The limitation of this model is that ARIMA can only analyze the linear part of infectious disease series.¹⁵ However, the non-linear part of epidemic data may not be white noise, which means some information may be lost by ARIMA model. To overcome the inherent defect of ARIMA model, an artificial neural network (ANN) model was adopted. ANN is a conceptualized mathematical non-linear classification model inspired by the behavior of biological networks of neurons.^{16, 17} The generalized regression neural network (GRNN) is a member of ANN family and has unique ability of accelerated learning and greater capability for non-linear fitting. The hybrid ARIMA-GRNN model has both advantages of ARIMA model and GRNN model, it means that both the linear part and non-linear part of time series could be fitted by this hybrid model.

Some researches indicated that the hybrid model had better incidence forecasting performance than single ARIMA model and basic GRNN model in infectious diseases,¹⁸ while the best model in predicting the incidence of HFRS in China is still unclear. Besides, some studies had compared the performance of hybrid ARIMA-GRNN model with other models¹⁹ despite the comparison between the hybrid model with two single models in HFRS prediction is rare. This study aims to develop a single ARIMA model, a basic GRNN model and a hybrid ARIMA-GRNN model to fit and predict the monthly incidence of HFRS in China. The fitting and forecasting performance of these three models were compared to determine the best one, which is suggested to be employed in the provision of reference information for HFRS control.

117 METHODS

119 Data sources

120 The monthly reported incidence data of HFRS in China from January 2011 to May 2018 were 121 collected from the official website of National Health Commission of the People's Republic of 122 China (Ministry of Health). All HFRS cases in mainland China must be reported to the National 123 Health Commission through the Infectious Disease Surveillance System within 24 hours. The data 124 was separated into model building part and model forecasting part. According to some researches, 125 the data from January 2011 to December 2017 were adopted to build model while data from 126 January to May 2018 were used for model verification.

127 Single ARIMA model

The ARIMA model is usually shown as ARIMA (p, d, q)(P,D,Q)_s while the parameters mean non-seasonal and seasonal order of auto-regression, the degree of difference and moving average respectively, the subscript means the length of cyclical pattern. An ARIMA model is developed by time series stationary, parameter estimation and model check.²⁰

Time series stationary is the first requirement for ARIMA model establishment, it means no fluctuation or periodicity over time. The Augmented Dickey-Fuller (ADF) unit-root test could help estimating whether the time series is stationary or not. Log transformation and differences are frequently adopted to stabilize the time series.

The parameter D is the length of seasonal difference and d is the length of trend difference,
these two parameters are determined when original series is stable. The parameters of p, q, P and
Q are determined by researcher's personal experience through the autocorrelation function (ACF)
graph and partial autocorrelation (PACF) graph of stationary series. Generally, more than one
values may be given to each parameter so that several plausible models could be combined.

141 Since the best model must have the highest accuracy in disease prediction, some substandard
 142 models are excluded. A suitable model must show statistical significance in parameter test and get
 143 white noise sequence in residual test. Besides, the best model should have the lowest Akaike
 144 information criterion (AIC) value than other combined models.
 145 Device CDNN work of the sequence in the lowest Akaike

145 Basic GRNN model

The GRNN model is built based on non-linear regression theory. The input layer, pattern layer, summation layer and output layer are involved in the construction of GRNN model.²¹ Its inherent function is to identify the relationship between each input value and output value. Initially, the original data are divided into training set and test set. The test set can be the last two data or two random data of original series, the rest are adopted as the training set. Smoothing factor is the only parameter of GRNN which means the network could not be affected by human. A series of smoothing factors were tested by a circular program through Matlab software. Generally, there are more than one possible value of smoothing factor and the best one must have the lowest root mean square error (RMSE). Finally, all the original data were adopted as input part to predict the future data by the GRNN model which was built with the best smoothing factor.

53 156 Hybrid ARIMA-GRNN Model

The ARIMA model has advantage in extracting and fitting the linear part of the original time series, while the non-linear information in residual is abandoned. GRNN model is combined thanks to its capacity in data mining, so that the limitation of ARIMA model could be overcome. The hybrid ARIMA-GRNN model is developed to demonstrate if it has the highest accuracy in HFRS incidence prediction.

1		
2		
3 4	162	To develop the hybrid model, the input values are the fitting data of ARIMA model while the
5	163	output values are actual data. Same with the basic GRNN model, the last two samples or two
6	164	randomly selected samples of original series are used as testing set and the rest are used as training
7 8	165	set to find the best smoothing factor and rebuilt the GRNN model. Finally, the forecasted values of
9	166	ARIMA model is used as the input data of hybrid model to get the output predictive values.
10	167	Model revision
11	168	Spatial stratified heterogeneity (SSH) refers to the phenomenon that within strata are more similar
12 13	169	than between strata. ²² SSH is an unavoidable confounder in global model application, especially in
14	170	areas with huge region. ²³ The "spatial" not only refer to geospatial meaning, but also mathematical
15	171	meaning, such as gender, region and education level. In this study, SSH was tested by month to
16 17	172	demonstrate if there were different strata in HFRS incidence series. The prediction model will be
17	173	built in different strata if SSH test is significant.
19	174	Model comparison
20	175	The forecasting effects of ARIMA model, GRNN model and hybrid ARIMA-GRNN model are
21 22	176	estimated with RMSE, mean absolute error (MAE) and mean absolute percentage error (MAPE). ²⁴
22	177	Excel 2016 was used to build the database, R 3.4.3 software was used to create the ARIMA
24	178	model, the Matlab R2016a software was used to create the basic GRNN model and hybrid
25	179	ARIMA-GRNN model. GeoDetector software was used for SSH test.
26 27	180	Patient and public involvement
28	181	In this study, no patients or public was involved.
29	182	Ethics
30	183	Since no primary data collection was undertaken, no patient or public was involved, no formal
31 32	184	ethical assessment or informed consent was required.
33	185	
34	185	RESULTS
35	180	RESULTS
36 37		Single ARIMA model
38	188	
39	189	The monthly incidence data of HFRS in China from January 2011 to December 2017 was used to
40	190	develop the ARIMA model (figure 1). As shown in the original time series graph, the HFRS
41 42	191	incidence showed seasonal variation and the period was 12 months (s=12). A slightly declining
43	192	trend can be seen and it means the time series was not stationary. Trend difference (d=1) and
44	193	seasonal difference (D=1) were done to eliminate the instability. The ADF test showed that the
45	194	differenced time sequence was stationary (t statistics was -4.7201, P=0.0100).
46 47	195	
48	196	Figure 1 Monthly incidence of HFRS in China from January 2011 to December 2017.
49	197	
50	198	The ACF graph and PACF graph (figure 2) were applied to explore the parameters of the
51 52	199	ARIMA model. Four appropriate models were chosen by residual test and filtered by AIC value.
53	200	The AIC values of $ARIMA(1,1,1)(1,1,1)_{12}$ $ARIMA(1,1,1)(2,1,1)_{12}$ $ARIMA(2,1,1)(1,1,1)_{12}$
54	201	ARIMA(2,1,1)(2,1,1) ₁₂ were 950.48, 944.68, 940.55 and 936.61 respectively. The
55 56	202	ARIMA $(2,1,1)(2,1,1)_{12}$ model had the lowest AIC value and was chosen as the most suitable
56 57	203	model in HFRS prediction. The residual test showed white noise (figure 3).
58	204	
59	205	Figure 2 The ACF and PACF graphs of differenced HFRS incidence series.
60		
		r.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22 23	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	

206 Figure 3 Residual white noise test

208 **Basic GRNN model**

207

215

217

The samples from January 2011 to December 2017 were adopted to develop the network. The last 209 210 two samples were used as testing samples while the others were training samples. To determine 211 the optimal smoothing factors, a series of smoothing factors were tested. The smoothing factor with the minimum RMSE was selected as the optimal one. Figure 4 shows the RMSE of these 212 smoothing factors and it can be found that the optimal smoothing factor of the one-dimensional 213 214 input and one-dimensional output GRNN model was 0.027.

216 Figure 4 The selection of basic GRNN model and hybrid ARIMA-GRNN model

218 Hybrid ARIMA-GRNN model

219 The fitted data of ARIMA model from January 2011 to December 2017 were used as the input 220 samples for the GRNN model and the actual HFRS values were used as the output samples to training the hybrid ARIMA-GRNN model. The RMSE of hybrid model was the lowest when the 221 222 smoothing factor was 0.043 (figure 4), so 0.043 was selected to develop the GRNN model. 223 Subsequently, the forecasting outcomes of ARIMA model from January 2018 to May 2018 were 224 selected as the entry value of the ARIMA-GRNN model, and the output values were the predictive values of the hybrid model. 225

226 Finally, all three models had forecasted the HFRS incidence in China from January to May 2018. The forecasting performance parameters of the three models for the fitting and forecasting 227 228 parts are shown in Table 1. The curves of the three models and the actual HFRS incidence series 229 are depicted in figure 5. In this figure, the curves were divided into fitting part and forecasting part 230 by a vertical dashed line, the left is fitting part while the forecasting part is on right.

		Fitting part		Fo	recasting part	
Predicting error	MAPE	MAE	RMSE	MAPE	MAE	RMSE
ARIMA	9.1154	89.0302	138.8356	21.0212	175.7042	220.6269
GRNN	10.7332	134.596	265.7046	19.2029	177.0356	202.1684
ARIMA-GRNN	9.6083	85.0429	140.6426	17.8335	152.3013	196.4682

- **Table 1**. The fitting and forecasting performance of three models.
 231

232 233

234

Figure 5 The fitting and forecasting curves of three models and the actual HFRS incidence series

235 **Model revision**

236 HFRS incidence time series from January 2011 to December 2017 was partitioned to 12 strata 237 according to their months and SSH was tested. The results showed a q statistic with 0.776 and a p 238 value with 0.000, the SSH was significant. Given these results, the prediction was applied in each 239 strata.

240 A total of 12 new time series were established and each one has data with same month of each year. The sample size of each series was 7. Since the ARIMA model requires a series with 241 242 large sample size, thus we built GRNN model to explore whether the strata help improve the 57 58 243 model's performance. The verification data were actual HFRS incidence from January to May 59 244 2018, thus we built five revised GRNN models with new series. The relative error of these revised 60

BMJ Open

GRNN models were showed in Table 2. The average relative error of revised GRNN model was 17.61%, which was lower than 17.83% of original GRNN model. The MAPE, MAE and RMSE of revised model were 17.6095, 163.8000, 169.4751, respectively. These results indicated that the revised model was better than original GRNN model and application of prediction model in different strata was important to model's performance improvement.

				c	,
	A atual	Original GRNN model		Revised GRNN model	
	Actual – value	Forecasted	Relative	Forecasted	Relative
	value	value	error(%)	value	error(%)
Jan.	1180	843	28.56	1016	13.90
Feb.	598	729	21.91	765	27.93
Mar.	874	828	5.26	998	14.19
Apr.	959	809	15.64	1081	12.72
May	1253	1030	17.80	1011	19.31

DISCUSSION

In this study, a hybrid model was constructed based on traditional ARIMA model and basic GRNN model. These three different models were compared in fitting and forecasting performance and the results showed that the hybrid ARIMA-GRNN model was the best model in predicting the monthly reported incidence of HFRS in China. The hybrid model might be a potential decision-making tool to give some suggestion in public health policy decision. However, focusing on spatial SSH and developing prediction model in different strata help improve model's performance. A hybrid ARIMA-GRNN model built with data of same month of each year might be better than the existing hybrid model.

The characteristic of monthly incidence of HFRS in China is suitable for ARIMA model and GRNN model. As shown in the results, the incidence of HFRS in China has a slight decreasing trend and a bimodal seasonal cases distribution, which are same with other studies.^{25, 26} The incidence reaches peak in winter rapidly and has a longer lasting peak in Spring. Autumn to winter peak is the other peak, which is lower than the winter to spring one. Two reasons may could explain this seasonal distribution. People are more likely to be exposed to the disease due to increased activities in these two seasons and rodent behavior changes with climate change.^{27, 28} Besides, the distribution and peak value might change with different hantaviruses types.

The hybrid ARIMA-GRNN model was superior among three models even with imperfect fitting performance. ARIMA model is one of the most commonly used methods in infectious diseases prediction and has been proved with high accuracy. In this study, the traditional ARIMA model was used as the basic model for evaluating the performance of other models. The results showed that single ARIMA model and basic GRNN model were better than hybrid model in data fitting according to lower MAE and MAPE. Even some unmeasurable factors may impact data fitting, the forecasting performance should be at the first consideration.²¹ The MAPE, MAE, RMSE of hybrid model in validation part were lower than single ARIMA model or basic GRNN model. Some studies built the hybrid model with tuberculosis incidence or hand-foot-mouth disease incidence^{19,29, 30} and the results showed that hybrid ARIMA-GRNN model had less error than single model both in modeling and forecasting stage, which is different with our study. Thus

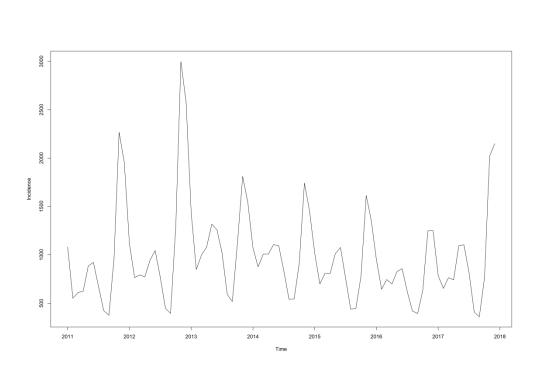
we hypothesis that diseases characteristics may affect the model performance and the best predictive model of each infectious disease is different. Model in this study could only fit the incidence of HFRS in China, its performance in other diseases or other nation needs further research.

The time series prediction model was developed as a new potential tool for infectious diseases incidence prediction in recent years. In this study, hybrid ARIMA-GRNN model was chose as a potential outbreak warning tool. Same with other disease prediction models, the disease control department could assess the disease developing trend with the help of the hybrid ARIAM-GRNN model. In a short term, the prediction values have same trend with the actual values. It means if the predictive values continue to rise, an outbreak should be alerted. Besides, disease prediction model is developed to evaluate the effectiveness of diseases intervention strategies like vaccine. An effective control measure will make the actual values lower than the predicted results. Something noteworthy is that these two functions are based on short terms. The incidence of infectious disease is influenced by some uncontrollable factors and HFRS is infected by weather, climate, human activities and so on.³¹⁻³³ These factors may keep stable in a short period and might change in a long run.

SSH is unavoidable in prediction model application and developing model in different strata is a common way to deal with this confounding. In this study, we partitioned the original series to 12 different series by month in order to relieve confounding. Due to the little sample size of each series, seven data are not enough to build ARIMA. Thus the traditional ARIMA model and hybrid ARIMA-GRNN model could not be revised. The GRNN model requires less about sample size so it was revised. Five revised GRNN model showed a better forecasting performance than original GRNN model. These results alert the SSH confounder in time series prediction model application, especially in huge region or diverse territory and the results also remind us of building model in same strata. According to these results, it could be inferred that revised ARIMA model and hybrid model may have better performance than existing models. More data are needed to revised these two models.

Several limitations of this study should be noted. As is shown above, the prediction model was merely developed for short-term forecasting. Maintaining the prediction performance for months or years requires constantly update of data and model. Here we build three new models whose fitting data were HFRS incidence from January 2011 to December 2015 and data from January 2016 to May 2018 were used to verification (Table S1). It showed that model with new data has higher accuracy. Besides, this study only analyzed the incidence of HFRS in China from January 2011 to December 2017 and the sample size is not enough when building model in different strata. Although the revised GRNN model demonstrated that SSH should be considered, the ARIMA-GRNN model were not revised due to little sample size. A time series with more data than this study is required to revised the hybrid model and improve the model's performance. At last, HFRS incidence data in this manuscript was total incidence in China, we can not explore the performance of these models in provincial incidence prediction. Spatial factor is an important factor that can affect HFRS development, so the applicability of results in this research need further study.

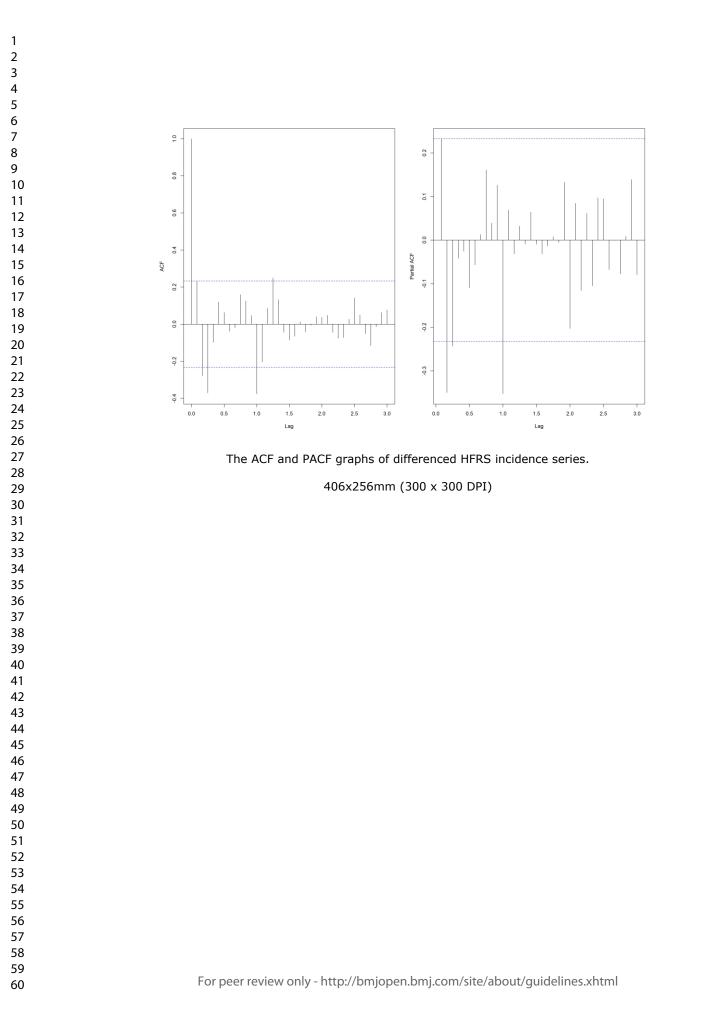
CONCLUSIONS

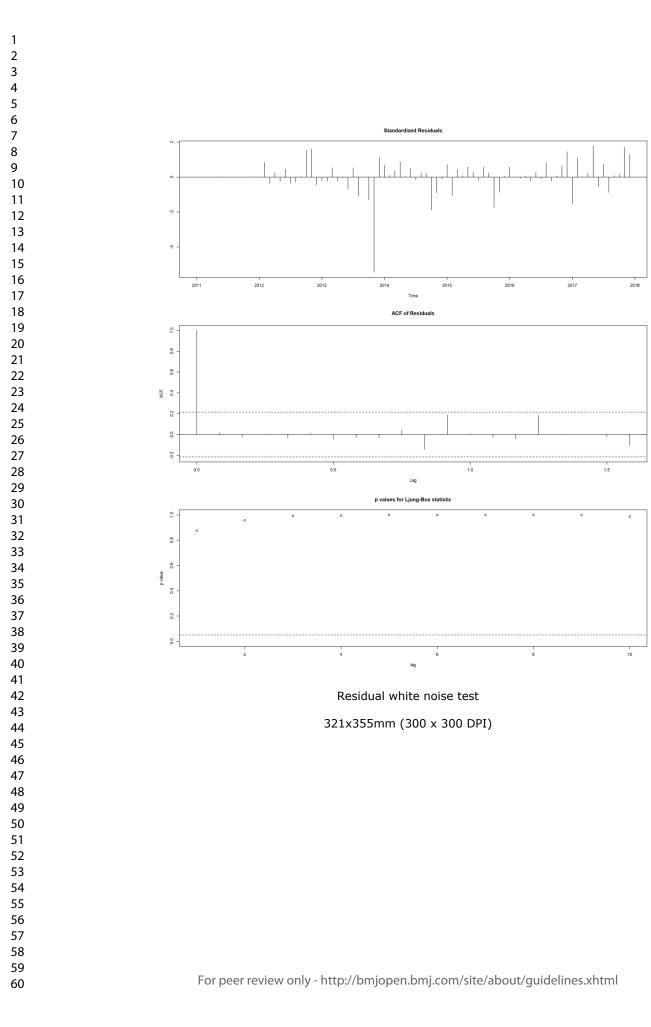

The hybrid ARIMA-GRNN model is superior than the single ARIMA model and basic GRNN

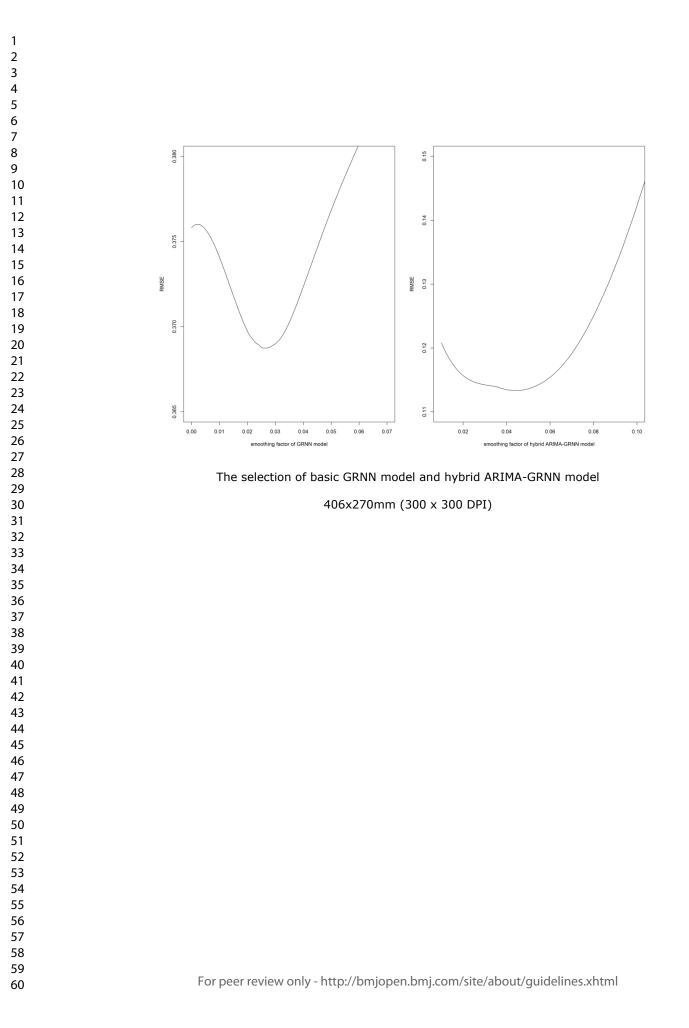
1		
2 3	225	model both in fitting and forgesting of monthly incidence of UEDS in Ching. The data should
4	325	model both in fitting and forecasting of monthly incidence of HFRS in China. The data should have undete to maintain the forecasting performance. This hybrid model should be considered as a
5 6	326 327	keep update to maintain the forecasting performance. This hybrid model should be considered as a decision-making tool in HFRS prevention and control.
7	327	decision-making tool in Theks prevention and control.
8	328	Supporting information
9	330	Supporting information S1 Table. The fitting and forecasting performance of three new models.
10 11	331	51 Table. The fitting and forecasting performance of three new models.
12	332	Acknowledgement We would like to express our gratitude to professor Yin Yang for carefully
13	333	revise of overall readability. We also thank peer reviewers for carefully revising and useful
14 15	334	comments.
16	335	Contributors YJ, YW and ZS designed the study. ZS extracted the data and constructed the
17	336	database. YW and ZS analyzed the data. YW drafted the manuscript. YJ and ZS made critical
18 19	337	revision to the manuscript. All authors read and approved the final manuscript.
20	338	Funding This research received no specific grant from any funding agency in the public,
21	339	commercial or not-for-profit sectors.
22 23	340	Competing interests None declared.
23	341	Provenance and peer review Not commissioned; externally peer reviewed.
25	342	Data sharing statement All original data was available at the official website of National Health
26 27	343	Commission of the People's Republic of China (http://www.nhfpc.gov.cn/jkj/new_index.shtml).
27 28	344	commission of the recipie s republic of climit (http:// www.imipe.gov.en/)ky/new_index.shtml.
29	345	REFERENCES
30	346	1. Schmaljohn CS, Hasty SE, Dalrymple JM, et al. Antigenic and genetic properties of viruses linked
31 32	347	to hemorrhagic fever with renal syndrome. <i>Science</i> . 1985;227(4690):1041-1044.
33	348	2. Ehelepola NDB, Basnayake BMLS, Sathkumara SMBY, Kaluphana KLR. Two Atypical Cases of
34	349	Hantavirus Infections from Sri Lanka. <i>Case Reports in Infectious Diseases</i> . 2018;2018:1-6. DOI:
35 36	350	10.1155/2018/4069862.
37	351	3. Avsic-Zupanc T, Saksida A, Korva M. Hantavirus infections. <i>Clin Microbiol Infect.</i> 2015. DOI:
38	352	10.1111/1469-0691.12291.
39 40	353	4. Latus J, Schwab M, Tacconelli E, et al. Clinical course and long-term outcome of
40	354	hantavirus-associated nephropathia epidemica, Germany. <i>Emerg Infect Dis.</i> 2015;21(1):76-83.
42	355	DOI: 10.3201/eid2101.140861.
43	356	5. Vaheri A, Strandin T, Hepojoki J, et al. Uncovering the mysteries of hantavirus infections. Nat
44 45	357	<i>Rev Microbiol.</i> 2013;11(8):539-550. DOI: 10.1038/nrmicro3066.
46	358	6. Hepojoki J, Vaheri A, Strandin T. The fundamental role of endothelial cells in hantavirus
47	359	pathogenesis. Front Microbiol. 2014;5:727. DOI: 10.3389/fmicb.2014.00727.
48 49	360	7. Pal E, Korva M, Resman RK, et al. Sequential assessment of clinical and laboratory parameters in
50	361	patients with hemorrhagic fever with renal syndrome. Plos One. 2018;13(5):e197661. DOI:
51	362	10.1371/journal.pone.0197661.
52 53	363	8. Bi P, Parton KA. El Nino and incidence of hemorrhagic fever with renal syndrome in China.
54	364	JAMA. 2003;289(2):176-177.
55	365	9. Zhang S, Wang S, Yin W, et al. Epidemic characteristics of hemorrhagic fever with renal
56 57	366	syndrome in China, 2006-2012. Bmc Infect Dis. 2014;14:384. DOI: 10.1186/1471-2334-14-384.
58	367	10. Du H, Wang PZ, Li J, et al. Clinical characteristics and outcomes in critical patients with
59	368	hemorrhagic fever with renal syndrome. <i>Bmc Infect Dis.</i> 2014;14:191. DOI:
60		

1 2			
2 3	369		10.1186/1471-2334-14-191.
4	370	11	Spatiotemporal Transmission Dynamics of Hemorrhagic Fever with Renal Syndrome in China,
5	370	11.	2005–2012. DOI: 10.1371/journal.pntd.0003344.
6 7		10	5 1
8	372	12.	He X, Wang S, Huang X, Wang X. Changes in age distribution of hemorrhagic fever with renal
9	373		syndrome: an implication of China's expanded program of immunization. <i>Bmc Public Health</i> .
10	374		2013;13:394. DOI: 10.1186/1471-2458-13-394.
11 12	375	13.	Wang YW, Shen ZZ, Jiang Y. Comparison of ARIMA and GM(1,1) models for prediction of
13	376		hepatitis B in China. Plos One. 2018;13(9):e201987. DOI: 10.1371/journal.pone.0201987.
14	377	14.	Cao H, Wang J, Li Y, et al. Trend analysis of mortality rates and causes of death in children under
15	378		5 years old in Beijing, China from 1992 to 2015 and forecast of mortality into the future: an entire
16 17	379		population-based epidemiological study. Bmj Open. 2017;7(9):e15941. DOI: 10.1136/bmjopen
18	380		-2017-015941.
19	381	15.	Petukhova T, Ojkic D, McEwen B, Deardon R, Poljak Z. Assessment of autoregressive integrated
20	382		moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and
21 22	383		random forest (RF) time series regression models for predicting influenza A virus frequency in
23	384		swine in Ontario, Canada. Plos One. 2018;13(6):e198313. DOI: 10.1371/journal.pone.0198313.
24	385	16.	Yosipof A, Guedes RC, Garcia-Sosa AT. Data Mining and Machine Learning Models for
25	386		Predicting Drug Likeness and Their Disease or Organ Category. Front Chem. 2018;6:162. DOI:
26 27	387		10.3389/fchem.2018.00162.
28	388	17.	Nair TM. Statistical and artificial neural network-based analysis to understand complexity and
29	389		heterogeneity in preeclampsia. Comput Biol Chem. 2018;75:222-230. DOI:
30	390		10.1016/j.compbiolchem.2018.05.011.
31 32	391	18	Wei W, Jiang J, Gao L, et al. A New Hybrid Model Using an Autoregressive Integrated Moving
33	392	10.	Average and a Generalized Regression Neural Network for the Incidence of Tuberculosis in Heng
34	393		County, China. <i>Am J Trop Med Hyg.</i> 2017;97(3):799-805. DOI: 10.4269/ajtmh.16-0648.
35 36	394	19	Wu W, Guo J, An S, et al. Comparison of Two Hybrid Models for Forecasting the Incidence of
37	395	17.	Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China. <i>Plos One.</i>
38	395		2015;10(8):e135492. DOI: 10.1371/journal.pone.0135492.
39	390 397	20	Rubaihayo J, Tumwesigye NM, Konde-Lule J, Makumbi F. Forecast analysis of any opportunistic
40 41		20.	
41	398		infection among HIV positive individuals on antiretroviral therapy in Uganda. <i>Bmc Public Health.</i>
43	399	0.1	2016;16(1):766. DOI: 10.1186/s12889-016-3455-5.
44	400	21.	Wei W, Jiang J, Liang H, et al. Application of a Combined Model with Autoregressive Integrated
45 46	401		Moving Average (ARIMA) and Generalized Regression Neural Network (GRNN) in Forecasting
40 47	402		Hepatitis Incidence in Heng County, China. Plos One. 2016;11(6):e156768. DOI:
48	403		10.1371/journal.pone.0156768.
49	404	22.	Wang J, Zhang T, Fu B. A measure of spatial stratified heterogeneity. Ecol Indic. 2016;67:
50 51	405		250-256.DOI: 10.1016/j.ecolind.2016.02.052.
51	406	23.	Li J, Xu F, Sun Z, Wang J. Regional differences and spatial patterns of health status of the
53	407		member states in the "Belt and Road" Initiative. Plos One. 2019;14(1):e211264.DOI:
54	408		10.1371/journal.pone.0211264.
55 56	409	24.	Gan R, Chen N, Huang D. Comparisons of forecasting for hepatitis in Guangxi Province, China
50 57	410		by using three neural networks models. Peerj. 2016;4:e2684. DOI: 10.7717/peerj.2684.
58	411	25.	Hansen A, Cameron S, Liu Q, et al. Transmission of Haemorrhagic Fever with Renal Syndrome in
59	412		China and the Role of Climate Factors: A Review. Int J Infect Dis. 2015;33:212-218. DOI:
60			
			10

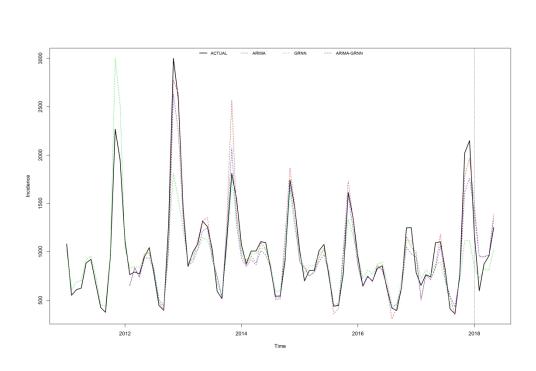
2			
3	413		10.1016/j.ijid.2015.02.010.
4 5	414	26.	Liu YX, Feng D, Zhang Q, et al. Key differentiating features between scrub typhus and
5 6	415		hemorrhagic fever with renal syndrome in northern China. Am J Trop Med Hyg.
7	416		2007;76(5):801-805.
8		27	
9	417	27.	Park YH. Absence of a Seasonal Variation of Hemorrhagic Fever with Renal Syndrome in
10	418		Yeoncheon Compared to Nationwide Korea. Infect Chemother. 2018;50(2):120-127. DOI:
11 12	419		10.3947/ic.2018.50.2. 120.
13	420	28.	Mills JN, Gage KL, Khan AS. Potential influence of climate change on vector-borne and zoonotic
14	421		diseases: a review and proposed research plan. Environ Health Perspect. 2010;118(11):1507-1514.
15	422		DOI: 10.1289/ehp.0901389.
16	423	29.	Wang H, Tian CW, Wang WM, Luo XM. Time-series analysis of tuberculosis from 2005 to 2017
17 18	424		in China. <i>Epidemiol Infect</i> . 2018;146(8):935-939. DOI: 10.1017/S0950268818001115.
19	425	30.	Peng Y, Yu B, Wang P, Kong DG, Chen BH, Yang XB. Application of seasonal auto-regressive
20	426		integrated moving average model in forecasting the incidence of hand-foot-mouth disease in
21	427		Wuhan, China. J Huazhong Univ Sci Technolog Med Sci. 2017;37(6):842-848. DOI:
22 23	428		10.1007/s11596-017-1815-8.
23 24	429	31	Joshi YP, Kim E, Cheong H. The influence of climatic factors on the development of hemorrhagic
25	430	51.	fever with renal syndrome and leptospirosis during the peak season in Korea: an ecologic study.
26			
27	431	22	<i>Bmc Infect Dis.</i> 2017;17(1). DOI: 10.1186/s12879-017-2506-6.
28 29	432	32.	Han SS, Kim S, Choi Y, Kim S, Kim YS. Air pollution and hemorrhagic fever with renal
30	433		syndrome in South Korea: an ecological correlation study. <i>Bmc Public Health</i> . 2013;13:347. DOI:
31	434		10.1186/1471-2458-13-347.
32	435	33.	Xiang J, Hansen A, Liu Q, et al. Impact of meteorological factors on hemorrhagic fever with renal
33 34	436		syndrome in 19 cities in China, 2005-2014. Sci Total Environ. 2018;636:1249-1256. DOI:
34 35	437		10.1016/j.scitotenv.2018.04.407.
36			10.1016/j.scitotenv.2018.04.407.
37			
38			
39 40			
41			
42			
43			
44 45			
43 46			
47			
48			
49 50			
50 51			
52			
53			
54			
55 56			
50 57			
58			
59			
60			






Monthly incidence of HFRS in China from January 2011 to December 2017.

406x270mm (300 x 300 DPI)


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

The fitting and forecasting curves of the three models and the actual HFRS incidence series 406x270mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
10 11 12 13 14 15 16 17 18	
15	
16	
17	
18	
10	
19 20	
20	
21 22	
22 23	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33 34 35 36 37	
34	
35	
36	
30	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
57 58	
٦×	

58 59 60

S1 Table The fitting and forecasting	performance of three new models
---	---------------------------------

		Fitting part			recasting part	
Predicting error	MAPE	MAE	RMSE	MAPE	MAE	RMSE
ARIMA	10.2735	105.6382	155.7399	27.9010	259.9656	359.9456
GRNN	33.4315	325.6638	512.7855	41.1768	299.8275	402.3660
ARIMA-GRNN	22.5002	213.6670	248.8867	21.3148	221.3138	336.5332

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 3 Table 1. Checklist of Items to Include When Reporting a Study Developing or Validating a Multivariable Prediction Model for $^{4}_{5}$ Diagnosis or Prognosis*

6 7 Section/Topic 8 9	ltem	Development or Validation?	Checklist Item	
10 Title and abstract				
11 12 Title 13	1	D;V	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted	1
14 15 Abstract 16	2	D;V	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions	2
¹⁷ Introduction				
18 19 20 21 ^B ackground and 22objectives	За	D;V	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models	3
23 24	3b	D;V	Specify the objectives, including whether the study describes the development or validation of the model, or both	3
25 26 Methods				
27 28 29 36 Source of data	4a	D;V	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable	4
31 32 3 3	4b	D;V	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up	4
34 35	5a	D;V	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres	NA
36 Participants 37	5b	D;V	Describe eligibility criteria for participants	NA
38	5c	D;V	Give details of treatments received, if relevant	NA
39 6a 40 6a 41 ^{Outcome} 42	6a	D;V	Clearly define the outcome that is predicted by the prediction model, including how and when assessed	NA
	6b	D;V	Report any actions to blind assessment of the outcome to be predicted	NA
43 44 45 AcPredictors	7a	D;V	Clearly define all predictors used in developing the multivariable prediction model, including how and when they were measured	4-5
46 47 48	7b	D;V	Report any actions to blind assessment of predictors for the outcome and other predictors	NA
495 ample size	8	D;V	Explain how the study size was arrived at	4
50 51Missing data	9	D;V	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method	NA
52 53	10a	D	Describe how predictors were handled in the analyses	4
54 55 56 56 analysis	10b	D	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation	4
57 methods	10c	V	For validation, describe how the predictions were calculated	4-5
58 59 60	10d	D;V	Specify all measures used to assess model performance and, if relevant, to compare multiple models	5

	10e	V	done		NA
Risk groups	11	D;V	Provic	le details on how risk groups were created, if done	NA
Development vs. validation	12	V		alidation, identify any differences from the development data in setting, lity criteria, outcome, and predictors	3
Results					
1	13a	D;V	partic	ibe the flow of participants through the study, including the number of ipants with and without the outcome and, if applicable, a summary of the r-up time. A diagram may be helpful	NA
Participants 8 9	13b	D;V	featur	ibe the characteristics of the participants (basic demographics, clinical res, available predictors), including the number of participants with g data for predictors and outcome	NA
0 1	13c	V		lidation, show a comparison with the development data of the oution of important variables (demographics, predictors and outcome)	NA
2 3Model	14a	D	Specif	y the number of participants and outcome events in each analysis	5-6
development	14b	D		e, report the unadjusted association between each candidate predictor utcome	NA
6 7 gModel &pecification	15a	D		nt the full prediction model to allow predictions for individuals (i.e., all ssion coefficients, and model intercept or baseline survival at a given time	5-6
0	15b	D	Explai	n how to use the prediction model	6-7
1 2Model 3performance	16	D;V	Repor	t performance measures (with CIs) for the prediction model	6
4 5Model updating 6	17	V		e, report the results from any model updating (i.e., model specification, l performance)	6-7
7 Discussion					
8 9 Limitations 0	18	D;V		ss any limitations of the study (such as nonrepresentative sample, few sper predictor, missing data)	7
1 2 3	19a	V		alidation, discuss the results with reference to performance in the opment data, and any other validation data	7
Anterpretation 4 5	19b	D;V		n overall interpretation of the results, considering objectives, limitations, s from similar studies, and other relevant evidence	7
6 7 ₁ mplications 8	20	D;V	Discus resear	ss the potential clinical use of the model and implications for future rch	7-8
9 0 Other information					
¹ Supplementary ² information	21	D;V		le information about the availability of supplementary resources, such as protocol, Web calculator, and data sets	8
3 4 Funding	22	D;V		he source of funding and the role of the funders for the present study	NA

 $_{57}^{57}$ model are denoted by v, and items relating to both are denoted by v, and items relating to both are denoted by v, and items relating to both are denoted by v, and items relating to both are denoted by v, and items relating to both are denoted by v, and items relating to both are denoted by v, and items relating to both are denoted by v, and items relating to both are denoted by v, and items relating to both are denoted by v, and items relating to both are denoted by v, and items relating to both are denoted by v, and items relating to both are denoted by v, and items relating to both are denoted by v, and items relating to both are denoted by v, and items relating to both are denoted by v, and items relating to both are denoted by v, and items relating to both are denoted by v, and items relating to both are denoted by v, and items relating to both are denoted by v, a

- 59
- 60