

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Identification of Plasmodium falciparum and host factors associated with cerebral malaria. A prospective, casecontrol study (NeuroCM)

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-027378
Article Type:	Protocol
Date Submitted by the Author:	25-Oct-2018
Complete List of Authors:	Joste, Valentin; MERIT, IRD Maurice, Laurine; MERIT, IRD; PHARMADEV, IRD Bertin, Gwladys; MERIT, IRD Aubouy, Agnès; PHARMADEV, IRD Boumédiène, Farid; INSERM UMR 1094, Tropical Neuroepidemiology Houzé, Sandrine; MERIT, IRD; Hopital Bichat - Claude-Bernard, Parasitology laboratory Daniel Ajzenberg , Daniel Ajzenberg ; Inserm UMR 1094, Tropical Neuroepidemiology Argy, Nicolas; MERIT, IRD; Hopital Bichat - Claude-Bernard, Parasitology laboratory Massougbodji, Achille; Institut de Recherche Clinique du Bénin Dossou-Dagba, Ida; Calavi Hospital, Pediatric department Alao, Jules; CHU-MEL Hospital, Pediatric department Cot, Michel; MERIT, IRD Peloron, Philippe; MERIT, IRD Faucher; Jean-François; Inserm UMR 1094, Tropical Neuroepidemiology Affolabi, Dissou; Calavi Hospital, Pediatric department Authier, Héiène; PHARMADEV, IRD Ayedadjou, Linda; Hopital Bichat - Claude-Bernard Biokou, Bibiane; CHU-MEL hospital, Pediatric department Coste, Agnès; PHARMADEV, IRD Degbelo, Jean-Eudes; Institut de Recherche Clinique du Bénin Dramane, Latifou; Hopital Bichat - Claude-Bernard Biokou, Bibiane; CHU-MEL hospital, Pediatric department Coste, Agnès; PHARMADEV, IRD Degbelo, Jean-Eudes; Institut de Recherche Clinique du Bénin Dramane, Latifou; Hopital Bichat - Claude-Bernard Labrunie, Anais; Inserm UMR 1094, Tropical Neuroepidemiology Ladipo, Yélé; CHU-MEL hospital, Pediatric department Labrune, Anais; Inserm UMR 1094, Tropical Neuroepidemiology Ladipo, Yélé; CHU-MEL hospital, Pediatric department Labrune; Anais; Inserm UMR 1094, Tropical Neuroepidemiology Mowendabeka, Audrey; Inserm UMR 1094, Tropical Neuroepidemiology Papin, Jade; MERIT, IRD Pipy, Bernard; Inserm UMR 1094, Tropical Neuroepidemiology Raymondeau, Marie; UMR 1094, Tropical Neuroepidemiology Raymo

	Vianou, Bertin; Hopital Bichat - Claude-Bernard, Parasitology laboratory
Кеу	words: Paediatric neurology < NEUROLOGY, Paediatric infectious disease & immunisation < PAEDIATRICS, TROPICAL MEDICINE, PARASITOLOGY
	SCHOLARONE [™]
	Manuscripts
For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	1	Identification of <i>Plasmodium falciparum</i> and host factors associated with cerebral malaria. A
5 6	2	prospective, case-control study (NeuroCM)
7 8	3	
9 10 11	4	Valentin Joste ¹ , Laurine Maurice ^{1,2} , Gl Bertin ¹ , Agnès Aubouy ² , Farid Boumédiène ³ , Sandrine
12 13	5	Houzé ^{1,4,9} , Daniel Ajzenberg ³ , Nicolas Argy ^{1,4,9} , Achille Massougbodji ⁵ , Ida Dossou-Dagba ⁶ , Jules
14 15	6	Alao ⁷ , Michel Cot ¹ , Philippe Deloron ¹ , Jean François Faucher ^{3,8} and the NeuroCM group.
16 17 18	7	
19 20	8	^{1.} MERIT, IRD, Université Paris 5, Sorbonne Paris Cité, Paris, 75006, France
21 22	9	^{2.} PHARMADEV, IRD, Université Paul Sabatier Toulouse III, Toulouse, France
23 24 25	10	^{3.} NET, INSERM, Université de Limoges, Limoges, France
26 27	11	⁴ . Laboratoire de Parasitologie-Mycologie, AP-HP, Hôpital Bichat, Paris
28 29	12	^{5.} Institut de Recherche Clinique du Bénin (IRCB), Calavi, Benin
30 31 32	13	^{6.} Pediatric Department, Calavi Hospital, Calavi, Benin
33 34	14	^{7.} Pediatric Department, Mother and Child University and Hospital Center (CHUMEL), Cotonou,
35 36	15	Benin.
37 38 39	16	⁸ Department of Infectious Diseases, Limoges University Hospital, Limoges, France
39 40 41	17	⁹ National French Malaria Reference Center, Bichat-Claude Bernard hospital, Paris
42 43	18	
44 45	19	NeuroCM group: Dissou Affolabi ⁶ , Hélène Authier ² , Linda Ayedadjou ⁴ , Bibiane Biokou ⁷ , Agnès
46 47 48	20	Coste ² , Jean-Eudes Degbelo ⁵ , Latifou Dramane ⁴ , Sayeh Jafari-Guemouri ¹ , Claire Kamaliddin ¹ ,
49 50	21	Elisée Kinkpe ⁴ , Anaïs Labrunie ³ , Yélé Ladipo ⁷ , Thomas Lathiere ³ , Audrey Mowendabeka ³ , Jade
51 52	22	Papin ¹ , Bernard Pipy ² , Pierre-Marie Preux ³ , Marie Raymondeau ³ , Jade Royo ² , Darius Sossou ⁴ ,
53 54 55	23	Brigitte Techer ¹ , Bertin Vianou ⁴ .
56 57	24	
58 59 60		1 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

25 Corresponding author:

26 Joste Valentin, MERIT, IRD, Université Paris 5, Sorbonne Paris Cité, Paris, 75006, France

27 Phone: +33617435543

28 Email: valentinjoste@gmail.com

<u>′</u> 29

30 Abstract

Introduction: In 2016, an estimated 216 million cases and 445,000 deaths of malaria occurred
worldwide, in 91 countries. Most cases and deaths were in the African region (respectively 88%
and 90%), including Benin, located in West Africa. In Benin, malaria causes 26.8% of disease
report in the general population and 20.9% in children under five years old.

The goal of the NeuroCM project is to identify the causative and remedial factors of neuroinflammation in the context of cerebral malaria. There are currently very few systematic data from West Africa on the etiologies and management of non-traumatic coma in small children, and NeuroCM will help to fill this gap. We postulate that an accurate understanding of molecular and cellular mechanisms involved in neuroinflammation may help to define efficient strategies to prevent and manage cerebral malaria.

Methods and analysis: This is a prospective, case-control study comparing cerebral malaria to uncomplicated malaria and non-malarial coma. This study takes place in Benin, precisely in Cotonou for the hospital's recruitment. Uncomplicated malaria recruitment proceeds in Sô-Ava district. We aim to include 300 children between 24 and 71 months divided in three different clinical groups during 12 months (from December 2017 to November 2018). Study data, including clinical, biological and research results will be collected and managed using CS online-Ennov clinical. BMJ Open: first published as 10.1136/bmjopen-2018-027378 on 28 May 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2018-027378 on 28 May 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Ethics and dissemination: Ethics approval for the NeuroCM study has been obtained from *Comité* National *d'Ethique* pour Recherche of Benin la en santé (n°67/MS/DC/SGM/DRFMT/CNERS/SA; 10/17/2017). NeuroCM study has also been approved by Comité consultatif de déontologie et d'éthique of Institut de Recherche pour le Développement (IRD: 10/24/2017) Strengths and limitations of this study > This case-control study aims to identify the causative and remedial factors of neuroinflammation in the context of cerebral malaria > This study will inform on the etiologies and management of non-traumatic coma in small children > The final products of NeuroCM are expected to feed the pipeline of new therapeutic (immune intervention) and preventive (vaccine) strategies that will improve cerebral malaria outcome This study does not have the power to investigate all etiologies of fever in Benin. Contrary to the malaria groups, there is no information on the frequency of non-malaria coma admissions, and no certainty on the number of children who will included in the non-*Plasmodium* group. > According to the low number of patients, conclusions will further need to be confirmed in larger studies

BMJ Open

69 Introduction

Malaria is triggered by an apicomplexan parasite, *Plasmodium spp.* Six *Plasmodium* species can
infect humans, with *Plasmodium falciparum* (*P. falciparum*) being the most frequent in SubSaharian Africa (99% of estimated cases in 2016). *P. falciparum* is the agent of severe malaria and
responsible for most malarial deaths.

In 2016, an estimated 216 million cases and 445,000 deaths of malaria occurred worldwide, in 91 countries¹. Despite a recent decrease in malaria mortality due to extensive malaria control through insecticide impregnated bednets and increased use of artemisinin derivatives, 275,000 children still die every year from malaria. Most cases and deaths were in African region (respectively 88% and 90%). Severe malaria occurs mostly in non-immune patients and in Sub-Saharian Africa, 90% of severe malaria affect young children². In endemic states, malaria is one of the three major causes of hospitalization in children under five years old.

Benin is in West Africa, along the Guinea gulf. In 2018, 11.5 million people live in Benin, most of them in South-Benin. Malaria transmission occurs seasonally, during rainy seasons (from May to August and October). According to the Beninese health department in 2016, malaria is responsible for 26.8% of disease reports in consultation and hospitalization in the general population and for 20.9% in children under five years old³. It is also the first morbidity cause in the general population with a prevalence of 39.7% in 2013, followed by respiratory infections in 12.4% cases and gastrointestinal disease for 6.4%⁴.

According to the World Health Organization (WHO), severe *falciparum* malaria is defined by the association between *P. falciparum* asexual parasitaemia and the presence of one or more of the clinical or laboratory features (with no other confirmed cause for their symptoms) presented in table 1. Cerebral malaria is defined by the presence of asexual form of *P. falciparum* associated with Blantyre score \leq 2 Table 2). Cerebral malaria is a coma which persists for > 1h after a seizure

BMJ Open: first published as 10.1136/bmjopen-2018-027378 on 28 May 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

irrespective of anticonvulsant medications. But clinical criteria for cerebral malaria diagnosis are currently debated. Some study highlighted that P. falciparum parasitaemia can be observed in comatose children with a non-malarial central nervous system disease requiring another treatment than antimalarials⁵. Diagnostic of cerebral malaria could therefore be overestimated. A recent study in Malawi found that 25% of cerebral malaria cases were misdiagnosed and that many children may have had a viral meningoencephalitis concomitant to a malarial infection⁵. Implementation of fundoscopic examination (in order to look for malaria retinopathy signs)⁶ and microbiological investigations (blood culture, cerebrospinal fluid (CSF) culture, CSF multiplex PCR) could limit the overestimation of cerebral malaria diagnosis, but fundoscopic examination requires trained physicians and microbiological investigations are expensive. Clinical research needs to focus on new clinical or diagnostic tools designed to help physicians in order to better diagnose cerebral malaria.

105 NeuroCM study aims to collect data (such as blood and cerebrospinal fluid culture, fundoscopic 23 106 examination) on coma's etiologies in Beninese young children.

Without treatment, cerebral malaria is invariably fatal. Even with parenteral artemisinin use, severe malaria death rate is 20%⁷. In case of severe or cerebral malaria, patients should be hospitalized in an intensive care unit. Conscience status, blood pressure, heart and respiratory rates, diuresis and oxygen saturation have to be monitored every six hours⁸. Parenteral artemisinin instead of quinine is recommended at a posology of 2.4 mg/kg by injection (3 mg/kg in children under 20 kg of body weight) at diagnosis, 12 and 24 hours later and then daily until patients can take oral drugs⁷. Benzodiazepine should be used to treat convulsions (diazepam 0.3 mg/kg; midazolam or lorazepam). It seems accepted that cerebral malaria surviving patients generally don't present any neurological sequelae and fully recover their neurological capacity. However, immediate neurological after-effect is described in 6.7 to 11.6% of cases⁷⁹ and a recent meta-analysis found a

Page 7 of 24

BMJ Open

relation between cerebral malaria and neurologic disease¹⁰. The NeuroCM study will collect data
on children's clinical recovery at discharge and 1 month later.

Control means for malaria are less and less effective due to multiple parasite and vector mechanisms of resistance. First, P. falciparum drug resistance is a growing concern. Resistance to chloroquine, one of the main anti-malarial drugs, appeared during the sixties in South-East Asia and then spread to Africa¹¹¹². Artemisinin-combined therapy became the treatment of choice for malaria to reduce the risk of parasites developing resistance¹³. But artemisinin-resistance appeared in South-East Asia in 2008¹⁴ and was confirmed by others studies¹⁵. It has not, hitherto, spread to Africa but this is a real concern for the WHO¹⁶. On the other hand, mosquitos become more and more resistant to insecticides, making antivectorial prevention more and more difficult¹⁷. For those different reasons, research for new therapies is important and needs to be developed.

Pathophysiology of cerebral malaria is complex and multifactorial, based on both parasite and host immune factors. It is currently believed that cerebral malaria is caused by dedicated parasite variants that specifically localize in brain through interaction between parasite proteins expressed on the surface of the infected erythrocytes (iE) and brain endothelium. This sequestration occurs with erythrocytes infected with late stage of *P. falciparum* (trophozoïtes and schizonts). Binding of iE to endothelial vascular cells is mediated by Variant Surface Antigens (VSA). Plasmodium virulence is linked to its ability to express VSA¹⁸. VSA includes three different multigenic families: var, rifin and stevor. More specifically, var genes coding for PfEMP1 proteins are highly polymorphic and present in sixty copies in P. falciparum genome. Those PfEMP1 are expressed on iE surface and are responsible for endothelial receptors binding, such as Chondroitin Sulfate A (CSA) and Endothelial Protein C Receptor (EPCR) or InterCellular Adhesion Molecule (ICAM) respectively involved in placental malaria¹⁹ and severe malaria²⁰. PfEMP1 family has been clearly associated with binding of iE to the microvascular endothelium of every organ and tissue²¹. We

BMJ Open: first published as 10.1136/bmjopen-2018-027378 on 28 May 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

now better understand iE's binding on placenta²² and vaccine development to prevent gestational
malaria seems an achievable goal. By contrast, research is still needed to understand which type of
proteins specifically binds to cerebral endothelial receptor. In a previous study conducted in Benin,
we identified several proteins associated with cerebral malaria²³.

The finding of a PfEMP1 specifically related to cerebral malaria could pave the way to the development of a vaccine targeting this specific protein. Studying the transcriptomic and proteomic profiles of plasmodial strains involved in cerebral malaria compared to strains involved in uncomplicated malaria is a first step to better understand related mechanisms to cerebral endothelium binding.

The host immune aspect of the pathophysiology of cerebral malaria are the consequences of microvascular sequestration of iEs and rosettes (non-infected red blood cells) in brain. Such sequestration leads to blood flow obstruction, ischemia/hypoxia and local inflammation resulting in neuroinflammation²⁴⁻²⁸. The way this cascade of events is linked and the reasons why they result in death or inflammation resolution remains to be elucidated. Acute cerebral ischemia is known to drive microglia activation and influx of myeloid immune cells to the brain. Resident microglia and infiltrating monocytes/neutrophils have a critical role in initiating, sustaining (M1 polarization) and resolving (M2 polarization) post-ischemic inflammation²⁹⁻³¹. Another important immune aspect of neuroinflammation during cerebral malaria is redox equilibrium. The production reactive oxygen species both by parasites (haemoglobin digestion) and monocytes/macrophages are thought to cause damages to neurons³². This process leads to BBB permeability and neurodegeneration^{33,34}. To counterbalance the excess of oxidants, oxidant scavengers and antioxidant enzymes may be produced. In the NeuroCM study, we intend to better understand mechanisms of neuroinflammation and its resolution in a context of cerebral malaria, by comparing data collected in children presenting with cerebral malaria, in children hospitalised for non-malaria non-traumatic

Page 9 of 24

BMJ Open

e			
or			
'S			
e			
e			
N			
ır			
d			
r•			
a al			
11			
8			

BMJ Open: first published as 10.1136/bmjopen-2018-027378 on 28 May 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

coma, and in children with uncomplicated malaria. We will focus our studies on markers of immun cell migration and polarization (towards inflammatory or resolutive phenotypes), and of pro- o anti-oxidant response, through urine and blood samples analysis at inclusion, 3 and 21 to 28 day post-inclusion. **Study objectives** The main objective is to identify the causative and remedial factors of neuroinflammation in the context of cerebral malaria. There are currently very few systematic data from West Africa on the etiologies and management of non-traumatic coma in small children, and NeuroCM will bring new information on these aspects. We postulate that an accurate understanding of molecular and cellula mechanisms involved in neuroinflammation may help to define efficient strategies to prevent and . e_i.e_y manage cerebral malaria. There are three distinct objectives in this study. I. To identify parasitological factors associated with P. falciparum cerebral malaria or uncomplicated malaria We expect to identify and validate P. falciparum virulence factors associated with cerebral malaria by comparison with uncomplicated malaria. Once proteins of interest will be found, functiona studies will help to better understand their role in cerebral malaria. II. To identify immune host factors associated with fatal of favourable outcome of cerebral malaria For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-027378 on 28 May 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

We expect to better understand which mechanisms trigger neuroinflammation and its resolution during cerebral malaria by comparing three groups of children: presenting with cerebral malaria, hospitalised for non-malaria non-traumatic coma, and presenting with uncomplicated malaria. We aim to identify therapeutic molecular targets involved in neuroinflammation resolution. III. To describe coma's etiology in Sub-Saharian Africa We expect to improve knowledge in non-traumatic coma's etiologies in Sub-Saharian Africa in order to improve young children's coma management and inform health public policies on the role played by infections that could be prevented by vaccination. Methods and analysis Design This is a prospective, case-control study comparing cerebral malaria to uncomplicated malaria and non-Plasmodium coma. Patients will be recruited in South Benin, in two different hospitals for coma and in a dispensary for uncomplicated malaria. Conversely, uncomplicated malaria is rarely detected in hospitals. This study is conducted by one Beninese research team (CERPAGE, Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance) and three French research teams (UMR D216 MERIT in Paris carrying the project, UMR D152 PHARMADEV in Toulouse, UMR S1094 NET in Limoges). Study environment This study takes place in Benin, precisely in Cotonou and Calavi for the hospital's recruitment. Uncomplicated malaria recruitment takes place in Sô-Ava district. Cotonou is the largest city and

Page 11 of 24

BMJ Open

The two recruitment hospitals are the CHU-MEL (CHU-Mère et Enfant de la Lagune) and Hôpital de zone de Calavi. Routine laboratory analysis, except bacteriology, are performed on site for children included with coma and at IRCB (Institut de Recherche Clinique du Bénin) for children with uncomplicated malaria. Bacteriological analyses are performed in the microbiology laboratory of CNHU (Centre National Hospitalier Universitaire). Research analyses are done in the CERPAGE laboratory. Participants We aim to include 3 different clinical groups of 100 children between 24 and 71 months during 12 months (from December 2017 to November 2018). This duration has been determined according to previous studies in Benin³⁵. In the **first group**, a diagnosis of cerebral malaria will be defined as follows: positive *P. falciparum* parasitaemia with a Blantyre score ≤ 2 with exclusion of patients presenting: positive bacteraemia, meningitidis proved or suspected (leucocytes in cerebrospinal fluid > 1000 per microliter and/or Gram positive in LCS and/or LCS bacterial culture positive and/or PCR positive for any bacteria or virus). In the second group, a diagnosis of non-malarial non-traumatic coma will be defined as follows: Blantyre score ≤ 2 and no *Plasmodium* infection as detected by thick blood smear. In the **third group**, uncomplicated *falciparum* malaria will be defined as follows: 1) fever at inclusion or within 24 hours before, 2) no clinical or biological sign of severe malaria (table 1), no danger signs and no other obvious cause of fever and 3) parasitaemia between 1,000 to 500,000 parasites per microliter. Inclusion and exclusion criteria

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-027378 on 28 May 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

For all children, the first inclusion criterion is parental acceptance that their child participate in the study after information has been given (see section "Ethics and safety considerations"). Inclusion criteria for coma (cerebral malaria and non-Plasmodium coma) are: age between 24 to 71 months, Blantyre score ≤ 2 , negative HIV Rapid Diagnostic Test (RDT). Non-inclusion criteria are: pre-existent neurologic disease and traumatic or toxic coma. Inclusion criteria for uncomplicated *falciparum* malaria are: age between 24 to 71 months, fever > 38°C at inclusion or within 24 hours before and no clinical severity/danger sign, positive malaria RDT, negative HIV RDT. Exclusion criteria for coma are: thick and thin blood smear not realized at day 0 (D0) and/or biological blood test no realized at D0 and/or research blood test not realized at D0. Exclusion criteria for uncomplicated *falciparum* malaria are: thick and thin blood smear not realized at day 0 (D0) and/or biological blood test no realized at D0 and/or research blood test not realized at D0 and/or laboratory indices for severe malaria and/or thick and thin blood smear negative for *P. falciparum* and/or parasite density under 1000 parasite per microliter or higher than 500,000 parasites per microliter. Recruitment process Step 1: Enrolment/screening The first step is patients' screening to confirm study eligibility and provide participants with

information about the study. A questionnaire assessing eligibility will inform on home addresses,
sociodemographic data (number of children in the family, ethnical group...), clinical history, use
of mosquito net and vaccination status. Informed consent is then obtained from the parents or
caregivers.

BMJ Open

ш
ž
2
\circ
ŏ
Φ
₽
S.
÷
Ĕ
р
S.
Ě
å
0
ິ
<u>~</u>
<u>0</u>
\rightarrow
ω
Q
ğ
3
0
ğ
ň
Ň
õ
3
4J Open: first published as 10.1136/bmjopen-2018-027378 on 28 May 2019. Downloaded from http
20
12
ŝ
2
õ
ă
N
õ
<
a
\leq
2
2
Q
8
ž
3
ō
oad
ĕ
led from
Ŧ
9
⊐
Ξ.
÷
<u>S</u> .
đ
omjope
0
http://bmjopei
Ľ
ъ
Ξ.
<u> </u>
8
Ĩ.
<
Q.
1
₽
≚.
17
2
Ň
024
024 by
', 2024 by g
024 by gu
024 by gues
024 by guest.
024 by guest. F
024 by guest. Pro
024 by guest. Prot
024 by guest. Protec
024 by guest. Protecte
guest. Protecte
024 by guest. Protected b
guest. Protecte

The following tests are performed to screen for malaria and to rule out HIV infections: a RDT detecting HRP2 for *P. falciparum* detection and Determine HIV-1/2 set, Alere for HIV detection. Step 2: Clinical examination and biological sample/analysis A clinical examination is performed by a study physician for children hospitalised with coma, and by a study nurse for uncomplicated malaria. In the coma group, a fundoscopic assessment is performed (Evepax 1.0 Dioptrix) and pictures are captured and downloaded on an online database. The clinical data entry is performed on an online case report form. In order to allocate children to their respective groups, biological analyses according to severe malaria are needed. For coma's inclusion: thick and thin blood smear analysis, complete blood count (CBC) (Sysmex KX-21N, Sysmex XT-1800i and ABS Micro ES 60), biochemistry analysis (Na⁺, K⁺, Cl⁻, Ca⁺⁺, HCO₃⁻, albumin, urea, creatinine, glucose, lactate) with Piccolo Sysmex and ALAT plus bilirubine (Biolabo Kenza Max biochemistry and Mindray BS-200) are performed on site. Blood culture, Gram staining and bacterial culture for cerebrospinal fluid are realized in a laboratory. university hospital reference Biomérieux Biofire[™] FilmArravTM Meningitis/Encephalitis Panel multiplex PCR (looking for E. coli, H. influenzae, L. monocytogenes, N. meningitidis, S. agalactiae, S. pneumoniae, cytomegalovirus, enterovirus, Epstein-Barr virus, herpes simplex virus (HSV) 1, HSV2, human herpesvirus 6, paraechovirus, varicella zona virus and Cryptococcus neoformans and C. gattii) will be further performed in France. The required following samples are needed: one EDTA tube (2 mL), one heparin tube (2 mL), one cerebrospinal sample (1 mL), one blood sample for blood culture (5 mL) for routine analyses, two additional EDTA tubes (6 mL) and 50 mL of urine for research analyses. For uncomplicated malaria inclusions: severe malaria was ruled out according to results from blood cell count (Sysmex XS500i), biochemistry analysis (bilirubine, glucose, creatinine) on Selectra pro automate (Elitech group) and thick blood smear. The following samples are needed: one EDTA

1		
2 3 4	283	tube (2 mL), one heparin tube (2 mL) and one fluorinated tube (2mL) for routine analyses, two
5 6	284	additional EDTA tubes (6 mL) and 50 ml of urine for research analyses.
7 8	285	Step 3: Research analyses
9 10 11 12 13	286	A part of research analyses is realized in Cerpage lab. One to 1.5 mL of blood is cultured in
	287	supplemented Roswell Park Memorial Institute (RPMI) 1640 medium with Albumax (Gibco) for
14 15	288	less than 48 hours until they reach the mature stage (from young trophozoite to schizont), then
16 17	289	purified using magnetic-activated cell sorting (MACS; Milteny Biotec, Bergisch Gladbach,
18 19 20	290	Germany) for binding and endothelial cell activation assay. The resulting mature stage are stored
21 22	291	at -80°C for further mass spectrometry protein analysis. Two hundreds μ L of whole blood samples
23 24	292	are conserved at -20°C for DNA analysis, 200 µL are transferred in TRIzol reagent (Life
25 26 27	293	technologies, France) and stored at -80°C for further RNA extraction ³⁶ , and 200 μ L in liquid
27 28 29 30 31 32 33 34 35 36	294	nitrogen for parasite cryoconservation. Plasma samples are conserved at -20°C and -80°C
	295	respectively for immune response analysis and dosage of biomarkers. Peripherical blood
	296	mononuclear cells (PBMC) are separated from red blood cells by Ficoll density gradient and stored
	297	in liquid nitrogen. Finally, urine are stored at -80°C for further analysis. See table 3 for detailed
37 38	298	research planning.
39 40 41 42 43 44 45	299	Parasite factors analyses will be performed in several ways. We will compare CM and UM isolates
	300	with whole genome DNA sequencing (Sanger Institute, MalariaGen consortium, Illumina
	301	technology); RNA-sequencing and by quantitative MS analysis. Highly polymorphic var genes
46 47	302	will be assembled and BLASTed against peptide hits from the MS approach. Nucleotide primers
48 49 50 51	303	will be designed with DNA-sequencing data and used in RT-qPCR to validate the RNA-seq data.
	304	Associations between gene polymorphisms and modifications in RNA nature and quantity detected
52 53 54	305	by RNA-seq will be investigated. Then, we will use recombinant protein and <i>P. falciparum</i> genome
55 56	306	modification by gene disruption to study proteins' role.
57 58		13
59		

Step 3: Research analyses

58

59

60

1 2		
2 3 4	307	Host factors study will be based on the analysis of PBMC, plasmas and urine samples of the three
5 6	308	groups of children. PBMC analysis will focus on the phenotyping of monocytes to distinguish M1
7 8	309	and M2-like phenotypes. Plasmas and urine samples will allow to measure redox, pro-/anti-
9 10 11	310	inflammatory and pro-resolving mediators. We will first compare data from the group of cerebral
11 12 13	311	malaria to the two other groups in order to identify the biological markers best related to
14 15	312	inflammation and neurological impairment during cerebral malaria. Second, we will analyze data
16 17	313	obtained with the two coma groups at inclusion (Day 0), at Day 3 and Day 30 to understand the
18 19 20	314	kinetics of immune events and its relation to death or favorable outcome.
20 21 22	315	Step 4: Coma follow-up
23 24	316	In children presenting with coma, blood sample are collected at day 3 (D3) and day 21-28 (D21-
25 26 27 28 29 30 31	317	28) to collect data on malaria outcome, and for research purpose. One EDTA tube (6 mL) and 50
	318	mL urine will be sampled. A clinical assessment is also performed at these day of follow-up.
	319	
32 33	320	Data management
34 35	321	Data, including clinical, biological and research results are collected and managed using CS online-
36 37		
38 39	322	Ennov clinical (<u>https://ufrcb.chu-limoges.fr/crfonline/</u>). It is a secure, web-based application
40 41	323	designed to support data capture for research studies. Study participants are identified by a code
42 43	324	and have their own account. The two physicians and the nurse were trained to entry the data on
44 45	325	included children in the database. Nobody can delete a patient created in the base, except the Data
46 47 48	326	manager.
48 49 50	327	Data & Safety Monitoring Board (DSMB), composed by two physicians specialized in infectious
51 52	328	disease and one statistician, will review allocation of children to the pre-defined study groups and
53 54	329	discuss possible deviations from the expected number of subjects in the groups.
55 56	330	
57		

<u>Data analysis</u>

In a first step, descriptive statistics will be realized by calculating mean and standard deviation (sd)
for quantitative variables, and proportion for qualitative variables to determine the main
characteristics of the three clinical groups.

Focusing on cerebral and uncomplicated malaria children, Maxquant software and plasmoDB³⁷ will be used to compare malaria protein expression between isolates of these two clinical groups. Transcriptomic data will be analyzed with Galaxy (<u>https://usegalaxy.org/</u>) and R software (<u>https://www.r-project.org/</u>)³⁸. We will also use free tools from Galaxy as Cufflinks, Htseq-count and Tophat2. Data normalization will be realized with DESeq2 software, with hypothesis that there exists gene overexpressed and underexpressed. Transcript expression levels (evaluated with RTqPCR) will be compared by Kruskal-Wallis and Wilcoxon tests.

Regarding immune response analysis, potential markers related to inflammation and neurological symptoms will be compared using variance analysis in samples from children from cerebral malaria, non-malarial coma and uncomplicated malaria groups. In a second step, data will be analyzed by regression models (linear or logistic depending on the variable analysed) and hierarchical models for repeated samples over time in blood or urine. The non-*Plasmodium* coma group will be used as a comparator to analyse specific effect of malaria in neuroinflammation development.

Patient and public involvement

From patients' experience and preference, follow-up of children admitted with coma was scheduled in order to be able to detect neurological sequelae. The diagnostic workup proposed to all children included into the study, although not affordable to all patients in routine practice, met parent's expectations on what heath facilities should provide to all patients. All patients were recruited in

Page 17 of 24

1

59

60

2		
3 4	355	health facilities were they usually seek care, and to that respect patients were involved in their
5 6	356	recruitment process. Finally, results will not be disseminated directly to study participants but
7 8 9	357	through peer-reviewed scientific journal and conference presentations.
10 11	358	
12 13	359	Ethics and dissemination
14 15 16	360	Ethics and safety considerations
17 18	361	Ethics approval for the NeuroCM study has been obtained from Comité National d'Ethique pour
19 20	362	la Recherche en santé of Benin (n°67/MS/DC/SGM/DRFMT/CNERS/SA; 10/17/2017). NeuroCM
21 22 23	363	study has also been approved by the Comité consultatif de déontologie et d'éthique of Institut de
25 24 25	364	Recherche pour le Développement (IRD; 10/24/2017).
26 27	365	Parents/guardians will be given an oral information by the physician or the nurse and an opportunity
28 29	366	to ask question and refuse the protocol. Patient's confidentiality will be ensured and anonymity
30 31 32	367	guaranteed by anonymous coding given at the inclusion.
33 34	368	
35 36	369	Dissemination
37 38 39	370	The main benefits of NeuroCM are targeted on people living in malaria endemic countries. The
40 41	371	study results will be disseminated through a variety of instruments to ensure that a broad range of
42 43	372	both specialists and non-specialists are informed and can properly benefit from the findings. First,
44 45 46	373	through the direct consultations with the WHO's TDR-MIM, Roll Back Malaria program to reach
40 47 48	374	the wider public health audience; through scientific meetings and peer-reviewed publications in
49 50	375	scientific or medical journals to reach the scientific/medical/public health communities; through
51 52	376	guidelines targeting the medical and paramedical staff for optimization of severe malaria
53 54 55	377	management, through booklets (e.g. first aid procedures and adapted behaviour in case of
56 57 58	378	emergency) elaborated and adapted to the population of Benin. 16

59

60

2		
3 4	379	
5 6	380	Discussion
7 8	381	Cerebral malaria is the most life-threatening form of malaria with high mortality rate in young
9 10 11	382	children. Mortality related to malaria is still high in children population and accurate cerebral
12 13	383	malaria diagnosis remains challenging. Among cerebral malaria surviving children, up to 25% have
14 15	384	long-term neuro-cognitive deficits (visual/hearing/cognitive/language impairment/
16 17 18	385	ataxia/hemiparesis/motor deficit), and 10% show evidence of mental health disorders ³⁹ . As
19 20	386	cerebral malaria might be one of the more common causes of epilepsy in malaria-endemic regions,
21 22	387	the burden of cerebral malaria neurological sequelae may be largely underestimated, but difficult
23 24	388	to estimate because diagnosis is challenging in malaria-endemic regions. Bacterial or viral central
25 26 27	389	nervous system infections may occur in children with malarial infection; this may not only
28 29	390	originates overdiagnosis of cerebral malaria, but also may overlooks potential bacterial and viral
30 31	391	central nervous system infections.
32 33 34	392	The expected impact of NeuroCM is of great magnitude. First, NeuroCM is an attempt to propose
35 36	393	improvements for the diagnosis of cerebral malaria. It will provide as far as possible, for the first
37 38	394	time in West Africa, an identification of the causes of coma in the study area. Second, thanks to
39 40	395	DNA, RNA and protein analyses, NeuroCM will allow to identify new parasite targets for a vaccine
41 42 43	396	to prevent cerebral malaria. Third, NeuroCM will provide data on the kinetics of appearance of
44 45	397	inflammatory and pro-resolving molecular and cellular events in brain during cerebral malaria. The
46 47	398	role of endogenous mediators in neuroinflammation resolution during cerebral malaria will be
48 49 50	399	clarified, with emphasis on pro-oxidant components and lipid mediators. NeuroCM will also
51 52	400	identify markers allowing the definition of an immunological state in the process of
53 54	401	neuroinflammation resolution in cerebral malaria patients. Our experimental murine model will
55 56 57	402	allow the formulation of new hypothesis while proof of concept will be achieved through the
58 59		17

BMJ Open: first published as 10.1136/bmjopen-2018-027378 on 28 May 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

2 3 4	403
5 6	404
7 8	405
9 10 11	406
12 13	407
14 15	408
16 17 19	409
18 19 20	410
21 22	411
23 24	412
25 26 27	413
28 29	414
30 31	415
32 33 34	416
35 36	417
37 38	418
39 40 41	419
41 42 43	420
44 45	421
46 47 48	422
48 49 50	423
51 52	424
53 54	425
55 56 57	426
58	

correlation of our proposed targets with patient morbidity and mortality parameters. In the future, 103 it may allow clinicians to better manage cerebral malaria, with specific pro-resolving drugs for 104 105 instance.

The final products of NeuroCM are expected to feed the pipeline of new therapeutic (immune 106 intervention) and preventive (vaccine) strategies to improve cerebral malaria outcome, as well as 107 108 other diseases involving neuroinflammation.

Authors contributions 110

All authors have substantially contributed to the conception and design of the study. VJ and JFF 411 drafted the manuscript. JFF, SH, PD, AA, MC, DA, NA and GB revised the manuscript. All 112 authors approved the final version to be submitted to the journal. 413

Collaborators 415

NeuroCM study group: Dissou Affolabi, Hélène Authier, Linda Ayedadjou, Bibiane Biokou, 116 Agnès Coste, Jean-Eudes Degbelo, Latifou Dramane, Sayeh Jafari-Guemouri, Claire Kamaliddin, 117 Elisée Kinkpe, Anaïs Labrunie, Yélé Ladipo, Thomas Lathiere, Audrey Mowendabeka, Jade Papin, 118 Bernard Pippy, Pierre-Marie Preux, Marie Raymondeau, Jade Royo, Darius Sossou, Brigitte 119 120 Techer, Bertin Vianou.

- 121
- Funding 122

This work was supported by the French Agence Nationale de la Recherche, under contract ANR-123 17-CEl 7-0001-01. 124

Competing interests 126

1			
2 3 4	427	No	competing interest.
5 6	428		
7 8 9	429	Wo	ord Count
) 10 11	430	3,9	64 words
12 13	431		
14 15 16	432	Re	ferences
17 18 19	433 434	1.	World Health Organization. World malaria report 2017 Available at: http://www.who.int/malaria/publications/world-malaria-report-2017/en/
20 21 22	435 436	2.	Black RE, Cousens S, Johnson HL, <i>et al.</i> Global, regional, and national causes of child mortality in 2008: a systematic analysis. <i>Lancet</i> 2010;375:1969–87.
23 24 25	437 438	3.	Beninese health department. Annuaire des statistiques sanitaires 2016. Available at: http://www2.sante.gouv.bj/IMG/pdf/annuaire_stat_pas_2016.pdf
26 27 28 29	439 440	4.	World Health Organization. Stratégie de coopération de l'OMS avec le Bénin: 2016-2019. Available at: http://apps.who.int/iris/handle/10665/246191
30 31 32	441 442	5.	Mallewa M, Vallely P, Faragher B, <i>et al.</i> Viral CNS infections in children from a malaria- endemic area of Malawi: a prospective cohort study. <i>Lancet Glob Health</i> 2013;1:e153-160.
33 34 35	443 444	6.	Beare NAV, Taylor TE, Harding SP, <i>et al</i> . Malarial retinopathy: a newly established diagnostic sign in severe malaria. <i>Am J Trop Med Hyg</i> 2006 Nov;75:790–7.
36 37 38 39 40	445 446 447	7.	Dondorp AM, Fanello CI, Hendriksen ICE, <i>et al.</i> Artesunate versus quinine in the treatment of severe <i>falciparum</i> malaria in African children (AQUAMAT): an open-label, randomised trial. <i>Lancet</i> 2010;376:1647–57.
41 42 43 44	448 449 450		8. World Health Organization. La prise en charge du paludisme grave – guide pratique. Troisième édition. Available at: http://www.who.int/malaria/publications/atoz/9789241548526/fr/
45 46	451	9.	Severe malaria. Trop Med Int Health TM IH 2014;19 Suppl 1:7–131.
47 48 49 50 51	452 453 454	10.	Christensen SS, Eslick GD. Cerebral malaria as a risk factor for the development of epilepsy and other long-term neurological conditions: a meta-analysis. <i>Trans R Soc Trop Med Hyg</i> 2015;109:233–8.
52 53 54 55 56	455 456	11.	Wernsdorfer WH. The development and spread of drug-resistant malaria. <i>Parasitol Today</i> 1991;7:297–303.
57 58 59			19 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60			i or peer review only - http://binjopen.binj.com/site/about/guidelines.xhtml

1 2 3 4	457	12. Mengesha T, Makonnen E. Comparative efficacy and safety of chloroquine and alternative
5 6	458 459	antimalarial drugs: a meta-analysis from six African countries. <i>East Afr Med J</i> 1999;76:314–9.
7 8 9 10 11	460 461 462	13. World Health Organization. WHO calls for an immediate halt to provision of single-drug artemisinin malaria pills. Available at: http://www.who.int/mediacentre/news/releases/2006/pr02/en/
12 13 14	463 464	14. Noedl H, Se Y, Schaecher K, <i>et al.</i> Evidence of artemisinin-resistant malaria in western Cambodia. <i>N Engl J Med</i> 2008;359:2619–20.
15 16 17	465 466	15. Dondorp AM, Nosten F, Yi P, <i>et al.</i> Artemisinin resistance in <i>Plasmodium falciparum</i> malaria. <i>N Engl J Med</i> 2009;361:455–67.
18 19 20 21	467 468	16.World Health Organization. Status report on artemisinin resistance and ACT efficacy. Available at: http://www.who.int/malaria/publications/atoz/artemisinin-resistance-august2018/en/
22 23 24	469 470	17.World Health Organization. Global report on insecticide resistance in malaria vectors: 2010–2016. Available at: http://www.who.int/malaria/publications/atoz/9789241514057/en/
25 26 27	471 472	18. Kraemer SM, Smith JD. A family affair: <i>var</i> genes, PfEMP1 binding, and malaria disease. <i>Curr Opin Microbiol</i> 2006;9:374–80.
28 29 30	473 474	19. Tuikue Ndam NG, Salanti A, Bertin G <i>et al.</i> High level of var2csa transcription by <i>Plasmodium falciparum</i> isolated from the placenta. <i>J Infect Dis</i> 2005;192:331–5.
31 32 33 34 35	475 476 477	20. Moussiliou A, Alao MJ, Denoeud-Ndam L, <i>et al.</i> High plasma levels of soluble endothelial protein C receptor are associated with increased mortality among children with cerebral malaria in Benin. <i>J Infect Dis</i> 2015;211:1484–8.
36 37	478	21. Miller LH, Baruch DI, Marsh K et al. The pathogenic basis of malaria. Nature 2002;415:673–9.
38 39 40	479 480	 Tuikue Ndam N, Deloron P. Towards a vaccine against pregnancy-associated malaria. <i>Parasite</i> 2008 Sep;15:515–21.
41 42 43 44	481 482	23. Bertin GI, Sabbagh A, Argy N, <i>et al.</i> Proteomic analysis of <i>Plasmodium falciparum</i> parasites from patients with cerebral and uncomplicated malaria. <i>Sci Rep</i> 2016;6:26773.
45 46 47	483 484	24. White NJ, Turner GDH, Day NPJ, <i>et al.</i> Lethal malaria: Marchiafava and Bignami were right. <i>J Infect Dis</i> 2013;208:192–8.
48 49 50	485 486	25. Berendt AR, Tumer GD, Newbold CI. Cerebral malaria: the sequestration hypothesis. <i>Parasitol Today</i> 1994 Oct;10:412–4.
51 52 53 54	487 488	26. Clark IA, Cowden WB, Rockett KA. The pathogenesis of human cerebral malaria. <i>Parasitol Today</i> 1994;10:417–8.
55 56 57	489 490	27. Beare NAV, Harding SP, Taylor TE, <i>et al.</i> Perfusion abnormalities in children with cerebral malaria and malarial retinopathy. <i>J Infect Dis</i> 2009;199:263–71.
58 59		20
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1			
2 3 4 5	491 492	28.	Dorovini-Zis K, Schmidt K, Huynh H, <i>et al.</i> The neuropathology of fatal cerebral malaria in malawian children. <i>Am J Pathol</i> 2011;178:2146–58.
6 7 8	493 494	29.	McDonough A, Weinstein JR. Neuroimmune Response in Ischemic Preconditioning. <i>Neurother J Am Soc Exp Neurother</i> 2016;13:748–61.
9 10 11 12	495 496	30.	Kim E, Cho S. Microglia and Monocyte-Derived Macrophages in Stroke. <i>Neurother J Am Soc Exp Neurother</i> 2016;13:702–18.
13 14 15	497 498	31.	Xia C-Y, Zhang S, Gao Y, <i>et al.</i> Selective modulation of microglia polarization to M2 phenotype for stroke treatment. <i>Int Immunopharmacol</i> 2015;25:377–82.
16 17 18 19	499 500 501	32.	Kumar A, Barrett JP, Alvarez-Croda D-M, <i>et al.</i> NOX2 drives M1-like microglial/macrophage activation and neurodegeneration following experimental traumatic brain injury. <i>Brain Behav Immun</i> 2016;58:291–309.
20 21 22 23	502 503	33.	Pino P, Taoufiq Z, Nitcheu J, <i>et al.</i> Blood-brain barrier breakdown during cerebral malaria: suicide or murder? <i>Thromb Haemost</i> 2005;94:336–40.
24 25 26	504 505	34.	Postma NS, Mommers EC, Eling WM, <i>et al.</i> Oxidative stress in malaria; implications for prevention and therapy. <i>Pharm World Sci</i> 1996;18:121–9.
27 28 29 30	506 507 508	35.	Bertin GI, Lavstsen T, Guillonneau F, <i>et al.</i> Expression of the domain cassette 8 <i>Plasmodium falciparum</i> erythrocyte membrane protein 1 is associated with cerebral malaria in Benin. <i>PloS One</i> 2013;8:e68368.
31 32 33 34	509 510	36.	Ponts N, Chung D-WD, Le Roch KG. Strand-specific RNA-seq applied to malaria samples. <i>Methods Mol Biol</i> 2012;883:59–73.
35 36 37 38	511 512 513	37.	Bertin GI, Sabbagh A, Guillonneau F, <i>et al.</i> Differential protein expression profiles between <i>Plasmodium falciparum</i> parasites isolated from subjects presenting with pregnancy-associated malaria and uncomplicated malaria in Benin. <i>J Infect Dis</i> 2013;208:1987–97.
39 40 41	514 515	38.	Otto TD, Wilinski D, Assefa S, <i>et al.</i> New insights into the blood-stage transcriptome of <i>Plasmodium falciparum</i> using RNA-Seq. <i>Mol Microbiol</i> 2010;76:12–24.
42 43 44 45	516 517	39.	Idro R, Kakooza-Mwesige A, Asea B, <i>et al.</i> Cerebral malaria is associated with long-term mental health disorders: a cross sectional survey of a long-term cohort. <i>Malar J</i> 2016;15:184.
46 47 48	518		
49 50 51 52			
52 53 54 55			
56 57 58			21
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Clinical manifestations	Prognosis value	Frequency in children
	ennical mannestations	Tiognosis value	r requency in enharen
	Impaired consciousness	+++	+++
	Respiratory distress	+++	+++
	Multiple convulsions	+	+++
	Prostration	+	+++
	Shock	+++	+
	Pulmonary oedema (radiology)	+++	+/-
	Abnormal bleeding	+++	+/-
	Jaundice	++	+
	Laboratory indices	Prognosis value	Frequency
	Severe anemia (hemoglobin < 5g/dL		
	or hematocrit < 15%)	+	+++
	Hypoglycaemia (< 40 mg/dL)	+++	+++
	Acidosis (bicarbonate < 15 mM)	+++	+++
	Hyperlactemia (lactates > 5 mM)	+++ 2	+++
	Renal impairment (creatinin > 3	C	
	mg/dL)	++	+
	Hyperparasitemia (parasitaemia >		
	10%)	+/-	++
519	Table 1 – Clinical and laboratory criteria	for severe malaria (from	(4))
520			
520			

BMJ Open: first published as 10.1136/bmjopen-2018-027378 on 28 May 2019. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

	521		Score
		Best motor response	
`		Localises painful stimulus	2
) 2		Withdraws limb from pain	1
3 1		Non-specific or absent response	0
5		Verbal response	
7 3 9		Appropriate cry	2
) I		Moan or inappropriate cry	1
2 3 4		None	0
+ 5 5		Eye movement	
7 3		Directed	1
)) 		Not directed	0
2 3		Total	0-5
4 5	522	Table 2 – Blantyre score (from (4))	4
5 7 3	523		
))			
1 2			
3 1			
5 5 7			
3			
) I			
2 3			
4 5 5			
5 7 3			

59

Task	Calendar																		
	2017	'			201	8				-		201	19					202	20
	T4	Т	1	T		T3	T	4	Т	1	T		Т	3	T.	4	T1		
Cohort recruitment and follow-up																			
Area preparation							Π									Π	Π	Π	
Inclusion						İΪ	İİ				╈	†		Π					
Follow-up															H	+			
Biological samples organization											+					╫	++		
Parasite factors																			
Parasite whole genome sequencing	TIT										Т	Π				ТТ	ТТ		
Parasite RNA-Sequencing	+++	++	++								+	+		+		++	++	++	$\left \right $
Mass spectrometry analysis	+++	++	++	+										+	\vdash	┼┼	++	++	$\left \right $
Identified protein validation		++	+	+	$\left \right $	$\left \right $	╂┼	-											
Protein's role on endothelium activation							╉				+	+							
Host factors																			
Macrophage M2 kinetics apparition in mice brain																			
												+			\vdash	┽┼	++	++	
Endogenous mediator role in neuroinflammation																			
		H	+	_															
Neuroinflammation markers identification in cerebral malaria patients																			
				_															
Posulta evaloitetion																			
Results exploitation																			
Database validation								_											
Data analysis	+++	++	+		\square						_								
Dissemination						Ц	Ц												
Table 3 - Detailed research planning																			

BMJ Open

Identification of Plasmodium falciparum and host factors associated with cerebral malaria. Description of the protocol for a prospective, case-control study (NeuroCM)

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-027378.R1
Article Type:	Protocol
Date Submitted by the Author:	08-Jan-2019
Complete List of Authors:	Joste, Valentin; MERIT, IRD Maurice, Laurine; MERIT, IRD; PHARMADEV, IRD Bertin, Gwladys; MERIT, IRD Aubouy, Agnès; PHARMADEV, IRD Boumédiène, Farid; INSERM UMR 1094, Tropical Neuroepidemiology Houzé, Sandrine; MERIT, IRD; Hopital Bichat - Claude-Bernard, Parasitology laboratory Daniel Ajzenberg , Daniel Ajzenberg ; Inserm UMR 1094, Tropical Neuroepidemiology Argy, Nicolas; MERIT, IRD; Hopital Bichat - Claude-Bernard, Parasitology laboratory Massougbodji, Achille; Institut de Recherche Clinique du Bénin Dossou-Dagba, Ida; Calavi Hospital, Pediatric department Alao, Jules; CHU-MEL Hospital, Pediatric department Cot, Michel; MERIT, IRD Deloron, Philippe; MERIT, IRD Faucher, Jean-François; Inserm UMR 1094, Tropical Neuroepidemiology
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Paediatrics, Neurology
Keywords:	Paediatric neurology < NEUROLOGY, Paediatric infectious disease & immunisation < PAEDIATRICS, TROPICAL MEDICINE, PARASITOLOGY

SCHOLARONE[™] Manuscripts

1	
2	
3	
1	
-	
5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
10	
2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 10 11 12 13 14 15 16 7 10 11 12 13 14 15 16 7 10 11 12 13 14 15 16 17 10 10 11 12 13 14 15 16 17 10 10 11 12 13 14 15 16 17 10 10 11 12 13 14 15 16 17 10 10 11 12 13 14 15 16 17 11 10 11 12 13 14 15 16 17 11 12 23 24 25 26 27 28 29 30 13 23 33 33 33 33 33 33 33 33 33 3 3 3	
20	
21	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
10	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	

25

1	Identification of <i>Plasmodium falciparum</i> and host factors associated with cerebral malaria.
2	Description of the protocol for a prospective, case-control study (NeuroCM)
3	
4	Valentin Joste ¹ , Laurine Maurice ^{1,2} , Gl Bertin ¹ , Agnès Aubouy ² , Farid Boumédiène ³ , Sandrine
5	Houzé ^{1,4,9} , Daniel Ajzenberg ³ , Nicolas Argy ^{1,4,9} , Achille Massougbodji ⁵ , Ida Dossou-Dagba ⁶ ,
6	Jules Alao ⁷ , Michel Cot ¹ , Philippe Deloron ¹ on behalf of the NeuroCM group, Jean François
7	Faucher ^{3,8}
8	
9	^{1.} MERIT, IRD, Université Paris 5, Sorbonne Paris Cité, Paris, 75006, France
10	^{2.} PHARMADEV, IRD, Université Paul Sabatier Toulouse III, Toulouse, France
11	^{3.} NET, INSERM, Université de Limoges, Limoges, France
12	^{4.} Laboratoire de Parasitologie-Mycologie, AP-HP, Hôpital Bichat, Paris
13	^{5.} Institut de Recherche Clinique du Bénin (IRCB), Calavi, Benin
14	^{6.} Pediatric Department, Calavi Hospital, Calavi, Benin
15	7. Pediatric Department, Mother and Child University and Hospital Center (CHUMEL),
16	Cotonou, Benin.
17	^{8.} Department of Infectious Diseases, Limoges University Hospital, Limoges, France
18	^{9.} National French Malaria Reference Center, Bichat-Claude Bernard hospital, Paris
19	
20	NeuroCM group: Dissou Affolabi ⁶ , Hélène Authier ² , Linda Ayedadjou ⁴ , Bibiane Biokou ⁷ ,
21	Agnès Coste ² , Jean-Eudes Degbelo ⁵ , Latifou Dramane ⁴ , Sayeh Jafari-Guemouri ¹ , Claire
22	Kamaliddin ¹ , Elisée Kinkpe ⁴ , Anaïs Labrunie ³ , Yélé Ladipo ⁷ , Thomas Lathiere ³ , Audrey
23	Mowendabeka ³ , Jade Papin ¹ , Bernard Pipy ² , Pierre-Marie Preux ³ , Marie Raymondeau ³ , Jade
24	Royo ² , Darius Sossou ⁴ , Brigitte Techer ¹ , Bertin Vianou ⁴ .

26 Corresponding author:

Joste Valentin, MERIT, IRD, Université Paris 5, Sorbonne Paris Cité, Paris, 75006, France
Phone: +33617435543

29 Email: valentinjoste@gmail.com

31 Abstract

Introduction: In 2016, an estimated 216 million cases and 445,000 deaths of malaria occurred worldwide, in 91 countries. Most cases and deaths were in the African region (respectively 88% and 90%), including Benin, located in West Africa. In Benin, malaria causes 26.8% of consultation and hospitalization motif in the general population and 20.9% in children under five years old.

The goal of the NeuroCM project is to identify the causative factors of neuroinflammation in the context of cerebral malaria. There are currently very few systematic data from West Africa on the etiologies and management of non-malarial non-traumatic coma in small children, and NeuroCM will help to fill this gap. We postulate that an accurate understanding of molecular and cellular mechanisms involved in neuroinflammation may help to define efficient strategies to prevent and manage cerebral malaria.

Methods and analysis: This is a prospective, case-control study comparing cerebral malaria to uncomplicated malaria and non-malarial non traumatic coma. This study takes place in Benin, precisely in Cotonou for children with coma and in Sô-Ava district for children with uncomplicated malaria. We aim to include 300 children aged between 24 and 71 months and divided in three different clinical groups during 12 months (from December 2017 to November 2018) with a 21-28 days follow-up for coma. Study data, including clinical, biological and research results will be collected and managed using CS online-Ennov clinical.

1 2

BMJ Open

3	
4	
5	
5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
15 16	
17	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

70

60

Ethics and dissemination: Ethics approval for the NeuroCM study has been obtained from 50 51 Comité National *d'Ethique* la Recherche santé of Benin pour en (n°67/MS/DC/SGM/DRFMT/CNERS/SA; 10/17/2017). NeuroCM study has also been 52 approved by Comité consultatif de déontologie et d'éthique of Institut de Recherche pour le 53 Développement (IRD; 10/24/2017) 54

56 Strengths and limitations of this study

- This case-control study aims to identify the causative factors of neuroinflammation in
 the context of cerebral malaria
- 59 > This study will inform on the etiologies and management of non-malarial non-traumatic
 60 coma in small children
- 61 > The final products of NeuroCM are expected to feed the pipeline of new therapeutic
 62 (immune intervention) and preventive (vaccine) strategies that will improve cerebral
 63 malaria outcome

Final Study does not have the power to investigate all etiologies of fever in Benin. Contrary to the malaria groups, there is no information on the frequency of non-malarial non-traumatic coma admissions, and no certainty on the number of children who will included in the non-malarial non-traumatic group.

According to the limited number of patients, conclusions will further need to be
 confirmed in larger studies

71 Introduction

Malaria is triggered by an apicomplexan parasite, *Plasmodium spp*. Six *Plasmodium* species
can infect humans, with *Plasmodium falciparum* (*P. falciparum*) being the most frequent in
Sub-Saharian Africa (99.7% of estimated cases in 2017). *P. falciparum* is the agent of severe
malaria and responsible for most malarial deaths.

In 2017, an estimated 219 million cases and 435,000 deaths of malaria occurred worldwide, in 91 countries¹. Despite a recent decrease in malaria mortality due to extensive malaria control through insecticide impregnated bednets and increased use of artemisinin derivatives, 275,000 children still die every year from malaria. Most cases and deaths were in African region (respectively 92% and 93%). Severe malaria occurs mostly in non-immune patients and in Sub-Saharian Africa and 90% of severe malaria affect young children². In endemic states, malaria is one of the three major causes of hospitalization in children under five years old.

Benin is in West Africa, along the Guinea gulf. In 2018, 11.5 million people live in Benin, most of them in South-Benin. Malaria transmission occurs seasonally, during rainy seasons (from May to August and October). According to the Beninese health department in 2016, malaria is responsible for 26.8% of disease reports in consultation and hospitalization in the general population and for 20.9% in children under five years old³. It is also the first morbidity cause in the general population with a prevalence of 39.7% in 2013, followed by respiratory infections in 12.4% cases and gastro-intestinal disease for 6.4%⁴.

According to the World Health Organization (WHO), severe *falciparum* malaria is defined by the association between *P. falciparum* asexual parasitaemia and the presence of one or more of the clinical or laboratory features (with no other confirmed cause for their symptoms) presented in table 1. Cerebral malaria (CM) is defined by the presence of asexual form of *P. falciparum* associated with Blantyre score ≤ 2 (Table 2). CM is a coma which persists for > 1h after a seizure irrespective of anticonvulsant medications. Clinical criteria for CM diagnosis are Page 5 of 27

BMJ Open

currently debated, and it has been highlighted that a P. falciparum parasitaemia can be observed in comatose children with coma related to a non-malarial central nervous system disease⁵, leading to a possible overestimation of CM cases. A recent study in Malawi found that 25% of CM cases were misdiagnosed and that many children may have had a viral meningoencephalitis concomitant to a malarial infection⁵. Implementation of fundoscopic examination (in order to look for malaria retinopathy signs)⁶ and microbiological investigations (blood culture, cerebrospinal fluid (CSF) culture, CSF multiplex PCR) could limit the overestimation of CM diagnosis, but fundoscopic examination requires trained physicians and microbiological investigations are expensive. Clinical research needs to focus on new clinical or diagnostic tools designed to help physicians in order to better diagnose CM.

106 NeuroCM study aims to collect data (such as blood and cerebrospinal fluid culture, fundoscopic
 107 examination) on coma's etiologies in Beninese young children.

Without treatment, CM is invariably fatal. Even with parenteral artemisinin use, severe malaria death rate is 20%⁷. In case of severe or CM, patients should be hospitalized in an intensive care unit. Conscience status, blood pressure, heart and respiratory rates, diuresis and oxygen saturation have to be monitored every six hours⁸. Parenteral artemisinin instead of quinine is recommended at a posology of 2.4 mg/kg by injection (3 mg/kg in children under 20 kg of body weight) at diagnosis, 12 and 24 hours later and then daily until patients can take oral drugs⁷. Benzodiazepine should be used to treat convulsions (diazepam 0.3 mg/kg; midazolam or lorazepam). It seems accepted that CM surviving patients generally don't present any neurological sequelae and fully recover their neurological capacity. However, immediate neurological after-effect is described in 6.7 to 11.6% of cases^{7,9} and a recent meta-analysis found a relation between CM and neurologic disease¹⁰. The NeuroCM study will collect data on children's clinical recovery at discharge and 21-28 days later.

Tools for malaria control are less and less effective. On one hand, P. falciparum drug resistance is a growing concern. Resistance to chloroquine, one of the main anti-malarial drugs, appeared during the sixties in South-East Asia and then spread to Africa^{11,12}. Artemisinin-combined therapy became the treatment of choice for malaria with the aim to reduce the risk of parasites developing resistance¹³, but resistance appeared in South-East Asia in 2008¹⁴ and was confirmed in others studies¹⁵. It has not, hitherto, spread to Africa but this is a real concern for the WHO¹⁶. On the other hand, mosquitos become more and more resistant to insecticides, making antivectorial prevention more and more difficult¹⁷. Thus, research for new therapies is needed.

Pathophysiology of CM is complex and multifactorial, based on both parasite and host immune factors. It is currently believed that CM is caused by dedicated parasite variants that specifically localize in brain through interaction between parasite proteins expressed on the surface of the infected erythrocytes (iE) and brain endothelium. This sequestration occurs with erythrocytes infected with late stage of *P. falciparum* (trophozoites and schizonts). Binding of iE to endothelial vascular cells is mediated by Variant Surface Antigens (VSA). Plasmodium virulence is linked to its ability to express VSA¹⁸. VSA include three different multigenic families: var, rifin and stevor. More specifically, var genes coding for PfEMP1 proteins are highly polymorphic and present in sixty copies in *P. falciparum* genome. Those PfEMP1 are expressed on iE surface and are responsible for endothelial receptors binding, such as Chondroitin Sulfate A (CSA) and Endothelial Protein C Receptor (EPCR) or InterCellular Adhesion Molecule (ICAM) respectively involved in placental malaria¹⁹ and severe malaria²⁰. PfEMP1 family has been clearly associated with binding of iE to the microvascular endothelium of every organ and tissue²¹. We now better understand iE's binding on placenta²² and vaccine development to prevent gestational malaria seems an achievable goal. By contrast, research is still needed to understand which type of proteins specifically binds to cerebral endothelial

receptor. In a previous study conducted in Benin, we identified several proteins associated with
CM²³.

The finding of a PfEMP1 variant specifically related to CM could pave the way to the development of a vaccine targeting this specific protein. Studying the transcriptomic and proteomic profiles of plasmodial strains involved in CM compared to strains involved in uncomplicated malaria (UM) is a first step to better understand related mechanisms to cerebral endothelium binding.

The host immune aspect of the pathophysiology of CM are the consequences of microvascular sequestration of iEs and rosettes (non-infected red blood cells) in brain. Such sequestration leads to blood flow obstruction, ischemia/hypoxia and local inflammation resulting in neuroinflammation²⁴⁻²⁸. The way this cascade of events is linked and the reasons why they result in death or inflammation resolution remains to be elucidated. Acute cerebral ischemia is known to drive microglia activation and influx of myeloid immune cells to the brain. Resident microglia and infiltrating monocytes/neutrophils have a critical role in initiating, sustaining (M1 polarization) and resolving (M2 polarization) post-ischemic inflammation²⁹⁻³¹. Another important immune aspect of neuroinflammation during CM is redox equilibrium. The production of reactive oxygen species both by parasites (haemoglobin digestion) and monocytes/macrophages are thought to cause damages to neurons³². This process leads to BBB permeability and neurodegeneration^{33,34}. In order to counterbalance the excess of oxidants, oxidant scavengers and antioxidant enzymes may be produced. NO bioinsufficiency and subsequent vasoconstriction constitute other important aspects of CM pathophysiology³⁵. Haem and superoxide anion release during infection leads to NO mobilization for detoxification, depriving vascular smooth muscle cells in NO and leading to inflammation-related vasospasm^{35,36}. Although vasospasm has not been clearly associated to death risk during CM³⁷, NO pathway deserves a better understanding during CM pathophysiology. In the NeuroCM

study, we intend to better understand mechanisms of neuroinflammation and its resolution in a context of CM, by comparing data collected in children presenting with CM, in children hospitalized for non-malarial non-traumatic coma, and in children with UM. We will focus our studies on markers of immune cell migration and polarization (towards inflammatory or resolutive phenotypes), of pro- or anti-oxidant response, and of pro- or anti-inflammatory response through urine and blood samples analysis at inclusion, 3 and 21 to 28 days post-inclusion.

Study objectives

The main objective is to identify the causative factors of neuroinflammation in the context of CM. There are currently very few systematic data from West Africa on the etiologies and management of non-traumatic coma in small children, and NeuroCM will bring new information on these aspects. We postulate that an accurate understanding of molecular and cellular mechanisms involved in neuroinflammation may help to define efficient strategies to prevent and manage CM.

There are three distinct objectives in this study.

I.

To identify parasitological factors associated with P. falciparum CM or UM

We expect to identify and validate P. falciparum virulence factors associated with CM by comparison with UM. Once proteins of interest will be found, functional studies will help to better understand their role in CM.

II. To identify immune host factors associated with fatal of favorable outcome of CM

Page 9 of 27

1 2

BMJ Open

3		
4		
5		
5 6		
7		
8		
9		
1	0	
1	1	
1		
1	2 3	
1	2	
1	4	
	5	
1	6	
1	7	
1	8	
	9	
ว	0	
	1	
2		
2	3	
2	4	
2	5	
2	6	
2	7	
	, 8	
	9	
	0	
	1	
3		
3	3	
3	4	
	5	
	6	
3		
3		
3	9	
4	~	
	1	
4	2	
4		
	4	
4		
4		
4		
4		
4	9	
5	0	
5	1	
5	' 2	
5	23	
כ ר	3 4	
5	4	
5	5	
5	6	
5	7	
5	8	
~	~	

We expect to better understand which mechanisms trigger neuroinflammation and its resolution during CM by comparing three groups of children: presenting with CM, hospitalized for nonmalarial non-traumatic coma, and presenting with UM. We aim to identify therapeutic molecular targets involved in neuroinflammation resolution.

198

199

III. To describe coma's etiology in Sub-Saharian Africa

We expect to improve knowledge in non-malarial non-traumatic coma's etiologies in Sub-Saharian Africa in order to improve young children's coma management and inform health public policies on the role played by infections that could be prevented by vaccination.

203

205

204 Methods and analysis

Design

This is a prospective, case-control study comparing CM to UM and non-malarial non-traumatic coma. Patients will be recruited in South Benin, in two different hospitals for coma and in a dispensary for UM, as UM is rarely detected in hospitals where children with coma are managed. This study is conducted by one Beninese research team (CERPAGE, Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance) and three French research teams (UMR D216 MERIT in Paris carrying the project, UMR D152 PHARMADEV in Toulouse, UMR S1094 NET in Limoges).

213

59 60 214

Study environment

This study takes place in Benin, precisely in Cotonou and Calavi for the hospital's recruitment. UM recruitment takes place in Sô-Ava district. Cotonou is the largest city and economic centre of Benin, with an estimated population of 679,012 habitants in 2013. In the study area, outpatients with UM do not seek care in the health care facilities where children with coma are

managed. A multi-center study for UM cases inclusion, using the main patient's origin from the corresponding hospital, would have been more even accurate.

The two recruitment hospitals are the CHU-MEL (CHU-Mère et Enfant de la Lagune) and Hôpital de zone de Calavi. Routine laboratory analysis, except bacteriology, are performed on site for children included with coma and at IRCB (Institut de Recherche Clinique du Bénin) for children with UM. Bacteriological analyses are performed in the microbiology laboratory of CNHU (Centre National Hospitalier Universitaire). Research analyses are done in the CERPAGE laboratory.

Participants

We aim to include 3 different clinical groups of 100 children between 24 and 71 months during 12 months (from December 2017 to November 2018). This duration has been determined according to previous studies in Benin³⁸.

In the first group, a diagnosis of CM will be defined as follows: positive P. falciparum parasitaemia with a Blantyre score ≤ 2 with exclusion of patients presenting: positive bacteraemia, meningitidis proved or suspected (leucocytes in cerebrospinal fluid > 1000 per microliter and/or Gram positive in LCS and/or LCS bacterial culture positive and/or PCR positive for any bacteria or virus).

In the second group, a diagnosis of non-malarial non-traumatic coma will be defined as follows: Blantyre score ≤ 2 and no *Plasmodium* infection as detected by thick blood smear.

In the third group UM will be defined as follows: 1) fever at inclusion or within 24 hours before, 2) no clinical or biological sign of severe malaria (table 1), no danger signs and no other obvious cause of fever and 3) P. falciparum parasitaemia between 1,000 to 500,000 parasites per microliter.

1 2

BMJ Open

3	
4	
5	
6	
7 8	
9	
10	
11	
12	
13	
14 15	
16	
17	
18	
19	
20 21	
22	
23	
24	
25	
26 27	
28	
29	
30	
31 32	
32 33	
34	
35	
36	
37 38	
38 39	
40	
41	
42	
43	
44 45	
46	
47	
48	
49 50	
50 51	
52	
53	
54	
55	
56 57	
57	
59	
60	

265

266

267

Inclusion and exclusion criteria

For all children, the first inclusion criterion is parental acceptance that their child participate in the study after information has been given (see section "Ethics and safety considerations"). Inclusion criteria for coma (CM and non-malarial non-traumatic coma) are: age between 24 to The nonthest methods are: 2, negative HIV Rapid Diagnostic Test (RDT). Non-inclusion criteria are: pre-existent neurologic disease and traumatic or toxic coma.

Inclusion criteria for UM are: age between 24 to 71 months, fever > 38°C at inclusion or within
24 hours before and no clinical severity/danger sign, positive malaria RDT, negative HIV RDT.
Exclusion criteria for coma are: thick and thin blood smear not realized at day 0 (D0) and/or
biological blood test no realized at D0 and/or research blood test not realized at D0.

Exclusion criteria for UM are: thick and thin blood smear not realized at day 0 (D0) and/or 254 biological blood test no realized at D0 and/or research blood test not realized at D0 and/or 255 laboratory indices for severe malaria and/or thick and thin blood smear negative for P. 256 falciparum and/or parasite density under 1000 parasite per microliter or higher than 500,000 257 parasites per microliter. To evidence a significant difference between CM and UM groups in 258 the ratio of endogenous mediators associated with inflammation resolution, we estimated that 259 a sample size of 100 subjects per group was sufficient to reach the main study target, i.e., by 260 linear regression analysis involving a maximum of 6 predictors and an R² value of 0.400, 261 ensuring an 80% power and a 5% probability of type I error. This sample size also complies 262 with the requirements of the RT-qPCR analysis used to validate the discrimination of CM and 263 264 UM samples obtained by SARTools, and finally with the overall funding request of the project.

Recruitment process

Step 1: Enrolment/screening

For CM and non-malarial non-traumatic coma group, every young child with neurologic symptoms is screened for eligibility. For UM group, every child presenting at the outpatient clinic with fever or fever during the previous 24 hours is screened. The first step is patients' screening to confirm study eligibility and provide participants with information about the study. A questionnaire assessing eligibility will inform on home addresses, sociodemographic data (number of children in the family, ethnical group...), clinical history, use of mosquito net and vaccination status. Informed consent is then obtained from the parents or caregivers.

The following tests are performed to screen for malaria and to rule out HIV infections: a RDT detecting HRP2 for *P. falciparum* detection and Determine HIV-1/2 set, Alere for HIV detection.

Step 2: Clinical examination and biological sample/analysis

A clinical examination is performed by a study physician for children hospitalized with coma, and by a study nurse for UM. In the coma group, a fundoscopic assessment is performed (Eyepax 1.0 Dioptrix) and pictures are captured and downloaded on an online database. The clinical data entry is performed on an online case report form.

In order to allocate children to their respective groups, biological analyses according to severe malaria are needed. For coma's inclusion: thick and thin blood smear analysis, complete blood count (CBC) (Sysmex KX-21N, Sysmex XT-1800i and ABS Micro ES 60), biochemistry analysis (Na⁺, K⁺, Cl⁻, Ca⁺⁺, HCO₃⁻, albumin, urea, creatinine, glucose, lactate) with Piccolo Sysmex and ALAT plus bilirubine (Biolabo Kenza Max biochemistry and Mindray BS-200) are performed on site. Blood culture, Gram staining and bacterial culture for CSF are realized in a university hospital reference laboratory. Biomérieux BiofireTM FilmArrayTM Meningitis/Encephalitis Panel multiplex PCR (looking for E. coli, H. influenzae, L. monocytogenes, N. meningitidis, S. agalactiae, S. pneumoniae, cytomegalovirus, enterovirus, Epstein-Barr virus, herpes simplex virus (HSV) 1, HSV2, human herpesvirus 6, paraechovirus,

Page 13 of 27

BMJ Open

varicella zona virus and *Cryptococcus neoformans* and *C. gattii*) will be further performed in
France. The required following samples are needed: one EDTA tube (2 mL) for CBC and
malaria diagnostic, one heparin tube (2 mL) for biochemistry analysis, one cerebrospinal
sample (1 mL), one blood sample for blood culture (5 mL) for routine analyses, two additional
EDTA tubes (6 mL) and 50 mL of urine for research analyses.

For UM inclusions: severe malaria was ruled out according to results from blood cell count (Sysmex XS500i), biochemistry analysis (bilirubin, glucose, creatinine) on Selectra pro automate (Elitech group) and thick blood smear. The following samples are needed: one EDTA tube (2 mL), one heparin tube (2 mL) and one fluorinated tube (2mL) for routine analyses, two additional EDTA tubes (6 mL) and 50 ml of urine for research analyses.

Step 3: Research analyses

A part of research analyses is realized in Cerpage lab. One to 1.5 mL of blood is cultured in supplemented Roswell Park Memorial Institute (RPMI) 1640 medium with Albumax (Gibco) for less than 48 hours until parasites reach the mature stage (from young trophozoite to schizont), then purified using magnetic-activated cell sorting (MACS; Milteny Biotec, Bergisch Gladbach, Germany) for binding and endothelial cell activation assay. The resulting mature stage are stored at -80°C for further mass spectrometry protein analysis. Two hundred µL of whole blood samples are conserved at -20°C for DNA analysis, 200 µL are transferred in TRIzol reagent (Life technologies, France) and stored at -80°C for further RNA extraction³⁹, and 200 µL in liquid nitrogen for parasite cryoconservation. Plasma samples are conserved at -20°C and -80°C respectively for immune response analysis and dosage of biomarkers. Peripheral blood mononuclear cells (PBMC) are separated from red blood cells by Ficoll density gradient and stored in liquid nitrogen. Finally, urines are stored at -80°C for further analysis. See table 3 for detailed research planning.

Parasite factors analyses will be performed in several ways. We will compare CM and UM isolates with whole genome DNA sequencing; RNA-sequencing and by quantitative MS analysis. Highly polymorphic var genes will be assembled and BLASTed against peptide hits from the MS approach. Nucleotide primers will be designed with DNA-sequencing data and used in RT-qPCR to validate the RNA-seq data. Associations between gene polymorphisms and modifications in RNA nature and quantity detected by RNA-seq will be investigated. Then, we will use recombinant protein and *P. falciparum* genome modification by gene disruption to study proteins' role.

Host factors study will be based on the analysis of PBMC, plasmas and urine samples of the three groups of children. PBMC analysis will focus on the phenotyping of monocytes to distinguish M1 and M2-like phenotypes. Flow cytometry will be used to measure expression levels of CD11b and CD16 as M1 markers, and CD163 and CD206 as M2 markers. The assessment of gene expression levels of cytokines, chemokines and their receptors by RT-qPCR will complete phenotype analysis. Plasmas and urine samples will allow to measure redox (L-arginine and biopterins), pro-/anti-inflammatory (cytokines, chemokines and lipid mediators such as eicosanoids) and pro-resolving mediators (such as prostaglandins and lipoxins) by ELISA or EIA. We will first compare data from the group of CM to the two other groups in order to identify the biological markers best related to inflammation and neurological impairment during CM. Second, we will analyze data obtained with the two coma groups at inclusion (Day 0), at Day 3 and Day 30 to understand the kinetics of immune events and its relation to death or favorable outcome. Finally, we will search for severity and death risk factors within the CM groups.

Step 4: Coma follow-up

In children presenting with coma, both clinical data and blood samples are collected at day 3
(D3) and day 21-28 (D21-28) on disease outcome, and for research purpose. One EDTA tube

1 2		
2 3 4	342	(6 mL) and 50 mL urine will be sampled. In order to prevent losses, parents/guardians are called
5 6	343	a few days before D21-28 to remind them of follow-up visit. No follow-up visit is scheduled
7 8 9	344	for children with UM.
) 10 11	345	
12 13	346	Data management
14 15 16	347	Data, including clinical, biological and research results are collected and managed using CS
10 17 18	348	online-Ennov clinical (https://ufrcb.chu-limoges.fr/crfonline/). It is a secure, web-based
19 20	349	application designed to support data capture for research studies. Study participants are
21 22	350	identified by a code and have their own account. The two physicians and the nurse were trained
23 24 25	351	to entry the data on included children in the database. Nobody can delete a patient created in
26 27	352	the base, except the Data manager.
28 29	353	Data & Safety Monitoring Board (DSMB), composed by two physicians specialized in
30 31 22	354	infectious disease and one statistician, will review allocation of children to the pre-defined study
32 33 34	355	groups and discuss possible deviations from the expected number of subjects in the groups.
35 36	356	
37 38	357	Data analysis
39 40 41	358	In a first step, descriptive statistics will be realized by calculating mean and standard deviation
42 43	359	(sd) for quantitative variables, and proportion for qualitative variables to determine the main
44 45	360	characteristics of the three clinical groups.
46 47	361	Focusing on cerebral and UM children the MS/MS data will be searched against the databases
48 49 50	362	(UNIPROT and PlasmoDB ⁴⁰), the proteins will be considered as positive hits with at least two
51 52	363	peptides. The MaxQuant software will be used to compare malaria protein expression between
53 54	364	isolates of these two clinical groups. Transcriptomic data will be analyzed with Galaxy
55 56 57	365	(https://usegalaxy.org/) and R software (https://www.r-project.org/)41. The raw data will be
57 58 59 60	366	trimmed with Trimmomatic tool for Phred Quality Score Qscore >20, read length >30 bases,

and ribosome sequences will be removed with tool sortMeRNA. Reads will be mapped against the *P. falciparum* 3D7 reference genome combined with *var* transcript sequences from 7 *P.* falciparum genomes. Differential expression analysis on RNAseq data will be performed using the DESeq2⁴² package considering a 1 log-fold increase as significant using adjusted p value <0.05. Data normalization will be realized with DESeq2 software, with hypothesis that there exists genes overexpressed and underexpressed and that majority of genes are not expressed in a differential way. Transcript expression levels (evaluated with RT-qPCR) will be compared by T-tests and ANOVA of transformed outcomes.

Regarding immune response analysis, potential markers related to inflammation and neurological symptoms will be compared using variance analysis in samples from children from the three groups, CM, UM and non-malarial non-traumatic group. The groups will be compared two by two with a linear regression, with a special attention to CM/UM comparison. Adjustment variables such as age, sex, ethnical group, time to hospital transfer, body temperature, and comorbidities will be taken into account in the model. It will be further determined if a global comparison between the three groups will be made. Generally speaking, the non-malarial non-traumatic coma group will be used as a comparator to analyze specific effect of malaria in neuroinflammation development. The second major question to be answered to is, within the CM group, whether the changes of the inflammation markers between D0 (admission) and D3 are predictive of the outcome (survival/death). A logistic model (univariate then multivariate) will be used for this analysis. The same adjustment variables will be used as in the comparison between groups. The dependent variable will be the outcome survival/death.

The last model (also a logistic regression) will study the changes in inflammation markers between D3 and D21 in the survivors in order to determine if they are predictive of a favorable evolution. The dependent variable will be the outcome, here the discharge from the hospital without apparent sequelae.

1 2

BMJ Open

3
4
5
5 6 7
7
8 9 10
9
10
11
12
13
14
15
16 17
17
18
19
20
21
20 21 22 23
23
24
25 26 27
26
27
28
29
30
31
32 33
34 25
35 26
36 37
37 38
30 39
40
40
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Missing data are not expected to affect more than 10% of the records for the main factors that 392 will be analyzed. Should they be over 5%, an imputation method such as the MICE method will 393 applied, the be considered random⁴³. 394 be as can at errors 395

Patient and public involvement

From patients' experience and preference, follow-up of children admitted with coma was scheduled in order to be able to detect neurological sequelae. The diagnostic workup proposed to all children included into the study, although not affordable to all patients in routine practice, met parent's expectations on what heath facilities should provide to all patients. All patients were recruited in health facilities were they usually seek care, and to that respect patients were involved in their recruitment process. Finally, results will not be disseminated directly to study participants but through peer-reviewed scientific journal and conference presentations.

405 Ethics and dissemination

406

414

415

60

404

Ethics and safety considerations

407 Ethics approval for the NeuroCM study has been obtained from *Comité National d'Ethique*408 *pour la Recherche en santé* of Benin (n°67/MS/DC/SGM/DRFMT/CNERS/SA; 10/17/2017).
409 NeuroCM study has also been approved by the *Comité consultatif de déontologie et d'éthique*410 of Institut de Recherche pour le Développement (IRD; 10/24/2017).

411 Parents/guardians will be given an oral information by the physician or the nurse and an 412 opportunity to ask question and refuse the protocol. Patient's confidentiality will be ensured 413 and anonymity guaranteed by anonymous coding given at the inclusion.

Dissemination

The main benefits of NeuroCM are targeted on people living in malaria endemic countries. The study results will be disseminated through a variety of instruments to ensure that a broad range of both specialists and non-specialists are informed and can properly benefit from the findings. First, through the direct consultations with the WHO's TDR-MIM, Roll Back Malaria program to reach the wider public health audience; through scientific meetings and peer-reviewed publications in scientific or medical journals to reach the scientific/medical/public health communities; through guidelines targeting the medical and paramedical staff for optimization of severe malaria management, through booklets (e.g. first aid procedures and adapted behavior in case of emergency) elaborated and adapted to the population of Benin.

Discussion

CM is the most life-threatening form of malaria with high mortality rate in young children. Mortality related to malaria is still high in children population and accurate CM diagnosis remains challenging. Among CM surviving children, up to 25% have long-term neuro-cognitive deficits (visual/hearing/cognitive/language impairment/ataxia/hemiparesis/motor deficit...), and 10% show evidence of mental health disorders⁴⁴. As CM might be one of the more common causes of epilepsy in malaria-endemic regions, the burden of CM neurological sequelae may be largely underestimated, but difficult to estimate because diagnosis is challenging in malariaendemic regions. Bacterial or viral central nervous system infections may occur in children with malarial infection; this may not only originate overdiagnosis of CM, but also may overlook potential bacterial and viral central nervous system infections.

The expected impact of NeuroCM is of great magnitude. First, NeuroCM is an attempt to
propose improvements for the diagnosis of CM. It will provide as far as possible, for the first
time in West Africa, an identification of the causes of coma in the study area. Second, thanks
to DNA, RNA and protein analyses, NeuroCM will allow to identify new parasite targets for a

BMJ Open

vaccine to prevent CM. Third, NeuroCM will provide data on the kinetics of appearance of inflammatory and pro-resolving molecular and cellular events in brain during CM. The role of endogenous mediators in neuroinflammation resolution during CM will be clarified, with emphasis on pro-oxidant components and lipid mediators. NeuroCM will also identify markers allowing the definition of an immunological state in the process of neuroinflammation resolution in CM patients. Our experimental murine model will allow the formulation of new hypothesis while proof of concept will be achieved through the correlation of our proposed targets with patient morbidity and mortality parameters. In the future, it may allow clinicians to better manage CM, with specific pro-resolving drugs for instance.

The final products of NeuroCM are expected to feed the pipeline of new therapeutic (immune intervention) and preventive (vaccine) strategies to improve CM outcome, as well as other diseases involving neuroinflammation.

454 Authors contributions

VJ and JFF drafted the manuscript. GB, AA, SH, DA, NA, MC, PD and JFF revised the manuscript. GB, AA, FB, SH, DA, NA, MC, PD and JFF designed the study. VJ and LM organized the study in the field. AM, IDD and JA implemented the study in the field. All members of the NeuroCM group have substantially contributed to the conception, design or organization of the study. All authors approved the final version to be submitted to the journal.

Collaborators

462 NeuroCM group: Dissou Affolabi, Hélène Authier, Linda Ayedadjou, Bibiane Biokou, Agnès
463 Coste, Jean-Eudes Degbelo, Latifou Dramane, Sayeh Jafari-Guemouri, Claire Kamaliddin,
464 Elisée Kinkpe, Anaïs Labrunie, Yélé Ladipo, Thomas Lathiere, Audrey Mowendabeka, Jade

3 4	465	Papin, Bernard Pippy, Pierre-Marie Preux, Marie Raymondeau, Jade Royo, Darius Sossou,								
5 6 7	466	Brigitte Techer, Bertin Vianou.								
7 8 9	467									
10 11	468	Funding								
12 13	469	This work was supported by the French Agence Nationale de la Recherche, under contract								
14 15 16	470	ANR-17-CEl 7-0001-01.								
17 18	471									
19 20 21	472	Competing interests								
21 22 23	473	No competing interest.								
24 25	474									
26 27 28	475	Word Count								
28 29 30	476	4,536 words								
31 32	477									
33 34 25	478	References								
35 36 37	479	1. World Health Organization. World malaria report 2018. Available at:								
38 39	480	https://www.who.int/malaria/publications/world-malaria-report-2018/en/								
40 41	481	2. Black RE, Cousens S, Johnson HL, <i>et al</i> . Global, regional, and national causes of child								
42 43 44	482	mortality in 2008: a systematic analysis. <i>Lancet</i> 2010;375:1969–87.								
45 46	483	3. Beninese health department. Annuaire des statistiques sanitaires 2016. Available at:								
47 48 40	484	http://www2.sante.gouv.bj/IMG/pdf/annuaire_stat_pas_2016.pdf								
49 50 51	485	4. World Health Organization. Stratégie de coopération de l'OMS avec le Bénin: 2016-								
52 53	486	2019. Available at: http://apps.who.int/iris/handle/10665/246191								
54 55 56	487	5. Mallewa M, Vallely P, Faragher B, <i>et al.</i> Viral CNS infections in children from a								
56 57 58	488	malaria-endemic area of Malawi: a prospective cohort study. <i>Lancet Glob Health</i> . 2013;1:e153-								
59 60	489	160.								

Page 21 of 27

BMJ Open

1 2								
- 3 4	490	6. Beare NAV, Taylor TE, Harding SP, <i>et al.</i> Malarial retinopathy: a newly established						
5 6	491	diagnostic sign in severe malaria. Am J Trop Med Hyg 2006;75:790-7.						
7 8	492	7. Dondorp AM, Fanello CI, Hendriksen ICE, et al. Artesunate versus quinine in the						
9 10 11 12 13 14 15 16 17	493	treatment of severe falciparum malaria in African children (AQUAMAT): an open-label,						
	494	randomised trial. Lancet 2010;376:1647-57.						
	495	8. World Health Organization. La prise en charge du paludisme grave - guide pratique.						
	496	Troisième édition. Available at:						
18 19 20	497	http://www.who.int/malaria/publications/atoz/9789241548526/fr/						
21 22	498	9. Severe malaria. <i>Trop Med Int Health TM IH</i> . 2014;19 Suppl 1:7–131.						
23 24	499	10. Christensen SS, Eslick GD. Cerebral malaria as a risk factor for the development of						
25 26 27	500	epilepsy and other long-term neurological conditions: a meta-analysis. Trans R Soc Trop Med						
28 29 30 31	501	Нуд;109:233–8.						
	502	11. Wernsdorfer WH. The development and spread of drug-resistant malaria. Parasitol						
32 33 34	503	<i>Today</i> 1991;7:297–303.						
35 36	504	12. Mengesha T, Makonnen E. Comparative efficacy and safety of chloroquine and						
37 38	505	alternative antimalarial drugs: a meta-analysis from six African countries. East Afr Med J						
39 40 41	506	1999;76:314–9.						
42 43	507	13. World Health Organization. WHO calls for an immediate halt to provision of single-						
44 45	508	drug artemisinin malaria pills. Available at:						
46 47	509	http://www.who.int/mediacentre/news/releases/2006/pr02/en/						
48 49 50	510	14. Noedl H, Se Y, Schaecher K, et al. Evidence of artemisinin-resistant malaria in western						
51 52	511	Cambodia. N Engl J Med 2008;359:2619–20.						
53 54	512	15. Dondorp AM, Nosten F, Yi P, et al. Artemisinin resistance in Plasmodium falciparum						
55 56 57	513	malaria. <i>N Engl J Med</i> 2009;361:455–67.						
58 59	514	16. World Health Organization. Status report on artemisinin resistance and ACT efficacy.						
60								

http://www.who.int/malaria/publications/atoz/artemisinin-resistance-Available at: august2018/en/ Wolrd Health Organization. Global report on insecticide resistance in malaria vectors: 17. 2010-2016. Available at: http://www.who.int/malaria/publications/atoz/9789241514057/en/ Kraemer SM, Smith JD. A family affair: var genes, PfEMP1 binding, and malaria 18. disease. Curr Opin Microbiol 2006;9:374-80. 19. Tuikue Ndam NG, Salanti A, Bertin G, et al. High level of var2csa transcription by Plasmodium falciparum isolated from the placenta. J Infect Dis 2005;192:331-5. Moussiliou A, Alao MJ, Denoeud-Ndam L, et al. High plasma levels of soluble 20. endothelial protein C receptor are associated with increased mortality among children with cerebral malaria in Benin. J Infect Dis 2015;211:1484-8. 21. Miller LH, Baruch DI, Marsh K, et al. The pathogenic basis of malaria. Nature 2002;415:673-9. 22. Tuikue Ndam N, Deloron P. Towards a vaccine against pregnancy-associated malaria. Parasite 2008;15:515-21. 23. Bertin GI, Sabbagh A, Argy N, et al. Proteomic analysis of Plasmodium falciparum parasites from patients with cerebral and UM. Sci Rep. 2016;6:26773. 24. White NJ, Turner GDH, Day NPJ, et al. Lethal malaria: Marchiafava and Bignami were right. J Infect Dis 2013;208:192-8. Berendt AR, Tumer GD, Newbold CI. CM: the sequestration hypothesis. Parasitol 25. *Today* 1994;10:412–4. Clark IA, Cowden WB, Rockett KA. The pathogenesis of human cerebral malaria. 26. Parasitol Today 1994;10:417-8. Beare NAV, Harding SP, Taylor TE, et al. Perfusion abnormalities in children with 27. cerebral malaria and malarial retinopathy. J Infect Dis 2009;199:263-71.

1 2			
- 3 4	540	28.	Dorovini-Zis K, Schmidt K, Huynh H, et al. The neuropathology of fatal cerebral
5 6	541	malari	a in malawian children. Am J Pathol 2011;178:2146–58.
7 8 9	542	29.	McDonough A, Weinstein JR. Neuroimmune Response in Ischemic Preconditioning.
9 10 11	543	Neuro	ther J Am Soc Exp Neurother 2016;13:748–61.
12 13	544	30.	Kim E, Cho S. Microglia and Monocyte-Derived Macrophages in Stroke. Neurother J
14 15	545	Am So	<i>c Exp Neurother</i> 2016;13:702–18.
16 17 18	546	31.	Xia C-Y, Zhang S, Gao Y, et al. Selective modulation of microglia polarization to M2
19 20	547	phenor	type for stroke treatment. Int Immunopharmacol 2015 Apr;25:377-82.
21 22	548	32.	Kumar A, Barrett JP, Alvarez-Croda D-M, et al. NOX2 drives M1-like
23 24 25	549	microg	glial/macrophage activation and neurodegeneration following experimental traumatic
26 27	550	brain i	injury. Brain Behav Immun 2016;58:291–309.
28 29	551	33.	Pino P, Taoufiq Z, Nitcheu J, et al. Blood-brain barrier breakdown during cerebral
30 31 32	552	malari	a: suicide or murder? Thromb Haemost 2005;94:336–40.
33 34	553	34.	Postma NS, Mommers EC, Eling WM, et al. Oxidative stress in malaria; implications
35 36	554	for pre	evention and therapy. Pharm World Sci PWS 1996;18:121-9.
37 38	555	35.	Eisenhut M. The evidence for a role of vasospasm in the pathogenesis of cerebral
39 40 41	556	malari	a. <i>Malar J</i> ;14:405.
42 43	557	36.	Eisenhut M. Vasospasm in cerebral inflammation. Int J Inflamm 2014;2014:509707.
44 45	558	37.	O'Brien NF, Mutatshi Taty T, Moore-Clingenpeel M, et al. Transcranial Doppler
46 47 48	559	Ultras	onography Provides Insights into Neurovascular Changes in Children with cerebral
49 50	560	malari	a. J Pediatr 2018;203:116-124.e3.
51 52	561	38.	Bertin GI, Lavstsen T, Guillonneau F, et al. Expression of the domain cassette 8
53 54 55	562	Plasm	odium falciparum erythrocyte membrane protein 1 is associated with cerebral malaria in
55 56 57	563	Benin.	. <i>PloS One</i> 2013;8:e68368.
58 59 60	564	39.	Ponts N, Chung D-WD, Le Roch KG. Strand-specific RNA-seq applied to malaria

samples. Methods Mol Biol Clifton NJ 2012;883:59-73.

40. Bertin GI, Sabbagh A, Guillonneau F, et al. Differential protein expression profiles between Plasmodium falciparum parasites isolated from subjects presenting with pregnancy-associated malaria and uncomplicated malaria in Benin. J Infect Dis 2013;208:1987-97.

41. Otto TD, Wilinski D, Assefa S, et al. New insights into the blood-stage transcriptome

of Plasmodium falciparum using RNA-Seq. Mol Microbiol 2010;76:12-24.

42. Varet H, Brillet-Guéguen L, Coppée J-Y, et al. A DESeq2- and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data. PloS One 2016;11:e0157022.

43. van Buuren S, Boshuizen HC, Knook DL. Multiple imputation of missing blood pressure covariates in survival analysis. Stat Med 1999;18:681-94.

Idro R, Kakooza-Mwesige A, Asea B, et al. Cerebral malaria is associated with long-44. term mental health disorders: a cross sectional survey of a long-term cohort. Malar J review only 2016;15:184.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Clinical manifestations	Prognosis value	Frequency in children
Impaired consciousness	+++	+++
Respiratory distress	+++	+++
Multiple convulsions	+	+++
Prostration	+	+++
Shock	+++	+
Pulmonary oedema (radiology)	+++	+/-
Abnormal bleeding	+++	+/-
Jaundice	++	+
Laboratory indices	Prognosis value	Frequency
Severe anemia (hemoglobin < 5g/dL		
or hematocrit < 15%)	+	+++
Hypoglycaemia (< 40 mg/dL)	+++	+++
Acidosis (bicarbonate < 15 mM)	1,++	+++
Hyperlactemia (lactates > 5 mM)	+++	+++
Renal impairment (creatinin > 3		
mg/dL)	++ 0	+
Hyperparasitemia (parasitaemia >		
	+/-	++
Table 1 – Clinical and laboratory criteria for	· severe malaria (from	(4))
	Impaired consciousnessRespiratory distressMultiple convulsionsProstrationShockPulmonary oedema (radiology)Abnormal bleedingJaundiceLaboratory indicesSevere anemia (hemoglobin < 5g/dL	Impaired consciousness++++Respiratory distress++++Multiple convulsions+Prostration+Shock+++Pulmonary oedema (radiology)+++Abnormal bleeding+++Jaundice++Laboratory indicesPrognosis valueSevere anemia (hemoglobin < 5g/dL

504		
581		Score
	Best motor response	
	Localises painful stimulus	2
	Withdraws limb from pain	1
	Non-specific or absent response	0
	Verbal response	
	Appropriate cry	2
	Moan or inappropriate cry	1
	None	0
	Eye movement	
	Directed	1
	Not directed	0
	Total	0-5
582	Table 2 – Blantyre score (from (4))	
583		

2													
3 ⊿		Task					(Calend	ar				
4 5			2017		20)18			20	19		2	2020
6			T4	T1	T2	T3	T4	T1	T2	T3	T4	T1	T2 T3
7		Cohort recruitment and follow-up											
8		Area preparation											
9		Inclusion									 		
10 11		Follow-up											
12		Biological samples organization									╏┼┼		┼┼┼┼┼
13													
14		Parasite factors											
15				пт									
16		Parasite whole genome sequencing	+++	$\left \right $	+++					+++	╏┼┼	$\left \right \left \right $	┼┼┼┼┼
17		Parasite RNA-Sequencing	$\left \right $										++++
18 19		Mass spectrometry analysis	$\left\{ \left \right\rangle \right\}$										
20		Identified protein validation					┛┤┼	$\left \right \left \right $					
21		Protein's role on endothelium activation											
22													
23		Host factors					<u>.</u>						
24 25		Macrophage M2 kinetics apparition in											
25 26		mice brain											
27		Endogenous mediator role in											
28		neuroinflammation	4										
29		Neuroinflammation markers identification											
30		in cerebral malaria patients											
31 32													
32 33		Results exploitation											
34		Database validation											
35		Data analysis											
36		Dissemination					╏╎┍						
37	584	Table 3 - Detailed research planning											
38	501												
39 40													
41													
42													
43													
44													
45													
46 47													
48													
49													
50													
51													
52													
53													
54 55													
22													

Identification of Plasmodium falciparum and host factors associated with cerebral malaria. Description of the protocol for a prospective, case-control study in Benin (NeuroCM)

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-027378.R2
Article Type:	Protocol
Date Submitted by the Author:	08-Apr-2019
Complete List of Authors:	Joste, Valentin; MERIT, IRD Maurice, Laurine; MERIT, IRD; PHARMADEV, IRD Bertin, Gwladys; MERIT, IRD Aubouy, Agnès; PHARMADEV, IRD Boumédiène, Farid; INSERM UMR 1094, Tropical Neuroepidemiology Houzé, Sandrine; MERIT, IRD; Hopital Bichat - Claude-Bernard, Parasitology laboratory Daniel Ajzenberg , Daniel Ajzenberg ; Inserm UMR 1094, Tropical Neuroepidemiology Argy, Nicolas; MERIT, IRD; Hopital Bichat - Claude-Bernard, Parasitology laboratory Massougbodji, Achille; Institut de Recherche Clinique du Bénin Dossou-Dagba, Ida; Calavi Hospital, Pediatric department Alao, Jules; CHU-MEL Hospital, Pediatric department Cot, Michel; MERIT, IRD Deloron, Philippe; MERIT, IRD Faucher, Jean-François; Inserm UMR 1094, Tropical Neuroepidemiology
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Paediatrics, Neurology
Keywords:	Paediatric neurology < NEUROLOGY, Paediatric infectious disease & immunisation < PAEDIATRICS, TROPICAL MEDICINE, PARASITOLOGY

SCHOLARONE[™] Manuscripts

BMJ Open

3 4	1	Identification of <i>Plasmodium falciparum</i> and host factors associated with cerebral
5 6	2	malaria. Description of the protocol for a prospective, case-control study in Benin (NeuroCM)
7 8	3	
9 10 11	4	Valentin Joste ¹ , Laurine Maurice ^{1,2} , Gwladys I. Bertin ¹ , Agnès Aubouy ² , Farid Boumédiène ³ ,
12 13	5	Sandrine Houzé ^{1,4,9} , Daniel Ajzenberg ³ , Nicolas Argy ^{1,4,9} , Achille Massougbodji ⁵ , Ida Dossou-
14 15	6	Dagba ⁶ , Jules Alao ⁷ , Michel Cot ¹ , Philippe Deloron ¹ on behalf of the NeuroCM group, Jean
16 17 18	7	François Faucher ^{3,8}
19 20	8	
21 22	9	^{1.} MERIT, IRD, Université Paris 5, Sorbonne Paris Cité, Paris, 75006, France
23 24 25	10	^{2.} PHARMADEV, IRD, Université Paul Sabatier Toulouse III, Toulouse, France
26 27	11	^{3.} NET, INSERM, Université de Limoges, Limoges, France
28 29	12	⁴ Laboratoire de Parasitologie-Mycologie, AP-HP, Hôpital Bichat, Paris
30 31 32	13	^{5.} Institut de Recherche Clinique du Bénin (IRCB), Calavi, Benin
33 34	14	⁶ . Pediatric Department, Calavi Hospital, Calavi, Benin
35 36	15	^{7.} Pediatric Department, Mother and Child University and Hospital Center (CHUMEL),
37 38 39	16	Cotonou, Benin.
40 41	17	⁸ Department of Infectious Diseases, Limoges University Hospital, Limoges, France
42 43	18	⁹ National French Malaria Reference Center, Bichat-Claude Bernard hospital, Paris
44 45 46	19	
40 47 48	20	NeuroCM group : Dissou Affolabi ⁶ , Hélène Authier ² , Linda Ayedadjou ⁴ , Bibiane Biokou ⁷ ,
49 50	21	Agnès Coste ² , Jean-Eudes Degbelo ⁵ , Latifou Dramane ⁴ , Sayeh Jafari-Guemouri ¹ , Claire
51 52	22	Kamaliddin ¹ , Elisée Kinkpe ⁴ , Anaïs Labrunie ³ , Yélé Ladipo ⁷ , Thomas Lathiere ³ , Audrey
53 54 55	23	Mowendabeka ³ , Jade Papin ¹ , Bernard Pipy ² , Pierre-Marie Preux ³ , Marie Raymondeau ³ , Jade
56 57	24	Royo ² , Darius Sossou ⁴ , Brigitte Techer ¹ , Bertin Vianou ⁴ .
58 59 60	25	

Corresponding author:

Joste Valentin, MERIT, IRD, Université Paris 5, Sorbonne Paris Cité, Paris, 75006, France
Phone: +33617435543

29 Email: valentinjoste@gmail.com

31 Abstract

Introduction: In 2016, an estimated 216 million cases and 445,000 deaths of malaria occurred
worldwide, in 91 countries. In Benin, malaria causes 26.8% of consultation and hospitalization
motif in the general population and 20.9% in children under five years old.

The goal of the NeuroCM project is to identify the causative factors of neuroinflammation in the context of cerebral malaria. There are currently very few systematic data from West Africa on the etiologies and management of non-malarial non-traumatic coma in small children, and NeuroCM will help to fill this gap. We postulate that an accurate understanding of molecular and cellular mechanisms involved in neuroinflammation may help to define efficient strategies to prevent and manage cerebral malaria.

41 Methods and analysis: This is a prospective, case-control study comparing cerebral malaria to 42 uncomplicated malaria and non-malarial non traumatic coma. This study takes place in Benin, 43 precisely in Cotonou for children with coma and in Sô-Ava district for children with 44 uncomplicated malaria. We aim to include 300 children aged between 24 and 71 months and 45 divided in three different clinical groups during 12 months (from December 2017 to November 46 2018) with a 21-28 days follow-up for coma. Study data, including clinical, biological and 47 research results will be collected and managed using CS online-Ennov clinical.

48 Ethics and dissemination: Ethics approval for the NeuroCM study has been obtained from
49 *Comité National d'Ethique pour la Recherche en santé* of Benin
50 (n°67/MS/DC/SGM/DRFMT/CNERS/SA; 10/17/2017). NeuroCM study has also been

Page 3 of 28

56

1 2 **BMJ** Open

3	
4	
5	
c	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

71

approved by *Comité consultatif de déontologie et d'éthique* of Institut de Recherche pour le Développement (IRD; 10/24/2017). The study results will be disseminated through the direct consultations with the WHO's TDR-MIM and Roll Back Malaria program, through scientific meetings and peer-reviewed publications in scientific or medical journals, and through guidelines and booklets.

- 57 Strengths and limitations of this study
 - This case-control study aims to identify the causative factors of neuroinflammation in
 the context of cerebral malaria
- 60 > This study will inform on the etiologies and management of non-malarial non-traumatic
 61 coma in small children
- Final products of NeuroCM are expected to feed the pipeline of new therapeutic
 (immune intervention) and preventive (vaccine) strategies that will improve cerebral
 malaria outcome
- This study does not have the power to investigate all etiologies of fever in Benin.
 Contrary to the malaria groups, there is no information on the frequency of non-malarial
 non-traumatic coma admissions, and no certainty on the number of children who will
 included in the non-malarial non-traumatic group.
 - According to the limited number of patients, conclusions will further need to be
 confirmed in larger studies

72 Introduction

Malaria is triggered by an apicomplexan parasite, *Plasmodium spp*. Six *Plasmodium* species
can infect humans, with *Plasmodium falciparum* (*P. falciparum*) being the most frequent in
Sub-Saharian Africa (99.7% of estimated cases in 2017). *P. falciparum* is the agent of severe
malaria and responsible for most malarial deaths.

In 2017, an estimated 219 million cases and 435,000 deaths of malaria occurred worldwide, in 91 countries¹. Despite a recent decrease in malaria mortality due to extensive malaria control through insecticide impregnated bednets and increased use of artemisinin derivatives, 275,000 children still die every year from malaria. Most cases and deaths were in African region (respectively 92% and 93%). Severe malaria occurs mostly in non-immune patients and in Sub-Saharian Africa and 90% of severe malaria affect young children². In endemic states, malaria is one of the three major causes of hospitalization in children under five years old.

Benin is in West Africa, along the Guinea gulf. In 2018, 11.5 million people live in Benin, most of them in South-Benin. Malaria transmission occurs seasonally, during rainy seasons (from May to August and October). According to the Beninese health department in 2016, malaria is responsible for 26.8% of disease reports in consultation and hospitalization in the general population and for 20.9% in children under five years old³. It is also the first morbidity cause in the general population with a prevalence of 39.7% in 2013, followed by respiratory infections in 12.4% cases and gastro-intestinal disease for 6.4%⁴.

According to the World Health Organization (WHO), severe *falciparum* malaria is defined by the association between *P. falciparum* asexual parasitaemia and the presence of one or more of the clinical or laboratory features (with no other confirmed cause for their symptoms) presented in table 1. Cerebral malaria (CM) is defined by the presence of asexual form of *P. falciparum* associated with Blantyre score ≤ 2 (Table 2). CM is a coma which persists for > 1h after a seizure irrespective of anticonvulsant medications. Clinical criteria for CM diagnosis are Page 5 of 28

BMJ Open

currently debated, and it has been highlighted that a P. falciparum parasitaemia can be observed in comatose children with coma related to a non-malarial central nervous system disease⁵, leading to a possible overestimation of CM cases. A recent study in Malawi found that 25% of CM cases were misdiagnosed and that many children may have had a viral meningoencephalitis concomitant to a malarial infection⁵. Implementation of fundoscopic examination (in order to look for malaria retinopathy signs)⁶ and microbiological investigations (blood culture, cerebrospinal fluid (CSF) culture, CSF multiplex PCR) could limit the overestimation of CM diagnosis, but fundoscopic examination requires trained physicians and microbiological investigations are expensive. Clinical research needs to focus on new clinical or diagnostic tools designed to help physicians in order to better diagnose CM.

107 NeuroCM study aims to collect data (such as blood and cerebrospinal fluid culture, fundoscopic
 108 examination) on coma's etiologies in Beninese young children.

Without treatment, CM is invariably fatal. Even with parenteral artemisinin use, severe malaria death rate is 20%⁷. In case of severe or CM, patients should be hospitalized in an intensive care unit. Conscience status, blood pressure, heart and respiratory rates, diuresis and oxygen saturation have to be monitored every six hours⁸. Parenteral artemisinin instead of quinine is recommended at a posology of 2.4 mg/kg by injection (3 mg/kg in children under 20 kg of body weight) at diagnosis, 12 and 24 hours later and then daily until patients can take oral drugs⁷. Benzodiazepine should be used to treat convulsions (diazepam 0.3 mg/kg; midazolam or lorazepam). It seems accepted that CM surviving patients generally don't present any neurological sequelae and fully recover their neurological capacity. However, immediate neurological after-effect is described in 6.7 to 11.6% of cases^{7,9} and a recent meta-analysis found a relation between CM and neurologic disease¹⁰. The NeuroCM study will collect data on children's clinical recovery at discharge and 21-28 days later.

Tools for malaria control are less and less effective. On one hand, P. falciparum drug resistance is a growing concern. Resistance to chloroquine, one of the main anti-malarial drugs, appeared during the sixties in South-East Asia and then spread to Africa^{11,12}. Artemisinin-combined therapy became the treatment of choice for malaria with the aim to reduce the risk of parasites developing resistance¹³, but resistance appeared in South-East Asia in 2008¹⁴ and was confirmed in others studies¹⁵. It has not, hitherto, spread to Africa but this is a real concern for the WHO¹⁶. On the other hand, mosquitos become more and more resistant to insecticides, making antivectorial prevention more and more difficult¹⁷. Thus, research for new therapies is needed.

Pathophysiology of CM is complex and multifactorial, based on both parasite and host immune factors. It is currently believed that CM is caused by dedicated parasite variants that specifically localize in brain through interaction between parasite proteins expressed on the surface of the infected erythrocytes (iE) and brain endothelium. This sequestration occurs with erythrocytes infected with late stage of *P. falciparum* (trophozoites and schizonts). Binding of iE to endothelial vascular cells is mediated by Variant Surface Antigens (VSA). Plasmodium virulence is linked to its ability to express VSA¹⁸. VSA include three different multigenic families: var, rifin and stevor. More specifically, var genes coding for PfEMP1 proteins are highly polymorphic and present in sixty copies in *P. falciparum* genome. Those PfEMP1 are expressed on iE surface and are responsible for endothelial receptors binding, such as Chondroitin Sulfate A (CSA) and Endothelial Protein C Receptor (EPCR) or InterCellular Adhesion Molecule (ICAM) respectively involved in placental malaria¹⁹ and severe malaria²⁰. PfEMP1 family has been clearly associated with binding of iE to the microvascular endothelium of every organ and tissue²¹. We now better understand iE's binding on placenta²² and vaccine development to prevent gestational malaria seems an achievable goal. By contrast, research is still needed to understand which type of proteins specifically binds to cerebral endothelial

receptor. In a previous study conducted in Benin, we identified several proteins associated withCM²³.

The finding of a PfEMP1 variant specifically related to CM could pave the way to the development of a vaccine targeting this specific protein. Studying the transcriptomic and proteomic profiles of plasmodial strains involved in CM compared to strains involved in uncomplicated malaria (UM) is a first step to better understand related mechanisms to cerebral endothelium binding.

The host immune aspect of the pathophysiology of CM are the consequences of microvascular sequestration of iEs and rosettes (non-infected red blood cells) in brain. Such sequestration leads to blood flow obstruction, ischemia/hypoxia and local inflammation resulting in neuroinflammation²⁴⁻²⁸. The way this cascade of events is linked and the reasons why they result in death or inflammation resolution remains to be elucidated. Acute cerebral ischemia is known to drive microglia activation and influx of myeloid immune cells to the brain. Resident microglia and infiltrating monocytes/neutrophils have a critical role in initiating, sustaining (M1 polarization) and resolving (M2 polarization) post-ischemic inflammation²⁹⁻³¹. Another important immune aspect of neuroinflammation during CM is redox equilibrium. The production of reactive oxygen species both by parasites (haemoglobin digestion) and monocytes/macrophages are thought to cause damages to neurons³². This process leads to BBB permeability and neurodegeneration^{33,34}. In order to counterbalance the excess of oxidants, oxidant scavengers and antioxidant enzymes may be produced. NO bioinsufficiency and subsequent vasoconstriction constitute other important aspects of CM pathophysiology³⁵. Haem and superoxide anion release during infection leads to NO mobilization for detoxification, depriving vascular smooth muscle cells in NO and leading to inflammation-related vasospasm^{35,36}. Although vasospasm has not been clearly associated to death risk during CM³⁷, NO pathway deserves a better understanding during CM pathophysiology. In the NeuroCM

study, we intend to better understand mechanisms of neuroinflammation and its resolution in a context of CM, by comparing data collected in children presenting with CM, in children hospitalized for non-malarial non-traumatic coma, and in children with UM. We will focus our studies on markers of immune cell migration and polarization (towards inflammatory or resolutive phenotypes), of pro- or anti-oxidant response, and of pro- or anti-inflammatory response through urine and blood samples analysis at inclusion, 3 and 21 to 28 days post-inclusion.

Study objectives

I.

The main objective is to identify the causative factors of neuroinflammation in the context of CM. There are currently very few systematic data from West Africa on the etiologies and management of non-traumatic coma in small children, and NeuroCM will bring new information on these aspects. We postulate that an accurate understanding of molecular and cellular mechanisms involved in neuroinflammation may help to define efficient strategies to prevent and manage CM.

There are three distinct objectives in this study.

To identify parasitological factors associated with P. falciparum CM or UM

We expect to identify and validate P. falciparum virulence factors associated with CM by comparison with UM. Once proteins of interest will be found, functional studies will help to better understand their role in CM.

II. To identify immune host factors associated with fatal of favorable outcome of CM Page 9 of 28

1 2

BMJ Open

3	
4	
5	
6	
5 6 7	
8	
8 9	
10	
11	
12	
13	
14	
15	
16	
16 17	
18	
19	
20	
21	
22	
23	
23 24	
25	
26 27	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

We expect to better understand which mechanisms trigger neuroinflammation and its resolution during CM by comparing three groups of children: presenting with CM, hospitalized for nonmalarial non-traumatic coma, and presenting with UM. We aim to identify therapeutic molecular targets involved in neuroinflammation resolution.

199

4 5 200

III. To describe coma's etiology in Sub-Saharian Africa

We expect to improve knowledge in non-malarial non-traumatic coma's etiologies in Sub-Saharian Africa in order to improve young children's coma management and inform health public policies on the role played by infections that could be prevented by vaccination.

204

206

205 Methods and analysis

Design

This is a prospective, case-control study comparing CM to UM and non-malarial non-traumatic coma. Patients will be recruited in South Benin, in two different hospitals for coma and in a dispensary for UM, as UM is rarely detected in hospitals where children with coma are managed. This study is conducted by one Beninese research team (CERPAGE, Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance) and three French research teams (UMR D216 MERIT in Paris carrying the project, UMR D152 PHARMADEV in Toulouse, UMR S1094 NET in Limoges).

214

60

215

Study environment

This study takes place in Benin, precisely in Cotonou and Calavi for the hospital's recruitment.
UM recruitment takes place in Sô-Ava district. Cotonou is the largest city and economic centre
of Benin, with an estimated population of 679,012 habitants in 2013.

The two recruitment hospitals are the CHU-MEL (CHU-Mère et Enfant de la Lagune) and Hôpital de zone de Calavi. Routine laboratory analysis, except bacteriology, are performed on site for children included with coma and at IRCB (Institut de Recherche Clinique du Bénin) for children with UM. Bacteriological analyses are performed in the microbiology laboratory of CNHU (Centre National Hospitalier Universitaire). Research analyses are done in the CERPAGE laboratory.

Participants

We aim to include 3 different clinical groups of 100 children between 24 and 71 months during 12 months (from December 2017 to November 2018). This duration has been determined according to previous studies in Benin³⁸.

In the **first group**, a diagnosis of CM will be defined as follows: positive *P. falciparum* thin blood smear with a Blantyre score ≤ 2 with exclusion of patients presenting: positive bacteraemia, meningitidis proved or suspected (leucocytes in cerebrospinal fluid > 1000 per microliter and/or Gram positive in LCS and/or LCS bacterial culture positive and/or PCR positive for any bacteria or virus).

In the second group, a diagnosis of non-malarial non-traumatic coma will be defined as follows: Blantyre score ≤ 2 and no *Plasmodium* infection as detected by thin blood smear.

In the **third group** UM will be defined as follows: 1) fever at inclusion or within 24 hours before, 2) no clinical or biological sign of severe malaria (table 1), no danger signs and no other obvious cause of fever and 3) P. falciparum parasitaemia between 1,000 to 500,000 parasites per microliter.

Inclusion and exclusion criteria

Page 11 of 28

1

BMJ Open

3		
4		
5		
6		
7		
8		
9	_	
1(
1 1		
12 13		
1. 14		
1!		
1(
1		
18		
19	9	
2(0	
2	1	
	2	
23	3	
24	4	
2: ว/	2	
20 21	7	
2	' R	
20	9	
3())	
3	1	
32	2	
33		
34 35 30 37 30 30 30 30	4	
3!	5	
36	5	
3	7	
38	8	
4(4		
4 42		
4. 43		
44		
4		
40		
4	7	
48		
49		
5(
5		
52		
53		
54 55		
5: 5(
5 5		
58		
59		
61		

For all children, the first inclusion criterion is parental acceptance that their child participate in the study after information has been given (see section "Ethics and safety considerations"). Inclusion criteria for coma (CM and non-malarial non-traumatic coma) are: age between 24 to Rapid Diagnostic Test (RDT). Non-inclusion criteria are: pre-existent neurologic disease and traumatic or toxic coma.

Inclusion criteria for UM are: age between 24 to 71 months, fever > 38°C at inclusion or within
24 hours before and no clinical severity/danger sign, positive malaria RDT, negative HIV RDT.
Exclusion criteria for coma are: thick and thin blood smear not realized at day 0 (D0) and/or
biological blood test no realized at D0 and/or research blood test not realized at D0.

252 Exclusion criteria for UM are: thick and thin blood smear not realized at day 0 (D0) and/or biological blood test no realized at D0 and/or research blood test not realized at D0 and/or 253 laboratory indices for severe malaria and/or thick and thin blood smear negative for P. 254 falciparum and/or parasite density under 1000 parasite per microliter or higher than 500,000 255 parasites per microliter. To evidence a significant difference between CM and UM groups in 256 the ratio of endogenous mediators associated with inflammation resolution, we estimated that 257 a sample size of 100 subjects per group was sufficient to reach the main study target, i.e., by 258 linear regression analysis involving a maximum of 6 predictors and an R² value of 0.400, 259 ensuring an 80% power and a 5% probability of type I error. This sample size also complies 260 with the requirements of the RT-qPCR analysis used to validate the discrimination of CM and 261 UM samples obtained by SARTools, and finally with the overall funding request of the project. 262

Recruitment process

265

263

264

Step 1: Enrolment/screening

For CM and non-malarial non-traumatic coma group, every young child with neurologicsymptoms is screened for eligibility. For UM group, every child presenting at the outpatient

clinic with fever or fever during the previous 24 hours is screened. The first step is patients' screening to confirm study eligibility and provide participants with information about the study. A questionnaire assessing eligibility will inform on home addresses, sociodemographic data (number of children in the family, ethnical group...), clinical history, use of mosquito net and vaccination status. Informed consent is then obtained from the parents or caregivers.

The following tests are performed to screen for malaria and to rule out HIV infections: a RDT detecting HRP2 for *P. falciparum* detection and Determine HIV-1/2 set, Alere for HIV detection.

Step 2: Clinical examination and biological sample/analysis

A clinical examination is performed by a study physician for children hospitalized with coma, and by a study nurse for UM. In the coma group, a fundoscopic assessment is performed (Eyepax 1.0 Dioptrix) and pictures are captured and downloaded on an online database. The clinical data entry is performed on an online case report form.

In order to allocate children to their respective groups, biological analyses according to severe malaria are needed. For coma's inclusion: thick and thin blood smear analysis, complete blood count (CBC) (Sysmex KX-21N, Sysmex XT-1800i and ABS Micro ES 60), biochemistry analysis (Na⁺, K⁺, Cl⁻, Ca⁺⁺, HCO₃⁻, albumin, urea, creatinine, glucose, lactate) with Piccolo Sysmex and ALAT plus bilirubine (Biolabo Kenza Max biochemistry and Mindray BS-200) are performed on site. Blood culture, Gram staining and bacterial culture for CSF are realized in a university hospital reference laboratory. Biomérieux BiofireTM FilmArrayTM Meningitis/Encephalitis Panel multiplex PCR (looking for E. coli, H. influenzae, L. monocytogenes, N. meningitidis, S. agalactiae, S. pneumoniae, cytomegalovirus, enterovirus, Epstein-Barr virus, herpes simplex virus (HSV) 1, HSV2, human herpesvirus 6, paraechovirus, varicella zona virus and Cryptococcus neoformans and C. gattii) will be further performed in France. The required following samples are needed: one EDTA tube (2 mL) for CBC and

BMJ Open

malaria diagnostic, one heparin tube (2 mL) for biochemistry analysis, one cerebrospinal
sample (1 mL), one blood sample for blood culture (5 mL) for routine analyses, two additional
EDTA tubes (6 mL) and 50 mL of urine for research analyses.

For UM inclusions: severe malaria was ruled out according to results from blood cell count (Sysmex XS500i), biochemistry analysis (bilirubin, glucose, creatinine) on Selectra pro automate (Elitech group) and thick and thin blood smear. The following samples are needed: one EDTA tube (2 mL), one heparin tube (2 mL) and one fluorinated tube (2mL) for routine analyses, two additional EDTA tubes (6 mL) and 50 ml of urine for research analyses.

Step 3: Research analyses

A part of research analyses is realized in Cerpage lab. One to 1.5 mL of blood is cultured in supplemented Roswell Park Memorial Institute (RPMI) 1640 medium with Albumax (Gibco) for less than 48 hours until parasites reach the mature stage (from young trophozoite to schizont), then purified using magnetic-activated cell sorting (MACS; Milteny Biotec, Bergisch Gladbach, Germany) for binding and endothelial cell activation assay. The resulting mature stage are stored at -80°C for further mass spectrometry protein analysis. Two hundred µL of whole blood samples are conserved at -20°C for DNA analysis, 200 µL are transferred in TRIzol reagent (Life technologies, France) and stored at -80°C for further RNA extraction³⁹, and 200 µL in liquid nitrogen for parasite cryoconservation. Plasma samples are conserved at -20°C and -80°C respectively for immune response analysis and dosage of biomarkers. Peripheral blood mononuclear cells (PBMC) are separated from red blood cells by Ficoll density gradient and stored in liquid nitrogen. Finally, urines are stored at -80°C for further analysis. See table 3 for detailed research planning.

Parasite factors analyses will be performed in several ways. We will compare CM and UM isolates with whole genome DNA sequencing; RNA-sequencing and by quantitative MS analysis. Highly polymorphic *var* genes will be assembled and BLASTed against peptide hits

from the MS approach. Nucleotide primers will be designed with DNA-sequencing data and used in RT-qPCR to validate the RNA-seq data. Associations between gene polymorphisms and modifications in RNA nature and quantity detected by RNA-seq will be investigated. Then, we will use recombinant protein and *P. falciparum* genome modification by gene disruption to study proteins' role.

Host factors study will be based on the analysis of PBMC, plasmas and urine samples of the three groups of children. PBMC analysis will focus on the phenotyping of monocytes to distinguish M1 and M2-like phenotypes. Flow cytometry will be used to measure expression levels of CD11b and CD16 as M1 markers, and CD163 and CD206 as M2 markers. The assessment of gene expression levels of cytokines, chemokines and their receptors by RT-qPCR will complete phenotype analysis. Plasmas and urine samples will allow to measure redox (L-arginine and biopterins), pro-/anti-inflammatory (cytokines, chemokines and lipid mediators such as eicosanoids) and pro-resolving mediators (such as prostaglandins and lipoxins) by ELISA or EIA. We will first compare data from the group of CM to the two other groups in order to identify the biological markers best related to inflammation and neurological impairment during CM. Second, we will analyze data obtained with the two coma groups at inclusion (Day 0), at Day 3 and Day 30 to understand the kinetics of immune events and its relation to death or favorable outcome. Finally, we will search for severity and death risk factors within the CM groups.

7 337

Step 4: Coma follow-up

In children presenting with coma, both clinical data and blood samples are collected at day 3 (D3) and day 21-28 (D21-28) on disease outcome, and for research purpose. One EDTA tube (6 mL) and 50 mL urine will be sampled. In order to prevent losses, parents/guardians are called a few days before D21-28 to remind them of follow-up visit. No follow-up visit is scheduled for children with UM.

1 2				
2 3 4	343			
5 6	344	Data management		
7 8	345	Data, including clinical, biological and research results are collected and managed using CS		
9 10 11	346	online-Ennov clinical (https://ufrcb.chu-limoges.fr/crfonline/). It is a secure, web-based		
12 13	347	application designed to support data capture for research studies. Study participants are		
14 15	348	identified by a code and have their own account. The two physicians and the nurse were trained		
16 17 18	349	to entry the data on included children in the database. Nobody can delete a patient created in		
19 20	350	the base, except the Data manager.		
21 22	351	Data & Safety Monitoring Board (DSMB), composed by two physicians specialized in		
23 24 25	352	infectious disease and one statistician, will review allocation of children to the pre-defined study		
25 26 27	353	groups and discuss possible deviations from the expected number of subjects in the groups.		
28 29	354			
30 31	355	Data analysis		
32 33 34	356	In a first step, descriptive statistics will be realized by calculating mean and standard deviation		
35 36	357	(sd) for quantitative variables, and proportion for qualitative variables to determine the main		
37 38	358	characteristics of the three clinical groups.		
39 40 41	359	Focusing on cerebral and UM children the MS/MS data will be searched against the databases		
42 43	360	(UNIPROT and PlasmoDB ⁴⁰), the proteins will be considered as positive hits with at least two		
44 45	361	peptides. The MaxQuant software will be used to compare malaria protein expression between		
46 47 48	362	isolates of these two clinical groups. Transcriptomic data will be analyzed with Galaxy		
49 50	363	(<u>https://usegalaxy.org/</u>) and R software (<u>https://www.r-project.org/)⁴¹</u> . The raw data will be		
51 52	364	trimmed with Trimmomatic tool for Phred Quality Score Qscore >20, read length >30 bases,		
53 54	365	and ribosome sequences will be removed with tool sortMeRNA. Reads will be mapped against		
55 56 57	366	the P. falciparum 3D7 reference genome combined with var transcript sequences from 7 P.		
58 59 60	367	falciparum genomes. Differential expression analysis on RNAseq data will be performed using		

368 the DESeq2⁴² package considering a 1 log-fold increase as significant using adjusted *p* value < 369 0.05. Data normalization will be realized with DESeq2 software, with hypothesis that there 370 exists genes overexpressed and underexpressed and that majority of genes are not expressed in 371 a differential way. Transcript expression levels (evaluated with RT-qPCR) will be compared by 372 T-tests and ANOVA of transformed outcomes.

Regarding immune response analysis, potential markers related to inflammation and neurological symptoms will be compared using variance analysis in samples from children from the three groups, CM, UM and non-malarial non-traumatic group. The groups will be compared two by two with a linear regression, with a special attention to CM/UM comparison. Adjustment variables such as age, sex, ethnical group, time to hospital transfer, body temperature, and comorbidities will be taken into account in the model. The threshold for significance level will be 0.05, and a Bonferroni correction will be applied to take into account multiple testing. It will be further determined if a global comparison between the three groups will be made. Generally speaking, the non-malarial non-traumatic coma group will be used as a comparator to analyze specific effect of malaria in neuroinflammation development. The second major question to be answered to is, within the CM group, whether the changes of the inflammation markers between D0 (admission) and D3 are predictive of the outcome (survival/death). A logistic model (univariate then multivariate) will be used for this analysis. The same adjustment variables will be used as in the comparison between groups. The dependent variable will be the outcome survival/death.

The last model (also a logistic regression) will study the changes in inflammation markers between D3 and D21 in the survivors in order to determine if they are predictive of a favorable evolution. The dependent variable will be the outcome, here the discharge from the hospital without apparent sequelae. Page 17 of 28

1 2

BMJ Open

3 4	392	Missing data are not expected to affect more than 10% of the records for the main factors that
5 6 7	393	will be analyzed. Should they be over 5%, an imputation method such as the MICE method will
7 8 9	394	be applied, as the errors can be considered at random ⁴³ . No proteomic analysis for immune
10 11	395	marker will be done.
12 13	396	
14 15 16	397	
10 17 18	398	Patient and public involvement
19 20	399	From patients' experience and preference, follow-up of children admitted with coma was
21 22 22	400	scheduled in order to be able to detect neurological sequelae. The diagnostic workup proposed
23 24 25	401	to all children included into the study, although not affordable to all patients in routine practice,
26 27	402	met parent's expectations on what heath facilities should provide to all patients. All patients
28 29	403	were recruited in health facilities were they usually seek care, and to that respect patients were
30 31 32	404	involved in their recruitment process. Finally, results will not be disseminated directly to study
33 34	405	participants but through peer-reviewed scientific journal and conference presentations.
35 36	406	
37 38 39	407	Ethics and dissemination
40 41	408	Ethics and safety considerations
42 43	409	Ethics approval for the NeuroCM study has been obtained from Comité National d'Ethique
44 45 46	410	pour la Recherche en santé of Benin (n°67/MS/DC/SGM/DRFMT/CNERS/SA; 10/17/2017).
40 47 48	411	NeuroCM study has also been approved by the Comité consultatif de déontologie et d'éthique
49 50	412	of Institut de Recherche pour le Développement (IRD; 10/24/2017).
51 52	413	Parents/guardians will be given an oral information by the physician or the nurse and an
53 54 55	414	opportunity to ask question and refuse the protocol. Patient's confidentiality will be ensured
56 57	415	and anonymity guaranteed by anonymous coding given at the inclusion.
58		

Dissemination

The main benefits of NeuroCM are targeted on people living in malaria endemic countries. The study results will be disseminated through a variety of instruments to ensure that a broad range of both specialists and non-specialists are informed and can properly benefit from the findings. First, through the direct consultations with the WHO's TDR-MIM, Roll Back Malaria program to reach the wider public health audience; through scientific meetings and peer-reviewed publications in scientific or medical journals to reach the scientific/medical/public health communities; through guidelines targeting the medical and paramedical staff for optimization of severe malaria management, through booklets (e.g. first aid procedures and adapted behavior in case of emergency) elaborated and adapted to the population of Benin.

428 Discussion

CM is the most life-threatening form of malaria with high mortality rate in young children. Mortality related to malaria is still high in children population and accurate CM diagnosis remains challenging. Among CM surviving children, up to 25% have long-term neuro-cognitive deficits (visual/hearing/cognitive/language impairment/ataxia/hemiparesis/motor deficit...), and 10% show evidence of mental health disorders⁴⁴. As CM might be one of the more common causes of epilepsy in malaria-endemic regions, the burden of CM neurological sequelae may be largely underestimated, but difficult to estimate because diagnosis is challenging in malaria-endemic regions. Bacterial or viral central nervous system infections may occur in children with malarial infection; this may not only originate overdiagnosis of CM, but also may overlook potential bacterial and viral central nervous system infections.

Patients were included in different areas reflecting the health care system in Benin. UM patients
could not be included in hospital centers such as the CHU-MEL (Cotonou) hospital, and
Calavi's hospital, because outpatients with UM rarely seek care in these centers. In 2014, a pilot

Page 19 of 28

BMJ Open

study aimed to include UM patients in the Cotonou CHU-MEL, and highlighted the absence of UM cases in hospitals. However, patients from the So-Ava areas are referred to the main hospital centers when patients present severe malaria (or any severe illness that cannot be monitored and managed in dispensary). In 2016, we aimed to include patients suffering from cerebral malaria in the So-Ava, and realized that first, patients were directly sent to the main hospitals, and second, that it would not be ethical to include severe malaria cases in these health structures due to the facility itself. A multi-center study for UM cases inclusion, using the main patient's origin from the corresponding hospital, would have been more even accurate. This represents a possible limitation of our study.

The expected impact of NeuroCM is of great magnitude. First, NeuroCM is an attempt to propose improvements for the diagnosis of CM. It will provide as far as possible, for the first time in West Africa, an identification of the causes of coma in the study area. Second, thanks to DNA, RNA and protein analyses, NeuroCM will allow to identify new parasite targets for a vaccine to prevent CM. Third, NeuroCM will provide data on the kinetics of appearance of inflammatory and pro-resolving molecular and cellular events in brain during CM. The role of endogenous mediators in neuroinflammation resolution during CM will be clarified, with emphasis on pro-oxidant components and lipid mediators. NeuroCM will also identify markers allowing the definition of an immunological state in the process of neuroinflammation resolution in CM patients. Our experimental murine model will allow the formulation of new hypothesis while proof of concept will be achieved through the correlation of our proposed targets with patient morbidity and mortality parameters. In the future, it may allow clinicians to better manage CM, with specific pro-resolving drugs for instance.

464 The final products of NeuroCM are expected to feed the pipeline of new therapeutic (immune
465 intervention) and preventive (vaccine) strategies to improve CM outcome, as well as other
466 diseases involving neuroinflammation.

	467	
	468	Authors contributions
	469	VJ and JFF drafted the manuscript. GB, AA, SH, DA, NA, MC, PD and JFF revised the
)	470	manuscript. GB, AA, FB, SH, DA, NA, MC, PD and JFF designed the study. VJ and LM
<u>)</u> }	471	organized the study in the field. AM, IDD and JA implemented the study in the field. All
 	472	members of the NeuroCM group have substantially contributed to the conception, design or
) 7 2	473	organization of the study. All authors approved the final version to be submitted to the journal.
)	474	
<u>)</u>	475	Collaborators
} 	476	NeuroCM group: Dissou Affolabi, Hélène Authier, Linda Ayedadjou, Bibiane Biokou, Agnès
, ; ,	477	Coste, Jean-Eudes Degbelo, Latifou Dramane, Sayeh Jafari-Guemouri, Claire Kamaliddin,
3	478	Elisée Kinkpe, Anaïs Labrunie, Yélé Ladipo, Thomas Lathiere, Audrey Mowendabeka, Jade
)	479	Papin, Bernard Pippy, Pierre-Marie Preux, Marie Raymondeau, Jade Royo, Darius Sossou,
- 5 1	480	Brigitte Techer, Bertin Vianou.
5	481	
3	482	Funding
)	483	This work was supported by the French Agence Nationale de la Recherche, under contract
<u>)</u> }	484	ANR-17-CEl 7-0001-01.
+ ;	485	
) 7 2	486	Competing interests
))	487	No competing interest.
<u>)</u>	488	
5 	489	Data availability statement
,) ,	490	There are no data in this work.
3	491	
)		

BMJ Open

2 3 4	492	Word	l Count								
5 6	493	4,696	words								
7 8 9	494										
10 11	495	Refer	ences								
12 13	496	1.	World	Health	Organization.	World	malaria	report	2018.	Available	at:
14 15 16	497	https:/	//www.wł	no.int/mal	aria/publication	s/world-m	nalaria-rep	ort-2018/e	en/		
17 18	498	2.	Black R	E, Couse	ns S, Johnson H	L, <i>et al</i> . C	Blobal, regi	onal, and	national	l causes of c	hild
19 20	499	morta	lity in 200)8: a syste	ematic analysis.	Lancet 20)10;375:19	69–87.			
21 22 23	500	3.	Benines	e health	department. An	nuaire de	s statistiqu	ies sanitai	ires 201	6. Available	e at:
23 24 25	501	http://	/www2.sa	nte.gouv.	bj/IMG/pdf/ann	uaire_stat	_pas_2016	.pdf			
26 27	502	4.	World H	Health Or	ganization. Stra	tégie de c	coopération	n de l'OM	[S avec]	le Bénin: 20)16-
28 29	503	2019.	Available	e at: http:/	/apps.who.int/ir	is/handle/	10665/246	191			
30 31 32	504	5.	Mallewa	a M, Val	lely P, Faraghe	r B, <i>et al</i>	. Viral Cl	NS infecti	ions in o	children from	m a
33 34	505	malar	ia-endemi	c area of	Malawi: a prosp	ective coh	ort study.	Lancet Glo	ob Healt	th. 2013;1:e1	53-
35 36	506	160.									
37 38 39	507	6.	Beare N	IAV, Tay	lor TE, Harding	g SP, et a	l. Malarial	retinopat	hy: a ne	wly establis	hed
40 41	508	diagn	ostic sign	in severe	malaria. Am J 7	rop Med	Hyg 2006;	75:790–7.			
42 43	509	7.	Dondor	p AM, Fa	anello CI, Hend	lriksen IC	CE, et al.	Artesunate	e versus	quinine in	the
44 45	510	treatm	nent of se	evere falc	iparum malaria	in Afric	an childre	n (AQUA	AMAT):	an open-la	bel,
46 47 48	511	rando	mised tria	l. Lancet	Lancet 2010;37	6:1647–5′	7.				
49 50	512	8.	World H	Health Or	ganization. La p	orise en c	harge du p	aludisme	grave -	guide pratio	que.
51 52	513	Troisi	ème		édition.			Available			at:
53 54 55	514	http://	www.wh	o.int/mala	ria/publications	/atoz/9789	924154852	26/fr/			
56 57	515	9.	Severe r	nalaria. <i>T</i>	rop Med Int He	alth TM II	H. 2014;19	Suppl 1:	7–131.		
58 59 60	516	10.	Christer	isen SS, 1	Eslick GD. Cere	ebral mala	aria as a ri	sk factor	for the	developmen	t of

BMJ Open

1 2		
2 3 4	517	epilepsy and other long-term neurological conditions: a meta-analysis. Trans R Soc Trop Med
5 6	518	Нуд;109:233–8.
7 8 9	519	11. Wernsdorfer WH. The development and spread of drug-resistant malaria. Parasitol
10 11	520	<i>Today</i> 1991;7:297–303.
12 13	521	12. Mengesha T, Makonnen E. Comparative efficacy and safety of chloroquine and
14 15 16	522	alternative antimalarial drugs: a meta-analysis from six African countries. East Afr Med J
16 17 18	523	1999;76:314–9.
19 20	524	13. World Health Organization. WHO calls for an immediate halt to provision of single-
21 22	525	drug artemisinin malaria pills. Available at:
23 24 25	526	http://www.who.int/mediacentre/news/releases/2006/pr02/en/
26 27	527	14. Noedl H, Se Y, Schaecher K, <i>et al.</i> Evidence of artemisinin-resistant malaria in western
28 29	528	Cambodia. <i>N Engl J Med</i> 2008;359:2619–20.
30 31 32	529	15. Dondorp AM, Nosten F, Yi P, et al. Artemisinin resistance in Plasmodium falciparum
33 34	530	malaria. <i>N Engl J Med</i> 2009;361:455–67.
35 36	531	16. World Health Organization. Status report on artemisinin resistance and ACT efficacy.
37 38	532	Available at: http://www.who.int/malaria/publications/atoz/artemisinin-resistance-
39 40 41	533	august2018/en/
42 43	534	17. Wolrd Health Organization. Global report on insecticide resistance in malaria vectors:
44 45	535	2010-2016. Available at: http://www.who.int/malaria/publications/atoz/9789241514057/en/
46 47 48	536	18. Kraemer SM, Smith JD. A family affair: var genes, PfEMP1 binding, and malaria
49 50	537	disease. Curr Opin Microbiol 2006;9:374-80.
51 52	538	19. Tuikue Ndam NG, Salanti A, Bertin G, et al. High level of var2csa transcription by
53 54 55	539	Plasmodium falciparum isolated from the placenta. J Infect Dis 2005;192:331-5.
56 57	540	20. Moussiliou A, Alao MJ, Denoeud-Ndam L, et al. High plasma levels of soluble
58 59 60	541	endothelial protein C receptor are associated with increased mortality among children with

BMJ Open

2 3 4	542	cerebr	al malaria in Benin. J Infect Dis 2015;211:1484–8.
5 6	543	21.	Miller LH, Baruch DI, Marsh K, et al. The pathogenic basis of malaria. Nature
7 8	544	2002;4	415:673–9.
9 10 11	545	22.	Tuikue Ndam N, Deloron P. Towards a vaccine against pregnancy-associated malaria.
12 13	546	Paras	<i>ite</i> 2008;15:515–21.
14 15 16	547	23.	Bertin GI, Sabbagh A, Argy N, et al. Proteomic analysis of Plasmodium falciparum
17 18	548	parasi	tes from patients with cerebral and UM. Sci Rep. 2016;6:26773.
19 20	549	24.	White NJ, Turner GDH, Day NPJ, et al. Lethal malaria: Marchiafava and Bignami were
21 22 23	550	right.	J Infect Dis 2013;208:192–8.
23 24 25	551	25.	Berendt AR, Tumer GD, Newbold CI. CM: the sequestration hypothesis. Parasitol
26 27	552	Today	1994;10:412–4.
28 29 20	553	26.	Clark IA, Cowden WB, Rockett KA. The pathogenesis of human cerebral malaria.
30 31 32	554	Paras	itol Today 1994;10:417–8.
33 34	555	27.	Beare NAV, Harding SP, Taylor TE, et al. Perfusion abnormalities in children with
35 36	556	cerebr	al malaria and malarial retinopathy. J Infect Dis 2009;199:263–71.
37 38 39	557	28.	Dorovini-Zis K, Schmidt K, Huynh H, et al. The neuropathology of fatal cerebral
40 41	558	malari	a in malawian children. Am J Pathol 2011;178:2146–58.
42 43	559	29.	McDonough A, Weinstein JR. Neuroimmune Response in Ischemic Preconditioning.
44 45 46	560	Neuro	ther J Am Soc Exp Neurother 2016;13:748–61.
40 47 48	561	30.	Kim E, Cho S. Microglia and Monocyte-Derived Macrophages in Stroke. Neurother J
49 50	562	Am So	<i>c Exp Neurother</i> 2016;13:702–18.
51 52	563	31.	Xia C-Y, Zhang S, Gao Y, et al. Selective modulation of microglia polarization to M2
53 54 55	564	pheno	type for stroke treatment. Int Immunopharmacol 2015 Apr;25:377-82.
56 57	565	32.	Kumar A, Barrett JP, Alvarez-Croda D-M, et al. NOX2 drives M1-like
58 59 60	566	micro	glial/macrophage activation and neurodegeneration following experimental traumatic

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
17	
18	
19	
19	
20	
21 22 23	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
39	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
59 60	
011	

1

567 brain injury. *Brain Behav Immun* 2016;58:291–309.

568 33. Pino P, Taoufiq Z, Nitcheu J, *et al.* Blood-brain barrier breakdown during cerebral
569 malaria: suicide or murder? *Thromb Haemost* 2005;94:336–40.

570 34. Postma NS, Mommers EC, Eling WM, *et al.* Oxidative stress in malaria; implications
571 for prevention and therapy. *Pharm World Sci PWS* 1996;18:121–9.

572 35. Eisenhut M. The evidence for a role of vasospasm in the pathogenesis of cerebral
573 malaria. *Malar J*;14:405.

574 36. Eisenhut M. Vasospasm in cerebral inflammation. *Int J Inflamm* 2014;2014:509707.

575 37. O'Brien NF, Mutatshi Taty T, Moore-Clingenpeel M, *et al.* Transcranial Doppler Ultrasonography Provides Insights into Neurovascular Changes in Children with cerebral malaria. *J Pediatr* 2018;203:116-124.e3.

578 38. Bertin GI, Lavstsen T, Guillonneau F, *et* al. Expression of the domain cassette 8
 579 *Plasmodium falciparum* erythrocyte membrane protein 1 is associated with cerebral malaria in
 580 Benin. *PloS One* 2013;8:e68368.

581 39. Ponts N, Chung D-WD, Le Roch KG. Strand-specific RNA-seq applied to malaria
 582 samples. *Methods Mol Biol Clifton NJ* 2012;883:59–73.

40. Bertin GI, Sabbagh A, Guillonneau F, *et al.* Differential protein expression profiles
between *Plasmodium falciparum* parasites isolated from subjects presenting with pregnancyassociated malaria and uncomplicated malaria in Benin. *J Infect Dis* 2013;208:1987–97.

586 41. Otto TD, Wilinski D, Assefa S, *et al.* New insights into the blood-stage transcriptome
587 of *Plasmodium falciparum* using RNA-Seq. *Mol Microbiol* 2010;76:12–24.

588 42. Varet H, Brillet-Guéguen L, Coppée J-Y, *et al*. A DESeq2- and EdgeR-Based R Pipeline
589 for Comprehensive Differential Analysis of RNA-Seq Data. *PloS One* 2016;11:e0157022.

590 43. van Buuren S, Boshuizen HC, Knook DL. Multiple imputation of missing blood
591 pressure covariates in survival analysis. *Stat Med* 1999;18:681–94.

2 3 4	592	44. Idro R, Kakooza-Mwesige A, Asea B, et al. Cerebral malaria is associated with long-
5 6	593	term mental health disorders: a cross sectional survey of a long-term cohort. Malar J
7 8	594	2016;15:184.
9 10	595	
11 12		
13 14		
15 16		
17 18		
19 20		
21 22		
23 24		
25 26		
27 28		
29 30		
31 32		
33 34		
35 36		
37 38		
39 40		
41 42		
43 44		
45 46		
47 48		
49 50		
51 52		
53 54		
55		
56 57		
58 59		
60		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
24
25 26
20 27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
50 57
57 58
20

Clinical manifestations	Prognosis value	Frequency in children
Impaired consciousness	+++	+++
Respiratory distress	+++	+++
Multiple convulsions	+	+++
Prostration	+	+++
Shock	+++	+
Pulmonary oedema (radiology)	+++	+/-
Abnormal bleeding	+++	+/-
Jaundice	++	+
Laboratory indices	Prognosis value	Frequency
Severe anemia (hemoglobin < 5g/dL		
or hematocrit < 15%)	+	+++
Hypoglycaemia (< 40 mg/dL)	×+++	+++
Acidosis (bicarbonate < 15 mM)	+++	+++
Hyperlactemia (lactates > 5 mM)	+++	+++
Renal impairment (creatinin > 3	2	
mg/dL)	** O	+
Hyperparasitemia (parasitaemia >		++
10%)	+/-	++

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

598		Score
	Best motor response	
	Localises painful stimulus	2
	Withdraws limb from pain	1
	Non-specific or absent response	0
	Verbal response	
	Appropriate cry	2
	Moan or inappropriate cry	1
	None	0
	Eye movement	
	Directed	1
	Not directed	0
	Total	0-5
599	Table 2 – Blantyre score (from (4))	R.
600		

Task											Ca	alei	nd	ar										_
	-)17					01		-							19		—				202		_
	T	4	Τ	Г1		Т2		Т3		T4		T1		Т	2		ГЗ		Г4	T	1	Τź	2	Т
Cohort recruitment and follow-up								П	Т			Т			Т					ТТ				Т
Area preparation											_	+	$\left \right $			$\left \right $	_	+		+				+
Inclusion	\vdash								+		_	+	$\left \cdot \right $		-	$\left \right $	_	┢		+				+
Follow-up	\vdash														-		_			+	_			+
Biological samples organization																								_
Parasite factors																								-
Parasite whole genome sequencing																				Π				-
Parasite RNA-Sequencing		1	Π						Ť									Ī						
Mass spectrometry analysis	İ		Ħ		Ϊİ				Ì									T		Ħ				
Identified protein validation		1	\square						Ĩ	Π							Ì	İ		Ϊİ				
Protein's role on endothelium activation																								
Host factors																								•
Macrophage M2 kinetics apparition in											Т				Τ		Т	Γ		Π				•
mice brain																								
Endogenous mediator role in									Ť									t		††				•
neuroinflammation																								
Neuroinflammation markers identification			H						T											Ħ				
in cerebral malaria patients																								
Results exploitation																								•
Database validation				ĺ					I			Τ				Ī				Π				•
Data analysis		-											H											•
Dissemination			\square				+		+									H						
Table 3 - Detailed research planning																								
Table 5 - Detailed research planning																								