BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>editorial.bmjopen@bmj.com</u>

BMJ Open

Prevalence of and risk factors for chronic kidney disease of unknown aetiology in India: secondary data analysis of three population-based cross-sectional studies

	1
Journal:	BMJ Open
Manuscript ID	bmjopen-2018-023353
Article Type:	Research
Date Submitted by the Author:	04-Apr-2018
Complete List of Authors:	O'Callaghan Gordo, Cristina; Instituto de Salud Global Barcelona, Campus Mar Shivashankar, Roopa; Public Health Foundation of India, Anand, Shuchi; Stanford Hospital and Clinics, Ghosh, Shreeparna; Public Health Foundation of India, Glaser, Jason; La Isla Foundation; London School of Hygiene and Tropical Medicine, 3Department of Non-communicable Disease Epidemiology Gupta, Ruby; Publichealth Foundation of India Jakobsson , Kristina ; Lunds Universitet Arbets- och miljomedicin Kondal, Dimple; Publichealth Foundation of India Krishnan , Anand ; All India Institute of Medical Sciences Centre for Community Medicine Mohan, Sailesh; Public Health Foundation of India, Mohan, V; Madras Diabetes Research Foundation Nitsch, Dorothea; LSHTM PA , Praveen ; All India Institute of Medical Sciences, Department of Endocrinology and Metabolism Tandon, Nikhil; All India Institute of Medical Sciences, Narayan, K; Emory University School of Public Health, Global Health Pearce, Neil; London School of Hygiene and Tropical Medicine Caplin, Ben; University College London Medical School, Centre for Nephrology, Prabhakaran, Dorairaj; Public Health Foundation of India, Centre for Control of Chronic Conditions and Injuries
Keywords:	EPIDEMIOLOGY, NEPHROLOGY, Chronic renal failure < NEPHROLOGY, PUBLIC HEALTH
	·

SCHOLARONE[™] Manuscripts

1 TITLE PAGE

2 Title: Prevalence of and risk factors for chronic kidney disease of unknown aetiology in India: secondary data
 3 analysis of three population-based cross-sectional studies

4 Authors names and affiliations:

5 Cristina O'Callaghan-Gordo^{1,2,3,4*}; Roopa Shivashankar^{5, 6*}; Shuchi Anand⁷; Shreeparna Ghosh⁵; Jason Glaser^{4,}
6 ⁸; Ruby Gupta⁵; Kristina Jakobsson^{9,10}; Dimple Kondal^{5, 6}; Anand Krishnan¹¹; Sailesh Mohan⁵; Viswanathan
7 Mohan^{12, 13}; Dorothea Nitsch¹⁴; Praveen PA^{6, 15}; Nikhil Tandon¹⁵; K.M. Venkat Narayan¹⁶; Neil Pearce^{4, 17}; Ben
8 Caplin^{18**}; Dorairaj Prabakharan^{5, 6**}.

¹ ISGlobal, Barcelona, Spain; ² Universitat Pompeu Fabra (UPF), Barcelona, Spain; ³ CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ⁴ Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK; ⁵ Public Health Foundation of India (PHFI), New Delhi, India; ⁶ Centre for Control of Chronic Conditions (4Cs), New Delhi, India; ⁷ Stanford University School of Medicine; ⁸ La Isla Network; ⁹ Occupational and Environmental Medicine, Sahlgrenska Academy, Gothenburg University, Sweden; ¹⁰ Occupational and Environmental Medicine, Lund University, Sweden; ¹¹ Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi.; ¹² Diabetes Research, Madras Diabetes Research Foundation, Chennai, India; ¹³ Dr. Mohan's Diabetes Specialities Centre, Chennai, India; ¹⁴ Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK; ¹⁵ Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India; ¹⁶ Emory Global Diabetes Research Center, Rollins School of Public Health, Emory University, Atlanta, GA, USA; ¹⁷ Centre for Global NCDs, London School of Hygiene and Tropical Medicine, London, UK; ¹⁸ Centre for Nephrology. University College London Medical School, London, UK.

- 22 * Joint first authors; ** Joint last authors
- 23 Corresponding author's name and email address:
- 24 Cristina O'Callaghan-Gordo, cristina.ocallaghan@isglobal.org

25 Word count: 3521

3012 Bownie (1) Bownie Berne Steele Ste

33WU Open: first published as 110.111336/bmjopen-2018-0233333 on 7 Wardh 2019. Downloaded from http://bmjopen.bmj.com/ on 49M 26h 2024 by guest. Protected by capyright

BMJ Open

3		
4		
5		
6		
7		
8		
9		
	0	
1	1	
1		
	3	
	4	
1	5	
1	6	
1	7	
	8	
	9	
	0	
2		
	י 2	
2	2	
2	3	
	4	
	5	
	6	
2		
	8	
2	9	
	0	
3		
	2	
	3	
	4	
	5	
3	6	
3		
3	8	
3	9	
4		
4	1	
4	2	
4	3	
4	4	
4	5	
4		
4		
4		
4 4		
	-	
5		
5		
5		
5		
5		
5		
5		
5		
5		
	9	
6		
	-	

1 2

3

26 ABSTRACT 27 Objectives: To assess whether chronic kidney disease of unknown aetiology (CKDu) is present in India and to 28 identify risk factors for it using population-based data and standardised methods. 29 Design: Secondary data analysis of three population-based cross-sectional studies conducted between 2010-30 2014. 31 Setting: Urban and rural areas of Northern India (states of Delhi and Haryana) and Southern India (states of 32 Tamil Nadu and Andhra Pradesh) 33 Participants: 12,500 individuals without diabetes, hypertension or heavy proteinuria 34 Outcome measures: Mean estimated the glomerular filtration rate (eGFR) and the prevalence of eGFR below 35 60ml/min per 1.73m2 (eGFR<60) in individuals without diabetes, hypertension or heavy proteinuria (proxy 36 definition of CKDu). 37 **Results**: The mean eGFR was 105.0±17.8 ml/min per 1.73m2. The prevalence of eGFR<60 was 1.6% 38 (95%CI=1.4-1.7), but this figure varied markedly between areas, being highest in rural areas of Southern Indian 39 [4.8% (3.8-5.8)]. In Northern India, older age was the only risk factor associated with lower mean eGFR and 40 eGFR<60 [regression coefficient (95%CI)=-0.94 (0.97 - 0.91); OR (95%CI)=1.10 (1.08-1.11)]. In Southern 41 India, risk factors for lower mean eGFR and eGFR<60 were residence in a rural area [-7.78 (-8.69 - -6.86); 4.95 42 (2.61-9.39)], older age [-0.90 (-0.93 - -0.86); 1.06 (1.04-1.08)] and less education [-0.94 (-1.32 - -0.56); 0.67 43 (0.50-0.90) for each five years at school].

- 44 Conclusions: CKDu is present in India and is not confined to Central America and Sri Lanka. Identified risk
- 45 factors are consistent with risk factors previously reported for CKDu in Central America and Sri Lanka.

46 KEYWORDS

47 Epidemiology; Chronic kidney disease; Chronic kidney disease of unknown aetiology;; India; Rural population

48 ARTICLE SUMMARY

- 49 Strengths and limitations of this study
- The use of a random selection of population-based participants allows the estimation of CKDu
 prevalence in the general population.

A large sample size including participants from different areas of India (urban and rural, and Northern
 and Southern India) increases the representativeness of our results.

• The use of standardized definitions of CKDu facilitates international comparisons of CKDu prevalence and risk factors.

• The prevalence of eGFR<60 observed in this study is likely to be underestimated; however, this is unlikely to have biased the internal comparisons conducted in this study.

58 FUNDING

This work was supported in part by grant MR/P02386X/1 from the United Kingdom Medical Research Council under the Global Challenges Research Fund. It was also supported by grants from the Colt Foundation and the La Isla Foundation. The CARRS study was funded with federal funds from the National Heart, Lung, and Blood Institute, National Institutes of Health, under Contract No. HHSN2682009900026C. UDAY study was funded by Eli Lilly Foundation. ICMR-CHD study was funded by the Indian Council Medical Research (ICMR). The Centre for Global NCDs is supported by the Wellcome Trust Institutional Strategic Support Fund (097834/Z/11/B). CO-G holds a Sara Borrell postdoctoral fellowship awarded from the Carlos III National Institute of Health, Spain (CD13/00072).

#WWU Opeen: ffrst (published as 110:11136/bm) opeen-2018-0233533 on 7 Wardh 2019. Downloaded from http://bmjopeen.bmj.com/ on 49M 20h 2029 by guest. Protected by copyright

f BWW Qpen: first published as 100.111336/bmj ppen-2018-0223333 on 7 Wardh 2019. Downloaded from http://bmj.ppen.bmj.com/ on YeM 2012.0224 by guest. Protected by copyright

67 INTRODUCTION

High prevalence of CKDu has mainly been reported in the last decades amongst the working age populations of agricultural communities of tropical/subtropical regions, specifically in Central America and Sri Lanka (C Wesseling et al. 2013; Correa-Rotter, Wesseling, and Johnson 2014; Jayatilake et al. 2013). In Nicaragua and El Salvador, the estimated prevalence of estimated glomerular filtration rate (eGFR; the clinical measure of kidney function) below 60ml/min per 1.73m² (eGFR<60), in the absence of diabetes and hypertension, was 10-20% (Lebov et al. 2015; Peraza et al. 2012; Torres et al. 2010). It has been suggested that CKDu may also be highly prevalent in other low and middle income countries (LMICs), including India (Seck et al. 2014; Barsoum 2013; El Minshawy, Ghabrah, and El Bassuoni 2014; Rajapurkar et al. 2012; Reddy and Gunasekar 2013). However, it is not clear in which other regions of the world CKDu occurs, whether the underlying aetiology is the same in different regions and what the risk factors are. Currently, there is no consensus but factors such as heat stress, strenuous work, climatic conditions, agrochemical use, heavy metal exposure and infections have been suggested as risk factors (Jayasumana et al. 2015; C Wesseling et al. 2013; Catharina Wesseling et al. 2015; Garcia-Garcia, Jha, and World Kidney Day Steering Committee 2015; Robey 2014).

Data on CKDu from India are scarce. The recent report of verbal autopsy data from India suggests CKD of all causes is a growing problem. However, it does not provide accurate population-based data on CKDu (Jha and Modi 2017; Dare et al. 2017). Existing reports indicate that CKDu may be common but it is difficult to be definite about this because of the absence of population-based studies using standardised and comparable methods. Data from the Indian CKD Registry, a hospital based registry of incident cases of CKD between 2006-2010, found that CKDu was the second commonest form of CKD after diabetic nephropathy (Rajapurkar et al. 2012). However, this is restricted to referred cases and therefore may not be representative of the general population. There are also sporadic reports of high numbers of CKDu cases among agricultural communities of the South Eastern Indian states of Andhra Pradesh and Odisha (reviewed by Chatterejee (Chatterjee 1026) and Ganguli (Ganguli 2016)). However, population-based data have not been reported for India.

We conducted a secondary analysis of representative sample surveys conducted in India between 2010-2014.
Given the absence of a clear case definition for CKDu it is necessary to make a presumptive diagnosis based on
measures/estimates of GFR in the absence of known risk factors for kidney disease. We therefore here report
both the distribution eGFR and prevalence of eGFR below 60ml/min per 1.73m² (eGFR<60), and the risk factors

BMJ Open

associated with these outcomes, in a population restricted to those without known risk factors for CKD, i.e.

diabetes, hypertension or heavy proteinuria (a marker of primary glomerular disease).

Study population

We used cross-sectional data from three population-based studies conducted in India: the "Centre for Cardiometabolic Risk Reduction in South Asia" cohort study (CARRS study) (Nair et al. 2012), the "Implementing a Comprehensive Diabetes Prevention and Management Program" study (UDAY study) (Mohan et al. 2017) and the "prevalence of coronary heart disease repeat survey" study funded by the Indian Council of Medical Research (ICMR-CHD study) (Prabhakaran et al. 2017). Details on study design and selection of participants from the CARRS, UDAY and ICMR-CHD studies have been previously described (Nair et al. 2012; Prabhakaran et al. 2017; Mohan et al. 2017) and are summarized in Table 1. Participants from CARRS, UDAY and ICMR-CHD studies provided informed consent prior to participation. The three studies obtained ethical clearance from the corresponding institutions.

For the current analyses, we excluded participants with missing information on serum creatinine, sex and age, as these variables were necessary to estimate eGFR. As the focus of our study was CKDu, we excluded participants with known risk factors for CKD (i.e. diabetes and hypertension) or evidence of primary glomerular disease (as assessed by heavy proteinuria) or with missing information for these risk factors. We also excluded participants with missing information on basic co-variables (education) for all the analyses conducted. A study flowchart is presented in Figure 1. We classified participants as having: diabetes, if plasma fasting glucose was ≥ 126 mg/dl, or glycated haemoglobin A1c (HbA1c) was $\geq 6.5\%$, or the participant self-reported diabetes and was on oral hypoglycaemic medication; hypertension, if systolic blood pressure was ≥ 140 mm Hg, or diastolic blood pressure was \geq 90 mm Hg, or the participant self-reported hypertension and was on antihypertensive medication; and heavy proteinuria, if the albumin/creatinine ratio (ACR) in urine was ≥300 mg/g. We used the CKD-EPI equation to estimate GFR (eGFR) (Levey et al. 2009).

Data collection and laboratory analyses

Data collection was conducted between October 2010 and December 2014. All three studies used a standardized questionnaire to collect data on age, sex, completed years of education $(0, \le 5, >5 \le 10, >10)$, alcohol intake 3012 How and the second s

32019.00 ministration of the second second

(ever, never) and dietary habits (vegetarian yes, no). Body mass index (BMI, kg/m²) was calculated and categorized (≤ 18.5 : underweight; $>18.5 \leq 25$: normal weight; $>25 \leq 30$: overweight; >30: obese), fat free mass was derived from bioelectric impedance analysis (BIA) and blood pressure was measured using an electronic sphygmomanometer, as previously reported (Nair et al. 2012; Anand et al. 2015). A fasting venous blood sample was used to measure glucose levels, HbA1c and serum creatinine levels and urine sample to measure albuminuria and creatinuria (Nair et al. 2012). Glucose levels were measured using hexokinase/kinetic methods, HbA1c using high-performance liquid chromatography, and the serum creatinine using the rate-blanked and compensated kinetic Jaffe method, traceable to isotope dilution mass spectrometry (Nair et al. 2012).

130 Statistical analyses

We reported mean eGFR and prevalence eGFR<60 according to different characteristics of the study populations. UDAY and CARRS studies did not involve fully random population samples (since sampling was based on households, with one participant per household) and the proportions of study participants with particular outcomes (e.g. eGFR<60), will not be exactly the same (but very similar) to what would have been obtained with genuine random population samples; thus in this paper we refer to the prevalence in the study participants, not overall population prevalence estimates. We used linear regression models to estimate the associations between potential risk factors and eGFR and logistic regression models to estimate the associations between potential risk factors and eGFR<60. We also repeated the analyses separately for males and females. Variables associated with eGFR in the basic analyses (adjusted for age and sex) were considered for the multiple regression analysis. In the final multiple regression model, we included all variables that were of a priori interest and/or had shown independent associations with eGFR. We then checked for multicollinearity for each variable in the multiple regression analyses in comparison with the basic analyses (Greenland et al. 2016). 6% of participants had missing values for education, 4% for BMI and 11% for fat free mass. For BMI and fat free mass, we excluded participants with missing values to compare models non-adjusted and adjusted for these variables. We calculated prevalence ratios of eGFR<60 by age-group for rural and urban population. Finally, we estimated potential interactions between urban (versus rural) residence and latitude (Northern India (i.e. states of Delhi and Haryana) versus Southern India (states of Tamil Nadu and Andhra Pradesh)). We conducted all analyses using Stata version 14 (StataCorp, College Station, TX, USA).

149 Patient and Public Involvement

150 Patients were not involved in the design of this analysis.

152 Characteristics of study participants

12,500 people were eligible for the current analyses (Figure 1). Table 2 summarizes the socio-demographic and anthropometric characteristics of the 12,500 study participants included in this analysis (the same information including participants with known risk factors for CKD (n=24,774) in supplementary material Table S1). The mean (standard deviation (±SD)) age of participants was 41.5±11.6 years. 88% (4,805/5,434) of the male population was formally employed; 76% (5,346/7,066) of women worked on house duties (i.e. housewives). The mean BMI was 24 ± 5.0 kg/m² and mean fat free mass was 42 ± 15 kg/m². The mean fasting plasma glucose was 91.9±12.3 mg/dl and the mean HbA1c was 5.5±0.4 %. The mean systolic and diastolic blood pressures were 114±12 mm Hg and 74±9 mm Hg, respectively. The median (inter quartile range, IQR) albumin/creatinine ratio (ACR) was 2.4 (4.3) mg/g (after exclusion of those with ACR>300mg/g, n=1,208).

162 Mean eGFR and prevalence of eGFR<60

The mean eGFR was 105.0 ± 17.8 ml/min per $1.73m^2$. The mean eGFR was lower at increasing ages, in males, in inhabitants from rural areas and in those from Northern India, in participants with no formal education, and in participants who reported tobacco consumption, alcohol intake and being vegetarian (Table 2). We observed differences in mean eGFR depending on the area, being 104.5 ± 17.6 in urban areas of Northern India, 100.3 ± 16.2 in rural areas of Northern India, 110.9 ± 15.7 in urban areas of Southern India and 97.4 ± 19.8 in the rural area of Southern India.

The prevalence of eGFR<60 among the study population was 1.6% (95% confidence interval (95% CI)=1.4% -1.9%). 17% (95% CI=16% - 17%) of study participants had eGFR \geq 60-<90 ml/min per 1.73m² and 82% [95% confidence interval (95% CI)=81% - 82%] had eGFR \geq 90 ml/min per 1.73m². The prevalences of different categories of eGFR differed by formal education, tobacco consumption, alcohol intake and vegetarianism (Table 2). Also, we observed marked differences in the prevalence of eGFR<60 depending on the area, being 1.4 % (95% CI=1.1 - 1.8) in urban areas of Northern India, 1.9 (95% CI=1.4% - 2.6%) in rural areas of Northern India, 0.43% (95% CI =0.03% - 0.07%) in urban areas of Southern India and 4.8 % (95% CI= 3.9% - 5.9%) in 800 million and a m

32019.00 ministration of the second second

the rural area of Southern India. The prevalence ratio of eGFR<60 for rural versus urban residence was higher

for participants <50 years than for older groups (Figure 2).

178 Risk factors for lower eGFR and eGFR<60

As expected, age was an important risk factor for reduced eGFR: eGFR was 0.93 ml/min per 1.73 m² (95%CI=-0.95 - -0.91, model adjusted for sex) lower for each additional year of age. Additionally, being male, living in a rural setting, living in Southern India and consuming alcohol were associated with decreased mean eGFR (Table 3). Similarly, the odds of eGFR<60 also increased by each year of age [OR adjusted for sex (95%CI)=1.1 (1.1 -1.1)] and being male, living in a rural setting, living in Southern India and consuming alcohol were also associated with eGFR<60 (Table 3). Risk factors for decreased mean eGFR and for eGFR<60 were similar for men and women (supplementary material, Table S2).

In the multiple regression analyses, decreased mean eGFR remained associated with older age, being male and living in a rural setting and alcohol consumption (Table 4). Risk of eGFR<60 remained associated with older age, being male and living in a rural setting and having no formal education remained associated with increased risk of eGFR<60 (Table 4). We adjusted all the multiple regression models for fat free mass and vegetarianism to assess the possibility that differences observed between urban and rural participants were due to differences in diet and/or body composition. These adjustments had little effect on the results (Table 4).

We observed an interaction between the effects of latitude (North/South) and urban/rural residence in association with reduced eGFR (p-value for interaction<0.001). The mean eGFR was lower in rural settings in both Northern and Southern India (controlling for age, sex, education and alcohol intake). However, this decrease was much more marked in Southern India. In Northern India, age was the only other risk factor associated with reduced eGFR, whereas in Southern India, lower level of formal education was also a risk factor for reduced eGFR (Table 5). We also observed an interaction between the effects of latitude (North/South) and urban/rural residence in association with eGFR<60 (p-value likelihood-ratio test for interaction<0.001). In Northern India, eGFR<60 was not associated with urban/rural residence, and older age was the only factor associated with eGFR<60. In Southern India, rural residence was the strongest risk factor for eGFR<60 but older age and lower level of formal education also increased the risk of eGFR<60 (Table 5).

202 Sensitivity analyses

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

We performed a sensitivity analysis including those with ACR>300 (but without hypertension or diabetes, n=33) as we were concerned that those with CKDu might develop proteinuria at more advanced CKD stages. However, this did not alter the mean eGFR (mean eGFR among the overall study population=105.0±17.8, mean eGFR in this sensitivity analysis =105.0±17.8), nor the estimated prevalence of eGFR<60 (prevalence among the overall study population=1.6%; prevalence in this sensitivity analysis =1.7%). The findings on risk factors were also similar to the findings from the primary analyses (supplementary material, Table S3).

Given concerns about potentially different thresholds to define diabetes and high blood pressure in different ethnic groups (Herman 2009; Modesti et al. 2016), we performed a further sensitivity analysis including fasting plasma glucose, HbA1c and systolic blood pressure in the multivariate model (even though there is evidence for both causation and reverse causation between these factors and CKD (Verhave et al. 2005)). Systolic blood pressure and fasting plasma glucose were associated with reduced eGFR in this non diabetic population, but inclusion of these variables did not alter the coefficients for the associations with other risk factors observed in the primary analysis (supplementary material, Table S4). HbA1c was associated with eGFR<60 in this non diabetic population but inclusion of this variable did not alter the OR for other risk factors observed in the primary analysis (supplementary material, Table S4). Therefore, although the relationship between sub-clinical diabetes and impaired kidney function requires further prospective investigation, there is no evidence that the excess risk of low eGFR (i.e. lower mean eGFR and higher prevalence of eGFR<60) in rural Southern India is associated with either impaired fasting glucose or higher blood pressure.

221 DISCUSSION

We report the distribution of eGFR in people without diabetes, hypertension or heavy proteinuria and estimate the prevalence of CKDu in our study population, including participants from urban and rural settings. We found that the rural population from Southern India (Vishakhapatnam district) had the highest risk of low eGFR (lower mean eGFR and higher prevalence of eGFR<60). In Southern India, rural residence, older age and lower education were risk factors for decreased eGFR, and there was also some evidence for higher risks in males. In Northern India, older age was the only risk factor for low eGFR. This is the first population-based evidence, using standardised methods, which indicates that CKDu is present in India and is not confined to Central America and Sri Lanka.

32019.00 ministration of the second second

As in Central America, the risk of low eGFR was higher in rural settings than in urban settings. This is in concordance with a previous study from Hyderabad (India), that has provided evidence of a higher risk of low eGFR in a rural population compared to urban-migrant and urban population (Bailey et al. 2013), and with various studies from other LMICs that have provided evidence of clusters of CKDu among the rural population (Correa-Rotter, Wesseling, and Johnson 2014; Jayatilake et al. 2013). Exposure to some of the suggested potential risk factors for CKDu such as agricultural work and agrochemical exposure, amongst others (Lunyera et al. 2016), may be greater in rural settings. Such exposures may also differ between Southern and Northern India, and potentially explain the differences observed between these areas. The associations between urban/rural residence and lower mean eGFR was much more marked in Southern India than in Northern India, and the associations between urban/rural residence and eGFR<60 was only observed in Southern India. The higher prevalence ratio (for eGFR<60) in the working age population compared to older age groups is consistent with the hypothesis that deceased in eGFR could be potentially explained by occupational exposures. The suggestive sex differences may also support this hypothesis. However, we did not have detailed data on occupation that allowed us to explore these associations in greater detail.

The higher risk of low eGFR in Southern India (Chennai and Vishakhapatnam districts) observed in our study is consistent with the clusters of CKDu cases previously reported in the Southern Indian states of Andhra Pradesh and Odisha (Chatteriee 1026; Ganguli 2016; Reddy and Gunasekar 2013). Visakhapatnam district (state of Andhra Pradesh) and Chennai district (state of Tamil Nadu) have a similar climate than these areas where CKDu clusters have previously reported (Peel, Finlayson, and McMahon 2007). In these districts, mean temperatures range from 18 °C to 37 °C and rainfall occurs mainly between June and December (Norwegian Meteorological Institute and the Norwegian Broadcasting Corporation n.d.). On the other hand, sites from Norther India included in the study (Delhi (state of Delhi), Sonipat and Faridabad (Haryana state)), have a different climate. In these districts mean temperature ranges from 8 °C to 39 °C and precipitation occurs mainly between July and August (Norwegian Meteorological Institute and the Norwegian Broadcasting Corporation n.d.). A previous study conducted in Costa Rica found a spatial correlation between rates of CKD mortality and temperature and rainfall (Catharina Wesseling et al. 2015).

About 5% of the rural population of Vishakhapatnam (Andra Pradesh, Southern India) without diabetes,
hypertension or proteinuria had eGFR<60. This figure is almost as high as the prevalence observed in the USA
(i.e. 6.7%) including people with diabetes, hypertension or proteinuria (Levey and Coresh 2012). Moreover, the

BMJ Open

estimates of GFR in our study are likely to be underestimated. The CKD-EPI equation has been standardised for the white and Afro-American population (Levey et al. 2009), but its validity for other ethnic groups has been questioned (Eastwood et al. 2010; Teo et al. 2011). Previous studies using CKD-EPI equation to estimate GFR in Indian populations reported mean eGFR values similar to the mean eGFR reported in our study (i.e. $104.9 \pm$ 25.52 ml/min/1.73 m²) (Singh et al. 2013). However, two studies conducted among healthy kidney donors in India (population similar to those included in this analysis) have reported mean (measured) GFR between 81.4 and 95.5 ml/min per 1.73 m² (Barai et al. 2005; Srinivas et al. 2008), suggesting that the CKD-EPI equation substantially overestimates eGFR in the Indian population. Therefore, the prevalence of eGFR<60 observed in this study is likely to be substantially underestimated (although this is unlikely to have biased the internal comparisons, e.g. between urban and rural settings). The use of a conservative definition of the population susceptible to CKDu, may have also underestimated the prevalence of eGFR<60 in our study, as the population with diabetes, hypertension or glomerular disease may also have reduced eGFR due to other ('unknown') causes. To estimate the actual prevalence of reduced eGFR, future studies should include validated methods to estimate GFR in the Indian population. We were concerned that the validity of CKD-EPI among the Indian population may be also compromised by differences in muscular mass and meat consumption between population groups within India. We adjusted the analyses for fat free mass and vegetarianism, but this did not alter the results, suggesting no confounding effect by these variables.

Our study has at least three potential limitations. First, we only had one measure of eGFR, and therefore we could not differentiate acute kidney injury (AKI) from CKD. This is a common limitation in epidemiological studies, as it is challenging to obtain more than one measure of eGFR at least 3 months apart in large population-based investigations. Therefore, we may have misclassified some cases of AKI as reduced eGFR, and therefore overestimate the prevalence of this condition. Nevertheless, there is no a priori reason to think that potential misclassification was different according to the evaluated risks factors. Second, the three population-based studies included in this analysis used different sampling strategies. CARRS and UDAY studies included only one man and one woman from all the eligible participants of selected households, whereas ICMR-CHD included all eligible adults from each selected household. This could have slightly biased our results (including our prevalence estimates) if risk factors potentially associated with CKDu were different between households inhabited only by a man and a women or by extended families. Third, information on other potential risk factors for CKDu, such as infections by leptospora or hantavirus infection, or use of nonsteroidal anti-inflammatory drugs (NSAIDs) was not available.

The main strengths of the study are the use of a random selection of population-based participants and a large sample size including participants from different areas of India (urban and rural, and Northern and Southern India). Moreover, we used the definitions proposed in DRGREE study (Caplin et al. 2017), that aims to allow international comparisons of CKDu prevalence and help in the description of risk factors and in identifying the causes and mechanisms leading to CKDu.

In conclusion, our findings indicate that reduced eGFR, consistent with the definition of CKDu, is common in rural settings of Southern India (Vishakhapatnam district). This results support the hypothesis that the epidemic of CKDu, initially described in agricultural communities of Central America and Sri Lanka, may be common in other rural communities of tropical/subtropical countries. This has important implications for global health, since it indicates that CKDu may have a substantial public health burden globally that has been previously unrecognised. Population-based studies in other tropical/subtropical countries are required to assess the global patterns of burden of disease from CKDu (Caplin et al. 2017).

AUTHOR CONTRIBUTIONS AND ACKNOWLEDGEMENTS

CO-G, BC, NP and DP designed the analysis; RS, SM, PPA, DK and SG let the collection of the original data; all authors participated in interpretation and discussion of results; CO-G, BC and NP drafted the manuscript. All authors contributed to critical reading of the report, provided comments and suggested revisions, and approved the final version for publication.

We thank Manolis Kogevinas for his comments on the advanced version of the manuscript.

CONFLICTS OF INTERESTS

The authors declare that they have no competing interests

DATA SHARING STATEMENT

The datasets used and/or analysed during the current study are available from Public Health Foundation of India (PHFI) on reasonable request. Interested investigators should contact PHFI. Computing code can be obtained from the corresponding author.

BMJ Open

REFERENCES
Anand, Shuchi, Roopa Shivashankar, Mohammed K Ali, Dimple Kondal, B Binukumar, Maria E Montez-rath, Vamadevan S Ajay, et al. 2015. "Prevalence of Chronic Kidney Disease in Two Major Indian Cities and Projections for Associated Cardiovascular Disease." <i>Kidney International</i> 88 (1). Nature Publishing Group:178–85. https://doi.org/10.1038/ki.2015.58.
Bailey, Phillippa K, Charles R V Tomson, Sanjay Kinra, Shah Ebrahim, K V Radhakrishna, Hannah Kuper, Dorothea Nitsch, and Yoav Ben-shlomo. 2013. "The Effect of Rural-to-Urban Migration on Renal Function in an Indian Population : Cross-Sectional Data from the Hyderabad Arm of the Indian Migration Study."
Barai, Sukanta, G P Bandopadhayaya, C D Patel, Manish Rathi, R Kumar, D Bhowmik, S Gambhir, N Gopendro Singh, A Malhotra, and K D Gupta. 2005. "Do Healthy Potential Kidney Donors in India Have an Average Glomerular Filtration Rate of 81.4 Ml/min?" <i>Nephron. Physiology</i> 101 (1):p21-6. https://doi.org/10.1159/000086038.
Barsoum, Rashad S. 2013. "Burden of Chronic Kidney Disease: North Africa." Kidney International Supplements 3 (2):164–66. https://doi.org/10.1038/kisup.2013.5.
Caplin, Ben, Kristina Jakobsson, Jason Glaser, Dorothea Nitsch, Vivekanand Jha, Ajay Singh, Ricardo Correa- Rotter, and Neil Pearce. 2017. "International Collaboration for the Epidemiology of eGFR in Low and Middle Income Populations - Rationale and Core Protocol for the Disadvantaged Populations eGFR Epidemiology Study (DEGREE)." <i>BMC Nephrology</i> 18 (1):1. https://doi.org/10.1186/s12882-016-0417-1.
Chatterjee, Rhitu. 1026. "Occupational Hazard." Science, 1026.
Correa-Rotter, Ricardo, Catharina Wesseling, and Richard J Johnson. 2014. "CKD of Unknown Origin in Central America: The Case for a Mesoamerican Nephropathy." <i>American Journal of Kidney Diseases :</i> <i>The Official Journal of the National Kidney Foundation</i> 63 (3):506–20. https://doi.org/10.1053/j.ajkd.2013.10.062.
Dare, Anna J, Sze Hang Fu, Jayadeep Patra, Peter S Rodriguez, J S Thakur, Prabhat Jha, J Coresh, et al. 2017. "Renal Failure Deaths and Their Risk Factors in India 2001–13: Nationally Representative Estimates from the Million Death Study." <i>The Lancet Global Health</i> 5 (1). The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY license:e89–95. https://doi.org/10.1016/S2214- 109X(16)30308-4.
Eastwood, J. B., S. M. Kerry, J. Plange-Rhule, F. B. Micah, S. Antwi, F. G. Boa, D. Banerjee, and F. P. Cappuccio. 2010. "Assessment of GFR by Four Methods in Adults in Ashanti, Ghana: The Need for an eGFR Equation for Lean African Populations." <i>Nephrology Dialysis Transplantation</i> 25 (7):2178–87. https://doi.org/10.1093/ndt/gfp765.
Ganguli, Anirban. 2016. "Uddanam Nephropathy/Regional Nephropathy in India: Preliminary Findings and a Plea for Further Research." <i>American Journal of Kidney Diseases</i> . National Kidney Foundation, Inc., 2–6. https://doi.org/10.1053/j.ajkd.2016.04.012.
Garcia-Garcia, Guillermo, Vivekanand Jha, and World Kidney Day Steering Committee. 2015. "Environmental and Occupational Factors in CKD." <i>Occupational and Environmental Medicine</i> 72 (3):238. https://doi.org/10.1136/oemed-2015-102859.
Greenland, Sander, Rhian Daniel, Neil Pearce, Sander Greenland, Rhian Daniel, and Neil Pearce. 2016. "Outcome Modelling Strategies in Epidemiology: Traditional Methods and Basic Alternatives." <i>International Journal of Epidemiology</i> , no. April:1–11. https://doi.org/10.1093/ije/dyw040.
Herman, William H. 2009. "Do Race and Ethnicity Impact Hemoglobin A1c Independent of Glycemia?" <i>Journal</i> of Diabetes Science and Technology 3 (4):656–60. https://doi.org/10.1177/193229680900300406.
Jayasumana, Channa, Priyani Paranagama, Suneth Agampodi, Chinthaka Wijewardane, Sarath Gunatilake, and Sisira Siribaddana. 2015. "Drinking Well Water and Occupational Exposure to Herbicides Is Associated with Chronic Kidney Disease, in Padavi-Sripura, Sri Lanka." <i>Environmental Health : A Global Access</i> <i>Science Source</i> 14 (1):6. https://doi.org/10.1186/1476-069X-14-6.
Jayatilake, Nihal, Shanthi Mendis, Palitha Maheepala, and Firdosi R Mehta. 2013. "Chronic Kidney Disease of Uncertain Aetiology: Prevalence and Causative Factors in a Developing Country." <i>BMC Nephrology</i> 14 (1). BMC Nephrology:180. https://doi.org/10.1186/1471-2369-14-180.
Jha, Vivekanand, and Gopesh Modi. 2017. "Uncovering the Rising Kidney Failure Deaths in India." The Lancet
13
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

BWWU Oppen: first published ass 100.111336/bmjoppen-20118-0223333 on 77 Wardh 2019. Downloaded from http://bmjoppen.bmjj.com/ on 440M 201. 2024 by guest. Protected by copyright.

2		
2 3 4	366 367	<i>Global Health</i> 5 (1). The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND license:e14–15. https://doi.org/10.1016/S2214-109X(16)30299-6.
5 6 7 8	368 369 370 371	Lebov, Jill F, Eliette Valladares, Rodolfo Pena, Edgar M Pena, Scott L Sanoff, Efren Castellon Cisneros, Romulo E Colindres, Douglas R Morgan, and Susan L Hogan. 2015. "A Population-Based Study of Prevalence and Risk Factors of Chronic Kidney Disease in Leon, Nicaragua." <i>Canadian Journal of Kidney</i> <i>Health and Disease</i> 2. ???6. https://doi.org/10.1186/s40697-015-0041-1.
9 10	372 373	Levey, Andrew S., and Josef Coresh. 2012. "Chronic Kidney Disease." <i>The Lancet</i> 379 (9811). Elsevier Ltd:165–80. https://doi.org/10.1016/S0140-6736(11)60178-5.
11 12 13	374 375 376	Levey, Andrew S, Lesley A Stevens, Christopher H Schmid, Yaping Lucy Zhang, Alejandro F Castro, Harold I Feldman, John W Kusek, et al. 2009. "A New Equation to Estimate Glomerular Filtration Rate." Annals of Internal Medicine 150 (9):604–12. http://www.ncbi.nlm.nih.gov/pubmed/19414839.
14 15 16	377 378 379	Lunyera, Joseph, Dinushika Mohottige, Megan von Isenburg, Marc Jeuland, Uptal D. Patel, and John W. Stanifer. 2016. "CKD of Uncertain Etiology: A Systematic Review." <i>Clinical Journal of the American Society of Nephrology</i> 11 (3):379–85. https://doi.org/10.2215/CJN.07500715.
17 18 19 20	380 381 382 383	Minshawy, Osama El, Tawfik Ghabrah, and Eman El Bassuoni. 2014. "End-Stage Renal Disease in Tabuk Area, Saudi Arabia: An Epidemiological Study." Saudi Journal of Kidney Diseases and Transplantation : An Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia 25 (1):192–95. http://www.ncbi.nlm.nih.gov/pubmed/24434411.
21 22 23 24	384 385 386 387	Modesti, Pietro Amedeo, Gianpaolo Reboldi, Francesco P Cappuccio, Charles Agyemang, Giuseppe Remuzzi, Stefano Rapi, Eleonora Perruolo, and Gianfranco Parati. 2016. "Panethnic Differences in Blood Pressure in Europe: A Systematic Review and Meta-Analysis." <i>PloS One</i> 11 (1):e0147601. https://doi.org/10.1371/journal.pone.0147601.
25 26 27	388 389 390	Mohan, S;, P; Jarhyan, S; Ghosh, SV; Nikhil, R; Gupta, R; Rana, C; Malhotra, et al. 2017. "UDAY: Protocol of a Comprehensive Diabetes and Hypertension Prevention and Management Program in India." <i>BMJ Open</i> . In Press.
28 29 30 31	391 392 393 394	Nair, Manisha, Mohammed K Ali, Vamadevan S Ajay, Roopa Shivashankar, Viswanathan Mohan, Rajendra Pradeepa, Mohan Deepa, et al. 2012. "CARRS Surveillance Study: Design and Methods to Assess Burdens from Multiple Perspectives." <i>BMC Public Health</i> 12 (1). BMC Public Health:701. https://doi.org/10.1186/1471-2458-12-701.
32 33	395 396	Norwegian Meteorological Institute and the Norwegian Broadcasting Corporation. n.d. "Yr." Accessed January 19, 2018. https://www.yr.no.
34 35 36	397 398	Peel, M. C., B. L. Finlayson, and T. A. McMahon. 2007. "Updated World Map of the Koppen-Geiger Climate Classification." <i>Hydrology and Earth System Sciences</i> 11:1633–1644.
37 38 39 40	399 400 401 402	Peraza, Sandra, Catharina Wesseling, Aurora Aragon, Ricardo Leiva, Ramón Antonio García-Trabanino, Cecilia Torres, Kristina Jakobsson, Carl Gustaf Elinder, and Christer Hogstedt. 2012. "Decreased Kidney Function among Agricultural Workers in El Salvador." <i>American Journal of Kidney Diseases : The Official Journal</i> of the National Kidney Foundation 59 (4):531–40. https://doi.org/10.1053/j.ajkd.2011.11.039.
40 41 42 43	403 404 405	Prabhakaran, Dorairaj, Ambuj Roy, Pradeep A. Praveen, Lakshmy Ramakrishnan, Ruby Gupta, Ritvik Amarchand, Dimple Kondal, et al. 2017. "20-Year Trend of Cardiovascular Disease Risk Factors." <i>Global</i> <i>Heart</i> . https://doi.org/10.1016/j.gheart.2016.11.004.
44 45 46 47	406 407 408 409	Rajapurkar, Mohan M, George T John, Ashok L Kirpalani, Georgi Abraham, Sanjay K Agarwal, Alan F Almeida, Sishir Gang, et al. 2012. "What Do We Know about Chronic Kidney Disease in India: First Report of the Indian CKD Registry." <i>BMC Nephrology</i> 13 (1):10. https://doi.org/10.1186/1471-2369-13- 10.
48 49 50	410 411 412	Reddy, D. V., and A. Gunasekar. 2013. "Chronic Kidney Disease in Two Coastal Districts of Andhra Pradesh, India: Role of Drinking Water." <i>Environmental Geochemistry and Health</i> 35 (4):439–54. https://doi.org/10.1007/s10653-012-9506-7.
51 52	413 414	Robey, R Brooks. 2014. "Cyclical Dehydration-Induced Renal Injury and Mesoamerican Nephropathy: As Sweet by Any Other Name?" <i>Kidney International</i> 86 (2):226–29. https://doi.org/10.1038/ki.2014.47.
53 54 55	415 416 417	Seck, Sidy Mohamed, Dominique Doupa, Lamine Gueye, and Charles Abdou Dia. 2014. "Prevalence of Chronic Kidney Disease and Associated Factors in Senegalese Populations: A Community-Based Study in Saint- Louis." Nephro-Urology Monthly 6 (5):e19085. https://doi.org/10.5812/numonthly.19085.
56 57	418	Singh, Ajay K., Youssef MK Farag, Bharati V. Mittal, Kuyilan Karai Subramanian, Sai Ram Keithi Reddy,
58 59		14
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

59

60

BMJ Open

1		
2	419	Vidya N. Acharya, Alan F. Almeida, et al. 2013. "Epidemiology and Risk Factors of Chronic Kidney
3	420	Disease in India – Results from the SEEK (Screening and Early Evaluation of Kidney Disease) Study."
4	421	<i>BMC Nephrology</i> 14 (1). BMC Nephrology:114. https://doi.org/10.1186/1471-2369-14-114.
5 6	422	Srinivas, Sanjay, Rajeev A Annigeri, Muthu Krishna Mani, Budithi Subba Rao, Prakash C Kowdle, and
7	423	Rajagopalan Seshadri. 2008. "Estimation of Glomerular Filtration Rate in South Asian Healthy Adult
8	424	Kidney Donors." Nephrology (Carlton, Vic.) 13 (5):440-46. https://doi.org/10.1111/j.1440-
9	425	1797.2008.00967.x.
10	426	Teo, Boon Wee, Hui Xu, Danhua Wang, Jialiang Li, Arvind Kumar Sinha, Borys Shuter, Sunil Sethi, and Evan J
11	427	C Lee. 2011. "GFR Estimating Equations in a Multiethnic Asian Population." American Journal of Kidney
12	428 429	Diseases : The Official Journal of the National Kidney Foundation 58 (1):56–63. https://doi.org/10.1053/j.ajkd.2011.02.393.
13		
14	430 431	Torres, Cecilia, Aurora Aragón, Marvin González, Indiana López, Kristina Jakobsson, Carl-Gustaf Elinder, Ingvar Lundberg, and Catharina Wesseling. 2010. "Decreased Kidney Function of Unknown Cause in
15	431	Nicaragua: A Community-Based Survey." American Journal of Kidney Diseases : The Official Journal of
16	433	the National Kidney Foundation 55 (3):485–96. https://doi.org/10.1053/j.ajkd.2009.12.012.
17	434	Verhave, Jacobien C., Hans L. Hillege, Johannes G M Burgerhof, Ron T. Gansevoort, Dick De Zeeuw, and Paul
18 10	435	E. De Jong. 2005. "The Association between Atherosclerotic Risk Factors and Renal Function in the
19 20	436	General Population." Kidney International 67 (5):1967-73. https://doi.org/10.1111/j.1523-
20	437	1755.2005.00296.x.
22	438	Wesseling, C, J Crowe, C Hogstedt, K Jakobsson, R Lucas, and D Wegman. 2013. "Mesoamerican
23	439	Nephropathy: Report from the First International Research Workshop on MeN." Heredia, Costa Rica.
24	440	http://www.regionalnephropathy.org/wp-content/uploads/2013/04/Technical-Report-for-Website-
25	441	Final.pdf.
26	442	Wesseling, Catharina, Berna van Wendel de Joode, Jennifer Crowe, Ralf Rittner, Negin A Sanati, Christer
27	443 444	Hogstedt, and Kristina Jakobsson. 2015. "Mesoamerican Nephropathy: Geographical Distribution and Time Trends of Chronic Kidney Disease Mortality between 1970 and 2012 in Costa Rica." <i>Occupational</i>
28	444	and Environmental Medicine 72 (10):714–21. https://doi.org/10.1136/oemed-2014-102799.
29	446	
30 31	440	World Health Organization. 2015. "STEPS Manual." 2015.
32	447	
33		
34	448	
35		
36		
37		
38		
39		
40 41		
41		
43		
44		
45		
46		
47		
48		
49		
50		
51 52		
52 53		
55 54		
55		
56		
57		

330 marship while the second second

449 TABLES

Table 1. Design and methods of the three studies included in the current analysis

	CARRS		UDAY				ICMR-CHD	
Latitude	North	South	North	h South		North		
(North/South)								
Residence	Urban	<u> </u>	Urban	Rural	Urban	Rural	Urban	Rural
(Urban/Rural)								
District (and	Delhi	Chennai	Sonipat	(state of	Vishakhap	batnam (state	National Capital	Faridabad (st
State)	(state of	(state of	Haryana)	of Andhra	Pradesh)	Territory of	of Haryana)
	Delhi)	Tamil					Delhi (state of	
		Nadu)					Delhi)	
Household	Multistage	cluster	Multistag	ge clus	ter rando	m (Census	Multistage	Simple clus
sampling	random (w	ards - census	Enumera	tion bloc	ks (urban)	or villages	cluster random	random (based
	enumeratio	n blocks -	(rural) -	household	ls)		(wards - census	Health a
	households)					enumeration	Demographic
							blocks -	Surveillance
					households)	System)		
Individual	1 man an	nd 1 woman	1 man and 1 woman from each household		All adults			
sampling	from eacl	h household	(selected	(selected by Kish method, (World Health				
	(selected	by Kish	Organiza	tion. 2015	5).)			
	method, (V	World Health						
	Organizatio	on. 2015).)						
Age groups	≥20		≥ 30				≥ 30	
included								
Exclusion criteria	Pregnant,	bedridden and	participar	nts who	were unable	e to comprehe	end the questionna	ires due cognit
	deficiencies	s were excluded	d					
Study period	October	2010 -	July 2014 - December 2014		August 2010 - January 2012			
	November	2011						
Laboratory ^a	PHFI ^b	MDRF °	PHFI ^b		PHFI ^b			
^a Study laboratorie	es participate	ed in Randox	Internatio	nal Qual	ity Assurar	nce Scheme (l	RIQAS) for clinica	al
chemistry and Hb	Alc during	the entire stud	ly periods	. ^b Public	Health For	undation of Ir	ndia; ^c Madras Dia	betes
	ion						-	

454	Table 2. Sociodemographic and anthropometric	characteristics of study participants (population without
-----	--	---

diabetes, hypertension or heavy proteinuria)

Variable	n (%) ^a n=12,500		eGFR categories, n(%) ^b		
		mean (SD)	≥90	90-60	<60
Socio-demographic					
Age (years)					
<39	6121 (49)	113.8 (14.6)	5656 (92)	443 (7)	22 (0)
40-49	3476 (28)	102.5 (14.2)	2864 (82)	572 (16)	40 (1)
50-59	1706 (14)	93.9 (14.3)	1163 (68)	503 (29)	40 (2)
60-69	893 (7)	85.3 (16.2)	463 (52)	368 (41)	62 (7)
>=70	304 (2)	77.5 (15.1)	62 (20)	201 (66)	41 (13)
Sex					
Female	7066 (57)	107.9 (17.1)	6039 (85)	945 (13)	82 (1)
Male	5434 (43)	101.3 (17.9)	4169 (77)	1142 (21)	123 (2)
Education (number completed years)					
0	2820 (23)	100.7 (19.0)	2165 (77)	551 (20)	104 (4)
≤5	1709 (14)	105.9 (17.3)	1412 (83)	273 (16)	24 (1)
6-≤10	4817 (39)	107.2 (16.8)	4095 (85)	675 (14)	47 (1)
> 10	3154 (25)	105.0 (17.5)	2536 (80)	588 (19)	30 (1)
Area [°]					
Urban	8494 (68)	107.8 (16.1)	7247 (85)	1171 (14)	76 (1)
Rural	4006 (32)	99.0 (18.0)	2961 (74)	916 (23)	129 (3)
Latitude ^d					
North	6263 (50)	103.0 (17.2)	4967 (79)	1197 (19)	99 (2)
South	6237 (50)	107.0 (18.1)	5241 (84)	890 (14)	106 (2)
Life-style factors					
Current tobacco consumption					
No	9357 (75)	106.8 (17.3)	7836 (84)	1406 (15)	115 (1)
Yes	3143 (25)	99.8 (18.1)	2372 (75)	681 (22)	90 (3)
Alcohol consumption ever					
No	10094 (81)	105.9 (17.4)	8362 (83)	1589 (16)	143 (1)
Yes	2406 (19)	101.1 (18.5)	1846 (77)	498 (21)	62 (3)
Vegetarian					

No	7972 (64)	107.0 (18.0)	6690 (84)	1154 (14)	128 (2)
Yes	4528 (36)	101.6 (16.6)	3518 (78)	933 (21)	77 (2)
Biological factors					
Body mass index (kg/m ²)					
Underweight (≤18.5)	5879 (47)	104.2 (17.9)	4734 (81)	1029 (18)	116 (2)
Normal (>18.5 - ≤25)	1576 (13)	104.7 (19.3)	1283 (81)	257 (16)	36 (2)
Overweight (>25 - ≤30)	3313 (27)	105.0 (16.9)	2710 (82)	568 (17)	35 (1)
Obese (>30)	1150 (9)	105.5 (16.4)	948 (82)	194 (17)	8 (1)
Missing data	582 (5)		533 (92)	39 (7)	10 (2)
Fat free mass (kg/m ²)					
1^{st} tertile (≤ 37)	3746 (30)	106.6 (18.1)	3146 (84)	532 (14)	68 (2)
2 nd tertile (>37 - <45)	3801 (30)	105.9 (17.2)	3145 (83)	601 (16)	55 (1)
3 rd tertile (≤45)	3834 (31)	102.1 (17.0)	2981 (78)	801 (21)	52 (1)
Missing data	1119 (9)		936 (84)	153 (14)	30 (3)

456 ^a Percentages in columns^{; b} percentages in rows; ^cUrban areas include Delhi, Chennai and Sonipat district.

457 Rural areas include Sonipat, Vishakhapatnam and Faridabad districts; ^d North areas include Delhi, Sonipat

458 and Faridabad district. South areas include Chennai and Vishakhapatnam districts.

459 Table 3. Associations between sociodemographic and anthropometric characteristics and eGFR and
460 eGFR<60

	eGFR	eGFR<60
Variable	Coefficient (95% CI) ^a	OR (95% CI) ^a
Age (years) ^b		
<39		1
40-49	-11 (-1210)	3.1 (1.9 - 5.3)
50-59	-19 (-2019)	6.4 (3.8 - 10)
60-69	-28 (-2927)	20 (12 - 32)
>=70	-35 (-3733)	39 (23 - 67)
Sex ^c		
Female		1
Male	-3.5 (- 4.03.1)	1.3 (0.99 - 1.8)
Education (number of completed years)		
0		1
≤5	1.9 (1.1 - 2.8)	0.41 (0.26 - 0.65)
6-≤10	1.3 (0.6 - 1.9)	0.36 (0.25 - 0.53)
> 10	-1.9 (-2.61.1)	0.40 (0.26 - 0.62)
Area ^d		
Urban		1
Rural	-3.8 (-4.43.3)	2.4 (1.8 - 3.2)
Latitude ^e		
North		1
South	0.86 (0.37 - 1.3)	1.5 (1.2 - 2.1)
Current tobacco consumption		
No		1
Yes	0.38 (-0.26 - 1.0)	1.4 (1.0 - 1.9)
Alcohol consumption ever		
No		1
Yes	-0.81 (-1.50.08)	1.6 (1.09 - 2.3)
Vegetarian		
No		1
Yes	-0.99 (-1.50.47)	0.65 (0.48 - 0.88)

1	
2	
3 ⊿	
4	
2 3 4 5 6 7	
7	
7 8	
8 9	
) 10	
11	
12	
13	
14	
15	
16	
12 13 14 15 16 17	
18	
19	
20	
21	
22	
23	
24	
25	
 18 19 20 21 22 23 24 25 26 27 28 29 30 	
27	
28	
29	
30 31	
27	
32 33 34 35 36 37	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50 51	
52 53	
53 54	
54 55	
55 56	
57	
58	
50	

59

60

1

Body mass index $(kg/m^2)^{g}$		
Underweight (≤18.5)	3.0 (2.2 - 3.7)	0.81 (0.55 - 1.2)
Normal (>18.5 - ≤25)		1
Overweight (>25 - ≤30)	-0.75 (-1.30.16)	0.7 (0.46 - 1.0)
Obese (>30)	-0.71 (-1.6 - 0.17)	0.47 (0.23 - 0.98)
Fat free mass (kg/m ²) ^g		
1^{st} tertile (\leq 37)		1
2 nd tertile (>37 - <45)	-0.91 (-1.50.28)	0.69 (0.47 - 1.0)
3 rd tertile (≤45)	-3.9 (-4.83.0)	0.49 (0.31 - 0.80)

461 ^a Adjusted for age and sex; ^b Adjusted just for sex; ^c Adjusted just for age; ^d Urban areas include Delhi, r is inclui. It and Faridab. 462 Chennai and Sonipat district. Rural areas include Sonipat, Vishakhapatnam and Faridabad districts; e 463 North areas include Delhi, Sonipat and Faridabad district. South areas include Chennai and

464 Vishakhapatnam districts.

_	regression analyses of sociode	mographic characteristics	associated with correct	and corres. Woders	aujusting for all varia	ioles, plus models furthe
adjusted for fat free	mass and vegetarianism.					
	eGFR Coefficient (95%	ό CI)		eGFR<60 OR (95%	CI)	
Variable	Model 1 ^a	Model 2 ^b	Model 3 ^c	Model 1 ^a	Model 2 ^b	Model 3 ^c
Area ^d						
Urban				1	1	1
Rural	-4.6 (-5.14.0)	-3.9 (-4.53.4)	-4.1 (-4.73.5)	2.0 (1.4 - 2.8)	1.6 (1.1 - 2.3)	1.6 (1.1 - 2.4)
Latitude ^e						
North				1	1	1
South	0.31 (-0.18 - 0.80)	-0.10 (-0.61 - 0.41)	0.26 (-0.37 - 0.89)	1.3 (1.0 - 1.8)	1.60 (1.1 - 2.2)	1.33 (0.86 - 2.0)
Education (number	er of					
completed years)						
0				1	1	1
≤5	0.93 (0.01 - 1.8)	1.2 (0.30 - 2.0)	1.2 (0.32 - 2.0)	0.50 (0.31 - 0.80)	0.44 (0.26 - 0.74)	0.45 (0.26 - 0.75)
6-≤10	0.31 (-0.18 - 0.80)	0.21 (-0.49 - 0.91)	0.21 (-0.50 - 0.92)	0.50 (0.34 - 0.75)	0.38 (0.24 - 0.60)	0.39 (0.25 - 0.62)
> 10	-4.0 (-4.63.0)	-3.8 (-4.63.0)	-3.8 (-4.6230)	0.68 (0.42 - 1.11)	0.61 (0.36 - 1.0)	0.6 (0.38 - 1.1)
Alcohol consumption e	ever					
						2:

No				1	1	1
Yes	-0.85 (-1.60.11)	-0.69 (-1.5 - 0.08)	-0.63 (-1.4 - 0.15)	1.3 (0.88 - 1.9)	1.2 (0.78 - 1.8)	1.1 (0.76 - 1.7)
Sex						
Female				1	1	1
Male	-2.8 (-2.23.4)	3.0 (2.4 - 3.6)	2.5 (1.9 - 3.2)	0.72 (0.50 - 1.0)	0.67 (0.45 - 1.0)	0.67 (0.43 - 1.0)
Age (years)	-0.91 (-0.930.89)	-0.91 (-0.930.89)	-0.91 (-0.940.89)	1.1 (1.1 - 1.1)	1.1 (1.1 - 1.1)	1.1 (1.1 - 1.1)
Fat free mass (kg/m ²)			-0.04 (-0.060.02)			1.0 (0.98 - 1.0)
Vegetarian						
No						1
Yes ^a Model 1: Variables mu mutually adjusted. Mode	tually adjusted, n=12,500; ^b el includes further adjustmen hapatnam and Faridabad dis	nt for fat free mass and ve	getarianism, n=11,381. ^d U	Jrban areas include De labad district. South an	elhi, Chennai and Sonij reas include Chennai a	0.74 (0.47 - 1.2) Iodel 3: Variables pat district. Rural areas
Yes ^a Model 1: Variables mu mutually adjusted. Mode include Sonipat, Vishakl	el includes further adjustmen	nt for fat free mass and ve	ally adjusted. Model exclu getarianism, n=11,381. ^d U	Jrban areas include De labad district. South an	elhi, Chennai and Sonij reas include Chennai a	0.74 (0.47 - 1.2) Iodel 3: Variables pat district. Rural areas
Yes ^a Model 1: Variables mu mutually adjusted. Mode include Sonipat, Vishakl	el includes further adjustmen	nt for fat free mass and ve	ally adjusted. Model exclu getarianism, n=11,381. ^d U	Jrban areas include De	elhi, Chennai and Sonij reas include Chennai a	0.74 (0.47 - 1.2) Iodel 3: Variables pat district. Rural areas
Yes ^a Model 1: Variables mu mutually adjusted. Mode include Sonipat, Vishakl	el includes further adjustmen	nt for fat free mass and ve	ally adjusted. Model exclu getarianism, n=11,381. ^d U	Jrban areas include De labad district. South an	elhi, Chennai and Sonij reas include Chennai a	0.74 (0.47 - 1.2) Iodel 3: Variables pat district. Rural areas
Yes ^a Model 1: Variables mu mutually adjusted. Mode include Sonipat, Vishakl	el includes further adjustmen	nt for fat free mass and ve	ally adjusted. Model exclu getarianism, n=11,381. ^d U	Jrban areas include De labad district. South an	elhi, Chennai and Sonij reas include Chennai a	0.74 (0.47 - 1.2) Iodel 3: Variables pat district. Rural areas

BMJ Open

471 Table 5. Multivariate analysis of sociodemographic characteristics associated with eGFR and with

472 eGFR<60 according to latitude ^a

eG	FR (n	=12,	500)
	(·,	,

eGFR<60(n=12,500)

	North (n=6263) ^a	South $(n = 6237)^{a}$	North (n=6263) ^a	South (n= 6237) ^a
Variables	Coefficient (95% CI)	Coefficient (95% CI)	OR (95% CI)	OR (95% CI)
Area ^b				
Urban				
Rural	-1.4 (-2.10.70)	-7.9 (-8.87.0)	1	1
Education (number	of			
completed years)			0.88 (0.57 - 1.4)	4.7 (2.5 - 8.8)
0				
≤5	-1.3 (-2.60.05)	1.0 (-0.06 - 2.2)	1	1
6-≤10	-3.5 (-4.52.5)	0.28 (-0.74 - 1.3)	1.2 (0.57 - 2.3)	0.40 (0.20 - 0.80)
> 10	-6.9 (-8.05.9)	-2.8 (-4.01.7)	1.3 (0.74 - 2.4)	0.35 (0.16 - 0.74)
Alcohol consumpti	ion			
ever			1.3 (0.69 - 2.6)	0.61 (0.24 - 1.6)
No				
Yes	-0.54 (-1.5 - 0.47)	-0.06 (-1.1 - 0.99)	1	1
Sex			1.1 (0.62 - 1.9)	1.3 (0.74 - 2.2)
Female				
Male	0.17 (-0.63 - 0.96)	5.4 (4.5 - 6.3)	1	1
Age (years)	-0.93 (-0.960.90)	-0.90 (-0.930.86)	1.0 (0.63 - 1.7)	0.63 (0.36 - 1.1)

473 ** Likelihood ratio test for linear trend <0.05, OR (95% CI)=0.67 (0.50-0.90). ^a North areas include Delhi,
474 Sonipat and Faridabad district. South areas include Chennai and Vishakhapatnam districts. ^bUrban areas
475 include Delhi, Chennai and Sonipat district. Rural areas include Sonipat, Vishakhapatnam and Faridabad
476 districts

FIGURES LEGENDS

- JFR<60 by age group b.

482 SUPPLEMENTARY MATERIAL

- 483 Content
- 484 Table S1. Sociodemographic and anthropometric characteristics of overall study participants (prior to
 485 exclusion of population with diabetes, hypertension and proteinuria)
- 486 Table S2. Associations between sociodemographic and anthropometric characteristics and estimated
 487 glomerular filtration rate (eGFR) and eGFR<60 by sex
- Table S3. Multiple regression analysis of sociodemographic and anthropometric characteristics
 associated with eGFR and eGFR<60 including study participants with proteinuria (but without diabetes or
 hypertension)
- Table S4. Multiple regression analysis of sociodemographic and anthropometric characteristics
 associated with eGFR and eGFR<60 including fasting plasma glucose, HbA1c and systolic blood
 pressure

3012 How and the second s

BWW Opeen: first:published as 10.11136/bmjopen-2018-022333 on 7 Wardh 2019. Downloaded from http://bmjopen.bmj.com/ on 40Ni20h 2024 by guest. Protected by capyright.

Table S1. Sociodemographic and anthropometric characteristics of overall study participants (prior to
 exclusion of population with diabetes, hypertension and proteinuria)

Variable	n (%) [*] n=12 500			eGFR categories, n(%) ^{**}			
	II-12 300	mean (SD)	p-value [§]	≥90	90-60	<60	p-value [§]
Socio-demographic factors							
Age (years)							
<39	9007 (36)	112.9 (14.9)	< 0.001	8248 (92)	716 (8)	43 (0)	< 0.001
40-49	6924 (28)	101.9 (14.8)		5617 (81)	1215 (18)	92 (1)	
50-59	4524 (18)	92.9 (15.2)		2997 (66)	1378 (30)	149 (3)	
60-69	3045 (12)	82.8 (17.1)		1410 (46)	1315 (43)	320 (11)	
>=70	1274 (5)	72.0 (17.3)		164 (13)	806 (63)	304 (24)	
Sex							
Female	13433 (54)	102.6 (19.5)		10404 (77)	2585 (19)	444 (3)	< 0.001
Male	11341 (46)	97.7 (19.3)	0.33	8032 (71)	2845 (25)	464 (4)	
Education (number of years)							
0	4794 (19)	97.7 (20.2)	< 0.001	3458 (72)	1075 (22)	261 (5)	< 0.001
5	3194 (13)	101.7 (19.4)		2456 (77)	625 (20)	113 (4)	
10	8855 (36)	103.2 (18.9)		6995 (79)	1620 (18)	240 (3)	
> 10	6358 (26)	100.0 (19.2)		4638 (73)	1538 (24)	182 (3)	
Missing data	1573 (6)	. ,		889 (57)	572 (36)	112 (7)	
Area ^e				, í			
Urban	17732 (72)	102 (19.5)	0.03	13577 (77)	3602 (20)	553 (3)	< 0.001
Rural	7042 (28)	96.3 (19.1)		4859 (69)	1828 (26)	355 (5)	
Latitude ^f							
North	13570 (55)	98.1 (19.1)	< 0.001	9599 (71)	3439 (25)	532 (4)	< 0.001
South	11204 (45)	103.1 (19.7)		8837 (79)	1991 (18)	376 (3)	
Life-style factors							
Current smoking							
No	18402 (74)	101.5 (19.6)	0.01	13920 (76)	3838 (21)	644 (3)	< 0.001
Yes	6372 (26)	97.1 (19.1)		4516 (71)	1592 (25)	264 (4)	
Alcohol consumption ever							
No	19588 (79)	100.9 (19.6)	0.01	14671 (75)	4203 (21)	714 (4)	0.01
Yes	5186 (21)	98.5 (19.1)		3765 (73)	1227 (24)	194 (4)	
Vegetarian							
No	15043 (61)	102.7 (19.7)	< 0.001	11721 (78)	2835 (19)	487 (3)	< 0.001
Yes	9731 (39)	96.8 (18.9)		6715 (69)	2595 (27)	421 (4)	
Biological factors							
Body mass index (kg/m ²)							
Underweight (≤18.5)	10297 (42)	100.1 (19.6)	< 0.001	7626 (74)	2284 (22)	387 (4)	0.01
Normal (>18.5 - ≤25)	2403 (10)	101.58 (20.5)		1838 (76)	471 (20)	94 (4)	
Overweight (>25 - \leq 30)	7221 (29)	99.9 (18.8)		5309 (74)	1680 (23)	232 (3)	
Obese (>30)	3286 (13)	99.3 (19.2)		2392 (73)	766 (23)	128 (4)	
Missing data	1567 (6)	· /		1271 (81)	229 (15)	67 (4)	
Fat free mass (kg/m^2)	× /			× /	× ,	. /	
1^{st} tertile (≤ 37)	7141 (29)	101.9 (20.1)	< 0.001	5481 (77)	1381 (19)	279 (4)	< 0.001

2 nd tertile 3 rd tertile Missing d	. ,	7141 (29) 7141 (29) 3351 (14)	101.3 (19.1) 98.3 (18.6)	5419 (76) 5110 (72) 2426 (72)	1487 (21) 1797 (25) 765 (23)	235 (3) 234 (3) 160 (5)
497					()	
498	^a Percentages	in columns ^{; b} per	centages in rows; c Bar	tlett's test for equal v	ariance; ^d Chi	-square test; e
499	Urban areas in	nclude Delhi, Ch	ennai and Sonipat distri	ict. Rural areas include	e Sonipat, Vi	shakhapatnam
500	and Faridabad	districts; ^f North	areas include Delhi, So	onipat and Faridabad o	listrict. South	areas include
501	Chennai and V	ishakhapatnam d	istricts.			
			istricts.			
	For	peer review on	ly - http://bmjopen.br	nj.com/site/about/g	uidelines.xht	27 ml

502 Table S2. Associations between sociodemographic and anthropometric characteristics and estimated glomerular filtration rate (eGFR) and eGFR<60 by sex

	Men, n=5 434			Women, n=7	066	
Variable		eGFR	eGFR<60		eGFR	eGFR<60
	n (%)	Coefficient (95%CI) ^a	OR (95% CI) ^a	n (%)	Coefficient (95%CI) ^a	OR (95% CI)
Age (years) ^b	× 7			× /	· · · · · · · · · · · · · · · · · · ·	· · · · · ·
<39	2335 (43)			3786 (54)		
40-49	1568 (29)	-9.0 (-108.0)	2.4 (1.2 - 4.6)	1908 (27)	-12 (-1312)	4.5 (1.9 - 10)
50-59	843 (16)	-17 (-1816)	3.8 (1.9 - 7.7)	863 (12)	-21 (-2220)	12 (5.2 - 27)
60-69	479 (9)	-25 (-2724)	13 (7.0 - 24)	414 (6)	-30 (-3129)	33 (15 - 73)
>=70	209 (4)	-34 (-3632)	31 (16 - 59)	95 (1)	-35 (-3832)	43 (16 - 118)
Education (number of completed years)				()	· · · ·	· · · · ·
0	823 (15)		1	1997 (28)		1
≤5	703 (13)	3.3 (1.8 - 4.7)	0.24 (0.13 - 0.46)	1006 (14)	0.73 (-0.27 -1.7)	0.81 (0.42 - 1.6)
6-≤10	2363 (43)	1.7 (0.51 - 2.8)	0.31 (0.20 - 0.48)	2454 (35)	0.67 (-0.13 -1.5)	0.43 (0.21 - 0.9)
> 10	1545 (28)	-1.3 (-2.60.10)	0.27 (0.15 - 0.47)	1609 (23)	-2.4 (-3.31.5)	0.76 (0.40 - 1.5)
Area ^c	3583 (66)					
Urban	1851 (34)		1	4911 (70)		1
Rural	()	-4.0 (-4.83.2)	2.7 (1.8 - 4.0)	2155 (30)	-3.7 (-4.43.0)	2.0 (1.3 - 3.1)
Latitude ^d		· · · ·				× ,
North	2861 (53)		1	3402 (48)		1
South	2573 (47)	-1.5 (-2.30.74)	1.8 (1.2 - 2.6)	3664 (52)	2.6 (2.0 - 3.2)	1.3 (0.83 - 2.0)
Current tobacco consumption						
No	2804 (52)		1	6553 (93)		1
Yes	2630 (48)	1.1 (0.36 - 1.9)	1.3 (0.91 - 1.9)	513 (7)	-1.9 (-3.10.73)	1.5 (0.87 - 2.7)
Alcohol consumption ever	~ /	× /	× /	~ /	× /	
No	3035 (56)		1	7059 (100)		1

BMJ Open

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		Yes Vegetarian No Yes Body mass index (kg/m2) e Underweight (≤ 18.5) Normal ($\geq 18.5 - \leq 25$) Overweight ($\geq 25 - \leq 30$) Obese (≥ 30)	2399 (44) 3576 (66) 1858 (34) 2888 (56) 812 (16) 1209 (23) 243 (5)	-0.71 (-1.5 - 0.06) 0.65 (-0.18 - 1.5) 4.0 (2.9 - 5.2) -1.7 (-2.70.73) -0 71 (-2.6 - 1.2)	1.6 (1.08 - 2.3) 1 0.61 (0.41 - 0.90) 1 0.69 (0.42 - 1.1) 0.71 (0.42 - 1.2) 0.36 (0.09 - 1.5)	7 (0) 4396 (62) 2670 (38) 2991 (44) 764 (11) 2104 (31) 907 (13)	-9.3 (-19 -0.4) -2.1 (-2.71.5) 1.6 (0.57 -2.6) -0.11 (-0.84 -0.62) -0.64 (-1.6 -0.33)	1.0 (1.0 - 1.0) 1 $0.70 (0.44 - 1.1)$ 1 $1.1 (0.57 - 2.0)$ $0.67 (0.38 - 1.2)$ $0.55 (0.23 - 1.3)$	
7 8 9 10 11 12 13 14	503 504	Vegetarian No Yes Body mass index (kg/m2) ^e Underweight (≤18.5) Normal (>18.5 - ≤25) Overweight (>25 - ≤30)	3576 (66) 1858 (34) 2888 (56) 812 (16) 1209 (23) 243 (5) 361 (8) 1351 (28) <u>3093 (64)</u> for age; ^c Urban are	0.65 (-0.18 - 1.5) 4.0 (2.9 - 5.2) -1.7 (-2.7 - 0.73) -0.71 (-2.6 - 1.2) -0.42 (-2.1 - 1.2) -3.7 (-5.3 - 2.2) as include Delhi, Chennai	1 0.61 (0.41 - 0.90) 1 0.69 (0.42 - 1.1) 0.71 (0.42 - 1.2) 0.36 (0.09 - 1.5) 1 0.78 (0.44 - 1.4) 0.50 (0.28 - 0.90) and Sonipat district. Rural a ennai and Vishakhapatnam o	4396 (62) 2670 (38) 2991 (44) 764 (11) 2104 (31) 907 (13) 3833 (58) 2535 (39) 208 (3) arreas include Son	-2.1 (-2.71.5) 1.6 (0.57 -2.6) -0.11 (-0.84 -0.62) -0.64 (-1.6 -0.33) -1.4 (-2.00.74) <u>-1.4 (-3.2 -0.45)</u> ipat, Vishakhapatnam and es with missing values.	1 0.70 (0.44 - 1.1) 1 1.1 (0.57 - 2.0) 0.67 (0.38 - 1.2) 0.55 (0.23 - 1.3) 1 0.67 (0.38 - 1.2) 0.58 (0.08 - 4.2)	

505 Table S3. Multiple regression analysis of sociodemographic characteristics associated with eGFR and eGFR<60

506 including study participants with proteinuria (but without diabetes or hypertension), n=12533

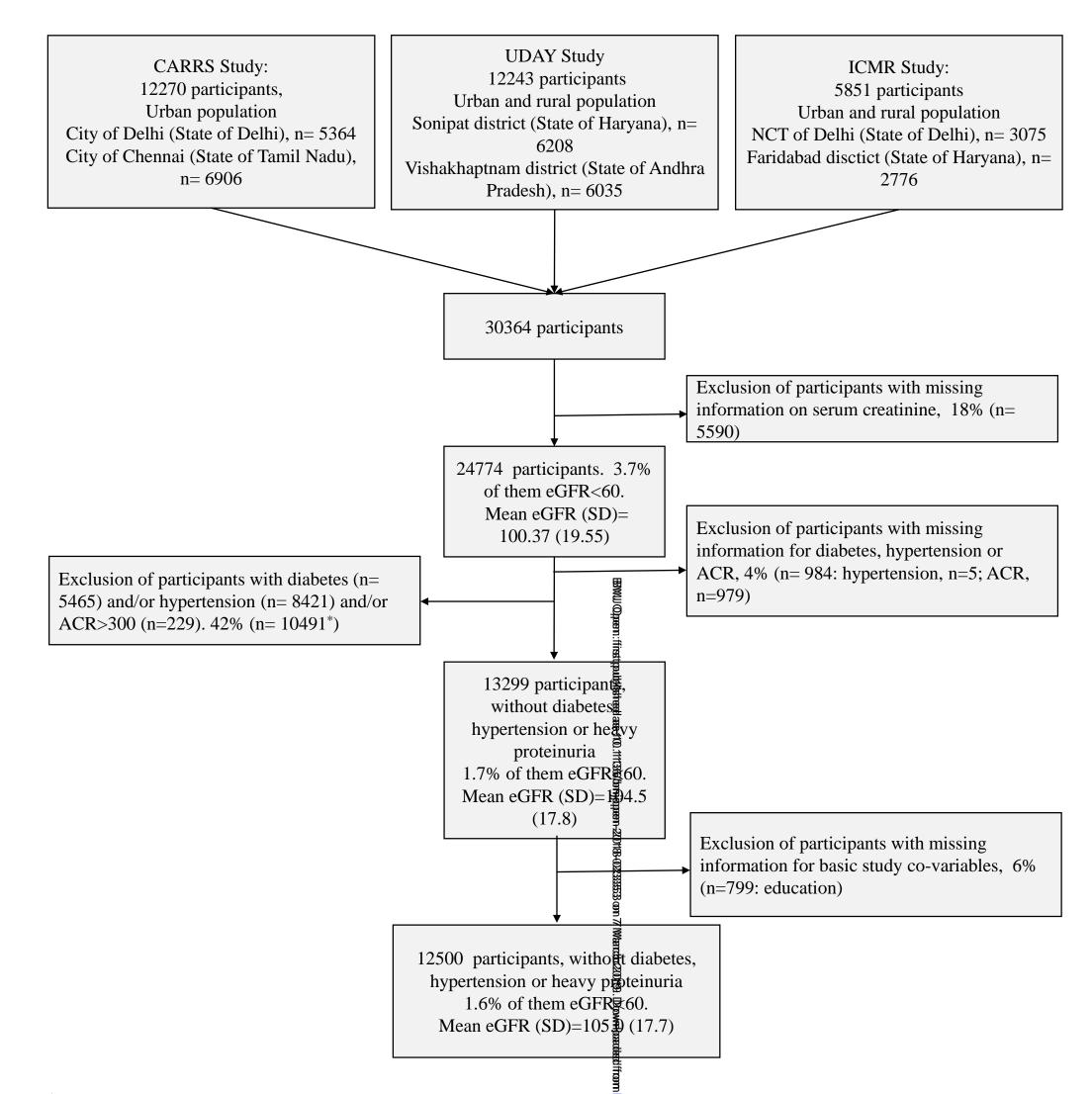
	eGFR	eGFR<60
Variable	Coefficient (95%CI)*	OR (95%CI) [*]
Area [¥]		
Urban		1
Rural	-4.6 (-5.14.0)	1.9 (1.4 - 2.7)
Latitude [‡]		
North		1
South	0.29 (-0.21 - 0.78)	1.3 (0.98 - 1.8)
Education (number of years)		
0		1
5	0.83 (0 - 1.7)	0.55 (0.35 - 0.87)
10	0.04 (-0.64 - 0.72)	0.51 (0.35 - 0.76)
> 10	-3.8 (-4.63.0)	0.66 (0.4 - 1.1)
Alcohol consumption ev	er	
No		1
Yes	-0.78 (-1.50.05)	1.2 (0.85 - 1.8)
Sex		
Female		1
Male	-2.9 (-3.52.3)	1.4 (0.96 - 2.0)
Age	-0.91 (-0.930.89)	1.1 (1.1 - 1.1)

508 ^aVariables mutually adjusted, ^b Urban areas include Delhi, Chennai and Sonipat district. Rural areas include

509 Sonipat, Vishakhapatnam and Faridabad districts; ^c North areas include Delhi, Sonipat and Faridabad district.

510 South areas include Chennai and Vishakhapatnam districts.

511	Table S4. Multiple regression analysis of sociodemographic characteristics associated with eGFR and eGFR<60
F10	


including plasma fasting glucose, HbA1c and systolic blood pressure

7			eGFR	eGFR<60
8		Variable	Coefficient (95%CI)*	OR (95%CI) [*]
9		Area [¥]		
10		Urban		1
11		Rural	-4.9 (-5.54.4)	2.3 (1.6 – 3.2)
12 13		Latitude [‡]		
13		North		1
15		South	0.23 (-0.26 - 0.72)	1.3 (0.95 - 1.8)
16		Education (number of years)		· · ·
17		0		1
18		5	1.0 (0.20 - 1.9)	0.49 (0.31 - 0.79)
19		10	0.19 (-0.49 - 0.87)	0.47 (0.31 - 0.71)
20		> 10	-3.5 (-4.32.8)	0.62 (0.40 - 1.0)
21 22		Alcohol consumption ever		
22		No		1
24		Yes	-0.72 (-1.40.01)	1.3 (0.90 - 1.9)
25		Sex		
26		Female		1
27		Male	-2.7 (-3.32.1)	1.5(0.01-2.1)
28		Age	-0.89 (-0.920.87)	1.1(1.1 - 1.1)
29		Systolic blood pressure (mm Hg)	-0.06 (-0.080.04)	1.0(0.99 - 1.0)
30 21		Hb1Ac (%)	0.03 (-0.56 - 0.62)	1.9(1.3 - 2.8)
31 32		Fasting plasma glucose (mg/dl)	-0.06 (-0.840.04)	· · · · ·
33	514	^a Variables mutually adjusted, ^b U		· · · · · · · · · · · · · · · · · · ·
34	514	variables mutually aujusted, U	nual aleas include Delni,	Chemiai and Sompat district. Rui

al areas include

Sonipat, Vishakhapatnam and Faridabad districts; ^c North areas include Delhi, Sonipat and Faridabad district.

South areas include Chennai and Vishakhapatnam districts.

* 2353 participants with diabetes only; 5185 participants with hypertension only; 35 participants with ACR>30 only; 2724 participants with diabetes, and hypertension; 35 participants with diabetes and ACR>30; 47 participants with hypertension and ACR>30; 112 participants with diabetes, hypertension and ACR>30.

pæn bonjj conn// om 18phila20h 200140 by guæst. Protected by capyright.

Prevalence Ratio Ag ≤39 40-49 50-59 60-69 ≥ 70

Supplementary material

Prevalence of and risk factors for chronic kidney disease of unknown aetiology in India: secondary data analysis of three population-based cross-sectional studies

Cristina O'Callaghan-Gordo, Roopa Shivashankar , Shuchi Anand, Shreeparna Ghosh , Jason Glaser, Ruby Gupta, Kristina Jakobsson, Dimple Kondal, Anand Krishnan, Sailesh Mohan, Viswanathan Mohan, Dorothea Nitsch, Praveen PA, Nikhil Tandon, K.M. Venkat Narayan, Neil Pearce Ben Caplin, Dorairaj Prabakharan

Content

 Table 1. Sociodemographic and anthropometric characteristics of overall study participants (prior to exclusion of population with diabetes, hypertension and proteinuria)

 Table 2. Associations between sociodemographic and anthropometric characteristics and estimated
 glomerular filtration rate (eGFR) and eGFR<60 by sex</th>

Table 3. Multiple regression analysis of sociodemographic and anthropometric characteristics associated with eGFR and eGFR<60 including study participants with proteinuria (but without diabetes or hypertension)

 Table 4. Multiple regression analysis of sociodemographic and anthropometric characteristics associated

 with eGFR and eGFR<60 including fasting plasma glucose, HbA1c and systolic blood pressure</td>

Table 1. Sociodemographic and anthropometric characteristics of overall study participants (prior to exclusion of population with diabetes, hypertension and proteinuria)

Variable	n (%)* n=12 500	eGFR		eGFR categories, n(%)**				
	11-12 300	mean (SD)	p-value [§]	≥90	90-60	<60	p-value [§]	
Socio-demographic factors								
Age (years)								
<39	9007 (36)	112.9 (14.9)	< 0.001	8248 (92)	716 (8)	43 (0)	< 0.001	
40-49	6924 (28)	101.9 (14.8)		5617 (81)	1215 (18)	92 (1)		
50-59	4524 (18)	92.9 (15.2)		2997 (66)	1378 (30)	149 (3)		
60-69	3045 (12)	82.8 (17.1)		1410 (46)	1315 (43)	320 (11)		
>=70	1274 (5)	72.0 (17.3)		164 (13)	806 (63)	304 (24)		
Sex								
Female	13433 (54)	102.6 (19.5)		10404 (77)	2585 (19)	444 (3)	< 0.001	
Male	11341 (46)	97.7 (19.3)	0.33	8032 (71)	2845 (25)	464 (4)		
Education (number of years)								
0	4794 (19)	97.7 (20.2)	< 0.001	3458 (72)	1075 (22)	261 (5)	< 0.001	
5	3194 (13)	101.7 (19.4)		2456 (77)	625 (20)	113 (4)		
10	8855 (36)	103.2 (18.9)		6995 (79)	1620 (18)	240 (3)		
> 10	6358 (26)	100.0 (19.2)		4638 (73)	1538 (24)	182 (3)		
Missing data	1573 (6)			889 (57)	572 (36)	112 (7)		
Area ^e								
Urban	17732 (72)	102 (19.5)	0.03	13577 (77)	3602 (20)	553 (3)	< 0.001	
Rural	7042 (28)	96.3 (19.1)		4859 (69)	1828 (26)	355 (5)		
Latitude ^f	~ /	~ /		~ /	· · · ·			
North	13570 (55)	98.1 (19.1)	< 0.001	9599 (71)	3439 (25)	532 (4)	< 0.001	
South	11204 (45)	103.1 (19.7)		8837 (79)	1991 (18)	376 (3)		
Life-style factors								
Current smoking								
No	18402 (74)	101.5 (19.6)	0.01	13920 (76)	3838 (21)	644 (3)	< 0.001	
Yes	6372 (26)	97.1 (19.1)	0.01	4516 (71)	1592 (25)	264 (4)	<0.001	
Alcohol consumption ever	0372 (20)	,,,, (i),i)		1010(71)	1092 (20)	201(1)		
No	19588 (79)	100.9 (19.6)	0.01	14671 (75)	4203 (21)	714 (4)	0.01	
Yes	5186 (21)	98.5 (19.1)	0.01	3765 (73)	1227 (24)	194 (4)	0.01	
Vegetarian	5100 (21)	<i>y</i> 0.5 (1 <i>y</i> .1)		5765(75)	1227 (24)	1)+ (+)		
No	15043 (61)	102.7 (19.7)	< 0.001	11721 (78)	2835 (19)	487 (3)	< 0.001	
Yes	9731 (39)	96.8 (18.9)	<0.001	6715 (69)	2595 (17)	487 (3)	<0.001	
Biological factors	9731 (39)	90.8 (18.9)		0713 (09)	2393 (27)	421 (4)		
Body mass index (kg/m ²)								
•	10207 (42)	100.1(10.6)	<0.001	7626 (74)	2284 (22)	297 (1)	0.01	
Underweight (≤ 18.5)	10297 (42)	100.1 (19.6)	< 0.001	7626 (74)	2284 (22)	387 (4)	0.01	
Normal (>18.5 - ≤ 25)	2403 (10)	101.58 (20.5)		1838 (76)	471 (20)	94 (4)		
Overweight (>25 - \leq 30)	7221 (29)	99.9 (18.8)		5309 (74)	1680 (23)	232 (3)		
Obese (>30)	3286 (13)	99.3 (19.2)		2392 (73)	766 (23)	128 (4)		
Missing data	1567 (6)			1271 (81)	229 (15)	67 (4)		
Fat free mass (kg/m^2)			0.05		1001		0.07	
1^{st} tertile (≤ 37)	7141 (29)	101.9 (20.1)	< 0.001	5481 (77)	1381 (19)	279 (4)	< 0.001	

2 nd tertile (>37 - <45)	7141 (29)	101.3 (19.1)	5419 (76)	1487 (21)	235 (3)
3 rd tertile (≤45)	7141 (29)	98.3 (18.6)	5110 (72)	1797 (25)	234 (3)
Missing data	3351 (14)		2426 (72)	765 (23)	160 (5)

^a Percentages in columns^{; b} percentages in rows^{; c} Bartlett's test for equal variance; ^d Chi-square test; ^e Urban areas include Delhi, Chennai and Sonipat district. Rural areas include Sonipat, Vishakhapatnam and Faridabad districts; ^f North areas include Delhi, Sonipat and Faridabad district. South areas include Chennai and Vishakhapatnam districts.

to been terien only

BMJ Open

)			1J Open			
				1-2200 (18-4-1) 2002 (19-4-1) 2003 (19-4-1)		
Table 2. Associations between soci	odemographic and a Men, n=5 434	nthropometric characteristics	and estimated glomerula	r filtration rate (e Women, n=7		
Variable		eGFR	eGFR<60		eGFR	eGFR<60
	n (%)	Coefficient (95%CI) ^a	OR (95% CI) ^a	– n (%)	Coefficient (95%CI) ^a	OR (95% C
Age (years) ^b						
<39	2335 (43)			3786 (54)		
40-49	1568 (29)	-9.0 (-108.0)	2.4 (1.2 - 4.6)	1908 (27)	-12 (-1312)	4.5 (1.9 - 10)
50-59	843 (16)	-17 (-1816)	3.8 (1.9 - 7.7)	863 (12)	F Contraction of the second	12 (5.2 - 27)
60-69	479 (9)	-25 (-2724)	13 (7.0 - 24)	414 (6)		33 (15 - 73)
>=70	209 (4)	-34 (-3632)	31 (16 - 59)	95 (1)	-35 (-3832)	43 (16 - 118)
Education (number of completed years)						
0	823 (15)		1	1997 (28)	F	1
≤5	703 (13)	3.3 (1.8 - 4.7)	0.24 (0.13 - 0.46)	1006 (14)	0.73 (-0.27 -1.7)	0.81 (0.42 - 1.6)
6-≤10	2363 (43)	1.7 (0.51 - 2.8)	0.31 (0.20 - 0.48)	2454 (35)	0.67 (-0.13 -1.5)	0.43 (0.21 - 0.9)
> 10	1545 (28)	-1.3 (-2.60.10)	0.27 (0.15 - 0.47)	1609 (23)	-2.4 (-3.31.5)	0.76 (0.40 - 1.5)
Area ^c	3583 (66)					
Urban	1851 (34)		1	4911 (70)		1
Rural	× /	-4.0 (-4.83.2)	2.7 (1.8 - 4.0)	2155 (30)	-3.7 (-4.43.0)	2.0 (1.3 - 3.1)
Latitude ^d				РИЛ (3	
North	2861 (53)		1	3402 (48)		1
South	2573 (47)	-1.5 (-2.30.74)	1.8 (1.2 - 2.6)		2.6 (2.0 -3.2)	1.3 (0.83 - 2.0)
Current tobacco consumption	()				•	
No	2804 (52)		1	6553 (93)		1
Yes	2630 (48)	1.1 (0.36 - 1.9)	1.3 (0.91 - 1.9)	6553 (93) 513 (7)	-1.9 (-3.10.73)	1.5 (0.87 - 2.7)
Alcohol consumption ever			- (
No	3035 (56)		1	7059 (100)		1

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

			BMJ Open	ייייער ער אבער ער אינער א ער אינער א		Page
37					waaan 7	
Yes	2399 (44)	-0.71 (-1.5 - 0.06)	1.6 (1.08 - 2.3)	7(0)	-9.3 (-19 -0.4)	1.0 (1.0 - 1.0)
Vegetarian No Yes Body mass index (kg/m2) ^e	3576 (66) 1858 (34)	0.65 (-0.18 - 1.5)	1 0.61 (0.41 - 0.90)	4396 (62) 2670 (38)	-2.1 (-2.71.5)	1 0.70 (0.44 - 1.1)
Underweight (≤ 18.5) Normal (>18.5 - ≤ 25) Overweight (>25 - ≤ 30) Obese (>30) Fat free mass (kg/m2) °	2888 (56) 812 (16) 1209 (23) 243 (5)	4.0 (2.9 - 5.2) -1.7 (-2.7 - 0.73) -0.71 (-2.6 - 1.2)	1 0.69 (0.42 - 1.1) 0.71 (0.42 - 1.2) 0.36 (0.09 - 1.5)	· · · · · · · · · · · · · · · · · · ·	1.6 (0.57 -2.6) -0.11 (-0.84 -0.62) -0.64 (-1.6 -0.33)	1 1.1 (0.57 - 2.0) 0.67 (0.38 - 1.2) 0.55 (0.23 - 1.3)
1st tertile (≤37) 2nd tertile (>37 - <45) 3rd tertile (≤45)	361 (8) 1351 (28) 3093 (64)	-0.42 (-2.1 - 1.2) -3.7 (-5.32.2)	1 0.78 (0.44 - 1.4) 0.50 (0.28 - 0.90)	3833 (58) 2535 (39) 208 (3)	-1.4 (-2.00.74) -1.4 (-3.2 -0.45)	1 0.67 (0.38 - 1.2) 0.58 (0.08 - 4.2)

^a Adjusted for age; ^b Not adjusted for age; ^c Urban areas include Delhi, Chennai and Sonipat district. Rural areas include Sonipat, Vishakhapatnam and Faridabad districts;

North areas include Delhi, Sonipat and Faridabad district. South areas include Chennai and Vishakhapatnam districts; • Variabus with missing values.

BMJ Open

Table 3. Multiple regression analysis of sociodemographic characteristics associated with eGFR and eGFR<60 including study participants with proteinuria (but without diabetes or hypertension), n=12533

	eGFR	eGFR<60
Variable	Coefficient (95%CI)*	OR (95%CI) [*]
Area [¥]		
Urban		1
Rural	-4.6 (-5.14.0)	1.9 (1.4 - 2.7)
Latitude [‡]		
North		1
South	0.29 (-0.21 - 0.78)	1.3 (0.98 - 1.8)
Education (number of		
years)		1
0 5	0.92(0, 1.7)	1
-	0.83 (0 - 1.7)	0.55 (0.35 - 0.87)
10	0.04 (-0.64 - 0.72)	0.51 (0.35 - 0.76)
> 10	-3.8 (-4.63.0)	0.66 (0.4 - 1.1)
Alcohol consumption even	r	4
No		1
Yes	-0.78 (-1.50.05)	1.2 (0.85 - 1.8)
Sex		
Female		1
Male	-2.9 (-3.52.3)	1.4 (0.96 - 2.0)
Age	-0.91 (-0.930.89)	1.1 (1.1 - 1.1)

^aVariables mutually adjusted, ^b Urban areas include Delhi, Chennai and Sonipat district. Rural areas include Sonipat, Vishakhapatnam and Faridabad districts; ^c North areas include Delhi, Sonipat and Faridabad district. South areas include Chennai and Vishakhapatnam districts.

BWWU Oppen: first:published as 10.111360/bmjoppen-2018-0223333 on 7 Wardh 2019. Downloaded/from http://bmjoppen/bmjj.com/ on 140M20h 2024 by guest. Protected by capyright.

Table 4. Multiple regression analysis of sociodemographic characteristics associated with eGFR and eGFR<60 including plasma fasting glucose, HbA1c and systolic blood pressure

	eGFR	eGFR<60
Variable	Coefficient (95%CI)*	OR (95%CI) *
Area ¥		
Urban		1
Rural	-4.9 (-5.54.4)	2.3 (1.6 – 3.2)
Latitude [‡]		
North		1
South	0.23 (-0.26 - 0.72)	1.3 (0.95 - 1.8)
Education (number of years)		
0		1
5	1.0 (0.20 - 1.9)	0.49 (0.31 - 0.79)
10	0.19 (-0.49 - 0.87)	0.47 (0.31 - 0.71)
> 10	-3.5 (-4.32.8)	0.62 (0.40 - 1.0)
Alcohol consumption ever		
No		1
Yes	-0.72 (-1.40.01)	1.3 (0.90 - 1.9)
Sex		
Female		1
Male	-2.7 (-3.32.1)	1.5 (0.01 – 2.1)
Age	-0.89 (-0.920.87)	1.1 (1.1 – 1.1)
Systolic blood pressure (mm Hg)	-0.06 (-0.080.04)	1.0 (0.99 – 1.0)
Hb1Ac (%)	0.03 (-0.56 - 0.62)	1.9 (1.3 – 2.8)
Fasting plasma glucose (mg/dl)	-0.06 (-0.840.04)	1.0 (1.0 – 1.0)

^a Variables mutually adjusted, ^b Urban areas include Delhi, Chennai and Sonipat district. Rural areas include Sonipat, Vishakhapatnam and Faridabad districts; ^c North areas include Delhi, Sonipat and Faridabad district. South areas include Chennai and Vishakhapatnam districts.

BMJ Open

Prevalence of and risk factors for chronic kidney disease of unknown aetiology in India: secondary data analysis of three population-based cross-sectional studies

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-023353.R1
Article Type:	Research
Date Submitted by the Author:	17-Aug-2018
Complete List of Authors:	O'Callaghan Gordo, Cristina; Instituto de Salud Global Barcelona, Campus Mar Shivashankar, Roopa; Public Health Foundation of India, Anand, Shuchi; Stanford Hospital and Clinics, Ghosh, Shreeparna; Public Health Foundation of India, Glaser, Jason; La Isla Foundation; London School of Hygiene and Tropical Medicine, 3Department of Non-communicable Disease Epidemiology Gupta, Ruby; Publichealth Foundation of India Jakobsson , Kristina ; Lunds Universitet Arbets- och miljomedicin Kondal, Dimple; Publichealth Foundation of India Krishnan , Anand ; All India Institute of Medical Sciences Centre for Community Medicine Mohan, Sailesh; Public Health Foundation of India, Mohan, V; Madras Diabetes Research Foundation Nitsch, Dorothea; LSHTM PA , Praveen ; All India Institute of Medical Sciences, Department of Endocrinology and Metabolism Tandon, Nikhil; All India Institute of Medical Sciences, Narayan, K; Emory University School of Public Health, Global Health Pearce, Neil; London School of Hygiene and Tropical Medicine Caplin, Ben; University College London Medical School, Centre for Nephrology, Prabhakaran, Dorairaj; Public Health Foundation of India, Centre for Control of Chronic Conditions and Injuries
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Global health
Keywords:	EPIDEMIOLOGY, NEPHROLOGY, Chronic renal failure < NEPHROLOGY, PUBLIC HEALTH

1 2	
3 4 5	SCHOLARONE [™]
6 7	Manuscripts
8 9	
10 11	
12 13 14	
15 16	
17 18	
19 20	
21 22	
23 24 25	
26 27	
28 29	
30 31	
32 33 34	
35 36	
37 38	
39 40 41	
41 42 43	
44 45	
46 47	
48 49 50	
50 51 52	
53 54	
55 56	
57 58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

330 march 2019 march 2019 march 2019 march 2019 march 2019 (2019). Downloaded from http://bmjgpen.bmjj.com// on ApM 2012 2024 by/ guest. Protected by/ copyright

1 TITLE PAGE

2 Title: Prevalence of and risk factors for chronic kidney disease of unknown aetiology in India: secondary data
 3 analysis of three population-based cross-sectional studies

4 Authors names and affiliations:

5 Cristina O'Callaghan-Gordo^{1,2,3,4*}; Roopa Shivashankar^{5, 6*}; Shuchi Anand⁷; Shreeparna Ghosh⁵; Jason Glaser^{4,}
6 ⁸; Ruby Gupta⁵; Kristina Jakobsson^{9,10}; Dimple Kondal^{5, 6}; Anand Krishnan¹¹; Sailesh Mohan⁵; Viswanathan
7 Mohan^{12, 13}; Dorothea Nitsch¹⁴; Praveen PA^{6, 15}; Nikhil Tandon¹⁵; K.M. Narayan¹⁶; Neil Pearce^{4, 17}; Ben
8 Caplin^{18**}; Dorairaj Prabhakaran^{5, 6**}.

¹ ISGlobal, Barcelona, Spain; ² Universitat Pompeu Fabra (UPF), Barcelona, Spain; ³ CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ⁴ Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK; ⁵ Public Health Foundation of India (PHFI), New Delhi, India; ⁶ Centre for Control of Chronic Conditions (4Cs), New Delhi, India; ⁷ Stanford University School of Medicine; ⁸ La Isla Network: ⁹ Occupational and Environmental Medicine, Sahlgrenska Academy, Gothenburg University, Sweden; ¹⁰ Occupational and Environmental Medicine, Lund University, Sweden; ¹¹ Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi.; ¹² Diabetes Research, Madras Diabetes Research Foundation, Chennai, India; ¹³ Dr. Mohan's Diabetes Specialities Centre, Chennai, India; ¹⁴ Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK; ¹⁵ Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India; ¹⁶ Emory Global Diabetes Research Center, Rollins School of Public Health, Emory University, Atlanta, GA, USA; ¹⁷ Centre for Global NCDs, London School of Hygiene and Tropical Medicine, London, UK; ¹⁸ Centre for Nephrology. University College London Medical School, London, UK.

- 22 * Joint first authors; ** Joint last authors
- 23 Corresponding author's name and email address:
- 24 Cristina O'Callaghan-Gordo, cristina.ocallaghan@isglobal.org

25 Word count: 3919

1 2 3 4	26	ABSTRACT
5	27	Objectives: To assess whether chronic kidney disease of unknown aetiology (CKDu) is present in India and to
7 8	28	identify risk factors for it using population-based data and standardised methods.
9	29	Design: Secondary data analysis of three population-based cross-sectional studies conducted between 2010-
10 11	30	2014.
12 13	31	Setting: Urban and rural areas of Northern India (states of Delhi and Haryana) and Southern India (states of
14 15	32	Tamil Nadu and Andhra Pradesh)
16 17	33	Participants: 12,500 individuals without diabetes, hypertension or heavy proteinuria
18	34	Outcome measures: Mean estimated the glomerular filtration rate (eGFR) and the prevalence of eGFR below
19 20	35	60ml/min per 1.73m ² (eGFR<60) in individuals without diabetes, hypertension or heavy proteinuria (proxy
21 22	36	definition of CKDu).
23 24	37	Results: The mean eGFR was 105.0±17.8 ml/min per 1.73m2. The prevalence of eGFR<60 was 1.6%
25 26	38	(95%CI=1.4, 1.7), but this figure varied markedly between areas, being highest in rural areas of Southern Indian
27	39	[4.8% (3.8, 5.8)]. In Northern India, older age was the only risk factor associated with lower mean eGFR and
28 29	40	eGFR<60 [regression coefficient (95%CI)=-0.94 (0.97, 0.91); OR (95%CI)=1.10 (1.08, 1.11)]. In Southern
30 31	41	India, risk factors for lower mean eGFR and eGFR<60 respectively were residence in a rural area [-7.78 (-8.69, -
32 33	42	6.86); 4.95 (2.61, 9.39)], older age [-0.90 (-0.93, -0.86); 1.06 (1.04, 1.08)] and less education [-0.94 (-1.32, -
34 35	43	0.56); 0.67 (0.50, 0.90) for each five years at school].
36	44	Conclusions: CKDu is present in India and is not confined to Central America and Sri Lanka. Identified risk
37 38	45	factors are consistent with risk factors previously reported for CKDu in Central America and Sri Lanka.
39 40		
41 42	46	KEYWORDS
43 44	47	Epidemiology; Chronic kidney disease; Chronic kidney disease of unknown aetiology; India; Rural population
45 46		
47	48	ARTICLE SUMMARY
48 49 50 51	49	Strengths and limitations of this study
52 53	50	• The use of a random selection of population-based participants allows the estimation of CKDu
54 55	51	prevalence in the general population.
56		
57 58		2
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

田WUI Open: ffrst(published) as 110:11136/bmjppen-2018-0223333 on 7 Wardh 2019. Downloaded/from http://bmjppen.bmjj.com/ on 140M 2014 by guest. Protected by copyright

A large sample size including participants from different areas of India (urban and rural, and Northern and Southern India) increases the representativeness of our results.

• The use of standardized definitions of CKDu facilitates international comparisons of CKDu prevalence and risk factors.

• The prevalence of eGFR<60 observed in this study is likely to be underestimated; however, this is unlikely to have biased the internal comparisons conducted in this study.

58 FUNDING

This work was supported in part by grant MR/P02386X/1 from the United Kingdom Medical Research Council under the Global Challenges Research Fund. It was also supported by grants from the Colt Foundation and the La Isla Foundation. The CARRS study was funded with federal funds from the National Heart, Lung, and Blood Institute, National Institutes of Health, under Contract No. HHSN2682009900026C. UDAY study was funded by Eli Lilly Foundation. ICMR-CHD study was funded by the Indian Council Medical Research (ICMR). The Centre for Global NCDs is supported by the Wellcome Trust Institutional Strategic Support Fund (097834/Z/11/B). CO-G holds a Sara Borrell postdoctoral fellowship awarded from the Carlos III National Institute of Health, Spain (CD13/00072).

BMJ Open

67 INTRODUCTION

High prevalence of CKDu has mainly been reported in the last decades amongst the working age populations of agricultural communities of tropical/subtropical regions, specifically in Central America and Sri Lanka [1–3]. In Nicaragua and El Salvador, the estimated prevalence of estimated glomerular filtration rate (eGFR; the clinical measure of kidney function) below 60ml/min per 1.73m² (eGFR<60), in the absence of diabetes and hypertension, was 10-20% [4-6]. It has been suggested that CKDu may also be highly prevalent in other low and middle income countries (LMICs), including India [7-11]. However, it is not clear in which other regions of the world CKDu occurs, whether the underlying aetiology is the same in different regions and what the risk factors are. Currently, there is no consensus but factors such as heat stress, strenuous work, climatic conditions, agrochemical use, heavy metal exposure and infections have been suggested as risk factors [1,12-15].

Data on CKDu from India are scarce. The recent report of verbal autopsy data from India suggests CKD of all causes is a growing problem. However, it does not provide accurate population-based data on CKDu [16,17]. Existing reports indicate that CKDu may be common but it is difficult to be definite about this because of the absence of population-based studies using standardised and comparable methods. Data from the Indian CKD Registry, a hospital based registry of incident cases of CKD between 2006-2010, found that CKDu was the second commonest form of CKD after diabetic nephropathy [10]. However, this is restricted to referred cases and therefore may not be representative of the general population. There are also sporadic reports of high numbers of CKDu cases among agricultural communities of the South Eastern Indian states of Andhra Pradesh and Odisha (reviewed by Chatterejee [18] and Ganguli [19]). However, population-based data have not been reported for India.

We conducted a secondary analysis of representative sample surveys conducted in India between 2010-2014. Given the absence of a clear case definition for CKDu it is necessary to make a presumptive diagnosis based on measures/estimates of GFR in the absence of known risk factors for kidney disease. The overall aim of the current study was to use a methodology which is comparable to previous studies elsewhere in the world (particularly in Central America) to assess the extent to which reduced kidney function is a problem in India, and which areas and subpopulations are most affected. We therefore: (i) assessed the distribution eGFR and prevalence of eGFR below 60ml/min per 1.73m² (eGFR<60) in Indian populations restricted to those without known risk factors for CKD, i.e. diabetes, hypertension or heavy proteinuria; ii) compared these outcomes in

3012 How and the second s

95 North and South India and in urban and rural populations; and (iii) identified the risk factors associated with96 these outcomes.

97 METHODS

98 Study population

We used cross-sectional data from three population-based studies conducted in India: the "Centre for Cardiometabolic Risk Reduction in South Asia" cohort study (CARRS study) [20], the "Implementing a Comprehensive Diabetes Prevention and Management Program" study (UDAY study) [21] and the "prevalence of coronary heart disease repeat survey" study funded by the Indian Council of Medical Research (ICMR-CHD study) [22]. Details on study design and selection of participants from the CARRS, UDAY and ICMR-CHD studies have been previously described [20–22] and are summarized in Table 1. Participants from CARRS, UDAY and ICMR-CHD studies provided informed consent prior to participation. The three studies obtained ethical clearance from the corresponding institutions.

107	Table 1. Design and methods of the three studies included in the current analysis
-----	---

	CARRS		UDAY				ICMR-CHD		
Latitude (North/South)	North	South	North		South		North		
Residence	Urban		Urban	Rural	Urban	Rural	Urban	Rural	
(Urban/Rural)									
District (and	Delhi	Chennai	Sonipat	(state of	Vishakhap	atnam (state	National Capital	Faridabad	
State)	(state of	(state of	Haryana)	of Andhra	Pradesh)	Territory of	of Haryana)	
	Delhi)	Tamil					Delhi (state of		
		Nadu)					Delhi)		
Household	Multistage	cluster	Multista	ge clus	ter randoi	n (Census	Multistage	Simple cl	
sampling	ling random (wards - census Enumeration blocks (urban) or villages			cluster random	random (base				
	enumeratio	n blocks -	(rural) - households)				(wards - census	Health	
	households)	0				enumeration	Demographic	
			1				blocks -	Surveillance	
							households)	System)	
Individual	1 man an	d 1 woman	1 man and 1 woman from each household				All adults		
sampling	from each	n household	(selected by Kish me		method, [23].) ^b				
	(selected	by Kish							
	method, [23	3].) ^b	≥ 30						
Age groups	≥ 20						≥ 30		
included									
Exclusion criteria	Pregnant, bedridden and participants who were unable to comprehend the questionnaires due							aires due cogr	
deficiencies were e			led						
Study period	October	2010 -	July 201	4 - Decem	ber 2014		August 2010 - Jan	uary 2012	
	November	2011							
Laboratory ^a	PHFI °	MDRF ^d	PHFI ^c				PHFI °		

109 chemistry and HbA1c during the entire study periods.^b In households where only eligible men or only eligible

110 women were present, we selected just one adult. ^c Public Health Foundation of India; ^d Madras Diabetes

Research Foundation

For the current analyses, we excluded participants with missing information on serum creatinine, as this variable was necessary to estimate eGFR. As the focus of our study was CKDu, we excluded participants with known risk factors for CKD (i.e. diabetes and hypertension) or evidence of primary glomerular disease (as assessed by heavy proteinuria) or with missing information for these risk factors. We also excluded participants with missing information on basic co-variables (education) for all the analyses conducted. A study flowchart is presented in Figure 1. We classified participants as having; diabetes, if plasma fasting glucose was ≥ 126 mg/dl, or glycated haemoglobin A1c (HbA1c) was $\geq 6.5\%$, or the participant self-reported diabetes; hypertension, if systolic blood pressure was ≥ 140 mm Hg, or diastolic blood pressure was ≥ 90 mm Hg, or the participant self-reported hypertension; and heavy proteinuria, if the albumin/creatinine ratio (ACR) in urine was \geq 300 mg/g. We used the CKD-EPI equation to estimate GFR (eGFR) [24].

122 Data collection and laboratory analyses

Data collection was conducted between October 2010 and December 2014. All three studies used a standardized questionnaire to collect data on age, sex, completed years of education $(0, \le 5, >5 \le 10, >10)$, alcohol intake (ever, never) and dietary habits (vegetarian yes, no). Weight, height and body composition were measured using stadiometers (SECA 214 in the three studies) and electronic bioimpedance measuring instruments (Tanita BC 418 in CARRS and ICMR-CHD studies, and Tanita BC 601 in UDAY study). Body mass index (BMI, kg/m²) was calculated and categorized (≤18.5: underweight; >18.5-≤25: normal weight; >25-≤30: overweight; >30: obese) and fat free mass was derived from bioelectric impedance analysis (BIA). In CARRS and ICMR-CHD studies, fat free mass (Kg) was directly measured as previously described [25], whereas in UDAY study, fat free mass was estimated from the percentage of total body fat. To estimate total fat free mass from the percentage of body fat, we calculated the amount of total body fat by multiplying the percentage of body fat by the weight of the participant, and from that value we estimated the amount of fat free mass by subtracting the weight of total body fat from the total weight of the participant. Blood pressure was measured using electronic sphygmomanometers (OMRON (HEM-7080) in CARRS and ICMR-CHD studies, and OMRON (HEM 7200) in UDAY study), as previously reported [20,26]. Stadiometers, electronic bioimpedance measuring instruments, and electronic sphygmomanometes were calibrated before each study, and no re-calibration was needed during the duration of different studies. A fasting venous blood sample was used to measure glucose levels, HbA1c and serum creatinine levels and urine sample to measure albuminuria and creatinuria [20]. Glucose levels were measured using hexokinase/kinetic methods, HbA1c using high-performance liquid chromatography, serum

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

creatinine using the rate-blanked and compensated kinetic Jaffe method, traceable to isotope dilution mass spectrometry, and albuminuria using immune turbidmetric method [20]. Samples from UDAY, ICMR-CHD, and samples from CARRS from Delhi were analysed at Public Health Foundation of India (PHFI) laboratory and samples from CARRS from Chennai were analysed at Madras Diabetes Research Foundation (MDRF) laboratory. Both PHFI and MDRF laboratories used the same methodologies and protocols to analyse the samples and participated in Randox International Quality Assurance Scheme (RIQAS) for clinical chemistry and HbA1c during the entire study periods. Data from the three studies were homogenized and merged in a single data set.

149 Statistical analyses

We reported mean eGFR and prevalence eGFR<60 according to different characteristics of the study populations. UDAY and CARRS studies did not involve fully random population samples (since sampling was based on households, with one participant per household) and the proportions of study participants with particular outcomes (e.g. eGFR<60), will not be exactly the same (but very similar) to what would have been obtained with genuine random population samples; thus in this paper we refer to the prevalence in the study participants, not overall population prevalence estimates. We used linear regression models to estimate the associations between potential risk factors and eGFR and logistic regression models to estimate the associations between potential risk factors and eGFR<60. We also repeated the analyses separately for males and females. Variables associated with eGFR in the basic analyses (adjusted for age and sex) were considered for the multiple regression analysis. In the final multiple regression model, we included all variables that were of a priori interest and/or had shown independent associations with eGFR. We then checked for multicollinearity for each variable in the multiple regression analyses in comparison with the basic analyses [27]. 6% had missing values for basic co-variables (i.e. education) and were excluded from the analysis. 4% and 11% of participants had missing values for BMI and for fat free mass respectively. These participants were included in the main analysis, but we excluded them to compare models non-adjusted and adjusted for these variables. We calculated prevalence ratios of eGFR<60 by age-group for rural and urban areas. Urban areas were defined as "all places with a municipality, corporation, cantonment board or notified town area committee, etc., and all other places which satisfied the following criteria: a minimum population of 5,000; at least 75 per cent of the male main working population engaged in non-agricultural pursuits; and a density of population of at least 400 persons per km²", according to the 2011 Census of India definition [28]. Finally, we estimated potential interactions between urban (versus

170 rural) residence and latitude (Northern India (i.e. states of Delhi and Haryana) versus Southern India (states of

171 Tamil Nadu and Andhra Pradesh). Classification of latitude was done in concordance with the classification of

172 major geographical areas on India defined by the Indian Council of Medical Research [29], figure 1. We

173 conducted all analyses using Stata version 14 (StataCorp, College Station, TX, USA).

174 Patient and Public Involvement

175 Patients were not involved in the design of this analysis.

RESULTS

177 Characteristics of study participants

12,500 people were eligible for the current analyses (Figure 2). Table 2 summarizes the socio-demographic and anthropometric characteristics of the 12,500 study participants included in this analysis (the same information including participants with known risk factors for CKD (n=24,774) in supplementary material Table S1). The mean (standard deviation (±SD)) age of participants was 41.5±11.6 years. 88% (4,805/5,434) of the male population was formally employed; 76% (5,346/7,066) of women worked on house duties (i.e. housewives). The mean BMI was 24 ± 5.0 kg/m² and mean fat free mass was 42 ± 15 kg/m². The mean fasting plasma glucose was 91.9±12.3 mg/dl and the mean HbA1c was 5.5±0.4 %. The mean systolic and diastolic blood pressures were 114±12 mm Hg and 74±9 mm Hg, respectively. The median (inter quartile range, IQR) albumin/creatinine ratio (ACR) was 2.4 (4.3) mg/g (after exclusion of those with ACR>300mg/g, n=1,208).

187 Mean eGFR and prevalence of eGFR<60

188 The mean eGFR was 105.0±17.8 ml/min per 1.73m². The mean eGFR was lower at increasing ages, in males, in 189 inhabitants from rural areas and in those from Northern India, in participants with no formal education, and in 190 participants who reported tobacco consumption, alcohol intake and being vegetarian (Table 2). We observed 191 differences in mean eGFR depending on the area, being 104.5±17.6 in urban areas of Northern India, 100.3±16.2 192 in rural areas of Northern India, 110.9±15.7 in urban areas of Southern India and 97.4±19.8 in the rural area of 193 Southern India.

194 The prevalence of eGFR<60 among the study population was 1.6% (95% confidence interval (95% CI)=1.4,
195 1.9). Seventeen per cent (95% CI=16, 17) of study participants had eGFR≥60-<90 ml/min per 1.73m² and 82%

[95% confidence interval (95% CI)=81, 82] had eGFR≥90 ml/min per 1.73m². The prevalences of different categories of eGFR differed by formal education, tobacco consumption, alcohol intake and vegetarianism (Table 2). Also, we observed marked differences in the prevalence of eGFR<60 depending on the area, being 1.4 % (95% CI=1.1, 1.8) in urban areas of Northern India, 1.9 (95% CI=1.4, 2.6) in rural areas of Northern India, 0.43% (95% CI =0.03, 0.07) in urban areas of Southern India and 4.8 % (95% CI= 3.9, 5.9) in the rural area of Southern India. The prevalence ratio of eGFR<60 for rural versus urban residence was higher for participants <50 years than for older groups (Figure 3).

BWW Open: first published as 10.111365 bmjopen-2018-022333 on 7 Wardh 2019. Downloaded from http://bmjopen.bmj.com/ on 46Ni 201, 2024 by guest. Protected by copyright.

BMJ Open

203	Table 2.	Sociodemographic	and	anthropometric	characteristics	of	study	participants	(population	without
-----	----------	------------------	-----	----------------	-----------------	----	-------	--------------	-------------	---------

204 diabetes, hypertension or heavy proteinuria)

Variable	n (%) ^a n=12,500		eGFR categories, n(%) ^b		
		mean (SD)	≥90	90-60	<60
Socio-demographic					
Age (years)					
<39	6121 (49)	113.8 (14.6)	5656 (92)	443 (7)	22 (0)
40-49	3476 (28)	102.5 (14.2)	2864 (82)	572 (16)	40(1)
50-59	1706 (14)	93.9 (14.3)	1163 (68)	503 (29)	40 (2)
60-69	893 (7)	85.3 (16.2)	463 (52)	368 (41)	62 (7)
>=70	304 (2)	77.5 (15.1)	62 (20)	201 (66)	41 (13
Sex					
Female	7066 (57)	107.9 (17.1)	6039 (85)	945 (13)	82 (1)
Male	5434 (43)	101.3 (17.9)	4169 (77)	1142 (21)	123 (2
Education (number completed years)					
0	2820 (23)	100.7 (19.0)	2165 (77)	551 (20)	104 (4
≤5	1709 (14)	105.9 (17.3)	1412 (83)	273 (16)	24 (1)
6-≤10	4817 (39)	107.2 (16.8)	4095 (85)	675 (14)	47 (1)
> 10	3154 (25)	105.0 (17.5)	2536 (80)	588 (19)	30(1)
Area ^c					
Urban	8494 (68)	107.8 (16.1)	7247 (85)	1171 (14)	76 (1)
Rural	4006 (32)	99.0 (18.0)	2961 (74)	916 (23)	129 (3
Latitude ^d					
North	6263 (50)	103.0 (17.2)	4967 (79)	1197 (19)	99 (2)
South	6237 (50)	107.0 (18.1)	5241 (84)	890 (14)	106 (2
Life-style factors					
Current tobacco consumption					
No	9357 (75)	106.8 (17.3)	7836 (84)	1406 (15)	115 (1
Yes	3143 (25)	99.8 (18.1)	2372 (75)	681 (22)	90 (3)
Alcohol consumption ever					
No	10094 (81)	105.9 (17.4)	8362 (83)	1589 (16)	143 (1
	2406 (19)	101.1 (18.5)	1846 (77)	498 (21)	62 (3)

BMJ Open

•						
2 3	No	7972 (64)	107.0 (18.0)	6690 (84)	1154 (14)	128 (2)
4	Yes	4528 (36)	101.6 (16.6)	3518 (78)	933 (21)	77 (2)
5 6	Biological factors					
7 8	Body mass index (kg/m ²)					
9	Underweight (≤18.5)	5879 (47)	104.2 (17.9)	4734 (81)	1029 (18)	116 (2)
10 11	Normal (>18.5 - ≤25)	1576 (13)	104.7 (19.3)	1283 (81)	257 (16)	36 (2)
12	Overweight (>25 - ≤30)	3313 (27)	105.0 (16.9)	2710 (82)	568 (17)	35(1)
13 14	Obese (>30)	1150 (9)	105.5 (16.4)	948 (82)	194 (17)	8 (1)
15 16	Missing data	582 (5)		533 (92)	39 (7)	10 (2)
17	Fat free mass (kg)					
18 19	1 st tertile (≤37)	3746 (30)	106.6 (18.1)	3146 (84)	532 (14)	68 (2)
20	2 nd tertile (>37 - <45)	3801 (30)	105.9 (17.2)	3145 (83)	601 (16)	55 (1)
21 22	3^{rd} tertile (\geq 45)	3834 (31)	102.1 (17.0)	2981 (78)	801 (21)	52 (1)
23 24	Missing data	1119 (9)		936 (84)	153 (14)	30 (3)
25	205 a Demonstrance in a churry i b norm		anaag in alu da Dalk			

^a Percentages in columns^{; b} percentages in rows; ^c Urban areas include Delhi, Chennai and Sonipat district. Rural

areas include Sonipat, Vishakhapatnam and Faridabad districts; ^d North areas include Delhi, Sonipat and
 Faridabad district. South areas include Chennai and Vishakhapatnam districts.

BWU Opeen: first published ass 100.111336 bmj opeen-20118-0223333 on 71 Warch 2019. Downloaded from http://bmj opeen.bmj conn/ on 420 Ma20h 2024 by guest. Protected by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

As expected, age was an important risk factor for reduced eGFR: eGFR was 9.30 ml/min per 1.73 m² (95%CI=-9.51, -9.09, model adjusted for sex) lower for each additional 10 years of age. Additionally, being male, living in a rural setting, and consuming alcohol were associated with decreased mean eGFR (Table 3). Similarly, the odds of eGFR<60 also increased with age [OR per 10 years, adjusted for sex (95%CI)=2.34 (2.12, 2.59)] and being male, living in a rural setting, living in Southern India and consuming alcohol were also associated with eGFR<60 (Table 3). In general, risk factors for decreased mean eGFR and for eGFR<60 were similar for men and women (supplementary material, Table S2), but few differences were observed. Regarding mean eGFR, living in Southern India was associated with decreased mean eGFR in men and with increased mean eGFR in women; tobacco consumption was associated with increased mean eGFR in men and with decreased mean eGFR in women; vegetarianism was associated with decreased mean eGFR in women but not in men; and being overweight was associated with decreased mean eGFR but in men but not in women. Regarding risk of eGFR<60, living in Southern India was associated with increased risk of eGFR<60 in men but not in women.

BMJ Open

Table 3. Associations between sociodemographic and anthropometric characteristics and eGFR and eGFR<60

	eGFR	eGFR<60
Variable	Coefficient (95 CI) ^a	OR (95 CI) ^a
Age (years) ^b		
<39	0.00 (ref)	1.00 (ref)
40-49	-11.08 (-11.68, -10.47)	3.15 (1.87, 5.32)
50-59	-19.43 (-20.20, -18.65)	6.41 (3.80, 10.83)
60-69	-27.84 (-28.86, -26.82)	19.68 (12.01, 32.26)
>=70	-35.04 (-36.71, -33.37)	39.23 (22.87, 67.23)
Sex c		
Female	0.00 (ref)	1.00 (ref)
Male	-3.55 (- 4.05, -3.06)	1.33 (0.99, 1.78)
Education (number of completed	1	
years)		
0	0.00 (ref)	1.00 (ref)
≤5	1.92 (1.09, 2.76)	0.41 (0.26, 0.65)
6-≤10	1.27 (0.61, 1.93)	0.36 (0.25, 0.53)
> 10	-1.86 (-2.59, -1.14)	0.40 (0.26, 0.62)
Area ^d		
Urban	0.00 (ref)	1.00 (ref)
Rural	-3.84 (-4.37, -3.32)	2.39 (1.78, 3.22)
Latitude ^e		
North	0.00 (ref)	1.00 (ref)
South	0.86 (0.37, 1.35)	1.55 (1.16, 2.07)
Current tobacco consumption		
No	0.00 (ref)	1.00 (ref)
Yes	0.38 (-0.26, 1.02)	1.39 (1.01, 1.91)
Alcohol consumption ever		
No	0.00 (ref)	1.00 (ref)
Yes	-0.81 (-1.55, -0.08)	1.57 (1.09, 2.27)

Vegetarian		
No	0.00 (ref)	1.00 (ref)
Yes	-0.99 (-1.50, -0.47)	0.65 (0.48, 0.88)
Body mass index (kg/m2)		
Underweight (≤18.5)	2.96 (2.20, 3.73)	0.81 (0.55, 1.20)
Normal (>18.5 - ≤25)	0.00 (ref)	1.00 (ref)
Overweight (>25 - ≤30)	-0.75 (-1.34, -0.16)	0.68 (0.46, 1.01)
Obese (>30)	-0.71 (-1.59, 0.17)	0.47 (0.23, 0.98)
Fat free mass (kg)		
1st tertile (≤37)	0.00 (ref)	1.00 (ref)
2nd tertile (>37 - <45)	-0.91 (-1.54, -0.28)	0.69 (0.47, 1.03)
3rd tertile (≥45)	-3.90 (-4.77, -3.04)	0.49 (0.31, 0.80)

^a Adjusted for age and sex; ^b Adjusted just for sex; ^c Adjusted just for age; ^d Urban areas include Delhi, Chennai

223 and Sonipat district. Rural areas include Sonipat, Vishakhapatnam and Faridabad districts; ^e North areas include

224 Delhi, Sonipat and Faridabad district. South areas include Chennai and Vishakhapatnam districts.

In the multiple regression analyses, decreased mean eGFR remained associated with older age, being male and living in a rural setting and alcohol consumption (Table 4). Risk of eGFR<60 remained associated with older age, being male and living in a rural setting and having no formal education remained associated with increased risk of eGFR<60 (Table 4). We adjusted all the multiple regression models for fat free mass and vegetarianism to assess the possibility that differences observed between urban and rural participants were due to differences in diet and/or body composition. These adjustments had little effect on the results (Table 4).

to peet eview only

Table 4. Multiple regression analyses of sociodemographic characteristics associated with eGFR and eGFR<6).

	eGFR Coefficient (95%	o CI)	eGFR<60 OR (95%	eGFR<60 OR (95% CI)			
Variable	Model 1 ^a	Model 2 ^b	Model 3 ^c	Model 1 ^a	Model 2 ^b	Model 3 ^c	
Area ^d							
Urban	0.00 (ref)	0.00 (ref)	0.00 (ref)	1.00 (ref)	1.00 (ref)	1.00 (ref)	
Rural	-4.57 (-5.13, -4.02)	-3.94 (-4.53, -3.36)	-4.10 (-4.70, -3.51)	1.99 (1.43, 2.76)	1.61 (1.12, 2.30)	1.65 (1.14, 2.37)	
Latitude ^e							
North	0.00 (ref)	0.00 (ref)	0.00 (ref)	1.00 (ref)	1.00 (ref)	1.00 (ref)	
South	0.31 (-0.18, 0.80)	-0.10 (-0.61, 0.41)	0.26 (-0.37, 0.89)	1.33 (0.98, 1.81)	1.60 (1.14, 2.32)	1.33 (0.86, 2.04)	
Education (number	of						
completed years)							
0	0.00 (ref)	0.00 (ref)	0.00 (ref)	1.00 (ref)	1.00 (ref)	1.00 (ref)	
≤5	0.94 (0.01, 1.77)	1.16 (0.30, 2.02)	1.18 (0.32, 2.04)	0.50 (0.31, 0.80)	0.44 (0.26, 0.74)	0.45 (0.26, 0.75)	
6-≤10	0.04 (-0.64, 0.72)	0.21 (-0.49, 0.91)	0.21 (-0.50, 0.92)	0.50 (0.34, 0.75)	0.38 (0.24, 0.60)	0.39 (0.25, 0.62)	
> 10	-3.81 (-4.6, -3.0)	-3.81 (-4.60, -3.02)	-3.78 (-4.59, -2.97)	0.68 (0.42, 1.11)	0.61 (0.36, 1.03)	0.65 (0.38, 1.11)	
Alcohol consumption ever							
No	0.00 (ref)	0.00 (ref)	0.00 (ref)	1.00 (ref)	1.00 (ref)	1.00 (ref)	

Page	19	of 41	
------	----	-------	--

BMJ Open

Yes Sex Fem		-0.85 (-1.58, -0.12)	-0.69 (-1.47, 0.08)	-0.63 (-1.41, 0.15)	1 20 (0.00 1.07)	1 19 (0 79 1 70)		
Sex Fem		-0.85 (-1.58, -0.12)	-0.69 (-1.47, 0.08)	-0.63 (-1.41, 0.15)	1 29 (0 99 1 97)	1 12 (0 72 1 70)		
Sex Fem		-0.85 (-1.58, -0.12)	-0.69 (-1.47, 0.08)	-0.63 (-1.41, 0.15)	1.20(0.00, 1.07)	1 10 (0 70 1 70)		
Fem					1.28 (0.88, 1.87)	1.18 (0.78, 1.79)	1.15 (0.76, 1.74)	
	nale	0.00 (ref)	0.00 (ref)	0.00 (ref)	1.00 (ref)	1.00 (ref)	1.00 (ref)	
Mal	lle	-2.85 (-3.44, -2.25)	-3.00 (-3.62, -2.38)	-2.52 (-3.18, -1.86)	1.39 (0.96, 2.01)	1.49 (1.00, 2.21)	1.50 (0.97, 2.31)	
Age ((per 10 years)	-9.10 (-9.32, -8.88)	-9.09 (-9.32, -8.86)	-9.15 (-9.38, -8.91)	2.21 (1.98, 2.47)	2.25 (2.00, 2.55)	2.27 (2.00, 2.57)	
Fat fr	free mass (kg)			-0.04 (-0.06, -0.02)			1.0 (0.98, 1.02)	
Vege	etarian							
No				0.00 (ref)			1.00 (ref)	
Yes	S			0.66 (-0.03, 1.35)			0.74 (0.47, 1.18)	
								18
								18

33WU) Open: first published as 100.11133/bmjopen-2018-023353 on 7 Wardh 2019. Downloaded from http://bmjopen.bmj.com/ on 1401/2014 by: guest. Protected by: copyright

We observed an interaction between the effects of latitude (North/South) and urban/rural residence in association with reduced eGFR (p-value for interaction<0.001). The mean eGFR was lower in rural settings in both Northern and Southern India (controlling for age, sex, education and alcohol intake). However, this decrease was much more marked in Southern India. In Northern India, rural residence, formal education (and duration) and age were the only other risk factor associated with reduced eGFR. In Southern India, being male was also a risk factor for reduced eGFR, whereas formal education was only a risk factor for reduced eGFR among those with more than 10 years of schooling (Table 5). We also observed an interaction between the effects of latitude (North/South) and urban/rural residence in association with eGFR<60 (p-value likelihood-ratio test for interaction<0.001). In Northern India, eGFR<60 was not associated with urban/rural residence, and older age was the only factor associated with eGFR<60. In Southern India, rural residence was the strongest risk factor for eGFR<60 but older age and lower years of formal education also increased the risk of eGFR<60 (Table 5).

BMJ Open

Table 5. Multivariate analysis of sociodemographic characteristics associated with eGFR and with

eGFR<60 according to latitude ^a

	eGFR (n=12,500)		eGFR<60(n=12,500)			
	North (n=6263) ^a	South (n= 6237) ^b	North (n=6263) ^a	South (n= 6237) ^b		
Variables	Coefficient (95% CI)	Coefficient (95% CI)	OR (95% CI)	OR (95% CI)		
Area ^c						
Urban	0.00 (ref)	0.00 (ref)	1.00 (ref)	1.00 (ref)		
Rural	-1.42 (-2.15, -0.70)	-7.90 (-8.81, -7.00)	0.88 (0.57, 1.37)	4.68 (2.50, 8.77)		
Education (number of	2					
completed years)						
0	0.00 (ref)	0.00 (ref)	1.00 (ref)	1.00 (ref) **		
≤5	-1.32 (-2.58, -0.05)	1.05 (-0.06, 2.16)	1.16 (0.57, 2.35)	0.40 (0.20, 0.80)		
6-≤10	-3.50 (-4.48, -2.52)	0.28 (-0.74, 1.30)	1.34 (0.74, 2.41)	0.35 (0.16, 0.74)		
> 10	-6.93 (-7.97, -5.89)	-2.85 (-4.03, -1.67)	1.34 (0.69, 2.58)	0.61 (0.24, 1.57)		
Alcohol consumption	I					
ever						
No	0.00 (ref)	0.00 (ref)	1.00 (ref)	1.00 (ref)		
Yes	-0.54 (-1.55, 0.47)	-0.06 (-1.11, 0.99)	1.09 (0.62, 1.92)	1.36 (0.74, 2.17)		
Sex						
Female	0.00 (ref)	0.00 (ref)	1.00 (ref)	1.00 (ref)		
Male	-0.17 (-0.96, 0.63)	-5.40 (-6.29, -4.51)	0.97 (0.59, 1.59)	1.58 (0.91, 2.75)		
Age (per 10 years)	-9.26 (-9.55, -8.97)	-8.96 (-9.28, -8.64)	2.51 (2.15, 2.93)	2.10 (1.77, 2.50)		

Likelihood ratio test for linear trend <0.05, OR (95% CI)=0.68 (0.51, 0.91). ^a North areas include Delhi,

Sonipat and Faridabad district.^b South areas include Chennai and Vishakhapatnam districts.^c Urban areas

include Delhi, Chennai and Sonipat district. Rural areas include Sonipat, Vishakhapatnam and Faridabad

districts BWW Open: first published as 10.11136 bmjapen-2018-023333 on 7 Warch 2019. Downloaded from http://bmjapen.bmj.com/ on 42Ni2Oh 2024 by guest. Protected by capyright.

254 Sensitivity analyses

We performed a sensitivity analysis including those with ACR>300 (but without hypertension or diabetes, n=33) as we were concerned that those with CKDu might develop proteinuria at more advanced CKD stages. However, this did not alter the mean eGFR (mean eGFR among the overall study population= 105.0 ± 17.8 , mean eGFR in this sensitivity analysis = 105.0 ± 17.8), nor the estimated prevalence of eGFR<60 (prevalence among the overall study population=1.6%; prevalence in this sensitivity analysis =1.7%). The findings on risk factors were also similar to the findings from the primary analyses (supplementary material, Table S3).

Given concerns about potentially different thresholds to define diabetes and high blood pressure in different ethnic groups [30,31], we performed a further sensitivity analysis including fasting plasma glucose, HbA1c and systolic blood pressure in the multivariate model (even though there is evidence for both causation and reverse causation between these factors and CKD [32]). Systolic blood pressure and fasting plasma glucose were associated with reduced eGFR in this non diabetic population, but inclusion of these variables did not alter the coefficients for the associations with other risk factors observed in the primary analysis (supplementary material, Table S4). HbA1c was associated with eGFR<60 in this non diabetic population but inclusion of this variable did not alter the OR for other risk factors observed in the primary analysis (supplementary material, Table S4). Therefore, although the relationship between sub-clinical diabetes and impaired kidney function requires further prospective investigation, there is no evidence that the excess risk of low eGFR (i.e. lower mean eGFR and higher prevalence of eGFR<60) in rural Southern India is associated with either impaired fasting glucose or higher blood pressure.

274 DISCUSSION

We report the distribution of eGFR in people without diabetes, hypertension or heavy proteinuria and estimate the prevalence of CKDu in our study population, including participants from urban and rural settings. This is the first population-based evidence, using standardised methods, which indicates that CKDu is present in India and is not confined to Central America and Sri Lanka. We found that the rural population from Southern India (Vishakhapatnam district) had the highest risk of decreased eGFR (lower mean eGFR and higher prevalence of eGFR<60). Risk factors of decreased eGFR were different between Southern and Northern India. In Southern India, rural residence, older age and being male were risk

BMJ Open

factors for both lower mean eGFR and eGFR<60; education was associated with decreased risk for eGFR<60 but not with lower mean eGFR. In Northern India, older age was the only risk factor for both lower mean eGFR and eGFR<60; rural residence and years of formal education were associated with lower mean eGFR but not with eGFR<60. In summary, in Southern India, older age, being male and rural residence were the main risk factors for decreased eGFR, whereas in Norther India older age was the main risk factors for decreased eGFR.

As in Central America, the risk of low eGFR was higher in rural settings than in urban settings. This is in concordance with a previous study from Hyderabad (India), that has provided evidence of a higher risk of low eGFR in a rural population compared to urban-migrant and urban population [33], and with various studies from other LMICs that have provided evidence of clusters of CKDu among the rural population [2,3]. Exposure to some of the suggested potential risk factors for CKDu such as agricultural work and agrochemical exposure, amongst others [34], may be greater in rural settings. Such exposures may also differ between Southern and Northern India, and potentially explain the differences observed between these areas. The associations between urban/rural residence and lower mean eGFR was much more marked in Southern India than in Northern India, and the associations between urban/rural residence and eGFR<60 was only observed in Southern India. The higher prevalence ratio (for eGFR<60) in the working age population compared to older age groups is consistent with the hypothesis that deceased in eGFR could be potentially explained by occupational exposures. The suggestive sex differences may also support this hypothesis. However, we did not have detailed data on occupation that allowed us to explore these associations in greater detail.

The higher risk of low eGFR in Southern India (Chennai and Vishakhapatnam districts) observed in our study is consistent with the clusters of CKDu cases previously reported in the Southern Indian states of Andhra Pradesh and Odisha [11,18,19]. Visakhapatnam district (state of Andhra Pradesh) and Chennai district (state of Tamil Nadu) have a similar climate than these areas where CKDu clusters have previously reported [35]. In these districts, mean temperatures range from 18 °C to 37 °C and rainfall occurs mainly between June and December [36]. On the other hand, sites from Norther India included in the study (Delhi (state of Delhi), Sonipat and Faridabad (Haryana state)), have a different climate. In these districts mean temperature ranges from 8 °C to 39 °C and precipitation occurs mainly between July

and August [36]. A previous study conducted in Costa Rica found a spatial correlation between rates of

311 CKD mortality and temperature and rainfall [13].

About 5% of the rural population of Vishakhapatnam (Andra Pradesh, Southern India) without diabetes, hypertension or proteinuria had eGFR<60. This figure is almost as high as the prevalence observed in the USA (i.e. 6.7%) including people with diabetes, hypertension or proteinuria [37]. Moreover, the estimates of GFR in our study are likely to be underestimated. The CKD-EPI equation has been standardised for the white and Afro-American population [24], but its validity for other ethnic groups has been questioned [38,39]. Previous studies using CKD-EPI equation to estimate GFR in Indian populations reported mean eGFR values similar to the mean eGFR reported in our study (i.e. 104.9 ± 25.52 ml/min/1.73 m²) [40]. However, two studies conducted among healthy kidney donors in India (population similar to those included in this analysis) have reported mean (measured) GFR between 81.4 and 95.5 ml/min per 1.73 m² [41,42], suggesting that the CKD-EPI equation substantially overestimates eGFR in the Indian population. Therefore, the prevalence of eGFR<60 observed in this study is likely to be substantially underestimated (although this is unlikely to have biased the internal comparisons, e.g. between urban and rural settings). The use of a conservative definition of the population susceptible to CKDu, may have also underestimated the prevalence of eGFR<60 in our study, as the population with diabetes, hypertension or glomerular disease may also have reduced eGFR due to other ('unknown') causes. To estimate the actual prevalence of reduced eGFR, future studies should include validated methods to estimate GFR in the Indian population. We were concerned that the validity of CKD-EPI among the Indian population may be also compromised by differences in muscular mass and meat consumption between population groups within India. We adjusted the analyses for fat free mass and vegetarianism, but this did not alter the results, suggesting no confounding effect by these variables.

Our study has at least three potential limitations. First, we only had one measure of eGFR, and therefore we could not differentiate acute kidney injury (AKI) from CKD. This is a common limitation in epidemiological studies, as it is challenging to obtain more than one measure of eGFR at least 3 months apart in large population-based investigations. Therefore, we may have misclassified some cases of AKI as reduced eGFR, and therefore overestimate the prevalence of this condition. Nevertheless, there is no a priori reason to think that potential misclassification was different according to the evaluated risks factors. Second, the three population-based studies included in this analysis used different sampling strategies.

BMJ Open

CARRS and UDAY studies included only one man and one woman from all the eligible participants of selected households, whereas ICMR-CHD included all eligible adults from each selected household. This could have slightly biased our results (including our prevalence estimates) if risk factors potentially associated with CKDu were different between households inhabited only by a man and a women or by extended families. Third, information on other potential risk factors for CKDu, such as infections by leptospora or hantavirus infection, or use of nonsteroidal anti-inflammatory drugs (NSAIDs) was not available.

The main strengths of the study are the use of a random selection of population-based participants and a large sample size including participants from different areas of India (urban and rural, and Northern and Southern India). Moreover, we used the definitions proposed in DRGREE study [43], that aims to allow international comparisons of CKDu prevalence and help in the description of risk factors and in identifying the causes and mechanisms leading to CKDu.

In conclusion, our findings indicate that reduced eGFR, consistent with the definition of CKDu, is common in rural settings of Southern India (Vishakhapatnam district). This results support the hypothesis that the epidemic of CKDu, initially described in agricultural communities of Central America and Sri Lanka, may be common in other rural communities of tropical/subtropical countries. This has important implications for global health, since it indicates that CKDu may have a substantial public health burden globally that has been previously unrecognised. Population-based studies in other tropical/subtropical countries are required to assess the global patterns of burden of disease from CKDu [43].

358 AUTHOR CONTRIBUTIONS AND ACKNOWLEDGEMENTS

359 CO-G, BC, NP and DP designed the work; RS, SA, SG, RG, AK, SM, VM, PPA, NT, and KMN
360 collected the data; CO-G and DK conducted the analysis of the data; CO-G, RS, SA, JG, KJ, DN, SM,
361 KMN, NP, BC, and DP interpreted the data of the work. CO-G, RS, BC, and NP drafted the manuscript;
362 RS, SA, SG, JG, RG, KJ, DK, AK, SM, VM, DN, PPA, NT, KMN, and DP revised the manuscript for
363 important intellectual content, provided comments and suggested revisions. All authors approved the final
364 version for publication.

365 We thank Manolis Kogevinas for his comments on the advanced version of the manuscript.

300 market by the second s

330 march 2019 march 2019 march 2019 march 2019 march 2019 march 2019. Downloaded from http://bmjopen.bmj.com// on PoM 201 2029 by/ guest. Protected by/ copyright

366 CONFLICTS OF INTERESTS

367 The authors declare that they have no competing interests

368 DATA SHARING STATEMENT

- 369 The datasets used and/or analysed during the current study are available from Public Health Foundation
- 370 of India (PHFI) on reasonable request. Interested investigators should contact PHFI. Computing code can
- 371 be obtained from the corresponding author.

to occur terien only

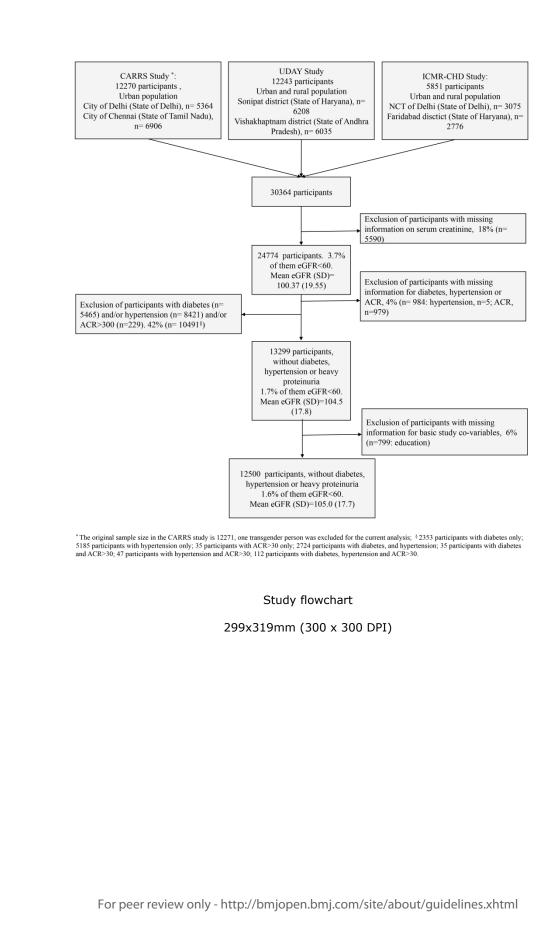
1			
2 3	372	REFE	CRENCES
4			
5	272		
6 7	373 374	1	Wesseling C, Crowe J, Hogstedt C, <i>et al.</i> Mesoamerican Nephropathy: Report from the First International Research Workshop on MeN. Heredia, Costa Rica: 2013.
8	375	2	Correa-Rotter R, Wesseling C, Johnson RJ. CKD of unknown origin in Central America: the case
9	376		for a Mesoamerican nephropathy. Am J Kidney Dis 2014;63:506–20.
10	377		doi:10.1053/j.ajkd.2013.10.062
11	378	3	Jayatilake N, Mendis S, Maheepala P, et al. Chronic kidney disease of uncertain aetiology.
12	379 380		Prevalence and causative factors in a developing country. <i>BMC Nephrol</i> 2013;14:1. doi:10.1186/1471-2369-14-180
13	381	4	
14 15	382	4	Lebov JF, Valladares E, Pena R, <i>et al.</i> A population-based study of prevalence and risk factors of chronic kidney disease in Leon, Nicaragua. <i>Can J kidney Heal Dis</i> 2015; 2 :6. doi:10.1186/s40697-
16	383		015-0041-1
17	384	5	Peraza S, Wesseling C, Aragon A, et al. Decreased kidney function among agricultural workers
18	385	5	in El Salvador. Am J Kidney Dis 2012; 59 :531–40. doi:10.1053/j.ajkd.2011.11.039
19	386	6	Torres C, Aragón A, González M, et al. Decreased kidney function of unknown cause in
20	387	0	Nicaragua: a community-based survey. Am J Kidney Dis 2010;55:485–96.
21	388		doi:10.1053/j.ajkd.2009.12.012
22	389	7	Seck SM, Doupa D, Gueye L, et al. Prevalence of chronic kidney disease and associated factors
23	390		in senegalese populations: a community-based study in saint-louis. Nephrourol Mon
24 25	391		2014;6:e19085. doi:10.5812/numonthly.19085
25	392	8	Barsoum RS. Burden of chronic kidney disease: North Africa. Kidney Int Suppl 2013;3:164-6.
27	393		doi:10.1038/kisup.2013.5
28	394	9	El Minshawy O, Ghabrah T, El Bassuoni E. End-stage renal disease in Tabuk Area, Saudi Arabia:
29	395		an epidemiological study. Saudi J Kidney Dis Transpl 2014;25:192-5.
30	396 397	10	Rajapurkar MM, John GT, Kirpalani AL, et al. What do we know about chronic kidney disease in
31	398		India: First report of the Indian CKD registry. <i>BMC Nephrol</i> 2012; 13 . doi:10.1186/1471-2369-13-10
32 33	399	11	Reddy D V., Gunasekar A. Chronic kidney disease in two coastal districts of Andhra Pradesh,
33 34	400	11	India: Role of drinking water. <i>Environ Geochem Health</i> 2013; 35 :439–54. doi:10.1007/s10653-
35	401		012-9506-7
36	402	12	Jayasumana C, Paranagama P, Agampodi S, et al. Drinking well water and occupational exposure
37	403		to Herbicides is associated with chronic kidney disease, in Padavi-Sripura, Sri Lanka - No section-
38	404		. Environ Heal A Glob Access Sci Source 2015;14. doi:10.1186/1476-069X-14-6
39	405	13	Wesseling C, Van Wendel De Joode B, Crowe J, et al. Mesoamerican nephropathy: Geographical
40 41	406 407		distribution and time trends of chronic kidney disease mortality between 1970 and 2012 in Costa Rica. <i>Occup Environ Med</i> 2015; 72 :714–21. doi:10.1136/oemed-2014-102799
41		14	Garcia-Garcia G, Jha V, World Kidney Day Steering Committee. Environmental and
43	408 409	14	occupational factors in CKD. Occup Environ Med 2015;72:238. doi:10.1136/oemed-2015-102859
44	410	15	Robey RB. Cyclical dehydration-induced renal injury and Mesoamerican nephropathy: as sweet
45	411	15	by any other name? <i>Kidney Int</i> 2014; 86 :226–9. doi:10.1038/ki.2014.47
46	412	16	Jha V, Modi G. Uncovering the rising kidney failure deaths in India. Lancet Glob Heal
47 48	413		2017;5:e14-5. doi:10.1016/S2214-109X(16)30299-6
40	414	17	Dare AJ, Fu SH, Patra J, et al. Renal failure deaths and their risk factors in India 2001–13:
50	415		nationally representative estimates from the Million Death Study. Lancet Glob Heal 2017;5:e89-
51	416		95. doi:10.1016/S2214-109X(16)30308-4
52	417	18	Chatterjee R. Occupational Hazard. Science (80-) 1026;352:24-7.
53	418	19	Ganguli A. Uddanam Nephropathy/Regional Nephropathy in India: Preliminary Findings and a
54 55	419		Plea for Further Research. Am J Kidney Dis 2016;68:344-8. doi:10.1053/j.ajkd.2016.04.012
55 56	420	20	Nair M, Ali MK, Ajay VS, <i>et al.</i> CARRS Surveillance study: Design and methods to assess
57	421		burdens from multiple perspectives. BMC Public Health 2012;12:1. doi:10.1186/1471-2458-12-
58			26
59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

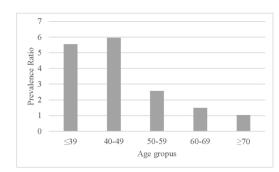
BWWU Oppen: first published ass 100.111336/bmjoppen-20118-0223333 on 77 Wardh 2019. Downloaded from http://bmjoppen.bmjj.com/ on 440M 201. 2024 by guest. Protected by copyright.

BMJ Open

2	422		701
3 4 5	423 424	21	Mohan S, Jarhyan P, Ghosh S, <i>et al.</i> UDAY: Protocol of a Comprehensive Diabetes and Hypertension Prevention and Management Program in India. <i>BMJ open</i> 2018; 8 :e015919.
6	425	22	doi:e015919. doi: 10.1136/bmjopen-2017-015919
7 8	426 427	22	Prabhakaran D, Roy A, Praveen PA, <i>et al.</i> 20-Year Trend of Cardiovascular Disease Risk Factors. <i>Glob Heart</i> Published Online First: 2017. doi:10.1016/j.gheart.2016.11.004
9	428	23	World Health Organization. STEPS Manual. 2015.
10 11 12	429 430	24	Levey AS, Stevens LA, Schmid CH, <i>et al.</i> A new equation to estimate glomerular filtration rate. <i>Ann Intern Med</i> 2009; 150 :604–12.
13 14 15	431 432 433	25	Patel SA, Deepa M, Shivashankar R, <i>et al.</i> Comparison of multiple obesity indices for cardiovascular disease risk classification in South Asian adults: The CARRS Study. <i>PLoS One</i> 2017; 12 :e0174251.
16 17 18	434 435 436	26	Anand S, Shivashankar R, Ali MK, <i>et al.</i> Prevalence of chronic kidney disease in two major Indian cities and projections for associated cardiovascular disease. <i>Kidney Int</i> 2015; 88 :178–85. doi:10.1038/ki.2015.58
19 20	437 438	27	Greenland S, Daniel R, Pearce N, <i>et al.</i> Outcome modelling strategies in epidemiology: traditional methods and basic alternatives. <i>Int J Epidemiol</i> 2016;:1–11. doi:10.1093/ije/dyw040
21	439	28	Census of India. 2011.http://censusindia.gov.in/ (accessed 1 Aug 2018).
22 23 24	440 441	29	Longvah T, Ananthan R, Bhaskarachary K, <i>et al.</i> Indian Food Composition tables. Hyderabad: 2017.
25 26	442 443	30	Herman WH. Do race and ethnicity impact hemoglobin A1c independent of glycemia? <i>J Diabetes Sci Technol</i> 2009; 3 :656–60. doi:10.1177/193229680900300406
27 28 29	444 445 446	31	Modesti PA, Reboldi G, Cappuccio FP, <i>et al.</i> Panethnic Differences in Blood Pressure in Europe: A Systematic Review and Meta-Analysis. <i>PLoS One</i> 2016; 11 :e0147601. doi:10.1371/journal.pone.0147601
30 31 32	447 448 449	32	Verhave JC, Hillege HL, Burgerhof JGM, <i>et al.</i> The association between atherosclerotic risk factors and renal function in the general population. <i>Kidney Int</i> 2005; 67 :1967–73. doi:10.1111/j.1523-1755.2005.00296.x
33 34 35	450 451 452	33	Bailey PK, Tomson CRV, Kinra S, <i>et al.</i> The effect of rural-to-urban migration on renal function in an Indian population: Cross-sectional data from the Hyderabad arm of the Indian Migration Study. <i>BMC Nephrol</i> 2013; 14 . doi:10.1186/1471-2369-14-240
36 37	453 454	34	Lunyera J, Mohottige D, von Isenburg M, <i>et al.</i> CKD of uncertain etiology: A systematic review. <i>Clin J Am Soc Nephrol</i> 2016; 11 :379–85. doi:10.2215/CJN.07500715
38 39	455 456	35	Peel MC, Finlayson BL, McMahon TA. Updated world map of the Koppen-Geiger climate classification. <i>Hydrol Earth Syst Sci</i> 2007; 11 :1633–1644.
40 41	457	36	Norwegian Meteorological Institute and the Norwegian Broadcasting Corporation. Yr.
42 43	458 459	37	Levey AS, Coresh J. Chronic kidney disease. <i>Lancet</i> 2012; 379 :165–80. doi:10.1016/S0140-6736(11)60178-5
44 45 46	460 461 462	38	Eastwood JB, Kerry SM, Plange-Rhule J, <i>et al.</i> Assessment of GFR by four methods in adults in Ashanti, Ghana: the need for an eGFR equation for lean African populations. <i>Nephrol Dial Transplant</i> 2010; 25 :2178–87. doi:10.1093/ndt/gfp765
47 48	463 464	39	Teo BW, Xu H, Wang D, <i>et al.</i> GFR estimating equations in a multiethnic Asian population. <i>Am J Kidney Dis</i> 2011; 58 :56–63. doi:10.1053/j.ajkd.2011.02.393
49 50 51	465 466 467	40	Singh AK, Farag YMK, Mittal B V., <i>et al.</i> Epidemiology and risk factors of chronic kidney disease in India - Results from the SEEK (Screening and Early Evaluation of Kidney Disease) study. <i>BMC Nephrol</i> 2013; 14 :1. doi:10.1186/1471-2369-14-114
52 53 54	468 469 470	41	Barai S, Bandopadhayaya GP, Patel CD, <i>et al.</i> Do healthy potential kidney donors in India have an average glomerular filtration rate of 81.4 ml/min? <i>Nephron - Physiol</i> 2005; 101 :21–6. doi:10.1159/000086038
55 56 57	471 472	42	Srinivas S, Annigeri RA, Mani MK, <i>et al.</i> Estimation of glomerular filtration rate in South Asian healthy adult kidney donors. <i>Nephrology</i> 2008; 13 :440–6. doi:10.1111/j.1440-1797.2008.00967.x
58 59			27
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4 5 6 7 8	473 474 475 476	43	Caplin B, Jakobsson K, Glaser J, <i>et al.</i> International Collaboration for the Epidemiology of et in Low and Middle Income Populations - Rationale and core protocol for the Disadvantaged Populations eGFR Epidemiology Study (DEGREE). <i>BMC Nephrol</i> 2017; 18 :1–8. doi:10.1186/s12882-016-0417-1	GFR
9 10 11 12 13 14 15 16 17				
18 19 20 21 22 23 24 25 26				
27 28 29 30 31 32 33 34 35				
36 37 38 39 40 41 42 43 44				
45 46 47 48 49 50 51 52 53				
55 56 57 58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	28


#WWU Opeen: ffrst(published) as: 100.111336/bmjppen-2018-02233333 on 7 Wardh 2019. Downloaded/from http://bmjjppen.bmjj.com// on YeM 2014 by/ guest. Protected/by/copyright


BMJ Open

FIGURES LEGENDS

- Figure 1 Study areas
- Figure 2 Study flowchart
- cGR<0 by age group between 1. Figure 3 Prevalence ratio of eGFR<60 by age group between rural and urban areas

#WWU Opeen: first:published as: 110.111366/bmjppen-2018-0233333 on 7 Wardh 2019. Downloaded from http://bmjppen.bmj.com//on 4901/2019.2024/by.guest. Protected by/copyright

Prevalence ratio of eGFR<60 by age group between rural and urban areas

420x594mm (300 x 300 DPI)

BWW Opeen: first:published as 10.11136/bmjopen-2018-0223333 on 7 Wardh 2019. Downloaded from http://bmjopen.bmj.com/ on 42Ni220h 2024 by guest. Protected by capyright

1 SUPPLEMENTARY MATERIAL

2 Content

- 3 Table S1. Sociodemographic and anthropometric characteristics of overall study participants (prior to
- 4 exclusion of population with diabetes, hypertension and proteinuria)
- 5 Table S2. Associations between sociodemographic and anthropometric characteristics and estimated
 6 glomerular filtration rate (eGFR) and eGFR<60 by sex
- **Table S3.** Multiple regression analysis of sociodemographic and anthropometric characteristics associated
- 8 with eGFR and eGFR<60 including study participants with proteinuria (but without diabetes or
- 9 hypertension)
- **Table S4.** Multiple regression analysis of sociodemographic and anthropometric characteristics associated
- 11 with eGFR and eGFR<60 including fasting plasma glucose, HbA1c and systolic blood pressure

terez onz

13 exclusion of population with diabetes, hypertension and proteinuria)

Variable	n (%) ^a n=24774	eGFR categori	es, n(%) ^b			
		mean (SD)	≥90	90-60	<60	
Socio-demographic factors						
Age (years)						
<39	9007 (36)	112.9 (14.9)	8248 (92)	716 (8)	43 (0)	
40-49	6924 (28)	101.9 (14.8)	5617 (81)	1215 (18)	92 (1)	
50-59	4524 (18)	92.9 (15.2)	2997 (66)	1378 (30)	149 (3)	
60-69	3045 (12)	82.8 (17.1)	1410 (46)	1315 (43)	320 (11)	
>=70	1274 (5)	72.0 (17.3)	164 (13)	806 (63)	304 (24)	
Sex						
Female	13433 (54)	102.6 (19.5)	10404 (77)	2585 (19)	444 (3)	
Male	11341 (46)	97.7 (19.3)	8032 (71)	2845 (25)	464 (4)	
Education (number of years)						
0	4794 (19)	97.7 (20.2)	3458 (72)	1075 (22)	261 (5)	
5	3194 (13)	101.7 (19.4)	2456 (77)	625 (20)	113 (4)	
10	8855 (36)	103.2 (18.9)	6995 (79)	1620 (18)	240 (3)	
> 10	6358 (26)	100.0 (19.2)	4638 (73)	1538 (24)	182 (3)	
Missing data	1573 (6)		889 (57)	572 (36)	112 (7)	
Area ^d						
Urban	17732 (72)	102 (19.5)	13577 (77)	3602 (20)	553 (3)	
Rural	7042 (28)	96.3 (19.1)	4859 (69)	1828 (26)	355 (5)	
Latitude ^e						
North	13570 (55)	98.1 (19.1)	9599 (71)	3439 (25)	532 (4)	
South	11204 (45)	103.1 (19.7)	8837 (79)	1991 (18)	376 (3)	
Life-style factors						
Current smoking						
No	18402 (74)	101.5 (19.6)	13920 (76)	3838 (21)	644 (3)	
Yes	6372 (26)	97.1 (19.1)	4516 (71)	1592 (25)	264 (4)	
Alcohol consumption ever						
No	19588 (79)	100.9 (19.6)	14671 (75)	4203 (21)	714 (4)	
Yes	5186 (21)	98.5 (19.1)	3765 (73)	1227 (24)	194 (4)	
Vegetarian						
No	15043 (61)	102.7 (19.7)	11721 (78)	2835 (19)	487 (3)	
Yes	9731 (39)	96.8 (18.9)	6715 (69)	2595 (27)	421 (4)	
Biological factors						
Body mass index (kg/m ²)						
Underweight (≤18.5)	10297 (42)	100.1 (19.6)	7626 (74)	2284 (22)	387 (4)	
Normal (>18.5 - ≤25)	2403 (10)	101.58 (20.5)	1838 (76)	471 (20)	94 (4)	
Overweight (>25 - ≤ 30)	7221 (29)	99.9 (18.8)	5309 (74)	1680 (23)	232 (3)	
Obese (>30)	3286 (13)	99.3 (19.2)	2392 (73)	766 (23)	128 (4)	
Missing data	1567 (6)		1271 (81)	229 (15)	67 (4)	
Fat free mass (kg)	X-7		X- /	< - /		
1^{st} tertile (≤ 37)	7141 (29)	101.9 (20.1)	5481 (77)	1381 (19)	279 (4)	
2^{nd} tertile (>37 - <45)	7141 (29)	101.3 (19.1)	5419 (76)	1487 (21)	235 (3)	
	(1)1(2))		5117(10)	1107 (21)	200 (0)	

	3 rd tertile (≥45) Missing data	7141 (29) 3351 (14)	98.3 (18.6)	5110 (72) 2426 (72)	1797 (25) 765 (23)	234 (3) 160 (5)
14	^a Percentages in columns [;]		vs; ^d Urban areas			
15	Rural areas include Sonip	at, Vishakhapatnan	n and Faridabad d	istricts; ^e North	areas include l	Delhi, Soni
16	and Faridabad district. So	outh areas include C	hennai and Visha	khapatnam distr	icts.	
				1		

BMJ Open

	Men, n=5 434			Women, n=7	066	
Variable		eGFR	eGFR<60	_	eGFR	eGFR<60
	n (%)	estimate (95%CI) ^a	OR (95% CI) ^a	n (%)	estimate (95%CI) ^a	OR (95% CI) ^a
Age (years) ^b						
<39	2335 (43)	0.00 (ref)	1.00 (ref)	3786 (54)	0.00 (ref)	1.00 (ref)
40-49	1568 (29)	-9 (-9.97, -8.03)	2.36 (1.2, 4.62)	1908 (27)	-12.52 (-13.29, -11.76)	4.5 (1.95, 10.36)
50-59	843 (16)	-16.84 (-18.03, -15.65)	3.82 (1.91, 7.66)	863 (12)	-21.51 (-22.53, -20.48)	11.78 (5.2, 26.68)
60-69	479 (9)	-25.35 (-26.83, -23.86)	13.07 (6.97, 24.49)	414 (6)	-30.05 (-31.46, -28.64)	32.95 (14.87, 73.02)
>=70	209 (4)	-34.26 (-36.4, -32.12)	31.08 (16.33, 59.17)	95 (1)	-34.78 (-37.6, -31.96)	43.43 (15.93, 118.37
Education (number of completed years)						
0	823 (15)	0.00 (ref)	1.00 (ref)	1997 (28)	0.00 (ref)	1.00 (ref)
≤5	703 (13)	3.28 (1.82, 4.74)	0.24 (0.13, 0.46)	1006 (14)	0.73 (-0.27, 1.73)	0.81 (0.42, 1.56)
6-≤10	2363 (43)	1.68 (0.51, 2.84)	0.31 (0.20, 0.48)	2454 (35)	0.67 (-0.13, 1.48)	0.43 (0.21, 0.86)
> 10	1545 (28)	-1.35 (-2.6, -0.1)	0.27 (0.15, 0.47)	1609 (23)	-2.39 (-3.27, -1.5)	0.76 (0.40, 1.46)
Area ^c	3583 (66)					
Urban	1851 (34)	0.00 (ref)	1.00 (ref)	4911 (70)	0.00 (ref)	1.00 (ref)
Rural		-4.02 (-4.85, -3.19)	2.72 (1.84, 4.01)	2155 (30)	-3.69 (-4.36, -3.02)	1.99 (1.26, 3.14)
Latitude ^d						
North	2861 (53)	0.00 (ref)	1.00 (ref)	3402 (48)	0.00 (ref)	1.00 (ref)
South	2573 (47)	-1.52 (-2.3, -0.74)	1.76 (1.21, 2.56)	3664 (52)	2.58 (1.96, 3.19)	1.30 (0.83, 2.05)
Current tobacco consumption						
No	2804 (52)	0.00 (ref)	1.00 (ref)	6553 (93)	0.00 (ref)	1.00 (ref)
Yes	2630 (48)	1.15 (0.36, 1.93)	1.32 (0.91, 1.92)	513 (7)	-1.93 (-3.14, -0.73)	1.54 (0.87, 2.73)
Alcohol consumption ever						
No	3035 (56)	0.00 (ref)	1.00 (ref)	7059 (100)	0.00 (ref)	1.00 (ref)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2399 (44)	0.71 (1.40, 0.06)				
	-0.71 (-1.49, 0.06)	1.57 (1.08, 2.27)	7 (0)	-9.29 (-18.97, 0.4)	1.00 (1.00, 1.0
3576 (66)	0.00 (ref)	1.00 (ref)	4396 (62)	0.00 (ref)	1.00 (ref)
1858 (34)	0.65 (-0.18, 1.48)	0.61 (0.41, 0.90)	2670 (38)	-2.11 (-2.75, -1.47)	0.70 (0.44, 1.1
2888 (56)	0.00 (ref)	1.00 (ref)	2991 (44)	0.00 (ref)	1.00 (ref)
					1.07 (0.57, 2.0
1209 (23)	-1.7 (-2.68, -0.73)	0.71 (0.42, 1.21)	2104 (31)	-0.11 (-0.84, 0.62)	0.67 (0.38, 1.2
243 (5)	-0.71 (-2.61, 1.18)	0.36 (0.09, 1.50)	907 (13)	-0.64 (-1.61, 0.33)	0.55 (0.23, 1.3
361 (8)	0.00 (ref)	1.00 (ref)	3833 (58)	0.00 (ref)	1.00 (ref)
		. ,			0.67 (0.38, 1.1
					0.58 (0.08, 4.2
	1858 (34) 2888 (56) 812 (16) 1209 (23)	1858 (34) 0.65 (-0.18, 1.48) 2888 (56) 0.00 (ref) 812 (16) 4.05 (2.92, 5.18) 1209 (23) -1.7 (-2.68, -0.73) 243 (5) -0.71 (-2.61, 1.18) 361 (8) 0.00 (ref) 1351 (28) -0.42 (-2.10, 1.25)	1858 (34) 0.65 (-0.18, 1.48) 0.61 (0.41, 0.90) 2888 (56) 0.00 (ref) 1.00 (ref) 812 (16) 4.05 (2.92, 5.18) 0.69 (0.42, 1.14) 1209 (23) -1.7 (-2.68, -0.73) 0.71 (0.42, 1.21) 243 (5) -0.71 (-2.61, 1.18) 0.36 (0.09, 1.50) 361 (8) 0.00 (ref) 1.00 (ref) 1351 (28) -0.42 (-2.10, 1.25) 0.78 (0.44, 1.38)	1858 (34) 0.65 (-0.18, 1.48) 0.61 (0.41, 0.90) 2670 (38) 2888 (56) 0.00 (ref) 1.00 (ref) 2991 (44) 812 (16) 4.05 (2.92, 5.18) 0.69 (0.42, 1.14) 764 (11) 1209 (23) -1.7 (-2.68, -0.73) 0.71 (0.42, 1.21) 2104 (31) 243 (5) -0.71 (-2.61, 1.18) 0.36 (0.09, 1.50) 907 (13) 361 (8) 0.00 (ref) 1.00 (ref) 3833 (58) 1351 (28) -0.42 (-2.10, 1.25) 0.78 (0.44, 1.38) 2535 (39)	1858 (34) $0.65 (-0.18, 1.48)$ $0.61 (0.41, 0.90)$ $2670 (38)$ $-2.11 (-2.75, -1.47)$ $2888 (56)$ $0.00 (ref)$ $1.00 (ref)$ $2991 (44)$ $0.00 (ref)$ $812 (16)$ $4.05 (2.92, 5.18)$ $0.69 (0.42, 1.14)$ $764 (11)$ $1.61 (0.57, 2.65)$ $1209 (23)$ $-1.7 (-2.68, -0.73)$ $0.71 (0.42, 1.21)$ $2104 (31)$ $-0.11 (-0.84, 0.62)$ $243 (5)$ $-0.71 (-2.61, 1.18)$ $0.36 (0.09, 1.50)$ $907 (13)$ $-0.64 (-1.61, 0.33)$ $361 (8)$ $0.00 (ref)$ $1.00 (ref)$ $3833 (58)$ $0.00 (ref)$ $1351 (28)$ $-0.42 (-2.10, 1.25)$ $0.78 (0.44, 1.38)$ $2535 (39)$ $-1.39 (-2.04, -0.74)$

19 North areas include Delhi, Sonipat and Faridabad district. South areas include Chennai and Vishakhapatnam districts.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

.111tginyapao wa haa ka h

	eGFR	eGFR<60
Variable	Coefficient (95%CI) ^a	OR (95%CI) ^a
Area ^b		
Urban	0.00 (ref)	1.00 (ref)
Rural	-4.59 (-5.14, -4.03)	1.93 (1.40, 2.66)
Latitude ^c		
North	0.00 (ref)	1.00 (ref)
South	0.29 (-0.21, 0.78)	1.33 (0.98, 1.80)
Education (number of		
years)		
0	0.00 (ref)	1.00 (ref)
5	0.83 (0, 1.66)	0.55 (0.35, 0.87)
10	0.04 (-0.64, 0.72)	0.51 (0.35, 0.76)
> 10	-3.81 (-4.58, -3.04)	0.66 (0.40, 1.07)
Alcohol consumption ever		
No	0.00 (ref)	1.00 (ref)
Yes	-0.78 (-1.52, -0.05)	1.23 (0.85, 1.79)
Sex		
Female	0.00 (ref)	1.00 (ref)
Male	-2.86 (-3.46, -2.26)	1.38 (0.96, 1.98)
Age (per 10 years)	-9.12 (-9.34, -8.91)	2.23 (2.00, 2.49)

^a Variables mutually adjusted, ^b Urban areas include Delhi, Chennai and Sonipat district. Rural areas include

23 Sonipat, Vishakhapatnam and Faridabad districts; ^c North areas include Delhi, Sonipat and Faridabad district.

24 South areas include Chennai and Vishakhapatnam districts.

25 Table S4. Multiple regression analysis of sociodemographic characteristics associated with eGFR and eGFR<60

26 including plasma fasting glucose, HbA1c and systolic blood pressure

	eGFR	eGFR<60
Variable	Coefficient (95%CI) ^a	OR (95%CI) ^a
Area ^b		
Urban	0.00 (ref)	1.00 (ref)
Rural	-4.94 (-5.51, -4.38)	2.29 (1.64, 3.20)
Latitude ^c		
North	0.00 (ref)	1.00 (ref)
South	0.23 (-0.26, 0.72)	1.30 (0.95, 1.77)
Education (number of years)		
0	0.00 (ref)	1.00 (ref)
5	1.03 (0.20, 1.86)	0.49 (0.31, 0.79)
10	0.19 (-0.49, 0.87)	0.47 (0.32, 0.71)
> 10	-3.53 (-4.30, -2.76)	0.62 (0.38, 1.02)
Alcohol consumption ever		
No	0.00 (ref)	1.00 (ref)
Yes	-0.72 (-1.46, -0.01)	1.32 (0.90, 1.93)
Sex		
Female	0.00 (ref)	1.00 (ref)
Male	-2.69 (-3.29, -2.09)	1.47 (1.01, 2.12)
Age (per 10 years)	-8.93 (-9.16, -8.70)	2.11 (1.89, 2.38)
Fasting plasma glucose (mg/dl)	-0.06 (-0.08, -0.04)	1.01 (1.00, 1.02)
Hb1Ac (%)	0.03 (-0.56, 0.62)	1.95 (1.34, 2.85)
Systolic blood pressure (mm Hg)	-0.06 (-0.84, -0.04)	1.0 (0.99, 1.02)

^a Variables mutually adjusted, ^b Urban areas include Delhi, Chennai and Sonipat district. Rural areas include

28 Sonipat, Vishakhapatnam and Faridabad districts; ^c North areas include Delhi, Sonipat and Faridabad district.

29 South areas include Chennai and Vishakhapatnam districts.

	Item No	D. 1 <i>4</i>	Page/line where the checklist items are located in the
T'41 1 1 4 4	1	Recommendation	paper
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used	Title and abstract
		term in the title or the abstract	(page 2, lines 29-30)
		(b) Provide in the abstract an informative and balanced	Page 2 , lines 27-45
		summary of what was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the	Page 4, lines 68-90
		investigation being reported	
Objectives	3	State specific objectives, including any prespecified	Page 4-5, lines 91-95
		hypotheses	
Methods			
Study design	4	Present key elements of study design early in the paper	Page 5, lines 103-111,
			table 1
Setting	5	Describe the setting, locations, and relevant dates,	Table 1 and page 6,
		including periods of recruitment, exposure, follow-up,	line 123
		and data collection	
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and	Page 5, lines 112-121
		methods of selection of participants	
Variables	7	Clearly define all outcomes, exposures, predictors,	Page 6, lines 149-171
		potential confounders, and effect modifiers. Give	
		diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and	Page 6, lines 123-147
measurement		details of methods of assessment (measurement).	
		Describe comparability of assessment methods if there	
		is more than one group	
Bias	9	Describe any efforts to address potential sources of	Page 6, lines 123-127,
		bias	134-138, 145-147
Study size	10	Explain how the study size was arrived at	Figure 1
Quantitative variables	11	Explain how quantitative variables were handled in the	Page 6, lines 123-147
		analyses. If applicable, describe which groupings were	
		chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those	Page 6, 154-160
		used to control for confounding	
		(b) Describe any methods used to examine subgroups	Page 6, line 156; page
		and interactions	6, lines 162-171
		(c) Explain how missing data were addressed	Page 6, lines 160-162
		(<i>d</i>) If applicable, describe analytical methods taking	-
		account of sampling strategy	
		(\underline{e}) Describe any sensitivity analyses	Page 10, lines 233-
			235, 139-242
Results			
Participants	13*	(a) Report numbers of individuals at each stage of	Figure 1

BWW Open: first published as 10.111365 bmjopen-2018-023333 on 7 Wardh 2019. Downloaded from http://bmjopen.bmj.com/ on 49 Ni 20h 2024 by guest. Protected by copyright.

1	
2	
3	
4	
5	
6	
7	
8	
9	
	0
1	1
1	
1	
1	4
1	5
1	
1	7
1	8 9
1	9
- 2	0
2	
2	2 3
2	3
2	4
2	4 5 6 7 8 9 0
2	6
2	7
2	8
2	9
3	0
3	
3	
3	
3	
3	5
3	6
3	7
3 3	, 8
	9
	0
4	
4	
4	
	4
4	
4	
4	
4	
	9
	0
5	
с 5	
с 5	
	3 4
э 5	
	6
5	
	8
	9
6	0

1

		eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	Figure 1
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg	Table 2.; page 7-8,
		demographic, clinical, social) and information on	lines 177-185
		exposures and potential confounders	
		(b) Indicate number of participants with missing data	Page 6, lines 160-162
		for each variable of interest	
Outcome data	15*	Report numbers of outcome events or summary	Page 8, line 187-201
		measures	
Main results	16	(a) Give unadjusted estimates and, if applicable,	Page 8, lines 203-220;
		confounder-adjusted estimates and their precision (eg,	table 3 and table 4
		95% confidence interval). Make clear which	
		confounders were adjusted for and why they were	
		included	
		(b) Report category boundaries when continuous	Table 3 and Table 4
		variables were categorized	
		(c) If relevant, consider translating estimates of relative	-
		risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups	Page 9, lines 221-231;
		and interactions, and sensitivity analyses	page 10, lines 233-250
Discussion			* -
Key results	18	Summarise key results with reference to study	Page 10, lines 252-
5		objectives	263
Limitations	19	Discuss limitations of the study, taking into account	Pages 12-13, lines
		sources of potential bias or imprecision. Discuss both	310-322
		direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results	Pages 11-12, lines
1		considering objectives, limitations, multiplicity of	264-309
		analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the	Pages 13, lines 323-
5		study results	325
Other information			
Funding	22	Give the source of funding and the role of the funders	Page 3, lines 59-66
C		for the present study and, if applicable, for the original	
		study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Prevalence of and risk factors for chronic kidney disease of unknown aetiology in India: secondary data analysis of three population-based cross-sectional studies

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-023353.R2
Article Type:	Research
Date Submitted by the Author:	26-Oct-2018
Complete List of Authors:	O'Callaghan Gordo, Cristina; Instituto de Salud Global Barcelona, Campus Mar Shivashankar, Roopa; Public Health Foundation of India, Anand, Shuchi; Stanford Hospital and Clinics, Ghosh, Shreeparna; Public Health Foundation of India, Glaser, Jason; La Isla Foundation; London School of Hygiene and Tropical Medicine, 3Department of Non-communicable Disease Epidemiology Gupta, Ruby; Publichealth Foundation of India Jakobsson , Kristina ; Lunds Universitet Arbets- och miljomedicin Kondal, Dimple; Publichealth Foundation of India Krishnan , Anand ; All India Institute of Medical Sciences Centre for Community Medicine Mohan, Sailesh; Public Health Foundation of India, Mohan, V; Madras Diabetes Research Foundation Nitsch, Dorothea; LSHTM PA , Praveen ; All India Institute of Medical Sciences, Department of Endocrinology and Metabolism Tandon, Nikhil; All India Institute of Medical Sciences, Narayan, K; Emory University School of Public Health, Global Health Pearce, Neil; London School of Hygiene and Tropical Medicine Caplin, Ben; University College London Medical School, Centre for Nephrology, Prabhakaran, Dorairaj; Public Health Foundation of India, Centre for Control of Chronic Conditions and Injuries
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Global health
Keywords:	EPIDEMIOLOGY, NEPHROLOGY, Chronic renal failure < NEPHROLOGY, PUBLIC HEALTH

1 2 3 4 5 6 7 8	SCHOLARONE [™] Manuscripts
9 10 11 12 13 14 15 16 17 18	
19 20 21 22 23 24 25 26 27	
28 29 30 31 32 33 34 35 36	
37 38 39 40 41 42 43 44 45	
46 47 48 49 50 51 52 53 53 54	
55 56 57 58 59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

TITLE PAGE

Title: Prevalence of and risk factors for chronic kidney disease of unknown aetiology in India: secondary data analysis of three population-based cross-sectional studies

Authors names and affiliations:

Cristina O'Callaghan-Gordo^{1,2,3,4*}; Roopa Shivashankar^{5, 6*}; Shuchi Anand ⁷; Shreeparna Ghosh⁵; Jason Glaser^{4, 8}; Ruby Gupta⁵; Kristina Jakobsson^{9,10}; Dimple Kondal^{5,6}; Anand Krishnan¹¹; Sailesh Mohan⁵; Viswanathan Mohan¹², ¹³; Dorothea Nitsch¹⁴; Praveen PA^{6, 15}; Nikhil Tandon¹⁵; K M Venkat Narayan¹⁶; Neil Pearce^{4, 17}; Ben Caplin^{18**}; Dorairaj Prabhakaran^{5, 6**}.

¹ ISGlobal, Barcelona, Spain; ² Universitat Pompeu Fabra (UPF), Barcelona, Spain; ³ CIBER Epidemiología v Salud Pública (CIBERESP), Madrid, Spain; ⁴ Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK; ⁵ Public Health Foundation of India (PHFI), New Delhi, India; ⁶ Centre for Control of Chronic Conditions (4Cs), New Delhi, India; ⁷ Stanford University School of Medicine; ⁸ La Isla Network; ⁹ Occupational and Environmental Medicine, Sahlgrenska Academy, Gothenburg University, Sweden; ¹⁰ Occupational and Environmental Medicine, Lund University, Sweden; ¹¹ Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi;¹² Diabetes Research, Madras Diabetes Research Foundation, Chennai, India;¹³ Dr. Mohan's Diabetes Specialities Centre, Chennai, India; ¹⁴ Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, , London, UK; ¹⁵ Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India; ¹⁶ Emory Global Diabetes Research Center, Rollins School of Public Health, Emory University, Atlanta, GA, USA; ¹⁷ Centre for Global NCDs, London School of Hygiene and Tropical Medicine, London, UK; ¹⁸ Centre for Nephrology, University College London Medical School, London, UK.

* Joint first authors; ** Joint last authors

Corresponding author's name and email address:

Cristina O'Callaghan-Gordo, cristina.ocallaghan@isglobal.org

tor peer terien only

1

60

2 3 4 5	25	ABSTRACT
5 6 7	26	Objectives: To assess whether chronic kidney disease of unknown aetiology (CKDu) is present in India and to
, 8 9	27	identify risk factors for it using population-based data and standardised methods.
10	28	Design: Secondary data analysis of three population-based cross-sectional studies conducted between 2010-2014.
11 12	29	Setting: Urban and rural areas of Northern India (states of Delhi and Haryana) and Southern India (states of Tamil
13 14	30	Nadu and Andhra Pradesh)
15 16	31	Participants: 12,500 individuals without diabetes, hypertension or heavy proteinuria
17 18	32	Outcome measures: Mean estimated the glomerular filtration rate (eGFR) and prevalence of eGFR below 60ml/min
19 20	33	per 1.73m ² (eGFR<60) in individuals without diabetes, hypertension or heavy proteinuria (proxy definition of
21 22	34	CKDu).
23 24	35	Results : The mean eGFR was 105.0±17.8 ml/min per 1.73m ² . The prevalence of eGFR<60 was 1.6% (95%CI=1.4,
25 26	36	1.7), but this figure varied markedly between areas, being highest in rural areas of Southern Indian [4.8% (3.8, 5.8)].
27 28	37	In Northern India, older age was the only risk factor associated with lower mean eGFR and eGFR<60 [regression
29	38	coefficient (95%CI)= -0.94 (0.97, 0.91); OR (95%CI)=1.10 (1.08, 1.11)]. In Southern India, risk factors for lower
30 31	39	mean eGFR and eGFR<60 respectively were residence in a rural area [-7.78 (-8.69, -6.86); 4.95 (2.61, 9.39)], older
32 33 34	40	age [-0.90 (-0.93, -0.86); 1.06 (1.04, 1.08)] and less education [-0.94 (-1.32, -0.56); 0.67 (0.50, 0.90) for each five
35 36	41	years at school].
37	42	Conclusions: CKDu is present in India and is not confined to Central America and Sri Lanka. Identified risk factors
38 39 40	43	are consistent with risk factors previously reported for CKDu in Central America and Sri Lanka.
41 42 43	44	KEYWORDS
44 45 46	45	Epidemiology; Chronic kidney disease; Chronic kidney disease of unknown aetiology; India; Rural population
47 48 49 50	46	ARTICLE SUMMARY
50 51 52 53	47	Strengths and limitations of this study
55 54 55	48	• The use of a random selection of population-based participants allows the estimation of CKDu prevalence in
56 57	49	the general population.
58 59		3

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

▦
EENVLII COppo
6
ineeut
8
fing
24
ŧ
<u>B</u>
đ
쁤
ubblishmed ass 110
Ħ
0.1
긆
8
g
ģind
딇
B
jjappæm-2001188-002
B
99
00108-0023338
022333533 oon 77 Ward
Ħ
⁶
E,
7
Ă
ă
E
B
Ā
rath 2001(99. DD
F
≧
đ
8
đ
Ħ
g
ਵ
≣
Ę
Ē
3
₽
9
₫.
A
E
10
IJ
B
R
80
ġ
Ň
Ŕ
10
Ś
e
B
#
₹
ġ.
B
ø
db
Š
Ē
Ş
Щü.
Ħ

50	• A large sample size including participants from different areas of India (urban and rural, and Northern and
51	Southern India) increases the representativeness of the results.
52	• The use of standardized definitions of CKDu facilitates international comparisons of CKDu prevalence and
53	risk factors.
54	• The prevalence of eGFR<60 observed in this study is likely to be underestimated; however, this is unlikely
55	to have biased the internal comparisons conducted in this study.
56	FUNDING
57	This work was supported in part by grant MR/P02386X/1 from the United Kingdom Medical Research Council
58	under the Global Challenges Research Fund. It was also supported by grants from the Colt Foundation and the La
59	Isla Foundation. The CARRS study was funded with federal funds from the National Heart, Lung, and Blood
60	Institute, National Institutes of Health, under Contract No. HHSN2682009900026C. UDAY study was funded by
61	Eli Lilly Foundation. ICMR-CHD study was funded by the Indian Council Medical Research (ICMR). The Centre
62	for Global NCDs is supported by the Wellcome Trust Institutional Strategic Support Fund (097834/Z/11/B). CO-G
63	was supported by a Sara Borrell postdoctoral fellowship awarded from the Carlos III National Institute of Health,
64	Spain (CD13/00072).

33WU Open: first published as 110.111336/bmjopen-2018-0233333 on 7 Wardh 2019. Downloaded from http://bmjopen.bmj.com/ on 49M 26h 2024 by guest. Protected by capyright

High prevalence of CKDu has mainly been reported in the last decades amongst the working age populations of agricultural communities of tropical/subtropical regions, specifically in Central America and Sri Lanka [1–3]. In Nicaragua and El Salvador, the estimated prevalence of estimated glomerular filtration rate (eGFR; the clinical measure of kidney function) below 60ml/min per 1.73m² (eGFR<60), in the absence of diabetes and hypertension, was 10-20% [4–6]. It has been suggested that CKDu may also be highly prevalent in other low and middle income countries (LMICs), including India [7–11]. However, it is not clear in which other regions of the world CKDu occurs, whether the underlying aetiology is the same in different regions and what the risk factors are. Currently, there is no consensus but factors such as heat stress, strenuous work, climatic conditions, agrochemical use, heavy metal exposure and infections have been suggested as risk factors [1,12–15].

Data on CKDu from India are scarce. The recent report of verbal autopsy data from India suggests CKD of all causes is a growing problem. However, it does not provide accurate population-based data on CKDu [16,17]. Existing reports indicate that CKDu may be common but it is difficult to be definite about this because of the absence of population-based studies using standardised and comparable methods. Data from the Indian CKD Registry, a hospital based registry of incident cases of CKD between 2006-2010, found that CKDu was the second commonest form of CKD after diabetic nephropathy [10]. However, this is restricted to referred cases and therefore may not be representative of the general population. There are also sporadic reports of high numbers of CKDu cases among agricultural communities of the South Eastern Indian states of Andhra Pradesh and Odisha (reviewed by Chatterejee [18] and Ganguli [19]). However, population-based data have not been reported for India.

We conducted a secondary analysis of representative sample surveys conducted in India between 2010-2014. Given the absence of a clear case definition for CKDu it is necessary to make a presumptive diagnosis based on measures/estimates of GFR in the absence of known risk factors for kidney disease. The overall aim of the current study was to use a methodology which is comparable to previous studies elsewhere in the world (particularly in Central America) to assess the extent to which reduced kidney function is a problem in India, and which areas and subpopulations are most affected. We therefore: (i) assessed the distribution eGFR and prevalence of eGFR below 60ml/min per 1.73m² (eGFR<60) in Indian populations restricted to those without known risk factors for CKD, i.e.

BMJ Open

2	
3	91
4	0.2
5 6	92
7	
8	93
9	
10 11	94
12	94
13	
14 15	95
15 16	96
17	90
18	97
19 20	98
20	90
22	99
23	100
24 25	100
26	101
27	
28 29	
29 30	
31	
32	
33 34	
35	
36	
37	
38 39	
40	
41	
42	
43 44	
45	
46	
47 49	
48 49	
50	
51	
52 53	
55 54	
55	
56	
57 58	
50 59	

60

91 diabetes, hypertension or heavy proteinuria; ii) compared these outcomes in North and South India and in urban and
92 rural populations; and (iii) identified the risk factors associated with these outcomes.

93 METHODS

94 Study population

We used cross-sectional data from three population-based studies conducted in India: the "Centre for Cardiometabolic Risk Reduction in South Asia" cohort study (CARRS study) [20], the "Implementing a Comprehensive Diabetes Prevention and Management Program" study (UDAY study) [21] and the "prevalence of coronary heart disease repeat survey" study funded by the Indian Council of Medical Research (ICMR-CHD study) [22]. Details on study design and selection of participants from the CARRS, UDAY and ICMR-CHD studies have been previously described [20– 22] and are summarized in Table 1. Participants from CARRS, UDAY and ICMR-CHD studies provided informed consent prior to participation. The three studies obtained ethical clearance from the corresponding institutions.

BWU Open: first published as 10.11136/bmjopen-2018-023333 on 7 Wardh 2019. Downloaded from http://bmjopen.bmj.com/ on 46Ni 20h 2024 by guest. Protected by copyright.

102 Table 1. Design and methods of the three studies included in the current analysis

	CARRS		UDAY				ICMR-CHD	
Latitude	North	South	North		South		North	
(North/South)								
Residence	Urban		Urban	Rural	Urban	Rural	Urban	Rural
(Urban/Rural)								
District (and	Delhi (state	Chennai (state	Sonipat	(state	Vishakhar	atnam	National Capital	Faridabad (state
State)	of Delhi)	of Tamil Nadu)	of Hary	ana)	(state of .	Andhra	Territory of Delhi	of Haryana)
	C				Pradesh)		(state of Delhi)	
Household	Multistage o	cluster random	Multista	age cluste	er random (Census	Multistage cluster	Simple cluster
sampling	(wards - cen	sus enumeration	Enumer	ation blo	ocks (urbar	n) or	random (wards -	random (based
	blocks - house	eholds)	villages	(rural) -	households)	census enumeration	on Health and
							blocks -	Demographic
							households)	Surveillance
								System)
Individual	1 man and 1 w	woman from each	1 man	and 1 v	voman fror	n each	All adults	
sampling	household (se	elected by Kish	househo	old (sel	ected by	Kish		
	method, [23].)	b	method	, [23].) ^b				
Age groups	≥ 20		≥ 30		T		≥ 30	
included								
Exclusion	Pregnant, bedr	idden and participa	ants who	were unab	le to compr	ehend th	e questionnaires due co	gnitive deficiencies
criteria	were excluded							
Study period	October 2010 -	- November 2011	July 20	14 - Dece	mber 2014		August 2010 - Januar	y 2012
Laboratory ^a	PHFI °	MDRF ^d	PHFI °				PHFI °	
^a Study laboratorie	s participated i	n Randox Interna	ational Q	Quality A	ssurance S	cheme ((RIQAS) for clinical	chemistry
and HbA1c during	the entire stud	y periods. ^b In ho	useholds	s where c	only eligibl	e men c	or only eligible wome	en were
present, we selecte	d just one adul	t. ^c Public Health	ı Founda	tion of I	ndia; ^d Mac	lras Dia	betes Research Found	dation
								7

For the current analyses, we excluded participants with missing information on serum creatinine, as this variable was necessary to estimate eGFR. As the focus of our study was CKDu, we excluded participants with known risk factors for CKD (i.e. diabetes and hypertension) or evidence of primary glomerular disease (as assessed by heavy proteinuria) or with missing information for these risk factors. We also excluded participants with missing information on basic co-variables (education) for all the analyses conducted. A study flowchart is presented in Figure 1. We classified participants as having: diabetes, if plasma fasting glucose was ≥ 126 mg/dl, or glycated haemoglobin A1c (HbA1c) was \geq 6.5%, or self-reported diabetes; hypertension, if systolic blood pressure was \geq 140 mm Hg, or diastolic blood pressure was >90 mm Hg, or self-reported hypertension; and heavy proteinuria, if the albumin/creatinine ratio (ACR) in urine was \geq 300 mg/g. We used the CKD-EPI equation to estimate GFR (eGFR) [24].

Data collection and laboratory analyses

Data collection was conducted between October 2010 and December 2014. All three studies used a standardized questionnaire to collect data on age, sex, completed years of education $(0, \le 5, >5 - \le 10, >10)$, alcohol intake (ever, never) and dietary habits (vegetarian yes, no). Weight, height and body composition were measured using stadiometers (SECA 214 in the three studies) and electronic bioimpedance measuring instruments (Tanita BC 418 in CARRS and ICMR-CHD studies, and Tanita BC 601 in UDAY study). Body mass index (BMI, kg/m²) was calculated and categorized (≤ 18.5 : underweight; >18.5 - ≤ 25 : normal weight; >25 - ≤ 30 : overweight; >30: obese) and fat free mass was derived from bioelectric impedance analysis (BIA). In CARRS and ICMR-CHD studies, fat free mass (Kg) was directly measured as previously described [25], whereas in UDAY study, fat free mass was estimated from the percentage of total body fat. To estimate total fat free mass from the percentage of body fat, we calculated the amount of total body fat by multiplying the percentage of body fat by the weight of the participant, and from that value we estimated the amount of fat free mass by subtracting the weight of total body fat from the total weight of the participant. Blood pressure was measured using electronic sphygmomanometers (OMRON (HEM-7080) in CARRS and ICMR-CHD studies, and OMRON (HEM 7200) in UDAY study), as previously reported [20,26]. Stadiometers, electronic bioimpedance measuring instruments, and electronic sphygmomanometes were calibrated before each study, and no re-calibration was needed during the duration of different studies. A fasting venous blood sample was used to measure glucose levels, HbA1c and serum creatinine levels and urine sample to measure albuminuria and creatinuria [20]. Glucose levels were measured using hexokinase/kinetic methods, HbA1c using high-performance liquid

BWU Open: firstpublished as 10.11136/bmjopen-2018-023333 on 7 Wardh 2019. Downloaded from http://bmjopen.bmjj.com/ on 46Ni 206h 2024 by guest. Protected by copyright

330 2019 30 2024 By guest. Protected by copyright 2018-0223333 on 7 Warch 2019. Downloaded from http://bmj.quen.bmj.com/ on 140 Ni 200 2024 by guest. Protected by copyright

chromatography, serum creatinine using the rate-blanked and compensated kinetic Jaffe method, traceable to isotope
dilution mass spectrometry, and albuminuria using immune turbidmetric method [20]. Samples from UDAY, ICMRCHD, and samples from CARRS from Delhi were analysed at Public Health Foundation of India (PHFI) laboratory
and samples from CARRS from Chennai were analysed at Madras Diabetes Research Foundation (MDRF) laboratory.
Both PHFI and MDRF laboratories used the same methodologies and protocols to analyse the samples and participated
in Randox International Quality Assurance Scheme (RIQAS) for clinical chemistry and HbA1c during the entire study
periods. Data from the three studies were homogenized and merged in a single data set.

140 Statistical analyses

We reported mean eGFR and prevalence of eGFR<60 according to different characteristics of the study populations. UDAY and CARRS studies did not involve fully random population samples (since sampling was based on households, with one participant per household) and the proportions of study participants with particular outcomes (e.g. eGFR<60), will not be exactly the same (but very similar) to what would have been obtained with genuine random population samples; thus in this paper we refer to the prevalence in the study participants, not overall population prevalence estimates. We used linear regression models to estimate the associations between potential risk factors and eGFR and logistic regression models to estimate the associations between potential risk factors and eGFR<60. We also repeated the analyses separately for males and females. Variables associated with eGFR in the basic analyses (adjusted for age and sex) were considered for the multiple regression analysis. In the final multiple regression model, we included all variables that were of a priori interest and/or had shown independent associations with eGFR. We then checked for multicollinearity for each variable in the multiple regression analyses in comparison with the basic analyses [27]. 6% of participants had missing values for basic co-variables (i.e. education) and were excluded from the analysis. 5% and 9% of participants had missing values for BMI and for fat free mass respectively. These participants were included in the main analysis, but we excluded them to compare models non-adjusted and adjusted for these variables. We calculated prevalence ratios of eGFR<60 for rural versus urban areas in different age groups. Urban areas were defined as "all places with a municipality, corporation, cantonment board or notified town area committee, etc., and all other places which satisfied the following criteria: a minimum population of 5,000; at least 75 per cent of the male main working population engaged in non-agricultural pursuits; and a density of population of at least 400 persons per km²", according to the 2011 Census of India definition [28]. Finally, we estimated potential

BMJ Open

interactions between urban (versus rural) residence and latitude (Northern India (i.e. states of Delhi and Haryana)
versus Southern India (states of Tamil Nadu and Andhra Pradesh). Classification of latitude was done in concordance
with the classification of major geographical areas on India defined by the Indian Council of Medical Research [29],
Figure 1. We conducted all analyses using Stata version 14 (StataCorp, College Station, TX, USA).

164 Patient and Public Involvement

165 Patients were not involved in the design of this analysis.

166 RESULTS

167 Characteristics of study participants

12,500 people were eligible for the current analyses (Figure 2). Table 2 summarizes the socio-demographic and anthropometric characteristics of the 12,500 study participants included in this analysis (the same information including participants with known risk factors for CKD (n=24,774) in supplementary material Table S1). The mean (standard deviation (±SD)) age of participants was 41.5±11.6 years. 88% (4,805/5,434) of the male population was formally employed; 76% (5,346/7,066) of women worked on house duties (i.e. housewives). The mean BMI was 24 ± 5.0 kg/m² and mean fat free mass was 42 ± 15 kg/m². The mean fasting plasma glucose was 91.9 ± 12.3 mg/dl and the mean HbA1c was 5.5±0.4 %. The mean systolic and diastolic blood pressures were 114±12 mm Hg and 74±9 mm Hg, respectively. The median (inter quartile range, IQR) albumin/creatinine ratio (ACR) was 2.4 (4.3) mg/g (after exclusion of those with ACR>300mg/g, n=1,208).

177 Mean eGFR and prevalence of eGFR<60

The mean eGFR was 105.0 ± 17.8 ml/min per $1.73m^2$. The mean eGFR was lower at increasing ages, in males, in inhabitants from rural areas and in those from Northern India, in participants with no formal education, and in participants who reported tobacco consumption, alcohol intake and being vegetarian (Table 2). We observed differences in mean eGFR depending on the area, being 104.5 ± 17.6 in urban areas of Northern India, 100.3 ± 16.2 in rural areas of Northern India, 110.9 ± 15.7 in urban areas of Southern India and 97.4 ± 19.8 in the rural area of Southern India. BWU Open: firstpublished ass 10.11136/bmjopen-2018-023333 on 7 Warch 2019. Downloaded from http://bmjopen.bmjj.com/ on 14pNi 20h 2024 by guest. Protected by copyright

The prevalence of eGFR<60 among the study population was 1.6% (95% confidence interval (95% CI)=1.4, 1.9). Seventeen per cent (95% CI=16, 17) of study participants had eGFR > 60 - <90 ml/min per 1.73m² and 82% [95% confidence interval (95% CI)=81, 82] had eGFR≥90 ml/min per 1.73m². The prevalences of different categories of eGFR differed by formal education, tobacco consumption, alcohol intake and vegetarianism (Table 2). Also, we observed marked differences in the prevalence of eGFR<60 depending on the area, being 1.4 % (95% CI=1.1, 1.8) in urban areas of Northern India, 1.9 (95% CI=1.4, 2.6) in rural areas of Northern India, 0.43% (95% CI=0.03, 0.07) in urban areas of Southern India and 4.8 % (95% CI=3.9, 5.9) in the rural area of Southern India. The prevalence ratio of eGFR<60 for rural versus urban residence was higher in participants younger than 50 years (prevalence ratio in age group $\leq 39=5.5$, and prevalence ratio in age group 40 - 49=5.8) than in older participants (Figure 3).

BMJ Open

193 Table 2. Sociodemographic and anthropometric characteristics of study participants (population without diabetes,

194 hypertension or heavy proteinuria)

Variable	n (%) ^a n=12,500	eGFR	eGFR cat	egories, n(%) ^b
		mean (SD)	≥90	90 - 60	<60
Socio-demographic					
Age (years)					
<39	6121 (49)	113.8 (14.6)	5656 (92)	443 (7)	22 (0)
40 - 49	3476 (28)	102.5 (14.2)	2864 (82)	572 (16)	40 (1)
50 - 59	1706 (14)	93.9 (14.3)	1163 (68)	503 (29)	40 (2)
60 - 69	893 (7)	85.3 (16.2)	463 (52)	368 (41)	62 (7)
≥70	304 (2)	77.5 (15.1)	62 (20)	201 (66)	41 (13
Sex					
Female	7066 (57)	107.9 (17.1)	6039 (85)	945 (13)	82 (1)
Male	5434 (43)	101.3 (17.9)	4169 (77)	1142 (21)	123 (
Education (number completed years)					
0	2820 (23)	100.7 (19.0)	2165 (77)	551 (20)	104 (
≤5	1709 (14)	105.9 (17.3)	1412 (83)	273 (16)	24 (1
6 - ≤10	4817 (39)	107.2 (16.8)	4095 (85)	675 (14)	47 (1
>10	3154 (25)	105.0 (17.5)	2536 (80)	588 (19)	30 (1
Area ^c					
Urban	8494 (68)	107.8 (16.1)	7247 (85)	1171 (14)	76 (1
Rural	4006 (32)	99.0 (18.0)	2961 (74)	916 (23)	129 (
Latitude ^d					
North	6263 (50)	103.0 (17.2)	4967 (79)	1197 (19)	99 (2
South	6237 (50)	107.0 (18.1)	5241 (84)	890 (14)	106 (
Life-style factors					
Current tobacco consumption					
No	9357 (75)	106.8 (17.3)	7836 (84)	1406 (15)	115 (
Yes	3143 (25)	99.8 (18.1)	2372 (75)	681 (22)	90 (3
Alcohol consumption ever					

а

2							
3		No	10094 (81)	105.9 (17.4)	8362 (83)	1589 (16)	143 (1)
4 5	195	Yes	2406 (19)	101.1 (18.5)	1846 (77)	498 (21)	62 (3)
6 7		Vegetarian					
8 9		No	7972 (64)	107.0 (18.0)	6690 (84)	1154 (14)	128 (2)
10		Yes	4528 (36)	101.6 (16.6)	3518 (78)	933 (21)	77 (2)
11 12		Biological factors					
13 14		Body mass index (kg/m ²)					
15 16		Underweight (≤18.5)	5879 (47)	104.2 (17.9)	4734 (81)	1029 (18)	116 (2)
17		Normal (>18.5 - ≤25)	1576 (13)	104.7 (19.3)	1283 (81)	257 (16)	36 (2)
18 19		Overweight (>25 - ≤30)	3313 (27)	105.0 (16.9)	2710 (82)	568 (17)	35 (1)
20 21		Obese (>30)	1150 (9)	105.5 (16.4)	948 (82)	194 (17)	8 (1)
22		Missing data	582 (5)		533 (92)	39 (7)	10 (2)
23 24		Fat free mass (kg)					
25 26		1 st tertile (\leq 37)	3746 (30)	106.6 (18.1)	3146 (84)	532 (14)	68 (2)
27		2 nd tertile (>37 - <45)	3801 (30)	105.9 (17.2)	3145 (83)	601 (16)	55 (1)
28 29		3 rd tertile (≥45)	3834 (31)	102.1 (17.0)	2981 (78)	801 (21)	52 (1)
30 31		Missing data	1119 (9)		936 (84)	153 (14)	30 (3)
32	106	Dereentages in columns: b pere	ontagos in rows: 6 Urban aros	inaluda Dalhi	Channai an	d Soninat di	strict Duro

Percentages in columns^{; b} percentages in rows; ^c Urban areas include Delhi, Chennai and Sonipat district. Rural areas

include Sonipat, Vishakhapatnam and Faridabad districts; ^dNorth areas include Delhi, Sonipat and Faridabad district.

South areas include Chennai and Vishakhapatnam districts.

199 Risk factors for lower eGFR and eGFR<60

As expected, age was an important risk factor for reduced eGFR: eGFR was 9.30 ml/min per 1.73 m² (95%CI= -9.51, -9.09, model adjusted for sex) lower for each additional 10 years of age. Additionally, being male, living in a rural setting, and consuming alcohol were associated with decreased mean eGFR (Table 3). Similarly, the odds of eGFR<60 also increased with age [OR per 10 years, adjusted for sex (95%CI)=2.34 (2.12, 2.59)] and being male, living in a rural setting, living in Southern India and consuming alcohol were also associated with eGFR<60 (Table 3). In general, risk factors for decreased mean eGFR and for eGFR<60 were similar for men and women (supplementary material, Table S2), but few differences were observed. Regarding mean eGFR, living in Southern India was associated with decreased mean eGFR in men and with increased mean eGFR in women; tobacco consumption was associated with increased mean eGFR in men and with decreased mean eGFR in women; vegetarianism was associated with decreased mean eGFR in women but not in men; and being overweight was associated with decreased mean eGFR but in men but not in women. Regarding risk of eGFR<60, living in Southern India was associated with increased risk of eGFR<60 in men but not in women.

3012 How and the second s

BWU Open: first published as 10.11136/bmjopen-2018-023333 on 7 Wardh 2019. Downloaded from http://bmjopen.bmj.com/ on 46Ni 20h 2024 by guest. Protected by copyright.

	eGFR	eGFR<60
Variable	Coefficient (95 CI) ^a	OR (95 CI) ^a
Age (years) ^b		
<39	0.00 (ref)	1.00 (ref)
40 - 49	-11.08 (-11.68, -10.47)	3.15 (1.87, 5.32)
50 - 59	-19.43 (-20.20, -18.65)	6.41 (3.80, 10.83)
60 - 69	-27.84 (-28.86, -26.82)	19.68 (12.01, 32.26)
≥70	-35.04 (-36.71, -33.37)	39.23 (22.87, 67.23)
Sex °		
Female	0.00 (ref)	1.00 (ref)
Male	-3.55 (- 4.05, -3.06)	1.33 (0.99, 1.78)
Education (number of completed years)		
0	0.00 (ref)	1.00 (ref)
≤5	1.92 (1.09, 2.76)	0.41 (0.26, 0.65)
6 - ≤10	1.27 (0.61, 1.93)	0.36 (0.25, 0.53)
> 10	-1.86 (-2.59, -1.14)	0.40 (0.26, 0.62)
Area ^d		
Urban	0.00 (ref)	1.00 (ref)
Rural	-3.84 (-4.37, -3.32)	2.39 (1.78, 3.22)
Latitude ^e		
North	0.00 (ref)	1.00 (ref)
South	0.86 (0.37, 1.35)	1.55 (1.16, 2.07)
Current tobacco consumption		
No	0.00 (ref)	1.00 (ref)
Yes	0.38 (-0.26, 1.02)	1.39 (1.01, 1.91)

2			
3	No	0.00 (ref)	1.00 (ref)
4			/
5	Yes	-0.81 (-1.55, -0.08)	1.57 (1.09, 2.27)
6 7	Vegetarian		
8	vegetarian		
9	No	0.00 (ref)	1.00 (ref)
10			
11	Yes	-0.99 (-1.50, -0.47)	0.65 (0.48, 0.88)
12			
13	Body mass index (kg/m2)		
14	Underweight (≤18.5)	2.96 (2.20, 3.73)	0.81 (0.55, 1.20)
15	onderweight (<u>1</u> 0.5)	2.90 (2.20, 5.75)	0.01 (0.55, 1.20)
16 17	Normal (>18.5 - ≤25)	0.00 (ref)	1.00 (ref)
17			
19	Overweight (>25 - \leq 30)	-0.75 (-1.34, -0.16)	0.68 (0.46, 1.01)
20	Ohere (>20)	0.71 (1.50, 0.17)	0 47 (0 22 0 08)
21	Obese (>30)	-0.71 (-1.59, 0.17)	0.47 (0.23, 0.98)
22	Fat free mass (kg)		
23			
24	1st tertile (≤37)	0.00 (ref)	1.00 (ref)
25			
26	2nd tertile (>37 - <45)	-0.91 (-1.54, -0.28)	0.69 (0.47, 1.03)
27 28	3rd tertile (≥45)	300(477 - 304)	0.49 (0.31, 0.80)
20	Sid tertile (≥ 43)	-3.90 (-4.77, -3.04)	0.49 (0.31, 0.60)

^a Adjusted for age and sex; ^b Adjusted just for sex; ^c Adjusted just for age; ^d Urban areas include Delhi, Chennai and Sonipat district. Rural areas include Sonipat, Vishakhapatnam and Faridabad districts; e North areas include Delhi, Sonipat and Faridabad district. South areas include Chennai and Vishakhapatnam districts.

330 march 2019 march 2019 march 2019 march 2019 march 2019 march 2019 . Downloaded from http://bmjopen.bmj.com// on PoM 201 2029 by guest. Protected by copyright

In the multiple regression analyses, decreased mean eGFR remained associated with older age, being male, living in a rural setting, and alcohol consumption (Table 4). Risk of eGFR<60 remained associated with older age, being male and living in a rural setting, and having no formal education (Table 4). We adjusted all the multiple regression models for fat free mass and vegetarianism to assess the possibility that differences observed between urban and rural participants were due to differences in diet and/or body composition. These adjustments had little effect on the results (Table 4).

to peer terien only

Page	19	of 42
------	----	-------

BMJ Open

Table 4 . Multiple regre Variable Area ^d Urban	ession analyses of sociodemog eGFR Coefficient (95% Model 1ª		ociated with eGFR and eC	GFR<6). eGFR<60 OR (95%	an Ha mar an a Mar	
Variable Area ^d	eGFR Coefficient (95%	9 CI)	ociated with eGFR and eC	GFR<6). eGFR<60 OR (95%		
Variable Area ^d	eGFR Coefficient (95%	9 CI)	ociated with eGFR and eC	3FR<6). eGFR<60 OR (95%		
Area ^d				eGFR<60 OR (95%		
Area ^d	Model 1 ^a	Model 2 ^b			S (1)	
		11104012	Model 3 ^c	Model 1 ^a		Model 3 ^c
Urban						
oroun						
	0.00 (ref)	0.00 (ref)	0.00 (ref)	1.00 (ref)	1.00 (ref)	1.00 (ref)
Rural	-4.57 (-5.13, -4.02)	-3.94 (-4.53, -3.36)	-4.10 (-4.70, -3.51)	1.99 (1.43, 2.76)	1.61 (1.12, 2.30)	1.65 (1.14, 2.37)
Latitude ^e						
North						
norm	0.00 (ref)	0.00 (ref)	0.00 (ref)	1.00 (ref)	1.00 (ref)	1.00 (ref)
South	0.31 (-0.18, 0.80)	-0.10 (-0.61, 0.41)	0.26 (-0.37, 0.89)	1.00 (ref) 1.99 (1.43, 2.76) 1.00 (ref) 1.33 (0.98, 1.81) 1.00 (ref) 0.50 (0.31, 0.80) 0.50 (0.34, 0.75) 0.68 (0.42, 1.11)	1.60 (1.14, 2.32)	1.33 (0.86, 2.04)
Education (number	of			e		
completed years)						
0	0.00 (ref)	0.00 (ref)	0.00 (ref)	1.00 (ref)	1.00 (ref)	1.00 (ref)
≤5	0.94 (0.01, 1.77)	1.16 (0.30, 2.02)	1.18 (0.32, 2.04)	0.50 (0.31, 0.80)	0.44 (0.26, 0.74)	0.45 (0.26, 0.75)
6 - ≤10	0.04 (-0.64, 0.72)	0.21 (-0.49, 0.91)	0.21 (-0.50, 0.92)	0.50 (0.34, 0.75)	0.38 (0.24, 0.60)	0.39 (0.25, 0.62)
>10	-3.81 (-4.6, -3.0)	-3.81 (-4.60, -3.02)	-3.78 (-4.59, -2.97)			0.65 (0.38, 1.11)
Alcohol consumption eve	er				Protection	
No	0.00 (ref)	0.00 (ref)	0.00 (ref)	1.00 (ref) 1.28 (0.88, 1.87)	1.00 (ref)	1.00 (ref)
Yes	-0.85 (-1.58, -0.12)	-0.69 (-1.47, 0.08)	-0.63 (-1.41, 0.15)	1.28 (0.88, 1.87)	1.18 (0.78, 1.79)	1.15 (0.76, 1.74)

Page 20 of 42

	BMJ Open					Page 20 of 42 1.00 (ref) 1.49 (1.00, 2.21) 2.25 (2.00, 2.55) 2.27 (2.00, 2.57) Page 20 of 42	
1 2 3						0009-002-333453	
4 5	Sex						
6	Female	0.00 (ref)	0.00 (ref)	0.00 (ref)	1.00 (ref)	1.00 (ref)	1.00 (ref)
7 8	Male	-2.85 (-3.44, -2.25)	-3.00 (-3.62, -2.38)	-2.52 (-3.18, -1.86)	1.39 (0.96, 2.01)	1.49 (1.00, 2.21)	1.50 (0.97, 2.31)
9 10	Age (per 10 years)	-9.10 (-9.32, -8.88)	-9.09 (-9.32, -8.86)	-9.15 (-9.38, -8.91)		-	2.27 (2.00, 2.57)
11	Fat free mass (kg)			-0.04 (-0.06, -0.02)			1.0 (0.98, 1.02)
12 13	Vegetarian					Towworlda saddad d ffrann Htt	
14 15	No			0.00 (ref)			1.00 (ref)
16 17	Yes			0.66 (-0.03, 1.35)			0.74 (0.47, 1.18)
19 224 20 225 21 226 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	plus fat free mass and ve	th missing information on fa getarianism, n=11,381. ^d Url rth areas include Delhi, Soni	oan areas include Delhi, C	Chennai and Sonipat distri	ct. Rural areas include nnai and Vishakhapath	onipat, Vishakhapatn	

We observed an interaction between the effects of latitude (North/South) and urban/rural residence in association with reduced eGFR (p-value for interaction<0.001). The mean eGFR was lower in rural settings in both Northern and Southern India (controlling for age, sex, education and alcohol intake). However, this decrease was much more marked in Southern India. In Northern India, rural residence, formal education (and duration) and age were the only other risk factor associated with reduced eGFR. In Southern India, being male was also a risk factor for reduced eGFR, whereas formal education was only a risk factor for reduced eGFR among those with more than 10 years of schooling (Table 5). We also observed an interaction between the effects of latitude (North/South) and urban/rural residence in association with eGFR<60 (p-value likelihood-ratio test for interaction<0.001). In Northern India, eGFR<60 was not associated with urban/rural residence, and older age was the only factor associated with eGFR<60. In Southern India, rural residence was the strongest risk factor for eGFR<60 but older age and lower years of formal education also increased the risk of eGFR<60 (Table 5).

33WU Open: first published as 110.111336/bmjopen-2018-0233333 on 7 Wardh 2019. Downloaded from http://bmjopen.bmj.com/ on 49M/26h 2024 by guest. Protected by capyright

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

58

59

60

1 2

according to latitude a

239 Table 5. Multivariate analysis of sociodemographic characteristics associated with eGFR and with eGFR<60 240

eGFR (n=12,500) eGFR<60(n=12,500) North (n=6263)^a South (n=6237)^b North (n=6263) a South (n=6237)^b Variables Coefficient (95% CI) Coefficient (95% CI) OR (95% CI) OR (95% CI) Area^c Urban 0.00 (ref) 0.00 (ref) 1.00 (ref) 1.00 (ref) -1.42 (-2.15, -0.70) 0.88 (0.57, 1.37) 4.68 (2.50, 8.77) Rural -7.90 (-8.81, -7.00) Education (number of completed years) 0 1.00 (ref) 1.00 (ref) ** 0.00 (ref) 0.00 (ref) ≤5 -1.32 (-2.58, -0.05) 1.05 (-0.06, 2.16) 1.16 (0.57, 2.35) 0.40 (0.20, 0.80) 6-<10 -3.50 (-4.48, -2.52) 0.28 (-0.74, 1.30) 1.34 (0.74, 2.41) 0.35 (0.16, 0.74) > 10 -6.93 (-7.97, -5.89) -2.85 (-4.03, -1.67) 1.34 (0.69, 2.58) 0.61 (0.24, 1.57) Alcohol consumption ever 0.00 (ref) 0.00 (ref) 1.00 (ref) 1.00 (ref) No Yes -0.54 (-1.55, 0.47) -0.06(-1.11, 0.99)1.09 (0.62, 1.92) 1.36 (0.74, 2.17) Sex Female 0.00 (ref) 0.00 (ref) 1.00 (ref) 1.00 (ref) Male -0.17(-0.96, 0.63)-5.40 (-6.29, -4.51) 0.97(0.59, 1.59)1.58 (0.91, 2.75) Age (per 10 years) -9.26 (-9.55, -8.97) -8.96(-9.28, -8.64)2.51 (2.15, 2.93) 2.10 (1.77, 2.50)

** Likelihood ratio test for linear trend <0.05, OR (95% CI)=0.68 (0.51, 0.91). * North areas include Delhi, 241

242 Sonipat and Faridabad district. ^b South areas include Chennai and Vishakhapatnam districts. ^c Urban areas

243 include Delhi, Chennai and Sonipat district. Rural areas include Sonipat, Vishakhapatnam and Faridabad 244 districts

BMJ Open

245 Sensitivity analyses

We performed a sensitivity analysis including those with ACR>300 (but without hypertension or diabetes,
n=33) as we were concerned that those with CKDu might develop proteinuria at more advanced CKD stages.
However, this did not alter the mean eGFR (mean eGFR among the overall study population=105.0±17.8, mean
eGFR in this sensitivity analysis=105.0±17.8), nor the estimated prevalence of eGFR<60 (prevalence among
the overall study population=1.6%; prevalence in this sensitivity analysis =1.7%). The findings on risk factors
were also similar to the findings from the primary analyses (supplementary material, Table S3).

Given concerns about potentially different thresholds to define diabetes and high blood pressure in different ethnic groups [30,31], we performed a further sensitivity analysis including fasting plasma glucose, HbA1c and systolic blood pressure in the multivariate model (even though there is evidence for both causation and reverse causation between these factors and CKD [32]). Systolic blood pressure and fasting plasma glucose were associated with reduced eGFR in this non diabetic population, but inclusion of these variables did not alter the coefficients for the associations with other risk factors observed in the primary analysis (supplementary material, Table S4). HbA1c was associated with eGFR<60 in this non diabetic population but inclusion of this variable did not alter the OR for other risk factors observed in the primary analysis (supplementary material, Table S4). Therefore, although the relationship between sub-clinical diabetes and impaired kidney function requires further prospective investigation, there is no evidence that the excess risk of low eGFR (i.e. lower mean eGFR and higher prevalence of eGFR<60) in rural Southern India is associated with either impaired fasting glucose or higher blood pressure.

264 DISCUSSION

We report the distribution of eGFR in people without diabetes, hypertension or heavy proteinuria and estimate the prevalence of CKDu in our study population, including participants from urban and rural settings. This is the first population-based evidence, using standardised methods, which indicates that CKDu is present in India and is not confined to Central America and Sri Lanka. We found that the rural population from Southern India (Vishakhapatnam district) had the highest risk of decreased eGFR (lower mean eGFR and higher prevalence of eGFR<60). Risk factors of decreased eGFR were different between Southern and Northern India. In Southern 3012 How and the second s

India, rural residence, older age and being male were risk factors for both lower mean eGFR and eGFR<60; education was associated with decreased risk for eGFR<60 but not with lower mean eGFR. In Northern India, older age was the only risk factor for both lower mean eGFR and eGFR<60; rural residence and years of formal education were associated with lower mean eGFR but not with eGFR<60. In summary, in Southern India, older age, being male and rural residence were the main risk factors for decreased eGFR, whereas in Norther India older age was the main risk factors for decreased eGFR.

As in Central America, the risk of low eGFR was higher in rural settings than in urban settings. This is in concordance with a previous study from Hyderabad (India), that has provided evidence of a higher risk of low eGFR in a rural population compared to urban-migrant and to urban population [33], and with various studies from other LMICs that have provided evidence of clusters of CKDu among the rural population [2,3]. Exposure to some of the suggested potential risk factors for CKDu such as agricultural work and agrochemical exposure, amongst others [34], may be greater in rural settings. Such exposures may also differ between Southern and Northern India, and potentially explain the differences observed between these areas. The associations between urban/rural residence and lower mean eGFR was much more marked in Southern India than in Northern India, and the associations between urban/rural residence and eGFR<60 was only observed in Southern India. The higher prevalence ratio (for eGFR<60) in the working age population compared to older age groups is consistent with the hypothesis that deceased in eGFR could be potentially explained by occupational exposures. The suggestive sex differences may also support this hypothesis. However, we did not have detailed data on occupation that allowed us to explore these associations in greater detail.

The higher risk of low eGFR in Southern India (Chennai and Vishakhapatnam districts) observed in our study is consistent with the clusters of CKDu cases previously reported in the Southern Indian states of Andhra Pradesh and Odisha [11,18,19]. Visakhapatnam district (state of Andhra Pradesh) and Chennai district (state of Tamil Nadu) have a similar climate than these areas where CKDu clusters have previously reported [35]. In these districts, mean temperatures range from 18 °C to 37 °C and rainfall occurs mainly between June and December [36]. On the other hand, sites from Norther India included in the study (Delhi (state of Delhi), Sonipat and Faridabad (Haryana state)), have a different climate. In these districts mean temperature ranges Page 25 of 42

BMJ Open

from 8 °C to 39 °C and precipitation occurs mainly between July and August [36]. A previous study conductedin Costa Rica found a spatial correlation between rates of CKD mortality and temperature and rainfall [13].

About 5% of the rural population of Vishakhapatnam (Andra Pradesh, Southern India) without diabetes, hypertension or proteinuria had eGFR<60. This figure is almost as high as the prevalence observed in the USA (i.e. 6.7%) including people with diabetes, hypertension or proteinuria [37]. Moreover, the estimates of GFR in our study are likely to be underestimated. The CKD-EPI equation has been standardised for the white and Afro-American population [24], but its validity for other ethnic groups has been questioned [38,39]. Previous studies using CKD-EPI equation to estimate GFR in Indian populations reported mean eGFR values similar to the mean eGFR reported in our study (i.e. $104.9 \pm 25.52 \text{ ml/min}/1.73 \text{ m}^2$) [40]. However, two studies conducted among healthy kidney donors in India (population similar to those included in this analysis) have reported mean (measured) GFR between 81.4 and 95.5 ml/min per 1.73 m² [41,42], suggesting that the CKD-EPI equation substantially overestimates eGFR in the Indian population. Therefore, the prevalence of eGFR<60 observed in this study is likely to be substantially underestimated (although this is unlikely to have biased the internal comparisons, e.g. between urban and rural settings). The use of a conservative definition of the population susceptible to CKDu, may have also underestimated the prevalence of eGFR<60 in our study, as the population with diabetes, hypertension or glomerular disease may also have reduced eGFR due to other ('unknown') causes. To estimate the actual prevalence of reduced eGFR, future studies should include validated methods to estimate GFR in the Indian population. We were concerned that the validity of CKD-EPI among the Indian population may be also compromised by differences in muscular mass and meat consumption between population groups within India. We adjusted the analyses for fat free mass and vegetarianism, but this did not alter the results, suggesting no confounding effect by these variables.

Our study has at least three potential limitations. First, we only had one measure of eGFR, and therefore we could not differentiate acute kidney injury (AKI) from CKD. This is a common limitation in epidemiological studies, as it is challenging to obtain more than one measure of eGFR at least 3 months apart in large populationbased investigations. Therefore, we may have misclassified some cases of AKI as reduced eGFR, and therefore overestimate the prevalence of this condition. Nevertheless, there is no a priori reason to think that potential misclassification was different according to the evaluated risks factors. Second, the three population-based 3012 How and the second s

studies included in this analysis used different sampling strategies. CARRS and UDAY studies included only one man and one woman from all the eligible participants of selected households, whereas ICMR-CHD included all eligible adults from each selected household. This could have slightly biased our results (including our prevalence estimates) if risk factors potentially associated with CKDu were different between households inhabited only by a man and a women or by extended families. Third, information on other potential risk factors for CKDu, such as infections by leptospora or hantavirus infection, or use of nonsteroidal anti-inflammatory drugs (NSAIDs) was not available.

The main strengths of the study are the use of a random selection of population-based participants and a large sample size including participants from different areas of India (urban and rural, and Northern and Southern India). Moreover, we used the definitions proposed in DRGREE study [43], that aims to allow international comparisons of CKDu prevalence and help in the description of risk factors and in identifying the causes and mechanisms leading to CKDu.

In conclusion, our findings indicate that reduced eGFR, consistent with the definition of CKDu, is common in rural settings of Southern India (Vishakhapatnam district). This results support the hypothesis that the epidemic of CKDu, initially described in agricultural communities of Central America and Sri Lanka, may be common in other rural communities of tropical/subtropical countries. This has important implications for global health, since it indicates that CKDu may have a substantial public health burden globally that has been previously unrecognised. Population-based studies in other tropical/subtropical countries are required to assess the global patterns of burden of disease from CKDu [43].

343 AUTHOR CONTRIBUTIONS AND ACKNOWLEDGEMENTS

CO-G, BC, NP and DP designed the work; RS, SA, SG, RG, AK, SM, VM, PPA, NT, and KMN collected the
data; CO-G and DK conducted the analysis of the data; CO-G, RS, SA, JG, KJ, DN, SM, KMN, NP, BC, and
DP interpreted the data of the work. CO-G, RS, BC, and NP drafted the manuscript; RS, SA, SG, JG, RG, KJ,
DK, AK, SM, VM, DN, PPA, NT, KMN, and DP revised the manuscript for important intellectual content,
provided comments and suggested revisions. All authors approved the final version for publication.

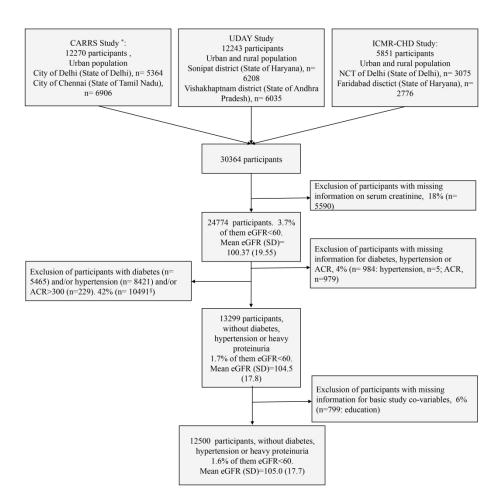
2 3	3
4 5	3
6	
7 8	3
9 10	
11	3
12 13	
14 15	3
16	
17 18	3
19	3
20 21	3
22 23	
24	
25 26	
27 28	
29	
30 31	
32	
33 34	
35 36	
37	
38 39	
40	
41 42	
43 44	
45	
46 47	
48	
49 50	
51 52	
53	
54 55	
56	
57 58	

59

olano
India
ained

357 REFERENCES

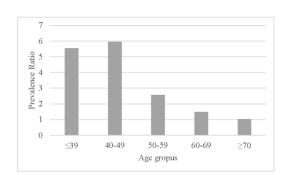
5				
6 7	358 359	1	Wesseling C, Crowe J, Hogstedt C, <i>et al.</i> Mesoamerican Nephropathy: Report from the First International Research Workshop on MeN. Heredia, Costa Rica: 2013.	
8 9 10	360 361	2	Correa-Rotter R, Wesseling C, Johnson RJ. CKD of unknown origin in Central America: the case f a Mesoamerican nephropathy. <i>Am J Kidney Dis</i> 2014; 63 :506–20. doi:10.1053/j.ajkd.2013.10.062	for
11 12 13	362 363 364	3	Jayatilake N, Mendis S, Maheepala P, <i>et al.</i> Chronic kidney disease of uncertain aetiology: Prevale and causative factors in a developing country. <i>BMC Nephrol</i> 2013; 14 :1. doi:10.1186/1471-2369-14 180	
14 15 16	365 366 367	4	Lebov JF, Valladares E, Pena R, <i>et al.</i> A population-based study of prevalence and risk factors of chronic kidney disease in Leon, Nicaragua. <i>Can J kidney Heal Dis</i> 2015; 2 :6. doi:10.1186/s40697-015-0041-1	
17 18 19	368 369	5	Peraza S, Wesseling C, Aragon A, <i>et al.</i> Decreased kidney function among agricultural workers in Salvador. <i>Am J Kidney Dis</i> 2012; 59 :531–40. doi:10.1053/j.ajkd.2011.11.039	El
20 21	370 371	6	Torres C, Aragón A, González M, <i>et al.</i> Decreased kidney function of unknown cause in Nicaragua community-based survey. <i>Am J Kidney Dis</i> 2010; 55 :485–96. doi:10.1053/j.ajkd.2009.12.012	a: a
22 23 24	372 373 374	7	Seck SM, Doupa D, Gueye L, <i>et al.</i> Prevalence of chronic kidney disease and associated factors in senegalese populations: a community-based study in saint-louis. <i>Nephrourol Mon</i> 2014; 6 :e19085. doi:10.5812/numonthly.19085	
25 26 27	375 376	8	Barsoum RS. Burden of chronic kidney disease: North Africa. <i>Kidney Int Suppl</i> 2013; 3 :164–6. doi:10.1038/kisup.2013.5	
27 28 29	377 378	9	El Minshawy O, Ghabrah T, El Bassuoni E. End-stage renal disease in Tabuk Area, Saudi Arabia: a epidemiological study. <i>Saudi J Kidney Dis Transpl</i> 2014; 25 :192–5.	an
30 31	379 380	10	Rajapurkar MM, John GT, Kirpalani AL, <i>et al</i> . What do we know about chronic kidney disease in India: First report of the Indian CKD registry. <i>BMC Nephrol</i> 2012; 13 . doi:10.1186/1471-2369-13-1	10
32 33 34	381 382	11	Reddy D V., Gunasekar A. Chronic kidney disease in two coastal districts of Andhra Pradesh, India Role of drinking water. <i>Environ Geochem Health</i> 2013; 35 :439–54. doi:10.1007/s10653-012-9506-7	
35 36 37	383 384 385	12	Jayasumana C, Paranagama P, Agampodi S, <i>et al.</i> Drinking well water and occupational exposure therbicides is associated with chronic kidney disease, in Padavi-Sripura, Sri Lanka -No section <i>Environ Heal A Glob Access Sci Source</i> 2015; 14 . doi:10.1186/1476-069X-14-6	to
38 39 40	386 387 388	13	Wesseling C, Van Wendel De Joode B, Crowe J, <i>et al.</i> Mesoamerican nephropathy: Geographical distribution and time trends of chronic kidney disease mortality between 1970 and 2012 in Costa Rica. <i>Occup Environ Med</i> 2015; 72 :714–21. doi:10.1136/oemed-2014-102799	
41 42	389 390	14	Garcia-Garcia G, Jha V, World Kidney Day Steering Committee. Environmental and occupational factors in CKD. <i>Occup Environ Med</i> 2015; 72 :238. doi:10.1136/oemed-2015-102859	
43 44 45	391 392	15	Robey RB. Cyclical dehydration-induced renal injury and Mesoamerican nephropathy: as sweet by any other name? <i>Kidney Int</i> 2014; 86 :226–9. doi:10.1038/ki.2014.47	r
46 47	393 394	16	Jha V, Modi G. Uncovering the rising kidney failure deaths in India. <i>Lancet Glob Heal</i> 2017; 5 :e14-doi:10.1016/S2214-109X(16)30299-6	-5.
48 49 50	395 396 397	17	Dare AJ, Fu SH, Patra J, <i>et al.</i> Renal failure deaths and their risk factors in India 2001–13: national representative estimates from the Million Death Study. <i>Lancet Glob Heal</i> 2017; 5 :e89–95. doi:10.1016/S2214-109X(16)30308-4	ly
51 52	398	18	Chatterjee R. Occupational Hazard. Science (80-) 1026;352:24-7.	
53 54	399 400	19	Ganguli A. Uddanam Nephropathy/Regional Nephropathy in India: Preliminary Findings and a Ple for Further Research. <i>Am J Kidney Dis</i> 2016; 68 :344–8. doi:10.1053/j.ajkd.2016.04.012	a
55 56 57	401 402	20	Nair M, Ali MK, Ajay VS, <i>et al.</i> CARRS Surveillance study: Design and methods to assess burden from multiple perspectives. <i>BMC Public Health</i> 2012; 12 :1. doi:10.1186/1471-2458-12-701	ıS
58				27
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	


BMJ Open

	HENWULL COLDER
etes and Hypertension e015919. doi:	en:ffrestipuut
ease Risk Factors.	blistheed ass
ar filtration rate. Ann	1100.111133661
ees for cardiovascular 2017; 12 :e0174251.	entojina
n two major Indian 178–85.	n-201188-0
iology: traditional /040	0223335533 @M 7
es. Hyderabad: 2017.	7 Waaricd
cemia? J Diabetes Sci	th 22011
essure in Europe: A	99. Downto
selerotic risk factors 0.1111/j.1523-	paadleed froom
on renal function in n Migration Study.	nhttp://bonj
stematic review. Clin	plumente
ger climate	mjaam
on. Yr. 016/S0140-	/ oom 148p Mia
hods in adults in <i>phrol Dial</i>	10,1202490
n population. Am J	o)/ Quess
onic kidney disease in ase) study. <i>BMC</i>	tim) com/ on AbM200020240by guesst. Aratected by copp
ors in India have an 21–6.	ed byy ccappy
e in South Asian	right.

- Mohan S, Jarhyan P, Ghosh S, et al. UDAY: Protocol of a Comprehensive Diabe Prevention and Management Program in India. BMJ open 2018;8:e015919. doi:e 10.1136/bmjopen-2017-015919 Prabhakaran D, Roy A, Praveen PA, et al. 20-Year Trend of Cardiovascular Dise Glob Heart Published Online First: 2017. doi:10.1016/j.gheart.2016.11.004 World Health Organization. STEPS Manual. 2015. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerula Intern Med 2009;150:604-12. Patel SA, Deepa M, Shivashankar R, et al. Comparison of multiple obesity indic disease risk classification in South Asian adults: The CARRS Study. PLoS One Anand S, Shivashankar R, Ali MK, et al. Prevalence of chronic kidney disease in cities and projections for associated cardiovascular disease. Kidney Int 2015;88: doi:10.1038/ki.2015.58 Greenland S, Daniel R, Pearce N, et al. Outcome modelling strategies in epidem methods and basic alternatives. Int J Epidemiol 2016;:1-11. doi:10.1093/ije/dyw Census of India. 2011.http://censusindia.gov.in/ (accessed 1 Aug 2018). Longvah T, Ananthan R, Bhaskarachary K, et al. Indian Food Composition table Herman WH. Do race and ethnicity impact hemoglobin A1c independent of glyc Technol 2009;3:656-60. doi:10.1177/193229680900300406 Modesti PA, Reboldi G, Cappuccio FP, et al. Panethnic Differences in Blood Pro Systematic Review and Meta-Analysis. PLoS One 2016;11:e0147601. doi:10.1371/journal.pone.0147601 Verhave JC, Hillege HL, Burgerhof JGM, et al. The association between atheros and renal function in the general population. Kidney Int 2005;67:1967-73. doi:1 1755.2005.00296.x Bailey PK, Tomson CRV, Kinra S, et al. The effect of rural-to-urban migration of an Indian population: Cross-sectional data from the Hyderabad arm of the Indian BMC Nephrol 2013;14. doi:10.1186/1471-2369-14-240 Lunyera J, Mohottige D, von Isenburg M, et al. CKD of uncertain etiology: A sy J Am Soc Nephrol 2016;11:379–85. doi:10.2215/CJN.07500715 Peel MC, Finlayson BL, McMahon TA. Updated world map of the Koppen-Geig classification. Hydrol Earth Syst Sci 2007;11:1633–1644. Norwegian Meteorological Institute and the Norwegian Broadcasting Corporation Levey AS, Coresh J. Chronic kidney disease. Lancet 2012;379:165-80. doi:10.1 6736(11)60178-5 Eastwood JB, Kerry SM, Plange-Rhule J, et al. Assessment of GFR by four meth Ashanti, Ghana: the need for an eGFR equation for lean African populations. Ne Transplant 2010;25:2178-87. doi:10.1093/ndt/gfp765 Teo BW, Xu H, Wang D, et al. GFR estimating equations in a multiethnic Asian Kidney Dis 2011;58:56-63. doi:10.1053/j.ajkd.2011.02.393 Singh AK, Farag YMK, Mittal B V., et al. Epidemiology and risk factors of chro India - Results from the SEEK (Screening and Early Evaluation of Kidney Disea Nephrol 2013;14:1. doi:10.1186/1471-2369-14-114 Barai S, Bandopadhayaya GP, Patel CD, et al. Do healthy potential kidney donor average glomerular filtration rate of 81.4 ml/min? Nephron - Physiol 2005;101:2 doi:10.1159/000086038 Srinivas S, Annigeri RA, Mani MK, et al. Estimation of glomerular filtration rate

1 2 3	450		haalthu adult leidnau danam. Nanhualam: 2009: 12 :440 6 dai:10.1111/j.1440.1707.2008.00067.y
4 5	451	43	healthy adult kidney donors. <i>Nephrology</i> 2008; 13 :440–6. doi:10.1111/j.1440-1797.2008.00967.x Caplin B, Jakobsson K, Glaser J, <i>et al.</i> International Collaboration for the Epidemiology of eGFR in
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	452 453		Low and Middle Income Populations - Rationale and core protocol for the Disadvantaged Population eGFR Epidemiology Study (DEGREE). <i>BMC Nephrol</i> 2017; 18 :1–8. doi:10.1186/s12882-016-0417-
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36			
37 38 39 40 41 42 43 44 45 46 47			
47 48 49 50 51 52 53 54 55 56 57 58			2
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


1		
2 3 4	454	FIGURES LEGENDS
5 6 7	455	Figure 1 Study areas
8 9	456	Figure 2 Study flowchart
9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 42 52 62 72 82 9 30 132 33 435 36 37 839 40 142 34 45 46 47 89 50 152 35 45 56 57 58 59 60	457	Figure 3 Prevalence ratio of eGFR<60 for rural versus urban residence in different age groups

*The original sample size in the CARRS study is 12271, one transgender person was excluded for the current analysis; [§]2353 participants with diabetes only; 5185 participants with hypertension only; 35 participants with ACR>30 only; 2724 participants with diabetes, and hypertension; 35 participants with diabetes and ACR>30; 47 participants with hypertension and ACR>30; 112 participants with diabetes, hypertension and ACR>30.

Study flowchart

299x319mm (300 x 300 DPI)

Prevalence ratio of eGFR<60 by age group between rural and urban areas

420x594mm (300 x 300 DPI)

1 SUPPLEMENTARY MATERIAL

2 Content

- 3 Table S1. Sociodemographic and anthropometric characteristics of overall study participants (prior to
- 4 exclusion of population with diabetes, hypertension and proteinuria)
- 5 Table S2. Associations between sociodemographic and anthropometric characteristics and estimated
 6 glomerular filtration rate (eGFR) and eGFR<60 by sex
- 7 Table S3. Multiple regression analysis of sociodemographic and anthropometric characteristics associated
- 8 with eGFR and eGFR<60 including study participants with proteinuria (but without diabetes or
- 9 hypertension)
- Table S4. Multiple regression analysis of sociodemographic and anthropometric characteristics associated
 with eGFR and eGFR<60 including fasting plasma glucose, HbA1c and systolic blood pressure

review only

12 Table S1. Sociodemographic and anthropometric characteristics of overall study participants (prior to

13 exclusion of population with diabetes, hypertension and proteinuria)

Variable	n (%) ^a n=24774	eGFR categories, n(%) ^b					
	11-24774	mean (SD)	≥90	90 - 60	<60		
Socio-demographic factors							
Age (years)							
<39	9007 (36)	112.9 (14.9)	8248 (92)	716 (8)	43 (0)		
40 - 49	6924 (28)	101.9 (14.8)	5617 (81)	1215 (18)	92 (1)		
50 - 59	4524 (18)	92.9 (15.2)	2997 (66)	1378 (30)	149 (3)		
60 - 69	3045 (12)	82.8 (17.1)	1410 (46)	1315 (43)	320 (11)		
≥70	1274 (5)	72.0 (17.3)	164 (13)	806 (63)	304 (24)		
Sex							
Female	13433 (54)	102.6 (19.5)	10404 (77)	2585 (19)	444 (3)		
Male	11341 (46)	97.7 (19.3)	8032 (71)	2845 (25)	464 (4)		
Education (number of years)							
0	4794 (19)	97.7 (20.2)	3458 (72)	1075 (22)	261 (5)		
5	3194 (13)	101.7 (19.4)	2456 (77)	625 (20)	113 (4)		
10	8855 (36)	103.2 (18.9)	6995 (79)	1620 (18)	240 (3)		
>10	6358 (26)	100.0 (19.2)	4638 (73)	1538 (24)	182 (3)		
Missing data	1573 (6)		889 (57)	572 (36)	112 (7)		
Area ^d							
Urban	17732 (72)	102 (19.5)	13577 (77)	3602 (20)	553 (3)		
Rural	7042 (28)	96.3 (19.1)	4859 (69)	1828 (26)	355 (5)		
Latitude ^e							
North	13570 (55)	98.1 (19.1)	9599 (71)	3439 (25)	532 (4)		
South	11204 (45)	103.1 (19.7)	8837 (79)	1991 (18)	376 (3)		
Life-style factors							
Current smoking							
No	18402 (74)	101.5 (19.6)	13920 (76)	3838 (21)	644 (3)		
Yes	6372 (26)	97.1 (19.1)	4516 (71)	1592 (25)	264 (4)		
Alcohol consumption ever							
No	19588 (79)	100.9 (19.6)	14671 (75)	4203 (21)	714 (4)		
Yes	5186 (21)	98.5 (19.1)	3765 (73)	1227 (24)	194 (4)		
Vegetarian							
No	15043 (61)	102.7 (19.7)	11721 (78)	2835 (19)	487 (3)		
Yes	9731 (39)	96.8 (18.9)	6715 (69)	2595 (27)	421 (4)		
Biological factors							
Body mass index (kg/m ²)							
Underweight (≤18.5)	10297 (42)	100.1 (19.6)	7626 (74)	2284 (22)	387 (4)		
Normal (>18.5 - ≤ 25)	2403 (10)	101.58 (20.5)	1838 (76)	471 (20)	94 (4)		
Overweight (>25 - ≤ 30)	7221 (29)	99.9 (18.8)	5309 (74)	1680 (23)	232 (3)		
Obese (>30)	3286 (13)	99.3 (19.2)	2392 (73)	766 (23)	128 (4)		
Missing data	1567 (6)		1271 (81)	229 (15)	67 (4)		
Fat free mass (kg)			()	(-)			
1^{st} tertile (≤ 37)	7141 (29)	101.9 (20.1)	5481 (77)	1381 (19)	279 (4)		
2^{nd} tertile (>37 - <45)	7141 (29)	101.3 (19.1)	5419 (76)	1487 (21)	235 (3)		

	3 rd tertile (≥45) Missing data	7141 (29) 3351 (14)	98.3 (18.6)	5110 (72) 2426 (72)	1797 (25) 765 (23)	234 (3) 160 (5)
14	^a Percentages in columns [;]		ws; ^d Urban areas			
15	Rural areas include Sonip					
16	and Faridabad district. So	uth areas include C	hennai and Visha	khapatnam distr	icts.	

1	
2	
3 4	
5	
6	
7 8	
9	
10	
11	
12	
14	
15	
12 13 14 15 16 17 18	
18	
19	
20	
21 22	
22 23	
24 25	
25 26	
27	
28	
29 30	
31	
32	
33 34	
34 35	
36	
37 38	
39	
40	
41 42	
42 43	
44	
45	

17

BMJ Open
Table S2. Associations between sociodemographic and anthropometric characteristics and estimated glomerular filtration rate
GGFR) and eGFR<60 by sex

	Men, n=5 434			Women, n=	066	
Variable		eGFR	eGFR<60	2011	eGFR	eGFR<60
	n (%)	estimate (95%CI) ^a	OR (95% CI) ^a	n (%)	estimate (95%CI) ^a	OR (95% CI) ^a
Age (years) ^b				ØWI		
<39	2335 (43)	0.00 (ref)	1.00 (ref)	3786 (54)	0.00 (ref)	1.00 (ref)
40-49	1568 (29)	-9 (-9.97, -8.03)	2.36 (1.2, 4.62)	1908 (27)	-12.52 (-13.29, -11.76)	4.5 (1.95, 10.36)
50-59	843 (16)	-16.84 (-18.03, -15.65)	3.82 (1.91, 7.66)	863 (12)	-21.51 (-22.53, -20.48)	11.78 (5.2, 26.68)
60-69	479 (9)	-25.35 (-26.83, -23.86)	13.07 (6.97, 24.49)	414 (6)	-30.05 (-31.46, -28.64)	32.95 (14.87, 73.02)
≥70	209 (4)	-34.26 (-36.4, -32.12)	31.08 (16.33, 59.17)	95 (1)	-34.78 (-37.6, -31.96)	43.43 (15.93, 118.37)
Education (number of completed years)				and the second se		
0	823 (15)	0.00 (ref)	1.00 (ref)	1997 (28)	0.00 (ref)	1.00 (ref)
≤5	703 (13)	3.28 (1.82, 4.74)	0.24 (0.13, 0.46)	1006 (14)	0.73 (-0.27, 1.73)	0.81 (0.42, 1.56)
6-≤10	2363 (43)	1.68 (0.51, 2.84)	0.31 (0.20, 0.48)	2454 (35)	0.67 (-0.13, 1.48)	0.43 (0.21, 0.86)
>10	1545 (28)	-1.35 (-2.6, -0.1)	0.27 (0.15, 0.47)	1609 (23) g	-2.39 (-3.27, -1.5)	0.76 (0.40, 1.46)
Area ^c	3583 (66)					
Urban	1851 (34)	0.00 (ref)	1.00 (ref)	4911 (70)	0.00 (ref)	1.00 (ref)
Rural		-4.02 (-4.85, -3.19)	2.72 (1.84, 4.01)	2155 (30)		1.99 (1.26, 3.14)
Latitude ^d						
North	2861 (53)	0.00 (ref)	1.00 (ref)	3402 (48)	0.00 (ref)	1.00 (ref)
South	2573 (47)	-1.52 (-2.3, -0.74)	1.76 (1.21, 2.56)	3664 (52)		1.30 (0.83, 2.05)
Current tobacco consumption						
No	2804 (52)	0.00 (ref)	1.00 (ref)	6553 (93)	0.00 (ref)	1.00 (ref)
Yes	2630 (48)	1.15 (0.36, 1.93)	1.32 (0.91, 1.92)	513 (7)		1.54 (0.87, 2.73)
Alcohol consumption ever		. ,		lby	,	
No	3035 (56)	0.00 (ref)	1.00 (ref)	7059 (100)	0.00 (ref)	1.00 (ref)
				7059 (100)		

Page 39	9 of 42	2			BMJ Open	pæn-2011		
1 2 3						7 (0)		
4 5 6		Yes Vegetarian	2399 (44)	-0.71 (-1.49, 0.06)	1.57 (1.08, 2.27)	7 (0) Wang	-9.29 (-18.97, 0.4)	1.00 (1.00, 1.00)
7 8 9 10		No Yes Body mass index (kg/m2)	3576 (66) 1858 (34)	0.00 (ref) 0.65 (-0.18, 1.48)	1.00 (ref) 0.61 (0.41, 0.90)	4396 (62) 2670 (38)	0.00 (ref)	1.00 (ref) 0.70 (0.44, 1.11)
10 11 12 13 14 15 16		Underweight (≤ 18.5) Normal (>18.5 - ≤ 25) Overweight (>25 - ≤ 30) Obese (>30) Fat free mass (kg)	2888 (56) 812 (16) 1209 (23) 243 (5)	0.00 (ref) 4.05 (2.92, 5.18) -1.7 (-2.68, -0.73) -0.71 (-2.61, 1.18)	1.00 (ref) 0.69 (0.42, 1.14) 0.71 (0.42, 1.21) 0.36 (0.09, 1.50)	2991 (44) 764 (11) 2104 (31) 907 (13)	1.61 (0.57, 2.65) -0.11 (-0.84, 0.62)	1.00 (ref) 1.07 (0.57, 2.03) 0.67 (0.38, 1.20) 0.55 (0.23, 1.31)
17 18 19 20 21		1st tertile (≤37) 2nd tertile (>37 - <45) 3rd tertile (≥45)	361 (8) 1351 (28) 3093 (64)	0.00 (ref) -0.42 (-2.10, 1.25) -3.75 (-5.35, -2.16)	1.00 (ref) 0.78 (0.44, 1.38) 0.50 (0.28, 0.90)	3833 (58) 2535 (39) 208 (3)		1.00 (ref) 0.67 (0.38, 1.17) 0.58 (0.08, 4.25)
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	18 19	^a Adjusted for age; ^b Not adjusted North areas include Delhi, Sonipa	l for age; ^c Urban area	s include Delhi, Chennai a	nd Sonipat district. Rural a	reas include Son	pat, Vishakhapatnam and	
38 39 40						pyright.		

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

20 Table S3. Multiple regression analysis of sociodemographic characteristics associated with eGFR and eGFR<60

21 including study participants with proteinuria (but without diabetes or hypertension), n=12533

	eGFR	eGFR<60
Variable	Coefficient (95%CI) ^a	OR (95%CI) ^a
Area ^b		
Urban	0.00 (ref)	1.00 (ref)
Rural	-4.59 (-5.14, -4.03)	1.93 (1.40, 2.66)
Latitude ^c		
North	0.00 (ref)	1.00 (ref)
South	0.29 (-0.21, 0.78)	1.33 (0.98, 1.80)
Education (number of years)		
0	0.00 (ref)	1.00 (ref)
5	0.83 (0, 1.66)	0.55 (0.35, 0.87)
10	0.04 (-0.64, 0.72)	0.51 (0.35, 0.76)
>10	-3.81 (-4.58, -3.04)	0.66 (0.40, 1.07)
Alcohol consumption ever		
No	0.00 (ref)	1.00 (ref)
Yes	-0.78 (-1.52, -0.05)	1.23 (0.85, 1.79)
Sex		
Female	0.00 (ref)	1.00 (ref)
Male	-2.86 (-3.46, -2.26)	1.38 (0.96, 1.98)
Age (per 10 years)	-9.12 (-9.34, -8.91)	2.23 (2.00, 2.49)

^a Variables mutually adjusted, ^b Urban areas include Delhi, Chennai and Sonipat district. Rural areas include

23 Sonipat, Vishakhapatnam and Faridabad districts; ^c North areas include Delhi, Sonipat and Faridabad district.

24 South areas include Chennai and Vishakhapatnam districts.

25	Table S4. Multiple regression analysis of sociodemographic characteristics associated with eGFR and eGFR<60
----	---

including plasma fasting glucose, HbA1c and systolic blood pressure

6		eGFR	eGFR<60
7	Variable	Coefficient (95%CI) ^a	OR (95%CI) ^a
8	Area ^b		
9 10	Urban	0.00 (ref)	1.00 (ref)
11	Rural	-4.94 (-5.51, -4.38)	2.29 (1.64, 3.20)
12	Latitude ^c		
13	North	0.00 (ref)	1.00 (ref)
14	South	0.23 (-0.26, 0.72)	1.30 (0.95, 1.77)
15	Education (number of years)		
16 17	0		1.00 (0)
17	5	0.00 (ref) 1.03 (0.20, 1.86)	1.00 (ref) 0.49 (0.31, 0.79)
19	10	0.19 (-0.49, 0.87)	0.47 (0.32, 0.71)
20	>10	-3.53 (-4.30, -2.76)	0.62 (0.38, 1.02)
21		-5.55 (-4.50, -2.70)	0.02 (0.38, 1.02)
22	Alcohol consumption ever		
23	No	0.00 (ref)	1.00 (ref)
24	Yes	-0.72 (-1.46, -0.01)	1.32 (0.90, 1.93)
25	Sex		
26	Female	0.00 (ref)	1.00 (ref)
27 28	Male	-2.69 (-3.29, -2.09)	1.47 (1.01, 2.12)
20 29	Age (per 10 years)	-8.93 (-9.16, -8.70)	2.11 (1.89, 2.38)
30	Fasting plasma glucose (mg/dl)	-0.06 (-0.08, -0.04)	1.01 (1.00, 1.02)
31	Hb1Ac (%)	0.03 (-0.56, 0.62)	1.95 (1.34, 2.85)
32 33	Systolic blood pressure (mm Hg)	-0.06 (-0.84, -0.04)	1.0 (0.99, 1.02)

^a Variables mutually adjusted, ^b Urban areas include Delhi, Chennai and Sonipat district. Rural areas include

Sonipat, Vishakhapatnam and Faridabad districts; ° North areas include Delhi, Sonipat and Faridabad district.

South areas include Chennai and Vishakhapatnam districts.

BWW Open: first:published as 10.11136/bmjopen-2018-023333 on 7 Wardh 2019. Downloaded from http://bmjopen.bmj.com/ on 49Mi28h 2024 by guest. Protected by copyright.

STROBE Statement—Checkli	ist of items that should be included i	in reports of <i>cross-sectional studies</i>

	Item No		Page/line where the checklist items are located in the
		Recommendation	paper
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used	Title and abstract
		term in the title or the abstract	(page 2, lines 29-30)
		(b) Provide in the abstract an informative and balanced	Page 2 , lines 27-45
		summary of what was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the	Page 4, lines 68-90
		investigation being reported	
Objectives	3	State specific objectives, including any prespecified	Page 4-5, lines 91-95
		hypotheses	
Methods			
Study design	4	Present key elements of study design early in the paper	Page 5, lines 103-111
			table 1
Setting	5	Describe the setting, locations, and relevant dates,	Table 1 and page 6,
-		including periods of recruitment, exposure, follow-up,	line 123
		and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and	Page 5, lines 112-121
1		methods of selection of participants	C ,
Variables	7	Clearly define all outcomes, exposures, predictors,	Page 6, lines 149-171
		potential confounders, and effect modifiers. Give	C ·
		diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and	Page 6, lines 123-147
measurement		details of methods of assessment (measurement).	
		Describe comparability of assessment methods if there	
		is more than one group	
Bias	9	Describe any efforts to address potential sources of	Page 6, lines 123-127
		bias	134-138, 145-147
Study size	10	Explain how the study size was arrived at	Figure 1
Quantitative variables	11	Explain how quantitative variables were handled in the	Page 6, lines 123-147
		analyses. If applicable, describe which groupings were	e ,
		chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those	Page 6, 154-160
		used to control for confounding	e ,
		(b) Describe any methods used to examine subgroups	Page 6, line 156; page
		and interactions	6, lines 162-171
		(c) Explain how missing data were addressed	Page 6, lines 160-162
		(<i>d</i>) If applicable, describe analytical methods taking	-
		account of sampling strategy	
		(e) Describe any sensitivity analyses	Page 10, lines 233-
		<u>, , , , , , , , , , , , , , , , , , , </u>	235, 139-242
Results			,,
Participants	13*	(a) Report numbers of individuals at each stage of	Figure 1
i uniorpullio	15	study—eg numbers potentially eligible, examined for	1 15010 1

BMJ Open

		eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	D '
		(b) Give reasons for non-participation at each stage	Figure 1
D ::: 1/	1 4 4	(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg	Table 2.; page 7-8,
		demographic, clinical, social) and information on	lines 177-185
		exposures and potential confounders	D (1' 1(0.1(0
		(b) Indicate number of participants with missing data	Page 6, lines 160-162
		for each variable of interest	
Outcome data	15*	Report numbers of outcome events or summary	Page 8, line 187-201
		measures	
Main results	16	(a) Give unadjusted estimates and, if applicable,	Page 8, lines 203-220;
		confounder-adjusted estimates and their precision (eg,	table 3 and table 4
		95% confidence interval). Make clear which	
		confounders were adjusted for and why they were	
		included	
		(b) Report category boundaries when continuous	Table 3 and Table 4
		variables were categorized	
		(c) If relevant, consider translating estimates of relative	-
		risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups	Page 9, lines 221-231;
		and interactions, and sensitivity analyses	page 10, lines 233-250
Discussion			
Key results	18	Summarise key results with reference to study	Page 10, lines 252-
		objectives	263
Limitations	19	Discuss limitations of the study, taking into account	Pages 12-13, lines
		sources of potential bias or imprecision. Discuss both	310-322
		direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results	Pages 11-12, lines
•		considering objectives, limitations, multiplicity of	264-309
		analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the	Pages 13, lines 323-
2		study results	325
Other information			
Funding	22	Give the source of funding and the role of the funders	Page 3, lines 59-66
-		for the present study and, if applicable, for the original	-
		study on which the present article is based	

田WU Open: fristpublished as 100.11136/bmjopen-2018-0233333 on 7 Wardh 2019. Downloaded from http://bmjopen.bmj.com//on 49.Ni260, 2024 by guest. Protected by copyright.

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.