

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Effects of ischemic postconditioning on outcomes of patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022509
Article Type:	Research
Date Submitted by the Author:	22-Feb-2018
Complete List of Authors:	Xing, Zhenhua; Second Xiangya Hospital Huang, Jiabing; Second Xiangya Hospital Peng, Xiaofan; Second Xiangya Hospital Hu, Xinqun; Second Xiangya Hospital
Keywords:	Ischemic postconditioning therapy, percutaneous coronary intervention, all-cause mortality, major adverse cardiac events, meta-analysis

1	Effects of ischemic postconditioning on outcomes of
2	patients with ST-segment elevation myocardial infarction
3	undergoing primary percutaneous coronary intervention: a
4	meta-analysis
5	Zhenhua Xing ¹ , Jiabing Huang ¹ , Xiaofan peng ¹ , Xinqun Hu ¹
6	
7	1 Department of Cardiovascular Medicine, The Second Xiangya Hospital, Centra
8	South University,Changsha,Hunan 410011,China
9	
10	*Corresponding author: Xinqun Hu, M.D. PhD.
11	Department of Cardiovascular Medicine, The Second Xiangya Hospital, Centra
12	South University,Changsha,Hunan 410011,China
13	E-mail: huxinqun@csu.edu.cn
14	Phone number: +8615084714930
15	

16	Objective: the aim of this meta-analysis is to evaluate the effects of ischemic
17	postconditioning therapy (IPC) on clinical hard endpoiont.
18	Setting: treatment for STEMI
19	Intervention: IPC
20	Eligible studies: we included randomized trials comparing PPCI in combination with
21	IPC with conventional PPCI in patients with STEMI.
22	The primary and secondary endpoint: The primary end point was all-cause mortality,
23	major adverse cardiac events (MACE) including cardiac death, heart failure, nonfatal MI
24	and revascularization. Secondary end point included each individual component of MACE
25	(cardiac death, heart failure, nonfatal MI and revascularization).
26	Results: Nine studies enrolling 3088 patients were included. PPCI in combination with
27	IPC failed to reduce all-cause mortality (RR:0.94, 95% CI: 0.69–1.27, P= 0.68), MACE
28	(RR: 1.14, 95%CI: 0.88-1.46, p=0.32), cardiac death (RR: 1.28, 95%CI: 0.85-1.93,
29	p=0.24), MI (RR: 1.08, 95%CI: 0.38-3.21, p=0.88), heart failure (RR: 1.05, 95%CI:
30	0.62-1.75, p=0.87), and revascularization (RR: 1.35, 95%CI:0.81-2.26, p=0.25)
31	Conclusion: This meta-analysis suggested that the use of IPC in STEMI patients
32	undergoing PPCI did not reduce all-cause mortality, MACE compared with traditional
33	PPCI.
34	Strengths and limitations of this study
35	1. This meta-analysis included the recent relevant studies and provided the latest RCTs
36	about treatment of STEMI.
37	2. In order to give a solid conclusion, trial sequential analysis was performed to evaluate

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

38	the simp	le size.
39	3. We inclu	de the recent DANAMI-3–iPOST study, which randomized 1234 patients w
40	STEMI t	to conventional PPCI or PPCI with IPC, and may change our opinion
41	treatmen	nt of STEMI.
42	4. A limitati	on of this meta-analysis is the reduced number of trials included.
43	5. Bias bet	tween studies may exist. However, subgroup analysis was performed
44	evaluate	catheter-directed thrombolysis.
45		
46	Key wo	ords: Ischemic postconditioning therapy (IPC); percutaneous corona
47	intervention	(PCI); all-cause mortality; major adverse cardiac events (MAC
48	meta-analys	is
49	Abbrevi	ation
49	Abbrevia	ation Ischemic postconditioning therapy
49		
49	IPC	Ischemic postconditioning therapy
49	IPC PCI	Ischemic postconditioning therapy percutaneous coronary intervention
49	IPC PCI MACE	Ischemic postconditioning therapy percutaneous coronary intervention major adverse cardiac events

Background

Primary percutaneous coronary intervention(PPCI) has proved effective in patients

BMJ Open: first published as 10.1136/bmjopen-2018-022509 on 23 March 2019. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

1 2
2
4
5
6
7
8
9
10
11
12
13
14
15
16 17
17 10
5 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 8 9 30 31 23 34 5 6 37 38
20
21
22
23
24
25
26
27
28
29
30
31
32
33 24
24 25
36
37
38
39
40
41
42
43
44
45
46
47
48
49 50
50 51
51 52
52 53
55 54
55
56
57
58
59
60

1

53	with ST-segment elevation myocardial infarction (STEMI) and has become the first-line
54	therapy ¹ . Although PPCI is effective in restoring blood flow, ischemic reperfusion injury is
55	not inevitable. Reperfusion injury can also induce deleterious effects with a subsequent
56	increase of infarct size, which accounts for up to 50% of the final size of a myocardial
57	infarct ² . Furthermore, both animal models of infarction and clinical proof-of-concept
58	studies have shown IPC can effectively protect myocardium from reperfusion injury
59	evaluated by cardiac biomarkers, single-photon emission computed tomography(SPECT),
60	echocardiography, and contrast-enhanced cardiac magnetic resonance(ce-CMR) ³⁻⁷ .
61	Related meta-analysis also demonstrated that IPC could rescue cardiomyocytes
62	evaluated by above methods ⁸⁻¹⁰ . However, whether improvements in these surrogate
63	makers translate into improved clinical outcomes evaluated by hard end points such as
64	all-cause mortality remains controversial. the recent DANAMI-3-iPOST study, which
65	randomized 1234 patients with STEMI to conventional PPCI or PPCI with IPC, did not
66	provide evidences in favor of PPCI with IPC compared with traditional PPCI ¹⁰ .
67	Given the confusing situations of IPC in PPCI, we performed this meta-analysis. The

67 Given the confusing situations of IPC in PPCI, we performed this meta-analysis. The 68 aim of this meta-analysis was to evaluate whether IPC has a beneficial effect on hard end 69 points such as all-cause mortality and MACE compared with traditional PPCI.

70 Methods

71 Search strategy and selection criteria

72 This meta-analysis is reported in accordance of the Preferred Reporting Items for

73	System Reviews and Meta-Analyses(PRISMA) Statement and was registered at
74	International Prospective Register of Systematic Reviews(CRD42017063959) ¹¹ .we
75	systemically searched PubMed, Embase, and Cochrane Library for relevant articles
76	published before April 1, 2017. We used the terms: ischemic postconditioning,
77	postconditioning, percutaneous coronary intervention(PCI), controlled trial, intervention
78	study, and randomized controlled trials(RCTs) to identify randomized controlled trials.
79	MeSH, Emtree, and keyword search terms were used in combination. Results were
80	limited to trials published in English. We manually searched the reference lists of relevant
81	studies and reviews, editorials, and letters to identify further articles.
82	We used Endnote (Thompson ISI ResearchSoft, Philadelphia, USA) to manage relevant
83	articles and remove duplicated articles.
00	
84	Study criteria, quality assessment, and data extraction
84	Study criteria, quality assessment, and data extraction
84 85	Study criteria, quality assessment, and data extraction Studies were included if they met the following criteria: (1) the study design was a
84 85 86	Study criteria, quality assessment, and data extraction Studies were included if they met the following criteria: (1) the study design was a prospective randomized controlled clinical trial (RCT); (2) all patients with STEMI should
84 85 86 87	Study criteria, quality assessment, and data extraction Studies were included if they met the following criteria: (1) the study design was a prospective randomized controlled clinical trial (RCT); (2) all patients with STEMI should undergo PCI treatment; (3) patients were randomly assigned to the PPCI in combination
84 85 86 87 88	Study criteria, quality assessment, and data extraction Studies were included if they met the following criteria: (1) the study design was a prospective randomized controlled clinical trial (RCT); (2) all patients with STEMI should undergo PCI treatment; (3) patients were randomly assigned to the PPCI in combination with IPC group or the conventional PPCI group; (4) follow-up time was not less than 1
84 85 86 87 88 89	Study criteria, quality assessment, and data extraction Studies were included if they met the following criteria: (1) the study design was a prospective randomized controlled clinical trial (RCT); (2) all patients with STEMI should undergo PCI treatment; (3) patients were randomly assigned to the PPCI in combination with IPC group or the conventional PPCI group; (4) follow-up time was not less than 1 month; (5) relevant data should be retrievable. When relevant data were missing, authors
84 85 86 87 88 89 90	Study criteria, quality assessment, and data extraction Studies were included if they met the following criteria: (1) the study design was a prospective randomized controlled clinical trial (RCT); (2) all patients with STEMI should undergo PCI treatment; (3) patients were randomly assigned to the PPCI in combination with IPC group or the conventional PPCI group; (4) follow-up time was not less than 1 month; (5) relevant data should be retrievable. When relevant data were missing, authors were contacted by e-mail, before excluding the references for inaccessibility of data.

BMJ Open: first published as 10.1136/bmjopen-2018-022509 on 23 March 2019. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

2	
1	
4 7	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
16	
17	
18	
19	
20	
21	
22	
23	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 32 4 25 26 27 28 29 30 1 32 33 34 35 36 37 8 37 8	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
47 48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50 59	
60	

1

94 (cardiac death, heart failure, MI, and revascularization). All clinical endpoints were 95 evaluated according to per protocol definitions, at the longest available follow-up. We 96 judge study quality by evaluating trial procedures for random sequence generation 97 (selection bias), allocation concealment (selection bias), blinding of participants and 98 personnel (performance bias), blinding of outcome assessment (detection bias) and 99 incomplete outcome data (attrition bias). The Cochrane Reviewer's Handbook 4.2 was 90 used to assess risk of bias.

101 Relevant data were extracted by 2 independent investigators (ZW Zhu and JB 102 Huang). Disagreements were resolved by consensus or a third investigator (XQ Hu). We 103 abstracted the following data from the selected articles: first author, publication date, 104 study design, onset of symptoms, characteristics of included participants, total number of 105 IPC group and conventional group, events of postconditioning group and conventional 106 group, stent type, follow-up time.

107 Data analysis

Meta-analysis was performed to calculate the Risk Ratio (RR) and 95% confidence interval (CI) of all-cause mortality , MACE , and each component of MACE. Pooled RRs were computed as the Mantel-Haenszel-weighted average of the RRs for all included studies. Since the true treatment effect of various postconditioning protocols may have varied among the included trials, the random-effects model was used in the analysis. Statistical heterogeneity among the trial-specific RRs was checked and quantified by the l² statistic, and a P-value ≤0.05 was considered statistical significant. Data analysis will be

	anger	Review Ma	performed using I	analysis was	basis. All	done on an intention-to-treat basis. All analysis was performed using Review Manger						
Software (Review Manager (RevMan) [Computer program]. Version 5.3. Copenhagen:							S Software	116				
	a12.0	Stata (Stata	ation, 2014.) and S	rane Collabora	The Coch	e Centre,	lic Cochrane	The Nord	117			
					ı, Texas).)	ge Statior	rp LP, Colleç	8 (StataCo	118			
						6	outcome	0 0	119			
				ssessment	l Bias a	ults and	earch resu	Se	120			
	d 273	y identified	ed search strateg	1, the combin	ntary Fig	Suppleme	eported in S	As r	121			
	tailed	more det	ally retrieved for	dies were fin	s, 22 stu	anuscript	relevant m	2 potential	122			
	3088	involving 3	s meta-analysis,	cluded in thi	s were ir	9 RCT	ent. Finally,	assessme	123			
	ssess	k 4.2 to as	viewer's Handbool	Cochrane Re	used the	^{.19.20} . We	13.14.15.16.17.18	patients ⁷	124			
					g 2).	entary Fiç	as (Supplem	isk of bia	125			
	ics of	naracteristic	baseline clinical cl	d RCTs and I	9 include	es of the	main feature	5 The	126			
	were	nts (50%) v	trails, 1544 patier	1. In the 9	d in Table	presente	have been	' patients	127			
	as 61	patients wa	ean age of the trial	erapy. The me	ditioning th	postcono	assigned to	s randomly	128			
	ion in	a/reperfusio	col (cycles*ischemi	The IPC protoc	ere male.	atients w	% of these p	years, 78	129			
	udies.	× 4 in 5 stu	4 studies, 60″/60″	30″/30″ × 4 in 4	es, being	een studi	varied betw	seconds)	130			
	onset	symptoms c	onths. The time of s	nonth to 41 mo	d from 1 n	ials varie	w-up in the tr	The follow	131			
			nours in 7 studies.	2 studies, 12 ł	6 hours in	es, being	tween studie	varied be	132			
			ies.	ncluded stud	istics of i	haracter	detailed c	Table 1:	133			
	DES	LAD (%)	Protocol(duratio	Symptom	Male	Age(y)	Country	Patients(P	y			

BMJ Open: first published as 10.1136/bmjopen-2018-022509 on 23 March 2019. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

	C/C)			(%)	onset(h)	n*cycles)		(%)	p(m)
Lønborg	59/59	Denmark	61/62	69/74	≤12 h	30"/30" × 4	44/39	-	3
2010 ⁷									
Garcia	22/21	USA	61/55	86/76	≤12 h	30"/30" × 4	36/24	-	41
2010 ²⁰									
Freixa	39/40	Spain	59/60	84/72	≤12 h	60"/60" × 4	51/39	-	6
2012 ¹⁹		C							
Tarantini	37/38	Italy	60/60	85/85	≤6 h	60"/60" × 4	41/44	0/2.6	1
2012 ¹⁶				0					
Limalanath	136/136	Norway	61/60	84/80	≤6 h	60"/60" × 4	46/51	29/29	4
an 2014 ¹⁵					5				
Hahn	350/350	South	60/60	79/75	≤12 h	60"/60" × 4	47/45	86/86	12
2015 ¹⁴		Korea			0				
Eitel 2015 ¹⁸	232/232	Germany	62/65	76/71	≤12 h	30"/30" × 4	42/51	NA	6
Luz 2015 ¹⁷	43/43	Portugal	57/58	88/82	≤12 h	60″/60″ × 4	47/43	65/71	14
Engstrøm	617/617	Denmark	63/62	80/79	≤12 h	30"/30" × 4	43/40	93/93	38
2017 ¹³									

134 PC : postconditioning group ; C; control group; LAD: left descending anterior branch; DES:

135 drug eluted stent

1		
2 3 4 5	137	All-cause mortality and MACE
6 7 8	138	When we pooled the data, the RR for all-cause mortality was 0.94 (95% CI: 0.69–1.27,
9 10	139	P= 0.68) in random-effects model (Fig 1). No evident statistical heterogeneity was present
11 12 13	140	among studies (I2=0, p=0.76). IPC during PPCI did not reduce all-cause mortality
14 15	141	compared with traditional PPCI.
16 17 18	142	Based on the pooled results, we did not find that IPC could reduce cardiac death (RR:
19 20	143	1.28, 95%CI: 0.85-1.93, p=0.24), MI (RR: 1.08, 95%CI: 0.38-3.21, p=0.88), heart failure
21 22 23	144	(RR: 1.05, 95%CI: 0.62-1.75, p=0.87), and revascularization (RR: 1.35, 95%CI:0.81-2.26,
24 25	145	p=0.25). When all these events (MACE) were considered, the net benefit did not favor IPC
26 27 28	146	during PPCI (RR: 1.14, 95%CI: 0.88-1.46, p=0.32, Fig 2).
29 30 31	147	Sensitivity analysis and potential sources of heterogeneity
32 33 34	148	We performed sensitivity by excluding each included study at one time and
35 36 37	149	recalculating the overall effects. Each excluded study did not influence the direction of the
38 39	150	overall effects of all-cause mortality (Supplementary Table 1).
40 41 42	151	There were no heterogeneities between studies with regards the observed effects in
43 44	152	all-cause mortality (I ² =0, p=0.63), cardiac death (I ² =0, p=0.91), and revascularization (I ² =0,
45 46 47	153	p=0.49). However, moderate between-study heterogeneity was identified in case of heart
48 49	154	failure (I ² =57%, p=0.02) and MI (I ² =53%, p=0.09). The heterogeneity of heart failure was
50 51 52	155	generated by the Eital 2015 study, excluding these studies from the analysis restored the
53 54	156	homogeneity of heart failure dataset(I ² =19%, p=0.28). The heterogeneity of MI was mainly
55 56 57 58	157	caused by the Limalanathan 2014 study. When we excluded this study, No heterogeneity
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-022509 on 23 March 2019. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

60

1

2

158	was observed (I2=0%, p=0.40). The conclusions were still consistent with previous
159	analysis. Meta-regression did not find any baseline risk factor, such as age, diabetes,
160	hypertension et al, was a modifier of the relationship between IPC and all-cause mortality,
161	MACE. Sensitivity and subgroup analysis did not identify any patient-level or study-level
162	covariate as a significant source of heterogeneity except for this subgroup analysis (Table
163	2).

164 Table 2: Subgroup analysis

	All-cause	Cardiac death	Heart failure	МІ	Revascularization				
	mortality	8							
Symptom onset	Symptom onset								
≤6 h	2.00(0.51-7.86)	5.00(0.25-101)	102(0.09-11.5)	0.22(0.05-1.01)	5.0 (0.25-101)				
≤12h	0.90(0.66-1.23)	1.23(0.81-1.87)	1.08 (0.62-1.87)	1.26	1.30 (0.77-2.19)				
			9	(0.79-2.00))					
Protocol			2						
30"/30" × 4	0.80(0.56-1.14)	1.21(0.73-1.99)	0.99(0.51-1.91)	1.19(0.74-1.91)	0.96 (0.17-5.37)				
60″/60″ × 4	1.38(0.76-2.52)	1.44(0.70-2.94)	1.21 (0.43-3.39)	0.84(0.05-14.2)	1.16(0.44-3 ,05)				
Follow-up									
≤ 12 m	1.16(0.73-1.87)	1.49(0.74-2.99)	1.20 (0.55-2.62)	1.20(0.16-8.81)	0.89 (0.29-2.77)				
> 12 m	0.78(0.52-1.16)	1.18(0.71-1.96)	0.94 (0.58-1.50)	1.14(0.70-1.85)	1.60 (0.87-2.93)				
Analysis model	Analysis model								
Fixed effect	0.96(0.71-1.30)	1.30(0.87-1.96)	1.08(0.82, 1.41)	1.05 (0.69,-	1.34 (0.82-2.20)				
model				1.60)					

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Random ef	fects	0.94(0.69-1.27)	128(0.85-1.93)	1.05(0.62-1.75)	1.08(0.38-3.12)	1.35 (0.81-2
165						
166						
167		Discussion				
168	Т	he current meta-a	nalysis of 9 RCTs	including 3088 pat	ients with STEMI t	reated with
169	PPCI	did not show ben	efits of IPC in redu	ucing all-cause mo	rtality , MACE and	d individual
170	compo	onent of MACE co	mpared with tradit	ional PPCI with a r	mean follow-up of :	20 months.
171	Subgr	oup analysis con	cerning different I	PC protocols and	different time of	symptoms
172	onset	did not show impr	oved clinical outco	omes as well.		
173	IF	PC was first intro	duced by Zhao e	t al. in 2003 ¹² . S	ubsequent clinical	trials and
174	meta-	analysis found tha	at salutary effect o	f IPC on infarct siz	ze evaluated by C	K, CK-MB,
175	tropor	nin, SPECT, an	d cardiac funct	ion evaluated b	y left ventricula	r ejection
176	fractio	on(LVEF) ^{[11-17].} How	wever , opposite r	esults also existed	d ¹³⁻¹⁷ . The DANAN	/II-3-iPOST
177	trial, v	which is the larges	st study to date, d	id not show that I	PC could reduce in	nfarct size,
178	microv	vascular obstructio	on ¹³ . Furthermore,	whether the surrog	ate end points of i	nfarct size,
179	myoca	ardial salvage, ar	nd resolution of S	ST-segment eleva	tion can translate	into hard
180	endpo	oints such as all-o	cause mortality is	really a problem.	Unlike these sur	rogate end
181	points	, all-cause mortali	ty and MACE are,	what clinics and pa	atients, really cons	sidering.
182	U	Inlike previous m	neta-analysis maii	nly focusing on o	cardiac biomarkei	rs, cardiac
183	imagir	ng, cardiac functio	n, clinical outcome	es should be put mo	ore importance. Ho	owever, our
184	meta-	analysis did not sh	now that IPC could	improve clinical ou	itcomes. Several f	actors may

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3	
4 5 6	
7 8 9	
10 11 12	
13 14 15	
16 17 18	
19 20 21	
22 23 24	
25 26 27	
28 29 30	
31 32 33	
34 35 36 37	
37 38 39 40	
40 41 42 43	
44 45 46	
47 48 49	
50 51 52	
53 54 55	
56 57 58	
59	

60

185	play a role in the results of these RCTs. That routine IPC failed in the present study, may
186	on the other hand suggest that some patients may respond to the therapy. A
187	meta-analysis of 19 RCTs concluded that cardioprotection with regard to cardiac enzymes
188	leakage, infarct size and left ventricular function is more prone in patients with LAD artery
189	involvement because of a greater myocardial area being at risk [7]. Zhou et al. performed a
190	meta-analysis consisting of 10 RCTs and found that effects of cardiac protection are more
191	pronounced among young and male patients, and those in whom direct-stenting
192	techniques were used [8]. IPC protocol is also an important factor in determining the
193	results. IPC may cause myocardial ischemia and expand the infarct area. Many trials
194	chose 4 cycles of 1 minute of reperfusion followed by 1 minute of reocclusion. On the
195	contrary, other trials chose 4 cycles of 30-second reperfusion followed by 30-second
196	low-pressure balloon occlusion. However, our subgroup analysis did not find the
197	difference. Time of symptoms onset, which is the independent predictor of MACE in
198	patients with STEMI undergoing PPCI, might play a role in the results of these trials.
199	Subgroup analysis did not detect the difference as well.
200	Neutral subgroup analysis can result from many reasons. The key reason is that IPC
201	might have no effect on cardioprotection. As a result, our subgroup analysis was neutral.

The other reason could not be neglected as well. the sample size of the studies may have been small to detect minor beneficial effects. Many confounding factors such as patient's baseline characteristics, coexisting diseases, medications, IPC strategies used may partly affect the cardioprotective benefits of IPC. With the use of new antiplatelet and lipid-lowering agents and timely PPCI, the outcome of STEMI improves greatly. The

207	declining rate of death makes it harder to demonstrate a minor benefit of additional
208	therapy with regard to overall mortality.
209	Limitations
210	It should be noted that our conclusion should be viewed in the context of its limitation.
211	First, although there was not apparent heterogeneity in statistics, the heterogeneity in
212	clinical and methodology were inevitable including different risk profiles of the included
213	patients, IPC strategies, follow-up time et al. However, we performed meta-regression and
214	subgroup analysis and did not find that these heterogeneities could affect our conclusion.
215	In addition, we based our conclusion on the random effects model, which can account for
216	certain degree of heterogeneity. Second, although we performed an extensive search
217	strategy, some studies might not be included in this meta-analysis. But, this
218	meta-analysis is the largest population-based analysis of IPC. Third, Further RCTs are
219	necessary to evaluate the long-term clinical outcomes.
220	Conclusions

This system review and meta-analysis suggested that the use of IPC in STEMI patients undergoing PPCI did not reduce the incidence of all-cause mortality, MACE compared with traditional PPCI.

224	Additional Information
225	The authors declare that they have no conflict of interest.
226	
227	Contributors ship statement: Xinqun Hu and Zhenhua Xing designed the study an
228	provided methodological expertise in systematic reviews and searching strategies. Jiabin
229	Huang and Xiaofan Peng searched the databases and performed tables. Zhenhua Xin
230	drafted the manuscript. All authors read, provided critical feedback and approved the fina
231	manuscript.
232	Funding: none
233	Competing interests: none
234	Data sharing statement: No additional data available.
235	
236	References
237	
238	1. Levine, G.N., et al. 2015 ACC/AHA/SCAI Focused Update on Primary Percutaneous Coronar
239	Intervention for Patients With ST-Elevation Myocardial Infarction: An Update of the 2011 ACCF/AHA/SCA
240	Guideline for Percutaneous Coronary Intervention and the 2013 ACCF/AHA Guideline for the Management
241	ST-Elevation Myocardial Infarction. J Am Coll Cardiol 67, 1235-1250 (2016).
242	2. Yellon, D.M. & Hausenloy, D.J. Myocardial reperfusion injury. N Engl J Med 357, 1121-1135 (2007).
243	3. Ma, X., Zhang, X., Li, C. & Luo, M. Effect of postconditioning on coronary blood flow velocity an
244	endothelial function and LV recovery after myocardial infarction. J Interv Cardiol 19, 367-375 (2006).
245	4. Laskey, W.K., Yoon, S., Calzada, N. & Ricciardi, M.J. Concordant improvements in coronary flo
246	reserve and ST-segment resolution during percutaneous coronary intervention for acute myocardial infarction:
247	benefit of postconditioning. Catheter Cardiovasc Interv 72, 212-220 (2008).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4	248	5. Yang, X.C., et al. Reduction in myocardial infarct size by postconditioning in patients after
5	249	percutaneous coronary intervention. J Invasive Cardiol 19, 424-430 (2007).
6 7	250	6. Thibault, H., <i>et al.</i> Long-term benefit of postconditioning. <i>Circulation</i> 117 , 1037-1044 (2008).
8 9	251	7. Lønborg, J., et al. Cardioprotective effects of ischemic postconditioning in patients treated with
10 11	252	primary percutaneous coronary intervention, evaluated by magnetic resonance. Circ Cardiovasc Interv 3, 34-41
12 13	253	(2010).
14 15	254	8. Khan, A.R., <i>et al.</i> Cardioprotective role of ischemic postconditioning in acute myocardial infarction: a
16	255	systematic review and meta-analysis. Am Heart J 168, 512-521.e4 (2014).
17 18	256	9. Zhou, C., <i>et al.</i> Stenting technique, gender, and age are associated with cardioprotection by ischaemic
19 20	257	postconditioning in primary coronary intervention: a systematic review of 10 randomized trials. Eur Heart J 33,
21 22	258	3070-3077 (2012).
23 24	259	10. Liu, B.S., et al. The cardioprotection of ischemic postconditioning in patients with acute ST-segment
25 26	260	elevation myocardial infarction undergoing primary percutaneous coronary intervention. Int J Cardiol 178,
27	261	181-183 (2015).
28 29	262	11. Liberati, A., et al. The PRISMA statement for reporting systematic reviews and meta-analyses of
30 31	263	studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339, b2700 (2009).
32 33	264	12. Zhao, Z.Q., et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion:
34 35	265	comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285, H579-588 (2003).
36 37	266	13. Engstrøm, T., et al. Effect of Ischemic Postconditioning During Primary Percutaneous Coronary
38	267	Intervention for Patients With ST-Segment Elevation Myocardial Infarction: A Randomized Clinical Trial. JAMA
39 40	268	Cardiol, (2017).
41 42	269	14. Hahn, J.Y., et al. Long-term effects of ischemic postconditioning on clinical outcomes: 1-year
43 44	270	follow-up of the POST randomized trial. Am Heart J 169, 639-646 (2015).
45 46	271	15. Limalanathan, S., et al. Effect of ischemic postconditioning on infarct size in patients with
47	272	ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in
48 49	273	ST-Elevation Myocardial Infarction) randomized trial. J Am Heart Assoc 3, e000679 (2014).
50 51	274	16. Tarantini, G., et al. Postconditioning during coronary angioplasty in acute myocardial infarction: the
52 53	275	POST-AMI trial. Int J Cardiol 162, 33-38 (2012).
54 55	276	17. Luz, A., et al. Lack of Benefit of Ischemic Postconditioning After Routine Thrombus Aspiration
56 57	277	During Reperfusion: Immediate and Midterm Results. J Cardiovasc Pharmacol Ther 20, 523-531 (2015).
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

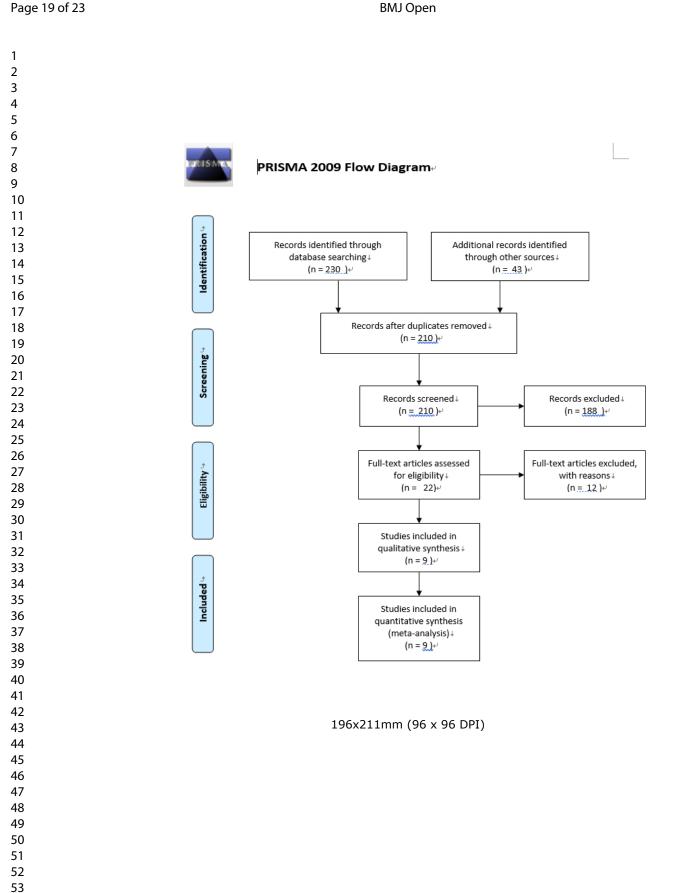
BMJ Open: first published as 10.1136/bmjopen-2018-022509 on 23 March 2019. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

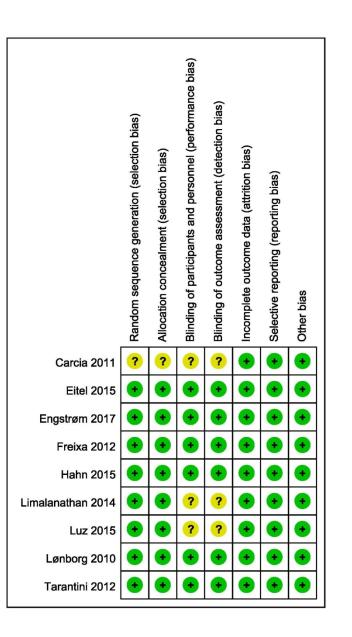
 postconditioning in ST-elevation myocardial infarction: the randomized LIPSIA CONDITIONING trial. 20 36(44): 3049-57. 19 Freixa X. Ischaemic postconditioning revisited: lack of effects on infarct size following prima percutaneous coronary intervention. 2012. 33(1): 103-12 	10	Eital I. Cardionrotaction by combined introposital remote isobacmic nerconditioning on
 36(44): 3049-57. 19 Freixa X. Ischaemic postconditioning revisited: lack of effects on infarct size following prima percutaneous coronary intervention. 2012. 33(1): 103-12 20 Garcia S. Long-term follow-up of patients undergoing postconditioning during ST-elevation myocardial infarction. 2011. 4(1): 92-8. Figure legend Fig 1: ischemic postconditioning versus traditional PPCI on all-cause mortality patients with STEMI. Fig 2: ischemic postconditioning versus traditional PPCI on MACE in patients with STEMI. 	18.	
 19 Freixa X. Ischaemic postconditioning revisited: lack of effects on infarct size following prima percutaneous coronary intervention. 2012. 33(1): 103-12 20 Garcia S. Long-term follow-up of patients undergoing postconditioning during ST-elevation myocardial infarction. 2011. 4(1): 92-8. Figure legend Fig 1: ischemic postconditioning versus traditional PPCI on all-cause mortality patients with STEMI. Fig 2: ischemic postconditioning versus traditional PPCI on MACE in patients with STEMI. 		
reutaneous coronary intervention. 2012. 33(1): 103-12 20 Garcia S. Long-term follow-up of patients undergoing postconditioning during ST-elevati yocardial infarction. 2011. 4(1): 92-8. Figure legend Fig 1: ischemic postconditioning versus traditional PPCI on all-cause mortality attents with STEMI. Fig 2: ischemic postconditioning versus traditional PPCI on MACE in patients with TEMI.		
20 Garcia S. Long-term follow-up of patients undergoing postconditioning during ST-elevativy yocardial infarction. 2011. 4(1): 92-8. Figure legend Fig 1: ischemic postconditioning versus traditional PPCI on all-cause mortality atients with STEMI. Fig 2: ischemic postconditioning versus traditional PPCI on MACE in patients with TEMI.		
Figure legend Fig 1: ischemic postconditioning versus traditional PPCI on all-cause mortality Attents with STEMI. Fig 2: ischemic postconditioning versus traditional PPCI on MACE in patients with FEMI	rcutar	
Figure legend Fig 1: ischemic postconditioning versus traditional PPCI on all-cause mortality atients with STEMI. Fig 2: ischemic postconditioning versus traditional PPCI on MACE in patients with TEMI.	20	Garcia S. Long-term follow-up of patients undergoing postconditioning during ST-elevation
Fig 1: ischemic postconditioning versus traditional PPCI on all-cause mortality batients with STEMI. Fig 2: ischemic postconditioning versus traditional PPCI on MACE in patients with STEMI.	iyocaro	lial infarction. 2011. 4(1): 92-8.
Fig 1: ischemic postconditioning versus traditional PPCI on all-cause mortality atients with STEMI. Fig 2: ischemic postconditioning versus traditional PPCI on MACE in patients with TEMI.		
Datients with STEMI. Fig 2: ischemic postconditioning versus traditional PPCI on MACE in patients with STEMI.	F	-igure legend
Fig 2: ischemic postconditioning versus traditional PPCI on MACE in patients with STEMI.	Fi	g 1: ischemic postconditioning versus traditional PPCI on all-cause mortality i
STEMI.	patien	ts with STEMI.
STEM.	Fi	
	STEM	. 🧄
	·	

Churche and Carls and and	postconditi	-	Contr		Mar indust	Risk Ratio	M	MUL Devidence OF CL
Study or Subgroup	Events		Events		weight	M-H, Random, 95% Cl		M-H, Random, 95% Cl
Lønborg 2010	2	59	0	59	1.0%	5.00 [0.25, 101.97]	2010	
Garcia 2011	1	22	0	21	0.9%	2.87 [0.12, 66.75]	2011	
Freixa 2012	1	39	1	40	1.2%	1.03 [0.07, 15.83]	2012	
Tarantini 2012	2	39	1	39	1.7%	2.00 [0.19, 21.16]	2012	
Limalanathan 2014	4	136	2	136	3.3%	2.00 [0.37, 10.74]	2014	
Hahn 2015	17	350	13	350	18.7%	1.31 [0.65, 2.65]	2015	- -
Luz 2015	2	50	0	50	1.0%	5.00 [0.25, 101.58]	2015	
Eitel 2015	11	232	14	232	15.8%	0.79 [0.36, 1.69]	2015	
Engstrøm 2017	38	617	50	617	56.3%	0.76 [0.51, 1.14]	2017	
Total (95% CI)		1544		1544	100.0%	0.94 [0.69, 1.27]		+
Total events	78		81					
Heterogeneity: Tau ² =	0.00; Chi ² = 6	i.15, df=	8 (P = 0.	63); I ² =	= 0%			
Test for overall effect:	7 = 0.42 (P =	0.68)						0.01 0.1 1 10 10 ostconditioning ischemic control

219x71mm (96 x 96 DPI)


1 2	
3 4	
5 6 7	
8 9	
10 11 12	
12 13 14	
15 16	
17 18 19	
20 21	
22 23	
24 25 26	
27 28	
29 30 31	
32 33	
34 35	
36 37 38	
39 40	
41 42 43	
43 44 45	
46 47	
48 49 50	
51 52	
53 54	
55 56 57	
58	

59


60

~	Experim		Contr			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
2.1.1 heart failure	20	222	40	222	0.40	2 24 14 24 4 241	
Eitel 2015	30 30	232	13	232	9.4%	2.31 [1.24, 4.31]	
Engstrøm 2017 Freive 2012	3U 3	617 39	30 0	617 40	12.1%	1.00 [0.61, 1.64]	
Freixa 2012 Garcia 2011	2	39 22	4	40	0.7% 2.3%	7.17 [0.38, 134.50]	
Hahn 2015	2 9	350	4	350	2.3% 5.5%	0.48 [0.10, 2.34]	
Limalanathan 2014	9	136	5	136	2.2%	1.13 [0.44, 2.88] 0.40 [0.08, 2.03]	
Luz 2015	2	50	0	50	2.270	Not estimable	
Lønborg 2010	17	59	28	59	12.3%	0.61 [0.37, 0.98]	
Tarantini 2012	2	39	20	39	0.7%	5.00 [0.25, 100.89]	
Subtotal (95% CI)	2	1544	U	1544	45.1%	1.05 [0.62, 1.75]	•
Total events	95	1344	88	1344	45.170	1.05 [0.02, 1.15]	Ť
Heterogeneity: Tau ² =		= 16.29		P = 0.03	2): I≧ = 579	6	
Test for overall effect:				- 0.02	c), i = 57 A	0	
			,				
2.1.2 Cardiac death	-						
Engstrøm 2017	30	617	26	617	11.6%	1.15 [0.69, 1.93]	
Freixa 2012	1	39	1	40	0.8%	1.03 [0.07, 15.83]	
Garcia 2011	1	22	0	21	0.6%	2.87 [0.12, 66.75]	
Hahn 2015	15	350	11	350	7.4%	1.36 [0.64, 2.93]	
Luz 2015	0	50	0	50		Not estimable	
Lønborg 2010	1	59	0	59	0.6%	3.00 [0.12, 72.18]	
Tarantini 2012	2	39	0	39	0.7%	5.00 [0.25, 100.89]	
Subtotal (95% CI)		1176		1176	21.7%	1.28 [0.85, 1.93]	◆
Total events	50		38				
Heterogeneity: Tau² =				= 0.91)	² = 0%		
Test for overall effect:	Z=1.18 (F	P = 0.24)				
2.1.3 MI							
Engstrøm 2017	33	617	29	617	12.2%	1.14 [0.70, 1.85]	+-
Hahn 2015	4	350	1	350	1.3%	4.00 [0.45, 35.61]	
Limalanathan 2014	2	136	9	136	2.5%	0.22 [0.05, 1.01]	
Lønborg 2010	3	59	1	59	1.2%	3.00 [0.32, 28.02]	
Subtotal (95% CI)		1162		1162	17.2%	1.08 [0.38, 3.12]	-
Total events	42		40				
Heterogeneity: Tau² =	0.60; Chi ²	= 6.43,	df = 3 (P	= 0.09)	; I² = 53%		
Test for overall effect:	Z=0.14 (F	e = 0.88)				
2.1.4 revascularizatio							
Engstrøm 2017	25	617	16	617	9.6%	1.56 [0.84, 2.90]	
Hahn 2015	25	350	7	350	5.0% 4.4%	0.86 [0.29, 2.52]	
Luz 2015	1	50	ó	50	4.4% 0.6%	3.00 [0.13, 71.92]	
Lønborg 2010	0	59	2	59	0.0%	0.20 [0.01, 4.08]	
Tarantini 2012	2	39	0	39	0.7%	5.00 [0.25, 100.89]	
Subtotal (95% CI)	2	1115	U	1115	16.0%	1.35 [0.81, 2.26]	•
Total events	34	1115	25	1115	10.070	1.55 [0.01, 2.20]	-
Heterogeneity: Tau ² =		- 3 / 1		- 0.40	· 12 - 0.04		
Test for overall effect:				- 0.43)	,. – 0.2		
					a straine		
Total (95% CI)		4997		4997	100.0%	1.14 [0.88, 1.46]	•
Total events	221		191	-			
Heterogeneity: Tau ² =				(P = 0.1	4); ^z = 24	%	0.005 0.1 1 10 200
Test for overall effect:						~	Favours [experimental] Favours [control]
Test for subaroup diffe	erences: C	:n/* = 0.1	60. df = 3	(P = 0.	90). I* = 09	70	

213x237mm (96 x 96 DPI)

	Ž
-	g
	ĕn:
	MJ Open: first published as 10.1136/bmiopen-2018-022509 on 23 March 2019. Downloaded from http://bmiopen.t
-	ğ
	t published as 10.1136/bmiopen-2018-022509 on 23 March 2019. Downloaded from http://bmiopen.t
	she
	а С
	S 1
	0.1
	136
	i/bn
	<u> </u>
	ĕņ
	20
	6
	22
	50
	õ
	2
	≤
	arc
	22
	219
	 _
	N N
	ŝ
	ãe
	d fr
	B
	h
	<u>ă</u>
	ğ
	n.b
•	<u>3</u> .
	ğ
	≥
	∩ A
-	orii
	19
	20
	24
,	2 2 2
	lues
	÷.
	rot
	ect
	ed l
•	2
-	őp
	/ria
	₽ŧ.

209x279mm (200 x 200 DPI)

B

1	
2 3	
3 4	
5	
6 7	
8	
9 10	
11	
12 13	
14	
15	
16 17	
18	
19 20	
21	
22 23	
24	
25 26	
27	
28 29	
29 30	
31	
32 33	
34 35	
35 36	
37	
38 39	
39 40	
41	
42 43	
44	
45 46	
47	
48 49	
50	
51 52	
52 53	
54	
55 56	
57	

Supplementary table 1: Sensitivity analysis of randomized primary prevention trials

PRISMA 2009 Checklist

Section/Topic	#	Checklist Item	Reported
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	2
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	2
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	3
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	3
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	3
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	4
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	4
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	4
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	4
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	4
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	4
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	5

Page 23 of 23

PRISMA 2009 Checklist

Section/Topic	#	Checklist Item	Reported on Page #	
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	5	
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	5	
RESULTS			·	
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	5	
5 6 Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	5	
8 Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	5	
9 0 Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	5	
22 Synthesis of results	21	Present the main results of the review. If meta-analyses done, include for each, confidence intervals and measures of consistency.	5	
²⁴ Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	5	
26 Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	5	
29 Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	6	
2 Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	8	
4 Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	8	
35				
37 38 Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	9	
39 40 41 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. 41 doi:10.1371/journal.pmed1000097				
42 For more information, visit: <u>www.prisma-statement.org</u> . 43				
44 45 For peer review only - http://bmjရာခ္မွာ ဥက္ကာ¿com/site/about/guidelines.xhtml				

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2018-022509 on 23 March 2019. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Effects of ischemic postconditioning on outcomes of patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022509.R1
Article Type:	Research
Date Submitted by the Author:	13-Jun-2018
Complete List of Authors:	Xing, Zhenhua; Second Xiangya Hospital Huang, Jiabing; Second Xiangya Hospital Peng, Xiaofan; Second Xiangya Hospital Hu, Xinqun; Second Xiangya Hospital
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Cardiovascular medicine
Keywords:	Ischemic postconditioning therapy, percutaneous coronary intervention, all-cause mortality, major adverse cardiac events, meta-analysis

1	Effects of ischemic postconditioning on outcomes of
2	patients with ST-segment elevation myocardial infarction
3	undergoing primary percutaneous coronary intervention: a
4	meta-analysis
5	Zhenhua Xing ¹ , Jiabing Huang ¹ , Xiaofan peng ¹ , Xinqun Hu ¹
6	
7	1 Department of Cardiovascular Medicine, The Second Xiangya Hospital, Centra
8	South University,Changsha,Hunan 410011,China
9	
10	*Corresponding author: Xinqun Hu, M.D. PhD.
11	Department of Cardiovascular Medicine, The Second Xiangya Hospital , Centra
12	South University,Changsha,Hunan 410011,China
13	E-mail: huxinqun@csu.edu.cn
14	Phone number: +8615084714930
15	

16	Background: The aim of this meta-analysis was to evaluate the effects of ischemi
17	postconditioning therapy (IPC) on hard clinical endpoints in ST-segment elevatio
18	myocardial infarction (STEMI) patients with primary percutaneous coronary interventio
19	(PPCI).
20	Methods: We included randomized trials comparing PPCI in combination with IP
21	with conventional PPCI in STEMI patients. We systemically searched PubMed, Embas
22	and the Cochrane Library for relevant articles published before May 1, 2018. The prima
23	endpoint was heart failure. Secondary endpoints were all-cause mortality and maj
24	adverse cardiac events (MACE), including cardiac death, heart failure, and myocardi
25	infarction (MI). The Cochrane Reviewer's Handbook 4.2 was used to assess the risk
26	bias.
27	Results: Ten studies enrolling 3,137 patients were included. PPCI in combination wi
28	IPC failed to reduce heart failure (RR: 0.88, 95% CI: 0.61,1.26, P = 0.47),all-cause
29	mortality (RR: 0.94, 95% CI: 0.69,1.27, P = 0.68),MACE (RR: 1.05, 95% CI: 0.83,1.32, P
30	0.69), cardiac death (RR: 1.28, 95% CI: 0.85,1.93, P = 0.24), and MI (RR: 1.08, 95% C
31	0.38,3.21, P = 0.88).
32	Conclusions: IPC during PPCI does not reduce heart failure, MACE, and all-caus
33	mortality in patients with STEMI compared to traditional PPCI. (CRD42017063959)
34	Strengths and limitations of this study
35	1. This meta-analysis included recent relevant studies and provided the latest RCTs of
	STEMI.
36	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

38	performed to evaluate the sample size.			
39	3. We inc	3. We included the recent DANAMI-3-iPOST study, which randomized 1,234 patients		
40	with ST	with STEMI to conventional PPCI or PPCI with IPC, which may change our opinion on		
41	treatme	ent of STEMI.		
42	4. A limita	4. A limitation of this meta-analysis is the inclusion of a relatively low number of trials.		
43	5. Bias b	5. Bias between studies may exist. However, subgroup analysis was performed to		
44	evaluate catheter-directed thrombolysis.			
45	Key words: Ischemic postconditioning therapy (IPC); percutaneous coronary			
46	intervention (PCI); all-cause mortality; major adverse cardiac events (MACE);			
47	meta-analysis			
48	Abbreviations			
	IPC	Ischemic postconditioning therapy		
	PCI	Percutaneous coronary intervention		
	STEMI	ST-segment elevation myocardial infarction		
	MACE	Major adverse cardiac events		
	SPECT	Single-photon emission computed tomography		
	ce-CMR	Contrast-enhanced cardiac magnetic resonance		
	RCT	Randomized controlled trial		

50 Background

Primary percutaneous coronary intervention (PPCI) has been proven to be effective

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-022509 on 23 March 2019. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

ו ר
2 3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
24 25
25
26
27
28
29
30
31
32
33
34
35
36 37 38
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52 53
55 54
54 55
56
57
58
59
60

1

52	in patients with ST-segment elevation myocardial infarction (STEMI) and has become a
53	first-line therapy ^[1] . Although PPCI is effective in restoring blood flow, ischemic reperfusion
54	injury is not inevitable. Reperfusion injury can also induce deleterious effects with a
55	subsequent increase in infarct size, which accounts for up to 50% of the final size of a
56	myocardial infarct ^[2] . Both animal models of infarction and clinical proof-of-concept studies
57	have shown that reopening of the infarct-related artery (IRA) followed by repetitive brief
58	interruptions of blood flow before sustained reperfusion may protect the myocardium
59	against reperfusion injury, which is evaluated using cardiac biomarkers, single-photon
60	emission computed tomography (SPECT), echocardiography, and contrast-enhanced
61	cardiac magnetic resonance (ce-CMR) ^[3-7] . This strategy, known as ischemic
62	postconditioning (IPC), is safe and easy to perform without additional cost ^[8] . Related
63	meta-analyses also demonstrated that IPC could rescue cardiomyocytes evaluated by the
64	above methods ^[9-11] . However, whether improvements in these surrogate markers can
65	translate into improved clinical outcomes evaluated by hard endpoints, such as heart
66	failure, or all-cause mortality remains controversial. The recent DANAMI-3-iPOST study,
67	which randomized 1,234 patients with STEMI to conventional PPCI or PPCI with IPC did
68	not provide evidence in favor of PPCI with IPC compared to traditional PPCI ^[11] .
69	Given the confusing situations of IPC during PPCI, we performed this meta-analysis
70	to evaluate whether IPC has a beneficial effect on hard endpoints, such as heart failure,

71 all-cause mortality, and MACE, compared to traditional PPCI.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Methods

Patients and public involvement

- No patients and/or the public were involved in this study.
- Search strategy and selection criteria

This meta-analysis is reported in accordance to the Preferred Reporting Items for System Reviews and Meta-Analyses (PRISMA) Statement and was registered at International Prospective Register of Systematic Reviews (CRD42017063959)^[12]. We systemically searched PubMed, Embase, and Cochrane Library for relevant articles published before May 1, 2018. We used the terms ischemic postconditioning, postconditioning, percutaneous coronary intervention (PCI), controlled trial, intervention study, and randomized controlled trials (RCTs) to identify randomized controlled trials. MeSH, Emtree, and keyword search terms were used in combination (Supplementary file). The results were limited to trials published in English. We manually searched the reference lists of relevant studies and reviews, editorials, and letters to identify additional articles.

We used Endnote (Thompson ISI ResearchSoft, Philadelphia, PA, USA) to manage relevant articles and remove duplicate articles.

Study criteria, quality assessment, and data extraction

Studies were included in our meta-analysis when these met the following criteria: (1)

BMJ Open: first published as 10.1136/bmjopen-2018-022509 on 23 March 2019. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

2	
3 4	
5	
6 7	
8	
9 10	
11	
12 13	
14	
15 16	
17	
18 19	
20	
21 22	
23	
24 25	
26 27	
28	
29 30	
31	
32 33	
34 35	
35 36	
37 38	
39	
40 41	
42	
43 44	
45 46	
46 47	
48 49	
50	
51 52	
53	
54 55	
56	
57 58	
59	

60

1

91 the study design was a prospective randomized controlled clinical trial (RCT); (2) all 92 patients with STEMI underwent PPCI treatment; (3) patients were randomly assigned to 93 the PPCI in combination with the IPC group or the conventional PPCI group; (4) follow-up 94 time was not less than one month; and (5) relevant data should be retrievable. When 95 relevant data were missing, authors were contacted by e-mail, before excluding the 96 references for inaccessibility of data.

97 The primary endpoint was heart failure. Secondary endpoints were all-cause mortality 98 and major adverse cardiac events (MACE) including cardiac death, heart failure, and 99 myocardial infarction (MI). All clinical endpoints were evaluated according to per protocol 100 definitions, at the longest available follow-up. Study quality was judged by evaluating trial 101 procedures for random sequence generation (selection bias), allocation concealment 102 (selection bias), blinding of participants and personnel (performance bias), blinding of 103 outcome assessment (detection bias), and incomplete outcome data (attrition bias). The 104 Cochrane Reviewer's Handbook 4.2 was used to assess risk of bias.

105 Relevant data were extracted by two independent investigators (ZW Zhu and JB 106 Huang). Disagreements were resolved by consensus or a third investigator (XQ Hu). The 107 following data were abstracted from the selected articles: first author, publication date, 108 study design, onset of symptoms, characteristics of included participants, total number of 109 IPC and conventional groups, events of the IPC and conventional groups, stent type, and 110 follow-up time.

111 Data analysis

112	Meta-analysis was performed to calculate the risk ratio (RR) and 95% confidence
113	interval (CI). Pooled RRs were computed as the Mantel-Haenszel-weighted average of
114	the RRs for all included studies. Because the true treatment effect of various
115	postconditioning protocols may have varied among the included trials, the random-effects
116	model was used in the analysis. Statistical heterogeneity among the trial-specific RRs was
117	checked and quantified by the I² statistic, and a P-value ≤0.05 was considered statistically
118	significant. If one study have no events, we did not include this study in the calculation of
119	RR. We performed sensitivity analysis to assess the contribution of each study to the
120	pooled estimation by excluding one trial at a time and recalculating the pooled RR
121	estimation for the remaining studies. To determine the impact of baseline characteristics
122	(symptom onset, different IPC protocol,duration of follow-up et. al.) on the observed
123	clinical benefit, subgroup analyses were performed. All analysis was performed using
124	Review Manager Software (Review Manager (RevMan) [Computer program]. Version 5.3.
125	Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014.).

126 Outcomes

127 Search results and bias assessment

128 Supplementary Figure 1 shows that the combined search strategy identified 273 129 potential relevant manuscripts, from which 33 studies were finally retrieved for more 130 detailed assessment. Finally, 10 RCTs were included in this meta-analysis, involving

3,137 patients.^[7, 8, 13-20]. We used the Cochrane Reviewer's Handbook 4.2 to assess risk of 131 132 bias (Supplementary Fig 2). No high-risk studies existed. Six of them had a low risk of 133 bias. 134 The main features of the 10 included RCTs and baseline clinical characteristics of the 135 patients are presented in Table 1. In the 10 trials, 1,569 patients (50%) were randomly 136 assigned to postconditioning therapy. The mean age of the trial patients was 61 years, 137 and 78% of these patients were male. The IPC protocol (ischemia/reperfusion×cycles in 138 seconds) varied between studies, being 30"/30" × 4 in four studies, 60"/60" × 4 in five 139 studies, and 30"/30" × 3 in one study. The follow-up in the trials varied from 1 month to 41 140 months. The time of symptoms onset varied between studies, being 6 hours in 2 studies, 141 12 hours in 8 studies. 142 143 Table 1: Detailed characteristics of included studies. Patients Country Age Male Symptom Protocol LAD DES (IPC/C) (years, IPC/C (%,IPC/ onset (duration×cycles) (%,IPC/ (%,IPC/ C) C) C) (hours))

69/74

86/76

84/72

59

60

Denmark

USA

Spain

61/62

61/55

59/60

59/59

22/21

39/40

1

3

4 5

7

≤12 h

≤12 h

≤12 h

30"/30" × 4

30"/30" × 4

60"/60" × 4

44/39

36/24

51/39

_

BMJ Open: first published as 10.1136/bmjopen-2018-022509 on 23 March 2019. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Follow-

(month

up

s)

3

41

1 2										1
3 4	2012									
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Tarantini	39/39	Italy	60/60	85/85	≤6 h	60"/60" × 4	41/44	0/2.6	1
	2012									
	Dong	32/30	China	70/68	63/73	≤12 h	30"/30" × 3	57/43	-	1
	2013									
	Limalanat	136/136	Norway	61/60	84/80	≤6 h	60"/60" × 4	46/51	29/29	4
	han 2014			0,						
20 21 22	Hahn	350/350	South	60/60	79/75	≤12 h	60"/60" × 4	47/45	86/86	12
22 23 24	2015		Korea		0					
25 26	Eitel 2015	232/232	Germany	62/65	76/71	≤12 h	30"/30" × 4	42/51	-	6
27 28 29	Luz 2015	43/44	Portugal	57/58	88/82	≤12 h	60″/60″ × 4	47/43	65/71	14
30 31	Engstrøm	617/617	Denmark	63/62	80/79	≤12 h	30"/30" × 4	43/40	93/93	38
32 33 34	2017						Þ			
34 35		[1		l				l	1

144 IPC: Ischemic postconditioning group; C; control group; LAD: left descending anterior

145 branch; DES: drug-eluted stent;

Primary endpoint: heart failure

When we pooled the data, the RR for heart failure was 0.88 (95% CI: 0.61–1.26, P= 0.47) in the random-effects model (Fig 1). No evident statistical heterogeneity among studies was observed ($I^2 = 0$, P = 0.51). IPC during PPCI did not reduce heart failure compared to traditional PPCI.

B۷

2
В
en
÷
ß
p
Ъ
list
٦ed
as 1
10
<u>.</u>
3
6/t
ă
jõp
ben
7
20
18
pen-2018-022509 on 23 Mar
022509
2509
õ
9
23
ω
≤a
rc
÷
rch 2019. D
2019
8
Š
ы
ã
ğ
oaded f
ded fror
ded from
ded from htt
from htt
from http://
from http://
from htt
from http://bmjope
from http://bmjope
from http://bmjope
from http://bmjop
from http://bmjope
from http://bmjope
from http://bmjope
from http://bmjope
from http://bmjopen.bmj.com/ on Api
from http://bmjopen.bmj.com/ on April
from http://bmjopen.bmj.com/ on April 19,
from http://bmjopen.bmj.com/ on April 19, :
from http://bmjopen.bmj.com/ on April 19,
from http://bmjopen.bmj.com/ on April 19, :
from http://bmjopen.bmj.com/ on April 19, :
from http://bmjopen.bmj.com/ on April 19, :
from http://bmjopen.bmj.com/ on April 19, 2024 by g
from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
from http://bmjopen.bmj.com/ on April 19, 2024 by g
from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copy

151	Second endpoints: all-ca	use mortality and MACE
-----	--------------------------	------------------------

Our pooled data showed that IPC does not reduce all-cause mortality compared to traditional PPCI (RR: 0.94, 95%CI: 0.69,1.27, P=0.68, Fig 2). No evident statistical heterogeneity among studies was observed (I²=0, P =0.63). Furthermore, IPC does not reduce cardiac death (RR: 1.28, 95% CI: 0.85,1.93, P = 0.24), MI (RR: 1.08, 95% CI: 0.38,3.21, P = 0.88) and heart failure (RR: 0.85, 95% CI: 0.59,1.23, P = 0.40). When all these events (MACE) were considered, the net benefit did not favor IPC during PPCI (RR: 1.05, 95% CI: 0.83,1.32, P = 0.69, Fig 3).

159 Sensitivity analysis and potential sources of heterogeneity

Sensitivity analysis was performed by omitting each study in turn to assess the stability and consistency of the results. Each excluded study did not influence the pooled RRs of the overall effects of heart failure, MI, cardiac death, and all-cause mortality (Supplementary Table 1).

There were no heterogeneities with regards to the observed effects on all-cause mortality (I²=0, p=0.63) and cardiac death (I²=0, p=0.91) between studies. However, moderate between-study heterogeneity was identified in the case of MI (I² = 53%, P = 0.09). MI heterogeneity was mainly caused by the Limalanathan 2014 study. When we excluded this study, no obvious heterogeneity was observed ($I^2 = 0\%$, P = 0.40). The conclusions were still consistent with previous analysis. Subgroup analysis did not find any baseline risk factor, such as symptom onset, duration of follow-up, and antiplatelet therapies as a modifier of the relationship between IPC and clinical endpoints (Table 2).

173 significant source of heterogeneity, except for this subgroup analysis.

174 Table 2: Subgroup analysis.

	Cardiac death	Heart failure	MI	All-cause mortality
Symptom onset				
≤6 h	5.00 (0.25,101)	1.02 (0.09,11.5)	0.22 (0.05,1.01)	2.00 (0.51,7.86)
≤12 h	1.25 (0.83,1.89)	0.89 (0.61,1.29)	1.26 (0.79,2.00)	0.90 (0.66,1.23)
IPC Protocol	6			
30"/30" × 4	1.21 (0.73,1.99)	0.76 (0.45,1.29)	1.19 (0.74,1.91)	0.80 (0.56,1.14)
60"/60" × 4	1.44 (0.70,2.94)	0.98 (0.48,2.04)	0.84 (0.05,14.2)	1.38 (0.76,2.52)
Duration of follow-up		6		
≤ 12 m	1.49 (0.74,2.99)	0.81 (0.44,1.47)	1.20 (0.16,8.81)	1.16 (0.73,1.87)
>12 m	1.18 (0.71,1.96)	0.94 (0.58,1.50)	1.14 (0.70,1.85)	0.88 (0.45,1.71)
Analysis model			7	
Fixed-effect model	1.30 (0.87,1.96)	0.89 (0.62, 1.26)	1.05 (0.69, 1.60)	0.96 (0.71,1.30)
Random effects	128 (0.85,1.93)	0.88 (0.61,1.26)	1.08 (0.38,3.12)	0.94 (0.69,1.27)
Antiplatelet or				
anticoagulation therapies				
Clopidogrel	128 (0.85,1.93)	0.98 (0.66,1.45)	1.08 (0.38,3.12)	0.97 (0.69,1.35)
GPIIb/IIIa inhibitors	1.23 (0.81,1.88)	0.84 (0.56,1.27)	1.08 (0.38,3.12)	0.93 (0.67,1.30)
Bivalirudin	1.44 (0.70,2.94)	0.98 (0.47,2.03)	0.84 (0.77,14.24)	1.48 (0.81,2.69)

175 MI: myocardial infarction; IPC: Ischemic postconditioning group

BMJ Open: first published as 10.1136/bmjopen-2018-022509 on 23 March 2019. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Discussion

177 The current meta-analysis of 10 RCTs, including 3,137 patients with STEMI 178 undergoing PPCI, did not show the benefits of IPC in reducing heart failure, all-cause 179 mortality, and MACE compared to traditional PPCI. Subgroup analysis did not show 180 improved clinical outcomes either.

IPC was first introduced by Zhao et al. in 2003^[21]. Subsequent clinical trials and meta-analyses found the salutary effect of IPC on infarct size as evaluated by CK, CK-MB, troponin, SPECT, and cardiac function based on the left ventricular ejection fraction (LVEF)^[3-5]. However, the opposite results have also been reported^[8, 16-19]. The DANAMI-3-iPOST trial, which is the largest study to date, did not show that IPC could reduce infarct size^[8]. Furthermore, whether the surrogate endpoints, such as infarct size, myocardial salvage, and resolution of ST-segment elevation, can translate into hard endpoints, such as heart failure, all-cause mortality, or MACE, remains a point of debate. Unlike these surrogate endpoints, heart failure, all-cause mortality, and MACE are what clinics and patients really consider.

191 Unlike previous meta-analyses that were mainly focused on cardiac biomarkers, 192 cardiac imaging, and cardiac function, clinical outcomes should be given more importance. 193 However, our meta-analysis did not show that IPC could improve clinical outcomes, and 194 several factors may affect its effectiveness. A meta-analysis of 19 RCTs concluded that 195 cardioprotection evaluated by cardiac enzymes leakage, infarct size, and left ventricular 196 function is more prone in patients with LAD artery involvement because of a greater

BMJ Open

197	myocardial area being at risk. ^[9] Zhou et al. performed a meta-analysis of 10 RCTs and
198	found that the effects of cardiac protection are more pronounced among young and male
199	patients and those who received direct-stenting ^[10] . The IPC protocol is also an important
200	factor in determining the effectiveness of IPC. IPC may cause myocardial ischemia and
201	expand the infarct area. Several trials chose four cycles of 1 min of reperfusion followed
202	by 1 min of reocclusion. However, other trials selected four cycles of 30-s reperfusion
203	followed by 30-s low-pressure balloon occlusion. However, our subgroup analyses did not
204	find the effectiveness of IPC.any differences.
205	Time of symptoms onset, which is an independent predictor of MACE in patients with
206	STEMI undergoing PPCI, may have influenced the results of these trials. Subgroup
207	analysis did not detect the effectiveness of IPC either.
208	The result of subgroup analyses did not support IPC. The key reason is that IPC
209	might have no effect on cardioprotection. Furthermore, the sample size of the studies may
210	have been too small to detect minor beneficial effects. Several confounding factors, such
211	as patient's baseline characteristics, coexisting diseases, medications, and IPC strategies
212	used, may influence the cardioprotective benefits of IPC. With the use of novel antiplatelet
213	and lipid-lowering agents and timely PPCI, the outcome of STEMI has significantly
214	improved. The decreasing mortality rate also makes it harder to demonstrate the minor
215	benefits of using additional therapy.
040	Limitationa

216 Limitations

217 This study has a number of limitations. First, although no apparent heterogeneity in

BMJ Open: first published as 10.1136/bmjopen-2018-022509 on 23 March 2019. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

y among s
and follow
did not
ed our co
of heterog
dies might
largest p
valuate lo
patients u
use morta
these stud
ng designe
arching str
t/auideline

statistical analysis was observed, variations in the methodology studies, such as different risk profiles of the included patients, IPC strategies, w-up time, were inevitable. However, we performed subgroup analysis and find that these heterogeneities affected our conclusion. In addition, we base nclusion on the random effects model, which can account for a certain degree geneity. Second. although we performed an extensive search strategy, some stud not be included in this meta-analysis. However, this meta-analysis is the opulation-based analysis of IPC. Third, additional RCTs are necessary to ev ong-term clinical outcomes.

227 Conclusions

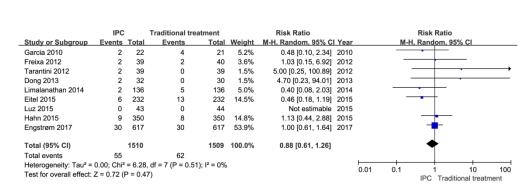
This meta-analysis suggests that the use of IPC in STEMI patients undergoing PPCI does not reduce the incidence of heart failure, MACE, and all-cause mortality compared to traditional PPCI.

1 Additional Information

- 232 The authors have no conflicts of interest to declare.
- 233 No patients and/or the public were involved in this study.
- 234 We thank the staff and patient advisers who participated in these studies.
- 235 Author contribution statement: Xinqun Hu and Zhenhua Xing designed the study and
 - 236 provided methodological expertise in systematic reviews and searching strategies. Jiabing

1 2		
2 3 4	237	Huang and Xiaofan Peng searched the databases and constructed the tables. Zhenhua
5 6	238	Xing drafted the manuscript. All authors have read, provided critical feedback, and
7	230	Ang draited the manuscript. An authors have read, provided childar reedback, and
8 9	239	approved the final manuscript.
10 11	240	Funding: None
12 13	044	
14	241	Competing interests: None
15 16	242	Data sharing statement: No additional data available.
17 18	243	
19 20	2.0	
21		
22 23		
24 25		
26 27		
28 29		
30		
31 32		
33 34		Data sharing statement: No additional data available.
35 36		
37		
38 39		
40 41		
42 43		
44		
45 46		
47 48		
49 50		
51 52		
53		
54 55		
56 57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

244 245		References
5 6	[1]	Levine GN, Bates ER, Blankenship JC, et al. 2015 ACC/AHA/SCAI Focused Update on Primary
7	[-]	Percutaneous Coronary Intervention for Patients With ST-Elevation Myocardial Infarction: An Update of
8		the 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention and the 2013 ACCF/AHA
9		Guideline for the Management of ST-Elevation Myocardial Infarction. J Am Coll Cardiol. 2016. 67(10):
0		1235-50.
1	[2]	Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007. 357(11): 1121-35.
2	[3]	Ma X, Zhang X, Li C, Luo M. Effect of postconditioning on coronary blood flow velocity and endothelial
3		function and LV recovery after myocardial infarction. J Interv Cardiol. 2006. 19(5): 367-75.
4	[4]	Laskey WK, Yoon S, Calzada N, Ricciardi MJ. Concordant improvements in coronary flow reserve and
5		ST-segment resolution during percutaneous coronary intervention for acute myocardial infarction: a benefit
6		of postconditioning. Catheter Cardiovasc Interv. 2008. 72(2): 212-20.
7	[5]	Yang XC, Liu Y, Wang LF, et al. Reduction in myocardial infarct size by postconditioning in patients after
8		percutaneous coronary intervention. J Invasive Cardiol. 2007. 19(10): 424-30.
9	[6]	Thibault H, Piot C, Staat P, et al. Long-term benefit of postconditioning. Circulation. 2008. 117(8):
0		1037-44.
1	[7]	Lønborg J, Kelbaek H, Vejlstrup N, et al. Cardioprotective effects of ischemic postconditioning in patients
2		treated with primary percutaneous coronary intervention, evaluated by magnetic resonance. Circ
3		Cardiovasc Interv. 2010. 3(1): 34-41.
64	[8]	Engstrøm T, Kelbæk H, Helqvist S, et al. Effect of Ischemic Postconditioning During Primary
5		Percutaneous Coronary Intervention for Patients With ST-Segment Elevation Myocardial Infarction: A
6		Randomized Clinical Trial. JAMA Cardiol. 2017.
7	[9]	Khan AR, Binabdulhak AA, Alastal Y, et al. Cardioprotective role of ischemic postconditioning in acute
8		myocardial infarction: a systematic review and meta-analysis. Am Heart J. 2014. 168(4): 512-521.e4.
9	[10]	Zhou C, Yao Y, Zheng Z, et al. Stenting technique, gender, and age are associated with cardioprotection by
0		ischaemic postconditioning in primary coronary intervention: a systematic review of 10 randomized trials.
1		Eur Heart J. 2012. 33(24): 3070-7.
2	[11]	Liu BS, Xu F, Wang JL, et al. The cardioprotection of ischemic postconditioning in patients with acute


BMJ Open

	BA
ary percutaneous coronary intervention. Int J	BMJ Open: first published as 10.1136/bmjopen-2018-022509 on 23 March 2019. Downloaded from http://bmjope
ement for reporting systematic reviews and	st publis
ns: explanation and elaboration. BMJ. 2009.	shed as
tal remote ischaemic perconditioning and	10.113
randomized LIPSIA CONDITIONING trial.	6/bmjoj
	ben-20
of effects on infarct size following primary	18-022
2012).	509
going postconditioning during ST-elevation	on 23
).	Ma
emic postconditioning on clinical outcomes:	rch 20
015. 169(5): 639-46.	019. E
of Ischemic Postconditioning After Routine	bownle
dterm Results. J Cardiovasc Pharmacol Ther.	baded
	from
Hoffmann P, Eritsland J. Effect of ischemic	http:
myocardial infarction treated by primary PCI	//bmjc
lyocardial Infarction) randomized trial. J Am	
	ju j.o
ning during coronary angioplasty in acute	n.bmj.com/ on April 19, 2024 by guest. Protected by copyright
2. 162(1): 33-8.	n Apr
conditioning on no-reflow phenomenon after	ii 19, 2
ation acute myocardial infarction. J Thromb	2024 t
	oy gue
cardial injury by ischemic postconditioning	est. P
ng. Am J Physiol Heart Circ Physiol. 2003.	rotect
	ed by
	сору
	right.
site/about/guidelines.xhtml	

ST-segment elevation myocardial infarction undergoing prima Cardiol. 2015. 178: 181-3. [12] Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA state meta-analyses of studies that evaluate healthcare intervention 339: b2700. Eitel, I., et al. Cardioprotection by combined intrahospir [13] postconditioning in ST-elevation myocardial infarction: the Eur Heart J 36, 3049-3057 (2015). [14] Freixa, X., et al. Ischaemic postconditioning revisited: lack percutaneous coronary intervention. Eur Heart J 33, 103-112 (2 [15] Garcia, S., et al. Long-term follow-up of patients underg myocardial infarction. J Cardiovasc Transl Res 4, 92-98 (2011 [16] Hahn JY, Yu CW, Park HS, et al. Long-term effects of isch-1-year follow-up of the POST randomized trial. Am Heart J. 20 Luz A, Santos M, Magalhães R, et al. Lack of Benefit of [17] Thrombus Aspiration During Reperfusion: Immediate and Mid 2015. 20(6): 523-31. [18] Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, H postconditioning on infarct size in patients with ST-elevation results of the POSTEMI (POstconditioning in ST-Elevation M Heart Assoc. 2014. 3(2): e000679. [19] Tarantini G, Favaretto E, Marra MP, et al. Postcondition myocardial infarction: the POST-AMI trial. Int J Cardiol. 2012 [20] Dong M, Mu N, Guo F, et al. The beneficial effects of poste percutaneous coronary intervention in patients with ST-eleva Thrombolysis 2014;38:208-214. [21] Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myo during reperfusion: comparison with ischemic preconditionin 285(2): H579-88. For peer review only - http://bmjopen.bmj.com/

to beet terien only For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

r		
2 3		
	303	
4		
5		
6	304	
7		
8	305	Figure legends
9	000	
10		
11	306	Fig 1: Ischemic postconditioning versus traditional PPCI on heart failure in STEMI
12		
13	307	patients undergoing PPCI
14	007	
15		
16	308	Fig 2: Ischemic postconditioning versus traditional PPCI on all-cause mortality in
17		
18	309	STEMI patients undergoing PPCI.
19	209	STEMI patients undergoing PPCI.
20		
21	310	Fig 3: Ischemic postconditioning versus traditional PPCI on MACE in STEMI patients
22		
23	044	
24	311	undergoing PPCI.
24		
26	312	
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		<pre>Fig 3: Ischemic postconditioning versus traditional PPCI on MACE in STEMI patients undergoing PPCI</pre>
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
50 57		
J/		

282x90mm (300 x 300 DPI)

	IPC		Traditional trea	atment		Risk Ratio				Risk Rati	0	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year		M-H	I. Random.	95% CI	
Lønborg 2010	2	59	0	59	1.0%	5.00 [0.25, 101.97]	2010				-	
Garcia 2010	1	22	0	21	0.9%	2.87 [0.12, 66.75]	2010					
Freixa 2012	1	39	1	40	1.2%	1.03 [0.07, 15.83]	2012					
Tarantini 2012	2	39	1	39	1.7%	2.00 [0.19, 21.16]	2012		-			
Limalanathan 2014	4	136	2	136	3.3%	2.00 [0.37, 10.74]	2014					
Luz 2015	2	43	0	44	1.0%	5.11 [0.25, 103.51]	2015					
Eitel 2015	11	232	14	232	15.8%	0.79 [0.36, 1.69]	2015					
Hahn 2015	17	350	13	350	18.7%	1.31 [0.65, 2.65]	2015				-	
Engstrøm 2017	38	617	50	617	56.3%	0.76 [0.51, 1.14]	2017			-		
Total (95% CI)		1537		1538	100.0%	0.94 [0.69, 1.27]				•		
Total events	78		81									
Heterogeneity: Tau ² =	0.00; Chi ²	= 6.18	, df = 8 (P = 0.63); l ² = 0%				+				+
Test for overall effect:	Z = 0.41 (P = 0.6	8)					0.01	0.1	1 IPC Tra	10 ditional treat	100 ment

282x90mm (300 x 300 DPI)

	ω
	Ş
	BMJ Op
	ĕ
	en: first p
	ŧ
	Š
	σ
	ц Ц
	ы́
	ŝ
	published as 10.1136/bmic
	<u>م</u>
	ົທ
	2
	2
	-
	β
	Š
	ž
•	<u></u>
	D 0
	miopen-2018-022509 on 23 March 2019. Dow
	'n
	2
	ö
	6
	2
	ğ
	30
	ິ
	ĭ
	N
	-2018-022509 on 23 N
	Š
	лE
	5
	Ň
	õ
	10
	0
	ž
	Ľ,
	00
	້
	<u> </u>
	ĕ
	ded fi
	ded froi
	ded from
	ded from ht
	ded from http
-	ded from http://
-	om http://l
-	om http://l
-	om http://l
-	ded from http://bmjope
-	om http://l
	om http://l
-	om http://bmiopen.bmi.com/ on April 19,
-	om http://bmiopen.bmi.com/ on April 19,
-	om http://bmiopen.bmi.com/ on April 19,
-	om http://bmiopen.bmi.com/ on April 19,
-	om http://bmiopen.bmi.com/ on April 19,
-	om http://bmiopen.bmi.com/ on April 19,
-	om http://bmjopen.bmj.com/ on April 19, 2024 by guest.
-	om http://bmiopen.bmi.com/ on April 19,
-	om http://bmjopen.bmj.com/ on April 19, 2024 by guest.
-	om http://bmjopen.bmj.com/ on April 19, 2024 by guest.
-	om http://bmjopen.bmj.com/ on April 19, 2024 by guest.
-	om http://bmjopen.bmj.com/ on April 19, 2024 by guest.
-	om http://bmjopen.bmj.com/ on April 19, 2024 by guest.
-	om http://bmjopen.bmj.com/ on April 19, 2024 by guest.
-	om http://bmjopen.bmj.com/ on April 19, 2024 by guest.
-	om http://bmjopen.bmj.com/ on April 19, 2024 by guest.
-	om http://bmiopen.bmi.com/ on April 19, 2024 by guest. Protected by copyri
-	om http://bmjopen.bmj.com/ on April 19, 2024 by guest.
-	om http://bmiopen.bmi.com/ on April 19, 2024 by guest. Protected by copyri

	IPC		Contr	ol		Risk Ratio			Risk Ratio	
Study or Subgroup Cardiac death	Events	Total	Events	Total	Weight	M-H. Random, 95% Cl	Year	 М-Н,	Random, 95% (21
Garcia 2010	1	22	0	21	0.5%	2.87 [0.12, 66.75]	2010			
Lønborg 2010	. 1	59	ŏ	59	0.5%	3.00 [0.12, 72.18]				
Freixa 2012	1	39	1	40	0.7%	1.03 [0.07, 15.83]				_
Tarantini 2012	2	39	0	39	0.6%	5.00 [0.25, 100.89]		-	<u> </u>	
Hahn 2015	15	350	11	350	9.2%	1.36 [0.64, 2.93]				
Luz 2015	0	43	0	44	0.270	Not estimable				
Engstrøm 2017	30	617	26	617	20.4%	1.15 [0.69, 1.93]			_ _	
Subtotal (95% CI)	00	1169	20	1170	31.9%	1.28 [0.85, 1.93]	2017		•	
Total events	50		38							
Heterogeneity: Tau ² =				P = 0.91); I² = 0%					
Test for overall effect:	Z = 1.18 (P = 0.2	4)							
Heart failure										
Garcia 2010	2	22	4	21	2.1%	0.48 [0.10, 2.34]	2010			
Freixa 2012	2	39	2	40	1.5%	1.03 [0.15, 6.92]	2012			
Tarantini 2012	2	39	0	39	0.6%	5.00 [0.25, 100.89]	2012	-	- · ·	
Dong 2013	2	32	0	30	0.6%	4.70 [0.23, 94.01]	2013	-	· ·	
Limalanathan 2014	2	136	5	136	2.0%	0.40 [0.08, 2.03]	2014		·	
Eitel 2015	6	232	13	232	5.9%	0.46 [0.18, 1.19]	2015			
Luz 2015	0	43	0	44		Not estimable	2015			
Hahn 2015	9	350	8	350	6.1%	1.13 [0.44, 2.88]	2015			
Engstrøm 2017	30	617	30	617	22.0%	1.00 [0.61, 1.64]	2017		_ _	
Subtotal (95% CI)		1510		1509	40.8%	0.88 [0.61, 1.26]			•	
Total events	55		62							
Heterogeneity: Tau ² =	0.00; Chi ²	= 6.28	, df = 7 (F	P = 0.51); I ² = 0%					
Test for overall effect:	Z = 0.72 (P = 0.4	7)							
MI										
Lønborg 2010	3	59	1	59	1.1%	3.00 [0.32, 28.02]	2010		<u> </u>	
Limalanathan 2014	2	136	9	136	2.3%	0.22 [0.05, 1.01]	2014			
Hahn 2015	4	350	1	350	1.1%	4.00 [0.45, 35.61]	2015			
Engstrøm 2017	33	617	29	617	22.7%	1.14 [0.70, 1.85]	2017		1	
Subtotal (95% CI)		1162		1 162	27.2%	1.08 [0.38, 3.12]				
Total events	42		40							
Heterogeneity: Tau ² =	0.60; Chi ²	= 6.43	, df = 3 (F	P = 0.09); I² = 53%	5				
Test for overall effect:	Z = 0.14 (P = 0.8	8)							
Total (95% CI)		3841		3841	100.0%	1.05 [0.83, 1.32]			•	
Total events	147		140							

195x175mm (300 x 300 DPI)

Effects of ischemic postconditioning on outcomes of patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a meta-analysis

Zhenhua Xing¹, Jiabing Huang¹, Xiaofan peng¹, Xinqun Hu¹

1 Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China

*Corresponding author: Xinqun Hu, M.D. PhD.

Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China

reliez oniz

E-mail: huxinqun@csu.edu.cn Phone number: +8615084714930

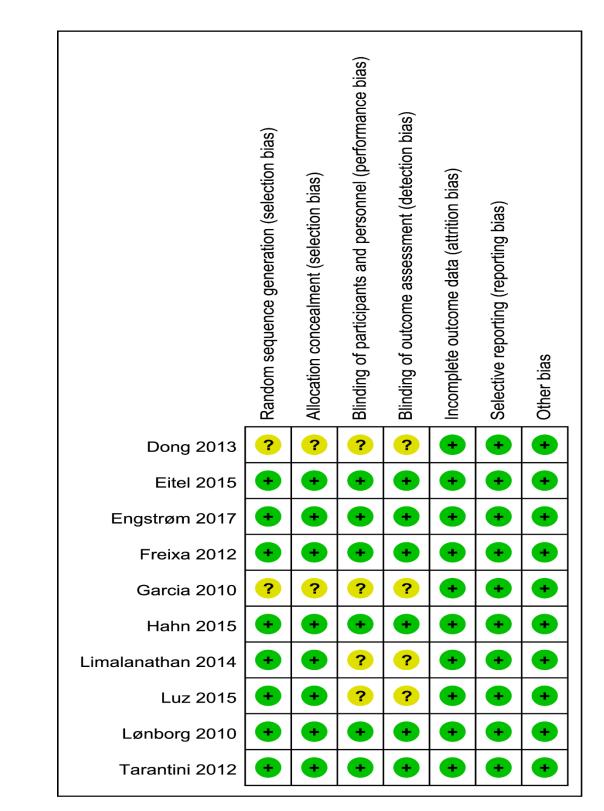
PubMed

Search Query Items found

#1 Search ischemic postconditioning[MeSH Terms] 849

- #2 Search conditioning[Title/Abstract] 55132
- #3 Search percutaneous coronary intervention[MeSH Terms] 46594
- #4 Search PCI[Title/Abstract] 21330
- #5 Search (PCI[Title/Abstract]) OR percutaneous coronary intervention[MeSH Terms] 55884
- #6 Search (conditioning[Title/Abstract]) OR ischemic postconditioning[MeSH Terms] 55763

#7 Search (((conditioning[Title/Abstract]) OR ischemic postconditioning[MeSH Terms]))


AND ((PCI[Title/Abstract]) OR percutaneous coronary intervention[MeSH Terms]) 153

Supplementary table 1: Sensitivity analysis of randomized primary prevention trials

22					
23	Excluded study	Heart failure	MI	Cardiac death	All-cause
24					mortality
25 26	Lønborg 2010	-	0.90(0.25,3.24)	1.49(0.74,2.99)	0.90(0.69,1.27)
27	Garcia 2010	0.91(0.62,1.31)	-	1.26(0.84,1.91)	0.95(0.70,1.29)
28	Freixa 2012	0.86(0.58,1.28)		1.29(0.85,1.95)	0.96(0.70,1.30)
29 30	Tarantini 2012	0.85(0.59,1.22)	-	1.25(0.83,1.89)	0.95(0.70,1.29)
31	Limalanathan 2014	0.91(0.63,1.32)	1.26(0.79,2.00)	-	0.94(0.69,1.27)
32	Hahn 2015	-	0.84(0.25,2.84)	1.23(0.77,2.03)	0.90(0.65,1.25)
33 34	Eitel 2015	0.98(0.66,1.45)	-	-	1.00(0.72,1.38)
35	Luz 2015	0.88(0.61,1.26)	-	1.28(0.85,1.93)	0.94(0.69,1.27)
36	Engstrøm 2017	0.75(0.44,1.28)	1.20(0.78,1.32)	1.54(0.78,3.04)	1.28(0.81,2.00)
37 38	Dong 2013	0.85(0.59,1.23)	-	<u> </u>	-

PRISMA 2009 Flow Diagram Identification Records identified through Additional records identified database searching through other sources (n = 252) (n = 43) Records after duplicates removed (n = 295) Screening **Records** screened **Records** excluded (n = 295) (n = 262) Full-text articles assessed Full-text articles excluded, for eligibility with reasons Eligibility (n = 33) (n = 23) Studies included in qualitative synthesis (n = 10) Included Studies included in quantitative synthesis (meta-analysis) (n = 10)

Supplementary Figure 1: Flow diagram of literature searched for meta-analysis.

Supplementary Fig2. Bias assessment using Cochrane Reviewer's Handbook 4.2

PRISMA 2009 Checklist

Section/Topic	#	Checklist Item	Reported on Page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION	·		•
Rationale	3	Describe the rationale for the review in the context of what is already known.	2
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	2
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	3
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	3
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	3
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	4
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	4
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	4
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	4
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	4
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	4
	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency	5

BMJ Open

PRISMA 2009 Checklist

15 16	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	5					
16		1					
	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating /hich were pre-specified.						
13 Study selection 17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusion each stage, ideally with a flow diagram.							
18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	5					
19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	5					
20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.						
21	Present the main results of the review. If meta-analyses done, include for each, confidence intervals and measures of consistency.						
22	Present results of any assessment of risk of bias across studies (see Item 15).						
Additional analysis 23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-							
24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	6					
25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).		8					
26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	8					
FUNDING							
Funding 27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.							
	18 19 20 21 22 23 23 24 25 26 27	 each stage, ideally with a flow diagram. For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations. Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12). For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot. Present the main results of the review. If meta-analyses done, include for each, confidence intervals and measures of consistency. Present results of any assessment of risk of bias across studies (see Item 15). Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]). Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers). Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias). Provide a general interpretation of the results in the context of other evidence, and implications for future research. Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the 					

For peer review only - http://bmjopge.pmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-022509 on 23 March 2019. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Effects of ischemic postconditioning on outcomes of patients with ST-segment elevation myocardial infarction who underwent primary percutaneous coronary intervention: a meta-analysis

Journal:	BMJ Open			
Manuscript ID	bmjopen-2018-022509.R2			
Article Type:	Research			
Date Submitted by the Author:	06-Oct-2018			
Complete List of Authors:	Xing, Zhenhua; Second Xiangya Hospital Huang, Jiabing; Second Xiangya Hospital Peng, Xiaofan; Second Xiangya Hospital Hu, Xinqun; Second Xiangya Hospital			
Primary Subject Heading :	Cardiovascular medicine			
Secondary Subject Heading:	Cardiovascular medicine			
Keywords:	Ischemic postconditioning therapy, percutaneous coronary intervention, all-cause mortality, major adverse cardiac events, meta-analysis			

2		
	1	Effects of ischemic postconditioning on outcomes of
	2	patients with ST-segment elevation myocardial infarction
0	3	who underwent primary percutaneous coronary
1 2 3	4	intervention: a meta-analysis
4 5 6 7	5	Zhenhua Xing¹, Jiabing Huang¹, Xiaofan Peng¹ Xinqun Hu¹*
7 8 9 0	6	
1 2	7	1 Department of Cardiovascular Medicine, The Second Xiangya Hospital , Centra
3 4 5	8	South University,Changsha,Hunan 410011,China
6 7 8 9	9	
0 1 2	10	*Corresponding author: Xinqun Hu, M.D. PhD.
3 4	11	Department of Cardiovascular Medicine, The Second Xiangya Hospital , Centra
5 6 7 8	12	South University,Changsha,Hunan 410011,China
9 0 1	13	E-mail: huxinqun@csu.edu.cn
2 3 4	14	Phone number: +8615084714930
5 6 7 8 9	15	
0 1 2 3 4 5		

16	Background: The aim of this meta-analysis was to evaluate the effects of ischemic
17	postconditioning therapy (IPC) on hard clinical endpoints in ST-segment elevation
18	myocardial infarction (STEMI) patients who underwent primary percutaneous coronary
19	intervention (PPCI).
20	Methods: Randomized trials comparing conventional PPCI to PPCI combined with IPC in
21	STEMI patients were included. PubMed, Embase, and the Cochrane Library were
22	systematically searched for relevant articles published prior to May 1, 2018. The primary
23	endpoint was heart failure. Secondary endpoints were all-cause mortality and major
24	adverse cardiac events (MACE), including cardiac death, heart failure, and myocardial
25	infarction (MI). The Cochrane Reviewer's Handbook 4.2 was used to assess the risk of
26	bias.
27	Results: Ten studies that had enrolled 3,137patients were included. PPCI combined
28	with IPC failed to reduce heart failure (RR: 0.88, 95% CI: 0.61,1.26, P = 0.47), all-cause
29	mortality (RR: 0.94, 95% CI: 0.69,1.27, P = 0.68), MACE (RR: 1.05, 95% CI: 0.83,1.32, P
30	= 0.69), cardiac death (RR: 1.28, 95% CI: 0.85,1.93, P = 0.24), and MI (RR: 1.08, 95% CI:
31	0.38,3.12, P = 0.88).
32	Conclusions: IPC combined with PPCI does not reduce heart failure, MACE, and
33	all-cause mortality compared to traditional PPCI in patients with STEMI.
34	(CRD42017063959)
35	Strengths and limitations of this study

36	1. Unlike previous studies, we focused on clinical outcomes such as heart failure, or
37	all-cause mortality.
38	2. The recent DANAMI-3-iPOST study, which randomized 1,234 patients with STEMI to
39	conventional PPCI or PPCI with IPC, was included, which may alter the conclusion
40	regarding STEMI treatment.
41	3. In order to give a solid conclusion, sensitivity and subgroup analyses were performed.
42	4. A limitation of this meta-analysis is the inclusion of a relatively low number of
43	patients.
44	
45	Key words: Ischemic postconditioning therapy (IPC); percutaneous coronary
46	intervention (PCI); all-cause mortality; major adverse cardiac events (MACE);
47	meta-analysis
48	Background
49	Primary percutaneous coronary intervention (PPCI) has been proven to be effective
50	in patients with ST-segment elevation myocardial infarction (STEMI) and has become a
51	first-line therapy ^[1] . Although PPCI is effective in restoring blood flow, ischemic reperfusion
52	injury is not inevitable. Reperfusion injury can also induce deleterious effects with a
53	subsequent increase in infarct size, which accounts for up to 50% of the final size of a
54	myocardial infarct ^[2] . Both animal models of infarction and clinical proof-of-concept studies

BMJ Open: first published as 10.1136/bmjopen-2018-022509 on 23 March 2019. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

1 2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15 16	
16 17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32 33	
33 34	
34 35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
51 52	
52 53	
55 54	
55	
56	
57	
58	
59	
60	

1

55	have shown that reopening of the infarct-related artery (IRA), followed by repetitive brief
56	interruptions of blood flow before sustained reperfusion, may protect the myocardium
57	against reperfusion injury, which is evaluated using cardiac biomarkers, single-photon
58	emission computed tomography (SPECT), echocardiography, and contrast-enhanced
59	cardiac magnetic resonance (ce-CMR) ^[3-7] . This strategy, known as ischemic
60	postconditioning (IPC), is safe and easy to perform without additional cost ^[8] . Related
61	meta-analyses, using the above methods for evaluation, have also demonstrated that IPC
62	can rescue cardiomyocytes ^[9-11] . However, whether improvements in these surrogate
63	markers translate into improved clinical outcomes, such as reduction in heart failure
64	and/or all-cause mortality, remains controversial. The recent DANAMI-3-iPOST study,
65	which randomized 1,234 patients with STEMI to conventional PPCI or PPCI with IPC did
66	not provide evidence indicating that PPCI with IPC leads to better clinical outcomes
67	compared to traditional PPCI ^[11] .
68	Given the confusion surrounding the different results related to IPC combined with
69	PPCI, a meta-analysis was done to evaluate whether IPC has a beneficial effect on hard
70	endpoints, such as heart failure, all-cause mortality, and MACE, compared to traditional
71	PPCI.
	Mathada
72	Methods

73 Patient and Public Involvement

74 Qualitative patient data were the focus of this synthesis; however, patients and the

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Search strategy and selection criteria

This meta-analysis is reported in accordance to the Preferred Reporting Items for System Reviews and Meta-Analyses (PRISMA) Statement and was registered at International Prospective Register of Systematic Reviews (CRD42017063959)^[12]. PubMed, Embase, and Cochrane Library were systematically searched for relevant articles published before May 1, 2018. The terms "ischemic postconditioning", "postconditioning", "percutaneous coronary intervention (PCI)", "controlled trial", "intervention study", and "randomized controlled trials (RCTs)" were used to identify randomized controlled trials. MeSH, Emtree, and keyword search terms were used in combination (Supplementary file). The results were limited to trials published in English. The reference lists of relevant studies and reviews, editorials, and letters were manually searched to identify additional articles. Endnote (Thompson ISI ResearchSoft, Philadelphia, PA, USA) was used to manage relevant articles and remove duplicate articles.

⁹⁰ Study criteria, quality assessment, and data extraction

91 Studies were included in the meta-analysis when they met the following criteria: (1) 92 the study design was a prospective randomized controlled clinical trial (RCT); (2) all 93 patients with STEMI underwent PPCI treatment; (3) patients were randomly assigned to 94 the PPCI in combination with the IPC group or the conventional PPCI group; (4) follow-up

95	time was not less than one month; and (5) relevant data were retrievable. When relevant
96	data were missing, the authors were contacted by e-mail before excluding the references
97	for inaccessibility of data.
98	The primary endpoint was heart failure. Secondary endpoints were all-cause mortality
99	and major adverse cardiac events (MACE), including cardiac death, heart failure, and
100	myocardial infarction (MI). All clinical endpoints were evaluated according to per protocol
101	definitions, at the longest available follow-up. Study quality was judged by evaluating trial
102	procedures for random sequence generation (selection bias), allocation concealment
103	(selection bias), blinding of participants and personnel (performance bias), blinding of
104	outcome assessment (detection bias), and incomplete outcome data (attrition bias). The
105	Cochrane Reviewer's Handbook 4.2 was used to assess risk of bias.
106	Relevant data were extracted by two independent investigators (ZW Zhu and JB
107	Huang). Disagreements were resolved by consensus or a third investigator (XQ Hu). The
108	following data were abstracted from the selected articles: first author, publication date,
109	study design, onset of symptoms, characteristics of included participants, total number of
110	IPC and conventional groups, events of the IPC and conventional groups, stent type, and
111	follow-up time.
112	Data analysis
113	Meta-analysis was performed to calculate the risk ratio (RR) and 95% confidence

114 interval (CI). Pooled RRs were computed as the Mantel-Haenszel-weighted average of

BMJ Open

115	the RRs for all included studies. Because the true treatment effect of various IPC
116	protocols may have varied among the included trials, the random-effects model was used
117	in the analysis. Statistical heterogeneity among the trial-specific RRs was checked and
118	quantified by the I ² statistic, and a P-value \leq 0.05 was considered statistically significant.
119	We performed sensitivity analysis to assess the contribution of each study to the pooled
120	estimation by excluding one trial at a time and recalculating the pooled RR estimation for
121	the remaining studies. Subgroup analyses were conducted in terms of time of symptom
122	onset, IPC protocols, antiplatelet therapies. Data analysis was performed on an
123	intention-to-treat basis. All analysis was performed using Review Manager Software
124	(Review Manager (RevMan) [Computer program]. Version 5.3. Copenhagen: The Nordic
125	Cochrane Centre, The Cochrane Collaboration, 2014.).
126	Outcomes
	2

BMJ Open: first published as 10.1136/bmjopen-2018-022509 on 23 March 2019. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Outcomes

Search results and bias assessment

Supplementary Figure 1 shows that the combined search strategy identified 273 potential relevant manuscripts, from which 33 studies were retrieved for more detailed assessment. A total of 10 RCTs, involving 3137 patients, are included in this meta-analysis^[7, 8, 13-20]. The Cochrane Reviewer's Handbook 4.2 was used to assess risk of bias (Supplementary Fig 2).No high-risk studies were identified and six studies had a low risk of bias.

The main features of the 10 included RCTs and the baseline clinical characteristics of

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-022509 on 23 March 2019. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

2	
4	
5	
6	
7	
8	
9	
9 10	
10 11	
12	
17	
13 14 15	
15	
16	
17	
10	
19	
20	
21	
22	
19 20 21 22 23	
24 25 26 27 28	
25	
26	
27	
28	
29 30	
30	
31	
32	
33	
34	
34 35 36	
36	
37 38	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54 55	
56 57	
58 59	
59 60	
00	

1

2

135	the patients are presented in Table 1. In the 10 trials, 1,569 patients (50%) were randomly
136	assigned to PPCI with IPC. The mean age of the trial patients was 61 years and 78% of
137	the patients were male. The IPC protocol (cycles × ischemia/reperfusion in seconds)
138	varied between studies and were as follows: $30''/30'' \times 4$ in four studies, $60''/60'' \times 4$ in five
139	studies, and $30''/30'' \times 3$ in one study. Follow-up among trials varied from 1 month to 41
140	months. The time of symptom onset varied between studies from 6 hours in 2 studies to
141	12 hours in 8 studies.

142 Table 1: Detailed characteristics of included studies.

4	r		1	r		[1			
5 6	Study	Patient	Countr	Age	Male	Symptom	Protocol	LAD	DES	Follow-up
7 8		s	у	(years,IP	(%,IPC/C)	onset	(duration×cycl	(%,IP	(%,IPC/	(months)
9 0 1		(IPC/C)		C/C)		(hours)	es)	C/C)	C)	
2 3 4 5							64			
5 6 7	Lønborg	59/59	Denma	61/62	69/74	≤12	30"/30" × 4	44/39	-	3
8 9 0 1	2010		rk					2/		
2 3	Garcia	22/21	USA	61/55	86/76	≤12	30"/30" × 4	36/24	-	41
4 5 6	2010									
7 8 9	Freixa	39/40	Spain	59/60	84/72	≤12	60"/60" × 4	51/39	-	6
0 1 2	2012									
3 4 5	Tarantin	39/39	Italy	60/60	85/85	≤6	60"/60" × 4	41/44	0/2.6	1
б			1	1	1		1	1		1

2 3		 1	1						1	
4 5	i 2012									
6 7 8	Dong	32/30	China	70/68	63/73	≤12	30"/30" × 3	57/43	-	1
9 10 11	2013									
12 13 14	Limalan	136/13	Norway	61/60	84/80	≤6	60″/60″ × 4	46/51	29/29	4
15 16	athan	6								
17 18 19	2014			O,						
20 21 22	Hahn	350/35	South	60/60	79/75	≤12	60″/60″ × 4	47/45	86/86	12
23 24 25	2015	0	Korea		0					
26 27 28	Eitel	232/23	Germa	62/65	76/71	≤12	30"/30" × 4	42/51	-	6
29 30 31	2015	2	ny			^o	•.•			
32 33 34	Luz	43/44	Portug	57/58	88/82	≤12	60″/60″ × 4	47/43	65/71	14
35 36	2015		al				2			
37 38 39	Engstrø	617/61	Denma	63/62	80/79	≤12	30"/30" × 4	43/40	93/93	38
40 41 42	m 2017	7	rk					1		
43	L	l			l	l			1	I

143 IPC: Ischemic postconditioning group; C; control group(PPCI only); LAD: left descending

144 anterior branch; DES: drug-eluted stent

145 Primary endpoint: heart failure

146 When the data was pooled, the RR for heart failure was 0.88 (95% CI: 0.61,1.26, P=

BMJ Open: first published as 10.1136/bmjopen-2018-022509 on 23 March 2019. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

0.47) in the random-effects model (Fig 1). No evident statistical heterogeneity among studies was observed (I² = 0, P = 0.51). IPC during PPCI did not reduce heart failure compared to traditional PPCI. Secondary endpoints: all-cause mortality and MACE The pooled data showed that IPC did not reduce all-cause mortality compared to traditional PPCI (RR: 0.94, 95% CI: 0.69,1.27, P = 0.68, Fig 2). No evident statistical heterogeneity among studies was observed (I2=0, P = 0.63). Furthermore, IPC did not reduce cardiac death (RR: 1.28, 95% CI: 0.85, 1.93, P = 0.24), MI (RR: 1.08, 95% CI: 0.38,3.12, P = 0.88) and heart failure (RR: 0.85, 95% CI: 0.59,1.23, P = 0.40). When all events (MACE) were considered, IPC during PPCI provided no net benefit of IPC during PPCI (RR: 1.05, 95% CI: 0.83, 1.32, P = 0.69, Fig 3). Sensitivity analysis and potential sources of heterogeneity Sensitivity analysis was performed by excluding each included study, one at a time, and recalculating the overall effects. The direction of the overall effects, in terms of heart failure, MI, cardiac death, and all-cause mortality, were not influenced no matter which study was excluded (Supplementary Table 1). There were very little heterogeneities between studies with regard to the observed effects on all-cause mortality (I²=0, p=0.63) and cardiac death (I²=0, p=0.91). However, moderate between-study heterogeneity was identified in the case of MI ($I^2 = 53\%$, P = 0.09). MI heterogeneity was mainly caused by the Limalanathan 2014 study. When this

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

167 study was excluded, no heterogeneity was observed (I² = 0%, P = 0.40) and the 168 conclusions were still consistent with the previous analysis. Subgroup analysis did not 169 identify any baseline risk factor, such as symptom onset, duration of follow-up, or 170 antiplatelet therapies as a modifier of the relationship between IPC and clinical endpoints 171 (Table 2). Sensitivity and subgroup analysis did not identify any patient- or study-level 172 covariate as a significant source of heterogeneity, except for this subgroup analysis.

173 Table 2: Subgroup analysis.

			Al-cause mortality
	C/		
5.00 (0.25,101)	1.02 (0.09,11.5)	0.22 (0.05,1.01)	2.00 (0.51,7.86)
1.25 (0.83,1.89)	0.89 (0.61,1.29)	1.26 (0.79,2.00)	0.90 (0.66,1.23)
		2	
1.21 (0.73,1.99)	0.76 (0.45,1.29)	1.19 (0.74,1.91)	0.80 (0.56,1.14)
1.44 (0.70,2.94)	0.98 (0.48,2.04)	0.84 (0.05,14.2)	1.38 (0.76,2.52)
1.49 (0.74,2.99)	0.81 (0.44,1.47)	1.20 (0.16,8.81)	1.16 (0.73,1.87)
1.18 (0.71,1.96)	0.94 (0.58,1.50)	1.14 (0.70,1.85)	0.88 (0.45,1.71)
	1.25 (0.83,1.89) 1.21 (0.73,1.99) 1.44 (0.70,2.94) 1.49 (0.74,2.99)	1.25 (0.83,1.89) 0.89 (0.61,1.29) 1.21 (0.73,1.99) 0.76 (0.45,1.29) 1.44 (0.70,2.94) 0.98 (0.48,2.04) 1.49 (0.74,2.99) 0.81 (0.44,1.47)	1.25 (0.83,1.89) 0.89 (0.61,1.29) 1.26 (0.79,2.00) 1.21 (0.73,1.99) 0.76 (0.45,1.29) 1.19 (0.74,1.91) 1.44 (0.70,2.94) 0.98 (0.48,2.04) 0.84 (0.05,14.2) 1.49 (0.74,2.99) 0.81 (0.44,1.47) 1.20 (0.16,8.81)

BMJ Open: first published as 10.1136/bmjopen-2018-022509 on 23 March 2019. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Analysis model				
Fixed-effect model	1.30 (0.87,1.96)	0.89 (0.62, 1.26)	1.05 (0.69, 1.60)	0.96 (0.71,1.30)
Random effects	1.28 (0.85,1.93)	0.88 (0.61,1.26)	1.08 (0.38,3.12)	0.94 (0.69,1.27)
Antiplatelet or				
anticoagulation therapies				
Clopidogrel	1.28 (0.85,1.93)	0.98 (0.66,1.45)	1.08 (0.38,3.12)	0.97 (0.69,1.35)
GPIIb/IIIa inhibitors	1.23 (0.81,1.88)	0.84 (0.56,1.27)	1.08 (0.38,3.12)	0.93 (0.67,1.30)
			0.84 (0.77,14.24)	1.48 (0.81,2.69)

175 Discussion

The current meta-analysis of 10 RCTs, including 3,137 patients with STEMI undergoing PPCI, showed that no reduction in heart failure, all-cause mortality, or MACE when comparing PPCI in combination with IPC to traditional PPCI over a mean follow-up of 20 months. Similarly, no improvement in clinical outcomes was shown in the subgroup analysis.

181 IPC was first introduced by Zhao et al. in 2003^[21]. Subsequent clinical trials and 182 meta-analyses found a salutary effect of IPC on infarct size as evaluated by CK, CK-MB, 183 troponin, SPECT, and cardiac function based on the left ventricular ejection fraction

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

184	(LVEF) ^[3-5] . However, opposite results have also been reported ^[8, 16-19] . The
185	DANAMI-3-iPOST trial, which is the largest study to date, showed that IPC did not reduce
186	infarct size ^[8] . Furthermore, whether surrogate endpoints, such as infarct size, myocardial
187	salvage, and resolution of ST-segment elevation, translate into hard endpoints, such as
188	heart failure, all-cause mortality, or MACE, remains a point of debate. Unlike the above
189	surrogate endpoints, heart failure, all-cause mortality, and MACE are what are generally
190	considered to be most important by both clinics and patients.
191	Previous meta-analyses mainly focused on cardiac biomarkers, cardiac imaging, and
192	cardiac function; however clinical outcomes are also very consequential. In the current
193	meta-analysis IPC was not shown to improve clinical outcomes, though several factors
194	may influence its effectiveness. A meta-analysis of 19 RCTs concluded that
195	cardioprotection as evaluated by cardiac enzyme leakage, infarct size, and left ventricular
196	function is more likely in patients with LAD artery involvement because of a greater
197	myocardial area is at risk. ^[9] Zhou et al. performed a meta-analysis of 10 RCTs and found
198	that the effects of cardiac protection were more pronounced among young and male
199	patients and those who received direct-stenting ^[10] . The IPC protocol is also an important
200	factor in determining the IPC efficacy. IPC may cause myocardial ischemia and expand
201	the infarct area. Several trials chose four cycles of 1 min of reperfusion followed by 1 min
202	of reocclusion. However, other trials selected four cycles of 30-s reperfusion followed by
203	30-s low-pressure balloon occlusion. However, the subgroup analyses in the current study
204	found no differences in the effectiveness of IPC when comparing different protocols.

3
4
5
6
7
, 8
•
9
10
11
12
13
14
15
16
17
18
19
20
21 22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50 51
53
54
55
56
57
58
59
60

1

2

205	Time of symptom onset, which is an independent predictor of MACE in patients with
206	STEMI undergoing PPCI, may have influenced the results of these trials. However,
207	subgroup analysis in this study did not detect differences between trials related to time of
208	symptom onset. The key reason is that IPC might have no effect on cardioprotection, thus
209	the results of the subgroup analysis in this study were neutral. Furthermore, the sample
210	size of the studies may have been too small to detect minor beneficial effects. Several
211	confounding factors, such as baseline characteristics of patients, coexisting diseases,
212	medications, and IPC strategies used, may have influenced the cardioprotective benefits
213	of IPC. With the use of novel antiplatelet and lipid-lowering agents and timely PPCI, the
214	outcome of STEMI has significantly improved. The decreasing mortality rate also makes it
215	harder to demonstrate minor benefits of using additional therapy.
216	Limitations

Limitations 216

217 This study has a number of limitations. First, although no apparent heterogeneity in 218 statistical analysis was observed, variations in the methodology among studies, such as 219 different risk profiles of the included patients, IPC strategies, and follow-up times, were 220 observed. However, according to the meta-regression and subgroup analyses performed 221 in this study, the above heterogeneities should not have affected the conclusion. In 222 addition, the conclusion was based on the random effects model, which accounts for a 223 certain degree of heterogeneity. Second, because of low incidence of adverse envents, 224 such as heart failure, the simple size is relatively small. Nonetheless, this meta-analysis is

225	the largest population-based analysis of IPC. Additional RCTs are necessary to evaluate
226	long-term clinical outcomes.
227	Conclusions
228	This meta-analysis suggest that the use of IPC in STEMI patients undergoing PPCI
229	does not reduce the incidence of heart failure, MACE, and all-cause mortality compared to
230	traditional PPCI.
231	Additional Information
232	The authors have no conflicts of interest to declare.
252	
233	Patients consent: No patients, patient advises, and/or the public were involved in this
234	study.
235	Author contribution statement: Xinqun Hu and Zhenhua Xing designed the study and
236	provided methodological expertise in systematic reviews and searching strategies. Jiabing
237	Huang and Xiaofan Peng searched the databases and constructed the tables. Zhenhua
238	Xing drafted the manuscript. All authors have read, provided critical feedback, and
239	approved the final manuscript.
240	Funding: None
241	Competing interests: None

Data sharing statement: All data generated and research materials used during this

1	
2 3	
3 4	
5	
6	
6 7 8	
9 10	
10 11	
12	
13	
14	
15	
17	
18	
11 12 13 14 15 16 17 18 19 20	
20	
21 22	
23	
24	
22 23 24 25 26	
26 27	
28	
29	
30	
31 32	
32 33	
34 35 36	
35	
30 37	
38	
39	
40	
41 42	
43	
44	
45	
46 47	
47	
49	
50	
51 52	
52 53	
54	
55	
56	

57 58 59

60

242

243

244

245

systematic review and meta-analysis are available from the corresponding author on reasonable request. toroecteries only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

246		References
247		
248	[1]	Levine GN, Bates ER, Blankenship JC, et al. 2015 ACC/AHA/SCAI Focused Update on Primar
249		Percutaneous Coronary Intervention for Patients With ST-Elevation Myocardial Infarction: An Update of
250		the 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention and the 2013 ACCF/AHA
251		Guideline for the Management of ST-Elevation Myocardial Infarction. J Am Coll Cardiol. 2016. 67(10
252		1235-50.
253	[2]	Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007. 357(11): 1121-35.
254	[3]	Ma X, Zhang X, Li C, Luo M. Effect of postconditioning on coronary blood flow velocity and endotheli
255		function and LV recovery after myocardial infarction. J Interv Cardiol. 2006. 19(5): 367-75.
256	[4]	Laskey WK, Yoon S, Calzada N, Ricciardi MJ. Concordant improvements in coronary flow reserve ar
257		ST-segment resolution during percutaneous coronary intervention for acute myocardial infarction: a benef
258		of postconditioning. Catheter Cardiovasc Interv. 2008. 72(2): 212-20.
259	[5]	Yang XC, Liu Y, Wang LF, et al. Reduction in myocardial infarct size by postconditioning in patients aft
260		percutaneous coronary intervention. J Invasive Cardiol. 2007. 19(10): 424-30.
261	[6]	Thibault H, Piot C, Staat P, et al. Long-term benefit of postconditioning. Circulation. 2008. 117(8
262		1037-44.
263	[7]	Lønborg J, Kelbaek H, Vejlstrup N, et al. Cardioprotective effects of ischemic postconditioning in patien
264		treated with primary percutaneous coronary intervention, evaluated by magnetic resonance. Ci
265		Cardiovasc Interv. 2010. 3(1): 34-41.
266	[8]	Engstrøm T, Kelbæk H, Helqvist S, et al. Effect of Ischemic Postconditioning During Prima
267		Percutaneous Coronary Intervention for Patients With ST-Segment Elevation Myocardial Infarction:
268		Randomized Clinical Trial. JAMA Cardiol. 2017 .
	[9]	Khan AR, Binabdulhak AA, Alastal Y, et al. Cardioprotective role of ischemic postconditioning in acu

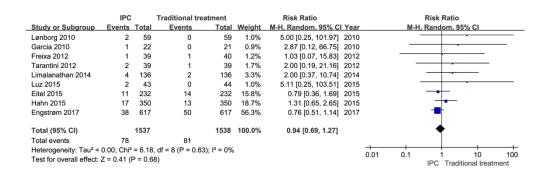
BMJ Open

270		myocardial infarction: a systematic review and meta-analysis. Am Heart J. 2014. 168(4): 512-521.e4.
271	[10]	Zhou C, Yao Y, Zheng Z, et al. Stenting technique, gender, and age are associated with cardioprotection by
272		ischaemic postconditioning in primary coronary intervention: a systematic review of 10 randomized trials.
273		Eur Heart J. 2012. 33(24): 3070-7.
274	[11]	Liu BS, Xu F, Wang JL, et al. The cardioprotection of ischemic postconditioning in patients with acute
275		ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Int J
276		Cardiol. 2015. 178: 181-3.
277	[12]	Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and
278		meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009.
279		339: b2700.
280	[13]	Eitel, I., et al. Cardioprotection by combined intrahospital remote ischaemic perconditioning and
281		postconditioning in ST-elevation myocardial infarction: the randomized LIPSIA CONDITIONING trial.
282		Eur Heart J 36 , 3049-3057 (2015).
283	[14]	Freixa, X., et al. Ischaemic postconditioning revisited: lack of effects on infarct size following primary
284		percutaneous coronary intervention. Eur Heart J 33, 103-112 (2012).
285	[15]	Garcia, S., et al. Long-term follow-up of patients undergoing postconditioning during ST-elevation
286		myocardial infarction. J Cardiovasc Transl Res 4, 92-98 (2011).
287	[16]	Hahn JY, Yu CW, Park HS, et al. Long-term effects of ischemic postconditioning on clinical outcomes:
288	[10]	1-year follow-up of the POST randomized trial. Am Heart J. 2015. 169(5): 639-46.
200		r-year follow-up of the FOST fandoninzed that. An freat J. 2015. 109(5), 059-40.
289	[17]	Luz A, Santos M, Magalhães R, et al. Lack of Benefit of Ischemic Postconditioning After Routine
290		Thrombus Aspiration During Reperfusion: Immediate and Midterm Results. J Cardiovasc Pharmacol Ther.
291		2015. 20(6): 523-31.
292	[18]	Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic
293		postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI
294		results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. J Am
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1			
2			
3	005		
4	295		Heart Assoc. 2014. 3(2): e000679.
5			
6	296	[19]	Tarantini G, Favaretto E, Marra MP, et al. Postconditioning during coronary angioplasty in acute
7			
8 9	297		myocardial infarction: the POST-AMI trial. Int J Cardiol. 2012. 162(1): 33-8.
9 10			
11	298	[20]	Dong M, Mu N, Guo F, et al. The beneficial effects of postconditioning on no-reflow phenomenon after
12			
13	299		percutaneous coronary intervention in patients with ST-elevation acute myocardial infarction. J Thromb
14	300		Thrombolysis 2014;38:208-214.
15	300		Inromoolysis 2014,58.208-214.
16			
17	301	[21]	Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning
18	302		during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003.
19 20	302		during repertusion, comparison with ischemic preconditioning. An J Physiol Heart Circ Physiol. 2005.
20	303		285(2): H579-88.
22			
23			
24	304		
25			
26			
27			
28 29			
30			
31			
32			
33			
34			
35			
36 37			
38			
39			
40			Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003. 285(2): H579-88.
41			
42			
43			
44 45			
46			
47			
48			
49			
50			
51 52			
52 53			
54			
55			
56			
57			
58			
59			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open


305	
306	
307	Figure legends
308	Fig 1: Effect of PPCI with IPC versus PPCI only on heart failure in STEMI patients
309	undergoing PPCI
310	PPCI:primary percutaneous coronary intervention;IPC: Ischemic postconditioning
311	group;STEMI:ST-segment elevation myocardial infarction
312	Fig 2: Effect of PPCI with IPC versus PPCI only on all-cause mortality in STEM
313	patients undergoing PPCI.
314	PPCI:primary percutaneous coronary intervention;IPC: Ischemic postconditioning
315	group;STEMI:ST-segment elevation myocardial infarction
316	Fig 3: Effect of PPCI with IPC versus PPCI only on MACE in STEMI patients
317	undergoing PPCI.
318	PPCI:primary percutaneous coronary intervention;IPC: Ischemic postconditioning
319	group;STEMI:ST-segment elevation myocardial infarction; MACE:major adverse cardiad
320	events
321	
322	
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
6	

	IPC		Traditional trea	tment		Risk Ratio				Risk Ra	atio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year		M-	H. Randor	n, 95% Cl	
Garcia 2010	2	22	4	21	5.2%	0.48 [0.10, 2.34]	2010					
Freixa 2012	2	39	2	40	3.6%	1.03 [0.15, 6.92]	2012		_			
Tarantini 2012	2	39	0	39	1.5%	5.00 [0.25, 100.89]	2012					
Dong 2013	2	32	0	30	1.5%	4.70 [0.23, 94.01]	2013					
Limalanathan 2014	2	136	5	136	5.0%	0.40 [0.08, 2.03]	2014				_	
Eitel 2015	6	232	13	232	14.5%	0.46 [0.18, 1.19]	2015		-			
Luz 2015	0	43	0	44		Not estimable	2015					
Hahn 2015	9	350	8	350	14.8%	1.13 [0.44, 2.88]	2015			-		
Engstrøm 2017	30	617	30	617	53.9%	1.00 [0.61, 1.64]	2017			-	-	
Total (95% CI)		1510		1509	100.0%	0.88 [0.61, 1.26]				•		
Total events	55		62									
Heterogeneity: Tau ² =	0.00; Chi ²	= 6.28	, df = 7 (P = 0.51)	; l² = 0%								400
Test for overall effect:	Z = 0.72 (I	P = 0.4	7)					0.01	0.1	IPC T	10 raditional tre	100 atment

282x90mm (300 x 300 DPI)

BMJ Open

282x90mm (300 x 300 DPI)

1									
2									
3									
-									
4									
5									
6		IPC		Cont			Risk Ratio		Risk Ratio
7	Study or Subgroup					Weight I	M-H. Random, 95% CI Y	ear	M-H, Random, 95% Cl
8	Cardiac death								
	Garcia 2010	1	22	0	21	0.5%	2.87 [0.12, 66.75] 2		
9	Lønborg 2010 Freixa 2012	1	59 39	0	59 40	0.5% 0.7%	3.00 [0.12, 72.18] 2 1.03 [0.07, 15.83] 2		
10	Tarantini 2012	2	39	o	39	0.6%	5.00 [0.25, 100.89] 2		
11	Hahn 2015	15	350	11	350	9.2%	1.36 [0.64, 2.93] 2		
12	Luz 2015 Engstrøm 2017	0 30	43 617	0 26	44 617	20.4%	Not estimable 2 1.15 [0.69, 1.93] 2		
. –	Subtotal (95% CI)	30	1169	20	1170	31.9%	1.28 [0.85, 1.93]	017	•
13	Total events	50		38					
14	Heterogeneity: Tau ² = (P = 0.91); l² = 0%			
15	Test for overall effect: 2	2 = 1.18 (P = 0.24)					
16	Heart failure								
-	Garcia 2010	2	22	4	21	2.1%	0.48 [0.10, 2.34] 2		
17	Freixa 2012 Tarantini 2012	2 2	39 39	2 0	40 39	1.5% 0.6%	1.03 [0.15, 6.92] 2 5.00 [0.25, 100.89] 2	012	
18	Dong 2013	2	32	ő	30	0.6%	4.70 [0.23, 94.01] 2		
19	Limalanathan 2014	2	136	5	136	2.0%	0.40 [0.08, 2.03] 2		
20	Eitel 2015 Luz 2015	6 0	232 43	13 0	232 44	5.9%	0.46 [0.18, 1.19] 2 Not estimable 2		
21	Hahn 2015	9	350	8	350	6.1%	1.13 [0.44, 2.88] 2		_
	Engstrøm 2017	30	617	30	617	22.0%	1.00 [0.61, 1.64] 2		±
22	Subtotal (95% CI)	55	1510	62	1509	40.8%	0.88 [0.61, 1.26]		•
23	Total events Heterogeneity: Tau ² = (= 6.28.		P = 0.51): I ² = 0%			
24	Test for overall effect: 2					,,			
25	МІ								
26	Lønborg 2010	3	59	1	59	1.1%	3.00 [0.32, 28.02] 2	010	
	Limalanathan 2014	2	136	9	136	2.3%	0.22 [0.05, 1.01] 2		
27	Hahn 2015	4	350	1	350	1.1%	4.00 [0.45, 35.61] 2		
28	Engstrøm 2017 Subtotal (95% CI)	33	617 1162	29	617 1162	22.7% 27.2%	1.14 [0.70, 1.85] 2 1.08 [0.38, 3.12]	017	
29	Total events	42		40					
30	Heterogeneity: Tau ² = (P = 0.09	9); I² = 53%			
	Test for overall effect: 2	2 = 0.14 (P = 0.88)					
31	Total (95% CI)		3841		3841	100.0%	1.05 [0.83, 1.32]		•
32	Total events	147		140					
33	Heterogeneity: Tau ² = (Test for overall effect: 2				' (P = 0	.52); l² = 0%		0.005	0.1 1 10 200
34	Test for subaroup differ				(P = 0	.40). I ² = 0%			IPC Traditional treatment
35									
36									
37					195	(175mr	n (300 x 300 [OPI)	
38					/	,			
39									
40									

Effects of ischemic postconditioning on outcomes of patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a meta-analysis

Zhenhua Xing¹, Jiabing Huang¹, Xiaofan peng¹, Xinqun Hu¹

1 Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China

*Corresponding author: Xinqun Hu, M.D. PhD.

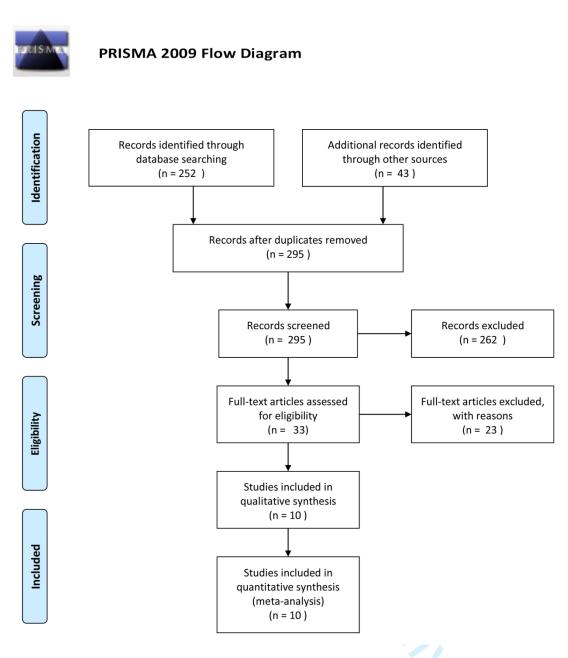
Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China

Reversion of

E-mail: huxinqun@csu.edu.cn Phone number: +8615084714930

PubMed	
Search Query Items found	
#1 Search ischemic postconditioning[MeSH Terms]	849
#2 Search conditioning[Title/Abstract] 55132	
#3 Search percutaneous coronary intervention[MeSH	Terms]

- #4 Search PCI[Title/Abstract] 21330
- #5 Search (PCI[Title/Abstract]) OR percutaneous coronary intervention[MeSH Terms]


- #6 Search (conditioning[Title/Abstract]) OR ischemic postconditioning[MeSH Terms]
- #7 Search (((conditioning[Title/Abstract]) OR ischemic postconditioning[MeSH Terms]))

AND ((PCI[Title/Abstract]) OR percutaneous coronary intervention[MeSH Terms])

Supplementary table 1: Sensitivity analysis of randomized primary prevention trials

2					
3	Excluded study	Heart failure	MI	Cardiac death	All-cause
4					mortality
5 6	Lønborg 2010	-	0.90(0.25,3.24)	1.49(0.74,2.99)	0.90(0.69,1.27)
7	Garcia 2010	0.91(0.62,1.31)	-	1.26(0.84,1.91)	0.95(0.70,1.29)
8	Freixa 2012	0.86(0.58,1.28)		1.29(0.85,1.95)	0.96(0.70,1.30)
9 0	Tarantini 2012	0.85(0.59,1.22)	-	1.25(0.83,1.89)	0.95(0.70,1.29)
1	Limalanathan 2014	0.91(0.63,1.32)	1.26(0.79,2.00)	-	0.94(0.69,1.27)
2	Hahn 2015	-	0.84(0.25,2.84)	1.23(0.77,2.03)	0.90(0.65,1.25)
3 4	Eitel 2015	0.98(0.66,1.45)	-	-	1.00(0.72,1.38)
5	Luz 2015	0.88(0.61,1.26)	-	1.28(0.85,1.93)	0.94(0.69,1.27)
6	Engstrøm 2017	0.75(0.44,1.28)	1.20(0.78,1.32)	1.54(0.78,3.04)	1.28(0.81,2.00)
7 8	Dong 2013	0.85(0.59,1.23)	-		-

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary Figure 1: Flow diagram of literature searched for meta-analysis.

	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)	Other bias
Dong 2013	?	?	?	?	+	+	+
Eitel 2015	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+
Engstrøm 2017	+	+	+	+	+	+	+
Freixa 2012	+	+	•	+	+	+	+
Garcia 2010	?	?	?	?	+	+	•
Hahn 2015	+	+	•	+	+	+	•
Limalanathan 2014	+	+	?	?	+	+	•
Luz 2015	+	+	?	?	+	+	•
Lønborg 2010	+	+	•	+	+	+	•

Supplementary Fig2. Bias assessment using Cochrane Reviewer's Handbook 4.2

PRISMA 2009 Checklist

Section/Topic	#	Checklist Item	Reported on Page
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	2
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	2
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	3
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	3
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	3
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	4
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	4
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	4
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	4
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	4
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	4
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	5

PRISMA 2009 Checklist

3 4 5	Section/Topic	#	Checklist Item	Reported on Page #
6 7 8	Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	5
9 1(Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	5
11 12	RESULTS			
13 14	Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	5
15 16 17	Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	5
18	Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	5
19 20 21	Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	5
22 23	Synthesis of results	21	Present the main results of the review. If meta-analyses done, include for each, confidence intervals and measures of consistency.	5
24	Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	5
26	Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	5
27	DISCUSSION			
29 30	Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	6
31 32 33	Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	8
34	Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	8
35 36	FUNDING			
37 38		27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	9
39 40 41) <i>From:</i> Moher D. Liberati A. Tetzlaff ,	J, Altma	n DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med	6(6): e1000097.
42 43	3		For more information, visit: <u>www.prisma-statement.org</u> .	
44	-		For peer review only - http://bmjagg.zmjcom/site/about/guidelines.xhtml	

BMJ Open: first published as 10.1136/bmjopen-2018-022509 on 23 March 2019. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

Effects of ischemic postconditioning on outcomes of patients with ST-segment elevation myocardial infarction who underwent primary percutaneous coronary intervention: a meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022509.R3
Article Type:	Research
Date Submitted by the Author:	08-Feb-2019
Complete List of Authors:	Xing, Zhenhua; Second Xiangya Hospital Tang, Liang; Second Xiangya Hospital Huang, Jiabing; Second Xiangya Hospital Peng, Xiaofan; Second Xiangya Hospital Hu, Xinqun; Second Xiangya Hospital
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Cardiovascular medicine
Keywords:	Ischemic postconditioning therapy, percutaneous coronary intervention, all-cause mortality, major adverse cardiac events, meta-analysis

3		
4		
5	1	Effects of ischemic postconditioning on outcomes of
6		
7	2	patients with ST-segment elevation myocardial infarction
8 9	2	patients with of segment elevation myooardia marotion
10	_	who underwart primary parautaneous coreport
11	3	who underwent primary percutaneous coronary
12		
13	4	intervention: a meta-analysis
14		,
15	_	
16	5	Zhenhua Xing ^{1#} , Liang Tang ^{1#} Jiabing Huang ¹ , Xiaofan Peng ¹ Xinqun Hu ^{1*}
17		
18	6	# Co-first author
19		
20	-	
21	7	1 Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central
22		
23	8	South University,Changsha,Hunan 410011,China
24 25		
25 26	0	
20	9	
28		
29	10	*Corresponding author: Xingun Hu, M.D. PhD.
30		
31		
32	11	Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central
33		
34	12	South University,Changsha,Hunan 410011,China
35		
36	10	
37	13	E-mail: huxinqun@csu.edu.cn
38		
39	14	Phone number: +8615084714930
40		
41	15	
42	10	
43 44		
44 45		
45 46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		

16	Objective: The aim of this meta-analysis was to evaluate the effects of ischemic
17	postconditioning therapy (IPC) on hard clinical endpoints in ST-segment elevation
18	myocardial infarction (STEMI) patients who underwent primary percutaneous coronary
19	intervention (PPCI).
20	Design: Systematic review and meta-analysis to evaluate the effects of IPC on the
21	outcomes of patients with STEMI.
22	Data sources: PubMed, Embase, and the Cochrane Library were systematically
23	searched for relevant articles published prior to May 1, 2018.
24	Eligibility criteria for selecting studies: Randomized trials comparing conventional
25	PPCI to PPCI combined with IPC in STEMI patients were included. The primary endpoint
26	was heart failure. Secondary endpoints were all-cause mortality and major adverse cardiac
27	events (MACE), including cardiac death, heart failure, and myocardial infarction (MI). The
28	Cochrane Reviewer's Handbook 4.2 was used to assess the risk of bias.
29	Data extraction and synthesis: Relevant data were extracted by two independent
30	investigators. We derived pooled risk ratios (RRs) with random effects models. Sensitivity
31	and subgroup analyses were performed.
32	Results: Ten studies that had enrolled 3,137 patients were included. PPCI combined
33	with IPC failed to reduce heart failure (RR: 0.88, 95% CI: 0.61,1.26, P = 0.47), all-cause
34	mortality (RR: 0.94, 95% CI: 0.69,1.27, P = 0.68), MACE (RR: 1.05, 95% CI: 0.83,1.32, P
35	= 0.69), cardiac death (RR: 1.28, 95% CI: 0.85,1.93, P = 0.24), and MI (RR: 1.08, 95% CI:
36	0.38,3.12, P = 0.88).
37	Conclusions: IPC combined with PPCI does not reduce heart failure, MACE, and all-

BMJ Open

38	cause mortality compared to traditional PPCI in patients with STEMI. (CRD42017063959)
39	
40	Key words: Ischemic postconditioning therapy (IPC); percutaneous coronary
41	intervention (PCI); all-cause mortality; major adverse cardiac events (MACE); meta-
42	analysis
43	
44	Strengths and limitations of this study
45	1. Unlike previous studies, we focused on clinical outcomes such as heart failure, or all-
46	cause mortality.
47	2. The recent DANAMI-3-iPOST study, which randomized 1,234 patients with STEMI to
48	conventional PPCI or PPCI with IPC, was included, which may alter the conclusion
49	regarding STEMI treatment.
50	3. In order to give a solid conclusion, sensitivity and subgroup analyses were performed.
51	4. A limitation of this meta-analysis is the inclusion of a relatively low number of patients.
52	
53	Background
54	Primary percutaneous coronary intervention (PPCI) has been proven to be effective
55	in patients with ST-segment elevation myocardial infarction (STEMI) and has become a
56	first-line therapy ^[1] . Although PPCI is effective in restoring blood flow, ischemic reperfusion
57	injury is not inevitable. Reperfusion injury can also induce deleterious effects with a

58 subsequent increase in infarct size, which accounts for up to 50% of the final size of a

BMJ Open

2
3
4
5
•
6
7
8
9
-
10
11
12
13
1.5
14
15
16 17
17
17
18
19
20
21
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
22
23
24
25
25
26
27
28
20
29
30
31
32
22
22
35
36
36 37
38
39
40
40 41
42
43
44
45
46
47
48
49
50
51
52
55
54
55
56
57
58
59

60

1 2

59	myocardial infarct ^[2] . Both animal models of infarction and clinical proof-of-concept studies
60	have shown that reopening of the infarct-related artery (IRA), followed by repetitive brief
61	interruptions of blood flow before sustained reperfusion, may protect the myocardium
62	against reperfusion injury, which is evaluated using cardiac biomarkers, single-photon
63	emission computed tomography (SPECT), echocardiography, and contrast-enhanced
64	cardiac magnetic resonance (ce-CMR) ^[3-7] . This strategy, known as ischemic
65	postconditioning (IPC), is safe and easy to perform without additional cost ^[8] . Related meta-
66	analyses, using the above methods for evaluation, have also demonstrated that IPC can
67	rescue cardiomyocytes ^[9-11] . However, whether improvements in these surrogate markers
68	translate into improved clinical outcomes, such as reduction in heart failure and/or all-
69	cause mortality, remains controversial. The recent DANAMI-3-iPOST study, which
70	randomized 1,234 patients with STEMI to conventional PPCI or PPCI with IPC did not
71	provide evidence indicating that PPCI with IPC leads to better clinical outcomes compared
72	to traditional PPCI ^[11] .
73	Given the confusion surrounding the different results related to IPC combined with
74	PPCI, a meta-analysis was done to evaluate whether IPC has a beneficial effect on hard

endpoints, such as heart failure, all-cause mortality, and MACE, compared to traditionalPPCI.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 5 of 27

77 Methods

Patient and Public Involvement

Qualitative patient data were the focus of this synthesis; however, patients and the
public were not involved in the design of the study or analysis of the data.

Search strategy and selection criteria

This meta-analysis is reported in accordance to the Preferred Reporting Items for System Reviews and Meta-Analyses (PRISMA) Statement and was registered at International Prospective Register of Systematic Reviews (CRD42017063959)^[12]. PubMed, Embase, and Cochrane Library were systematically searched for relevant articles published before May 1, 2018. The terms "ischemic postconditioning", "postconditioning", "percutaneous coronary intervention (PCI)", "controlled trial", "intervention study", and "randomized controlled trials (RCTs)" were used to identify randomized controlled trials. MeSH, Emtree, and keyword search terms were used in combination (Supplementary file). The results were limited to trials published in English. The reference lists of relevant studies and reviews, editorials, and letters were manually searched to identify additional articles. Endnote (Thompson ISI ResearchSoft, Philadelphia, PA, USA) was used to manage relevant articles and remove duplicate articles.

Studies were included in the meta-analysis when they met the following criteria: (1)

Study criteria, quality assessment, and data extraction

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

> 96 the study design was a prospective randomized controlled clinical trial (RCT); (2) all 97 patients with STEMI underwent PPCI treatment; (3) patients were randomly assigned to 98 the PPCI in combination with the IPC group or the conventional PPCI group; (4) follow-up 99 time was not less than one month; and (5) relevant data were retrievable. When relevant 100 data were missing, the authors were contacted by e-mail before excluding the references 101 for inaccessibility of data.

102 The primary endpoint was heart failure. Secondary endpoints were all-cause mortality 103 and major adverse cardiac events (MACE), including cardiac death, heart failure, and 104 myocardial infarction (MI). All clinical endpoints were evaluated according to per protocol 105 definitions, at the longest available follow-up. Study quality was judged by evaluating trial 106 procedures for random sequence generation (selection bias), allocation concealment 107 (selection bias), blinding of participants and personnel (performance bias), blinding of 108 outcome assessment (detection bias), and incomplete outcome data (attrition bias). The 109 Cochrane Reviewer's Handbook 4.2 was used to assess risk of bias.

Relevant data were extracted by two independent investigators (XF Peng and JB
Huang). Disagreements were resolved by consensus or a third investigator (XQ Hu). The
following data were abstracted from the selected articles: first author, publication date,
study design, onset of symptoms, characteristics of included participants, total number of
IPC and conventional groups, events of the IPC and conventional groups, stent type, and
follow-up time.

116 Data analysis

Meta-analysis was performed to calculate the risk ratio (RR) and 95% confidence interval (CI). Pooled RRs were computed as the Mantel-Haenszel-weighted average of the RRs for all included studies. Because the true treatment effect of various IPC protocols may have varied among the included trials, the random-effects model was used in the analysis. Statistical heterogeneity among the trial-specific RRs was checked and quantified by the I² statistic, and a P-value ≤ 0.05 was considered statistically significant. We performed sensitivity analysis to assess the contribution of each study to the pooled estimation by excluding one trial at a time and recalculating the pooled RR estimation for the remaining studies. Subgroup analyses were conducted in terms of time of symptom onset, IPC protocols, antiplatelet therapies. Data analysis was performed on an intention-to-treat basis. All analysis was performed using Review Manager Software (Review Manager (RevMan) [Computer program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014.).

130 Outcomes

131 Search results and bias assessment

Supplementary Figure 1 shows that the combined search strategy identified 273
potential relevant manuscripts, from which 33 studies were retrieved for more detailed
assessment. A total of 10 RCTs, involving 3137 patients, are included in this metaanalysis^[7, 8, 13-20]. The Cochrane Reviewer's Handbook 4.2 was used to assess risk of bias

136 (Supplementary Fig 2). No high-risk studies were identified and six studies had a low risk137 of bias.

The main features of the 10 included RCTs and the baseline clinical characteristics of the patients are presented in Table 1. In the 10 trials, 1,569 patients (50%) were randomly assigned to PPCI with IPC. The mean age of the trial patients was 61 years and 78% of the patients were male. The IPC protocol (cycles*ischemia/reperfusion in seconds) varied between studies and were as follows: 30"/30" × 4 in four studies, 60"/60" × 4 in five studies, and 30"/30" × 3 in one study. Follow-up among trials varied from 1 month to 41 months. The time of symptom onset varied between studies from 6 hours in 2 studies to 12 hours in 8 studies.

146 Table 1: Detailed characteristics of included studies.

32 33Study	Patient	Countr	Age	Male	Symptom	Protocol	LAD	DES	Follow-up
34 35 36	s	У	(years,IP	(%,IPC/C)	onset	(duration×cycl	(%,IP	(%,IPC/	(months)
37 38 39	(IPC/C)		C/C)		(hours)	es)	C/C)	C)	
40 41						0,			
42 43Lønborg 44	59/59	Denma	61/62	69/74	≤12	30"/30" × 4	44/39	-	3
45 46 ²⁰¹⁰ 47		rk							
48 49 49	22/21	USA	61/55	86/76	≤12	30"/30" × 4	36/24	-	41
50 512010 52									
53 54 ^{Freixa}	39/40	Spain	59/60	84/72	≤12	60"/60" × 4	51/39	-	6
55 562012 57									
58 59Tarantin 60	39/39	Italy	60/60	85/85	≤6	60"/60" × 4	41/44	0/2.6	1

2									
3 4 i 2012 5									
6 7 Dong 8	32/30	China	70/68	63/73	≤12	30"/30" × 3	57/43	-	1
9 2013 10									
11 12Limalan 13	136/13	Norway	61/60	84/80	≤6	60"/60" × 4	46/51	29/29	4
14 ₁₅ athan 16	6								
¹⁷ 2014 18									
19 20Hahn 21	350/35	South	60/60	79/75	≤12	60"/60" × 4	47/45	86/86	12
²² 2015	0	Korea		6					
24 25Eitel 26	232/23	Germa	62/65	76/71	≤12	30"/30" × 4	42/51	-	6
27 282015	2	ny		C	4				
30 _{Luz}	43/44	Portug	57/58	88/82	≤12	60"/60" × 4	47/43	65/71	14
32 332015 34		al			Ľ	•			
35 36 ^{Engstrø}	617/61	Denma	63/62	80/79	≤12	30"/30" × 4	43/40	93/93	38
37 38m 2017 39	7	rk				2			
	I47 IPC	: Ischemic	c postconditi	oning group	; C; control g	roup (PPCI only)); LAD: le	eft descen	ding
42 43 44 45	148 ante	erior brand	ch; DES: dru	g-eluted ste	nt				
46	149	Prima	iry endpo	int: heart	failure				
50 51	150	When the	e data was p	booled, the F	RR for heart f	ailure was 0.88 (95% CI:	0.61,1.26	, P=
54	151 0.47) in the random-effects model (Fig 1). No evident statistical heterogeneity among								
55 56 1 57	152 stud	dies was o	observed (l ²	² = 0, P = 0	.51). IPC du	ring PPCI did no	ot reduce	e heart fa	ilure
58	153 con	npared to t	traditional P	PCI.					

2
3
4
5
6 7
/
8
9
10
11
12
13
14
15
16
16 17
18
19
~ ~
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52 53
53 54
55
56
57
58
59
60

154 Secondary endpoints: all-cause mortality and MACE

The pooled data showed that IPC did not reduce all-cause mortality compared to traditional PPCI (RR: 0.94, 95% CI: 0.69,1.27, P = 0.68, Fig 2). No evident statistical heterogeneity among studies was observed (I²=0, P = 0.63). Furthermore, IPC did not reduce cardiac death (RR: 1.28, 95% CI: 0.85,1.93, P = 0.24), MI (RR: 1.08, 95% CI: 0.38,3.12, P = 0.88) and heart failure (RR: 0.85, 95% CI: 0.59,1.23, P = 0.40). When all events (MACE) were considered, IPC during PPCI provided no net benefit of IPC during PPCI (RR: 1.05, 95% CI: 0.83,1.32, P = 0.69, Fig 3).

162 Sensitivity analysis and potential sources of heterogeneity

Sensitivity testing was performed by excluding each included study, one at a time, and
recalculating the overall effects. The direction of the overall effects, in terms of heart failure,
MI, cardiac death, and all-cause mortality, were not influenced no matter which study was
excluded (Supplementary Table 1).

There were very little heterogeneities between studies with regard to the observed 167 168 effects on all-cause mortality ($l^2=0$, p=0.63) and cardiac death ($l^2=0$, p=0.91). However, 169 moderate between-study heterogeneity was identified in the case of MI ($I^2 = 53\%$, P = 0.09). 170 MI heterogeneity was mainly caused by the Limalanathan 2014 study. When this study was 171 excluded, no heterogeneity was observed ($I^2 = 0\%$, P = 0.40) and the conclusions were still 172 consistent with the previous analysis. Subgroup analysis did not identify any baseline risk 173 factor, such as symptom onset, duration of follow-up, or antiplatelet therapies as a modifier 174 of the relationship between IPC and clinical endpoints (Table 2).

	Cardiac death	Heart failure	MI	Al-cause mortality
ymptom onset				
6 hous	5.00 (0.25,101)	1.02 (0.09,11.5)	0.22 (0.05,1.01)	2.00 (0.51,7.86)
12 hours	1.25 (0.83,1.89)	0.89 (0.61,1.29)	1.26 (0.79,2.00)	0.90 (0.66,1.23)
rotocol				
0″/30″ × 4	1.21 (0.73,1.99)	0.76 (0.45,1.29)	1.19 (0.74,1.91)	0.80 (0.56,1.14)
0″/60″ × 4	1.44 (0.70,2.94)	0.98 (0.48,2.04)	0.84 (0.05,14.2)	1.38 (0.76,2.52)
ollow,up		2		
12 months	1.49 (0.74,2.99)	0.81 (0.44,1.47)	1.20 (0.16,8.81)	1.16 (0.73,1.87)
12 months	1.18 (0.71,1.96)	0.94 (0.58,1.50)	1.14 (0.70,1.85)	0.88 (0.45,1.71)
nalysis model		Ľ,	,	
ixed-effect model	1.30 (0.87,1.96)	0.89 (0.62, 1.26)	1.05 (0.69, 1.60)	0.96 (0.71,1.30)
andom effects	1.28 (0.85,1.93)	0.88 (0.61,1.26)	1.08 (0.38,3.12)	0.94 (0.69,1.27)
ntiplatelet or	-		5	
nticoagulation therapies				
lopidogrel	1.28 (0.85,1.93)	0.98 (0.66,1.45)	1.08 (0.38,3.12)	0.97 (0.69,1.35)
PIIb/IIIa inhibitors	1.23 (0.81,1.88)	0.84 (0.56,1.27)	1.08 (0.38,3.12)	0.93 (0.67,1.30)
ivalirudin	1.44 (0.70,2.94)	0.98 (0.47,2.03)	0.84 (0.77,14.24)	1.48 (0.81,2.69)

177 Discussion

The current meta-analysis of 10 RCTs, including 3,137 patients with STEMI undergoing PPCI, showed that no reduction in heart failure, all-cause mortality, or MACE when comparing PPCI in combination with IPC to traditional PPCI over a mean follow-up of 20 months. Similarly, no improvement in clinical outcomes was shown in the subgroup analysis.

IPC was first introduced by Zhao et al. in 2003^[21]. Subsequent clinical trials and meta-analyses found a salutary effect of IPC on infarct size as evaluated by CK, CK-MB, troponin, SPECT, and cardiac function based on the left ventricular ejection fraction (LVEF)^[3-5]. However, opposite results have also been reported^[8, 16-19]. The DANAMI-3-iPOST trial, which is the largest study to date, showed that IPC did not reduce infarct size [8]. Furthermore, whether surrogate endpoints, such as infarct size, myocardial salvage, and resolution of ST-segment elevation, translate into hard endpoints, such as heart failure, all-cause mortality, or MACE, remains a point of debate. Unlike the above surrogate endpoints, heart failure, all-cause mortality, and MACE are what are generally considered to be most important by both clinics and patients.

Previous meta-analyses mainly focused on cardiac biomarkers, cardiac imaging, and cardiac function; however clinical outcomes are also very consequential. In the current meta-analysis IPC was not shown to improve clinical outcomes, though several factors may influence its effectiveness. A meta-analysis of 19 RCTs concluded that cardioprotection as evaluated by cardiac enzyme leakage, infarct size, and left ventricular

Page 13 of 27

1

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
47 48	
40 49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

198 function is more likely in patients with LAD artery involvement because of a greater 199 myocardial area is at risk.^[9] Zhou et al. performed a meta-analysis of 10 RCTs and found 200 that the effects of cardiac protection were more pronounced among young and male 201 patients and those who received direct-stenting^[10]. The IPC protocol is also an important 202 factor in determining the IPC efficacy. IPC may cause myocardial ischemia and expand 203 the infarct area. Several trials chose four cycles of 1 min of reperfusion followed by 1 min 204 of reocclusion. However, other trials selected four cycles of 30-s reperfusion followed by 205 30-s low-pressure balloon occlusion. However, the subgroup analyses in the current study 206 found no differences in the effectiveness of IPC when comparing different protocols. 207 Time of symptom onset, which is an independent predictor of MACE in patients with 208 STEMI undergoing PPCI, may have influenced the results of these trials. However, 209 subgroup analysis in this study did not detect differences between trials related to time of 210 symptom onset. The key reason is that IPC might have no effect on cardioprotection, thus 211 the results of the subgroup analysis in this study were neutral. Furthermore, the sample 212 size of the studies may have been too small to detect minor beneficial effects. Several 213 confounding factors, such as baseline characteristics of patients, coexisting diseases, 214 medications, and IPC strategies used, may have influenced the cardioprotective benefits 215 of IPC. With the use of novel antiplatelet and lipid-lowering agents and timely PPCI, the 216 outcome of STEMI has significantly improved. The decreasing mortality rate also makes it 217 harder to demonstrate minor benefits of using additional therapy.

Limitations

This study has several limitations. First, although no apparent heterogeneity in statistical analysis was observed, variations in the methodology among studies, such as different risk profiles of the included patients, IPC strategies, and follow-up times, were observed. However, according to the meta-regression and subgroup analyses performed in this study, the above heterogeneities should not have affected the conclusion. In addition, the conclusion was based on the random effects model, which accounts for a certain degree of heterogeneity. Second, because of low incidence of adverse events, such as heart failure, the sample size is relatively small. Nonetheless, this meta-analysis is the largest population-based analysis of IPC. Additional RCTs are necessary to evaluate longo Jiew term clinical outcomes.

Conclusions

This meta-analysis suggests that the use of IPC in STEMI patients undergoing PPCI does not reduce the incidence of heart failure, MACE, and all-cause mortality compared to traditional PPCI.

Additional Information

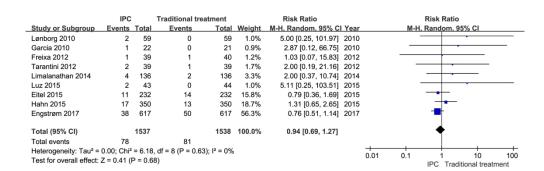
The authors have no conflicts of interest to declare.

Patients consent: No patients, patient advises, and/or the public were involved in this

study.

3 4 5	237	Author contribution statement: Xinqun Hu and Zhenhua Xing designed the study and
6 7 8	238	provided methodological expertise in systematic reviews and searching strategies. Jiabing
9 10	239	Huang and Xiaofan Peng searched the databases and constructed the tables. Zhenhua
11 12 13	240	Xing and Liang Tang drafted the manuscript. All authors have read, provided critical
14 15	241	feedback, and approved the final manuscript.
16 17 18	242	Financial support and sponsorship: This work was supported by a grant from the
19 20 21	243	2015 Yu-Ying Plan of the Central South University(No. 502034007).
22 23	244	Competing interests: None
24 25 26	245	Data sharing statement: All data generated and research materials used during this
27 28	246	systematic review and meta-analysis are available from the corresponding author on
29 30 31	247	reasonable request.
32 33	248	
34 35		
36		
37		
38 39		
40		
41		
42 43		
44		
45		
46		
47		
48 49		
50		
51		
52		
53		
54 55		
55 56		
57		
58		
59		

249		References
250		
251	[1]	Levine GN, Bates ER, Blankenship JC, et al. 2015 ACC/AHA/SCAI Focused Update on Primary
252		Percutaneous Coronary Intervention for Patients With ST-Elevation Myocardial Infarction: An Update of the
253		2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention and the 2013 ACCF/AHA
254		Guideline for the Management of ST-Elevation Myocardial Infarction. J Am Coll Cardiol. 2016. 67(10):
255		1235-50.
256	[2]	Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007. 357(11): 1121-35.
257	[3]	Ma X, Zhang X, Li C, Luo M. Effect of postconditioning on coronary blood flow velocity and endothelial
258		function and LV recovery after myocardial infarction. J Interv Cardiol. 2006. 19(5): 367-75.
259	[4]	Laskey WK, Yoon S, Calzada N, Ricciardi MJ. Concordant improvements in coronary flow reserve and ST-
260		segment resolution during percutaneous coronary intervention for acute myocardial infarction: a benefit of
261		postconditioning. Catheter Cardiovasc Interv. 2008. 72(2): 212-20.
262	[5]	Yang XC, Liu Y, Wang LF, et al. Reduction in myocardial infarct size by postconditioning in patients after
263		percutaneous coronary intervention. J Invasive Cardiol. 2007. 19(10): 424-30.
264	[6]	Thibault H, Piot C, Staat P, et al. Long-term benefit of postconditioning. Circulation. 2008. 117(8): 1037-44.
265	[7]	Lønborg J, Kelbaek H, Vejlstrup N, et al. Cardioprotective effects of ischemic postconditioning in patients
266		treated with primary percutaneous coronary intervention, evaluated by magnetic resonance. Circ Cardiovasc
267		Interv. 2010. 3(1): 34-41.
268	[8]	Engstrøm T, Kelbæk H, Helqvist S, et al. Effect of Ischemic Postconditioning During Primary Percutaneous
269		Coronary Intervention for Patients With ST-Segment Elevation Myocardial Infarction: A Randomized
270		Clinical Trial. JAMA Cardiol. 2017.
271	[9]	Khan AR, Binabdulhak AA, Alastal Y, et al. Cardioprotective role of ischemic postconditioning in acute
272		myocardial infarction: a systematic review and meta-analysis. Am Heart J. 2014. 168(4): 512-521.e4.
273	[10]	Zhou C, Yao Y, Zheng Z, et al. Stenting technique, gender, and age are associated with cardioprotection by
274		ischaemic postconditioning in primary coronary intervention: a systematic review of 10 randomized trials.
275		Eur Heart J. 2012. 33(24): 3070-7.
276	[11]	Liu BS, Xu F, Wang JL, et al. The cardioprotection of ischemic postconditioning in patients with acute ST-
277		segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Int J


3 4	278		Cardiol. 2015. 178: 181-3.
5 6	279	[12]	Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-
7 8	280		analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009. 339:
9 10	281		b2700.
11 12	282	[13]	Eitel, I., et al. Cardioprotection by combined intrahospital remote ischaemic perconditioning and
13 14	283		postconditioning in ST-elevation myocardial infarction: the randomized LIPSIA CONDITIONING trial. Eur
15 16	284		<i>Heart J</i> 36 , 3049-3057 (2015).
17 18	285	[14]	Freixa, X., et al. Ischaemic postconditioning revisited: lack of effects on infarct size following primary
19 20	286		percutaneous coronary intervention. Eur Heart J 33, 103-112 (2012).
21 22	287	[15]	Garcia, S., et al. Long-term follow-up of patients undergoing postconditioning during ST-elevation
23 24	288		myocardial infarction. J Cardiovasc Transl Res 4, 92-98 (2011).
25	289	[16]	Hahn JY, Yu CW, Park HS, et al. Long-term effects of ischemic postconditioning on clinical outcomes: 1-
26 27 28	290		year follow-up of the POST randomized trial. Am Heart J. 2015. 169(5): 639-46.
28 29	291	[17]	Luz A, Santos M, Magalhães R, et al. Lack of Benefit of Ischemic Postconditioning After Routine Thrombus
30 31	292		Aspiration During Reperfusion: Immediate and Midterm Results. J Cardiovasc Pharmacol Ther. 2015. 20(6):
32 33	293		523-31.
33 34 35	293 294	[18]	523-31. Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic
33 34 35 36 37		[18]	
33 34 35 36 37 38 39	294	[18]	Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic
 33 34 35 36 37 38 39 40 41 	294 295	[18]	Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI
 33 34 35 36 37 38 39 40 	294 295 296	[18]	Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. J Am
 33 34 35 36 37 38 39 40 41 42 	294 295 296 297		Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. J Am Heart Assoc. 2014. 3(2): e000679.
 33 34 35 36 37 38 39 40 41 42 43 44 	294 295 296 297 298		Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. J Am Heart Assoc. 2014. 3(2): e000679. Tarantini G, Favaretto E, Marra MP, et al. Postconditioning during coronary angioplasty in acute myocardial
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 	294 295 296 297 298 299	[19]	Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. J Am Heart Assoc. 2014. 3(2): e000679. Tarantini G, Favaretto E, Marra MP, et al. Postconditioning during coronary angioplasty in acute myocardial infarction: the POST-AMI trial. Int J Cardiol. 2012. 162(1): 33-8.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	294 295 296 297 298 299 300	[19]	 Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. J Am Heart Assoc. 2014. 3(2): e000679. Tarantini G, Favaretto E, Marra MP, et al. Postconditioning during coronary angioplasty in acute myocardial infarction: the POST-AMI trial. Int J Cardiol. 2012. 162(1): 33-8. Dong M, Mu N, Guo F, <i>et al.</i> The beneficial effects of postconditioning on no-reflow phenomenon after
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 	294 295 296 297 298 299 300 301	[19]	 Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. J Am Heart Assoc. 2014. 3(2): e000679. Tarantini G, Favaretto E, Marra MP, et al. Postconditioning during coronary angioplasty in acute myocardial infarction: the POST-AMI trial. Int J Cardiol. 2012. 162(1): 33-8. Dong M, Mu N, Guo F, <i>et al.</i> The beneficial effects of postconditioning on no-reflow phenomenon after percutaneous coronary intervention in patients with ST-elevation acute myocardial infarction. <i>J Thromb</i>
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	294 295 296 297 298 299 300 301 302	[19]	 Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. J Am Heart Assoc. 2014. 3(2): e000679. Tarantini G, Favaretto E, Marra MP, et al. Postconditioning during coronary angioplasty in acute myocardial infarction: the POST-AMI trial. Int J Cardiol. 2012. 162(1): 33-8. Dong M, Mu N, Guo F, <i>et al.</i> The beneficial effects of postconditioning on no-reflow phenomenon after percutaneous coronary intervention in patients with ST-elevation acute myocardial infarction. <i>J Thromb Thrombolysis</i> 2014;38:208-214.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	294 295 296 297 298 299 300 301 302 303	[19]	 Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. J Am Heart Assoc. 2014. 3(2): e000679. Tarantini G, Favaretto E, Marra MP, et al. Postconditioning during coronary angioplasty in acute myocardial infarction: the POST-AMI trial. Int J Cardiol. 2012. 162(1): 33-8. Dong M, Mu N, Guo F, <i>et al.</i> The beneficial effects of postconditioning on no-reflow phenomenon after percutaneous coronary intervention in patients with ST-elevation acute myocardial infarction. <i>J Thrombo Thrombolysis</i> 2014;38:208-214. Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during

2		
3		
4	307	
5		
6	200	
7	308	
8		
9	309	Figure legends
10		
11		
12	310	Fig 1: Effect of PPCI with IPC versus PPCI only on heart failure in STEMI patients
13		
14	311	undergoing PPCI
15	511	
16		
17	312	PPCI:primary percutaneous coronary intervention, IPC: Ischemic postconditioning
18		
19	212	
20	313	group.
21		
22	314	Fig 2: Effect of PPCI with IPC versus PPCI only on all-cause mortality in STEMI
23		
24	0.45	
25	315	patients undergoing PPCI.
26		
27	316	PPCI:primary percutaneous coronary intervention, IPC: Ischemic postconditioning
28	010	
29		
30	317	group.
31		
32	318	Fig 3: Effect of PPCI with IPC versus PPCI only on MACE in STEMI patients
33	510	The stand of the s
34		
35	319	undergoing PPCI.
36		
37	220	DDCImpimony parautaneous coronany intervention IDC, lookamia postconditioning
38	320	PPCI:primary percutaneous coronary intervention, IPC: Ischemic postconditioning
39		
40	321	group.
41		group.
42	000	
43	322	
44 45		
45 46	323	
46 47	-	
47 48		
48 49		
49 50		
51		
52		
53		
55		
55		
56		
57		
<i></i>		
58		
58 59		

	IPC		Traditional trea			Risk Ratio				Risk Ra	tio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	l Year		M-	H, Randon	n, 95% CI	
Garcia 2010	2	22	4	21	5.2%	0.48 [0.10, 2.34]	2010			-	_	
Freixa 2012	2	39	2	40	3.6%	1.03 [0.15, 6.92]	2012		_			
Tarantini 2012	2	39	0	39	1.5%	5.00 [0.25, 100.89]	2012					
Dong 2013	2	32	0	30	1.5%	4.70 [0.23, 94.01]	2013					
Limalanathan 2014	2	136	5	136	5.0%	0.40 [0.08, 2.03]	2014				-	
Eitel 2015	6	232	13	232	14.5%	0.46 [0.18, 1.19]	2015		-			
Luz 2015	0	43	0	44		Not estimable	2015					
Hahn 2015	9	350	8	350	14.8%	1.13 [0.44, 2.88]	2015			-		
Engstrøm 2017	30	617	30	617	53.9%	1.00 [0.61, 1.64]	2017					
Total (95% CI)		1510		1509	100.0%	0.88 [0.61, 1.26]				•		
Total events	55		62									
Heterogeneity: Tau ² =	0.00; Chi ²	= 6.28	df = 7 (P = 0.51); l ² = 0%				H			+	
Test for overall effect:	7 = 0.72 (P = 0.4	7)					0.01	0.1	IPC T	10 raditional trea	10

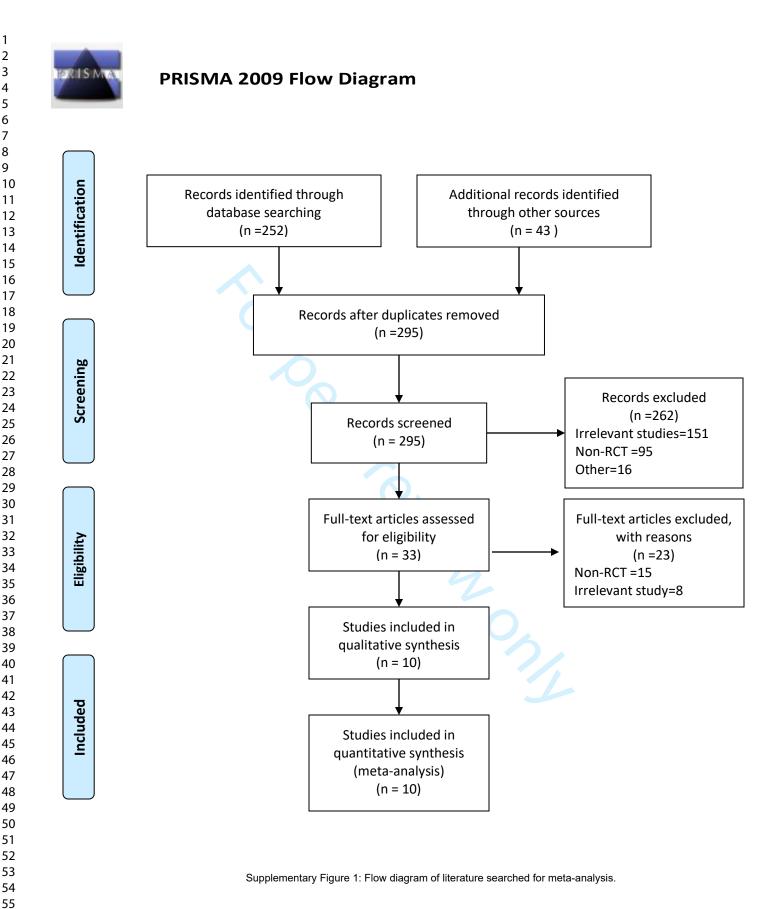
282x90mm (300 x 300 DPI)

BMJ Open

282x90mm (300 x 300 DPI)

1													
-													
2													
3													
4													
5													
6													
7	Study or Subgroup	IPC Evente		Cont		Weight	Risk Ratio M-H. Random, 95% C	Voar		M	Risk Ratio Random, 9		
-	Cardiac death	LVCIIIS	Total	LAGUIS	TOLA	Weight	M-H, Kalluolli, 33/6 C	IICAI		IM-11,	Kanuoni, s	376 61	
8	Garcia 2010	1	22	0	21	0.5%	2.87 [0.12, 66.75]			_			_
9	Lønborg 2010	1	59	0	59	0.5%	3.00 [0.12, 72.18]						
10	Freixa 2012 Tarantini 2012	1 2	39 39	1	40 39	0.7% 0.6%	1.03 [0.07, 15.83] 5.00 [0.25, 100.89]						
11	Hahn 2015	15	350	11	350	9.2%	1.36 [0.64, 2.93]				-+		
12	Luz 2015	0	43	0	44	~	Not estimable						
. –	Engstrøm 2017 Subtotal (95% Cl)	30	617 1169	26	617 1170	20.4% 31.9%	1.15 [0.69, 1.93] 1.28 [0.85, 1.93]	2017			- -		
13	Total events	50		38							-		
14	Heterogeneity: Tau ² =				P = 0.91); I² = 0%							
15	Test for overall effect: 2	Z = 1.18 (P = 0.2	4)									
16	Heart failure												
	Garcia 2010	2	22	4	21	2.1%	0.48 [0.10, 2.34]						
17	Freixa 2012 Tarantini 2012	2 2	39 39	2 0	40 39	1.5% 0.6%	1.03 [0.15, 6.92] 5.00 [0.25, 100.89]						
18	Dong 2013	2	39	0	39	0.6%	4.70 [0.23, 94.01]			-		·	
19	Limalanathan 2014	2	136	5	136	2.0%	0.40 [0.08, 2.03]	2014					
20	Eitel 2015 Luz 2015	6 0	232	13 0	232	5.9%	0.46 [0.18, 1.19]			_	-		
21	Hahn 2015	9	43 350	8	44 350	6.1%	Not estimable 1.13 [0.44, 2.88]						
	Engstrøm 2017	30	617	30	617	22.0%	1.00 [0.61, 1.64]						
22	Subtotal (95% CI)		1510		1509	40.8%	0.88 [0.61, 1.26]				-		
23	Total events Heterogeneity: Tau ² =	55 0.00: Chi ^a	e = 6.28	62 . df = 7 (F	P = 0.51): l ² = 0%							
24	Test for overall effect:					,,							
25	мі												
26	Lønborg 2010	3	59	1	59	1.1%	3.00 [0.32, 28.02]	2010					
	Limalanathan 2014	2	136	9	136	2.3%	0.22 [0.05, 1.01]						
27	Hahn 2015	4	350	1	350	1.1%	4.00 [0.45, 35.61]				-		
28	Engstrøm 2017 Subtotal (95% CI)	33	617 1162	29	617 1162	22.7% 27.2%	1.14 [0.70, 1.85] 1.08 [0.38, 3.12]	2017			\bullet		
29	Total events	42		40									
30	Heterogeneity: Tau ² =				P = 0.09	9); I² = 53%	0						
	Test for overall effect:	2 = 0.14 (P = 0.8	8)									
31	Total (95% CI)		3841		3841	100.0%	1.05 [0.83, 1.32]				•		
32	Total events	147		140		50) 12 - 0	o /		+				
33	Heterogeneity: Tau ² = Test for overall effect: 2				(P = 0	.52); I² = 0	70		0.005	0.1	1	10	200
34	Test for subaroup diffe				(P = 0	.40). I² = 0	%				IPC Trad	itional treat	ment
35													
36													
37					195>	۲75m	nm (300 x 300	DP	I)				
38									,				
39													

3		
4 5 6	1	Effects of ischemic postconditioning on outcomes of
7 8 9	2	patients with ST-segment elevation myocardial infarction who
9 10 11	3	underwent primary percutaneous coronary intervention: a
12 13	4	meta-analysis
14 15 16	5	Zhenhua Xing ^{1#} , Liang Tang ^{1#} Jiabing Huang ¹ , Xiaofan Peng ¹ Xinqun Hu ^{1*}
17 18	6	# Co-first author
19 20	7	1 Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South
20 21 22	8	University, Changsha, Hunan 410011, China
22 23 24	9	
25	10	*Corresponding author: Xinqun Hu, M.D. PhD.
26 27 28	11	Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South
28 29 20	12	University, Changsha, Hunan 410011, China
30 31	13	E-mail: huxinqun@csu.edu.cn
32 33	14	Phone number: +8615084714930
34 35 26	15	
36 37 38		
39		
40 41 42		
43		
44 45		
46 47		
48 49		
50 51		
52 53		
54 55		
56 57		
58 59		
60		


Pub	Med			
Sea	rch	Query	Items found	
#1	Sea	rch ische	mic postconditioning[M	eSH Terms]
#2	Sea	rch condi	itioning[Title/Abstract]	55132
#3	Sea	rch nerci	Itaneous coronary inter	vention[MeSI

- #3 Search percutaneous coronary intervention[MeSH Terms] 46594
- #4 Search PCI[Title/Abstract] 21330
- #5 Search (PCI[Title/Abstract]) OR percutaneous coronary intervention[MeSH Terms] 55884

- #6 Search (conditioning[Title/Abstract]) OR ischemic postconditioning[MeSH Terms] 55763
- #7 Search (((conditioning[Title/Abstract]) OR ischemic postconditioning[MeSH Terms]))
- AND ((PCI[Title/Abstract]) OR percutaneous coronary intervention[MeSH Terms]) 153

Supplementary table 1: Sensitivity analysis

22		·			
23	Excluded study	Heart failure	MI	Cardiac death	All-cause
24					mortality
25 26	Lønborg 2010	-	0.90(0.25,3.24)	1.49(0.74,2.99)	0.90(0.69,1.27)
27	Garcia 2010	0.91(0.62,1.31)	-	1.26(0.84,1.91)	0.95(0.70,1.29)
28	Freixa 2012	0.86(0.58,1.28)		1.29(0.85,1.95)	0.96(0.70,1.30)
29 30	Tarantini 2012	0.85(0.59,1.22)	-	1.25(0.83,1.89)	0.95(0.70,1.29)
31	Limalanathan 2014	0.91(0.63,1.32)	1.26(0.79,2.00)	-	0.94(0.69,1.27)
32	Hahn 2015	-	0.84(0.25,2.84)	1.23(0.77,2.03)	0.90(0.65,1.25)
83 84	Eitel 2015	0.98(0.66,1.45)	-	-	1.00(0.72,1.38)
85	Luz 2015	0.88(0.61,1.26)	-	1.28(0.85,1.93)	0.94(0.69,1.27)
86 87	Engstrøm 2017	0.75(0.44,1.28)	1.20(0.78,1.32)	1.54(0.78,3.04)	1.28(0.81,2.00)
87 88	Dong 2013	0.85(0.59,1.23)	-		-

	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)	Other bias
Dong 2013	?	?	?	?	+	+	•
Eitel 2015	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	•
Engstrøm 2017	+	+	+	+	+	+	•
Freixa 2012	+	+	+	+	+	+	•
Garcia 2010	?	?	?	?	+	+	•
Hahn 2015	+	+	•	+	+	+	•
Limalanathan 2014	+	+	?	?	+	+	•
Luz 2015	+	+	?	?	+	+	•
Lønborg 2010	+	+	•	+	+	+	•
		+	+	+	+	+	•

Supplementary Fig2. Bias assessment using Cochrane Reviewer's Handbook 4.2

PRISMA 2009 Checklist

Section/Topic	#	Checklist Item	Reported on Page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Provide a structured summary including, as applicable: background; objectives; data sources; study eligit participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.			2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	2
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	2
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	3
²⁴ 25 Eligibility criteria 6		Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	
2627Describe all information sources (e.g., databases with dates of coverage, contact with studies)27Information sources7282827		Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	3
		Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	4
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	4
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	4
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	4
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	4
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	4
	Synthesis of results $14 \begin{bmatrix} Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., l^2) for each meta-analysis.$		5

Page 27 of 27

PRISMA 2009 Checklist

3 4 5	Section/Topic	#	Checklist Item	Reported on Page #				
6 7 8	Risk of bias across studies	15	becify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective porting within studies).					
Additional analyses 16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), i which were pre-specified.				5				
11 12	RESULTS							
13 14	Study selection	17	Five numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at ach stage, ideally with a flow diagram.					
15 16 17	5 5 Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	5				
18	Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	5				
19 20 21) Results of individual studies	Its of individual studies 20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.						
22 23	Synthesis of results	21	Present the main results of the review. If meta-analyses done, include for each, confidence intervals and measures of consistency.					
24	Risk of bias across studies22Present results of any assessment of risk of bias across studies (see Item 15).							
26	26 Additional analysis 23		Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).					
27	DISCUSSION							
29 30	Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	6				
³ ³ ³ ³ ²⁵ Discuss limitations at study and outcome level (e.g., risk of bias), and at review- ³ ¹ ¹ ¹ ²⁵ Discuss limitations at study and outcome level (e.g., risk of bias), and at review-		Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	8					
34	Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	8				
35 36	FUNDING							
37 38	, Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	9				
40 41 42 43 44	<i>From:</i> Moher D, Liberati A, Tetzlaff doi:10.1371/journal.pmed1000097	J, Altma	an DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med For more information, visit: <u>www.prisma-statement.org</u> .	6(6): e1000097.				
45			For peer review only - http://bmjမှာချော့စ်အုန်com/site/about/guidelines.xhtml					

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2018-022509 on 23 March 2019. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Effects of ischemic postconditioning on outcomes of patients with ST-segment elevation myocardial infarction who underwent primary percutaneous coronary intervention: a meta-analysis

	8
Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022509.R4
Article Type:	Research
Date Submitted by the Author:	14-Feb-2019
Complete List of Authors:	Xing, Zhenhua; Second Xiangya Hospital Tang, Liang; Second Xiangya Hospital Huang, Jiabing; Second Xiangya Hospital Peng, Xiaofan; Second Xiangya Hospital Hu, Xinqun; Second Xiangya Hospital
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Cardiovascular medicine
Keywords:	Ischemic postconditioning therapy, percutaneous coronary intervention, all-cause mortality, major adverse cardiac events, meta-analysis

3		
4		
5	1	Effects of ischemic postconditioning on outcomes of
6		
7	2	patients with ST-segment elevation myocardial infarction
8 9	2	patients with of segment elevation myooardia marotion
10	_	who underwart primary parautaneous coreport
11	3	who underwent primary percutaneous coronary
12		
13	4	intervention: a meta-analysis
14		,
15	_	
16	5	Zhenhua Xing ^{1#} , Liang Tang ^{1#} Jiabing Huang ¹ , Xiaofan Peng ¹ Xinqun Hu ^{1*}
17		
18	6	# Co-first author
19		
20	-	
21	7	1 Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central
22		
23	8	South University,Changsha,Hunan 410011,China
24 25		
25 26	0	
20	9	
28		
29	10	*Corresponding author: Xingun Hu, M.D. PhD.
30		
31		
32	11	Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central
33		
34	12	South University,Changsha,Hunan 410011,China
35		
36	10	
37	13	E-mail: huxinqun@csu.edu.cn
38		
39	14	Phone number: +8615084714930
40		
41	15	
42	10	
43 44		
44 45		
45 46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		

16	Objective: The aim of this meta-analysis was to evaluate the effects of ischemic
17	postconditioning therapy (IPC) on hard clinical endpoints in ST-segment elevation
18	myocardial infarction (STEMI) patients who underwent primary percutaneous coronary
19	intervention (PPCI).
20	Design: Systematic review and meta-analysis to evaluate the effects of IPC on the
21	outcomes of patients with STEMI.
22	Data sources: PubMed, Embase, and the Cochrane Library were systematically
23	searched for relevant articles published prior to May 1, 2018.
24	Eligibility criteria for selecting studies: Randomized trials comparing conventional
25	PPCI to PPCI combined with IPC in STEMI patients were included. The primary endpoint
26	was heart failure. Secondary endpoints were all-cause mortality and major adverse cardiac
27	events (MACE), including cardiac death, heart failure, and myocardial infarction (MI). The
28	Cochrane Reviewer's Handbook 4.2 was used to assess the risk of bias.
29	Data extraction and synthesis: Relevant data were extracted by two independent
30	investigators. We derived pooled risk ratios (RRs) with random effects models. Sensitivity
31	and subgroup analyses were performed.
32	Results: Ten studies that had enrolled 3,137 patients were included. PPCI combined
33	with IPC failed to reduce heart failure (RR: 0.88, 95% CI: 0.61,1.26, P = 0.47; absolute risk:
34	3.64% in the IPC group and 4.11% in the PPCI only group), all-cause mortality (RR: 0.94,
35	95% CI: 0.69,1.27, P = 0.68; absolute risk: 5.07% in the IPC group and 5.27% in the PPCI
36	only), MACE (RR: 1.05, 95% CI: 0.83, 1.32, P = 0.69; absolute risk: 9.37% in the IPC group
37	and 8.93% in the PPCI only), cardiac death (RR: 1.28, 95% CI: 0.85,1.93, P = 0.24;

BMJ Open

38	absolute risk: 4.28% in the IPC group and 3.25% in the PPCI only group), and MI (RR:
39	0 1.08, 95% CI: 0.38,3.12, P = 0.88; absolute risk: 3.61% in the IPC group and 3.44% in the
40) PPCI only group).
4	Conclusions: IPC combined with PPCI does not reduce heart failure, MACE, and all-
42	cause mortality compared to traditional PPCI in patients with STEMI. (CRD42017063959)
43	3
44	Key words: Ischemic postconditioning therapy (IPC); percutaneous coronary
4	5 intervention (PCI); all-cause mortality; major adverse cardiac events (MACE); meta-
40	6 analysis
47	7
48	3 Strengths and limitations of this study
49	2 1. Unlike previous studies, we focused on clinical outcomes such as heart failure, or all-
50	cause mortality.
5	2. The recent DANAMI-3-iPOST study, which randomized 1,234 patients with STEMI to
52	2 conventional PPCI or PPCI with IPC, was included, which may alter the conclusion
53	3 regarding STEMI treatment.
54	3. In order to give a solid conclusion, sensitivity and subgroup analyses were performed.
5	4. A limitation of this meta-analysis is the inclusion of a relatively low number of patients.
50	3
57	⁷ Background
58	Primary percutaneous coronary intervention (PPCI) has been proven to be effective

1
2 3
5 4
5
6
7
8
9
10
11
12
13
14
15
16 17
17
18 19
20
20
22
23
24
25
26
27
28
29
30
31
32
33
34 35
35 36
30 37
38
39
40
41
42
43
44
45
46
47
48
49
50
51 52
52 53
53 54
54 55
55 56
57
58
59
60

1

59	in patients with ST-segment elevation myocardial infarction (STEMI) and has become a
60	first-line therapy ^[1] . Although PPCI is effective in restoring blood flow, ischemic reperfusion
61	injury is not inevitable. Reperfusion injury can also induce deleterious effects with a
62	subsequent increase in infarct size, which accounts for up to 50% of the final size of a
63	myocardial infarct ^[2] . Both animal models of infarction and clinical proof-of-concept studies
64	have shown that reopening of the infarct-related artery (IRA), followed by repetitive brief
65	interruptions of blood flow before sustained reperfusion, may protect the myocardium
66	against reperfusion injury, which is evaluated using cardiac biomarkers, single-photon
67	emission computed tomography (SPECT), echocardiography, and contrast-enhanced
68	cardiac magnetic resonance (ce-CMR) ^[3-7] . This strategy, known as ischemic
69	postconditioning (IPC), is safe and easy to perform without additional cost ^[8] . Related meta-
70	analyses, using the above methods for evaluation, have also demonstrated that IPC can
71	rescue cardiomyocytes ^[9-11] . However, whether improvements in these surrogate markers
72	translate into improved clinical outcomes, such as reduction in heart failure and/or all-
73	cause mortality, remains controversial. The recent DANAMI-3-iPOST study, which
74	randomized 1,234 patients with STEMI to conventional PPCI or PPCI with IPC did not
75	provide evidence indicating that PPCI with IPC leads to better clinical outcomes compared
76	to traditional PPCI ^[11] .
77	Given the confusion surrounding the different results related to IPC combined with
78	PPCI, a meta-analysis was done to evaluate whether IPC has a beneficial effect on hard
79	endpoints, such as heart failure, all-cause mortality, and MACE, compared to traditional

80 PPCI.

Page 5 of 27

81 Methods

Patient and Public Involvement

Qualitative patient data were the focus of this synthesis; however, patients and the
public were not involved in the design of the study or analysis of the data.

Search strategy and selection criteria

This meta-analysis is reported in accordance to the Preferred Reporting Items for System Reviews and Meta-Analyses (PRISMA) Statement and was registered at International Prospective Register of Systematic Reviews (CRD42017063959)^[12]. PubMed, Embase, and Cochrane Library were systematically searched for relevant articles published before May 1, 2018. The terms "ischemic postconditioning", "postconditioning", "percutaneous coronary intervention (PCI)", "controlled trial", "intervention study", and "randomized controlled trials (RCTs)" were used to identify randomized controlled trials. MeSH, Emtree, and keyword search terms were used in combination (Supplementary file). The results were limited to trials published in English. The reference lists of relevant studies and reviews, editorials, and letters were manually searched to identify additional articles. Endnote (Thompson ISI ResearchSoft, Philadelphia, PA, USA) was used to manage relevant articles and remove duplicate articles.

Study criteria, quality assessment, and data extraction

Studies were included in the meta-analysis when they met the following criteria: (1)

2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52 53
54
55
56
57
58
59
60

the study design was a prospective randomized controlled clinical trial (RCT); (2) all patients with STEMI underwent PPCI treatment; (3) patients were randomly assigned to the PPCI in combination with the IPC group or the conventional PPCI group; (4) follow-up time was not less than one month; and (5) relevant data were retrievable. When relevant data were missing, the authors were contacted by e-mail before excluding the references for inaccessibility of data.

106 The primary endpoint was heart failure. Secondary endpoints were all-cause mortality 107 and major adverse cardiac events (MACE), including cardiac death, heart failure, and 108 myocardial infarction (MI). All clinical endpoints were evaluated according to per protocol 109 definitions, at the longest available follow-up. Study quality was judged by evaluating trial 110 procedures for random sequence generation (selection bias), allocation concealment 111 (selection bias), blinding of participants and personnel (performance bias), blinding of 112 outcome assessment (detection bias), and incomplete outcome data (attrition bias). The 113 Cochrane Reviewer's Handbook 4.2 was used to assess risk of bias.

Relevant data were extracted by two independent investigators (XF Peng and JB Huang). Disagreements were resolved by consensus or a third investigator (XQ Hu). The following data were abstracted from the selected articles: first author, publication date, study design, onset of symptoms, characteristics of included participants, total number of IPC and conventional groups, events of the IPC and conventional groups, stent type, and follow-up time.

Meta-analysis was performed to calculate the risk ratio (RR) and 95% confidence interval (CI). Pooled RRs were computed as the Mantel-Haenszel-weighted average of the RRs for all included studies. Because the true treatment effect of various IPC protocols may have varied among the included trials, the random-effects model was used in the analysis. Statistical heterogeneity among the trial-specific RRs was checked and quantified by the l^2 statistic, and a P-value ≤ 0.05 was considered statistically significant. We performed sensitivity analysis to assess the contribution of each study to the pooled estimation by excluding one trial at a time and recalculating the pooled RR estimation for the remaining studies. Subgroup analyses were conducted in terms of time of symptom onset, IPC protocols, antiplatelet therapies. Data analysis was performed on an intention-to-treat basis. All analysis was performed using Review Manager Software (Review Manager (RevMan) [Computer program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014.).

134 Outcomes

135 Search results and bias assessment

Supplementary Figure 1 shows that the combined search strategy identified 273
potential relevant manuscripts, from which 33 studies were retrieved for more detailed
assessment(detailed search strategies for PubMed is showed in complementary file). A
total of 10 RCTs, involving 3137 patients, are included in this meta-analysis^[7, 8, 13-20]. The

140	Cochrane Reviewer's Handbook 4.2 was used to assess risk of bias (Supplementary Fig
141	2). No high-risk studies were identified and six studies had a low risk of bias.
142	The main features of the 10 included RCTs and the baseline clinical characteristics of
143	the patients are presented in Table 1. In the 10 trials, 1,569 patients (50%) were randomly
144	assigned to PPCI with IPC. The mean age of the trial patients was 61 years and 78% of
145	the patients were male. The IPC protocol (cycles*ischemia/reperfusion in seconds) varied
146	between studies and were as follows: 30"/30" × 4 in four studies, 60"/60" × 4 in five studies,
147	and 30"/30" × 3 in one study. Follow-up among trials varied from 1 month to 41 months.
148	The time of symptom onset varied between studies from 6 hours in 2 studies to 12 hours
149	in 8 studies.
150	Table 1: Detailed characteristics of included studies.

31 32 33Study	Patient	Countr	Age	Male	Symptom	Protocol	LAD	DES	Follow-up	
34 35 36	s	у	(years,IP	(%,IPC/C)	onset	(duration×cycl	(%,IP	(%,IPC/	(months)	
37 38 39 40	(IPC/C)		C/C)		(hours)	es)	C/C)	C)		
40 41 42						0				
43Lønborg 44	59/59	Denma	61/62	69/74	≤12	30"/30" × 4	44/39	-	3	
45 462010 47		rk								
48 49 49	22/21	USA	61/55	86/76	≤12	30"/30" × 4	36/24	-	41	
50 512010 52										
53 54 ^{Freixa}	39/40	Spain	59/60	84/72	≤12	60"/60" × 4	51/39	-	6	
55 562012 57										
58 59Tarantin 60	39/39	Italy	60/60	85/85	≤6	60″/60″ × 4	41/44	0/2.6	1	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2									
3 4 i 2012 5									
6 7 Dong 8	32/30	China	70/68	63/73	≤12	30″/30″ × 3	57/43	-	1
9 2013 10									
11 12Limalan 13	136/13	Norway	61/60	84/80	≤6	60"/60" × 4	46/51	29/29	4
14 15 ^{athan} 16	6								
¹⁷ 2014 18									
19 20Hahn 21	350/35	South	60/60	79/75	≤12	60"/60" × 4	47/45	86/86	12
²² 2015 23 24	0	Korea		6					
25Eitel 26	232/23	Germa	62/65	76/71	≤12	30"/30" × 4	42/51	-	6
27 282015 2 9	2	ny		9	~				
³⁰ Luz 31	43/44	Portug	57/58	88/82	≤12	60"/60" × 4	47/43	65/71	14
32 332015 34		al			Ľ	•			
35 36 ^{Engstrø} 37	617/61	Denma	63/62	80/79	≤12	30"/30" × 4	43/40	93/93	38
³⁸ m 2017 39	7	rk				1			
40 41 42	151 IPC	: Ischemic	c postconditi	oning group	; C; control g	roup (PPCI only)); LAD: le	eft descen	ding
43 , 44 45	152 ante	erior brand	ch; DES: dru	g-eluted ste	nt				
46 47 48	153	Prima	iry endpo	int: heart	failure				
49 50 51 52	154	When the	e data was p	booled, the F	R for heart f	ailure was 0.88 ((95% CI:	0.61,1.26	, P=
53 <i>.</i> 54	155 0.47	7; absolut	e risk: 3.64°	% in the IPC	C group and	4.11% in the PI	PCI only	group) in	the
55 56 57	156 ran	dom-effec	ts model (F	ig 1). No ev	vident statisti	cal heterogenei	ty amon	g studies	was
58	157 obs	erved (I ^{2 :}	= 0, P = 0.5	51). IPC dur	ing PPCI did	not reduce hea	art failure	e compare	d to

158 traditional PPCI.

Secondary endpoints:	all-cause mortality	and MACE
----------------------	---------------------	----------

160	The pooled data showed that IPC did not reduce all-cause mortality compared to
161	traditional PPCI (RR: 0.94, 95% CI: 0.69,1.27, P = 0.68; absolute risk: 5.07% in the IPC
162	group and 5.27% in the PPCI only group, Fig 2). No evident statistical heterogeneity among
163	studies was observed ($I^2=0$, P = 0.63). Furthermore, IPC did not reduce cardiac death (RR:
164	1.28, 95% CI: 0.85,1.93, P = 0.24; absolute risk: 4.28% in the IPC group and 3.25% in the
165	PPCI only group), MI (RR: 1.08, 95% CI: 0.38,3.12, P = 0.88, absolute risk: 3.61% in the
166	IPC group and 3.44% in the PPCI only group) and heart failure (RR: 0.85, 95% CI:
167	0.59,1.23, P = 0.40; absolute risk: 3.64% in the IPC group and 4.11% in the PPCI only
168	group). When all events (MACE) were considered, IPC during PPCI provided no net benefit
169	of IPC during PPCI (RR: 1.05, 95% CI: 0.83,1.32, P = 0.69; absolute risk: 9.37% in the IPC
170	group and 8.93% in the PPCI only group, Fig 3).

Sensitivity analysis and potential sources of heterogeneity

Sensitivity testing was performed by excluding each included study, one at a time, and
recalculating the overall effects. The direction of the overall effects, in terms of heart failure,
MI, cardiac death, and all-cause mortality, were not influenced no matter which study was
excluded (Supplementary Table 1).

176 There were very little heterogeneities between studies with regard to the observed 177 effects on all-cause mortality ($I^2=0$, p=0.63) and cardiac death ($I^2=0$, p=0.91). However,

178	moderate be	etween-study heterog	geneity was identified	in the case of MI (I^2 =	53%, P = 0.09).							
179	MI heteroge	neity was mainly cau	used by the Limalanat	han 2014 study. Wher	n this study was							
180	excluded, no	excluded, no heterogeneity was observed ($I^2 = 0\%$, P = 0.40) and the conclusions were still										
181	consistent w	consistent with the previous analysis. Subgroup analysis did not identify any baseline risk										
182	factor, such	factor, such as symptom onset, duration of follow-up, or antiplatelet therapies as a modifier										
183	of the relation	of the relationship between IPC and clinical endpoints (Table 2).										
184	Table 2: S	ubgroup analysis.										
		Cardiac death	Heart failure	МІ	Al-cause mortality							
Symptom ons	set		0									
≤6 hous		5.00 (0.25,101)	1.02 (0.09,11.5)	0.22 (0.05,1.01)	2.00 (0.51,7.86)							
≤12 hours		1.25 (0.83,1.89)	0.89 (0.61,1.29)	1.26 (0.79,2.00)	0.90 (0.66,1.23)							
Protocol			Z.	•								
30"/30" × 4		1.21 (0.73,1.99)	0.76 (0.45,1.29)	1.19 (0.74,1.91)	0.80 (0.56,1.14)							
60"/60" × 4		1.44 (0.70,2.94)	0.98 (0.48,2.04)	0.84 (0.05,14.2)	1.38 (0.76,2.52)							
Follow,up				0								
≤ 12 months		1.49 (0.74,2.99)	0.81 (0.44,1.47)	1.20 (0.16,8.81)	1.16 (0.73,1.87)							
>12 months		1.18 (0.71,1.96)	0.94 (0.58,1.50)	1.14 (0.70,1.85)	0.88 (0.45,1.71)							
Analysis mod	el											
Fixed-effect n	nodel	1.30 (0.87,1.96)	0.89 (0.62, 1.26)	1.05 (0.69, 1.60)	0.96 (0.71,1.30)							
Random effec	cts	1.28 (0.85,1.93)	0.88 (0.61,1.26)	1.08 (0.38,3.12)	0.94 (0.69,1.27)							
Antiplatelet	or		·									
anticoagulatic	on therapies											

1 2													
3 4 5	Clopidogrel		1.28 (0.85,1.93)	0.98 (0.66,1.45)	1.08 (0.38,3.12)	0.97 (0.69,1.35)							
6 7 8	GPIIb/IIIa inh	ibitors	1.23 (0.81,1.88)	0.84 (0.56,1.27)	1.08 (0.38,3.12)	0.93 (0.67,1.30)							
9 10	Bivalirudin		1.44 (0.70,2.94)	0.98 (0.47,2.03)	0.84 (0.77,14.24)	1.48 (0.81,2.69)							
11 12 13 14		MI: myocardial infarction											
15 16 17 18 19	186	Dis	cussion										
20 21 22	187	The cu	The current meta-analysis of 10 RCTs, including 3,137 patients with STEMI										
23 24	188	undergoing	undergoing PPCI, showed that no reduction in heart failure, all-cause mortality, or MACE										
25 26 27	189	when compa	aring PPCI in combi	nation with IPC to tra	ditional PPCI over a mea	an follow-up							
28 29 30	190	of 20 month	of 20 months. Similarly, no improvement in clinical outcomes was shown in the subgroup										
31 32	191	analysis.	analysis.										
33 34 35	192	IPC was	s first introduced by 2	Zhao et al. in 2003 ^[21] .	Subsequent clinical trial	s and meta-							
36 37		analyses fou	und a salutary effect	of IPC on infarct size a	as evaluated by CK, CK-N	/IB, troponin,							
38 39 40	194	SPECT, and	d cardiac function b	pased on the left ver	tricular ejection fraction	(LVEF) ^[3-5] .							
41 42 43	195	However, o	pposite results have	e also been reported	^[8, 16-19] . The DANAMI-3-	iPOST trial,							
44 45		which is the	e largest study to	date, showed that I	PC did not reduce infa	arct size ^[8] .							
46 47 48	197	Furthermore	e, whether surrogate	e endpoints, such as i	nfarct size, myocardial s	alvage, and							
49 50	198	resolution of	ST-segment elevati	ion, translate into harc	l endpoints, such as hear	t failure, all-							
51 52 53	199	cause morta	llity, or MACE, remai	ns a point of debate. l	Jnlike the above surrogat	e endpoints,							
54 55 56	200	heart failure	, all-cause mortality,	and MACE are what	are generally considered	to be most							
57 58	201	important by	<i>i</i> both clinics and par	tients.									
59 60		Previou	s meta-analyses ma	ainly focused on cardi	ac biomarkers, cardiac ir	naging, and							

Page 13 of 27

BMJ Open

cardiac function; however clinical outcomes are also very consequential. In the current meta-analysis IPC was not shown to improve clinical outcomes, though several factors may influence its effectiveness. A meta-analysis of 19 RCTs concluded that cardioprotection as evaluated by cardiac enzyme leakage, infarct size, and left ventricular function is more likely in patients with LAD artery involvement because of a greater myocardial area is at risk.^[9] Zhou et al. performed a meta-analysis of 10 RCTs and found that the effects of cardiac protection were more pronounced among young and male patients and those who received direct-stenting^[10]. The IPC protocol is also an important factor in determining the IPC efficacy. IPC may cause myocardial ischemia and expand the infarct area. Several trials chose four cycles of 1 min of reperfusion followed by 1 min of reocclusion. However, other trials selected four cycles of 30-s reperfusion followed by 30-s low-pressure balloon occlusion. However, the subgroup analyses in the current study found no differences in the effectiveness of IPC when comparing different protocols. Time of symptom onset, which is an independent predictor of MACE in patients with STEMI undergoing PPCI, may have influenced the results of these trials. However, subgroup analysis in this study did not detect differences between trials related to time of symptom onset. The key reason is that IPC might have no effect on cardioprotection, thus the results of the subgroup analysis in this study were neutral. Furthermore, the sample size of the studies may have been too small to detect minor beneficial effects. Several confounding factors, such as baseline characteristics of patients, coexisting diseases, medications, and IPC strategies used, may have influenced the cardioprotective benefits of IPC. With the use of novel antiplatelet and lipid-lowering agents and timely PPCI, the

outcome of STEMI has significantly improved. The decreasing mortality rate also makes itharder to demonstrate minor benefits of using additional therapy.

Limitations

This study has several limitations. First, although no apparent heterogeneity in statistical analysis was observed, variations in the methodology among studies, such as different risk profiles of the included patients, IPC strategies, and follow-up times, were observed. However, according to the meta-regression and subgroup analyses performed in this study, the above heterogeneities should not have affected the conclusion. In addition, the conclusion was based on the random effects model, which accounts for a certain degree of heterogeneity. Second, because of low incidence of adverse events, such as heart failure, the sample size is relatively small. Nonetheless, this meta-analysis is the largest population-based analysis of IPC. Additional RCTs are necessary to evaluate long-term clinical outcomes.

238 Conclusions

This meta-analysis suggests that the use of IPC in STEMI patients undergoing PPCI does not reduce the incidence of heart failure, MACE, and all-cause mortality compared to traditional PPCI. Page 15 of 27

1

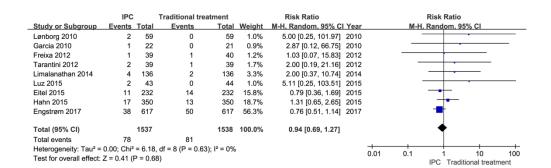
2	
3	
-	
4 5	
2	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
10	
יק רב	
20	
21	
22	
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	
24	
25	
26	
20	
26 27 28 29 30	
28	
29	
30	
31	
32	
33	
34	
31 32 33 34 35	
35	
36 37 38	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
51	
52	
53	
54	
55	
56	
50 57	
58	
59	
60	

Additional Information

243 The authors have no conflicts of interest to declare.

244 Patients consent: No patients, patient advises, and/or the public were involved in this

- 245 study.
- Author contribution statement: Xingun Hu and Zhenhua Xing designed the study and
- 247 provided methodological expertise in systematic reviews and searching strategies.
- 248 Zhenhua Xing and Liang Tang drafted the manuscript. Jiabing Huang and Xiaofan Peng
- 249 searched the databases and constructed the tables. All authors have read, provided critical
- 250 feedback, and approved the final manuscript.
- 251 Financial support and sponsorship: This work was supported by a grant from the
- 252 2015 Yu-Ying Plan of the Central South University(No. 502034007).
- 253 Competing interests: None
- 254 Data sharing statement: All data generated and research materials used during this
- 255 systematic review and meta-analysis are available from the corresponding author on
 - 256 reasonable request.


258		References
259		
260	[1]	Levine GN, Bates ER, Blankenship JC, et al. 2015 ACC/AHA/SCAI Focused Update on Primary
261		Percutaneous Coronary Intervention for Patients With ST-Elevation Myocardial Infarction: An Update of the
262		2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention and the 2013 ACCF/AHA
263		Guideline for the Management of ST-Elevation Myocardial Infarction. J Am Coll Cardiol. 2016. 67(10):
264		1235-50.
265	[2]	Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007. 357(11): 1121-35.
266	[3]	Ma X, Zhang X, Li C, Luo M. Effect of postconditioning on coronary blood flow velocity and endothelial
267		function and LV recovery after myocardial infarction. J Interv Cardiol. 2006. 19(5): 367-75.
268	[4]	Laskey WK, Yoon S, Calzada N, Ricciardi MJ. Concordant improvements in coronary flow reserve and ST-
269		segment resolution during percutaneous coronary intervention for acute myocardial infarction: a benefit of
270		postconditioning. Catheter Cardiovasc Interv. 2008. 72(2): 212-20.
271	[5]	Yang XC, Liu Y, Wang LF, et al. Reduction in myocardial infarct size by postconditioning in patients after
272		percutaneous coronary intervention. J Invasive Cardiol. 2007. 19(10): 424-30.
273	[6]	Thibault H, Piot C, Staat P, et al. Long-term benefit of postconditioning. Circulation. 2008. 117(8): 1037-44.
274	[7]	Lønborg J, Kelbaek H, Vejlstrup N, et al. Cardioprotective effects of ischemic postconditioning in patients
275		treated with primary percutaneous coronary intervention, evaluated by magnetic resonance. Circ Cardiovasc
276		Interv. 2010. 3(1): 34-41.
277	[8]	Engstrøm T, Kelbæk H, Helqvist S, et al. Effect of Ischemic Postconditioning During Primary Percutaneous
278		Coronary Intervention for Patients With ST-Segment Elevation Myocardial Infarction: A Randomized
279		Clinical Trial. JAMA Cardiol. 2017.
280	[9]	Khan AR, Binabdulhak AA, Alastal Y, et al. Cardioprotective role of ischemic postconditioning in acute
281		myocardial infarction: a systematic review and meta-analysis. Am Heart J. 2014. 168(4): 512-521.e4.
282	[10]	Zhou C, Yao Y, Zheng Z, et al. Stenting technique, gender, and age are associated with cardioprotection by
283		ischaemic postconditioning in primary coronary intervention: a systematic review of 10 randomized trials.
284		Eur Heart J. 2012. 33(24): 3070-7.
285	[11]	Liu BS, Xu F, Wang JL, et al. The cardioprotection of ischemic postconditioning in patients with acute ST-
286		segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Int J

3 4	287		Cardiol. 2015. 178: 181-3.
5 6	288	[12]	Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-
7 8	289		analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009. 339:
9 10	290		b2700.
11 12	291	[13]	Eitel, I., et al. Cardioprotection by combined intrahospital remote ischaemic perconditioning and
13 14	292		postconditioning in ST-elevation myocardial infarction: the randomized LIPSIA CONDITIONING trial. Eur
15 16	293		<i>Heart J</i> 36 , 3049-3057 (2015).
17 18	294	[14]	Freixa, X., et al. Ischaemic postconditioning revisited: lack of effects on infarct size following primary
19 20	295		percutaneous coronary intervention. Eur Heart J 33, 103-112 (2012).
21 22	296	[15]	Garcia, S., et al. Long-term follow-up of patients undergoing postconditioning during ST-elevation
23 24	297		myocardial infarction. J Cardiovasc Transl Res 4, 92-98 (2011).
25	298	[16]	Hahn JY, Yu CW, Park HS, et al. Long-term effects of ischemic postconditioning on clinical outcomes: 1-
26 27	299		year follow-up of the POST randomized trial. Am Heart J. 2015. 169(5): 639-46.
28 29	300	[17]	Luz A, Santos M, Magalhães R, et al. Lack of Benefit of Ischemic Postconditioning After Routine Thrombus
30 31	301		Aspiration During Reperfusion: Immediate and Midterm Results. J Cardiovasc Pharmacol Ther. 2015. 20(6):
32			
33	302		523-31.
34 35	302 303	[18]	523-31. Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic
34 35 36 37		[18]	
34 35 36 37 38 39	303	[18]	Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic
34 35 36 37 38	303 304	[18]	Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI
34 35 36 37 38 39 40	303 304 305	[18]	Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. J Am
34 35 36 37 38 39 40 41 42	303 304 305 306		Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. J Am Heart Assoc. 2014. 3(2): e000679.
34 35 36 37 38 39 40 41 42 43 44	303 304 305 306 307		Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. J Am Heart Assoc. 2014. 3(2): e000679. Tarantini G, Favaretto E, Marra MP, et al. Postconditioning during coronary angioplasty in acute myocardial
34 35 36 37 38 39 40 41 42 43 43 44 45 46	303 304 305 306 307 308	[19]	Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. J Am Heart Assoc. 2014. 3(2): e000679. Tarantini G, Favaretto E, Marra MP, et al. Postconditioning during coronary angioplasty in acute myocardial infarction: the POST-AMI trial. Int J Cardiol. 2012. 162(1): 33-8.
 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	303 304 305 306 307 308 309	[19]	Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. J Am Heart Assoc. 2014. 3(2): e000679. Tarantini G, Favaretto E, Marra MP, et al. Postconditioning during coronary angioplasty in acute myocardial infarction: the POST-AMI trial. Int J Cardiol. 2012. 162(1): 33-8. Dong M, Mu N, Guo F, <i>et al.</i> The beneficial effects of postconditioning on no-reflow phenomenon after
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	 303 304 305 306 307 308 309 310 	[19]	 Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. J Am Heart Assoc. 2014. 3(2): e000679. Tarantini G, Favaretto E, Marra MP, et al. Postconditioning during coronary angioplasty in acute myocardial infarction: the POST-AMI trial. Int J Cardiol. 2012. 162(1): 33-8. Dong M, Mu N, Guo F, <i>et al.</i> The beneficial effects of postconditioning on no-reflow phenomenon after percutaneous coronary intervention in patients with ST-elevation acute myocardial infarction. <i>J Thromb</i>
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	 303 304 305 306 307 308 309 310 311 	[19]	 Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. J Am Heart Assoc. 2014. 3(2): e000679. Tarantini G, Favaretto E, Marra MP, et al. Postconditioning during coronary angioplasty in acute myocardial infarction: the POST-AMI trial. Int J Cardiol. 2012. 162(1): 33-8. Dong M, Mu N, Guo F, <i>et al.</i> The beneficial effects of postconditioning on no-reflow phenomenon after percutaneous coronary intervention in patients with ST-elevation acute myocardial infarction. <i>J Thrombo Thrombolysis</i> 2014;38:208-214.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	 303 304 305 306 307 308 309 310 311 312 	[19]	 Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P, Eritsland J. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. J Am Heart Assoc. 2014. 3(2): e000679. Tarantini G, Favaretto E, Marra MP, et al. Postconditioning during coronary angioplasty in acute myocardial infarction: the POST-AMI trial. Int J Cardiol. 2012. 162(1): 33-8. Dong M, Mu N, Guo F, <i>et al.</i> The beneficial effects of postconditioning on no-reflow phenomenon after percutaneous coronary intervention in patients with ST-elevation acute myocardial infarction. <i>J Thrombolysis</i> 2014;38:208-214. Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during

2		
3		
4	316	
5		
6	- · -	
7	317	
8		
9	318	Figure legends
10	310	Figure legenus
11		
12	319	Fig 1: Effect of PPCI with IPC versus PPCI only on heart failure in STEMI patients
13		
13		
15	320	undergoing PPCI
16		
	004	
17	321	PPCI:primary percutaneous coronary intervention, IPC: Ischemic postconditioning
18		
19	322	group.
20	022	group.
21		
22	323	Fig 2: Effect of PPCI with IPC versus PPCI only on all-cause mortality in STEMI
23		
24		
25	324	patients undergoing PPCI.
26		
27	325	PPCI: primary parautaneous areanany intervention JPC: Joshamia parteenditioning
28	325	PPCI:primary percutaneous coronary intervention, IPC: Ischemic postconditioning
29		
30	326	group.
31	020	group.
32		
33	327	Fig 3: Effect of PPCI with IPC versus PPCI only on MACE in STEMI patients
34		
35	000	
36	328	undergoing PPCI.
37		
38	329	PPCI:primary percutaneous coronary intervention, IPC: Ischemic postconditioning
39	020	
40	330	group.
41		
42	004	group.
43	331	
44		
45	332	
46	00L	
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		

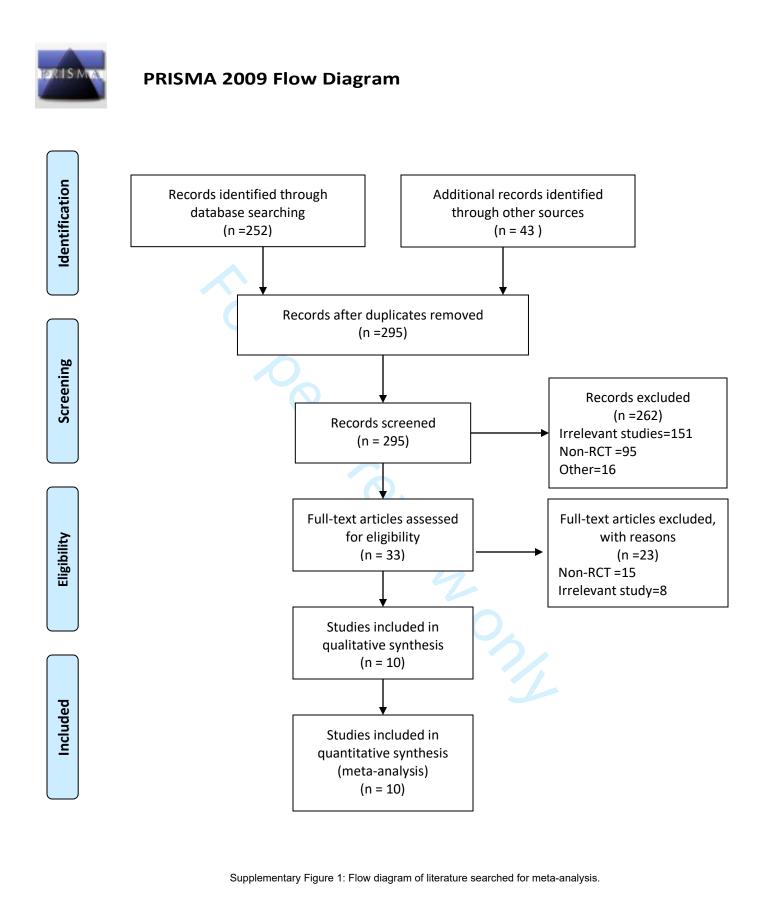
	IPC		Traditional treatment		Risk Ratio			Risk Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year		M-	H, Randon	n, 95% CI	
Garcia 2010	2	22	4	21	5.2%	0.48 [0.10, 2.34]	2010			-	_	
Freixa 2012	2	39	2	40	3.6%	1.03 [0.15, 6.92]	2012		_			
Tarantini 2012	2	39	0	39	1.5%	5.00 [0.25, 100.89]	2012					
Dong 2013	2	32	0	30	1.5%	4.70 [0.23, 94.01]	2013					
Limalanathan 2014	2	136	5	136	5.0%	0.40 [0.08, 2.03]	2014				-	
Eitel 2015	6	232	13	232	14.5%	0.46 [0.18, 1.19]	2015		-			
Luz 2015	0	43	0	44		Not estimable	2015					
Hahn 2015	9	350	8	350	14.8%	1.13 [0.44, 2.88]	2015			-		
Engstrøm 2017	30	617	30	617	53.9%	1.00 [0.61, 1.64]	2017					
Total (95% CI)		1510		1509	100.0%	0.88 [0.61, 1.26]				•		
Total events	55		62									
Heterogeneity: Tau ² =	0.00; Chi ²	= 6.28	df = 7 (P = 0.51); l ² = 0%								
Test for overall effect:	7 = 0.72 (P = 0.4	7)					0.01	0.1	IPC T	10 raditional trea	1(

282x90mm (300 x 300 DPI)

282x90mm (300 x 300 DPI)

1													
2													
3													
4													
5													
6													
7	Study or Subgroup	IPC Events		Contr		Weight	Risk Ratio M-H. Random, 95% C	l Voar			sk Ratio Indom, 95% C	4	
•	Cardiac death	LVCIIIS	Total	LAGIUS	Total	Weight	M-II, Kaliuolii, 55% C	IICAI		WI-11, No		1	_
8	Garcia 2010	1	22	0	21	0.5%	2.87 [0.12, 66.75]				- · · ·		
9	Lønborg 2010 Freixa 2012	1	59 39	0	59 40	0.5% 0.7%	3.00 [0.12, 72.18]					_	
10	Tarantini 2012	1	39 39	1	40 39	0.7%	1.03 [0.07, 15.83] 5.00 [0.25, 100.89]			_			
11	Hahn 2015	15	350	11	350	9.2%	1.36 [0.64, 2.93]				+		
	Luz 2015	0	43	0	44		Not estimable						
12	Engstrøm 2017 Subtotal (95% CI)	30	617 1169	26	617 1170	20.4% 31.9%	1.15 [0.69, 1.93] 1.28 [0.85, 1.93]	2017			-		
13	Total events	50		38		011070	1120 [0100] 1100]				ľ		
14	Heterogeneity: Tau ² =				P = 0.91	l); l² = 0%							
15	Test for overall effect:	Z = 1.18 (P = 0.2	4)									
16	Heart failure												
	Garcia 2010	2	22	4	21	2.1%	0.48 [0.10, 2.34]	2010			<u> </u>		
17	Freixa 2012	2	39	2	40	1.5%	1.03 [0.15, 6.92]						
18	Tarantini 2012 Dong 2013	2	39 32	0	39 30	0.6% 0.6%	5.00 [0.25, 100.89] 4.70 [0.23, 94.01]						
19	Limalanathan 2014	2	136	5	136	2.0%	0.40 [0.08, 2.03]				<u> </u>		
20	Eitel 2015	6	232	13	232	5.9%	0.46 [0.18, 1.19]				+		
	Luz 2015 Hahn 2015	0 9	43 350	0 8	44 350	6.1%	Not estimable 1.13 [0.44, 2.88]			-			
21	Engstrøm 2017	30	617	30	617	22.0%	1.00 [0.61, 1.64]				+		
22	Subtotal (95% CI)		1510		1509	40.8%	0.88 [0.61, 1.26]				•		
23	Total events	55		62	- 0 54	1) 12 - 09/							
24	Heterogeneity: Tau ² = Test for overall effect:				= 0.5	i); i= = 0%							
				.,									
25	MI	•	50		50	4 40/	0.00.00.00.00.001	0040		_			
26	Lønborg 2010 Limalanathan 2014	3 2	59 136	1	59 136	1.1% 2.3%	3.00 [0.32, 28.02] 0.22 [0.05, 1.01]				_		
27	Hahn 2015	4	350	1	350	1.1%	4.00 [0.45, 35.61]			-			
28	Engstrøm 2017	33	617	29	617	22.7%	1.14 [0.70, 1.85]	2017			-		
29	Subtotal (95% CI) Total events	42	1162	40	1162	27.2%	1.08 [0.38, 3.12]						
	Heterogeneity: Tau ² =		² = 6.43		e = 0.09	9); I² = 53%	, D						
30	Test for overall effect:	Z = 0.14 (P = 0.8	8)									
31	Total (95% CI)		3841		3841	100.0%	1.05 [0.83, 1.32]				•		
32	Total events	147	0011	140	0011	1001070	100 [0100, 1102]				ſ		
33	Heterogeneity: Tau ² =				(P = 0	.52); I ² = 0	%		+ 0.005	0.1	1 10) 20	+ 00
	Test for overall effect: Test for subaroup diffe				(P - 0	40) 12 - 0	0/				C Traditiona		
34	rearior autorouti dille	renues. U	an - 1.	00. ul = 2	U		10						
35													
36													
37					105	/17E~	ım (300 x 300	חח	T۱				
38					193)	KT / 211	111 (300 x 300	DP	1)				
39													

3		
4 5 6	1	Effects of ischemic postconditioning on outcomes of
7 8 9	2	patients with ST-segment elevation myocardial infarction who
9 10 11	3	underwent primary percutaneous coronary intervention: a
12 13	4	meta-analysis
14 15 16	5	Zhenhua Xing ^{1#} , Liang Tang ^{1#} Jiabing Huang ¹ , Xiaofan Peng ¹ Xinqun Hu ^{1*}
17 18	6	# Co-first author
19 20	7	1 Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South
20 21 22	8	University, Changsha, Hunan 410011, China
23	9	
24 25 26	10	*Corresponding author: Xinqun Hu, M.D. PhD.
26 27	11	Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South
28 29	12	University, Changsha, Hunan 410011, China
30 31	13	E-mail: huxinqun@csu.edu.cn
32 33	14	Phone number: +8615084714930
34 35	15	
36 37		
38 39		
40 41		
42 43		
44 45		
46 47		
48 49		
50 51		
52 53		
54 55		
56 57		
58 59		
60		


Pub	Mec	1		
Sea	rch	Query	ltems found	
#1	Sea	rch ischei	mic postconditioning[M	eSH Terms]
#2	Sea	rch condi	itioning[Title/Abstract]	55132
#3	Saa	rch norci	Itaneous coronary inten	antion[MaSI

- #3 Search percutaneous coronary intervention[MeSH Terms] 46594
- #4 Search PCI[Title/Abstract] 21330
- #5 Search (PCI[Title/Abstract]) OR percutaneous coronary intervention[MeSH Terms] 55884

- #6 Search (conditioning[Title/Abstract]) OR ischemic postconditioning[MeSH Terms] 55763
- #7 Search (((conditioning[Title/Abstract]) OR ischemic postconditioning[MeSH Terms]))
- AND ((PCI[Title/Abstract]) OR percutaneous coronary intervention[MeSH Terms]) 153

Supplementary table 1: Sensitivity analysis

22		*						
23	Excluded study	uded study Heart failure		udy Heart failure MI		Cardiac death	All-cause	
24					mortality			
25 26	Lønborg 2010	-	0.90(0.25,3.24)	1.49(0.74,2.99)	0.90(0.69,1.27)			
27	Garcia 2010	0.91(0.62,1.31)	-	1.26(0.84,1.91)	0.95(0.70,1.29)			
28	Freixa 2012	0.86(0.58,1.28)		1.29(0.85,1.95)	0.96(0.70,1.30)			
29 30	Tarantini 2012	0.85(0.59,1.22)	-	1.25(0.83,1.89)	0.95(0.70,1.29)			
31	Limalanathan 2014	0.91(0.63,1.32)	1.26(0.79,2.00)	-	0.94(0.69,1.27)			
32	Hahn 2015	-	0.84(0.25,2.84)	1.23(0.77,2.03)	0.90(0.65,1.25)			
33 34	Eitel 2015	0.98(0.66,1.45)	-	-	1.00(0.72,1.38)			
35	Luz 2015	0.88(0.61,1.26)	R	1.28(0.85,1.93)	0.94(0.69,1.27)			
36	Engstrøm 2017	0.75(0.44,1.28)	1.20(0.78,1.32)	1.54(0.78,3.04)	1.28(0.81,2.00)			
37 38	Dong 2013	0.85(0.59,1.23)	-	-	-			

	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)	Other bias
Dong 2013	?	?	?	?	+	+	•
Eitel 2015	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+
Engstrøm 2017	+	+	+	+	+	+	•
Freixa 2012	+	+	+	+	+	+	•
Garcia 2010	?	?	?	?	+	+	•
Hahn 2015	+	+	+	+	+	+	•
Limalanathan 2014	+	+	?	?	+	+	•
Luz 2015	+	+	?	?	+	+	•
Lønborg 2010	+	+	+	+	+	+	•

Supplementary Fig2. Bias assessment using Cochrane Reviewer's Handbook 4.2

PRISMA 2009 Checklist

Section/Topic	#	Checklist Item	Reported on Page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	2
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	2
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	3
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	3
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	3
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	4
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	4
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	4
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	4
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	4
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	4
	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	5

Page 27 of 27

PRISMA 2009 Checklist

3 4 5	Section/Topic	#	Checklist Item						
6 7 8	Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).						
9 1(Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	5					
11 12	RESULTS								
13 14	Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	5					
15 16 17	5 5 Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	5					
18	Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	5					
19 20 21) Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	5					
22 23	Synthesis of results	21	Present the main results of the review. If meta-analyses done, include for each, confidence intervals and measures of consistency.	5					
24	Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	5					
26	, Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	5					
27	DISCUSSION								
29 30	Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	6					
31 32 33	Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	8					
34	Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	8					
35 36	FUNDING								
37 38	Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	9					
41 42	42 43 For more information, visit: <u>www.prisma-statement.org</u> .								
45									

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2018-022509 on 23 March 2019. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Correction: Effects of ischaemic postconditioning on outcomes of patients with ST-segment elevation myocardial infarction who underwent primary percutaneous coronary intervention: a meta-analysis

Xing Z, Tang L, Huang J, *et al.* Effects of ischaemic postconditioning on outcomes of patients with ST-segment elevation myocardial infarction who underwent primary percutaneous coronary intervention: a meta-analysis. *BMJ Open* 2019;9:e022509. doi: 10.1136/bmjopen-2018-022509

This article was previously published with an error.

Central South University was omitted in the author affiliations. The correct affiliation of authors is:

Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, China

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

© Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

BMJ Open 2019;9:e022509corr1. doi:10.1136/bmjopen-2018-022509corr1

