

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open's open peer review process please email info.bmjopen@bmj.com

BMJ Open

Factors Influencing Subspecialty Choice Among Medical Students: A Systematic Review and Meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022097
Article Type:	Research
Date Submitted by the Author:	03-Feb-2018
Complete List of Authors:	Yang, Yahan; Sun Yat-Sen University Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology; Sun Yat-Sen University, Zhongshan School of Medicine Li, Jiawei; Sun Yat-Sen University, Zhongshan School of Mathematics Wu, Xiaohang; Sun Yat-Sen University Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology Wang, Jinghui; Sun Yat-Sen University Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology Li, Wangting; Sun Yat-Sen University Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology Zhu, Yi; University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology; Sun Yat-Sen University Zhongshan Ophthalmic Center, Cataract Chen, Chuan; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University; University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology Lin, Haotian; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Cataract
Keywords:	Medical students, Career choice, Meta-analysis

SCHOLARONE™ Manuscripts

Title Page

Factors Influencing Subspecialty Choice Among Medical Students: A Systematic Review and Meta-analysis

Yahan Yang, M.D.^{1,2}; Jiawei Li, M.D.³; Xiaohang Wu, M.D.¹; Jinghui Wang, M.D.¹; Wangting Li, M.D.¹; Yi Zhu, M.D.^{1,4}; Chuan Chen, M.D.^{1,4}; Haotian Lin, M.D., Ph. D^{1#}

Institution: 1. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, People's Republic of China

- 2. Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- 3. Zhongshan School of Mathematics, Sun Yat-sen University, Guangzhou, China
- 4. Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA.

***Editorial Correspondence:**

Prof. Haotian Lin

Zhongshan Ophthalmic Center, Sun Yat-sen University

Xian Lie South Road 54#

Guangzhou, China, 510060.

Telephone number: +86-020-87330493

Fax: +86-020-87333271

E-mail: haot.lin@hotmail.com

Word count for text: 2947

ABSTRACT

Objective To characterize the contributing factors that affect medical students' subspecialty choice and to estimate the extent of influence of individual factors on the students' decision-making process.

Design Systematic review and meta-analysis.

Methods A systematic search of the Cochrane Library, ERIC, Web of Science, CNKI and PubMed databases was conducted for studies published between January 1977 and October 2016. Information concerning study characteristics, influential factors, and the extent of their influence (EOI) was extracted independently by two trained investigators. EOI is the percentage level that describes how much each of the factors influenced students' choice of subspecialty. The estimates were pooled using a random-effects meta-analysis model due to the between-study heterogeneity.

Results Data were extracted from 72 studies (881,502 individuals). Overall, the factors influencing medical students' choice of subspecialty training mainly included academic interests (74.87%), competencies (55.15%), controllable lifestyles or flexible work schedules (53.06%), patient service orientation (49.35%), medical teachers or mentors (46.93%), career opportunities (44.00%), workload or working hours (37.92%), income (35.25%), length of training (32.30%), prestige (31.29%), advice from others (28.24%), and student debt (15.33%), with significant between-study heterogeneity

(P<0.0001). Subgroup analyses revealed that the EOI of academic interests was higher in developed countries than that in developing countries (79.30% [95% confidence interval (CI), 70.09%; 86.24%] vs. 60.41% [95% CI, 43.44%; 75.19%]; Q=3.37 P=0.02). The EOI value of prestige was lower in developed countries than that in developing countries (24.45% [95% CI, 19.46%; 30.25%] vs. 48.02% [95% CI, 32.40%; 64.03%]; Q=4.31 P=0.01).

Conclusions This systematic review and meta-analysis provided a quantitative evaluation of the top 12 influencing factors associated with medical students' choice of subspecialty. Our findings provide the basis for the development of specific, effective strategies to optimize the distribution of physicians among different departments by modifying these influencing factors.

Systematic review registration PROSPERO CRD42017053781.

STRENGTHS AND LIMITATIONS OF THIS STUDY

- Our research emphasize that a reliable estimate of the factors associated with medical students' subspecialty choice is critical to obtaining a better understanding of students' perceptions, and the findings of the present study can facilitate the development of intervention strategies tailored to the needs of various healthcare systems.
- A large number of studies conducted in varied populations have been included.

The differences in the characteristics of country, survey years, specialty, the type
of data used and sample size across studies represent a major limitation of our
study.

KEYWORDS Medical students, career choice, meta-analysis

Introduction

Medical students' choice of subspecialty represents the process that students' majored in medicine decide to choice a medical specialty, such as pediatrics and surgery, and their sub-discipline, such as nephrology and neurosurgery. With the development of the social economy and the improvement in people's living standards, the demand for physicians continues to increase; however, an imbalance in the supply of physicians in different subspecialties has become a growing concern in both developed and developing countries. ¹² Some subspecialties, such as family medicine and palliative medicine, ³⁴ are experiencing a desperate shortage of physicians, whereas other subspecialties, such as cardiology, ophthalmology and ear, nose and throat (ENT) surgery, require several years of training before admission due to intense competition. ⁵⁶

Specialty choice is the product of a complex interconnection of student expectation, department expectation, and competition for available spots, and student choice is where the choice begins. Previous studies have suggested that medical students' choice of subspecialty is essential to the maintenance of an adequate medical workforce and a balanced development of the medical system. However, the influencing factors underlying students' subspecialty choice have not been systemically reviewed. Recent changes in the training and practice environment may influence medical students' career choice. Additionally, the variability in preferences over time and in students' attitudes towards career choices can further complicate this assessment. For example, a study in the UK indicated that half of the

medical students made a definitive subspecialty choice during their first year of medical school.¹¹ However, students were prone to changing their subspecialty preference during medical school and internship.¹² Notably, students may also reject certain subspecialties during their medical school training, even those they have previously seriously considered.¹³ Therefore, identifying the factors that influence students' choice of subspecialty will enable a better understanding of the current shortage/overload of physicians in specific fields and contribute to policy-building and decision-making to improve the training and recruitment of students in the future.

We thus conducted a systematic review and a meta-analysis to investigate the influencing factors and the extent of their influence on the choice of subspecialty training among medical students. More specifically, we focused on the following questions. First, can we gain a better understanding of students' preferences for medical specialty according to the primary influencing factor? Second, do the subgroups according to world region and survey years examined in this study differ significantly with regard to the weight that students place on the identified influencing factor?

Methods

Search Strategy and Study Eligibility

Cross-sectional studies published between January 1977 and October 2016 that reported on factors influencing medical students' choice of subspecialty were identified using the Cochrane Library, Medline, Web of Science, CNKI and ERIC

databases. Articles were screened by title, abstract and reference list, and by correspondence with study investigators using the approach recommended by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Fig. S1). Potentially relevant papers were first identified by reviewing the titles and abstracts, and the full text of each retrieved article was then assessed. The search strategy is shown in **Methods S1**. Studies were included if they reported data on medical students, were published in peer-reviewed journals, and used a validated method to assess the extent of a factor's influence on the choice of subspecialty.

Data Extraction and Quality Assessment

The following information was independently extracted from each article by 2 trained investigators (Y.Y. and J.L.) using a standardized form: study design, geographic location, years of survey, journal, sample size, average age of the participants, the number and percentage of male participants, and the influencing factors and the extent of their influence. Each study may involve one or several influencing factors. The Newcastle-Ottawa Scale (NOS) recommended by the Agency for Healthcare Research and Quality (AHRQ), available at http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp, were used to assess the quality of the studies. All discrepancies were resolved via discussion and consensus.

Statistical Analysis

As considerable heterogeneity was expected because of the multiple sources of variances, a random effects meta-analysis model was used to estimate the influencing factors and the extent of their influence. 15 Between-study heterogeneity was assessed using the I^2 statistic, which was calculated to describe the percentage of total variation caused by heterogeneity across studies, with ≥50% indicating considerable heterogeneity. 16 17 Potential sources of heterogeneity were identified using meta-regression. 18 Subgroup analyses were performed for each factor in the studies in developed countries vs. developing countries and studies conducted before 2010 vs. after 2010. The EOI value of competencies in developing countries was not statistically significant (81.21% [95% CI, 75.27%; 86.51%], P=0.1436), and no studies on the influence of student debt in developing countries were found. The Q-test based on the analysis of variance was used to compare the subgroups, with a significance threshold of 5%. ¹⁹ The influence of individual studies on the overall EOI value was explored by serially excluding each study in a sensitivity analysis. Publication bias was investigated using a funnel plot test and Egger's test.²⁰ All analyses were performed using R (version 3.3.1, The R Foundation, Vienna, Austria). The statistical tests were 2-sided with a significance threshold of P < 0.05.

Results

Study Characteristics

Seventy-two studies involving a total of 881,502 individuals were included in the present research (**Table 1**). Thirty-three studies were conducted in North America, 23 in Europe, 6 in Asia, 5 in Oceania, 3 in Africa, and 2 in South America. The median

number of participants per study was 254.5 (range 37-29,227). Thirteen studies included students who had already selected subspecialties, whereas 59 did not. The influencing factors for subspecialty choice were classified according to 17 aspects, including academic interests, controllable lifestyle or flexible work schedule (defined as flexibility that allows physicians to control the number of hours devoted to practicing the specialty), competencies, patient service orientation, medical teachers or mentors, career opportunities, workload or working hours (characterized by the physician's time spent on professional responsibilities), income, prestige, length of training, advice from others (advice from family, friends, and other students), student debt, experience with the subject, working environment, personality, gender and job security. The influencing factors were ranked according to the frequency of occurrence and each factor was identified when at least 5 papers were available describing it. Personality and gender are common factors that affect the choice of subspecialty among medical students, but most of the relevant literature has not reported on the extent of these factors' influence. Moreover, the funnel plots were clearly asymmetrical with regard to experience with the subject, the working environment and job variety, indicating the existence of publication bias. Thus, the analysis of the remaining 12 influencing factors were shown in this paper. Quality assessment scores for the included studies are listed in Table 1. None of the studies received a point for the second AHRQ Quality Indicator, which requires studies to list the inclusion and exclusion criteria for exposed and unexposed subjects (cases and controls) or refer to previous publications, since no comparison studies were referenced in the analyzed articles. For the remaining 10 criteria, 6 studies received 9

points, 8 studies received 8 points, 17 studies received 7 points, 32 studies received 6 points, 7 studies received 5 points and 2 studies received 4 points (scores for individual studies are presented in **Table S1**).

Primary Analysis

A meta-analysis was performed on the 12 influencing factors (**Table 2**): academic interests (**Fig. S2**), competencies (**Fig. S3**), controllable lifestyle or flexible work schedule (**Fig. S4**), patient service orientation (**Fig. S5**), medical teachers or mentors (**Fig. S6**), career opportunities (**Fig. S7**), workload or working hours (**Fig. S8**), income (**Fig. S9**), length of training (**Fig. S10**), prestige (**Fig. S11**), advice from others (**Fig. S12**) and student debt (**Fig. S13**). All the factors were significant with evidence of between-study heterogeneity (P<0.0001). A sensitivity analysis, in which the meta-analysis was serially repeated after the exclusion of each study, demonstrated that no individual study affected the overall extent of a factor's influence.

Meta-regression and Subgroup Analysis

Using common instructions when at least 5 studies were available and at least 2 studies were in each comparator subgroup, four categorical covariates were identified as potential sources of heterogeneity by examining the studies conducted in the United States (US) vs. the studies conducted in other countries, the studies conducted before 2010 vs. those conducted after 2010, the studies concerning subspecialty only vs. those that were not specific to a subspecialty, and the studies with a sample size

<200 vs. the studies with a sample size ≥200 (**Table 3**). Some of the heterogeneities observed among the 12 factors can be partially explained by country, survey years, specialty and sample size.

EOI values were further analyzed by subgroup (**Table S2**) according to world region (**Fig. 1**) and survey year (**Fig. 2**). The EOI value of academic interests in developed countries was higher than that in developing countries (79.30% [95% CI, 70.09%; 86.24%] vs. 60.41% [95% CI, 43.44%; 75.19%]; Q=3.37 P=0.02). Conversely, a lower EOI value of prestige was found in studies conducted in developed countries than in developing countries (24.45% [95% CI, 19.46%; 30.25%] vs. 48.02% [95% CI, 32.40%; 64.03%]; Q=4.31 P=0.01). No statistically significant subgroup differences in the EOI values of the other influencing factors were noted between developed countries and developing countries. In addition, no statistically significant differences in the EOI values of the influencing factors were observed when subgroup analysis was performed by survey year.

Assessment of Publication Bias

We generated a funnel plot with proportion as the abscissa and standard error as the ordinate. A visual inspection of the funnel plots revealed minimal asymmetry among the various influencing factors (**Fig. S14**), and the results were concentrated in the narrow upper part of the graph. However, there was evidence of small study effect in the meta-analysis of "patient service orientation" (Egger's test P=0.02).

Discussion

Implications

This systematic review and meta-analysis involved 72 studies with 881,502 medical students. Twelve influencing factors were analyzed. These factors can be classified into two categories: economic factors and non-economic factors. We found that the EOI of the economic factors, including income (35.25%) and student debt (15.33%), may not depend on the region's level of economic development. However, income remained a major influencing factor in the process of choosing a subspecialty. In the US, 15% of full-time family medicine physicians earned less than \$100,000 in 2004, which is significantly less than the income earned by invasive cardiologists (median income=\$427,815), neurosurgeons (median income=\$211,094), and orthopedists (median income=\$335,646). This economic inequality made family medicine less attractive to medical school graduates. Benefits such as health insurance and tuition reimbursement have been shown to be the most common economic incentives used to attract applicants.

The non-economic factors can be divided into individual factors, specialty-related factors and others. First, individual factors, including academic interest and competencies, have a considerable impact on students' subspecialty choice, with EOI values of 74.87% and 55.15%, respectively. In addition, in the subgroup analysis, although academic interests were less influential in developing countries than in developed countries (79.30% [95% CI, 70.09%; 86.24%] vs. 60.41% [95% CI, 43.44%; 75.19%]; Q=3.37 P=0.02), they were still the most influential of the 12 factors regardless of regional economic level. These findings indicate that

subspecialties with a shortage of manpower may attract more students by increasing students' interests and improving the quality of education. Previous studies indicated that early subspecialty exposure in medical education may arouse students' academic interest and improve their clinical competence.²³ ²⁵ For example, an elective extracurricular program designed to facilitate early contact with family medicine physicians was found to significantly improve students' interest and clinical skills, especially communication skills, in family medicine.²⁶ Furthermore, dispelling myths and espousing the positive aspects of a discipline may provide a better understanding of certain subspecialties; this approach could also be effective in increasing students' academic interest.²⁷ For instance, family medicine is often considered a discipline that requires less professional skills and knowledge. This misconception demotivates students from choosing family medicine as their future career subspecialty, and this trend may eventually lead to a shortage of family physicians.²⁷ Eliminating such prejudices may help students pay greater attention to the areas in short supply and restore their interests in other specialties.

Second, the specialty-related factors included controllable lifestyle/flexible work schedule (EOI of 53.06%), career opportunities (EOI of 44.00%), workload (EOI of 37.92%) and training length (EOI of 32.30%). Of these factors, lifestyle varied between different areas. Additionally, although certain specialties, such as general surgery, seem to have an adequate number of surgeons on a per capita basis in the US, there is still a poor geographic distribution within the surgical workforce according to the type of surgical practice.²⁸ The inflexible lifestyle is a common reason that

students perceive surgery to be less attractive.²⁸ Reorganization of expected work hours within shared practices and the increased use of physician extenders and technologies such as electronic medical records may give physicians more flexibility in work schedules.²⁹ Moreover, providing promotion opportunities and shortening the length of training are possible strategies to recruit new staff in subspecialties that require a long period of post-graduate residency training, such as neurosurgery.³⁰

Finally, other factors such as service orientation (EOI of 49.35%), medical teachers or mentors (EOI of 46.93%), prestige (EOI of 31.29%), and advice from others (EOI of 28.24%) also contribute to the decision-making process of medical students. For example, the desire to care for patients with end-stage diseases contributed to the decision to enter palliative medicine in 86% of the medical students.⁴ Additionally, exposure to mentors in a particular clinical field such as internal medicine has been strongly associated with medical students' choice of clinical field.³¹ Moreover, improving the occupational prestige of areas such as family medicine, pathology, and radiology may help reshape the distribution of the workforce. ^{25 32 33}

In our study, several findings are especially noteworthy. First, interest was far more important than income in deciding subspecialty. In our study, interest was the top-ranked influencing factor (EOI of 74.87%) of subspecialty choice, while income was ranked lower (EOI of 35.25%). This finding argues against the possible default belief that raising physician's wages alone could solve the uneven distribution of clinicians among subspecialties. Our findings highlight that cultivating and stimulating students' professional interests may help improve the maldistribution of

medical resources in a more efficient and cost-saving manner.

Second, improving abilities in a certain subspecialty of interest can greatly affect medical students' professional choice. In our study, competencies ranked second in influence, which may reflect the impact of admission conditions on students' choice of subspecialty. Hence, to reduce the risk that students are restricted to the subspecialty of their interest due to a lack of personal skills, medical education should focus more on enhancing students' personal competencies in addition to their academic interests.

Third, balancing medical resources is a complex process in practical terms, as the influencing factors are not mutually exclusive. The shortage of physicians in certain subspecialties may increase physician workload, resulting in less time for teaching. Hence, the quality of teaching cannot be guaranteed, and students may tend to avoid choosing these subspecialties, thus worsening the imbalance in the medical workforce. Additionally, some of the 12 factors identified are not amenable to practical interventions. For example, prestige cannot be immediately increased using interventional strategies.³² Overall, effective strategies must be multi-pronged and incorporate several different aspects, and maldistribution in the workforce should not be tackled through a simple adjustment of one influencing factor.

Interpretations of the results of this meta-analysis

Our meta-regression stratified by the study-level characteristics found that country, survey years, subspecialty and sample size may contribute to the heterogeneity

between studies. There was no significant difference in the sensitivity analysis, which indicated that the results of the meta-analysis were convincing. The funnel plots and Egger's tests revealed that most of the publication bias was small (P>0.05), except for the meta-analysis of "patient service orientation". Moreover, the majority of the studies collected in the database were from developed countries rather than developing countries.

Limitations

Several limitations should be considered when interpreting the findings of this study. First, the students involved in our study included medical students at different stages of their medical education. Students' perception about different subspecialties may change during medical training. For example, compared to an intern, a freshman student may place greater emphasis on income and prestige when considering a career choice.³⁴ Second, our meta-analysis summarized the data from different geographic regions around the world, and the general conclusions may not be appropriate to guide policy development in each region. Enhanced effort is needed to develop specific intervention strategies according to the specific medical career grade, economic level, religious beliefs, healthcare system, educational system and endemic diseases of different countries and regions. Third, the surveys in the various studies were also conducted using different methods. Most of the questionnaires used a Likert scale. Therefore, when we converted the results to a percentage representing the extent of a factor's influence, the Likert scale items were treated as interval data.³⁵⁻³⁷ Consequently, there may have been differences in the conversion process.

Fourth, a secondary meta-analysis of longitudinal studies may better reflect changes in influencing factors and the extent of their influence over time. Finally, the analysis relied on aggregated published data. A multicenter prospective study would provide a more accurate estimate of the influencing factors and the extent of their influence on medical students' choice of subspecialty.

Conclusion

In conclusion, this systematic review and meta-analysis provided a summary evaluation of 12 influencing factors and the extent of their influence on the choice of subspecialty training among medical students. Understanding students' attitudes toward their subspecialty decision-making process could provide the basis for developing strategies to increase the attractiveness of subspecialties experiencing a shortage of manpower, thereby balancing the distribution of medical recourses.

Contributors: Haotian Lin contributed to the conceptualising and design of the study, and to research funding, coordinated the research and oversaw the project. Yahan Yang, Jiawei Li and Xiaohang Wu contributed to data collection and interpretation, and to data analysis. Jinghui Wang, Yi Zhu, Chuan Chen and Wangting Li contributed to the design of the study. All authors contributed to the drafting and revision of the paper and approved the final manuscript for publication.

Funding: The principal investigator of this study (Haotian Lin) is currently supported by the Pearl River Scholar Program of Guangdong Province, the Outstanding Young Teacher Cultivation Projects in Guangdong Province (YQ2015006), and the Guangdong Provincial Natural Science Foundation for Distinguished Young Scholars of China (2014A030306030). These sponsors and funding organizations had no role in the design or performance of this study.

Competing Interests: The authors declare no competing financial interests.

Data sharing: No additional data available.

References

- 1. Zurn P, Dal Poz MR, Stilwell B, et al. Imbalance in the health workforce. *Hum Resour Health* 2004;2(1):13. doi: 10.1186/1478-4491-2-13
- 2. Diallo K, Zurn P, Gupta N, et al. Monitoring and evaluation of human resources for health: an international perspective. *Hum Resour Health* 2003;1(1):3. doi: 10.1186/1478-4491-1-3
- 3. Bodenheimer T. Primary care--will it survive? N Engl J Med 2006;355(9):861-4. doi: 10.1056/NEJMp068155
- LeGrand SB, Heintz JB. Palliative Medicine Fellowship: A Study of Resident Choices. *Journal of Pain and Symptom Management* 2012;43(3):558-68. doi: 10.1016/j.jpainsymman.2011.04.018
- 5. Kim YY, Kim UN, Kim YS, et al. Factors associated with the specialty choice of Korean medical students: a cross-sectional survey. *Human Resources for Health* 2016;14:8. doi: 10.1186/s12960-016-0141-8
- McNally SA. Competition ratios for different specialties and the effect of gender and immigration status. J R Soc Med 2008;101(10):489-92. doi: 10.1258/jrsm.2008.070284
- 7. Reed VA, Jernstedt GC, Reber ES. Understanding and improving medical student specialty choice: a synthesis of the literature using decision theory as a referent. *Teach Learn Med* 2001;13(2):117-29. doi: 10.1207/S15328015TLM1302_7
- 8. Al-Ansari SS, Khafagy MA. FACTORS AFFECTING THE CHOICE OF HEALTH SPECIALTY BY MEDICAL GRADUATES. *Journal of Family & Community Medicine* 2015;13(3):119-23.
- 9. Leduc N, Vanasse A, Scott I, et al. The career decision-making process of medical students and residents and the choice of specialty and practice location: how does Postgraduate Medical Education fit in? 2011
- 10. Delamothe T. Modernising Medical Careers: final report. BMJ 2008;336(7635):54-55.
- 11. Goldacre MJ, Laxton L, Harrison EM, et al. Early career choices and successful career progression in surgery in the UK: prospective cohort studies. *Bmc Surgery* 2010;10:11. doi: 10.1186/1471-2482-10-32
- 12. Weissman C, Zisk-Rony RY, Schroeder JE, et al. Medical specialty considerations by medical students early in their clinical experience. *Isr J Health Policy Res* 2012;1(1):13. doi: 10.1186/2045-4015-1-13
- 13. Jackson C, Ball J, Hirsh W, et al. Informing choices: the need for career advice in medical training. Cambridge: National institute for careers Education and Counseling 2003
- 14. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *J Clin Epidemiol* 2009;62(10):1006-12. doi: 10.1016/j.jclinepi.2009.06.005
- 15. Borenstein M, Hedges LV, Higgins JP, et al. A basic introduction to fixed-effect and random-effects models for meta-analysis. *Res Synth Methods* 2010;1(2):97-111. doi: 10.1002/jrsm.12
- Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327(7414):557-60. doi: 10.1136/bmj.327.7414.557
- 17. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Stat Med* 2002;21(11):1539-58. doi: 10.1002/sim.1186
- 18. Sterne JA, Juni P, Schulz KF, et al. Statistical methods for assessing the influence of study characteristics on treatment effects in 'meta-epidemiological' research. *Stat Med* 2002;21(11):1513-24. doi: 10.1002/sim.1184

- 19. Borenstein M, Hedges LV, Higgins J, et al. Criticisms of meta□analysis. *Introduction to meta-analysis* 2009:377-87.
- 20. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. *BMJ* 1997;315(7109):629-34.
- 21. Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. *J Clin Epidemiol* 2001;54(10):1046-55.
- 22. Bodenheimer T, Berenson RA, Rudolf P. The primary care-specialty income gap: why it matters. *Annals of internal medicine* 2007;146(4):301-6.
- 23. Bodenheimer T, Pham HH. Primary care: current problems and proposed solutions. *Health Aff (Millwood)* 2010;29(5):799-805. doi: 10.1377/hlthaff.2010.0026
- 24. Association AH. The hospital workforce shortage: Immediate and future. Trend Watch 2001;3(2):1-8.
- Compton MT, Frank E, Elon L, et al. Changes in US medical students' specialty interests over the course of medical school. *Journal of General Internal Medicine* 2008;23(7):1095-100. doi: 10.1007/s11606-008-0579-z
- 26. Indyk D, Deen D, Fornari A, et al. The influence of longitudinal mentoring on medical student selection of primary care residencies. *BMC medical education* 2011;11(1):27.
- 27. Gill H, McLeod S, Duerksen K, et al. Factors influencing medical students' choice of family medicine Effects of rural versus urban background. *Canadian Family Physician* 2012;58(11):E649-E57.
- 28. Richardson JD. Workforce and lifestyle issues in general surgery training and practice. *Archives of surgery* (Chicago, Ill: 1960) 2002;137(5):515-20.
- 29. Newton DA, Grayson MS, Thompson LF. The variable influence of lifestyle and income on medical students' career specialty choices: data from two U.S. medical schools, 1998-2004. *Academic medicine : journal of the Association of American Medical Colleges* 2005;80(9):809-14.
- 30. Orrico K. Ensuring an adequate neurosurgical workforce for 21st century. Surgeons AAoN 2012
- 31. Wright SM, Wong A, Newill CA. The impact of role models on medical students. *Journal of General Internal Medicine* 1997;12(1):53-56.
- 32. Glazer GM, Ruiz-Wibbelsmann JA. Decades of perceived mediocrity: prestige and radiology. *Radiology* 2011;260(2):311-16.
- 33. Schwartzbaum AM, McGrath JH, Rothman RA. The perception of prestige differences among medical subspecialities. *Soc Sci Med* 1973;7(5):365-71.
- 34. Parsa S, Aghazadeh A, Nejatisafa AA, et al. Freshmen versus Interns' Specialty Interests. *Archives of Iranian Medicine* 2010;13(6):509-15.
- 35. Komorita SS. Attitude Content, Intensity, and the Neutral Point on a Likert Scale. *J Soc Psychol* 1963;61:327-34. doi: 10.1080/00224545.1963.9919489
- 36. Baggaley AR, Hull AL. The effect of nonlinear transformations on a Likert scale. *Eval Health Prof* 1983;6(4):483-91.
- 37. Norman G. Likert scales, levels of measurement and the "laws" of statistics. Advances in health sciences

education: theory and practice 2010;15(5):625-32. doi: 10.1007/s10459-010-9222-y

- Smith F, Lambert TW, Goldacre MJ. Factors influencing junior doctors' choices of future specialty: trends over time and demographics based on results from UK national surveys. *Journal of the Royal Society of Medicine* 2015;108(10):396-405. doi: 10.1177/0141076815599674
- 39. Cochran A, Melby S, Neumayer LA. An Internet-based survey of factors influencing medical student selection of a general surgery career. *American Journal of Surgery* 2005;189(6):742-46. doi: 10.1016/j.amjsurg.2005.03.019
- 40. Hauer KE, Durning SJ, Kernan WN, et al. Factors associated with medical students' career choices regarding internal medicine. *Jama-Journal of the American Medical Association* 2008;300(10):1154-64. doi: 10.1001/jama.300.10.1154
- 41. Johnson AL, Sharma J, Chinchilli VM, et al. Why do medical students choose orthopaedics as a career? *The Journal of bone and joint surgery American volume* 2012;94(11):e78. doi: 10.2106/jbjs.k.00826 [published Online First: 2012/05/29]
- 42. Kiolbassa K, Miksch A, Hermann K, et al. Becoming a general practitioner Which factors have most impact on career choice of medical students? *Bmc Family Practice* 2011;12:7. doi: 10.1186/1471-2296-12-25
- 43. Klingensmith ME, Cogbill TH, Luchette F, et al. Factors Influencing the Decision of Surgery Residency Graduates to Pursue General Surgery Practice Versus Fellowship. *Annals of Surgery* 2015;262(3):449-55. doi: 10.1097/sla.0000000000001435
- 44. Lee JY, Kerbl DC, McDougall EM, et al. Medical Students Pursuing Surgical Fields Have No Greater Innate Motor Dexterity than Those Pursuing Nonsurgical Fields. *Journal of Surgical Education* 2012;69(3):360-63. doi: 10.1016/j.jsurg.2011.11.005
- 45. Macdonald C, Cawood T. Factors influencing career decisions in internal medicine. *Internal Medicine Journal* 2012;42(8):918-23. doi: 10.1111/j.1445-5994.2012.02793.x
- Paiva RE, Vu NV, Verhulst SJ. The effect of clinical experiences in medical school on specialty choice decisions. J Med Educ 1982;57(9):666-74.
- 47. Ni Chroinin D, Cronin E, Cullen W, et al. Would you be a geriatrician? Student career preferences and attitudes to a career in geriatric medicine. *Age Ageing* 2013;42(5):654-7. doi: 10.1093/ageing/aft093 [published Online First: 2013/08/07]
- 48. Rogers LQ, Fincher RM, Lewis LA. Factors influencing medical students to choose primary care or non-primary care specialties. *Academic medicine : journal of the Association of American Medical Colleges* 1990;65(9 Suppl):S47-8.
- Abendroth J, Schnell U, Lichte T, et al. Motives of former interns in general practice for speciality-choice--results of a cross-sectional study among graduates 2007 to 2012. GMS Zeitschrift fur medizinische Ausbildung 2014;31(1):Doc11. doi: 10.3205/zma000903 [published Online First: 2014/02/28]
- 50. Alawad A, Khan WS, Abdelrazig YM, et al. Factors considered by undergraduate medical students when selecting specialty of their future careers. *Pan African Medical Journal* 2015;20:6. doi: 10.11604/pamj.2015.20.102.4715
- 51. Azizzadeh A, McCollum CH, Miller CC, 3rd, et al. Factors influencing career choice among medical students interested in surgery. *Curr Surg* 2003;60(2):210-3. doi: 10.1016/s0149-7944(02)00679-7 [published Online First: 2004/02/20]

- 52. Celenza A, Bharath J, Scop J. Improving the attractiveness of an emergency medicine career to medical students: An exploratory study. *Emergency Medicine Australasia* 2012;24(6):625-33. doi: 10.1111/j.1742-6723.2012.01607.x
- 53. Dolan-Evans E, Rogers GD. Barriers for students pursuing a surgical career and where the Surgical Interest Association can intervene. *Anz Journal of Surgery* 2014;84(6):406-11. doi: 10.1111/ans.12521
- 54. Boyd JS, Clyne B, Reinert SE, et al. Emergency Medicine Career Choice: A Profile of Factors and Influences from the Association of American Medical Colleges (AAMC) Graduation Questionnaires. *Academic Emergency Medicine* 2009;16(6):544-49. doi: 10.1111/j.1553-2712.2009.00385.x
- 55. Egerton EA. Choice of career of doctors who graduated from Queen's University, Belfast in 1977. *Med Educ* 1985;19(2):131-7.
- Diderichsen S, Johansson EE, Verdonk P, et al. Few gender differences in specialty preferences and motivational factors: a cross-sectional Swedish study on last-year medical students. *Bmc Medical Education* 2013;13:8, doi: 10.1186/1472-6920-13-39
- 57. Ferrari S, Reggianini C, Mattei G, et al. International Study of Student Career Choice in Psychiatry (ISoSCCiP): Results from Modena, Italy. *International Review of Psychiatry* 2013;25(4):450-59. doi: 10.3109/09540261.2013.804402
- 58. Freire MDM, Jordao LMR, Ferreira ND, et al. Motivation Towards Career Choice of Brazilian Freshman Students in a Fifteen-Year Period. *Journal of Dental Education* 2011;75(1):115-21.
- Buddeberg-Fischer B, Klaghofer R, Abel T, et al. Swiss residents' speciality choices--impact of gender, personality traits, career motivation and life goals. BMC Health Serv Res 2006;6:137. doi: 10.1186/1472-6963-6-137
- 60. Dorsey ER, Jarjoura D, Rutecki GW. The influence of controllable lifestyle and sex on the specialty choices of graduating U.S. medical students, 1996-2003. *Academic medicine : journal of the Association of American Medical Colleges* 2005;80(9):791-6. [published Online First: 2005/08/27]
- 61. Ekenze SO, Ugwumba FO, Obi UM, et al. Undergraduate Surgery Clerkship and the Choice of Surgery as a Career: Perspective from a Developing Country. *World Journal of Surgery* 2013;37(9):2094-100. doi: 10.1007/s00268-013-2073-y
- 62. Barikani A, Afaghi M, Barikani F, et al. Perception of the medical students on their future career in Qazvin University of Medical Sciences. *Global journal of health science* 2012;4(4):176-80. doi: 10.5539/gjhs.v4n4p176 [published Online First: 2012/09/18]
- 63. Bittaye M, Odukogbe AT, Nyan O, et al. Medical students' choices of specialty in The Gambia: the need for career counseling. *BMC Med Educ* 2012;12:72. doi: 10.1186/1472-6920-12-72
- 64. Bonura EM, Lee ES, Ramsey K, et al. Factors Influencing Internal Medicine Resident Choice of Infectious Diseases or Other Specialties: A National Cross-sectional Study. *Clinical Infectious Diseases* 2016;63(2):155-63. doi: 10.1093/cid/ciw263
- 65. Al-Fouzan R, Al-Ajlan S, Marwan Y, et al. Factors affecting future specialty choice among medical students in Kuwait. *Medical Education Online* 2012;17:7. doi: 10.3402/meo.v17i0.19587
- 66. AlKot MM, Gouda MA, KhalafAllah MT, et al. Family Medicine in Egypt From Medical Students' Perspective: A Nationwide Survey. *Teaching and Learning in Medicine* 2015;27(3):264-73. doi: 10.1080/10401334.2015.1044654

- 67. Borges NJ, Manuel RS, Duffy RD, et al. Influences on specialty choice for students entering person-oriented and technique-oriented specialties. *Medical Teacher* 2009;31(12):1086-88. doi: 10.3109/01421590903183787
- 68. Budd S, Kelley R, Day R, et al. Student attitudes to psychiatry and their clinical placements. *Medical Teacher* 2011;33(11):E586-E92. doi: 10.3109/0142159x.2011.610836
- Corrigan MA, Shields CJ, Redmond HP. Factors influencing surgical career choices and advancement in Ireland and Britain. World Journal of Surgery 2007;31(10):1921-29. doi: 10.1007/s00268-007-9175-3
- 70. Davis CR, Trevatt AEJ, McGoldrick RB, et al. How to train plastic surgeons of the future. *Journal of Plastic Reconstructive and Aesthetic Surgery* 2016;69(8):1134-40. doi: 10.1016/j.bjps.2016.05.001
- Deutsch T, Lippmann S, Frese T, et al. Who wants to become a general practitioner? Student and curriculum factors associated with choosing a GP career - a multivariable analysis with particular consideration of practice-orientated GP courses. Scandinavian Journal of Primary Health Care 2015;33(1):47-53. doi: 10.3109/02813432.2015.1020661
- 72. Gardner SP, Roberts-Thomson KF. The effect of a change in selection procedures on students' motivation to study dentistry. *Australian Dental Journal* 2014;59(1):2-8. doi: 10.1111/adj.12141
- 73. Dias MS, Sussman JS, Durham S, et al. Perceived benefits and barriers to a career in pediatric neurosurgery: a survey of neurosurgical residents Clinical article. *Journal of Neurosurgery-Pediatrics* 2013;12(5):422-33. doi: 10.3171/2013.5.peds12597
- 74. Goltz CJ, Bachusz RC, Mancini E, et al. Medical Student Career Survey-Vascular Surgery Awareness Initiative. *Annals of Vascular Surgery* 2013;27(2):225-31. doi: 10.1016/j.avsg.2012.02.012
- 75. Gupta NB, Khadilkar SV, Bangar SS, et al. Neurology as career option among postgraduate medical students. Annals of Indian Academy of Neurology 2013;16(4):478-82. doi: 10.4103/0972-2327.120427
- 76. Hanzlick R, Prahlow JA, Denton S, et al. Selecting forensic pathology as a career A survey of the post with an eye on the future. American Journal of Forensic Medicine and Pathology 2008;29(2):114-22. doi: 10.1097/PAF.0b013e318174f0a9
- 77. Harris MC, Marx J, Gallagher PR, et al. General vs subspecialty pediatrics Factors leading to residents' career decisions over a 12-year period. *Archives of Pediatrics & Adolescent Medicine* 2005;159(3):212-16. doi: 10.1001/archpedi.159.3.212
- 78. Hauer KE, Fagan MJ, Kernan W, et al. Internal medicine clerkship directors' perceptions about student interest in internal medicine careers. *Journal of General Internal Medicine* 2008;23(7):1101-04. doi: 10.1007/s11606-008-0640-y
- Labiris G, Vamvakerou V, Tsolakaki O, et al. Perceptions of Greek medical students regarding medical profession and the specialty selection process during the economic crisis years. *Health Policy* 2014;117(2):203-09. doi: 10.1016/j.healthpol.2014.04.009
- 80. Lambert TW, Goldacre MJ, Bron AJ. Career choices for ophthalmology made by newly qualified doctors in the United Kingdom, 1974-2005. *Bmc Ophthalmology* 2008;8:9. doi: 10.1186/1471-2415-8-3
- 81. Shah HH, Jhaveri KD, Sparks MA, et al. Career Choice Selection and Satisfaction among US Adult Nephrology Fellows. *Clinical Journal of the American Society of Nephrology* 2012;7(9):1513-20. doi: 10.2215/cjn.01620212
- 82. Lefevre JH, Roupret M, Kerneis S, et al. Career choices of medical students: a national survey of 1780

- students. Medical Education 2010;44(6):603-12. doi: 10.1111/j.1365-2923.2010.03707.x
- 83. Vicente B, Rosel L. Challenges for psychiatric recruitment and training in Chile. *International Review of Psychiatry* 2013;25(4):413-18. doi: 10.3109/09540261.2013.822348
- 84. Wiesenfeld L, Abbey S, Takahashi SG, et al. Choosing Psychiatry as a Career: Motivators and Deterrents at a Critical Decision-Making Juncture. *Canadian Journal of Psychiatry-Revue Canadianne De Psychiatrie* 2014;59(8):450-54.
- 85. Lam CYY, Cheung CSY, Hui ASY. Factors influencing the career interest of medical graduates in obstetrics and gynaecology in Hong Kong: a cross-sectional questionnaire survey. *Hong Kong Medical Journal* 2016;22(2):138-43.
- 86. Hartung PJ, Taber BJ, Richard GV. The physician values in practice scale: Construction and initial validation. *Journal of Vocational Behavior* 2005;67(2):309-20. doi: 10.1016/j.jvb.2004.05.008
- 87. Girasek E, Molnar R, Eke E, et al. The medical career choice motivations Results from a Hungarian study. Central European Journal of Medicine 2011;6(4):502-09. doi: 10.2478/s11536-011-0034-0
- 88. Zuccato JA, Kulkarni AV. The Impact of Early Medical School Surgical Exposure on Interest in Neurosurgery. Canadian Journal of Neurological Sciences 2016;43(3):410-16. doi: 10.1017/cjn.2015.332
- 89. Wilbanks L, Spollen J, Messias E. Factors Influencing Medical School Graduates Toward a Career in Psychiatry: Analysis from the 2011-2013 Association of American Medical Colleges Graduation Questionnaire. *Academic Psychiatry* 2016;40(2):255-60. doi: 10.1007/s40596-015-0287-z
- 90. West CP, Drefahl MM, Popkave C, et al. Internal Medicine Resident Self-report of Factors Associated with Career Decisions. *Journal of General Internal Medicine* 2009;24(8):946-49. doi: 10.1007/s11606-009-1039-0
- 91. Watmough S, Taylor D, Ryland I. Using questionnaires to determine whether medical graduates' career choice is determined by undergraduate or postgraduate experiences. *Medical Teacher* 2007;29(8):830-32. doi: 10.1080/01421590701551755
- 92. Thakur A, Fedorka P, Ko C, et al. Impact of mentor guidance in surgical career selection. *Journal of Pediatric Surgery* 2001;36(12):1802-04. doi: 10.1053/jpsu.2001.28842
- 93. Scott I, Gowans M, Wright B, et al. Determinants of choosing a career in surgery. *Medical Teacher* 2011;33(12):1011-17. doi: 10.3109/0142159x.2011.558533
- 94. Schnuth RL, Vasilenko P, Mavis B, et al. What influences medical students to pursue careers in obstetrics and gynecology? *American Journal of Obstetrics and Gynecology* 2003;189(3):639-43. doi: 10.1067/s0002-9378(03)00886-x
- 95. Richards JMJ, Drummond R, Murray J, et al. WHAT PROPORTION OF BASIC SURGICAL TRAINEES CONTINUE IN A SURGICAL CAREER? A SURVEY OF THE FACTORS WHICH ARE IMPORTANT IN INFLUENCING CAREER DECISIONS. Surgeon-Journal of the Royal Colleges of Surgeons of Edinburgh and Ireland 2009;7(5):270-75.
- 96. Reed CE, Vaporciyan AA, Erikson C, et al. Factors Dominating Choice of Surgical Specialty. *Journal of the American College of Surgeons* 2010;210(3):319-24. doi: 10.1016/j.jamcollsurg.2009.11.016
- 97. de Souza LCL, Mendonca VRR, Garcia GBC, et al. Medical Specialty Choice and Related Factors of Brazilian Medical Students and Recent Doctors. *Plos One* 2015;10(7):15. doi: 10.1371/journal.pone.0133585

98. Pikoulis E, Avgerinos ED, Pedeli X, et al. Medical students' perceptions on factors influencing a surgical career: The fate of general surgery in Greece. *Surgery* 2010;148(3):510-15. doi: 10.1016/j.surg.2010.01.013

- 99. Ozer U, Ceri V, Carpar E, et al. Factors Affecting the Choice of Psychiatry as a Specialty and Satisfaction among Turkish Psychiatry Residents. *Academic Psychiatry* 2016;40(2):299-303. doi: 10.1007/s40596-015-0346-5
- 100. Noble J, Hechter FJ, Karaiskos N, et al. Motivational factors and future life plans of orthodontic residents in the United States. *American Journal of Orthodontics and Dentofacial Orthopedics* 2010;137(5):623-30. doi: 10.1016/j.ajodo.2008.03.034
- 101. Noble J. Factors influencing career choice in ophthalmology. *Canadian Journal of Ophthalmology-Journal Canadian D Ophtalmologie* 2006;41(5):596-99.
- 102. Newton DA, Grayson MS, Thompson LF. The variable influence of lifestyle and income on medical students' career specialty choices: Data from two US medical schools, 1998-2004. *Academic Medicine* 2005;80(9):809-14. doi: 10.1097/00001888-200509000-00005
- 103. Moore HB, Moore PK, Grant AR, et al. Future of acute care surgery: A perspective from the next generation. *Journal of Trauma and Acute Care Surgery* 2012;72(1):94-99. doi: 10.1097/TA.0b013e31823b990a
- 104. Momen AA, Shakurnia A. Factors Influencing Pediatric Specialty Choice among Pediatric Residents of Ahvaz Jundishapur University of Medical Sciences. *International Journal of Pediatrics-Mashhad* 2015;3(3):701-06.
- 105. Mehmood SI, Kumar A, Al-Binali A, et al. Specialty preferences: Trends and perceptions among Saudi undergraduate medical students. *Medical Teacher* 2012;34:S51-S60. doi: 10.3109/0142159x.2012.656753
- 106. Loriot Y, Albiges-Sauvin L, Dionysopoulos D, et al. Why do residents choose the medical oncology specialty? Implications for future recruitment-results of the 2007 French Association of Residents in Oncology (AERIO) Survey. *Annals of Oncology* 2010;21(1):161-65. doi: 10.1093/annonc/mdp294
- 107. Lefevre JH, Karila L, Kerneis S, et al. Motivation of French medical students to pursue surgical careers: Results of national survey of 1742 students. *Journal of Visceral Surgery* 2010;147(3):E181-E86. doi: 10.1016/j.jviscsurg.2010.08.004

Legends

Table 1. Selected Characteristics of the 76 Studies Included in this Systematic Review and Meta-analysis

Table 2. Meta-analyses of the Factors Influencing Medical Students' Choice of Subspecialty

Table 3. Meta-regression of the EOI Value Stratified by Study-level Characteristics

Figure 1. Bar Graph of the Meta-analyses of the Factors Influencing Medical Students' Choice of Subspecialty Stratified by Region.

Figure 2. Bar Graph of the Meta-analyses of the Factors Influencing Medical Students' Choice of Subspecialty Stratified by Survey Year.

Supplements

Methods S1. Search strategy used in the current systematic review and meta-analysis.

Table S1. Quality Assessment of the Included Studies.

Table S2. Meta-analyses of the Factors Influencing Medical Students' Choice of Subspecialty Stratified by Region and Survey Year.

Figure S1. Flow Diagram of the Study Inclusion Process.

Figure S2. Forest Plot of "Academic Interest".

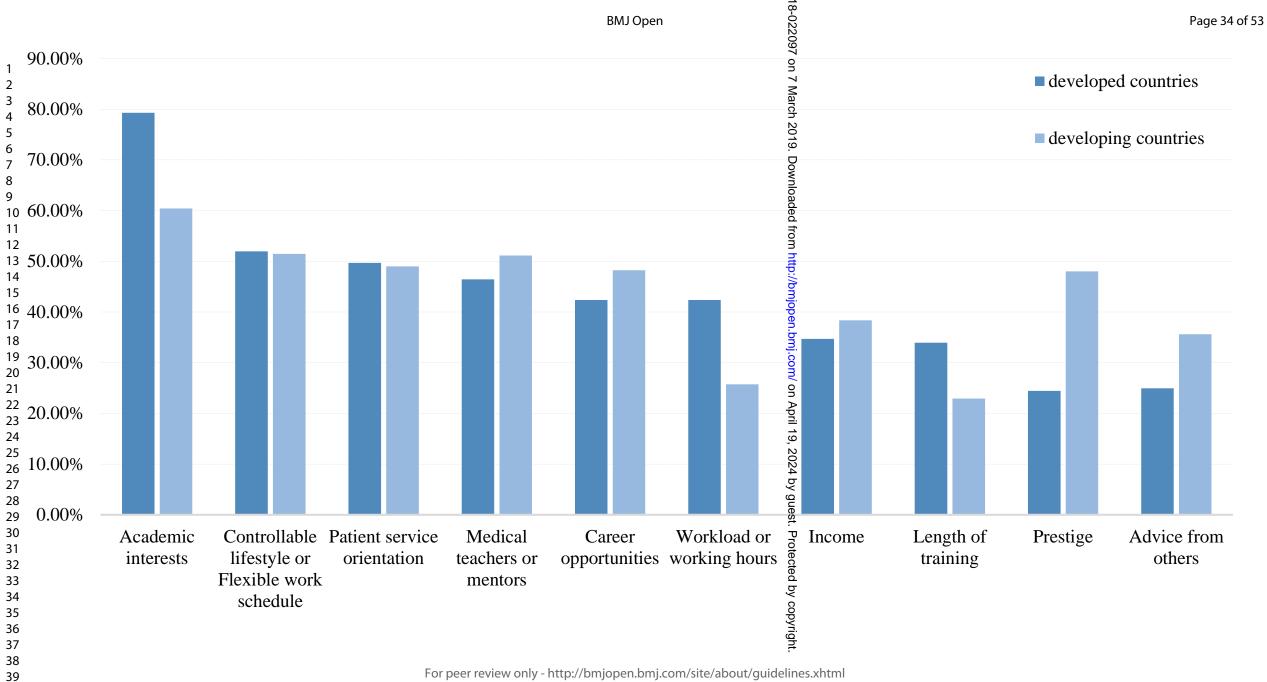
Figure S3. Forest Plot of "Competencies".

- Figure S4. Forest Plot of "Controllable Lifestyle or Flexible Work Schedule".
- Figure S5. Forest Plot of "Patient Service Orientation".
- Figure S6. Forest Plot of "Medical Teachers or Mentors".
- Figure S7. Forest Plot of "Career Opportunities".
- Figure S8. Forest Plot of "Workload or Working Hours".
- Figure S9. Forest Plot of "Income".
- Figure S10. Forest Plot of "Length of Training".
- Figure S11. Forest Plot of "Prestige".
- Figure S12. Forest Plot of "Advice from Others".
- Figure S13. Forest Plot of "Student Debt".
- Figure S14. Funnel Plots of the Publication Bias Tests of the 12 Factors.

Table 1. Selected Characteristics of the 76 Studies Included in this Systematic Review and Meta-analysis

		_		_		
First Author, Year	Country	Survey	Sample	Average	Men, No. (%)	Scores
First Author, Year	Country	years	size	age	Men, No. (76)	Scores
Smith et al, 38 2015	UK	2012	2,978	NR	NR	6
Cochran et al, ³⁹ 2005	USA	2002	408	27.2	214 (52.45)	5
Hauer et al, ⁴⁰ 2008	USA	2007	1,177	NR	NR	6
Johnson et al, ⁴¹ 2012	USA	2012	622	NR	NR	6
Kiolbassa et al, ⁴² 2011	Germany	2010	1,114	24.1	408 (36.62)	5
Klingensmith et al, 43 2015	USA	2013	792	NR	539 (68.06)	6
Lee et al,44 2012	USA	2012	100	NR	58 (58)	7
Macdonald et al, ⁴⁵ 2012	New Zealand	2011	134	NR	79 (58.96)	7
Parsa et al, ³⁴ 2010	Iran	2006-2007	137	27.34	49 (35.77)	7
Paiva et al, 46 1982	USA	1982	144	NR	NR	6
Ni Chroinin et al, ⁴⁷ 2013	UK	2009-2011	274	NR	112 (40.89)	7
Newton et al, ²⁹ 2005	USA	1998-2004	1,258	NR	642 (51.03)	8
Rogers et al, 48 1990	USA	1989	266	NR	205 (77.07)	6
Abendroth J et al, ⁴⁹ 2014	Germany	2007-2012	45	NR	14 (31)	7
Alawad et al, ⁵⁰ 2015	USA	2010-2011	45	NR	36 (80)	8
Azizzadeh et al, 51 2003	USA	2002	130	NR	NR	6
Celenza et al, ⁵² 2012	Australia	2009	216	NR	121 (56.02)	8
Dolan-Evans et al, 53 2014	Australia	2013	419	NR	215 (51.31)	8
Boyd et al, ⁵⁴ 2009	USA	2005-2006	5,848	NR	2,982 (50.99)	8
Egerton et al, ⁵⁵ 1985	Ireland	1977-1981	134	30	82 (61.19)	6
Diderichsen et al, ⁵⁶ 2013	Sweden	2006-2009	372	27	157 (42.20)	6
Ferrari et al, ⁵⁷ 2013	Italy, UK	2009-2011	45	25	NR	9
Freire et al, 58 2011	Brazil	2006-2008	290	23	102 (35.17)	7
Buddeberg-Fischer et al, 59 2006	Switzerland	2001-2003	522	31.1	241 (46.17)	9
Dorsey et al, 60 2005	USA	2003	11,029	NR	4,964 (45.01)	6
Ekenze et al, ⁶¹ 2013	Nigeria	2009-2010	96	25.9	NR	7
Barikani et al, ⁶² 2012	Australia	2008-2009	49	21.7	NR	6
Bittaye et al, ⁶³ 2012	Gambia	2011	106	24.1	48 (45.28)	6
Bonura et al, ⁶⁴ 2016	USA	2015	590	NR	321 (54.40)	9
Al-Fouzan et al, ⁶⁵ 2012	Kuwait	2011-2012	144	NR	NR	7
AlKot et al, ⁶⁶ 2015	Egypt	2013	451	21.8	NR	7
Borges et al, ⁶⁷ 2009	USA	2001-2005	341	NR	NR	5
Budd et al, ⁶⁸ 2011	UK	2011	870	22	NR	7
Corrigan et al, ⁶⁹ 2007	Ireland	2007	222	NR	142 (63.96)	7
Davis et al, 70 2016	UK	2016	173	NR	76 (43.93)	7
, -					/	

Deutsch et al, ⁷¹ 2015	Germany	2011	659	27.9	NR	8
Gardner et al, ⁷² 2014	Australia	1993-2005	631	NR	NR	7
Dias et al, ⁷³ 2013	UK	2013	495	NR	438 (88.48)	5
Goltz et al, ⁷⁴ 2013	USA	2012	102	24.5	34 (33.33)	6
Gupta et al, ⁷⁵ 2013	India	2013	243	NR	179 (73.36)	6
Hanzlick et al,76 2008	USA	2006	161	NR	NR	6
Harris et al, ⁷⁷ 2005	USA	1991-2002	104	NR	53 (50.96)	6
Hauer et al, ⁷⁸ 2008	USA	2008	80	NR	NR	6
Labiris et al, ⁷⁹ 2014	Greece	2014	111	23.6	55 (49.54)	6
Lambert et al,80 2008	UK	2007	17,393	NR	NR	6
Shah et al, 81 2012	USA	2011	892	NR	NR	6
Lefevre et al,82 2010	USA	2008	1,555	NR	589 (37.88)	6
Vicente et al, 83 2013	Chile	2013	30	NR	NR	6
Wiesenfeld et al,84 2014	Canada	2013	60	NR	NR	7
Lam et al,85 2016	Hong Kong	2015	228	23	NR	9
Hartung et al,86 2005	USA	2004	192	20.59	74 (38.54)	4
Girasek et al, ⁸⁷ 2011	Hungary	2011	536	NR	NR	5
Zuccato et al,88 2015	Canada	2012	37	NR	24 (65)	6
Wilbanks et al,89 2015	USA	2011-2013	29,227	NR	15,164 (51.99)	9
West et al, ⁹⁰ 2009	USA	2005-2007	14,890	NR	8,700 (58.43)	6
Watmough et al, ⁹¹ 2007	UK	2005	116	NR	66 (56.90)	4
Thakur et al, ⁹² 2001	USA	2001	56	NR	53 (95)	8
Scott et al, 93 2011	Canada	2002-2004	1,542	NR	NR	6
Schnuth et al,94 2003	USA	2002	203	NR	72 (53.47)	6
Richards et al, ⁹⁵ 2009	UK	2009	150	NR	108 (72.00)	5
Reed et al, 96 2009	USA	2008	2,022	NR	1,354 (66.96)	9
de Souza et al,97 2015	Portugal	2012	1,303	NR	NR	7
Pikoulis et al, ⁹⁸ 2010	Greece	2006-2007	87	NR	NR	6
Ozer et al, 99 2015	Turkey	2013	98	27.7	26 (26.53)	6
Noble et al, 100 2004	Canada	2004	21,296	NR	NR	8
Noble et al, 101 2010	Canada	2007	120	NR	NR	5
Newton et al, 102 2005	USA	2004	1,286	NR	NR	6
Moore et al, 103 2012	USA	2011	337	26	179 (53.12)	6
Momen et al, 104 2015	Iran	2014-2015	38	35.6	11 (29)	6
Mehmood et al, 105 2012	Saudi Arabia	2012	550	NR	348 (63.27)	6
Loriot et al, 106 2010	France	2007	44	NR	17 (39)	7
Lefevre et al, 107 2010	France	2008	522	23.8	198 (37.93)	7


Table 2. Meta-analyses of the Factors Influencing Medical Students' Choice of Subspecialty

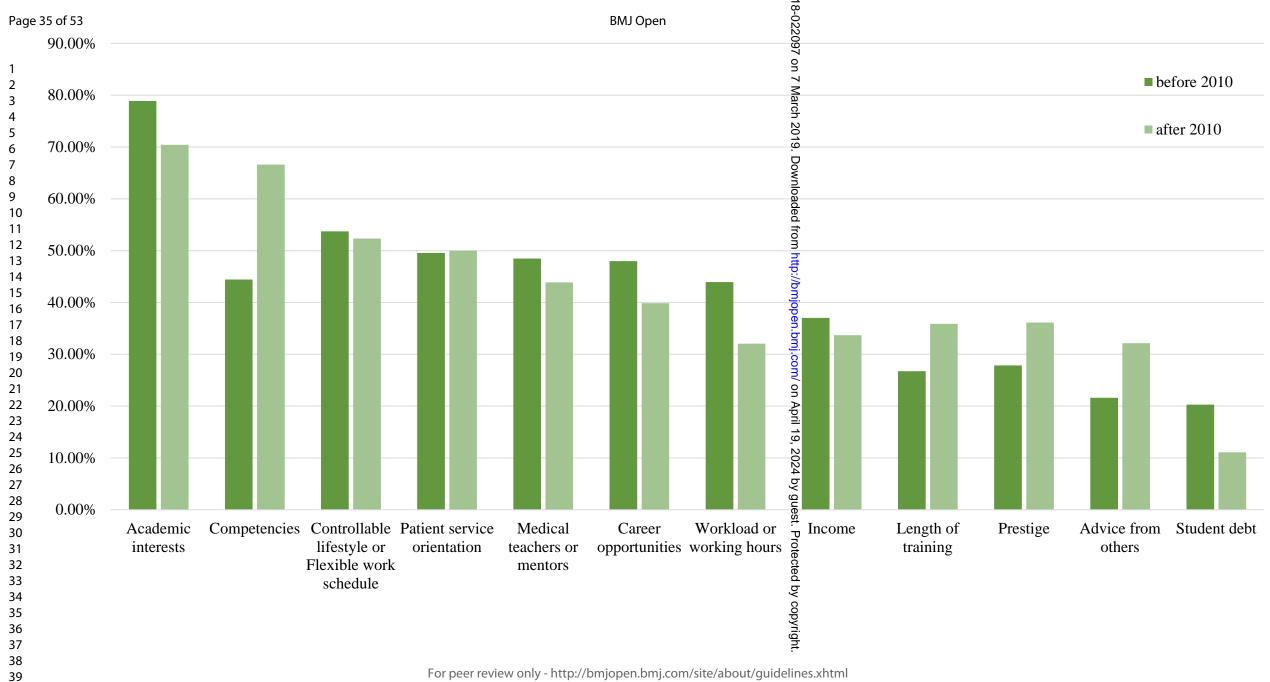

37 17 42 34 32 38 19	82,276 76,515 102,384 45,865 85,071 81,923	74.87 55.15 53.06 49.35	99.80 99.90 99.50	1.60 3.44 0.45	<pre>P-Value <0.0001 <0.0001 <0.0001</pre>
17 42 34 32 38	76,515 102,384 45,865 85,071	55.15 53.06 49.35	99.90 99.50	3.44	< 0.0001
17 42 34 32 38	76,515 102,384 45,865 85,071	55.15 53.06 49.35	99.90 99.50	3.44	< 0.0001
34 32 38	102,384 45,865 85,071	49.35		0.45	<0.0001
32 38	45,865 85,071		00.70		`U.UUU1
38	85,071		98.70	0.41	< 0.0001
	91.022	46.93	99.80	1.14	< 0.0001
19	81,923	44.00	99.70	1.15	< 0.0001
	21,870	37.92	98.40	0.72	< 0.0001
49	109,610	35.25	99.70	1.09	< 0.0001
18	42,046	32.30	98.10	0.20	< 0.0001
24		31.29	98.40	0.53	< 0.0001
18			99.80	0.02	< 0.0001
8			98.80	0.27	< 0.0001
	18	24 30,012 18 82,692	24 30,012 31.29 18 82,692 28.24	24 30,012 31.29 98.40 18 82,692 28.24 99.80	24 30,012 31.29 98.40 0.53 18 82,692 28.24 99.80 0.02

Table 3. Meta-regression of the EOI Value Stratified by Study-level Characteristics

Factor		P-Value
	Country	0.6302
Academic interests	Survey years	0.2711
	Specialty	0.4008
	Sample size	0.6537
	Country	0.8376
Competencies	Survey years	0.0151
•	Specialty	0.9398
	Sample size	0.5823
	Country	0.9614
Controllable lifestyle or flexible work schedule	Survey years	0.9822
controllation in estimate of the internal section and	Specialty	0.0035
	Sample size	0.7203
	Country	0.0833
Patient service orientation	Survey years	0.8524
	Specialty	0.0010
	Sample size	0.6358
Medical teachers or mentors	Country	0.0007
	Survey years	0.6376
victical teachers of mentors	Specialty	0.8141
	Sample size	0.5894
'arear annortunities	Country	0.5828
	Survey years	0.7546
Career opportunities	Specialty	0.0077
	Sample size	0.0081
	Country	0.3981
0Vd-1dd-i1	Survey years	0.3922
Workload or working hours	Specialty	0.1070
	Sample size	0.8205
	Country	0.7390
	Survey years	0.8774
Income	Specialty	0.0480
	Sample size	0.6786
	Country	0.7854
	Survey years	0.7229
Length of training	Specialty	0.7229
		0.7082
Draatica	Sample size	
Prestige	Country	0.3485
	32	

	Survey years	0.0950	
	Specialty	0.0172	
	Sample size	0.5214	
	Country	0.9328	
Advice from others	Survey years	0.0057	
	Specialty	< 0.0001	
	Sample size<200	< 0.0001	
Student debt	Country	0.0001	
Student debt	Survey years	0.5502	
	Sample size	0.0343	

SI Methods. Search strategy used in the current systematic review and meta-analysis.

Medical Students

- 1. Students, Medical [Mesh]
- 2. Medical students
- 3. Medical student
- 4. Student, Medical
- 5. OR / 1 4

Subspecialty Choice

- 6. Career choices
- 7. Choice, Career
- 8. Choices career
- 9. Specialties
- 10. Sub-specialties
- 11. Sub-descipline
- 12. OR / 6 11

Study design

13. Cross sectional study

14. Cross sectional study [Publication

Type]

- 15. Cross sectional study [Mesh Terms]
- 16. Systematic review
- 17. Systematic review [Publication Type]
- 18. Systematic review [Mesh Terms]
- 19. Meta-analysis [Title/Abstract]
- 20. Meta-analysis [Mesh Terms]
- 21. Meta-analysis [Publication Type]
- 22. OR / 12 21

Factors

23. Factors

Combined search

24. #5 AND #12AND #22 AND #23

Abbreviations: MeSH, Medical Subject Heading in Pubmed.

	e S1. Quality assessment o												
Quality	y assessment criteria	1	2	3	4	5	6	7	8	9	10	11	Scores
1	Smith et al, ³⁸ 2015	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
2	Cochran et al, ³⁹ 2005 Hauer et al, ⁴⁰ 2008	Y Y	U U	Y Y	Y Y	N N	Y Y	N N	Y Y	N N	N Y	N N	5 6
4	Johnson et al, 41 2012	Y	U	Y	Y	N	Y	N	Y	N N	Y	N	6
5	Kiolbassa et al, ⁴² 2011	Y	U	Y	Y	N	Y	N	Y	N	N	N	5
6	Klingensmith et al, ⁴³ 2015	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
7	Lee et al, ⁴⁴ 2012	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
8	Macdonald et al,45 2012	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
9	Parsa et al, ³⁴ 2010	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
10	Paiva et al, ⁴⁶ 1982	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
11	Ni Chroinin et al, ⁴⁷ 2013	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
12	Newton et al, ²⁹ 2005	Y	U	Y	Y	Y	Y	Y	Y	N	Y	N	8
13 14	Rogers et al, ⁴⁸ 1990 Abendroth J et al, ⁴⁹ 2014	Y Y	U U	Y Y	Y Y	N N	Y Y	N N	Y Y	N N	Y Y	N Y	6 7
15	Alawad et al, 50 2015	Y	U	Y	Y	N	Y	Y	Y	Y	Y	N	8
16	Azizzadeh et al, ⁵¹ 2003	Y	U	Y	Y	Y	Y	N	N	N	Y	N	6
17	Celenza et al, ⁵² 2012	Y	U	Y	Y	Y	Y	Y	N	Y	Y	N	8
18	Dolan-Evans et al, ⁵³ 2014	Y	U	Y	Y	Y	Y	N	Y	N	Y	Y	8
19	Boyd et al, ⁵⁴ 2009	Y	U	Y	Y	Y	Y	Y	Y	N	Y	N	8
20	Egerton et al,55 1985	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
21	Diderichsen et al, ⁵⁶ 2013	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
22	Ferrari et al, ⁵⁷ 2013	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	N	9
23	Freire et al, ⁵⁸ 2011	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
24	Buddeberg-Fischer et al, ⁵⁹ 2006	Y	U	Y	Y	N	Y	Y	Y	Y	Y	Y	9
25	Dorsey et al, ⁶⁰ 2005	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
26	Ekenze et al, ⁶¹ 2013	Y	U	Y	Y	Y	Y	Y	N	N	Y	N	7
27	Barikani et al, ⁶² 2012 Bittaye et al, ⁶³ 2012	Y Y	U U	Y Y	Y Y	N N	Y Y	N N	Y Y	N N	Y Y	N N	6
28 39	Bonura et al, 64 2016	Y	U	Y	Y	N Y	Y	N Y	Y	N Y	Y	N N	6 9
30	Al-Fouzan et al, 65 2012	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
31	AlKot et al, ⁶⁶ 2015	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
32	Borges et al, ⁶⁷ 2009	Y	U	Y	Y	N	Y	N	N	N	Y	N	5
33	Budd et al, ⁶⁸ 2011	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
34	Corrigan et al, ⁶⁹ 2007	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
35	Davis et al, ⁷⁰ 2016	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
36	Deutsch et al, ⁷¹ 2015	Y	U	Y	Y	Y	Y	N	Y	Y	Y	N	8
37	Gardner et al, ⁷² 2014	Y	U	Y	Y	N	Y	N	Y	N	Y	N	7
38	Dias et al, ⁷³ 2013	Y	U	Y	Y	N	Y	N	N	N	Y	N	5
39	Goltz et al, ⁷⁴ 2013	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
40 41	Gupta et al, ⁷⁵ 2013 Hanzlick et al, ⁷⁶ 2008	Y Y	U	Y	Y Y	N	Y	N	Y	N	Y	N	6
41	Harris et al, 77 2005	Y	U	Y Y	Y Y	N N	Y Y	N N	Y Y	N N	Y Y	N N	6 6
43	Hauer et al, 78 2008	Y	U	Y	Y	N	Y	N	Y	N N	Y	N	6
44	Labiris et al, ⁷⁹ 2014	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
45	Lambert et al, 80 2008	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
46	Shah et al, 81 2012	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
47	Lefevre et al,82 2010	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
48	Vicente et al,83 2013	Y	U	Y	Y	N	N	Y	N	Y	Y	N	6
49	Wiesenfeld et al,84 2014	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
50	Lam et al,85 2016	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	N	9
51	Hartung et al,86 2005	Y	U	Y	Y	N	Y	N	N	N	N	N	4
52	Girasek et al, ⁸⁷ 2011	Y	U	Y	Y	N	Y	N	N	N	Y	N	5
53	Zuccato et al, 88 2015	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
54	Wilbanks et al, 89 2015	Y	U	Y	Y	N	Y	Y	Y	Y	Y	Y	9
55 56	West et al, ⁹⁰ 2009 Watmough et al, ⁹¹ 2007	Y Y	U U	Y Y	Y Y	N N	Y N	N N	Y N	N N	Y Y	N N	6 4
57	Thakur et al, 92 2001	Y	U	Y	Y	Y	Y	Y	N N	Y	Y	N	8
58	Scott et al, 93 2011	Y Y	U	Y Y	Y Y	Y N	Y Y	Y N	N Y	Y N	Y Y	N N	6
59	Schnuth et al, ⁹⁴ 2003	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
60	Richards et al, 95 2009	Y	U	Y	Y	N	Y	N	N	N	Y	N	5
61	Reed et al, 96 2009	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	N	9
62	de Souza et al, ⁹⁷ 2015	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
63	Pikoulis et al, 98 2010	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
64	Ozer et al, 99 2015	Y	U	Y	Y	N	N	Y	N	Y	Y	N	6
65	Noble et al, ¹⁰⁰ 2004	Y	U	Y	Y	Y	Y	Y	Y	N	Y	N	8
66	Noble et al, ¹⁰¹ 2010	Y	U	Y	Y	N	Y	N	N	N	Y	N	5
67	Newton et al, 102 2005	Y	U	Y	Y	N	Y	Y	N	N	Y	N	6
68	Moore et al, 103 2012	Y	U	Y	Y	Y	Y	N	Y	N	N	N	6
69	Momen et al, 104 2015	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
70	Mehmood et al, 105 2012	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
71	Loriot et al, 106 2010	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7

Quality assessment criteria in detail

Lefevre et al,¹⁰⁷ 2010

- 1. Define the source of information (survey, record review).
- 2. List the inclusion and exclusion criteria for the exposed and unexposed subjects (cases and controls) or refer to previous publications.

- 3. Indicate the time period used for identifying patients.
- 4. Indicate whether the subjects were consecutive if not population-based.

Y

U

- 5. Indicate whether the evaluators of the subjective components of the study were masked to the other aspects of participants' status.
- 6. Describe any assessments undertaken for quality assurance purposes (e.g., test/retest of primary outcome measurements)
- 7. Explain any patient exclusion from the analyses.
- $8.\ Describe\ how\ confounding\ was\ assessed\ and/or\ controlled.$
- 9. If applicable, explain how missing data were handled in the analysis.
- 10. Summarize the patient response rates and the completeness of the data collection.
- 11. Clarify what follow-up, if any, was expected and the percentage of patients with incomplete data or follow-up.

[&]quot;Y": Yes; "N": No; "U": Unclear.

Table S2. Meta-analyses of the Factors Influencing Medical Students' Choice of Subspecialty Stratified by Region and Survey Year.

Factor	No. of		Total no. of	Extent of	<i>P</i> -Value	O Voluo
ractor		studies	participants	influence (%)	P-v arue	<i>Q</i> -Value
Academic interest	developed developing	27 10	79,910 2,366	79.30 60.41	0.02	3.37
readeline interest	before 2010 after 2010	29 8	44,174 38,102	78.88 70.44	0.33	1.40
Competencies	before 2010 after 2010	9 8	43,134 33,381	44.44 66.60	0.21	1.86
Controllable lifestyle or flexible	developed developing	36 6	100,799 1,581	51.97 51.47	0.53	0.89
work schedule	before 2010	22	62,945	53.72	0.99	0.02
work schedule	after 2010 developed	20 25	39,439 43,964	52.34 49.69	0.99	0.02
Patient service orientation	developing before 2010	9 18	1,901 40,997	48.99 49.56	0.83	0.31
	after 2010 developed	16 28	4,868 84,076	49.97 46.43		
Medical teachers or mentors	developing	4	995	51.14	0.73	0.48
	before 2010 after 2010	21 11	49,654 35,417	48.48 43.87	0.70	0.54
	developed developing	31 7	79,867 2,056	42.36 48.24	0.60	0.74
Career opportunities	before 2010 after 2010	20 18	43,417 38,506	47.97 39.87	0.24	1.68
	developed developing	14 5	20,789 1,081	42.36 25.72	0.34	1.35
Workload or working hours	before 2010	9	19,456	43.93	0.42	1.17
	after 2010 developed	10 38	2,414 106,910	32.04 34.69	0.90	0.17
Income	developing before 2010	11 25	2,700 68,714	38.36 37.01	0.50	0.95
	after 2010 developed	24 15	40,896 41,246	33.69 33.95		
Length of training	developing before 2010	3 7	800 8,811	22.92 26.72	0.31	1.48
	after 2010	11	33,234	35.87	0.28	1.59
Prestige	developed developing	16 8	27,806 2,206	24.45 48.02	0.01	4.31
11001150	before 2010 after 2010	12 12	25,542 4,470	27.86 36.12	0.25	1.67
	developed developing	14 4	81,205 1,487	24.95 35.62	0.36	1.33
Advice from others	before 2010	10	48,319	21.61	0.31	1.47
Student debt	after 2010 before 2010 after 2010	8 5 3	34,373 6,610 32,307	32.13 20.29 11.08	0.69	0.59

Figure S1. Flow Diagram of the Study Inclusion.

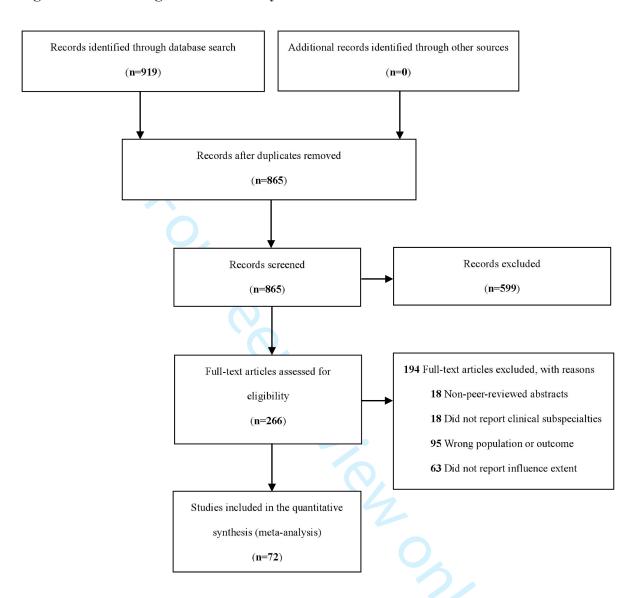


Figure S2. Forest Plot of "Academic Interest".

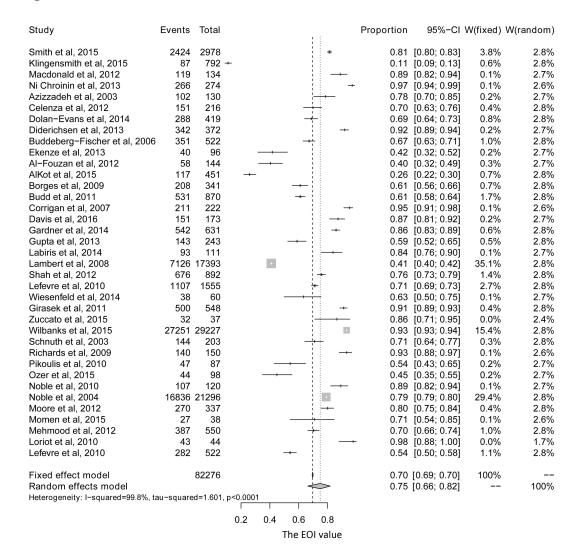


Figure S3. Forest Plot of "Competencies".

Study	Events	Total			:			Proportion	95%-CI	W(fixed)	W(random)
Smith et al, 2015 Lee et al, 2012	1471 12	2978 100			+				[0.48; 0.51] [0.06; 0.20]		5.9% 5.8%
Alawad et al, 2015	12	45			-			0.27	[0.15; 0.42]	0.1%	5.8%
Celenza et al, 2012	105	216		ļ.				0.49	[0.42; 0.55]	0.6%	5.9%
Diderichsen et al, 2013	305	372		1			\rightarrow	0.82	[0.78; 0.86]	0.6%	5.9%
Bittaye et al, 2012	81	106		- 1		_	-	0.76	[0.67; 0.84]	0.2%	5.9%
Harris et al, 2005	62	104		į	-			0.60	[0.50; 0.69]	0.3%	5.9%
Lambert et al, 2008	5523	17393		+				0.32	[0.31; 0.32]	40.9%	5.9%
Lefevre et al, 2010	267	1555	+	į				0.17	[0.15; 0.19]	2.4%	5.9%
Wilbanks et al, 2015	27731	29227		- 1				0.95	[0.95; 0.95]	15.4%	5.9%
Thakur et al, 2001	29	56		\div	- + }	_		0.52	[0.38; 0.65]	0.2%	5.8%
Reed et al, 2009	1302	2022		1		-81-		0.64	[0.62; 0.66]	5.0%	5.9%
Noble et al, 2010	56	120		- :	+			0.47	[0.38; 0.56]	0.3%	5.9%
Noble et al, 2004	2560	21296	+	į				0.12	[0.12; 0.12]	24.4%	5.9%
Moore et al, 2012	270	337		- 1	į		$\overline{}$	0.80	[0.75; 0.84]	0.6%	5.9%
Momen et al, 2015	30	38		- 1		_		- 0.79	[0.63; 0.90]	0.1%	5.7%
Mehmood et al, 2012	462	550						0.84	[0.81; 0.87]	0.8%	5.9%
Fixed effect model		76515		į				0.42	[0.41; 0.42]	100%	
Random effects mode	I			-			-		[0.34; 0.75]		100%
Heterogeneity: I-squared=	99.9%, tau	-squared	d=3.439,	p<0.000	01		_		-		
				٠,		١	1				
			0.2	0.4		0.6	8.0				

The EOI value

Figure S4. Forest Plot of "Controllable Lifestyle or Flexible Work Schedule".

Smith et al, 2015 1432 2978	riguite 54. Porest	1 101	or Co	unti unable Lifestyn	or riexi	DIE WUI	K SCH	tuule .
Cochran et al, 2005	Study	Events	Total	11	Proportion	95%-CI	W(fixed)	W(random)
Cochran et al, 2005	Smith et al. 2015	1432	2978	#	0.48	[0.46: 0.50]	3.3%	2.5%
Hauer et al, 2008				 !				
Kiolbassa et al, 2011 39 1114 +				+				
Lee et al, 2012 16 100				+ !				
Macdonald et al, 2012 80 134 Parsa et al, 2010 116 137								
Parsa et al, 2010 116 137 Newton et al, 2005 761 1258 Rogers et al, 1990 132 266 Abendroth J et al, 2014 30 45 Alawad et al, 2015 16 45 Azizzadeh et al, 2001 156 216 Dolan-Evans et al, 2014 309 419 Boyd et al, 2009 3695 5848 Ferrari et al, 2013 31 45 Dorsey et al, 2012 63 106 Alikot et al, 2012 63 106 Bittaye et al, 2012 63 106 Alkot et al, 2011 627 Boyd et al, 2011 627 Bords et al, 2011 627 Boyd et al, 2015 Boyd et al, 2015 Boyd et al, 2016 Boyd et al, 2015 Boyd et al, 2016 Boyd et al, 2016 Boyd et al, 2017 Boyd et al, 2018 Boyd et al, 2018 Boyd et al, 2019 Boyd et al, 2019 Boyd et al, 2011 627 Boyd et al, 2015 Boyd et al, 2015 Boyd et al, 2015 Boyd et al, 2015 Boyd et al, 2016 Boyd et al, 2016 Boyd et al, 2017 Boyd et al, 2018 Boyd et al, 2018 Boyd et al, 2018 Boyd et al, 2019 Boyd et al, 2011 Boyd et al, 2015 Boyd et al, 2015 Boyd et al, 2016 Boyd et	·			<u> </u>				
Newton et al, 2005 761 1258 Rogers et al, 1990 132 266				<u> </u>				
Rogers et al, 1990 132 266				-				
Abendroth J et al, 2014 30 45 Alawad et al, 2015 16 45 Azizzadeh et al, 2003 85 130 Celenza et al, 2012 156 216 Dolan-Evans et al, 2014 309 419 Boyd et al, 2009 3695 5848 Ferrari et al, 2013 31 45 Dorsey et al, 2005 4516 11029 Biltaye et al, 2012 63 106 AlKot et al, 2015 182 451 Davis et al, 2011 627 870 Deutsch et al, 2016 67 173 Deutsch et al, 2013 81 495 Dias et al, 2013 85 243 Harris et al, 2013 85 243 Harris et al, 2005 10 192 Harring et al, 2005 10 192 Wilbanks et al, 2015 29 37 West et al, 2009 10088 14890 Scott et al, 2009 10088 14890 Scott et al, 2009 10 1088 Celenza et al, 2016 61 106 Af5 Do.65 [0.57; 0.74] 0.0% C.1% C.665 [0.57; 0.74] 0.1% C.24% C.557 C.665 [0.57; 0.74] 0.1% C.24% C.665 [0.57; 0.74] 0.1% C.666 [0.67; 0.69] 0.1% C.57% C.67% C.68 [0.67; 0.69] 0.1% C.68 [0.67; 0.69] 14.4% C.57% C.68 [0.67; 0.69] 14.								
Alawad et al, 2015	9							
Azizzadeh et al, 2003 85 130 Celenza et al, 2012 156 216 Dolan-Evans et al, 2014 309 419 Boyd et al, 2009 3695 5848 Ferrari et al, 2013 31 45 Dorsey et al, 2012 63 106 AlKot et al, 2015 182 451								
Celenza et al, 2012 156 216 → 0.72 [0.66; 0.78] 0.2% 2.4% Dolan-Evans et al, 2014 309 419 → 0.74 [0.69; 0.78] 0.4% 2.5% Boyd et al, 2009 3695 5848 • 0.63 [0.62; 0.64] 6.0% 2.5% Ferrari et al, 2013 31 45 • 0.69 [0.53; 0.82] 0.0% 2.1% Dorsey et al, 2005 4516 11029 • 0.41 [0.40; 0.42] 11.8% 2.5% Bittaye et al, 2012 63 106 • 0.59 [0.49; 0.69] 0.1% 2.3% AlKot et al, 2015 182 451 • 0.40 [0.36; 0.45] 0.5% 2.5% Borges et al, 2009 309 338 • • 0.91 [0.88; 0.94] 0.1% 2.3% Budd et al, 2011 627 870 • • 0.91 [0.88; 0.94] 0.1% 2.3% Deutsch et al, 2015 591 657 • • 0.90 [0.87; 0.92] 0.3% 2.5% Goltz et al, 2013 64 102 • • 0.90 [0.87; 0.92] 0.3%				<u>!</u>				
Dolan-Evans et al, 2014 309 419 → 0.74 [0.69; 0.78] 0.4% 2.5% Boyd et al, 2009 3695 5848 0.63 [0.62; 0.64] 6.0% 2.5% Ferrari et al, 2013 31 45 → 0.69 [0.53; 0.82] 0.0% 2.1% Dorsey et al, 2005 4516 11029 → 0.41 [0.40; 0.42] 11.8% 2.5% Bittaye et al, 2012 63 106 → 0.59 [0.49; 0.69] 0.1% 2.3% AlKot et al, 2015 182 451 → 0.40 [0.36; 0.45] 0.5% 2.5% Borges et al, 2009 309 338 → 0.91 [0.88; 0.94] 0.1% 2.3% Budd et al, 2011 627 870 → 0.72 [0.69; 0.75] 0.8% 2.5% Davis et al, 2016 67 173 → 0.72 [0.69; 0.75] 0.8% 2.5% Deutsch et al, 2013 81 495 → 0.90 [0.87; 0.92] 0.3% 2.4% Dias et al, 2013 64 102 → 0.63 [0.53; 0.72] 0.1% 2.3% Gupta et al, 2013 85 243<								
Boyd et al, 2009 3695 5848 Ferrari et al, 2013 31 45 Dorsey et al, 2005 4516 11029 Bittaye et al, 2015 182 451 Borges et al, 2015 182 451 Borges et al, 2019 309 338 Budd et al, 2011 627 870 Davis et al, 2016 67 173 Deutsch et al, 2013 81 495 Dias et al, 2013 81 495 Goltz et al, 2013 85 243 Harris et al, 2013 85 243 Harris et al, 2005 55 104 Hartung et al, 2014 76 111 Hartung et al, 2015 21043 29227 Wilbanks et al, 2015 21043 29227 West et al, 2009 1088 14890 Scott et al, 2011 988 1542 Richards et al, 2001 988 1542 Richards et al, 2009 42 150 D.63 [0.62; 0.64] 6.0% D.63 [0.62; 0.64] 6.0% D.63 [0.62; 0.64] 6.0% D.64 [0.62; 0.66] 1.6% D.65 [0.62; 0.64] 6.0% D.68 [0.67; 0.64] 0.0% D.64 [0.62; 0.66] 1.6% D.65 [0.62; 0.66] 1.6% D.								
Ferrari et al, 2013 31 45 Dorsey et al, 2005 4516 11029 Bittaye et al, 2012 63 106 AlKot et al, 2015 182 451				1 =				
Dorsey et al, 2005								
Bittaye et al, 2012 63 106 AlKot et al, 2015 182 451				*				
AlKot et al, 2015				<u> </u>				
Borges et al, 2009 309 338	•							
Budd et al, 2011 627 870				_ :				
Davis et al, 2016 67 173 → 0.39 [0.31; 0.46] 0.2% 2.4% Deutsch et al, 2013 591 657 → 0.90 [0.87; 0.92] 0.3% 2.4% Dias et al, 2013 81 495 → 0.16 [0.13; 0.20] 0.3% 2.5% Gupta et al, 2013 64 102 → 0.63 [0.53; 0.72] 0.1% 2.3% Harris et al, 2013 85 243 → 0.53 [0.29; 0.41] 0.2% 2.4% Harris et al, 2005 55 104 → 0.68 [0.59; 0.77] 0.1% 2.3% Labiris et al, 2014 76 111 → 0.68 [0.59; 0.77] 0.1% 2.3% Hartung et al, 2005 10 192 → 0.05 [0.03; 0.09] 0.0% 2.1% Girasek et al, 2011 342 537 → 0.64 [0.59; 0.68] 0.5% 2.5% Zuccato et al, 2015 29 37 → 0.64 [0.62; 0.90] 0.0% 1.9% West et al, 2009 10088 14890 □ 0.68 [0.67; 0.69] 14.4% 2.5% Scott et al, 2011 988								
Deutsch et al, 2015 591 657 + 0.90 [0.87; 0.92] 0.3% 2.4% Dias et al, 2013 81 495 + 0.16 [0.13; 0.20] 0.3% 2.5% Goltz et al, 2013 64 102 - 0.63 [0.53; 0.72] 0.1% 2.3% Gupta et al, 2013 85 243 - 0.35 [0.29; 0.41] 0.2% 2.4% Harris et al, 2005 55 104 - 0.53 [0.43; 0.63] 0.1% 2.3% Labiris et al, 2014 76 111 - 0.68 [0.59; 0.77] 0.1% 2.3% Hartung et al, 2005 10 192 +- 0.05 [0.03; 0.09] 0.0% 2.1% Girasek et al, 2011 342 537 - 0.64 [0.59; 0.68] 0.5% 2.5% Zuccato et al, 2015 29 37 - 0.78 [0.62; 0.90] 0.0% 1.9% Wilbanks et al, 2015 21043 29227 0.72 [0.71; 0.73] 26.1% 2.5% West et al, 2009 10088 14890 0.68 [0.67; 0.69] 14.4% 2.5% Scott et al, 2011 988 1542 + 0.64 [0.6	· · · · · · · · · · · · · · · · · · ·							
Dias et al, 2013 81 495 + 0.16 [0.13; 0.20] 0.3% 2.5% Goltz et al, 2013 64 102 - 0.63 [0.53; 0.72] 0.1% 2.3% Gupta et al, 2013 85 243 - 0.35 [0.29; 0.41] 0.2% 2.4% Harris et al, 2005 55 104 - 0.53 [0.43; 0.63] 0.1% 2.3% Labiris et al, 2014 76 111 - 0.68 [0.59; 0.77] 0.1% 2.3% Hartung et al, 2005 10 192 +- 0.05 [0.03; 0.09] 0.0% 2.1% Girasek et al, 2011 342 537 - 0.64 [0.59; 0.68] 0.5% 2.5% Wilbanks et al, 2015 29 37 - 0.78 [0.62; 0.90] 0.0% 1.9% West et al, 2015 21043 29227 0.72 [0.71; 0.73] 26.1% 2.5% West et al, 2009 10088 14890 0.68 [0.67; 0.69] 14.4% 2.5% Scott et al, 2011 988 1542 + 0.64 [0.62; 0.66] 1.6% 2.5% Richards et al, 2009 42 150 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Goltz et al, 2013 64 102								
Gupta et al, 2013 85 243 → 0.35 [0.29; 0.41] 0.2% 2.4% Harris et al, 2005 55 104 → 0.53 [0.43; 0.63] 0.1% 2.3% Labiris et al, 2014 76 111 → 0.68 [0.59; 0.77] 0.1% 2.3% Hartung et al, 2005 10 192 → 0.05 [0.03; 0.09] 0.0% 2.1% Girasek et al, 2011 342 537 → 0.64 [0.59; 0.68] 0.5% 2.5% Zuccato et al, 2015 29 37 → 0.78 [0.62; 0.90] 0.0% 1.9% Wilbanks et al, 2015 21043 29227 → 0.72 [0.71; 0.73] 26.1% 2.5% West et al, 2009 10088 14890 → 0.68 [0.67; 0.69] 14.4% 2.5% Scott et al, 2011 988 1542 → 0.64 [0.62; 0.66] 1.6% 2.5% Richards et al, 2009 42 150 → 0.28 [0.21; 0.36] 0.1% 2.4%				<u> </u>				
Harris et al, 2005 55 104								
Labiris et al, 2014 76 111 — 0.68 [0.59; 0.77] 0.1% 2.3% Hartung et al, 2005 10 192 — 0.05 [0.03; 0.09] 0.0% 2.1% Girasek et al, 2011 342 537 — 0.64 [0.59; 0.68] 0.5% 2.5% Zuccato et al, 2015 29 37 — 0.78 [0.62; 0.90] 0.0% 1.9% Wilbanks et al, 2015 21043 29227 — 0.72 [0.71; 0.73] 26.1% 2.5% West et al, 2009 10088 14890 — 0.68 [0.67; 0.69] 14.4% 2.5% Scott et al, 2011 988 1542 — 0.64 [0.62; 0.66] 1.6% 2.5% Richards et al, 2009 42 150 — 0.28 [0.21; 0.36] 0.1% 2.4%								
Hartung et al, 2005 10 192 → 0.05 [0.03; 0.09] 0.0% 2.1% Girasek et al, 2011 342 537 → 0.64 [0.59; 0.68] 0.5% 2.5% Zuccato et al, 2015 29 37 → 0.78 [0.62; 0.90] 0.0% 1.9% Wilbanks et al, 2015 21043 29227 □ 0.72 [0.71; 0.73] 26.1% 2.5% West et al, 2009 10088 14890 □ 0.68 [0.67; 0.69] 14.4% 2.5% Scott et al, 2011 988 1542 → 0.64 [0.62; 0.66] 1.6% 2.5% Richards et al, 2009 42 150 → 0.28 [0.21; 0.36] 0.1% 2.4%				<u> </u>				
Girasek et al, 2011 342 537 → 0.64 [0.59; 0.68] 0.5% 2.5% Zuccato et al, 2015 29 37 → 0.78 [0.62; 0.90] 0.0% 1.9% Wilbanks et al, 2015 21043 29227 0.72 [0.71; 0.73] 26.1% 2.5% West et al, 2009 10088 14890 □ 0.68 [0.67; 0.69] 14.4% 2.5% Scott et al, 2011 988 1542 → 0.64 [0.62; 0.66] 1.6% 2.5% Richards et al, 2009 42 150 → 0.28 [0.21; 0.36] 0.1% 2.4%				_				
Zuccato et al, 2015 29 37	· ,			1				
Wilbanks et al, 2015 21043 29227 □ 0.72 [0.71; 0.73] 26.1% 2.5% West et al, 2009 10088 14890 □ 0.68 [0.67; 0.69] 14.4% 2.5% Scott et al, 2011 988 1542 + 0.64 [0.62; 0.66] 1.6% 2.5% Richards et al, 2009 42 150 - 0.28 [0.21; 0.36] 0.1% 2.4%								
West et al, 2009 10088 14890 ■ 0.68 [0.67; 0.69] 14.4% 2.5% Scott et al, 2011 988 1542 + 0.64 [0.62; 0.66] 1.6% 2.5% Richards et al, 2009 42 150 - 0.28 [0.21; 0.36] 0.1% 2.4%								
Scott et al, 2011 988 1542 + 0.64 [0.62; 0.66] 1.6% 2.5% Richards et al, 2009 42 150 0.28 [0.21; 0.36] 0.1% 2.4%								
Richards et al, 2009 42 150 — 0.28 [0.21; 0.36] 0.1% 2.4%								
	·							
Reed et al, 2009 1001 2022 + 0.50 [0.47; 0.52] 2.2% 2.5%		1001	2022	_			2.2%	2.5%
de Souza et al, 2015 702 1303 + 0.54 [0.51; 0.57] 1.4% 2.5%	·			<u> </u>				
Noble et al, 2004 9009 21296 0.42 [0.42; 0.43] 23.0% 2.5%								
Newton et al, 2005 729 1286 + 0.57 [0.54; 0.59] 1.4% 2.5%								
Moore et al, 2012 270 337 — 0.80 [0.75; 0.84] 0.2% 2.4%	•							
Loriot et al, 2010 15 44								
Lefevre et al, 2010 170 522 + 0.33 [0.29; 0.37] 0.5% 2.5%				:				
0.00 [0.25, 0.07]	Ecicvic ct ai, 2010	170	<i>522</i>		0.00	[0.23, 0.57]	0.070	2.570
Fixed effect model 102384 0.57 [0.57; 0.58] 100%	Fixed effect model		102384		0.57	[0.57: 0.58]	100%	
Random effects model			102001					100%
Heterogeneity: I-squared=99.5%, tau-squared=0.4522, p<0.0001		9.5%, tau-	squared=	0.4522. p<0.0001	3.00	[5.10, 5.50]		10070
• ,	g , , , , , , , , , , , , , ,	,	4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
0.2 0.4 0.6 0.8				0.2 0.4 0.6 0.8				
The EOI value				The EOI value				

Figure S5. Forest Plot of "Patient Service Orientation".

rigure 33. rorest	1 101	UI I	atient Sei	VIC	Offen	tation .			
Study	Events	Total		:		Proportion	95%-CI	W(fixed)	W(random)
Hauer et al, 2008	450	1177	+			0.38	[0.35; 0.41]	2.9%	3.2%
Kiolbassa et al, 2011	32	1114	+			0.03	[0.02; 0.04]	0.3%	3.0%
Lee et al, 2012	30	100					[0.21; 0.40]	0.2%	2.9%
Parsa et al, 2010	104	137					[0.68; 0.83]	0.3%	3.0%
Rogers et al, 1990	148	266		-		0.56	[0.49; 0.62]	0.7%	3.1%
Abendroth J et al, 2014	19	45		<u>:</u>		0.42	[0.28; 0.58]	0.1%	2.7%
Alawad et al, 2015	5	45				0.11	[0.04; 0.24]	0.0%	2.1%
Azizzadeh et al, 2003	81	130		-	<u> </u>	0.62	[0.53; 0.71]	0.3%	3.0%
Celenza et al, 2012	111	216	-	-		0.51	[0.45; 0.58]	0.6%	3.1%
Dolan-Evans et al, 2014	290	419			-		[0.65; 0.74]	0.9%	3.2%
Diderichsen et al, 2013	298	372			-	0.80	[0.76; 0.84]	0.6%	3.1%
Freire et al, 2011	19	290	-			0.07	[0.04; 0.10]	0.2%	2.9%
Bittaye et al, 2012	79	106					[0.65; 0.82]	0.2%	2.9%
Al-Fouzan et al, 2012	66	144		÷		0.46	[0.38; 0.54]	0.4%	3.1%
AlKot et al, 2015	160	451	-			0.35	[0.31; 0.40]	1.1%	3.2%
Borges et al, 2009	229	341		-	-	0.67	[0.62; 0.72]	0.8%	3.2%
Davis et al, 2016	151	173					[0.81; 0.92]	0.2%	2.9%
Deutsch et al, 2015	379	659		-			[0.54; 0.61]	1.7%	3.2%
Gardner et al, 2014	531	633			+	0.84	[0.81; 0.87]	0.9%	3.2%
Dias et al, 2013	226	495	-	4			[0.41; 0.50]	1.3%	3.2%
Goltz et al, 2013	13	102					[0.07; 0.21]	0.1%	2.7%
Hauer et al, 2008	10	80					[0.06; 0.22]	0.1%	2.5%
Hartung et al, 2005	29	192	-				[0.10; 0.21]	0.3%	3.0%
Zuccato et al, 2015	34	37					[0.78; 0.98]	0.0%	1.7%
West et al, 2009	10423	14890			+		[0.69; 0.71]	32.1%	3.3%
Schnuth et al, 2003	132	203		! -	-		[0.58; 0.72]	0.5%	3.1%
Pikoulis et al, 2010	29	87					[0.24; 0.44]	0.2%	2.9%
Ozer et al, 2015	15	98					[0.09; 0.24]	0.1%	2.7%
Noble et al, 2010	56	120		<u></u>			[0.38; 0.56]	0.3%	3.0%
Noble et al, 2004		21296					[0.63; 0.65]	50.5%	3.3%
Moore et al, 2012	270	337			-		[0.75; 0.84]	0.6%	3.1%
Momen et al, 2015	32	38					[0.69; 0.94]	0.1%	2.2%
Mehmood et al, 2012	460	550			-		[0.80; 0.87]	0.8%	3.2%
Lefevre et al, 2010	127	522	+				[0.21; 0.28]	1.0%	3.2%
Fixed effect model		45865				0.64	[0.63; 0.64]	100%	
Random effects model			<				[0.44; 0.55]		100%
Heterogeneity: I-squared=9	8.7%. tau-	-sauared	=0.4078, p<0.000	1		5.40	[3.11, 3.50]		10070
ogonony. r oquarou o	/o, tau	- 400.00	, s. 10, 6, p 10,000	.					
			0.2 0.4	0.6	8.0				
					I value				

Figure S6. Forest Plot of "Medical Teachers or Mentors".

Study	Events	Total	:			Proportion	95%-CI	W(fixed)	W(random)	
Smith et al, 2015	688	2978	+			0.23	[0.22; 0.25]	3.1%	3.2%	
Cochran et al, 2005	347	408		1			[0.22, 0.23]	0.3%	3.2%	
Lee et al, 2012	6	100					[0.02; 0.13]	0.0%	2.8%	
Macdonald et al. 2012	84	134		i			[0.54; 0.71]	0.2%	3.1%	
Paiva et al, 1982	100	144		<u> </u>			[0.61; 0.77]	0.2%	3.1%	
Abendroth J et al, 2014	9	45		į			[0.10; 0.35]	0.0%	2.9%	
Azizzadeh et al, 2003	90	130		! ——			[0.61; 0.77]	0.2%	3.1%	
Celenza et al, 2012	114	216	1				[0.46; 0.60]	0.3%	3.2%	
Boyd et al, 2009	4054	5848		53			[0.68; 0.71]	7.4%	3.2%	
Ekenze et al, 2013	13	96					[0.07; 0.22]	0.1%	3.0%	
Bittaye et al, 2012	70	106		i——			[0.56; 0.75]	0.1%	3.1%	
Bonura et al, 2016	191	590	-				[0.29; 0.36]	0.8%	3.2%	
Gardner et al, 2014	59	631	+	1			[0.07; 0.12]	0.3%	3.2%	
Dias et al, 2013	169	495	-	-			[0.30; 0.39]	0.7%	3.2%	
Goltz et al, 2013	17	102		į		0.17	[0.10; 0.25]	0.1%	3.0%	
Gupta et al, 2013	153	243		<u> </u>			[0.57; 0.69]	0.3%	3.2%	
Hanzlick et al, 2008	88	161	<u> </u>			0.55	[0.47; 0.63]	0.2%	3.2%	
Harris et al, 2005	73	104		ļ ——		0.70	[0.60; 0.79]	0.1%	3.1%	
Hauer et al, 2008	58	80			_	0.72	[0.61; 0.82]	0.1%	3.1%	
Shah et al, 2012	580	892		-		0.65	[0.62; 0.68]	1.2%	3.2%	
Lefevre et al, 2010	638	1555	+			0.41	[0.39; 0.44]	2.2%	3.2%	
Wilbanks et al, 2015	21328	29227				0.73	[0.72; 0.73]	34.3%	3.2%	
West et al, 2009	9343	14890		+		0.63	[0.62; 0.64]	20.7%	3.2%	
Watmough et al, 2007	37	116		į		0.32	[0.24; 0.41]	0.1%	3.1%	
Thakur et al, 2001	34	56	+	- 		0.61	[0.47; 0.74]	0.1%	3.0%	
Scott et al, 2011	669	1542	+	į		0.43	[0.41; 0.46]	2.3%	3.2%	
Richards et al, 2009	105	150					[0.62; 0.77]	0.2%	3.1%	
Reed et al, 2009	1101	2022		+			[0.52; 0.57]	3.0%	3.2%	
Noble et al, 2010	55	120	_				[0.37; 0.55]	0.2%	3.1%	
Noble et al, 2004		21296	+				[0.20; 0.21]	20.3%	3.2%	
Mehmood et al, 2012	358	550		-			[0.61; 0.69]	0.7%	3.2%	
Loriot et al, 2010	9	44		-		0.20	[0.10; 0.35]	0.0%	2.9%	
Fixed effect model		85071		;		0.55	[0.54; 0.55]	100%		
Random effects model	I	00071		⇒ 			[0.38; 0.56]		100%	
Heterogeneity: I-squared=		-squared	I=1.144, p<0.0001			0	[0.00, 0.00]		10070	
			Ť I		1					
			0.2 0.4 The	0.6 0. EOI value	.8					
			THE	LOT Value						

Figure S7. Forest Plot of "Career Opportunities".

riguit 57. Forest	1 101	oi C	arcci (Նիին)i tuilities	•			
Study	Events	Total		: (Proportion	95%-CI	W(fixed)	W(random)
Smith et al, 2015	503	2978				0.17	[0.16; 0.18]	2.6%	2.7%
Hauer et al, 2008	944	1114		- 11	+		[0.82; 0.87]	0.9%	2.7%
Klingensmith et al, 2015	71	792	+	- 11			[0.07; 0.11]	0.4%	2.7%
Macdonald et al, 2012	59	134					[0.35; 0.53]	0.4%	2.6%
Ni Chroinin et al, 2013	118	274					[0.37; 0.49]	0.4%	2.7%
Rogers et al, 1990	141	266		1	_		[0.47; 0.59]	0.4%	2.7%
Abendroth J et al, 2014	22	45					[0.34; 0.64]	0.1%	2.5%
Azizzadeh et al, 2003	100	130		- 11			[0.69; 0.84]	0.1%	2.6%
Celenza et al, 2012	84	216	-				[0.32; 0.46]	0.3%	2.7%
Dolan-Evans et al, 2014		419			-		[0.58; 0.68]	0.6%	2.7%
Boyd et al, 2009	3096	5848		l le			[0.52; 0.54]	9.0%	2.7%
Egerton et al, 1985	41	134		_ ! ! [[0.23; 0.39]	0.2%	2.6%
Diderichsen et al, 2013	246	372		1.1	-		[0.61; 0.71]	0.5%	2.7%
Ferrari et al, 2013	40	45					[0.76; 0.96]	0.0%	2.3%
Barikani et al, 2012	24	49		11			[0.34; 0.64]	0.1%	2.5%
Al-Fouzan et al, 2012	32	144					[0.16; 0.30]	0.1%	2.6%
AlKot et al, 2015	166	451	_				[0.32; 0.41]	0.6%	2.7%
Corrigan et al, 2007	120	222		1 1 1	_		[0.47; 0.61]	0.3%	2.7%
Gardner et al, 2014	515	629			-		[0.79; 0.85]	0.6%	2.7%
Dias et al, 2013	144	495	-	. 11			[0.75; 0.33]	0.6%	2.7%
Gupta et al, 2013	39	243	-				[0.12; 0.21]	0.2%	2.6%
Hauer et al, 2008	51	80		- 11-			[0.52; 0.74]	0.1%	2.6%
Labiris et al, 2014	46	111	_	- 11			[0.32; 0.51]	0.2%	2.6%
Lambert et al. 2008		17393	B				[0.13; 0.14]	12.6%	2.7%
Shah et al, 2012	42	892		- 11			[0.03; 0.06]	0.2%	2.7%
Vicente et al, 2013	29	34					[0.69; 0.95]	0.0%	2.3%
Wiesenfeld et al, 2014	49	60					[0.70; 0.90]	0.1%	2.5%
Lam et al, 2016	18	228	-				[0.05; 0.12]	0.1%	2.6%
Girasek et al, 2011	346	536					[0.60; 0.69]	0.8%	2.7%
Wilbanks et al, 2015	16610			11			[0.56; 0.57]	44.4%	2.7%
West et al, 2009	10311						[0.68; 0.70]	19.6%	2.7%
Watmough et al, 2007	56	116					[0.39; 0.58]	0.2%	2.6%
Reed et al, 2009	361	2022	+				[0.16; 0.20]	1.8%	2.7%
Ozer et al, 2015	39	98	_				[0.30; 0.50]	0.1%	2.6%
Noble et al, 2010	32	120		- 11			[0.19; 0.36]	0.1%	2.6%
Mehmood et al, 2012	427	550		- 11	-		[0.74; 0.81]	0.6%	2.7%
Loriot et al, 2010	11	44					[0.13; 0.40]	0.1%	2.5%
Lefevre et al, 2010	97	522	-				[0.15; 0.22]	0.5%	2.7%
Fixed effect model		81923		1			[0.49; 0.50]	100%	
Random effects model				\Longrightarrow		0.44	[0.36; 0.53]		100%
Heterogeneity: I-squared=9	9.7%, tau-	-squared	=1.146, p<0.	.0001					
			0.2	0.4	0.6 0.8				
			Tł	ne EOI	value				

Figure S8. Forest Plot of "Workload or Working Hours".

O						,			
Study	Events	Total	,	:		Proportion	95%-CI	W(fixed)	W(random)
Cochran et al, 2005	143	408	-	<u>i</u>		0.35	[0.30; 0.40]	2.0%	5.6%
Ni Chroinin et al, 2013	203	274	;		-	0.74	[0.68; 0.79]	1.1%	5.5%
Alawad et al, 2015	9	45		1		0.20	[0.10; 0.35]	0.2%	4.8%
Azizzadeh et al, 2003	78	130		i ——		0.60	[0.51; 0.68]	0.7%	5.4%
Celenza et al, 2012	48	216				0.22	[0.17; 0.28]	0.8%	5.5%
Dolan-Evans et al, 2014	1 259	419				0.62	[0.57; 0.66]	2.1%	5.6%
Bittaye et al, 2012	54	106		· ——		0.51	[0.41; 0.61]	0.6%	5.4%
Al-Fouzan et al, 2012	32	144				0.22	[0.16; 0.30]	0.5%	5.4%
Gardner et al, 2014	474	632			—	0.75	[0.71; 0.78]	2.5%	5.6%
Dias et al, 2013	75	495	-	1		0.15	[0.12; 0.19]	1.4%	5.6%
Gupta et al, 2013	5	243 +	-			0.02	[0.01; 0.05]	0.1%	4.4%
Hauer et al, 2008	3	80 -				0.04	[0.01; 0.11]	0.1%	3.8%
Lambert et al, 2008	5702	17393	+			0.33	[0.32; 0.33]	81.9%	5.7%
Zuccato et al, 2015	14	37		i 		0.38	[0.22; 0.55]	0.2%	4.9%
Schnuth et al, 2003	60	203		1		0.30	[0.23; 0.36]	0.9%	5.5%
Noble et al, 2010	92	120		-		0.77	[0.68; 0.84]	0.5%	5.3%
Moore et al, 2012	236	337		i –	-	0.70	[0.65; 0.75]	1.5%	5.6%
Momen et al, 2015	15	38		-		0.39	[0.24; 0.57]	0.2%	4.9%
Mehmood et al, 2012	241	550		-		0.44	[0.40; 0.48]	2.9%	5.6%
Fixed effect model		21870	Š)		0.36	[0.35; 0.36]	100%	
Random effects model			<	\rightarrow		0.38	[0.29; 0.48]		100%
Heterogeneity: I-squared=9	98.4%, tau-	-squared=	0.7188, p<0.00	0 1					
			0.2	0.4 0.6	8.0	1			
			Th	ne EOI value					

Figure S9. Forest Plot of "Income".

Study	Events	Total	÷ 0		Proportion	95%-CI	W(fixed)	W(random)
Smith et al, 2015	334	2978	+		0.11	[0.10; 0.12]	1.5%	2.1%
Johnson et al, 2012	293	622	 			[0.43; 0.51]	0.8%	2.1%
Klingensmith et al, 2015		792	+			[0.08; 0.12]	0.4%	2.1%
Macdonald et al, 2012	60	134	 			[0.36; 0.54]	0.2%	2.1%
Parsa et al, 2010	102	137	1			[0.66; 0.82]	0.1%	2.0%
Paiva et al, 1982	36	144			0.25	[0.18; 0.33]	0.1%	2.0%
Ni Chroinin et al, 2013	156	274			0.57	[0.51; 0.63]	0.3%	2.1%
Newton et al, 2005	787	1258	+		0.63	[0.60; 0.65]	1.5%	2.1%
Rogers et al, 1990	101	266			0.38	[0.32; 0.44]	0.3%	2.1%
Abendroth J et al, 2014	16	45	- !!		0.36	[0.22; 0.51]	0.1%	1.9%
Alawad et al, 2015	3	45			0.07	[0.01; 0.18]	0.0%	1.6%
Azizzadeh et al, 2003	71	130	∷		0.55	[0.46; 0.63]	0.2%	2.1%
Boyd et al, 2009	2342	5848	=		0.40	[0.39; 0.41]	7.3%	2.1%
Egerton et al, 1985	10	134			0.07	[0.04; 0.13]	0.0%	1.9%
Diderichsen et al, 2013	231	372		-	0.62	[0.57; 0.67]	0.5%	2.1%
Ferrari et al, 2013	24	45		_	0.53	[0.38; 0.68]	0.1%	2.0%
Freire et al, 2011	48	290			0.17	[0.12; 0.21]	0.2%	2.1%
Barikani et al, 2012	12	49	- 		0.24	[0.13; 0.39]	0.0%	1.9%
Bittaye et al, 2012	60	106		-		[0.47; 0.66]	0.1%	2.0%
Al-Fouzan et al, 2012	40	144				[0.21; 0.36]	0.1%	2.0%
AlKot et al, 2015	174	451	÷+-			[0.34; 0.43]	0.6%	2.1%
Borges et al, 2009	256	338		$\overline{}$		[0.71; 0.80]	0.3%	2.1%
Budd et al, 2011	278	870	 ;			[0.29; 0.35]	1.0%	2.1%
Davis et al, 2016	77	173	 			[0.37; 0.52]	0.2%	2.1%
Deutsch et al, 2015	411	658	+	-		[0.59; 0.66]	0.8%	2.1%
Dias et al, 2013	147	495				[0.26; 0.34]	0.5%	2.1%
Gupta et al, 2013	56	243	→			[0.18; 0.29]	0.2%	2.1%
Harris et al, 2005	40	104				[0.29; 0.49]	0.1%	2.0%
Hauer et al, 2008	13	80				[0.09; 0.26]	0.1%	1.9%
Labiris et al, 2014	66	111		_		[0.50; 0.69]	0.1%	2.0%
Lambert et al, 2008	1249	17393				[0.07; 0.08]	6.0%	2.1%
Shah et al, 2012	88	892	+			[0.08; 0.12]	0.4%	2.1%
Lefevre et al, 2010	246	1555	+ !!			[0.14; 0.18]	1.1%	2.1%
Wiesenfeld et al, 2014	25	60	-:			[0.29; 0.55]	0.1%	2.0%
Girasek et al, 2011	93	532	+			[0.14; 0.21]	0.4%	2.1%
Zuccato et al, 2015	5	37				[0.05; 0.29]	0.0%	1.7%
Wilbanks et al, 2015	13448	29227				[0.45; 0.47]	37.5%	2.1%
West et al, 2009	8562	14890				[0.57; 0.58]	18.8%	2.1%
Watmough et al, 2007	38 423	116 2022				[0.24; 0.42]	0.1%	2.0%
Reed et al, 2009	754	1303				[0.19; 0.23]	1.7% 1.6%	2.1% 2.1%
de Souza et al, 2015 Ozer et al, 2015	29	98				[0.55; 0.61] [0.21; 0.40]	0.1%	2.1%
Noble et al, 2010	93	120				[0.21, 0.40]	0.1%	2.0%
Noble et al, 2004	2359	21296				[0.09, 0.03]	10.8%	2.0%
Newton et al, 2005	772	1286				[0.11, 0.12]	1.6%	2.1%
Moore et al, 2012	236	337				[0.65; 0.75]	0.4%	2.1%
Momen et al, 2015	13	38				[0.00; 0.70]	0.4%	1.9%
Mehmood et al, 2012	253	550				[0.42; 0.50]	0.7%	2.1%
Lefevre et al, 2010	159	522				[0.42, 0.36]	0.6%	2.1%
Lolovic of al, 2010	103	522			0.50	[0.27, 0.00]	0.070	2.170
Fixed effect model		109610	i		0.38	[0.37; 0.38]	100%	
Random effects model						[0.29; 0.42]		100%
Heterogeneity: I-squared=9		-squared=	1.088, p<0.0001		1.00	,		/ 0
			, ,	1				
			0.2 0.4 0.6	0.8				
			The EOI value					

Figure S10. Forest Plot of "Length of Training".

Study	Events	Total	: 1	Proportion	95%-CI	W(fixed)	W(random)
Cochran et al, 2005 Klingensmith et al, 2015 Paiva et al, 1982 Azizzadeh et al, 2003 Dolan-Evans et al, 2012 Boyd et al, 2009 Bittaye et al, 2012 Al-Fouzan et al, 2012 Dias et al, 2013 Goltz et al, 2013 Wiesenfeld et al, 2014 Zuccato et al, 2015 Wilbanks et al, 2015 Thakur et al, 2001 Schnuth et al, 2009 de Souza et al, 2015 Mehmood et al, 2015	41 71 4 206 2493 39 10 282 35 30	408 792 144 130 419 5848 106 144 495 102 60 37 29227 56 203 2022 1303 550		0.26 0.28 0.55 0.49 0.43 0.37 0.07 0.57 0.34 - 0.50 - 0.46 0.42 0.25 0.08 0.15	[0.25; 0.35] [0.23; 0.29] [0.21; 0.37] [0.46; 0.63] [0.44; 0.54] [0.28; 0.47] [0.52; 0.61] [0.25; 0.63] [0.29; 0.63] [0.41; 0.42] [0.14; 0.38] [0.14; 0.38] [0.15; 0.13] [0.16] 0.35; 0.38]	0.9% 1.6% 0.3% 0.3% 1.1% 14.6% 0.1% 0.2% 0.2% 0.1% 72.5% 0.1% 0.2% 2.6% 2.6% 1.3%	6.0% 6.2% 5.5% 5.6% 6.1% 6.4% 5.3% 4.2% 6.1% 5.3% 4.8% 4.2% 6.4% 6.4% 6.4% 6.3% 6.3% 6.3% 6.2%
Fixed effect model Random effects model Heterogeneity: I-squared=		42046 -squared	=0.2038, p<0.0001 0.1 0.2 0.3 0.4 0.5 0.6 The EOI value	0.32	[0.40; 0.41] [0.28; 0.37]	100%	 100%

Figure S11. Forest Plot of "Prestige".

Study	Events	Total		;		Proportion	95%-CI	W(fixed)	W(random)
Parsa et al, 2010	93	137				0.68	[0.59; 0.76]	0.5%	4.3%
Rogers et al, 1990	90	266	į.			0.34	[0.28; 0.40]	1.1%	4.4%
Abendroth J et al, 2014	9	45		+		0.20	[0.10; 0.35]	0.1%	3.6%
Alawad et al, 2015	1	45	:			0.02	[0.00; 0.12]	0.0%	1.6%
Azizzadeh et al, 2003	56	130	1	<u> </u>	-	0.43	[0.34; 0.52]	0.6%	4.3%
Egerton et al, 1985	9	134				0.07	[0.03; 0.12]	0.1%	3.7%
Ferrari et al, 2013	18	45	<u>i</u>		_	0.40	[0.26; 0.56]	0.2%	3.9%
Bittaye et al, 2012	75	106				0.71	[0.61; 0.79]	0.4%	4.2%
Al-Fouzan et al, 2012	44	144	_ <u>i</u>			0.31	[0.23; 0.39]	0.5%	4.3%
AlKot et al, 2015	112	451	- + 	-		0.25	[0.21; 0.29]	1.5%	4.5%
Budd et al, 2011	125	870	-			0.14	[0.12; 0.17]	1.9%	4.5%
Deutsch et al, 2015	278	654	İ	-		0.43	[0.39; 0.46]	2.8%	4.5%
Dias et al, 2013	86	495	-			0.17	[0.14; 0.21]	1.3%	4.5%
Gupta et al, 2013	44	243				0.18	[0.13; 0.24]	0.6%	4.3%
Hauer et al, 2008	10	80	:			0.12	[0.06; 0.22]	0.2%	3.8%
Lefevre et al, 2010	169	1555	+			0.11	[0.09; 0.13]	2.7%	4.5%
Hartung et al, 2005	45	192		-		0.23	[0.18; 0.30]	0.6%	4.3%
Girasek et al, 2011	341	537			-	0.64	[0.59; 0.68]	2.2%	4.5%
Scott et al, 2011	386	1542	+			0.25	[0.23; 0.27]	5.1%	4.5%
Noble et al, 2010	39	120	- †			0.32	[0.24; 0.42]	0.5%	4.3%
Noble et al, 2004	5586	21296	+			0.26	[0.26; 0.27]	73.2%	4.6%
Moore et al, 2012	202	337	1			0.60	[0.54; 0.65]	1.4%	4.5%
Momen et al, 2015	19	38				0.50	[0.33; 0.67]	0.2%	3.8%
Mehmood et al, 2012	359	550	i		-	0.65	[0.61; 0.69]	2.2%	4.5%
Fixed effect model		30012	ķ			0.28	[0.27; 0.28]	100%	
Random effects mode			4	\Rightarrow		0.31	[0.25; 0.38]		100%
Heterogeneity: I-squared=	98.4%, tau·	-squared	I=0.5324, <u>p<0</u>	.0001			_		
					7				
			0.2	0.4	0.6				
			The	e EOI valı	ue				

Figure S12. Forest Plot of "Advice from Others".

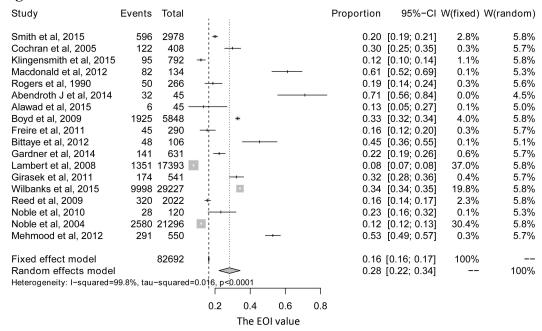


Figure S13. Forest Plot of "Student Debt".

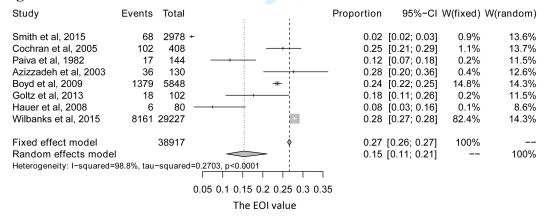
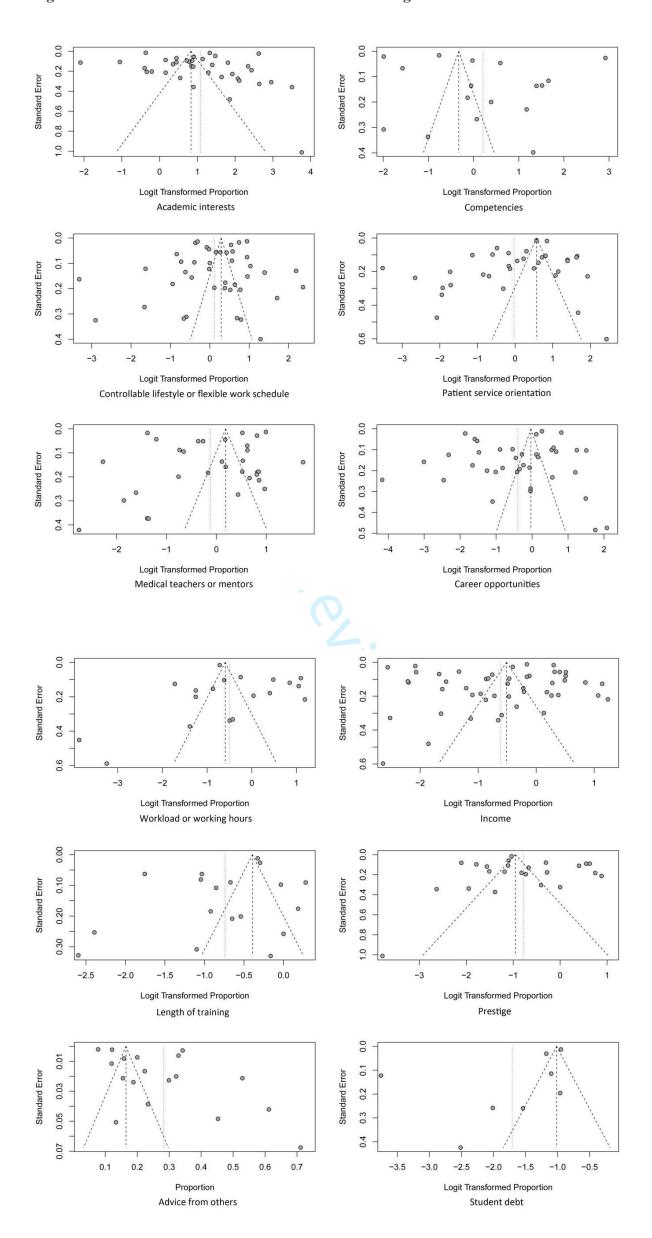



Figure S14. Funnel Plots of the Publication Bias Testing of the 12 Factors.

47

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2-3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	3
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5-6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6-7
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6-7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	7

44 45 46

47

PRISMA 2009 Checklist

Page 1 of 2				
Section/topic	#	Checklist item	Reported on page #	
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7	
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7	
RESULTS				
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	5, 7	
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	7-8	
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	8	
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	8	
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	8-9	
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	8-9	
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	8-9	
DISCUSSION	•			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	9-13	
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	13	
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	14	
FUNDING				
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	15	

41 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. 42 doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.

BMJ Open

Factors Influencing Subspecialty Choice Among Medical Students: A Systematic Review and Meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022097.R1
Article Type:	Research
Date Submitted by the Author:	05-Jul-2018
Complete List of Authors:	Yang, Yahan; Sun Yat-Sen University Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology; Sun Yat-Sen University, Zhongshan School of Medicine Li, Jiawei; Sun Yat-Sen University, Zhongshan School of Mathematics Wu, Xiaohang; Sun Yat-Sen University Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology Wang, Jinghui; Sun Yat-Sen University Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology Li, Wangting; Sun Yat-Sen University Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology Zhu, Yi; University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology; Sun Yat-Sen University Zhongshan Ophthalmic Center, Cataract Chen, Chuan; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University; University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology Lin, Haotian; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Cataract
Primary Subject Heading :	Medical education and training
Secondary Subject Heading:	Medical education and training
Keywords:	Medical students, Career choice, Meta-analysis

SCHOLARONE™ Manuscripts

1 Title Page

- 2 Factors Influencing Subspecialty Choice Among Medical Students: A Systematic
- 3 Review and Meta-analysis
- 4 Yahan Yang, M.D.^{1,2}; Jiawei Li, M.D.³; Xiaohang Wu, M.D.¹; Jinghui Wang, M.D.¹;
- 5 Wangting Li, M.D.¹; Yi Zhu, M.D.^{1,4}; Chuan Chen, M.D.^{1,4}; Haotian Lin, M.D., Ph.
- 6 D^{1#}

- 8 Institution: 1. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic
- 9 Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, People's Republic
- 10 of China
- 2. Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- 3. Zhongshan School of Mathematics, Sun Yat-sen University, Guangzhou, China
- 4. Department of Molecular and Cellular Pharmacology, University of Miami Miller
- 14 School of Medicine, Miami, Florida 33136, USA.

- 16 *Editorial Correspondence:
- 17 Prof. Haotian Lin
- 28 Zhongshan Ophthalmic Center, Sun Yat-sen University
- 19 Xian Lie South Road 54#
- 20 Guangzhou, China, 510060.
- 21 Telephone number: +86-020-87330493
- 22 Fax: +86-020-87333271
- 23 E-mail: haot.lin@hotmail.com
- 24 Word count for text: 3122

ABSTRACT

Objective To characterize the contributing factors that affect medical students' subspecialty choice and to estimate the extent of influence of individual factors on the students' decision-making process.

Design Systematic review and meta-analysis.

Methods A systematic search of the Cochrane Library, ERIC, Web of Science, CNKI and PubMed databases was conducted for studies published between January 1977 and June 2018. Information concerning study characteristics, influential factors, and the extent of their influence (EOI) was extracted independently by two trained investigators. EOI is the percentage level that describes how much each of the factors influenced students' choice of subspecialty. The estimates were pooled using a random-effects meta-analysis model due to the between-study heterogeneity.

Results Data were extracted from 75 studies (882,209 individuals). Overall, the factors influencing medical students' choice of subspecialty training mainly included academic interests (75.29%), competencies (55.15%), controllable lifestyles or flexible work schedules (53.00%), patient service orientation (50.04%), medical teachers or mentors (46.93%), career opportunities (44.00%), workload or working hours (37.99%), income (34.70%), length of training (32.30%), prestige (31.17%), advice from others (28.24%), and student debt (15.33%), with significant between-study heterogeneity (*P*<0.0001). Subgroup analyses revealed that the EOI of academic interests was higher in developed countries than that in developing countries (79.66% [95% confidence interval (CI), 70.73%; 86.39%] vs. 60.41% [95% CI, 43.44%; 75.19%]; *Q*=3.51 *P*=0.02). The EOI value of prestige was lower in

51	developed countries than that in developing countries (23.96% [95% CI,
52	19.20%; 29.47%] vs. 47.65% [95% CI, 34.41%; 61.24%]; <i>Q</i> =4.71 <i>P</i> =0.01).
53	Conclusions This systematic review and meta-analysis provided a quantitative
54	evaluation of the top 12 influencing factors associated with medical students'
55	choice of subspecialty. Our findings provide the basis for the development of
56	specific, effective strategies to optimize the distribution of physicians among
57	different departments by modifying these influencing factors.
58	Systematic review registration PROSPERO CRD42017053781.
59	STRENGTHS AND LIMITATIONS OF THIS STUDY
60	• This is the first study that provide a systematic estimate of the factors associated

- This is the first study that provide a systematic estimate of the factors associated with medical students' subspecialty choices.
- A large number of studies conducted in varied populations have been included.
- The differences in the characteristics of country, survey years, specialty, the type of data used and sample size across studies represent a major limitation of our study.
- 66 KEYWORDS Medical students, career choice, meta-analysis

Introduction

Because of the population aging, increased workload on doctors through increased number of consultations and in managing patients with multi-morbidity, the demand for physicians continues to increase; however, an imbalance in the supply of physicians in different subspecialties has become a growing concern in both developed and developing countries. 1-5 Some specialties and subspecialties, such as family medicine and palliative medicine, ⁶⁷ are experiencing a desperate shortage of physicians, whereas other specialties and subspecialties, such as cardiology, ophthalmology and ear, nose and throat (ENT) surgery, require several years of training before admission due to intense competition. 89 Specialty choice is the product of a complex interconnection of student expectation, department expectation, and competition for available spots, and student choice is where the choice begins. 10 Previous studies have suggested that medical students' choice of subspecialty is essential to the maintenance of an adequate medical workforce and a balanced development of the medical system. 11 12 However, the influencing factors underlying students' subspecialty choice have not been systemically reviewed. Recent changes in the training and practice environment may influence medical students' career choice. 13 Additionally, the variability in preferences over time and in students' attitudes towards career choices can further complicate this assessment. For example, a study in the UK indicated that half of the medical students made a definitive subspecialty choice during their first year of medical school.¹⁴ However, students were prone to changing their subspecialty preference during medical school and internship. 15 Notably, students may also reject certain subspecialties during their medical school training, even those they have previously seriously considered. 16 Therefore, identifying the factors that influence

students' choice of subspecialty will enable a better understanding of the current shortage/overload of physicians in specific fields and contribute to policy-building and decision-making to improve the training and recruitment of students in the future. We thus conducted a systematic review and a meta-analysis to investigate the influencing factors and the extent of their influence on the choice of subspecialty training among medical students. More specifically, we focused on the following questions. First, can we gain a better understanding of students' preferences for medical specialty according to the primary influencing factor? Second, do the subgroups according to world region and survey years examined in this study differ significantly with regard to the weight that students place on the identified influencing factor?

Methods

We developed a review protocol (registration number: PROSPERO CRD42017053781) prior to commencing the study. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was used to ensure the reporting quality of this review (Fig. S1).¹⁷

Search Strategy and Study Eligibility

We performed a literature search in June 2018 using the Cochrane Library, Medline, Web of Science, CNKI and ERIC databases without language restrictions. Articles were screened by title, abstract and reference list, and by correspondence with study investigators Potentially relevant papers were first identified by reviewing the titles and abstracts, and the full text of each retrieved article was then assessed. A detailed example of search strategy for Medline/PubMed is shown in **Methods S1**. Studies were included if they reported data on medical students, were published in peer-reviewed journals, and used a validated method to assess the extent of a factor's

influence on the choice of subspecialty, such as pediatric gastroenterology and vascular surgery, or its corresponding specialty, such as pediatrics and surgery. Because of the differences between medical education systems in the world, the medical students we recruited includes the student in medical school, internship, residency training and fellowship, containing the students who about to make a specialty choice and students who has just made a specialty choice. A guide to medical specialty, available at https://www.abms.org/member-boards/specialty-subspecialty-certificates/, were used to identify the medical specialty and subspecialty of our research. We also conducted an additional search using OpenGrey. However, no additional articles were further included. All searches were performed using Google chrome (version 54.0.2840).

Data Extraction and Quality Assessment

The following information was independently extracted from each article by 2 trained investigators (Y.Y. and J.L.) using a standardized form: study design, geographic location, years of survey, journal, sample size, average age of the participants, the number and percentage of male participants, and the influencing factors and the extent of their influence. A third investigator was consulted if disagreements occurred. Each study may involve one or several influencing factors. An 11-item checklist which was recommended by Agency for Healthcare Research and Quality (AHRQ), used for cross-sectional studies, available at https://www.ncbi.nlm.nih.gov/books/NBK35156/, were used to assess the quality of the studies. All discrepancies were resolved via discussion and consensus.

Statistical Analysis

As considerable heterogeneity was expected because of the multiple sources of variances, a random effects meta-analysis model was used to estimate the influencing

factors and the extent of their influence. Between-study heterogeneity was assessed using the I^2 statistic, which was calculated to describe the percentage of total variation caused by heterogeneity across studies, with \geq 50% indicating considerable heterogeneity. Potential sources of heterogeneity were identified using meta-regression. Subgroup analyses were performed for each factor in the studies in developed countries vs. developing countries and studies conducted before 2010 vs. after 2010. The EOI value of competencies in developing countries was not statistically significant (81.21% [95% CI, 75.27%; 86.51%], P=0.1436), and no studies on the influence of student debt in developing countries were found. The Q-test based on the analysis of variance was used to compare the subgroups, with a significance threshold of 5%. The influence of individual studies on the overall EOI value was explored by serially excluding each study in a sensitivity analysis. Publication bias was investigated using a funnel plot test and Egger's test. All analyses were performed using R (version 3.3.1, The R Foundation, Vienna, Austria). The statistical tests were 2-sided with a significance threshold of P<0.05.

Results

Study Characteristics

Seventy-five cross-sectional studies involving a total of 882,209 individuals that published between January 1977 and May 2018 were included in the present research (Table 1). Thirty-four studies were conducted in North America, 24 in Europe, 7 in Asia, 5 in Oceania, 3 in Africa, and 2 in South America. The median number of participants per study was 243 (range 37-29,227). Fourteen studies included students who had already selected subspecialties, whereas 61 did not. The influencing factors were ranked according to the frequency of occurrence and each factor was identified when at least 5 papers were available describing it. The influencing factors for

subspecialty choice were then classified according to 17 aspects, including academic interests, controllable lifestyle or flexible work schedule (defined as flexibility that allows physicians to control the number of hours devoted to practicing the specialty), competencies, patient service orientation, medical teachers or mentors, career opportunities, workload or working hours (characterized by the physician's time spent on professional responsibilities), income, prestige, length of training, advice from others (advice from family, friends, and other students), student debt, experience with the subject, working environment, personality, gender and job security. Personality and gender are common factors that affect the choice of subspecialty among medical students, but most of the relevant literature has not reported on the extent of these factors' influence. Moreover, the funnel plots were clearly asymmetrical with regard to experience with the subject, the working environment and job variety, indicating the existence of publication bias. Thus, the analysis of the remaining 12 influencing factors were shown in this paper. Studies assessed for influencing factors using questionnaires validated to medical students asking the extent of certain factors the studies investigated. Quality assessment scores for the included studies are listed in **Table 1**. None of the studies received a point for the second AHRQ Quality Indicator, which requires studies to list the inclusion and exclusion criteria for exposed and unexposed subjects (cases and controls) or refer to previous publications, since no comparison studies were referenced in the analyzed articles. For the remaining 10 criteria, 6 studies received 9 points, 8 studies received 8 points, 17 studies received 7 points, 33 studies received 6 points, 9 studies received 5 points and 2 studies received 4 points (scores for individual studies are presented in Table S1).

Primary Analysis

A meta-analysis was performed on the 12 influencing factors (**Table 2**): academic interests (**Fig. S2**), competencies (**Fig. S3**), controllable lifestyle or flexible work schedule (**Fig. S4**), patient service orientation (**Fig. S5**), medical teachers or mentors (**Fig. S6**), career opportunities (**Fig. S7**), workload or working hours (**Fig. S8**), income (**Fig. S9**), length of training (**Fig. S10**), prestige (**Fig. S11**), advice from others (**Fig. S12**) and student debt (**Fig. S13**). All the factors were significant with evidence of between-study heterogeneity (P<0.0001). A sensitivity analysis, in which the meta-analysis was serially repeated after the exclusion of each study, demonstrated that no individual study affected the overall extent of a factor's influence.

Meta-regression and Subgroup Analysis

Using common instructions when at least 5 studies were available and at least 2 studies were in each comparator subgroup, four categorical covariates were identified as potential sources of heterogeneity by examining the studies conducted in the United States (US) vs. the studies conducted in other countries, the studies conducted before 2010 vs. those conducted after 2010, the studies concerning subspecialty only vs. those that were not specific to a subspecialty, and the studies with a sample size <200 vs. the studies with a sample size ≥200 (Table 3). Some of the heterogeneities observed among the 12 factors can be partially explained by country, survey years, specialty and sample size.

EOI values were further analyzed by subgroup (Table S2) according to world region (Fig. 1) and survey year (Fig. 2). The EOI value of academic interests in developed countries was higher than that in developing countries (79.66% [95% CI, 70.73%; 86.39% vs. 60.41% [95% CI, 43.44%; 75.19%]; *Q*=3.51 *P*=0.02). Conversely, a lower EOI value of prestige was found in studies conducted in developed countries

than in developing countries (23.96% [95% CI, 19.20%; 29.47%] vs. 47.65% [95% CI, 34.41%; 61.24%]; *Q*=4.71 *P*=0.01). No statistically significant subgroup differences in the EOI values of the other influencing factors were noted between developed countries and developing countries. In addition, no statistically significant differences in the EOI values of the influencing factors were observed when subgroup analysis was performed by survey year.

Assessment of Publication Bias

We generated a funnel plot with proportion as the abscissa and standard error as the ordinate. A visual inspection of the funnel plots revealed minimal asymmetry among the various influencing factors (**Fig. S14**), and the results were concentrated in the narrow upper part of the graph. However, there was evidence of small study effect in the meta-analysis of "patient service orientation" (Egger's test P=0.02).

Discussion

Implications

This systematic review and meta-analysis involved 75 studies with 882,209 medical students. Twelve influencing factors were analyzed. These factors can be classified into two categories: economic factors and non-economic factors. We found that the EOI of the economic factors, including income (34.70%) and student debt (15.33%), may not depend on the region's level of economic development. However, income remained a major influencing factor in the process of choosing a specialty or subspecialty. In the US, 15% of full-time family medicine physicians earned less than \$100,000 in 2004, which is significantly less than the income earned by invasive cardiologists (median income=\$427,815), neurosurgeons (median income=\$211,094), and orthopedists (median income=\$335,646). This economic inequality made family medicine less attractive to medical school graduates. Benefits such as health

insurance and tuition reimbursement have been shown to be the most common economic incentives used to attract applicants.²⁷ The non-economic factors can be divided into individual factors, specialty-related factors and others. First, individual factors, including academic interest and competencies, have a considerable impact on students' subspecialty choice, with EOI values of 75.29% and 55.15%, respectively. In addition, in the subgroup analysis, although academic interests were less influential in developing countries than in developed countries (79.66% [95% CI, 70.73%; 86.39% vs. 60.41% [95% CI, 43.44%; 75.19%]; Q=3.51 P=0.02), they were still the most influential of the 12 factors regardless of regional economic level. These findings indicate that subspecialties with a shortage of manpower may attract more students by increasing students' interests and improving the quality of education. Previous studies indicated that early specialty exposure in medical education may arouse students' academic interest and improve their clinical competence. 26 28 For example, an elective extracurricular program designed to facilitate early contact with family medicine physicians was found to significantly improve students' interest and clinical skills, especially communication skills, in family medicine.²⁹ Furthermore, dispelling myths and espousing the positive aspects of a discipline may provide a better understanding of certain specialties; this approach could also be effective in increasing students' academic interest.³⁰ For instance, family medicine is often considered a discipline that requires less professional skills and knowledge. This misconception demotivates students from choosing family medicine as their future career specialty, and this trend may eventually lead to a shortage of family physicians.³⁰ Eliminating such prejudices may help students pay greater attention to the areas in short supply and restore their interests in other specialties.

Second, the specialty-related factors included controllable lifestyle/flexible work schedule (EOI of 53.00%), career opportunities (EOI of 44.00%), workload (EOI of 37.99%) and training length (EOI of 32.30%). Of these factors, lifestyle varied between different areas. Additionally, although certain specialties, such as general surgery, seem to have an adequate number of surgeons on a per capita basis in the US, there is still a poor geographic distribution within the surgical workforce according to the type of surgical practice.³¹ The inflexible lifestyle is a common reason that students perceive surgery to be less attractive.³¹ Reorganization of expected work hours within shared practices and the increased use of physician extenders and technologies such as electronic medical records may give physicians more flexibility in work schedules.³² Moreover, providing promotion opportunities and shortening the length of training are possible strategies to recruit new staff in subspecialties that require a long period of post-graduate residency training, such as neurosurgery.³³ Finally, other factors such as service orientation (EOI of 50.74%), medical teachers or mentors (EOI of 46.93%), prestige (EOI of 34.68%), and advice from others (EOI of 28.24%) also contribute to the decision-making process of medical students. For example, the desire to care for patients with end-stage diseases contributed to the decision to enter palliative medicine in 86% of the medical students.⁷ Additionally, exposure to mentors in a particular clinical field such as internal medicine has been strongly associated with medical students' choice of clinical field.³⁴ Moreover, improving the occupational prestige of areas such as family medicine, pathology, and radiology may help reshape the distribution of the workforce. ^{28 35 36} In our study, several findings are especially noteworthy. First, interest was far more important than income in deciding subspecialty. In our study, interest was the top-ranked influencing factor (EOI of 75.29%) of subspecialty choice, while income

was ranked lower (EOI of 34.70%). This finding argues against the possible default belief that raising physician's wages alone could solve the uneven distribution of clinicians among subspecialties. Our findings highlight that cultivating and stimulating students' professional interests may help improve the maldistribution of medical resources in a more efficient and cost-saving manner.

Second, improving abilities in a certain subspecialty of interest can greatly affect medical students' professional choice. In our study, competencies ranked second in influence, which may reflect the impact of admission conditions on students' choice

medical students' professional choice. In our study, competencies ranked second in influence, which may reflect the impact of admission conditions on students' choice of subspecialty. Hence, to reduce the risk that students are restricted to the subspecialty of their interest due to a lack of personal skills, medical education should focus more on enhancing students' personal competencies in addition to their academic interests.

Third, balancing medical resources is a complex process in practical terms, as the influencing factors are not mutually exclusive. The shortage of physicians in certain subspecialties may increase physician workload, resulting in less time for teaching. Hence, the quality of teaching cannot be guaranteed, and students may tend to avoid choosing these subspecialties, thus worsening the imbalance in the medical workforce. Additionally, some of the 12 factors identified are not amenable to practical interventions. For example, prestige cannot be immediately increased using interventional strategies.³⁵ Overall, effective strategies must be multi-pronged and incorporate several different aspects, and maldistribution in the workforce should not be tackled through a simple adjustment of one influencing factor.

Interpretations of the results of this meta-analysis

Our meta-regression stratified by the study-level characteristics found that country, survey years, subspecialty and sample size may contribute to the heterogeneity

between studies. There was no significant difference in the sensitivity analysis, which indicated that the results of the meta-analysis were convincing. The funnel plots and Egger's tests revealed that most of the publication bias was small (P>0.05), except for the meta-analysis of "patient service orientation". Moreover, the majority of the studies collected in the database were from developed countries rather than developing countries.

Limitations

Several limitations should be considered when interpreting the findings of this study. First, the students involved in our study included medical students at different stages of their medical education. Students' perception about different subspecialties may change during medical training until the students applies for specialty training. For example, compared to an intern, a freshman student may place greater emphasis on income and prestige when considering a career choice.³⁷ A subgroup analysis stratified by the stages of medical education and a secondary meta-analysis of longitudinal studies may better reflect changes in influencing factors and the extent of their influence over time. Second, our meta-analysis summarized the data from different geographic regions around the world, and the general conclusions may not be appropriate to guide policy development in each region. Enhanced effort is needed to develop specific intervention strategies according to the specific economic level, religious beliefs, healthcare system, educational system and endemic diseases of different countries and regions. Subgroup analysis stratified by organizational and medical training factors would provide more information of the factors influencing subspecialty choice among medical students. Third, the surveys in the various studies were also conducted using different methods. Most of the questionnaires used a Likert scale. Therefore, when we converted the results to a percentage representing

the extent of a factor's influence, the Likert scale items were treated as interval data. 38-40 Consequently, there may have been differences in the conversion process. Finally, the analysis relied on aggregated published data. A multicenter prospective study would provide more accurate estimate of the influencing factors and the extent of their influence on medical students' choice of subspecialty.

Conclusion

In conclusion, this systematic review and meta-analysis provided a summary evaluation of 12 influencing factors and the extent of their influence on the choice of subspecialty training among medical students. Understanding students' attitudes toward their subspecialty decision-making process could provide the basis for developing strategies to increase the attractiveness of subspecialties experiencing a shortage of manpower, thereby balancing the distribution of medical recourses.

Contributors: Haotian Lin contributed to the conceptualizing and design of the study.
and to research funding, coordinated the research and oversaw the project. Yahan
Yang, Jiawei Li and Xiaohang Wu contributed to data collection and interpretation,
and to data analysis. Jinghui Wang, Yi Zhu, Chuan Chen and Wangting Li contributed
to the design of the study. All authors contributed to the drafting and revision of the
paper and approved the final manuscript for publication. No patients or the public
were involved in the development and design of this research.
Funding: The principal investigator of this study (Haotian Lin) is currently
supported by National key R & D project (2018YFC010302), the Key Research Plan
for the National Natural Science Foundation of China Cultivation Project (91546101).
the National Natural Science Foundation of China (81770967), the Fundamental
Research Funds for the Central Universities (16ykjc28), the Guangdong Provincial
Natural Science Foundation for Distinguished Young Scholars of China
(2014A030306030), the Guangdong Province Universities and Colleges Youth Pearl
River Scholar Funded Scheme (2016), the Clinical Research and Translational
Medical Center of Pediatric Cataract in Guangzhou City (201505032017516), and
Ministry of Science and Technology of China Grants (2015CB964600). These
sponsors and funding organizations had no role in the design or performance of this
study.

- **Competing Interests:** The authors declare no competing financial interests.
- **Data sharing:** No additional data available.

- Patient and public involvement: Patients and the public were not involved in
- development of the research question and outcome measures, nor the study design.
- 380 The study does not involve patient recruitment, and patients were not involved in

conduct of the study. We plan to liaise closely with patients, special interest groups,

and charities in the dissemination of our results in printed and electronic media.

References

- 1. Zurn P, Dal Poz MR, Stilwell B, et al. Imbalance in the health workforce. *Hum Resour Health* 2004;2(1):13. doi: 10.1186/1478-4491-2-13
 - 2. Diallo K, Zurn P, Gupta N, et al. Monitoring and evaluation of human resources for health: an international perspective. *Hum Resour Health* 2003;1(1):3. doi: 10.1186/1478-4491-1-3
 - 3. Anderson GF, Hussey PS. Population aging: A comparison among industrialized countries. *Health Affair* 2000;19(3):191-203. doi: DOI 10.1377/hlthaff.19.3.191
 - 4. Hobbs FDR, Bankhead C, Mukhtar T, et al. Clinical workload in UK primary care: a retrospective analysis of 100 million consultations in England, 2007-14. *Lancet* 2016;387(10035):2323-30. doi: 10.1016/S0140-6736(16)00620-6
 - 5. Reeve J, Blakeman T, Freeman GK, et al. Generalist solutions to complex problems: generating practice-based evidence the example of managing multi-morbidity. *Bmc Fam Pract* 2013;14 doi: Artn 112
- 396 10.1186/1471-2296-14-112
- 397 6. Bodenheimer T. Primary care--will it survive? *N Engl J Med* 2006;355(9):861-4. doi: 10.1056/NEJMp068155
 - 7. LeGrand SB, Heintz JB. Palliative Medicine Fellowship: A Study of Resident Choices. *Journal of Pain and Symptom Management* 2012;43(3):558-68. doi: 10.1016/j.jpainsymman.2011.04.018
 - 8. Kim YY, Kim UN, Kim YS, et al. Factors associated with the specialty choice of Korean medical students: a cross-sectional survey. *Human Resources for Health* 2016;14:8. doi: 10.1186/s12960-016-0141-8
 - 9. McNally SA. Competition ratios for different specialties and the effect of gender and immigration status. *J R Soc Med* 2008;101(10):489-92. doi: 10.1258/jrsm.2008.070284
 - 10. Reed VA, Jernstedt GC, Reber ES. Understanding and improving medical student specialty choice: a synthesis of the literature using decision theory as a referent. *Teach Learn Med* 2001;13(2):117-29. doi: 10.1207/S15328015TLM1302_7
 - 11. Al-Ansari SS, Khafagy MA. FACTORS AFFECTING THE CHOICE OF HEALTH SPECIALTY BY MEDICAL GRADUATES. *Journal of Family & Community Medicine* 2015;13(3):119-23.
 - 12. Leduc N, Vanasse A, Scott I, et al. The career decision-making process of medical students and residents and the choice of specialty and practice location: how does Postgraduate Medical Education fit in? 2011
- 416 13. Delamothe T. Modernising Medical Careers: final report. *BMJ* 2008;336(7635):54-55.
 - Goldacre MJ, Laxton L, Harrison EM, et al. Early career choices and successful career progression in surgery in the UK: prospective cohort studies. *Bmc Surgery* 2010;10:11. doi: 10.1186/1471-2482-10-32
 - 15. Weissman C, Zisk-Rony RY, Schroeder JE, et al. Medical specialty considerations by medical students early in their clinical experience. *Isr J Health Policy Res* 2012;1(1):13. doi: 10.1186/2045-4015-1-13
 - 16. Jackson C, Ball J, Hirsh W, et al. Informing choices: the need for career advice in medical training. *Cambridge: National institute for careers Education and Counseling* 2003
 - 17. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *J Clin Epidemiol* 2009;62(10):1006-12. doi: 10.1016/j.jclinepi.2009.06.005
- 428 18. Borenstein M, Hedges LV, Higgins JP, et al. A basic introduction to fixed-effect and random-effects models for meta-analysis. *Res Synth Methods* 2010;1(2):97-111. doi: 10.1002/jrsm.12
- 430 19. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. *BMJ* 2003;327(7414):557-60. doi: 10.1136/bmj.327.7414.557
- 432 20. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Stat Med* 2002;21(11):1539-58. doi: 10.1002/sim.1186
- 434 21. Sterne JA, Juni P, Schulz KF, et al. Statistical methods for assessing the influence of study characteristics on treatment effects in 'meta-epidemiological' research. *Stat Med* 2002;21(11):1513-24. doi: 10.1002/sim.1184

437 22. Borenstein M, Hedges LV, Higgins J, et al. Criticisms of meta - analysis. *Introduction to meta-analysis* 2009:377-87.

- 439 23. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. *BMJ* 1997;315(7109):629-34.
- 24. Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis.
 J Clin Epidemiol 2001;54(10):1046-55.
- 25. Bodenheimer T, Berenson RA, Rudolf P. The primary care-specialty income gap: why it matters.

 Annals of internal medicine 2007;146(4):301-6.
- 26. Bodenheimer T, Pham HH. Primary care: current problems and proposed solutions. *Health Aff* (Millwood) 2010;29(5):799-805. doi: 10.1377/hlthaff.2010.0026
- 447 27. Association AH. The hospital workforce shortage: Immediate and future. *Trend Watch* 2001;3(2):1-8.
- 28. Compton MT, Frank E, Elon L, et al. Changes in US medical students' specialty interests over the course of medical school. *Journal of General Internal Medicine* 2008;23(7):1095-100. doi: 10.1007/s11606-008-0579-z
- 452 29. Indyk D, Deen D, Fornari A, et al. The influence of longitudinal mentoring on medical student selection of primary care residencies. *BMC medical education* 2011;11(1):27.
 - 30. Gill H, McLeod S, Duerksen K, et al. Factors influencing medical students' choice of family medicine Effects of rural versus urban background. *Canadian Family Physician* 2012;58(11):E649-E57.
 - 31. Richardson JD. Workforce and lifestyle issues in general surgery training and practice. *Archives of surgery (Chicago, Ill: 1960)* 2002;137(5):515-20.
 - 32. Newton DA, Grayson MS, Thompson LF. The variable influence of lifestyle and income on medical students' career specialty choices: data from two U.S. medical schools, 1998-2004. Academic medicine: journal of the Association of American Medical Colleges 2005;80(9):809-14.
 - 33. Orrico K. Ensuring an adequate neurosurgical workforce for 21st century. *Surgeons AAoN* 2012
 - 34. Wright SM, Wong A, Newill CA. The impact of role models on medical students. *Journal of General Internal Medicine* 1997;12(1):53-56.
 - 35. Glazer GM, Ruiz-Wibbelsmann JA. Decades of perceived mediocrity: prestige and radiology. *Radiology* 2011;260(2):311-16.
 - 36. Schwartzbaum AM, McGrath JH, Rothman RA. The perception of prestige differences among medical subspecialities. *Soc Sci Med* 1973;7(5):365-71.
 - 37. Parsa S, Aghazadeh A, Nejatisafa AA, et al. Freshmen versus Interns' Specialty Interests. *Archives of Iranian Medicine* 2010;13(6):509-15.
 - 38. Komorita SS. Attitude Content, Intensity, and the Neutral Point on a Likert Scale. *J Soc Psychol* 1963;61:327-34. doi: 10.1080/00224545.1963.9919489
 - 39. Baggaley AR, Hull AL. The effect of nonlinear transformations on a Likert scale. *Eval Health Prof* 1983;6(4):483-91.
 - 40. Norman G. Likert scales, levels of measurement and the "laws" of statistics. *Advances in health sciences education : theory and practice* 2010;15(5):625-32. doi: 10.1007/s10459-010-9222-y
 - 41. Smith F, Lambert TW, Goldacre MJ. Factors influencing junior doctors' choices of future specialty: trends over time and demographics based on results from UK national surveys. *Journal of the Royal Society of Medicine* 2015;108(10):396-405. doi: 10.1177/0141076815599674
 - 42. Cochran A, Melby S, Neumayer LA. An Internet-based survey of factors influencing medical student selection of a general surgery career. *American Journal of Surgery* 2005;189(6):742-46. doi: 10.1016/j.amjsurg.2005.03.019
 - 43. Hauer KE, Durning SJ, Kernan WN, et al. Factors associated with medical students' career choices regarding internal medicine. *Jama-Journal of the American Medical Association* 2008;300(10):1154-64. doi: 10.1001/jama.300.10.1154
- 44. Johnson AL, Sharma J, Chinchilli VM, et al. Why do medical students choose orthopaedics as a career? *The Journal of bone and joint surgery American volume* 2012;94(11):e78. doi: 10.2106/jbjs.k.00826 [published Online First: 2012/05/29]
- 491 45. Kiolbassa K, Miksch A, Hermann K, et al. Becoming a general practitioner Which factors have
 492 most impact on career choice of medical students? *Bmc Family Practice* 2011;12:7. doi: 10.1186/1471-2296-12-25
- 494 46. Klingensmith ME, Cogbill TH, Luchette F, et al. Factors Influencing the Decision of Surgery 495 Residency Graduates to Pursue General Surgery Practice Versus Fellowship. *Annals of*

- Surgery 2015;262(3):449-55. doi: 10.1097/sla.000000000001435
 - 47. Lee JY, Kerbl DC, McDougall EM, et al. Medical Students Pursuing Surgical Fields Have No Greater Innate Motor Dexterity than Those Pursuing Nonsurgical Fields. *Journal of Surgical Education* 2012;69(3):360-63. doi: 10.1016/j.jsurg.2011.11.005
 - 48. Macdonald C, Cawood T. Factors influencing career decisions in internal medicine. *Internal Medicine Journal* 2012;42(8):918-23. doi: 10.1111/j.1445-5994.2012.02793.x
 - 49. Paiva RE, Vu NV, Verhulst SJ. The effect of clinical experiences in medical school on specialty choice decisions. *J Med Educ* 1982;57(9):666-74.
 - 50. Ni Chroinin D, Cronin E, Cullen W, et al. Would you be a geriatrician? Student career preferences and attitudes to a career in geriatric medicine. *Age Ageing* 2013;42(5):654-7. doi: 10.1093/ageing/aft093 [published Online First: 2013/08/07]
 - 51. Rogers LQ, Fincher RM, Lewis LA. Factors influencing medical students to choose primary care or non-primary care specialties. *Academic medicine : journal of the Association of American Medical Colleges* 1990;65(9 Suppl):S47-8.
 - 52. Abendroth J, Schnell U, Lichte T, et al. Motives of former interns in general practice for speciality-choice--results of a cross-sectional study among graduates 2007 to 2012. *GMS Zeitschrift fur medizinische Ausbildung* 2014;31(1):Doc11. doi: 10.3205/zma000903 [published Online First: 2014/02/28]
 - 53. Alawad A, Khan WS, Abdelrazig YM, et al. Factors considered by undergraduate medical students when selecting specialty of their future careers. *Pan African Medical Journal* 2015;20:6. doi: 10.11604/pamj.2015.20.102.4715
 - 54. Azizzadeh A, McCollum CH, Miller CC, 3rd, et al. Factors influencing career choice among medical students interested in surgery. *Curr Surg* 2003;60(2):210-3. doi: 10.1016/s0149-7944(02)00679-7 [published Online First: 2004/02/20]
 - 55. Celenza A, Bharath J, Scop J. Improving the attractiveness of an emergency medicine career to medical students: An exploratory study. *Emergency Medicine Australasia* 2012;24(6):625-33. doi: 10.1111/j.1742-6723.2012.01607.x
 - 56. Dolan-Evans E, Rogers GD. Barriers for students pursuing a surgical career and where the Surgical Interest Association can intervene. *Anz Journal of Surgery* 2014;84(6):406-11. doi: 10.1111/ans.12521
 - 57. Boyd JS, Clyne B, Reinert SE, et al. Emergency Medicine Career Choice: A Profile of Factors and Influences from the Association of American Medical Colleges (AAMC) Graduation Questionnaires. *Academic Emergency Medicine* 2009;16(6):544-49. doi: 10.1111/j.1553-2712.2009.00385.x
- 58. Egerton EA. Choice of career of doctors who graduated from Queen's University, Belfast in 1977. *Med Educ* 1985;19(2):131-7.
 - 59. Diderichsen S, Johansson EE, Verdonk P, et al. Few gender differences in specialty preferences and motivational factors: a cross-sectional Swedish study on last-year medical students. *Bmc Medical Education* 2013;13:8. doi: 10.1186/1472-6920-13-39
 - 60. Ferrari S, Reggianini C, Mattei G, et al. International Study of Student Career Choice in Psychiatry (ISoSCCiP): Results from Modena, Italy. *International Review of Psychiatry* 2013;25(4):450-59. doi: 10.3109/09540261.2013.804402
 - 61. Freire MDM, Jordao LMR, Ferreira ND, et al. Motivation Towards Career Choice of Brazilian Freshman Students in a Fifteen-Year Period. *Journal of Dental Education* 2011;75(1):115-21.
 - 62. Buddeberg-Fischer B, Klaghofer R, Abel T, et al. Swiss residents' speciality choices--impact of gender, personality traits, career motivation and life goals. *BMC Health Serv Res* 2006;6:137. doi: 10.1186/1472-6963-6-137
 - 63. Dorsey ER, Jarjoura D, Rutecki GW. The influence of controllable lifestyle and sex on the specialty choices of graduating U.S. medical students, 1996-2003. *Academic medicine : journal of the Association of American Medical Colleges* 2005;80(9):791-6. [published Online First: 2005/08/27]
 - 64. Ekenze SO, Ugwumba FO, Obi UM, et al. Undergraduate Surgery Clerkship and the Choice of Surgery as a Career: Perspective from a Developing Country. *World Journal of Surgery* 2013;37(9):2094-100. doi: 10.1007/s00268-013-2073-y
- 65. Barikani A, Afaghi M, Barikani F, et al. Perception of the medical students on their future career in Qazvin University of Medical Sciences. *Global journal of health science* 2012;4(4):176-80. doi: 10.5539/gjhs.v4n4p176 [published Online First: 2012/09/18]
- 66. Bittaye M, Odukogbe AT, Nyan O, et al. Medical students' choices of specialty in The Gambia: the need for career counseling. *BMC Med Educ* 2012;12:72. doi: 10.1186/1472-6920-12-72

67. Bonura EM, Lee ES, Ramsey K, et al. Factors Influencing Internal Medicine Resident Choice of Infectious Diseases or Other Specialties: A National Cross-sectional Study. *Clinical Infectious Diseases* 2016;63(2):155-63. doi: 10.1093/cid/ciw263

- 68. Al-Fouzan R, Al-Ajlan S, Marwan Y, et al. Factors affecting future specialty choice among medical students in Kuwait. *Medical Education Online* 2012;17:7. doi: 10.3402/meo.v17i0.19587
- 69. AlKot MM, Gouda MA, KhalafAllah MT, et al. Family Medicine in Egypt From Medical Students' Perspective: A Nationwide Survey. *Teaching and Learning in Medicine* 2015;27(3):264-73. doi: 10.1080/10401334.2015.1044654
- Borges NJ, Manuel RS, Duffy RD, et al. Influences on specialty choice for students entering person-oriented and technique-oriented specialties. *Medical Teacher* 2009;31(12):1086-88. doi: 10.3109/01421590903183787
- 71. Budd S, Kelley R, Day R, et al. Student attitudes to psychiatry and their clinical placements. *Medical Teacher* 2011;33(11):E586-E92. doi: 10.3109/0142159x.2011.610836
- 72. Corrigan MA, Shields CJ, Redmond HP. Factors influencing surgical career choices and advancement in Ireland and Britain. *World Journal of Surgery* 2007;31(10):1921-29. doi: 10.1007/s00268-007-9175-3
- 73. Davis CR, Trevatt AEJ, McGoldrick RB, et al. How to train plastic surgeons of the future. *Journal of Plastic Reconstructive and Aesthetic Surgery* 2016;69(8):1134-40. doi: 10.1016/j.bjps.2016.05.001
- 74. Deutsch T, Lippmann S, Frese T, et al. Who wants to become a general practitioner? Student and curriculum factors associated with choosing a GP career a multivariable analysis with particular consideration of practice-orientated GP courses. *Scandinavian Journal of Primary Health Care* 2015;33(1):47-53. doi: 10.3109/02813432.2015.1020661
- 75. Gardner SP, Roberts-Thomson KF. The effect of a change in selection procedures on students' motivation to study dentistry. *Australian Dental Journal* 2014;59(1):2-8. doi: 10.1111/adj.12141
- 76. Dias MS, Sussman JS, Durham S, et al. Perceived benefits and barriers to a career in pediatric neurosurgery: a survey of neurosurgical residents Clinical article. *Journal of Neurosurgery-Pediatrics* 2013;12(5):422-33. doi: 10.3171/2013.5.peds12597
- 77. Goltz CJ, Bachusz RC, Mancini E, et al. Medical Student Career Survey-Vascular Surgery Awareness Initiative. *Annals of Vascular Surgery* 2013;27(2):225-31. doi: 10.1016/j.avsg.2012.02.012
- 78. Gupta NB, Khadilkar SV, Bangar SS, et al. Neurology as career option among postgraduate medical students. *Annals of Indian Academy of Neurology* 2013;16(4):478-82. doi: 10.4103/0972-2327.120427
- 79. Hanzlick R, Prahlow JA, Denton S, et al. Selecting forensic pathology as a career A survey of the post with an eye on the future. *American Journal of Forensic Medicine and Pathology* 2008;29(2):114-22. doi: 10.1097/PAF.0b013e318174f0a9
- 80. Harris MC, Marx J, Gallagher PR, et al. General vs subspecialty pediatrics Factors leading to residents' career decisions over a 12-year period. *Archives of Pediatrics & Adolescent Medicine* 2005;159(3):212-16. doi: 10.1001/archpedi.159.3.212
- 81. Hauer KE, Fagan MJ, Kernan W, et al. Internal medicine clerkship directors' perceptions about student interest in internal medicine careers. *Journal of General Internal Medicine* 2008;23(7):1101-04. doi: 10.1007/s11606-008-0640-y
- 82. Labiris G, Vamvakerou V, Tsolakaki O, et al. Perceptions of Greek medical students regarding medical profession and the specialty selection process during the economic crisis years. *Health Policy* 2014;117(2):203-09. doi: 10.1016/j.healthpol.2014.04.009
- 83. Lambert TW, Goldacre MJ, Bron AJ. Career choices for ophthalmology made by newly qualified doctors in the United Kingdom, 1974-2005. *Bmc Ophthalmology* 2008;8:9. doi: 10.1186/1471-2415-8-3
- 84. Shah HH, Jhaveri KD, Sparks MA, et al. Career Choice Selection and Satisfaction among US
 Adult Nephrology Fellows. Clinical Journal of the American Society of Nephrology
 2012;7(9):1513-20. doi: 10.2215/cjn.01620212
- 85. Lefevre JH, Roupret M, Kerneis S, et al. Career choices of medical students: a national survey of 1780 students. *Medical Education* 2010;44(6):603-12. doi: 10.1111/j.1365-2923.2010.03707.x
- 611 86. Vicente B, Rosel L. Challenges for psychiatric recruitment and training in Chile. *International Review of Psychiatry* 2013;25(4):413-18. doi: 10.3109/09540261.2013.822348
- 87. Wiesenfeld L, Abbey S, Takahashi SG, et al. Choosing Psychiatry as a Career: Motivators and

- Deterrents at a Critical Decision-Making Juncture. *Canadian Journal of Psychiatry-Revue Canadienne De Psychiatrie* 2014;59(8):450-54.
 - 88. Lam CYY, Cheung CSY, Hui ASY. Factors influencing the career interest of medical graduates in obstetrics and gynaecology in Hong Kong: a cross-sectional questionnaire survey. *Hong Kong Medical Journal* 2016;22(2):138-43.
 - 89. Hartung PJ, Taber BJ, Richard GV. The physician values in practice scale: Construction and initial validation. *Journal of Vocational Behavior* 2005;67(2):309-20. doi: 10.1016/j.jvb.2004.05.008
 - 90. Girasek E, Molnar R, Eke E, et al. The medical career choice motivations Results from a Hungarian study. *Central European Journal of Medicine* 2011;6(4):502-09. doi: 10.2478/s11536-011-0034-0
 - 91. Zuccato JA, Kulkarni AV. The Impact of Early Medical School Surgical Exposure on Interest in Neurosurgery. *Canadian Journal of Neurological Sciences* 2016;43(3):410-16. doi: 10.1017/cjn.2015.332
 - 92. Wilbanks L, Spollen J, Messias E. Factors Influencing Medical School Graduates Toward a Career in Psychiatry: Analysis from the 2011-2013 Association of American Medical Colleges Graduation Questionnaire. *Academic Psychiatry* 2016;40(2):255-60. doi: 10.1007/s40596-015-0287-z
 - 93. West CP, Drefahl MM, Popkave C, et al. Internal Medicine Resident Self-report of Factors Associated with Career Decisions. *Journal of General Internal Medicine* 2009;24(8):946-49. doi: 10.1007/s11606-009-1039-0
 - 94. Watmough S, Taylor D, Ryland I. Using questionnaires to determine whether medical graduates' career choice is determined by undergraduate or postgraduate experiences. *Medical Teacher* 2007;29(8):830-32. doi: 10.1080/01421590701551755
 - 95. Thakur A, Fedorka P, Ko C, et al. Impact of mentor guidance in surgical career selection. *Journal of Pediatric Surgery* 2001;36(12):1802-04. doi: 10.1053/jpsu.2001.28842
 - 96. Scott I, Gowans M, Wright B, et al. Determinants of choosing a career in surgery. *Medical Teacher* 2011;33(12):1011-17. doi: 10.3109/0142159x.2011.558533
 - 97. Schnuth RL, Vasilenko P, Mavis B, et al. What influences medical students to pursue careers in obstetrics and gynecology? *American Journal of Obstetrics and Gynecology* 2003;189(3):639-43. doi: 10.1067/s0002-9378(03)00886-x
 - 98. Richards JMJ, Drummond R, Murray J, et al. WHAT PROPORTION OF BASIC SURGICAL TRAINEES CONTINUE IN A SURGICAL CAREER? A SURVEY OF THE FACTORS WHICH ARE IMPORTANT IN INFLUENCING CAREER DECISIONS. Surgeon-Journal of the Royal Colleges of Surgeons of Edinburgh and Ireland 2009;7(5):270-75.
 - 99. Reed CE, Vaporciyan AA, Erikson C, et al. Factors Dominating Choice of Surgical Specialty.

 Journal of the American College of Surgeons 2010;210(3):319-24. doi: 10.1016/j.jamcollsurg.2009.11.016
 - 100. de Souza LCL, Mendonca VRR, Garcia GBC, et al. Medical Specialty Choice and Related Factors of Brazilian Medical Students and Recent Doctors. *Plos One* 2015;10(7):15. doi: 10.1371/journal.pone.0133585
 - 101. Pikoulis E, Avgerinos ED, Pedeli X, et al. Medical students' perceptions on factors influencing a surgical career: The fate of general surgery in Greece. *Surgery* 2010;148(3):510-15. doi: 10.1016/j.surg.2010.01.013
 - 102. Ozer U, Ceri V, Carpar E, et al. Factors Affecting the Choice of Psychiatry as a Specialty and Satisfaction among Turkish Psychiatry Residents. *Academic Psychiatry* 2016;40(2):299-303. doi: 10.1007/s40596-015-0346-5
 - 103. Noble J, Hechter FJ, Karaiskos N, et al. Motivational factors and future life plans of orthodontic residents in the United States. *American Journal of Orthodontics and Dentofacial Orthopedics* 2010;137(5):623-30. doi: 10.1016/j.ajodo.2008.03.034
- 664 104. Noble J. Factors influencing career choice in ophthalmology. *Canadian Journal of Ophthalmology-Journal Canadien D Ophtalmologie* 2006;41(5):596-99.
- Newton DA, Grayson MS, Thompson LF. The variable influence of lifestyle and income on medical students' career specialty choices: Data from two US medical schools, 1998-2004.
 Academic Medicine 2005;80(9):809-14. doi: 10.1097/00001888-200509000-00005
- 106. Moore HB, Moore PK, Grant AR, et al. Future of acute care surgery: A perspective from the next generation. *Journal of Trauma and Acute Care Surgery* 2012;72(1):94-99. doi: 10.1097/TA.0b013e31823b990a
- 672 107. Momen AA, Shakurnia A. Factors Influencing Pediatric Specialty Choice among Pediatric

- Residents of Ahvaz Jundishapur University of Medical Sciences. *International Journal of Pediatrics-Mashhad* 2015;3(3):701-06.
- 108. Mehmood SI, Kumar A, Al-Binali A, et al. Specialty preferences: Trends and perceptions among Saudi undergraduate medical students. *Medical Teacher* 2012;34:S51-S60. doi: 10.3109/0142159x.2012.656753
- 109. Loriot Y, Albiges-Sauvin L, Dionysopoulos D, et al. Why do residents choose the medical oncology specialty? Implications for future recruitment-results of the 2007 French Association of Residents in Oncology (AERIO) Survey. *Annals of Oncology* 2010;21(1):161-65. doi: 10.1093/annonc/mdp294
- 110. Lefevre JH, Karila L, Kerneis S, et al. Motivation of French medical students to pursue surgical careers: Results of national survey of 1742 students. *Journal of Visceral Surgery* 2010;147(3):E181-E86. doi: 10.1016/j.jviscsurg.2010.08.004
- 111. Vo A, McLean L, McInnes MDF. Medical specialty preferences in early medical school training in Canada. *Int J Med Educ* 2017;8:400-07. doi: 10.5116/ijme.59f4.3c15
- 112. Grasreiner D, Dahmen U, Settmacher U. Specialty preferences and influencing factors: a repeated cross-sectional survey of first- to sixth-year medical students in Jena, Germany. BMC medical education 2018;18 doi: ARTN 103

10.1186/s12909-018-1200-8

113. Alkhaneen H, Alhusain F, Alshahri K, et al. Factors influencing medical students' choice of emergency medicine as a career specialty-a descriptive study of Saudi medical students. International journal of emergency medicine 2018;11(1):14. doi: 10.1186/s12245-018-0174-y [published Online First: 2018/03/09]

- 696 Legends
- Table 1. Selected Characteristics of the 75 Studies Included in this Systematic
- 698 Review and Meta-analysis
- Table 2. Meta-analyses of the Factors Influencing Medical Students' Choice of
- 700 Subspecialty
- 701 Table 3. Meta-regression of the EOI Value Stratified by Study-level
- 702 Characteristics
- Figure 1. Bar Graph of the Meta-analyses of the Factors Influencing Medical
- 704 Students' Choice of Subspecialty Stratified by Region.
- Figure 2. Bar Graph of the Meta-analyses of the Factors Influencing Medical
- 706 Students' Choice of Subspecialty Stratified by Survey Year.
- **Supplements**
- 708 Methods S1. Search strategy used in the current systematic review and
- 709 meta-analysis.
- 710 Table S1. Quality Assessment of the Included Studies.
- 711 Table S2. Meta-analyses of the Factors Influencing Medical Students' Choice of
- 712 Subspecialty Stratified by Region and Survey Year.
- 713 Figure S1. Flow Diagram of the Study Inclusion Process.
- 714 Figure S2. Forest Plot of "Academic Interest".
- 715 Figure S3. Forest Plot of "Competencies".
- 716 Figure S4. Forest Plot of "Controllable Lifestyle or Flexible Work Schedule".
- 717 Figure S5. Forest Plot of "Patient Service Orientation".
- 718 Figure S6. Forest Plot of "Medical Teachers or Mentors".
- 719 Figure S7. Forest Plot of "Career Opportunities".
- 720 Figure S8. Forest Plot of "Workload or Working Hours".

- Figure S9. Forest Plot of "Income".
- Figure S10. Forest Plot of "Length of Training".
- Figure S11. Forest Plot of "Prestige".
- Figure S12. Forest Plot of "Advice from Others".
- Figure S13. Forest Plot of "Student Debt".
- Figure S14. Funnel Plots of the Publication Bias Tests of the 12 Factors. TO ROCK CHICK ONL

Table 1. Selected Characteristics of the 75 Studies Included in this Systematic Review and Meta-analysis

		Survey	Sample	Average		-
First Author, Year	Country	years	size	age	Men, No. (%)	Scores
Smith et al,41 2015	UK	2012	2,978	NR	NR	6
Cochran et al,42 2005	USA	2002	408	27.2	214 (52.45)	5
Hauer et al, 43 2008	USA	2007	1,177	NR	NR	6
Johnson et al,44 2012	USA	2012	622	NR	NR	6
Kiolbassa et al, ⁴⁵ 2011	Germany	2010	1,114	24.1	408 (36.62)	5
Klingensmith et al,46 2015	USA	2013	792	NR	539 (68.06)	6
Lee et al, ⁴⁷ 2012	USA	2012	100	NR	58 (58)	7
Macdonald et al, ⁴⁸ 2012	New Zealand	2011	134	NR	79 (58.96)	7
Parsa et al, ³⁷ 2010	Iran	2006-2007	137	27.34	49 (35.77)	7
Paiva et al, ⁴⁹ 1982	USA	1982	144	NR	NR	6
Ni Chroinin et al, 50 2013	UK	2009-2011	274	NR	112 (40.89)	7
Newton et al, ³² 2005	USA	1998-2004	1,258	NR	642 (51.03)	8
Rogers et al, ⁵¹ 1990	USA	1989	266	NR	205 (77.07)	6
Abendroth J et al, ⁵² 2014	Germany	2007-2012	45	NR	14 (31)	7
Alawad et al, ⁵³ 2015	USA	2010-2011	45	NR	36 (80)	8
Azizzadeh et al, ⁵⁴ 2003	USA	2002	130	NR	NR	6
Celenza et al, ⁵⁵ 2012	Australia	2009	216	NR	121 (56.02)	8
Dolan-Evans et al, 56 2014	Australia	2013	419	NR	215 (51.31)	8
Boyd et al, 57 2009	USA	2005-2006	5,848	NR	2,982 (50.99)	8
Egerton et al, ⁵⁸ 1985	Ireland	1977-1981	134	30	82 (61.19)	6
Diderichsen et al, ⁵⁹ 2013	Sweden	2006-2009	372	27	157 (42.20)	6
Ferrari et al, 60 2013	Italy, UK	2009-2011	45	25	NR	9
Freire et al, 61 2011	Brazil	2006-2008	290	23	102 (35.17)	7
Buddeberg-Fischer et al, ⁶² 2006	Switzerland	2001-2003	522	31.1	241 (46.17)	9
Dorsey et al, 63 2005	USA	2003	11,029	NR	4,964 (45.01)	6
Ekenze et al, ⁶⁴ 2013	Nigeria	2009-2010	96	25.9	NR	7
Barikani et al, 65 2012	Australia	2008-2009	49	21.7	NR	6
Bittaye et al, ⁶⁶ 2012	Gambia	2011	106	24.1	48 (45.28)	6
Bonura et al, ⁶⁷ 2016	USA	2015	590	NR	321 (54.40)	9
Al-Fouzan et al, ⁶⁸ 2012	Kuwait	2011-2012	144	NR	NR	7
AlKot et al, ⁶⁹ 2015	Egypt	2013	451	21.8	NR	7
Borges et al, 70 2009	USA	2001-2005	341	NR	NR	5
Budd et al, ⁷¹ 2011	UK	2011	870	22	NR	7
Corrigan et al, ⁷² 2007	Ireland	2007	222	NR	142 (63.96)	7
Davis et al, ⁷³ 2016	UK	2016	173	NR	76 (43.93)	7
Deutsch et al, ⁷⁴ 2015	Germany	2011	659	27.9	NR	8
Gardner et al, 75 2014	Australia	1993-2005	631	NR	NR	7
Dias et al, ⁷⁶ 2013	UK	2013	495	NR	438 (88.48)	5
Goltz et al, ⁷⁷ 2013	USA	2012	102	24.5	34 (33.33)	6
Gupta et al, ⁷⁸ 2013	India	2013	243	NR	179 (73.36)	6
. , -					(/	

70						
Hanzlick et al, ⁷⁹ 2008	USA	2006	161	NR	NR	6
Harris et al, 80 2005	USA	1991-2002	104	NR	53 (50.96)	6
Hauer et al, 81 2008	USA	2008	80	NR	NR	6
Labiris et al, ⁸² 2014	Greece	2014	111	23.6	55 (49.54)	6
Lambert et al, 83 2008	UK	2007	17,393	NR	NR	6
Shah et al, 84 2012	USA	2011	892	NR	NR	6
Lefevre et al, 85 2010	USA	2008	1,555	NR	589 (37.88)	6
Vicente et al, 86 2013	Chile	2013	30	NR	NR	6
Wiesenfeld et al,87 2014	Canada	2013	60	NR	NR	7
Lam et al,88 2016	Hong Kong	2015	228	23	NR	9
Hartung et al, 89 2005	USA	2004	192	20.59	74 (38.54)	4
Girasek et al, 90 2011	Hungary	2011	536	NR	NR	5
Zuccato et al, ⁹¹ 2015	Canada	2012	37	NR	24 (65)	6
Wilbanks et al, ⁹² 2015	USA	2011-2013	29,227	NR	15,164 (51.99)	9
West et al, ⁹³ 2009	USA	2005-2007	14,890	NR	8,700 (58.43)	6
Watmough et al, ⁹⁴ 2007	UK	2005	116	NR	66 (56.90)	4
Thakur et al, 95 2001	USA	2001	56	NR	53 (95)	8
Scott et al, 96 2011	Canada	2002-2004	1,542	NR	NR	6
Schnuth et al, 97 2003	USA	2002	203	NR	72 (53.47)	6
Richards et al,98 2009	UK	2009	150	NR	108 (72.00)	5
Reed et al, 99 2009	USA	2008	2,022	NR	1,354 (66.96)	9
de Souza et al, 100 2015	Portugal	2012	1,303	NR	NR	7
Pikoulis et al, ¹⁰¹ 2010	Greece	2006-2007	87	NR	NR	6
Ozer et al, 102 2015	Turkey	2013	98	27.7	26 (26.53)	6
Noble et al, 103 2004	Canada	2004	21,296	NR	NR	8
Noble et al, 104 2010	Canada	2007	120	NR	NR	5
Newton et al, 105 2005	USA	2004	1,286	NR	NR	6
Moore et al, 106 2012	USA	2011	337	26	179 (53.12)	6
Momen et al, 107 2015	Iran	2014-2015	38	35.6	11 (29)	6
Mehmood et al, 108 2012	Saudi Arabia	2012	550	NR	348 (63.27)	6
Loriot et al, 109 2010	France	2007	44	NR	17 (39)	7
Lefevre et al, 110 2010	France	2008	522	23.8	198 (37.93)	7
Vo et al, 111 2017	Canada	2017	90	22.5	52 (57.78)	5
Grasreiner et al, 112 2018	Germany	2014-2016	181	24	33 (18.10)	6
Alkhannen et al, 113 2018	Saudi Arabia	2017	436	NA	250 (57.00)	5

Footnotes: scores: quality score of the AHRQ scale.

Table 2. Meta-analyses of the Factors Influencing Medical Students' Choice of Subspecialty

Academic interests 38 8,2,366 75.29 66.93 82.11 99.70 1.60 <0.0001 Competencies 17 76,515 55.15 33.63 74.90 99.90 3.44 <0.0001 Controllable lifestyle or flexible work schedule Patient service orientation 37 46,572 50.04 44.65 55.43 98.70 0.41 <0.0001 Patient service orientation 37 46,572 50.04 44.65 55.43 98.70 0.41 <0.0001 Medical teachers or 32 85,071 46.93 37.77 56.30 99.80 0.41 <0.0001 Career opportunities 38 81,923 44.00 32.26 48.78 99.70 1.15 <0.0001 Workload or working hours 20 22,051 37.99 29.59 47.19 98.30 0.69 <0.0001 Income 50 109,791 34.70 28.36 41.62 99.70 1.09 <0.0001 Length of training 18 42,046 32.30 27.61 37.37 98.10 0.20 <0.0001 Advice from others 18 82,692 28.24 22.26 34.23 99.80 0.02 <0.0001 Student debt 8 38,917 15.33 10.96 21.03 98.80 0.27 <0.0001 Student debt 8 38,917 15.33 10.96 21.03 98.80 0.27 <0.0001	Factor	No. of studies	Total no. of	EOI value (%)	95 CI% value	of EOI	I-square (%)	Tau-squ are	<i>P</i> -Value
Competencies 17 76,515 55.15 33.63 74.90 99.90 3.44 <0.0001		studies	participants	value (70)	Lower Upper		. (/0)	ure	
Controllable lifestyle or flexible work schedule 44 101,001 53.00 47.90 58.03 99.50 0.45 <0.0001 Patient service orientation 37 46,572 50.04 44.65 55.43 98.70 0.41 <0.0001	Academic interests	38	82,366	75.29	66.93	82.11	99.70	1.60	< 0.0001
flexible work schedule 44 101,001 53.00 47.90 58.03 99.50 0.45 <0.0001	Competencies	17	76,515	55.15	33.63	74.90	99.90	3.44	< 0.0001
Medical teachers or 32 85,071 46.93 37.77 56.30 99.80 1.14 <0.0001 Career opportunities 38 81,923 44.00 32.26 48.78 99.70 1.15 <0.0001		44	101,001	53.00	47.90	58.03	99.50	0.45	< 0.0001
Career opportunities 38 81,923 44.00 32.26 48.78 99.70 1.15 <0.0001 Workload or working hours 20 22,051 37.99 29.59 47.19 98.30 0.69 <0.0001 Income 50 109,791 34.70 28.36 41.62 99.70 1.09 <0.0001 Length of training 18 42,046 32.30 27.61 37.37 98.10 0.20 <0.0001 Prestige 26 30,629 31.17 26.32 37.69 98.30 0.52 <0.0001 Advice from others 18 82,692 28.24 22.26 34.23 99.80 0.02 <0.0001 Student debt 8 38,917 15.33 10.96 21.03 98.80 0.27 <0.0001	Patient service orientation	37	46,572	50.04	44.65	55.43	98.70	0.41	< 0.0001
Workload or working hours 20 22,051 37.99 29.59 47.19 98.30 0.69 <0.0001	Medical teachers or	32	85,071	46.93	37.77	56.30	99.80	1.14	< 0.0001
Income 50 109,791 34.70 28.36 41.62 99.70 1.09 <0.0001 Length of training 18 42,046 32.30 27.61 37.37 98.10 0.20 <0.0001	Career opportunities	38	81,923	44.00	32.26	48.78	99.70	1.15	< 0.0001
Length of training 18 42,046 32.30 27.61 37.37 98.10 0.20 <0.0001 Prestige 26 30,629 31.17 26.32 37.69 98.30 0.52 <0.0001	Workload or working hours	20	22,051	37.99	29.59	47.19	98.30	0.69	< 0.0001
Prestige 26 30,629 31.17 26.32 37.69 98.30 0.52 <0.0001 Advice from others 18 82,692 28.24 22.26 34.23 99.80 0.02 <0.0001	Income	50	109,791	34.70	28.36	41.62	99.70	1.09	< 0.0001
Advice from others 18 82,692 28.24 22.26 34.23 99.80 0.02 <0.0001 Student debt 8 38,917 15.33 10.96 21.03 98.80 0.27 <0.0001	Length of training	18	42,046	32.30	27.61	37.37	98.10	0.20	< 0.0001
Student debt 8 38,917 15.33 10.96 21.03 98.80 0.27 <0.0001	Prestige	26	30,629	31.17	26.32	37.69	98.30	0.52	< 0.0001
	Advice from others	18	82,692	28.24	22.26	34.23	99.80	0.02	< 0.0001
730	Student debt	8	38,917	15.33	10.96	21.03	98.80	0.27	< 0.0001
	730								

Table 3. Meta-regression of the EOI Value Stratified by Study-level Characteristics

Factor		estimate	95 CI% o	f estimate	<i>P</i> -Value
ractor		estimate	Lower	Upper	_ P-value
	Country	-0.2314	-1.1575	0.6946	0.6302
A 1 * * *	Survey years	0.3811	-0.3580	1.1202	0.2711
Academic interests	Specialty	-0.4892	-1.5345	0.5562	0.4008
	Sample size	0.2362	-0.5488	1.0212	0.6537
	Country	0.6946	-1.1461	0.8938	0.8376
Commission	Survey years	-1.0418	-2.0950	0.0114	0.0151
Competencies	Specialty	0.0904	-1.5786	1.7594	0.9398
	Sample size	-0.5720	-1.8606	0.7166	0.5823
	Country	-0.1261	-1.1461	0.8938	0.9614
	Survey years	-0.0001	-0.4052	0.4051	0.9822
Controllable lifestyle or flexible work schedule	Specialty	-0.8989	-1.4979	-0.3000	0.0035
	Sample size	-0.0518	-0.4396	0.3361	0.7203
	Country	-0.6238	-1.3118	0.0642	0.0833
	Survey years	-0.0414	-0.6912	0.6083	0.8524
Patient service orientation	Specialty	-1.5982	-2.5227	-0.6737	0.0010
	Sample size	-0.1157	-0.7473	0.5159	0.6358
	Country	0.7395	0.3117	1.1674	0.0007
	Survey years	0.1133	-0.3580	0.5845	0.6376
Medical teachers or mentors	Specialty	0.0605	-0.4441	0.5652	0.8141
	Sample size	-0.1202	-0.5567	0.3163	0.5894
	Country	0.1075	-0.7030	0.9179	0.5828
	Survey years	0.3284	-0.3913	1.0480	0.7546
Career opportunities	Specialty	-0.9292	-1.8015	-0.0570	0.0077
	Sample size	0.3654	0.1156	1.5478	0.0081
	Country	-0.4535	-1.5086	0.6016	0.3981
W 11 1 1: 1	Survey years	0.4624	-0.5417	1.4665	0.3922
Workload or working hours	Specialty	-0.9878	-2.1727	0.1972	0.1070
	Sample size	0.0982	-0.8589	1.0553	0.8205
	Country	0.1058	-0.4665	0.6781	0.7390
*	Survey years	0.0999	-0.4379	0.6377	0.8774
Income	Specialty	-0.6457	-1.3267	0.0352	0.0480
	Sample size	0.0523	-0.4826	0.5872	0.6786
	Country	-0.1559	-1.2782	0.9664	0.7854
I amount of the initial	Survey years	-0.2158	-1.4089	0.9772	0.7229
Length of training	Specialty	0.3959	-0.9585	1.7502	0.5667
	Sample size	0.1565	-0.6631	0.9761	0.7082
	Country	-0.3346	-1.0799	0.4106	0.3485
Prostice	Survey years	-0.4513	-1.1378	0.2352	0.0950
Prestige	Specialty	-1.0112	-1.8980	-0.1244	0.0172
	Sample size	0.0355	-0.6013	0.6723	0.5214
A divise from others	Country	-0.0097	-0.0722	0.0529	0.9328
Advice from others	Survey years	-0.0861	-0.1471	-0.0251	0.0057

	Specialty	-0.2017	-0.2790	-0.1244	< 0.0001
	Sample size	0.2125	0.1309	0.2941	< 0.0001
	Country	2.7853	2.0544	3.5162	0.0001
Student debt	Survey years	-0.1567	-0.6707	0.3573	0.5502
	Sample size	-0.5248	-1.0108	-0.0388	0.0343

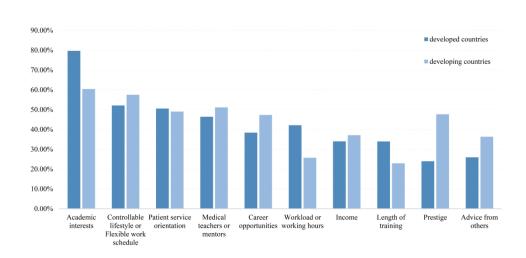


Figure 1. Bar Graph of the Meta-analyses of the Factors Influencing Medical Students' Choice of Subspecialty Stratified by Region.

190x107mm (300 x 300 DPI)

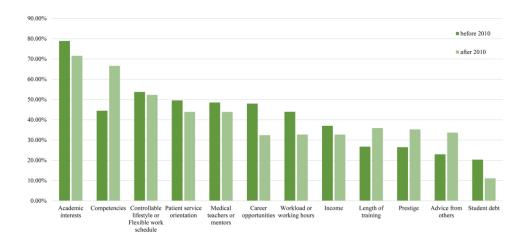


Figure 2. Bar Graph of the Meta-analyses of the Factors Influencing Medical Students' Choice of Subspecialty Stratified by Survey Year.

190x107mm (300 x 300 DPI)

SI Methods. Search strategy used in the current systematic review and metaanalysis.

Medical	Students
mental	Sinucius

- 1. Students, Medical [Mesh]
- 2. Medical students
- 3. Medical student
- 4. Student, Medical
- 5. OR / 1 4

13. Cross sectional study

14. Cross sectional study [Publication

Type]

- 15. Cross sectional study [Mesh Terms]
- 16. Systematic review
- 17. Systematic review [Publication Type]
- 18. Systematic review [Mesh Terms]

Subspecialty Choice

- 6. Career choices
- 7. Choice, Career
- 8. Choices career
- 9. Specialties
- 10. Sub-specialties
- 11. Sub-discipline
- 12. OR / 6 11

- 19. Meta-analysis [Title/Abstract]
- 20. Meta-analysis [Mesh Terms]
- 21. Meta-analysis [Publication Type]
- 22. OR / 12 21

Factors

23. Factors

Combined search

Study design 23. #5 AND #12AND #22 AND #2

Abbreviations: MeSH, Medical Subject Heading in PubMed

Table S1. Quality assessment of the included studies													
Qual	lity assessment criteria	1	2	3	4	5	6	7	8	9	10	11	Scores
1	Smith et al, ⁴¹ 2015	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
2	Cochran et al, ⁴² 2005 Hauer et al, ⁴³ 2008	Y	U	Y	Y	N N	Y	N	Y	N	N v	N N	5
3	Johnson et al, 44 2012	Y Y	U U	Y Y	Y Y	N N	Y Y	N N	Y Y	N N	Y Y	N N	6 6
5	Kiolbassa et al, ⁴⁵ 2011	Y	U	Y	Y	N	Y	N	Y	N	N	N	5
6	Klingensmith et al, 46 2015	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
7	Lee et al, ⁴⁷ 2012	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
8	Macdonald et al, ⁴⁸ 2012	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
9	Parsa et al, ³⁷ 2010	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
10	Paiva et al, ⁴⁹ 1982	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
11	Ni Chroinin et al, ⁵⁰ 2013	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
12	Newton et al,32 2005	Y	U	Y	Y	Y	Y	Y	Y	N	Y	N	8
13	Rogers et al, ⁵¹ 1990	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
14	Abendroth J et al, ⁵² 2014	Y	U	Y	Y	N	Y	N	Y	N	Y	Y	7
15	Alawad et al, ⁵³ 2015	Y	U	Y	Y	N	Y	Y	Y	Y	Y	N	8
16	Azizzadeh et al, ⁵⁴ 2003	Y	U	Y	Y	Y	Y	N	N	N	Y	N	6
17	Celenza et al, ⁵⁵ 2012	Y	U	Y	Y	Y	Y	Y	N	Y	Y	N	8
18	Dolan-Evans et al, ⁵⁶ 2014	Y	U	Y	Y	Y	Y	N	Y	N	Y	Y	8
19	Boyd et al, ⁵⁷ 2009	Y	U	Y	Y	Y	Y	Y	Y	N	Y	N	8
20	Egerton et al, ⁵⁸ 1985	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
21	Diderichsen et al, ⁵⁹ 2013	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
22	Ferrari et al, ⁶⁰ 2013	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	N	9
23	Freire et al, ⁶¹ 2011	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
24	Buddeberg-Fischer et al, ⁶² 2006	Y	U	Y	Y	N	Y	Y	Y	Y	Y	Y	9
25	Dorsey et al, ⁶³ 2005	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
26 27	Ekenze et al, ⁶⁴ 2013 Barikani et al, ⁶⁵ 2012	Y Y	U U	Y Y	Y Y	Y N	Y Y	Y N	N Y	N N	Y Y	N N	7 6
28	Bittaye et al, 66 2012	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
39	Bonura et al, ⁶⁷ 2016	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	N	9
30	Al-Fouzan et al, ⁶⁸ 2012	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
31	AlKot et al, ⁶⁹ 2015	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
32	Borges et al, ⁷⁰ 2009	Y	U	Y	Y	N	Y	N	N	N	Y	N	5
33	Budd et al, ⁷¹ 2011	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
34	Corrigan et al, 72 2007	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
35	Davis et al, ⁷³ 2016	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
36	Deutsch et al, ⁷⁴ 2015	Y	U	Y	Y	Y	Y	N	Y	Y	Y	N	8
37	Gardner et al, ⁷⁵ 2014	Y	U	Y	Y	N	Y	N	Y	N	Y	N	7
38	Dias et al, ⁷⁶ 2013	Y	U	Y	Y	N	Y	N	N	N	Y	N	5
39	Goltz et al, ⁷⁷ 2013	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
40	Gupta et al, ⁷⁸ 2013	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
41	Hanzlick et al, ⁷⁹ 2008	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
42	Harris et al, ⁸⁰ 2005	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
43	Hauer et al,81 2008	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
44	Labiris et al, ⁸² 2014	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
45	Lambert et al,83 2008	Y	Ú	Y	Y	N	Y	N	Y	N	Y	N	6
46	Shah et al, ⁸⁴ 2012	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
47	Lefevre et al, 85 2010	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
48	Vicente et al, 86 2013	Y	U	Y	Y	N	N	Y	N	Y	Y	N	6
49	Wiesenfeld et al, ⁸⁷ 2014	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
50	Lam et al, 88 2016	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	N	9
51	Hartung et al, 89 2005	Y	U	Y	Y	N	Y	N	N	N	N	N	4
52	Girasek et al.,90 2011	Y	U	Y	Y	N	Y	N	N	N	Y	N	5
53	Zuccato et al., ⁹¹ 2015	Y	U	Y	Y	N	Y	N	Y	N Y	Y	N	6
54 55	Wilbanks et al, ⁹² 2015 West et al, ⁹³ 2009	Y Y	U U	Y Y	Y Y	N N	Y Y	Y N	Y Y	Y N	Y Y	Y N	9 6
56	Watmough et al, 94 2007	Y	U	Y	Y	N	N	N	N	N	Y	N	4
57	Thakur et al, 95 2001	Y	U	Y	Y	Y	Y	Y	N	Y	Y	N	8
58	Scott et al, 96 2011	Y	U	Y	Y	n N	Y	n N	Y	n N	Y	N	6
59	Schnuth et al, ⁹⁷ 2003	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
60	Richards et al, 98 2009	Y	U	Y	Y	N	Y	N	N	N	Y	N	5
61	Reed et al, 99 2009	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	N	9
62	de Souza et al, ¹⁰⁰ 2015	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
63	Pikoulis et al, ¹⁰¹ 2010	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
64	Ozer et al, ¹⁰² 2015	Y	U	Y	Y	N	N	Y	N	Y	Y	N	6
65	Noble et al, ¹⁰³ 2004	Y	U	Y	Y	Y	Y	Y	Y	N	Y	N	8
66	Noble et al, 104 2010	Y	U	Y	Y	N	Y	N	N	N	Y	N	5
67	Newton et al, ¹⁰⁵ 2005	Y	U	Y	Y	N	Y	Y	N	N	Y	N	6
68	Moore et al, ¹⁰⁶ 2012	Y	U	Y	Y	Y	Y	N	Y	N	N	N	6
69	Momen et al, ¹⁰⁷ 2015	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
70	Mehmood et al, ¹⁰⁸ 2012	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
71	Loriot et al, ¹⁰⁹ 2010	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
72	Lefevre et al, 110 2010	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
73	Vo et al, ¹¹¹ 2017	Y	U	Y	Y	Y	N	N	N	N	Y	N	5
74	Grasreiner et al, ¹¹² 2018	Y	U	Y	Y	Y	Y	N	N	N	Y	N	6
75	All-hamman at al 113 2019	v	ΙI	v	v	N	N	v	N	N	v	N	5

Quality assessment criteria in detail

Alkhannen et al,¹¹³ 2018

- 1. Define the source of information (survey, record review).
- 2. List the inclusion and exclusion criteria for the exposed and unexposed subjects (cases and controls) or refer to previous publications.
- 3. Indicate the time period used for identifying patients.
- 4. Indicate whether the subjects were consecutive if not population-based.
- 5. Indicate whether the evaluators of the subjective components of the study were masked to the other aspects of participants' status.
- 6. Describe any assessments undertaken for quality assurance purposes (e.g., test/retest of primary outcome measurements)
- 7. Explain any patient exclusion from the analyses.
- 8. Describe how confounding was assessed and/or controlled.
- 9. If applicable, explain how missing data were handled in the analysis.
- 10. Summarize the patient response rates and the completeness of the data collection.
- 11. Clarify what follow-up, if any, was expected and the percentage of patients with incomplete data or follow-up.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

"Y": Yes; "N": No; "U": Unclear.

Table S2. Meta-analyses of the Factors Influencing Medical Students' Choice of Subspecialty Stratified by Region and Survey Year.

Forder		No. of	Total no. of	Extent of	95 CI% o	f EOI value	I-square	Р-	Q-
Factor		studies	participants	influence (%)	Lower	Upper	(%)	Value	Value
	developed	28	80,000	79.66	70.73	86.39	99.8	0.02	3.51
Academic interest	developing	10	2,366	60.41	43.44	75.19	98.0	0.02	3.31
readenne interest	before 2010	29	44,174	78.88	69.04	86.22	99.7	0.40	1.21
	after 2010	9	38,192	71.54	57.66	82.27	99.6	0.10	1.21
Competencies	before 2010	9	43,134	44.40	29.11	60.83	99.8	0.21	1.86
Competencies	after 2010	8	33,381	66.60	34.48	88.31	99.8	0.21	1.00
	developed	37	100,980	52.11	46.52	57.65	99.6	0.63	0.68
Controllable lifestyle or	developing	7	2,017	57.50	45.81	68.41	95.9	0.03	0.00
flexible work schedule	before 2010	22	62,945	53.72	47.48	59.84	99.4	0.97	0.05
	after 2010	22	40,056	52.29	43.51	60.93	99.2	0.97	0.03
	developed	27	44,235	50.56	44.68	56.42	98.8	0.74	0.49
Patient service orientation	developing	10	2,337	49.02	31.62	66.67	98.1	0.74	0.48
Patient service orientation	before 2010	18	40,997	49.56	43.29	55.84	98.8	0.70	0.54
	after 2010	19	5,579	43.87	38.62	63.80	98.3	0.70	0.54
	developed	28	84,076	46.43	36.63	56.52	99.8	0.72	0.40
	developing	4	995	51.14	33.97	68.04	95.4	0.73	0.48
Medical teachers or mentors	before 2010	21	49,654	48.48	36.93	60.19	99.8		
	after 2010	11	35,417	43.87	27.94	61.18	99.7	0.70	0.54
	developed	31	79,867	38.41	29.61	48.04	99.8		
	developing	7	2,056	47.32	30.38	64.91	98.1	0.60	0.74
Career opportunities	before 2010	20	43,417	47.97	33.54	62.74	99.8		
	after 2010	18	38,506	32.38	21.68	45.31	99.5	0.24	1.68
	developed	15	20,970	42.14	31.35	53.72	98.6		
	developing	5	1,081	25.72	13.29	43.88	95.3	0.34	1.39
Workload or working hours	before 2010	9	19,456	43.93	29.43	59.54	98.8		
	after 2010	11	2,595	32.70	29.43	59.54	97.4	0.41	1.21
	developed	39	107,091	34.01	26.89	41.93	99.8		
	developing	11	2,700	37.11	27.06	48.41	96.4	0.84	0.29
Income	before 2010	25	68,714	37.11	25.95	49.62	99.8		
	after 2010	25	41,077	32.67	26.04	49.02	98.9	0.41	1.18
					28.72	39.60	98.4		
	developed	15	41,246	33.95				0.31	1.48
Length of training	developing	3	800	22.92	10.94	41.85	94.0		
	before 2010	7	8,811	26.72	15.89	41.29	98.9	0.28	1.59
	after 2010	11	33,234	35.87	29.67	42.59	96.9		
	developed	17	27,987	23.96	19.20	29.47	97.3	0.01	4.71
Prestige	developing	9	2,642	47.65	34.41	61.24	97.6		
	before 2010	12	25,542	26.46	20.78	33.03	96.7	0.25	1.67
	after 2010	14	5,087	35.22	24.70	47.40	98.3		
	developed	14	81,205	25.95	19.27	32.64	99.8	0.36	1.33
Advice from others	developing	4	1,487	36.34	18.91	53.77	98.1		
	before 2010	10	48,319	22.93	17.85	28.01	99.5	0.31	1.47
	after 2010	8	34,373	33.65	25.12	42.18	99.1		•
Student debt	before 2010	5	6,610	20.29	15.86	25.57	81.8	0.69	0.59
	after 2010	3	32,307	11.08	1.58	49.08	99.6		

Figure S1. Flow Diagram of the Study Inclusion.

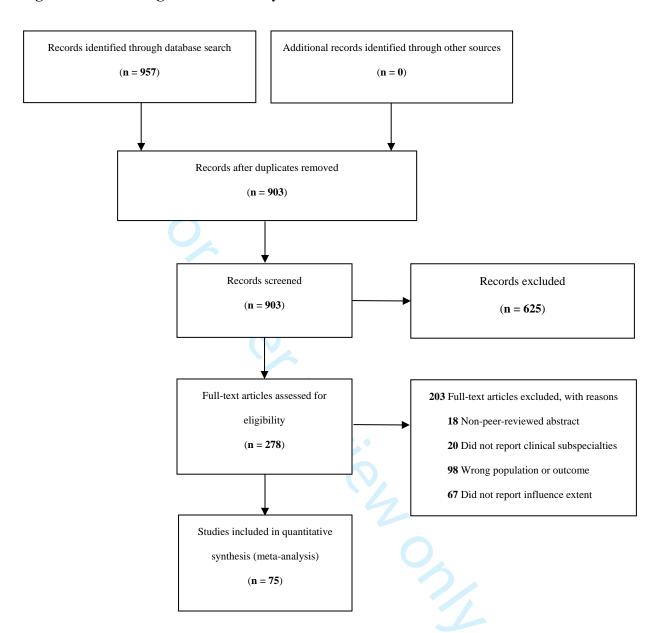


Figure S2. Forest Plot of "Academic Interest".

Study	Events	Total		Proportion	95%-CI	Weight (fixed)	Weight (random)
Smith et al, 2015	2424	2978	+	0.81	[0.80; 0.83]	3.8%	2.7%
Klingensmith et al, 2015	87	792 -	-		[0.09; 0.13]	0.6%	2.7%
Macdonald et al, 2012	119	134	<u> </u>		[0.82; 0.94]	0.1%	2.6%
Ni Chroinin et al, 2013	266	274	+		[0.94; 0.99]	0.1%	2.5%
Azizzadeh et al. 2003	102	130	 		[0.70; 0.85]	0.2%	2.7%
Celenza et al. 2012	151	216	- 		[0.63; 0.76]	0.4%	2.7%
Dolan-Evans et al, 2014	288	419	-	0.69	[0.64; 0.73]	0.7%	2.7%
Diderichsen et al, 2013	342	372	+	0.92	[0.89; 0.94]	0.2%	2.7%
Buddeberg-Fischer et al, 2006	351	522	-+	0.67	[0.63; 0.71]	1.0%	2.7%
Ekenze et al, 2013	40	96		0.42	[0.32; 0.52]	0.2%	2.7%
Al-Fouzan et al, 2012	58	144		0.40	[0.32; 0.49]	0.3%	2.7%
AlKot et al, 2015	117	451	-	0.26	[0.22; 0.30]	0.7%	2.7%
Borges et al, 2009	208	341		0.61	[0.56; 0.66]	0.7%	2.7%
Budd et al, 2011	531	870	-	0.61	[0.58; 0.64]	1.7%	2.7%
Corrigan et al, 2007	211	222	+		[0.91; 0.98]	0.1%	2.6%
Davis et al, 2016	151	173	-		[0.81; 0.92]	0.2%	2.6%
Gardner et al, 2014	542	631	i +		[0.83; 0.89]	0.6%	2.7%
Gupta et al, 2013	143	243			[0.52; 0.65]	0.5%	2.7%
Labiris et al, 2014	93	111	_		[0.76; 0.90]	0.1%	2.6%
Lambert et al, 2008		17393	+		[0.40; 0.42]	35.0%	2.7%
Shah et al, 2012	676	892	 		[0.73; 0.79]	1.4%	2.7%
Lefevre et al, 2010	1107	1555	!= -		[0.69; 0.73]	2.7%	2.7%
Wiesenfeld et al, 2014	38	60			[0.50; 0.75]	0.1%	2.6%
Girasek et al, 2011	500	548	+		[0.89; 0.93]	0.4%	2.7%
Zuccato et al, 2015	32	37			[0.71; 0.95]	0.0%	2.4%
Wilbanks et al, 2015	27251		•		[0.93; 0.94]	15.3%	2.7%
Schnuth et al, 2003	144	203	††		[0.64; 0.77]	0.3%	2.7%
Richards et al, 2009	140	150	-		[0.88; 0.97]	0.1%	2.6%
Pikoulis et al, 2010	47	87			[0.43; 0.65]	0.2%	2.7%
Ozer et al, 2015	44	98			[0.35; 0.55]	0.2%	2.7%
Noble et al, 2010	107	120			[0.82; 0.94]	0.1%	2.6%
Noble et al, 2004	16836		*		[0.79; 0.80]	29.4%	2.7%
Moore et al, 2012	270	337	į –		[0.75; 0.84]	0.4%	2.7%
Momen et al, 2015	27	38			[0.54; 0.85]	0.1%	2.5%
Mehmood et al, 2012	387	550	Ţ.		[0.66; 0.74]	1.0%	2.7%
Loriot et al, 2010	43	44			[0.88; 1.00]	0.0%	1.7%
Lefevre et al, 2010	282	522	—		[0.50; 0.58]	1.1%	2.7%
Vo et al, 2017	79	90		0.88	[0.79; 0.94]	0.1%	2.6%
Fixed effect model		82366	↓		[0.69; 0.70]		
Random effects model				0.75	[0.67; 0.82]	-	100.0%
Heterogeneity: $I^2 = 99.7\%$, $\tau^2 = 4$	1.6002, <i>p</i> =	0					
			0.2 0.4 0.6 0.8				

Figure S3. Forest Plot of "Competencies".

Study	Events	Total		7			Proportion	95%-CI	W(fixed)	W(random)
Smith et al, 2015	1471	2978			*			[0.48; 0.51]		5.9%
Lee et al, 2012	12	100		. 1				[0.06; 0.20]		5.8%
Alawad et al, 2015	12	45	-					[0.15; 0.42]		5.8%
Celenza et al, 2012	105	216		ì	-			[0.42; 0.55]		5.9%
Diderichsen et al, 2013	305	372		i		-		[0.78; 0.86]		5.9%
Bittaye et al, 2012	81	106		:				[0.67; 0.84]		5.9%
Harris et al, 2005	62	104		_ :	+	-		[0.50; 0.69]		5.9%
Lambert et al, 2008	5523	17393						[0.31; 0.32]		5.9%
Lefevre et al, 2010	267	1555	+	1			0.17	[0.15; 0.19]	2.4%	5.9%
Wilbanks et al, 2015	27731	29227		- 1			0.95	[0.95; 0.95]	15.4%	5.9%
Thakur et al, 2001	29	56		+	→ ÷		0.52	[0.38; 0.65]	0.2%	5.8%
Reed et al, 2009	1302	2022		į	-		0.64	[0.62; 0.66]	5.0%	5.9%
Noble et al, 2010	56	120		-			0.47	[0.38; 0.56]	0.3%	5.9%
Noble et al, 2004	2560	21296					0.12	[0.12; 0.12]	24.4%	5.9%
Moore et al, 2012	270	337		i		\rightarrow	0.80	[0.75; 0.84]	0.6%	5.9%
Momen et al, 2015	30	38		- 1	į –		0.79	[0.63; 0.90]	0.1%	5.7%
Mehmood et al, 2012	462	550		į		+	0.84	[0.81; 0.87]	0.8%	5.9%
Fixed effect model		76515		į			0.42	[0.41; 0.42]	100%	
Random effects mode	I			_		_	0.55	[0.34; 0.75]		100%
Heterogeneity: I-squared=	99.9%, tau	-squared	d=3.439.	p<0.00	01					
		•	r		1					
			0.2	0.4	0.6	8.0				

The EOI value

Figure S4. Forest Plot of "Controllable Lifestyle or Flexible Work Schedule".

Study	Events	Total	_	Proportion	95%-CI	Weight (fixed)	Weight (random)
Smith et al, 2015	1432	2978	+	0.48	[0.46; 0.50]	3.3%	2.4%
Cochran et al, 2005	204	408	<u></u> !		[0.45; 0.55]	0.4%	2.4%
Hauer et al, 2008	355	1177	+		[0.48; 0.33]	1.1%	2.4%
Kiolbassa et al, 2011	39	1114			[0.03; 0.05]	0.2%	2.3%
Lee et al, 2012	16	100			[0.09; 0.25]	0.1%	2.1%
Macdonald et al, 2012	80	134	 		[0.51; 0.68]	0.1%	2.3%
Parsa et al, 2010	116	137	 		[0.78; 0.90]	0.1%	2.1%
Newton et al, 2005	761	1258	 		[0.58; 0.63]	1.3%	2.4%
Rogers et al, 1990	132	266	<u>→</u> ‡;		[0.43; 0.56]	0.3%	2.3%
Abendroth J et al, 2014	30	45	 	0.67	[0.51; 0.80]	0.0%	2.0%
Alawad et al, 2015	16	45			[0.22; 0.51]	0.0%	2.0%
Azizzadeh et al, 2003	85	130	 	0.65	[0.57; 0.74]	0.1%	2.2%
Celenza et al, 2012	156	216		0.72	[0.66; 0.78]	0.2%	2.3%
Dolan-Evans et al, 2014	309	419	+	0.74	[0.69; 0.78]	0.4%	2.4%
Boyd et al, 2009	3695	5848	□	0.63	[0.62; 0.64]	6.0%	2.4%
Ferrari et al, 2013	31	45	 	0.69	[0.53; 0.82]	0.0%	2.0%
Dorsey et al, 2005	4516	11029	■		[0.40; 0.42]	11.7%	2.4%
Bittaye et al, 2012	63	106	 -		[0.49; 0.69]	0.1%	2.2%
AlKot et al, 2015	182	451	-		[0.36; 0.45]	0.5%	2.4%
Borges et al, 2009	309	338			[0.88; 0.94]	0.1%	2.2%
Budd et al, 2011	627	870	+		[0.69; 0.75]	0.8%	2.4%
Davis et al, 2016	67	173			[0.31; 0.46]	0.2%	2.3%
Deutsch et al, 2015	591	657			[0.87; 0.92]	0.3%	2.3%
Dias et al, 2013	81	495	+		[0.13; 0.20]	0.3%	2.3%
Goltz et al, 2013	64	102			[0.53; 0.72]	0.1%	2.2%
Gupta et al, 2013	85	243	-]		[0.29; 0.41]	0.2%	2.3%
Harris et al, 2005	55	104	<u> </u>		[0.43; 0.63]	0.1%	2.2%
Labiris et al, 2014	76	111 192			[0.59; 0.77]	0.1%	2.2% 2.0%
Hartung et al, 2005 Girasek et al, 2011	10 342	537	<u> </u>		[0.03; 0.09] [0.59; 0.68]	0.0% 0.5%	2.0%
Zuccato et al, 2015	29	37			[0.62; 0.90]	0.5%	1.8%
Wilbanks et al, 2015	21043	29227	+		[0.02, 0.90]	25.9%	2.4%
West et al, 2009	10088	14890			[0.67; 0.69]	14.3%	2.4%
Scott et al, 2001	988	1542	11.		[0.62; 0.66]	1.6%	2.4%
Richards et al, 2009	42	150			[0.21; 0.36]	0.1%	2.3%
Reed et al. 2009	1001	2022	+		[0.47; 0.52]	2.2%	2.4%
de Souza et al, 2015	702	1303	<u>;</u> ;		[0.51; 0.57]	1.4%	2.4%
Noble et al, 2004	9009	21296	.		[0.42; 0.43]	22.8%	2.4%
Newton et al, 2005	729	1286	_	0.57		1.4%	2.4%
Moore et al, 2012	270	337		0.80	[0.75; 0.84]	0.2%	2.3%
Loriot et al, 2010	15	44		0.34	[0.20; 0.50]	0.0%	2.0%
Lefevre et al, 2010	170	522	-	0.33	[0.29; 0.37]	0.5%	2.4%
Grasreiner et al, 2018	103	181	++-	0.57	[0.49; 0.64]	0.2%	2.3%
Alkhannen et al, 2018	204	436		0.47	[0.42; 0.52]	0.5%	2.4%
Fixed effect model		103001	i		[0.57; 0.57]	100.0%	
Random effects mode				0.53	[0.48; 0.58]		100.0%
Heterogeneity: $I^2 = 99.5\%$	$\tau^{-} = 0.448$	9, p = 0	0.2 0.4 0.6 0.8				
			0.2 0.4 0.6 0.8				

Figure S5. Forest Plot of "Patient Service Orientation".

Study	Events	Total		Proportion	95%-CI	Weight (fixed)	Weight (random)
Hauer et al, 2008	450	1177	+	0.38	[0.35; 0.41]	2.8%	3.0%
Kiolbassa et al, 2011	32	1114	+		[0.02; 0.04]	0.3%	2.8%
Lee et al, 2012	30	100			[0.21; 0.40]	0.2%	2.7%
Parsa et al, 2010	104	137			[0.68; 0.83]	0.3%	2.7%
Rogers et al, 1990	148	266	 		[0.49; 0.62]	0.7%	2.9%
Abendroth J et al, 2014	19	45		0.42	[0.28; 0.58]	0.1%	2.4%
Alawad et al, 2015	5	45		0.11	[0.04; 0.24]	0.0%	1.9%
Azizzadeh et al, 2003	81	130	i — i		[0.53; 0.71]	0.3%	2.8%
Celenza et al, 2012	111	216			[0.45; 0.58]	0.5%	2.9%
Dolan-Evans et al, 2014	290	419	-		[0.65; 0.74]	0.9%	2.9%
Diderichsen et al, 2013	298	372	+		[0.76; 0.84]	0.6%	2.9%
Freire et al, 2011	19		+		[0.04; 0.10]	0.2%	2.6%
Bittaye et al, 2012	79	106			[0.65; 0.82]	0.2%	2.7%
Al-Fouzan et al, 2012	66	144			[0.38; 0.54]	0.4%	2.8%
AlKot et al, 2015	160	451	-		[0.31; 0.40]	1.0%	2.9%
Borges et al, 2009	229	341			[0.62; 0.72]	0.8%	2.9%
Davis et al, 2016	151	173			[0.81; 0.92]	0.2%	2.7%
Deutsch et al, 2015	379	659			[0.54; 0.61]	1.6%	2.9%
Gardner et al, 2014	531	633			[0.81; 0.87]	0.9%	2.9%
Dias et al, 2013	226 13	495			[0.41; 0.50]	1.2%	2.9%
Goltz et al, 2013 Hauer et al, 2008	10	102 80			[0.07; 0.21]	0.1% 0.1%	2.5% 2.3%
	29	192			[0.06; 0.22] [0.10; 0.21]	0.1%	2.7%
Hartung et al, 2005 Zuccato et al, 2015	34	37			[0.78; 0.98]	0.2%	1.6%
West et al. 2009	10423				[0.76, 0.96]	31.6%	3.0%
Schnuth et al, 2003	132	203			[0.58; 0.72]	0.5%	2.8%
Pikoulis et al, 2010	29	87			[0.24; 0.44]	0.3%	2.7%
Ozer et al, 2015	15	98			[0.09; 0.24]	0.2%	2.5%
Noble et al, 2010	56	120			[0.38; 0.56]	0.1%	2.8%
Noble et al. 2004	13605		+		[0.63; 0.65]	49.6%	3.0%
Moore et al, 2012	270	337	T +		[0.75; 0.84]	0.5%	2.9%
Momen et al, 2015	32	38			[0.69; 0.94]	0.1%	2.0%
Mehmood et al, 2012	460	550	+		[0.80; 0.87]	0.8%	2.9%
Lefevre et al, 2010	127	522	+		[0.21; 0.28]	1.0%	2.9%
Vo et al, 2017	74	90			[0.73; 0.89]	0.1%	2.5%
Grasreiner et al, 2018	70	181			[0.32; 0.46]	0.4%	2.8%
Alkhannen et al, 2018	217	436	+		[0.45; 0.55]	1.1%	2.9%
Fixed effect model		46572			[0.63; 0.64]	100.0%	
Random effects model			<u> </u>	0.50	[0.45; 0.55]		100.0%
Heterogeneity: $I^2 = 98.7\%$,	$\tau^2 = 0.407$	79, p = 0					
			0.2 0.4 0.6 0.8				

Figure S6. Forest Plot of "Medical Teachers or Mentors".

Study	Events	Total			Proportion	95%-CI	Weight (fixed)	Weight (random)
Smith et al, 2015	688	2978	+	1	0.23	[0.22; 0.25]	3.1%	3.2%
Cochran et al, 2005	347	408		· -		[0.81; 0.88]	0.3%	3.2%
Lee et al, 2012	6	100	!	!	0.06	[0.02; 0.13]	0.0%	2.8%
Macdonald et al, 2012	84	134		 	0.63	[0.54; 0.71]	0.2%	3.1%
Paiva et al, 1982	100	144			0.69	[0.61; 0.77]	0.2%	3.1%
Abendroth J et al, 2014	9	45			0.20	[0.10; 0.35]	0.0%	2.9%
Azizzadeh et al, 2003	90	130		i ——	0.69	[0.61; 0.77]	0.2%	3.1%
Celenza et al, 2012	114	216	÷	 	0.53	[0.46; 0.60]	0.3%	3.2%
Boyd et al, 2009	4054	5848			0.69	[0.68; 0.71]	7.4%	3.2%
Ekenze et al, 2013	13	96		!	0.14	[0.07; 0.22]	0.1%	3.0%
Bittaye et al, 2012	70	106		<u> </u> — —	0.66	[0.56; 0.75]	0.1%	3.1%
Bonura et al, 2016	191	590	-	ł	0.32	[0.29; 0.36]	0.8%	3.2%
Gardner et al, 2014	59	631	+		0.09	[0.07; 0.12]	0.3%	3.2%
Dias et al, 2013	169	495	-	į	0.34	[0.30; 0.39]	0.7%	3.2%
Goltz et al, 2013	17	102		-	0.17	[0.10; 0.25]	0.1%	3.0%
Gupta et al, 2013	153	243		i—	0.63	[0.57; 0.69]	0.3%	3.2%
Hanzlick et al, 2008	88	161	 	 	0.55	[0.47; 0.63]	0.2%	3.2%
Harris et al, 2005	73	104		i ——	0.70	[0.60; 0.79]	0.1%	3.1%
Hauer et al, 2008	58	80		i ——	0.72	[0.61; 0.82]	0.1%	3.1%
Shah et al, 2012	580	892		+	0.65	[0.62; 0.68]	1.2%	3.2%
Lefevre et al, 2010	638	1555	+	į	0.41	[0.39; 0.44]	2.2%	3.2%
Wilbanks et al, 2015	21328			+		[0.72; 0.73]	34.3%	3.2%
West et al, 2009		14890		+	0.63	[0.62; 0.64]	20.7%	3.2%
Watmough et al, 2007	37	116		1	0.32	[0.24; 0.41]	0.1%	3.1%
Thakur et al, 2001	34	56		+	0.61	[0.47; 0.74]	0.1%	3.0%
Scott et al, 2011	669	1542	+	į		[0.41; 0.46]	2.3%	3.2%
Richards et al, 2009	105	150				[0.62; 0.77]	0.2%	3.1%
Reed et al, 2009	1101	2022		+		[0.52; 0.57]	3.0%	3.2%
Noble et al, 2010	55	120				[0.37; 0.55]	0.2%	3.1%
Noble et al, 2004		21296	+			[0.20; 0.21]	20.3%	3.2%
Mehmood et al, 2012	358	550		į —		[0.61; 0.69]	0.7%	3.2%
Loriot et al, 2010	9	44			0.20	[0.10; 0.35]	0.0%	2.9%
Fixed effect model		85071		ó		[0.54; 0.55]	100.0%	
Random effects mode			<u> </u>	<u> </u>	0.47	[0.38; 0.56]		100.0%
Heterogeneity: $I^2 = 99.8\%$, τ ² = 1.143	39, p = 0						
			0.2 0.4	0.6 0.8				

Figure S7. Forest Plot of "Career Opportunities".

0		.	· · ·	F		050/ 01	VALUE: 15	1477
Study	Events	Total	1	1	Proportion	95%-CI	w(tixea)	W(random)
Smith et al, 2015	503	2978	+		0.17	[0.16; 0.18]	2.6%	2.7%
Hauer et al, 2008	944	1114		+		[0.82; 0.87]	0.9%	2.7%
Klingensmith et al, 2015	71	792	+	1		[0.07; 0.11]	0.4%	2.7%
Macdonald et al, 2012	59	134		+		[0.35; 0.53]	0.2%	2.6%
Ni Chroinin et al, 2013	118	274	i	4		[0.37; 0.49]	0.4%	2.7%
Rogers et al, 1990	141	266		1.	0.53	[0.47; 0.59]	0.4%	2.7%
Abendroth J et al, 2014	22	45		!		[0.34; 0.64]	0.1%	2.5%
Azizzadeh et al, 2003	100	130		·	0.77	[0.69; 0.84]	0.1%	2.6%
Celenza et al, 2012	84	216		1	0.39	[0.32; 0.46]	0.3%	2.7%
Dolan-Evans et al, 2014	265	419		-	0.63	[0.58; 0.68]	0.6%	2.7%
Boyd et al, 2009	3096	5848		la la	0.53	[0.52; 0.54]	9.0%	2.7%
Egerton et al, 1985	41	134			0.31	[0.23; 0.39]	0.2%	2.6%
Diderichsen et al, 2013	246	372		1	0.66	[0.61; 0.71]	0.5%	2.7%
Ferrari et al, 2013	40	45		1	0.89	[0.76; 0.96]	0.0%	2.3%
Barikani et al, 2012	24	49			0.49	[0.34; 0.64]	0.1%	2.5%
Al-Fouzan et al, 2012	32	144		1	0.22	[0.16; 0.30]	0.2%	2.6%
AlKot et al, 2015	166	451			0.37	[0.32; 0.41]	0.6%	2.7%
Corrigan et al, 2007	120	222		+	0.54	[0.47; 0.61]	0.3%	2.7%
Gardner et al, 2014	515	629		+	0.82	[0.79; 0.85]	0.6%	2.7%
Dias et al, 2013	144	495		1	0.29	[0.25; 0.33]	0.6%	2.7%
Gupta et al, 2013	39	243	-	1	0.16	[0.12; 0.21]	0.2%	2.6%
Hauer et al, 2008	51	80		<u> </u>	0.64	[0.52; 0.74]	0.1%	2.6%
Labiris et al, 2014	46	111		+	0.41	[0.32; 0.51]	0.2%	2.6%
Lambert et al, 2008	2346	17393	1	1	0.13	[0.13; 0.14]	12.6%	2.7%
Shah et al, 2012	42	892	+	İ	0.05	[0.03; 0.06]	0.2%	2.7%
Vicente et al, 2013	29	34			0.85	[0.69; 0.95]	0.0%	2.3%
Wiesenfeld et al, 2014	49	60		<u> </u>		[0.70; 0.90]	0.1%	2.5%
Lam et al, 2016	18	228	-	1		[0.05; 0.12]	0.1%	2.6%
Girasek et al, 2011	346	536		!		[0.60; 0.69]	0.8%	2.7%
Wilbanks et al, 2015	16610			1		[0.56; 0.57]	44.4%	2.7%
West et al, 2009	10311			EI.	0.69	[0.68; 0.70]	19.6%	2.7%
Watmough et al, 2007	56	116	- i	i -	0.48	[0.39; 0.58]	0.2%	2.6%
Reed et al, 2009	361	2022	+	1		[0.16; 0.20]	1.8%	2.7%
Ozer et al, 2015	39	98		†	0.40	[0.30; 0.50]	0.1%	2.6%
Noble et al, 2010	32	120		1		[0.19; 0.36]	0.1%	2.6%
Mehmood et al, 2012	427	550		+	0.78	[0.74; 0.81]	0.6%	2.7%
Loriot et al, 2010	11	44		1	0.25	[0.13; 0.40]	0.1%	2.5%
Lefevre et al, 2010	97	522	- [0.19	[0.15; 0.22]	0.5%	2.7%
Fixed effect model		81923			0.50	[0.49: 0.50]	100%	
Random effects model		020		\		[0.36; 0.53]		100%
Heterogeneity: I-squared=9	9.7%, tau-	-squared	I=1.146, p<0.0001	1	2.11	[55, 5.56]		.0070
,	.,			•				
			0.2 0.4	0.6 0.8				
			The E	OI value				

Figure S8. Forest Plot of "Workload or Working Hours".

Study	Events	Total			Proportion	95%-CI	Weight (fixed)	Weight (random)
•					•			
Cochran et al, 2005	143	408	- †	<u>†</u>		[0.30; 0.40]	2.0%	5.3%
Ni Chroinin et al, 2013	203	274		-		[0.68; 0.79]	1.1%	5.2%
Alawad et al, 2015	9	45			0.20	[0.10; 0.35]	0.2%	4.5%
Azizzadeh et al, 2003	78	130	į	·	0.60	[0.51; 0.68]	0.7%	5.2%
Celenza et al, 2012	48	216			0.22	[0.17; 0.28]	0.8%	5.2%
Dolan-Evans et al, 2014	259	419		-	0.62	[0.57; 0.66]	2.1%	5.3%
Bittaye et al, 2012	54	106	İ		0.51	[0.41; 0.61]	0.6%	5.1%
Al-Fouzan et al, 2012	32	144	 ;		0.22	[0.16; 0.30]	0.5%	5.1%
Gardner et al, 2014	474	632	i	+	0.75	[0.71; 0.78]	2.5%	5.3%
Dias et al, 2013	75	495	+ ;		0.15	[0.12; 0.19]	1.3%	5.3%
Gupta et al, 2013	5	243 +			0.02	[0.01; 0.05]	0.1%	4.2%
Hauer et al, 2008	3	80 -	— i		0.04	[0.01; 0.11]	0.1%	3.6%
Lambert et al, 2008	5702	17393	+		0.33	[0.32; 0.33]	81.1%	5.4%
Zuccato et al, 2015	14	37			0.38	[0.22; 0.55]	0.2%	4.6%
Schnuth et al, 2003	60	203			0.30	[0.23; 0.36]	0.9%	5.2%
Noble et al, 2010	92	120	1		0.77	[0.68; 0.84]	0.5%	5.1%
Moore et al, 2012	236	337	i		0.70	[0.65; 0.75]	1.5%	5.3%
Momen et al, 2015	15	38		 	0.39	[0.24; 0.57]	0.2%	4.6%
Mehmood et al, 2012	241	550	1	-	0.44	[0.40; 0.48]	2.9%	5.3%
Grasreiner et al, 2018	69	181	+		0.38	[0.31; 0.46]	0.9%	5.2%
•			- 1			. , .		
Fixed effect model		22051	ò		0.36	[0.35; 0.36]	100.0%	
Random effects mode	l		~		0.38	[0.30; 0.47]		100.0%
Heterogeneity: $I^2 = 98.3\%$	$\tau^2 = 0.686$	67, p < 0.0	11					
			0.2	0.4 0.6 0.8	}			

Figure S9. Forest Plot of "Income".

Study	Events	Total		Proportion	95%-CI	Weight (fixed)	Weight (random)
Smith et al, 2015	334	2978	+ :!	0.11	[0.10; 0.12]	1.5%	2.1%
Johnson et al, 2012	293	622		0.11		0.8%	2.1%
Klingensmith et al, 2015	79	792	+	0.47	L	0.4%	2.0%
Macdonald et al, 2012	60	134	<u> </u>		[0.36; 0.54]	0.4%	2.0%
Parsa et al. 2010	102	137		- 0.74		0.2%	2.0%
Paiva et al, 1982	36	144			[0.18; 0.33]	0.1%	2.0%
Ni Chroinin et al, 2013	156	274		0.57		0.3%	2.0%
Newton et al, 2005	787	1258	+		[0.60; 0.65]	1.5%	2.1%
Rogers et al, 1990	101	266		0.38		0.3%	2.0%
Abendroth J et al, 2014	16	45		0.36		0.1%	1.9%
Alawad et al, 2015	3	45		0.07		0.0%	1.6%
Azizzadeh et al, 2003	71	130	₩	0.55	[0.46; 0.63]	0.2%	2.0%
Boyd et al, 2009	2342	5848	=	0.40	[0.39; 0.41]	7.2%	2.1%
Egerton et al, 1985	10	134		0.07	[0.04; 0.13]	0.0%	1.9%
Diderichsen et al, 2013	231	372	<u> </u>	0.62	[0.57; 0.67]	0.5%	2.0%
Ferrari et al, 2013	24	45	-	0.53	[0.38; 0.68]	0.1%	1.9%
Freire et al, 2011	48	290		0.17		0.2%	2.0%
Barikani et al, 2012	12	49		0.24		0.0%	1.9%
Bittaye et al, 2012	60	106			[0.47; 0.66]	0.1%	2.0%
Al-Fouzan et al, 2012	40	144		0.28		0.1%	2.0%
AlKot et al, 2015	174	451	!!-	0.39		0.6%	2.1%
Borges et al, 2009	256	338	<u> </u>		[0.71; 0.80]	0.3%	2.0%
Budd et al, 2011	278	870	*1		[0.29; 0.35]	1.0%	2.1%
Davis et al, 2016	77	173		0.45		0.2%	2.0%
Deutsch et al, 2015	411	658		0.62	. , .	0.8%	2.1%
Dias et al, 2013	147 56	495 243		0.30	[0.26; 0.34]	0.5% 0.2%	2.1% 2.0%
Gupta et al, 2013 Harris et al, 2005	40	104	<u> </u>		F	0.2%	2.0%
Hauer et al, 2008	13	80			[0.29; 0.49]	0.1%	1.9%
Labiris et al, 2014	66	111			[0.50; 0.69]	0.1%	2.0%
Lambert et al, 2008	1249	17393			[0.07; 0.08]	6.0%	2.0%
Shah et al, 2012	88	892			[0.07, 0.00]	0.4%	2.0%
Lefevre et al, 2010	246	1555	+		[0.14; 0.18]	1.1%	2.1%
Wiesenfeld et al, 2014	25	60			[0.29; 0.55]	0.1%	1.9%
Girasek et al, 2011	93	532	+	0.17		0.4%	2.0%
Zuccato et al, 2015	5	37			[0.05; 0.29]	0.0%	1.7%
Wilbanks et al, 2015	13448	29227	+		[0.45; 0.47]	37.5%	2.1%
West et al, 2009	8562	14890		0.58		18.8%	2.1%
Watmough et al, 2007	38	116		0.33		0.1%	2.0%
Reed et al, 2009	423	2022	+	0.21	[0.19; 0.23]	1.7%	2.1%
de Souza et al, 2015	754	1303	+	0.58	[0.55; 0.61]	1.6%	2.1%
Ozer et al, 2015	29	98		0.30	[0.21; 0.40]	0.1%	2.0%
Noble et al, 2010	93	120		— 0.78	[0.69; 0.85]	0.1%	2.0%
Noble et al, 2004	2359	21296	D .	0.11	[0.11; 0.12]	10.8%	2.1%
Newton et al, 2005	772	1286	+		[0.57; 0.63]	1.6%	2.1%
Moore et al, 2012	236	337		0.70		0.4%	2.0%
Momen et al, 2015	13	38		0.34	. , .	0.0%	1.9%
Mehmood et al, 2012	253	550	-		[0.42; 0.50]	0.7%	2.1%
Lefevre et al, 2010	159	522		0.30	. , .	0.6%	2.1%
Grasreiner et al, 2018	25	181	—	0.14	[0.09; 0.20]	0.1%	2.0%
Fixed effect model		109791	<u></u>		[0.37; 0.38]	100.0%	400.00/
Random effects model		2 n = 0		0.35	[0.28; 0.42]	-	100.0%
Heterogeneity: $I^2 = 99.7\%$,	, τ = 1.088	s, p = 0	0.2 0.4 0.6 0.	Q			
			0.2 0.4 0.0 0.	U			

Figure S10. Forest Plot of "Length of Training".

Study	Events	Total						Proportion	95%-CI	W(fixed)	W(random)
					i						
Cochran et al, 2005	122	408		\rightarrow	1			0.30	[0.25; 0.35]	0.9%	6.0%
Klingensmith et al, 2015	206	792	8-	-				0.26	[0.23; 0.29]	1.6%	6.2%
Paiva et al, 1982	41	144	<u> </u>		- (0.28	[0.21; 0.37]	0.3%	5.5%
Azizzadeh et al, 2003	71	130			- 1	\rightarrow	_	0.55	[0.46; 0.63]	0.3%	5.6%
Dolan-Evans et al, 2014	206	419			100	-		0.49	[0.44; 0.54]	1.1%	6.1%
Boyd et al, 2009	2493	5848			-			0.43	[0.41; 0.44]	14.6%	6.4%
Bittaye et al, 2012	39	106		-	+	-		0.37	[0.28; 0.47]	0.3%	5.3%
Al-Fouzan et al, 2012	10	144			į			0.07	[0.03; 0.12]	0.1%	4.2%
Dias et al, 2013	282	495			- 1	<u>-</u>	+	0.57	[0.52; 0.61]	1.2%	6.1%
Goltz et al, 2013	35	102			\rightarrow			0.34	[0.25; 0.44]	0.2%	5.3%
Wiesenfeld et al, 2014	30	60			+			0.50	[0.37; 0.63]	0.2%	4.8%
Zuccato et al, 2015	17	37		-	-			0.46	[0.29; 0.63]	0.1%	4.2%
Wilbanks et al, 2015	12250	29227			+			0.42	[0.41; 0.42]	72.5%	6.4%
Thakur et al, 2001	14	56	-	•	-:			0.25	[0.14; 0.38]	0.1%	4.4%
Schnuth et al, 2003	17	203			ĵ.			0.08	[0.05; 0.13]	0.2%	4.9%
Reed et al, 2009	298	2022	+		1			0.15	[0.13; 0.16]	2.6%	6.3%
de Souza et al, 2015	342	1303		-	1			0.26	[0.24; 0.29]	2.6%	6.3%
Mehmood et al, 2012	186	550		+	-			0.34	[0.30; 0.38]	1.3%	6.2%
Fixed effect model		42046			\bar{4}			0.40	[0.40; 0.41]	100%	
Random effects model					> ;				[0.28; 0.37]		100%
Heterogeneity: I-squared=9	8.1%, tau-	-squared	=0.2038, p<0	.0001	1						
engineerapii s e rrassiineel * 0 51 500 * 100 100 70 yr. F.	7.0-7.000 (20-0.00)			1		J					
			0.1 0.2	0.3	0.4	0.5	0.6				
				The	EOI v	alue					

Figure S11. Forest Plot of "Prestige".

								Weight	Weight
Study	Events	Total				Proportion	95%-CI	(fixed)	(random)
Parsa et al, 2010	93	137	1			0.68	[0.59; 0.76]	0.5%	4.0%
Rogers et al, 1990	90	266	ŀ	-		0.34	[0.28; 0.40]	1.0%	4.1%
Abendroth J et al, 2014	9	45		-		0.20	[0.10; 0.35]	0.1%	3.3%
Alawad et al, 2015	1	45	 !			0.02	[0.00; 0.12]	0.0%	1.4%
Azizzadeh et al, 2003	56	130	į		-	0.43	[0.34; 0.52]	0.6%	4.0%
Egerton et al, 1985	9	134				0.07	[0.03; 0.12]	0.1%	3.4%
Ferrari et al, 2013	18	45	+		_	0.40	[0.26; 0.56]	0.2%	3.6%
Bittaye et al, 2012	75	106	İ			0.71	[0.61; 0.79]	0.4%	3.9%
Al-Fouzan et al, 2012	44	144	+	_		0.31	[0.23; 0.39]	0.5%	4.0%
AlKot et al, 2015	112	451	 i			0.25	[0.21; 0.29]	1.5%	4.1%
Budd et al, 2011	125	870	+			0.14	[0.12; 0.17]	1.9%	4.1%
Deutsch et al, 2015	278	654	į	-		0.43	[0.39; 0.46]	2.8%	4.2%
Dias et al, 2013	86	495	+ !			0.17	[0.14; 0.21]	1.2%	4.1%
Gupta et al, 2013	44	243					[0.13; 0.24]	0.6%	4.0%
Hauer et al, 2008	10	80	i				[0.06; 0.22]	0.2%	3.5%
Lefevre et al, 2010	169	1555	+			0.11	[0.09; 0.13]	2.6%	4.2%
Hartung et al, 2005	45	192				0.23	[0.18; 0.30]	0.6%	4.0%
Girasek et al, 2011	341	537				0.64	[0.59; 0.68]	2.2%	4.1%
Scott et al, 2011	386	1542	*				[0.23; 0.27]	5.0%	4.2%
Noble et al, 2010	39	120		 			[0.24; 0.42]	0.5%	3.9%
Noble et al, 2004		21296	+				[0.26; 0.27]	71.5%	4.2%
Moore et al, 2012	202	337	į			0.60	[0.54; 0.65]	1.4%	4.1%
Momen et al, 2015	19	38					[0.33; 0.67]	0.2%	3.5%
Mehmood et al, 2012	359	550	i		-		[0.61; 0.69]	2.2%	4.1%
Grasreiner et al, 2018	31	181	;				[0.12; 0.23]		3.9%
Alkhannen et al, 2018	196	436		-		0.45	[0.40; 0.50]	1.9%	4.1%
Fixed effect model		30629	i			0.28	[0.28; 0.29]	100.0%	
Random effects mode	I		_ <	<u> </u>		0.31	[0.25; 0.38]		100.0%
Heterogeneity: $I^2 = 98.3\%$	$\tau^2 = 0.518$	31, p < 0	.01				- · •		
			0.2	0.4	0.6				

Figure S12. Forest Plot of "Advice from Others".

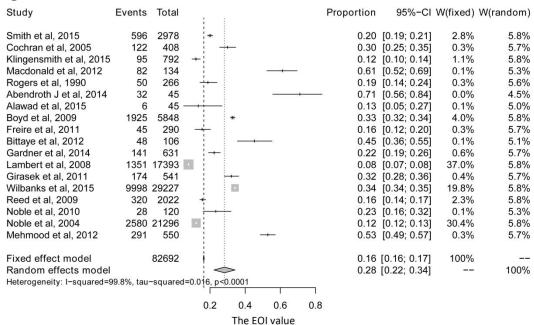


Figure S13. Forest Plot of "Student Debt".

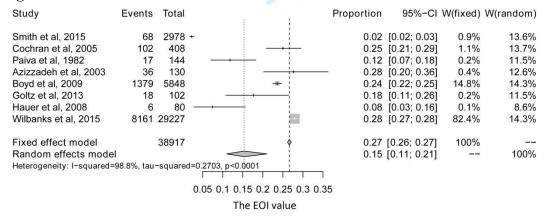



Figure S14. Funnel Plots of the Publication Bias Testing of the 12 Factors.

47

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT	•		
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2-3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
B Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	3
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5-6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6-7
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6-7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	7

44 45 46

47

PRISMA 2009 Checklist

		Page 1 of 2	
Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	5, 7
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	7-8
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	8
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	8
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	8-9
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	8-9
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	8-9
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	9-13
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	13
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	14
FUNDING	1		
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	15

41 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. 42 doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.

MOOSE Checklist for Meta-analyses of Observational Studies

Item No	Recommendation	Reported on Page No
Reporting o	f background should include	
1	Problem definition	5
2	Hypothesis statement	5
3	Description of study outcome(s)	5
4	Type of exposure or intervention used	5
5	Type of study designs used	5
6	Study population	5
Reporting o	f search strategy should include	
7	Qualifications of searchers (eg, librarians and investigators)	6
8	Search strategy, including time period included in the synthesis and key words	5
9	Effort to include all available studies, including contact with authors	5
10	Databases and registries searched	5
11	Search software used, name and version, including special features used (eg, explosion)	6
12	Use of hand searching (eg, reference lists of obtained articles)	5
13	List of citations located and those excluded, including justification	5-6
14	Method of addressing articles published in languages other than English	5
15	Method of handling abstracts and unpublished studies	5
16	Description of any contact with authors	5
Reporting o	f methods should include	
17	Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested	6
18	Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	6-7
19	Documentation of how data were classified and coded (eg, multiple raters, blinding and interrater reliability)	6-7
20	Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	6
21	Assessment of study quality, including blinding of quality assessors, stratification or regression on possible predictors of study results	6
22	Assessment of heterogeneity	6
23	Description of statistical methods (eg, complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated	6-7
24	Provision of appropriate tables and graphics	5-7
Reporting o	f results should include	
25	Graphic summarizing individual study estimates and overall estimate	8
26	Table giving descriptive information for each study included	7
27	Results of sensitivity testing (eg, subgroup analysis)	8
28	Indication of statistical uncertainty of findings	7-9

Item No	Recommendation							
Reporting of	f discussion should include							
29	Quantitative assessment of bias (eg, publication bias)	13						
30	Justification for exclusion (eg, exclusion of non-English language citations)	13-14						
31	Assessment of quality of included studies	13-14						
Reporting of	conclusions should include							
32	Consideration of alternative explanations for observed results	14						
33	Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)	14						
34	Guidelines for future research	14						
35	Disclosure of funding source	15						

From: Stroup DF, Berlin JA, Morton SC, et al, for the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) Group. Meta-analysis of Observational Studies in Epidemiology. A Proposal for Reporting. *JAMA*. 2000;283(15):2008-2012. doi: 10.1001/jama.283.15.2008.

Transcribed from the original paper within the NEUROSURGERY® Editorial Office, Atlanta, GA, United Sates. August 2012.

BMJ Open

Factors Influencing Subspecialty Choice Among Medical Students: A Systematic Review and Meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022097.R2
Article Type:	Research
Date Submitted by the Author:	09-Oct-2018
Complete List of Authors:	Yang, Yahan; Sun Yat-Sen University Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology; Sun Yat-Sen University, Zhongshan School of Medicine Li, Jiawei; Sun Yat-Sen University, Zhongshan School of Mathematics Wu, Xiaohang; Sun Yat-Sen University Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology Wang, Jinghui; Sun Yat-Sen University Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology Li, Wangting; Sun Yat-Sen University Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology Zhu, Yi; University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology; Sun Yat-Sen University Zhongshan Ophthalmic Center, Cataract Chen, Chuan; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University; University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology Lin, Haotian; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Cataract
Primary Subject Heading :	Medical education and training
Secondary Subject Heading:	Medical education and training
Keywords:	Medical students, Career choice, Meta-analysis

SCHOLARONE™ Manuscripts

1 Title Page

- 2 Factors Influencing Subspecialty Choice Among Medical Students: A Systematic
- 3 Review and Meta-analysis
- 4 Yahan Yang, M.D.^{1,2}; Jiawei Li, M.D.³; Xiaohang Wu, M.D.¹; Jinghui Wang, M.D.¹;
- 5 Wangting Li, M.D.¹; Yi Zhu, M.D.^{1,4}; Chuan Chen, M.D.^{1,4}; Haotian Lin, M.D., Ph.
- 6 D^{1#}

- 8 Institution: 1. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic
- 9 Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, People's Republic
- 10 of China
- 2. Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- 3. Zhongshan School of Mathematics, Sun Yat-sen University, Guangzhou, China
- 4. Department of Molecular and Cellular Pharmacology, University of Miami Miller
- 14 School of Medicine, Miami, Florida 33136, USA.

- 16 *Editorial Correspondence:
- 17 Prof. Haotian Lin
- 28 Zhongshan Ophthalmic Center, Sun Yat-sen University
- 19 Xian Lie South Road 54#
- 20 Guangzhou, China, 510060.
- 21 Telephone number: +86-020-87330493
- 22 Fax: +86-020-87333271
- 23 E-mail: haot.lin@hotmail.com
- 24 Word count for text: 3122

ABSTRACT

Objective To characterize the contributing factors that affect medical students' subspecialty choice and to estimate the extent of influence of individual factors on the students' decision-making process.

Design Systematic review and meta-analysis.

Methods A systematic search of the Cochrane Library, ERIC, Web of Science, CNKI and PubMed databases was conducted for studies published between January 1977 and June 2018. Information concerning study characteristics, influential factors, and the extent of their influence (EOI) was extracted independently by two trained investigators. EOI is the percentage level that describes how much each of the factors influenced students' choice of subspecialty. The recruited medical students includes students in medical school, internship, residency training and fellowship, who are about to or have just made a specialty choice. The estimates were pooled using a random-effects meta-analysis model due to the between-study heterogeneity.

Results Data were extracted from 75 studies (882,209 individuals). Overall, the factors influencing medical students' choice of subspecialty training mainly included academic interests (75.29%), competencies (55.15%), controllable lifestyles or flexible work schedules (53.00%), patient service orientation (50.04%), medical teachers or mentors (46.93%), career opportunities (44.00%), workload or working hours (37.99%), income (34.70%), length of training (32.30%), prestige (31.17%), advice from others (28.24%), and student debt (15.33%), with significant between-study heterogeneity (*P*<0.0001). Subgroup analyses revealed that the EOI of academic interests was higher in developed countries than that in developing countries (79.66%)

51	[95% confidence interval (CI), 70.73%; 86.39%] vs. 60.41% [95% CI
52	43.44%; 75.19%]; $Q=3.51$ $P=0.02$). The EOI value of prestige was lower in
53	developed countries than that in developing countries (23.96% [95% CI,
54	19.20%; 29.47%] vs. 47.65% [95% CI, 34.41%; 61.24%]; <i>Q</i> =4.71 <i>P</i> =0.01).
55	Conclusions This systematic review and meta-analysis provided a quantitative
56	evaluation of the top 12 influencing factors associated with medical students
57	choice of subspecialty. Our findings provide the basis for the development of
58	specific, effective strategies to optimize the distribution of physicians among

Systematic review registration PROSPERO CRD42017053781.

STRENGTHS AND LIMITATIONS OF THIS STUDY

• This is the first study that provide a systematic estimate of the factors associated with medical students' subspecialty choices.

different departments by modifying these influencing factors.

- A large number of studies conducted in varied populations have been included.
- The differences in the characteristics of country, survey years, specialty, the type of data used and sample size across studies represent a major limitation of our study.
- 67 Study.
 68 KEYWORDS Medical students, career choice, meta-analysis

Introduction

Because of the population aging, increased workload on doctors through increased number of consultations and in managing patients with multi-morbidity, the demand for physicians continues to increase; however, an imbalance in the supply of physicians in different subspecialties has become a growing concern in both developed and developing countries. 1-5 Some specialties and subspecialties, such as family medicine and palliative medicine, ⁶⁷ are experiencing a desperate shortage of physicians, whereas other specialties and subspecialties, such as cardiology, ophthalmology and ear, nose and throat (ENT) surgery, are highly competitive specialties with low success rate for candidates.⁸⁹ Specialty choice is the product of a complex interconnection of student expectation, department expectation, and competition for available spots, and student choice is where the choice begins. 10 Previous studies have suggested that medical students' choice of subspecialty is essential to the maintenance of an adequate medical workforce and a balanced development of the medical system. 11 12 However, the influencing factors underlying students' subspecialty choice have not been systemically reviewed. Recent changes in the training and practice environment may influence medical students' career choice. 13 Additionally, the variability in preferences over time and in students' attitudes towards career choices can further complicate this assessment. For example, a study in the UK indicated that half of the medical students made a definitive subspecialty choice during their first year of medical school.¹⁴ However, students were prone to changing their subspecialty preference during medical school and internship. 15 Notably, students may also reject certain subspecialties during their medical school training, even those they have previously seriously considered. 16 Therefore, identifying the factors that influence

students' choice of subspecialty will enable a better understanding of the current shortage/overload of physicians in specific fields and contribute to policy-building and decision-making to improve the training and recruitment of students in the future. We thus conducted a systematic review and a meta-analysis to investigate the influencing factors and the extent of their influence on the choice of subspecialty training among medical students. More specifically, we focused on the following questions. First, can we gain a better understanding of students' preferences for medical specialty according to the primary influencing factor? Second, do the subgroups according to world region and survey years examined in this study differ significantly with regard to the weight that students place on the identified influencing factor?

Methods

We developed a review protocol (registration number: PROSPERO CRD42017053781) prior to commencing the study. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was used to ensure the reporting quality of this review (Fig. S1).¹⁷

Search Strategy and Study Eligibility

We performed a literature search in June 2018 using the Cochrane Library, Medline, Web of Science, CNKI and ERIC databases without language restrictions. Articles were screened by title, abstract and reference list, and by correspondence with study investigators. Potentially relevant papers were first identified by reviewing the titles and abstracts, and the full text of each retrieved article was then assessed. A detailed example of search strategy for Medline/PubMed is shown in **Methods S1**. Studies were included if they were systematic review or cross-sectional studies, reported data on medical students, were published in peer-reviewed journals, and used a validated

method to assess the extent of a factor's influence on the choice of subspecialty, such as pediatric gastroenterology and vascular surgery, or its corresponding specialty, such as pediatrics and surgery. Because of the differences between medical education systems in the world, the medical students we recruited includes the student in medical school, internship, residency training and fellowship, containing the students who about to make a specialty choice and students who has just made a specialty guide choice. to medical specialty, available at https://www.abms.org/member-boards/specialty-subspecialty-certificates/, were used to identify the medical specialty and subspecialty of our research. We also conducted an additional search using OpenGrey. However, no additional articles were further included. All searches were performed using Google chrome (version 54.0.2840).

Data Extraction and Quality Assessment

Each article was reviewed by two trained investigators (Y.Y. and J.L.) and the following information was independently extracted from each selected article using a standardized form: study design, geographic location, years of survey, journal, sample size, average age of the participants, the number and percentage of male participants, and the influencing factors and the extent of their influence. A third investigator was consulted if disagreements occurred. Each study may involve one or several influencing factors. An 11-item checklist which was recommended by Agency for Healthcare Research and Quality (AHRQ), used for cross-sectional studies ¹⁸, available at https://www.ncbi.nlm.nih.gov/books/NBK35156/, were used to assess the quality of the studies. All discrepancies were resolved via discussion and consensus.

Statistical Analysis

As considerable heterogeneity was expected because of the multiple sources of variances, a random effects meta-analysis model was used to estimate the influencing

factors and the extent of their influence. 19 Between-study heterogeneity was assessed using the Cochran's O-test, and was quantified with the I^2 statistic, which was calculated to describe the percentage of total variation caused by heterogeneity across studies, with >50% indicating considerable heterogeneity. ^{20 21} Potential sources of heterogeneity were identified using meta-regression.²² Four categorical covariates were defined as potential sources of heterogeneity by examining the studies conducted in the United States (US) vs. the studies conducted in other countries, the studies conducted before 2010 vs. those conducted after 2010, the studies concerning subspecialty only vs. those that were not specific to a subspecialty, and the studies with a sample size ≤ 200 vs. the studies with a sample size ≥ 200 . Subgroup analyses were performed for each factor in the studies in developed countries vs. developing countries and studies conducted before 2010 vs. after 2010. The EOI value of competencies in developing countries was not statistically significant (81.21% [95%] CI, 75.27%; 86.51%], P=0.1436), and no studies on the influence of student debt in developing countries were found. The Q-test based on the analysis of variance was used to compare the subgroups, with a significance threshold of 5%. ²³ The influence of individual studies on the overall EOI value was explored by serially excluding each study in a sensitivity analysis. Publication bias was investigated using a funnel plot test and Egger's test.^{24 25} Fill and trim approach, which imputes estimates from hypothetical negative unpublished reports, 26 was also used to investigate the publication bias if the Egger's test was significant. All analyses were performed using R (version 3.3.1, The R Foundation, Vienna, Austria). The statistical tests were 2-sided with a significance threshold of P < 0.05. Patient and public involvement: Patients and the public were not involved in

Patient and public involvement: Patients and the public were not involved in development of the research question and outcome measures, nor the study design.

The study does not involve patient recruitment, and patients were not involved in conduct of the study. We plan to liaise closely with patients, special interest groups, and charities in the dissemination of our results in printed and electronic media.

Results

Study Characteristics

Seventy-five cross-sectional studies involving a total of 882,209 individuals that published between January 1977 and May 2018 were included in the present research (Table 1). Thirty-four studies were conducted in North America, 24 in Europe, 7 in Asia, 5 in Oceania, 3 in Africa, and 2 in South America. The median number of participants per study was 243 (range 37-29,227). Fourteen studies included students who had already selected subspecialties, whereas 61 did not. The influencing factors were ranked according to the frequency of occurrence and each factor was identified when at least 5 papers were available describing it. The influencing factors for subspecialty choice were then classified according to 17 aspects, including academic interests, controllable lifestyle or flexible work schedule (defined as flexibility that allows physicians to control the number of hours devoted to practicing the specialty), competencies, patient service orientation, medical teachers or mentors, career opportunities, workload or working hours (characterized by the physician's time spent on professional responsibilities), income, prestige, length of training, advice from others (advice from family, friends, and other students), student debt, experience with the subject, working environment, personality, gender and job security. Personality and gender are common factors that affect the choice of subspecialty among medical students, but most of the relevant literature has not reported on the extent of these factors' influence. Moreover, the funnel plots were clearly asymmetrical with regard to experience with the subject, the working

environment and job variety, indicating the existence of publication bias. Thus, the analysis of the remaining 12 influencing factors were shown in this paper. Studies assessed for influencing factors using questionnaires validated to medical students asking the extent of certain factors the studies investigated. Quality assessment scores for the included studies are listed in **Table 1**. None of the studies received a point for the second AHRQ Quality Indicator, which requires studies to list the inclusion and exclusion criteria for exposed and unexposed subjects (cases and controls) or refer to previous publications, since no comparison studies were referenced in the analyzed articles. For the remaining 10 criteria, 6 studies received 9 points, 8 studies received 8 points, 17 studies received 7 points, 33 studies received 6 points, 9 studies received 5 points and 2 studies received 4 points (scores for individual studies are presented in **Table S1**).

Primary Analysis

A meta-analysis was performed on the 12 influencing factors (**Table 2**): academic interests (**Fig. S2**), competencies (**Fig. S3**), controllable lifestyle or flexible work schedule (**Fig. S4**), patient service orientation (**Fig. S5**), medical teachers or mentors (**Fig. S6**), career opportunities (**Fig. S7**), workload or working hours (**Fig. S8**), income (**Fig. S9**), length of training (**Fig. S10**), prestige (**Fig. S11**), advice from others (**Fig. S12**) and student debt (**Fig. S13**). All the factors were significant with evidence of between-study heterogeneity (P<0.0001). A sensitivity analysis, in which the meta-analysis was serially repeated after the exclusion of each study, demonstrated that no individual study affected the overall extent of a factor's influence.

Meta-regression and Subgroup Analysis

We performed meta-regression to identified the potential sources of heterogeneity

using common instructions when at least 5 studies were available and at least 2 studies were in each comparator subgroup (Table 3). Some of the heterogeneities observed among the 12 factors can be partially explained by country, survey years, specialty and sample size. EOI values were further analyzed by subgroup (Table S2) according to world region (Fig. 1) and survey year (Fig. 2). The EOI value of academic interests in developed countries was higher than that in developing countries (79.66% [95% CI, 70.73%; 86.39% vs. 60.41% [95% CI, 43.44%; 75.19%]; Q=3.51 P=0.02). Conversely, a lower EOI value of prestige was found in studies conducted in developed countries than in developing countries (23.96% [95% CI, 19.20%; 29.47%] vs. 47.65% [95% CI, 34.41%; 61.24%]; Q=4.71 P=0.01). No statistically significant subgroup differences in the EOI values of the other influencing factors were noted between developed countries and developing countries. In addition, no statistically significant differences in the EOI values of the influencing factors were observed when subgroup analysis was performed by survey year.

Assessment of Publication Bias

We generated a funnel plot with proportion as the abscissa and standard error as the ordinate. A visual inspection of the funnel plots revealed minimal asymmetry among the various influencing factors (**Fig. S14**), and the results were concentrated in the narrow upper part of the graph. There was evidence of small study effect in the meta-analysis of "patient service orientation" (Egger's test P=0.02). However, the trim-and-fill method showed the publication-bias corrected estimate remained statistically significant (63.79%, 95% CI, 58.20%; 69.04%).

Discussion

246 Implications

This systematic review and meta-analysis involved 75 studies with 882,209 medical students. Twelve influencing factors were analyzed. These factors can be classified into two categories: economic factors and non-economic factors. We found that the EOI of the economic factors, including income (34.70%) and student debt (15.33%), may not depend on the region's level of economic development. However, income remained a major influencing factor in the process of choosing a specialty or subspecialty. In the US, 15% of full-time family medicine physicians earned less than \$100,000 in 2004, which is significantly less than the income earned by invasive cardiologists (median income=\$427,815), neurosurgeons (median income=\$211,094), and orthopedists (median income=\$335,646).²⁷ This economic inequality made family medicine less attractive to medical school graduates. ²⁸ Benefits such as health insurance and tuition reimbursement have been shown to be the most common economic incentives used to attract applicants.²⁹ The non-economic factors can be divided into individual factors, specialty-related factors and others. First, individual factors, including academic interest and competencies, have a considerable impact on students' subspecialty choice, with EOI values of 75.29% and 55.15%, respectively. In addition, in the subgroup analysis, although academic interests were less influential in developing countries than in developed countries (79.66% [95% CI, 70.73%; 86.39% vs. 60.41% [95% CI, 43.44%; 75.19%]; Q=3.51 P=0.02), they were still the most influential of the 12 factors regardless of regional economic level. These findings indicate that subspecialties with a shortage of manpower may attract more students by increasing students' interests and improving the quality of education. Previous studies indicated that early specialty exposure in medical education may arouse students' academic interest and improve their clinical competence. 28 30 For example, an elective

extracurricular program designed to facilitate early contact with family medicine physicians was found to significantly improve students' interest and clinical skills, especially communication skills, in family medicine.³¹ Furthermore, dispelling myths and espousing the positive aspects of a discipline may provide a better understanding of certain specialties; this approach could also be effective in increasing students' academic interest.³² For instance, family medicine is often considered a discipline that requires less professional skills and knowledge. This misconception demotivates students from choosing family medicine as their future career specialty, and this trend may eventually lead to a shortage of family physicians.³² Eliminating such prejudices may help students pay greater attention to the areas in short supply and restore their interests in other specialties. Second, the specialty-related factors included controllable lifestyle/flexible work schedule (EOI of 53.00%), career opportunities (EOI of 44.00%), workload (EOI of 37.99%) and training length (EOI of 32.30%). Of these factors, lifestyle varied between different areas. Additionally, although certain specialties, such as general surgery, seem to have an adequate number of surgeons on a per capita basis in the US, there is still a poor geographic distribution within the surgical workforce according to the type of surgical practice.³³ The inflexible lifestyle is a common reason that students perceive surgery to be less attractive.³³ Reorganization of expected work hours within shared practices and the increased use of physician extenders and technologies such as electronic medical records may give physicians more flexibility in work schedules.³⁴ Moreover, providing promotion opportunities and shortening the length of training are possible strategies to recruit new staff in subspecialties that require a long period of post-graduate residency training, such as neurosurgery.³⁵ Finally, other factors such as service orientation (EOI of 50.74%), medical teachers

or mentors (EOI of 46.93%), prestige (EOI of 34.68%), and advice from others (EOI of 28.24%) also contribute to the decision-making process of medical students. For example, the desire to care for patients with end-stage diseases contributed to the decision to enter palliative medicine in 86% of the medical students. Additionally, exposure to mentors in a particular clinical field such as internal medicine has been strongly associated with medical students' choice of clinical field.³⁶ Moreover. improving the occupational prestige of areas such as family medicine, pathology, and radiology may help reshape the distribution of the workforce. 30 37 38 In our study, several findings are especially noteworthy. First, interest was far more important than income in deciding subspecialty. In our study, interest was the top-ranked influencing factor (EOI of 75.29%) of subspecialty choice, while income was ranked lower (EOI of 34.70%). This finding argues against the possible default belief that raising physician's wages alone could solve the uneven distribution of clinicians among subspecialties. Our findings highlight that cultivating and stimulating students' professional interests may help improve the maldistribution of medical resources in a more efficient and cost-saving manner. Second, improving abilities in a certain subspecialty of interest can greatly affect medical students' professional choice. In our study, competencies ranked second in influence, which may reflect the impact of admission conditions on students' choice of subspecialty. Hence, to reduce the risk that students are restricted to the subspecialty of their interest due to a lack of personal skills, medical education should focus more on enhancing students' personal competencies in addition to their academic interests. Third, balancing medical resources is a complex process in practical terms, as the influencing factors are not mutually exclusive. The shortage of physicians in certain

subspecialties may increase physician workload, resulting in less time for teaching. Hence, the quality of teaching cannot be guaranteed, and students may tend to avoid choosing these subspecialties, thus worsening the imbalance in the medical workforce. Additionally, some of the 12 factors identified are not amenable to practical interventions. For example, prestige cannot be immediately increased using interventional strategies.³⁷ Overall, effective strategies must be multi-pronged and incorporate several different aspects, and maldistribution in the workforce should not be tackled through a simple adjustment of one influencing factor.

Interpretations of the results of this meta-analysis

Our meta-regression stratified by the study-level characteristics found that country, survey years, subspecialty and sample size may contribute to the heterogeneity between studies. There was no significant difference in the sensitivity analysis, which indicated that the results of the meta-analysis were convincing. The funnel plots and Egger's tests revealed that most of the publication bias was small (*P*>0.05), except for the meta-analysis of "patient service orientation". Moreover, the majority of the studies collected in the database were from developed countries rather than developing countries.

Limitations

Several limitations should be considered when interpreting the findings of this study. First, the students involved in our study included medical students at different stages of their medical education. Students' perception about different subspecialties may change during medical training until the students applies for specialty training. For example, compared to an intern, a freshman student may place greater emphasis on income and prestige when considering a career choice.³⁹ A subgroup analysis stratified by the stages of medical education and a secondary meta-analysis of

longitudinal studies may better reflect changes in influencing factors and the extent of their influence over time. Second, our meta-analysis summarized the data from different geographic regions around the world, and the general conclusions may not be appropriate to guide policy development in each region. Enhanced effort is needed to develop specific intervention strategies according to the specific economic level, religious beliefs, healthcare system, educational system and endemic diseases of different countries and regions. Subgroup analysis stratified by organizational and medical training factors would provide more information of the factors influencing subspecialty choice among medical students. Third, the surveys in the various studies were also conducted using different methods. Most of the questionnaires used a Likert scale. Therefore, when we converted the results to a percentage representing the extent of a factor's influence, the Likert scale items were treated as interval data. 40-42 Consequently, there may have been differences in the conversion process. Finally, the analysis relied on aggregated published data. A multicenter prospective study would provide more accurate estimate of the influencing factors and the extent of their influence on medical students' choice of subspecialty.

Conclusion

In conclusion, this systematic review and meta-analysis provided a summary evaluation of 12 influencing factors and the extent of their influence on the choice of subspecialty training among medical students. Understanding students' attitudes toward their subspecialty decision-making process could provide the basis for developing strategies to increase the attractiveness of subspecialties experiencing a shortage of manpower, thereby balancing the distribution of medical recourses.

370	Contributors: Haotian Lin contributed to the conceptualizing and design of the study,
371	and to research funding, coordinated the research and oversaw the project. Yahan
372	Yang, Jiawei Li and Xiaohang Wu contributed to data collection and interpretation,
373	and to data analysis. Jinghui Wang, Yi Zhu, Chuan Chen and Wangting Li contributed
374	to the design of the study. All authors contributed to the drafting and revision of the
375	paper and approved the final manuscript for publication. No patients or the public
376	were involved in the development and design of this research.
377	Funding: The principal investigator of this study (Haotian Lin) is currently
378	supported by National key R & D project (2018YFC010302), the Key Research Plan
379	for the National Natural Science Foundation of China Cultivation Project (91546101),
380	the National Natural Science Foundation of China (81770967), the Fundamental
381	Research Funds for the Central Universities (16ykjc28), the Guangdong Provincial
382	Natural Science Foundation for Distinguished Young Scholars of China
383	(2014A030306030), the Guangdong Province Universities and Colleges Youth Pearl
384	River Scholar Funded Scheme (2016), the Clinical Research and Translational
385	Medical Center of Pediatric Cataract in Guangzhou City (201505032017516), and
386	Ministry of Science and Technology of China Grants (2015CB964600). These
387	sponsors and funding organizations had no role in the design or performance of this

- **Competing Interests:** The authors declare no competing financial interests.
- **Data sharing:** Extracted data are available upon request to the corresponding author.

study.

References

- 393 1. Zurn P, Dal Poz MR, Stilwell B, et al. Imbalance in the health workforce. *Hum Resour Health* 2004;2(1):13. doi: 10.1186/1478-4491-2-13
- Diallo K, Zurn P, Gupta N, et al. Monitoring and evaluation of human resources for health: an international perspective. *Hum Resour Health* 2003;1(1):3. doi: 10.1186/1478-4491-1-3
 - 3. Anderson GF, Hussey PS. Population aging: A comparison among industrialized countries. *Health Affair* 2000;19(3):191-203. doi: DOI 10.1377/hlthaff.19.3.191
 - 4. Hobbs FDR, Bankhead C, Mukhtar T, et al. Clinical workload in UK primary care: a retrospective analysis of 100 million consultations in England, 2007-14. *Lancet* 2016;387(10035):2323-30. doi: 10.1016/S0140-6736(16)00620-6
 - Reeve J, Blakeman T, Freeman GK, et al. Generalist solutions to complex problems: generating practice-based evidence - the example of managing multi-morbidity. Bmc Fam Pract 2013;14 doi: Artn 112
 - 10.1186/1471-2296-14-112
- 406 6. Bodenheimer T. Primary care--will it survive? *N Engl J Med* 2006;355(9):861-4. doi: 10.1056/NEJMp068155
 - 7. LeGrand SB, Heintz JB. Palliative Medicine Fellowship: A Study of Resident Choices. *Journal of Pain and Symptom Management* 2012;43(3):558-68. doi: 10.1016/j.jpainsymman.2011.04.018
- 411 8. Kim YY, Kim UN, Kim YS, et al. Factors associated with the specialty choice of Korean medical 412 students: a cross-sectional survey. *Human Resources for Health* 2016;14:8. doi: 413 10.1186/s12960-016-0141-8
- 9. McNally SA. Competition ratios for different specialties and the effect of gender and immigration
 status. J R Soc Med 2008;101(10):489-92. doi: 10.1258/jrsm.2008.070284
 - 10. Reed VA, Jernstedt GC, Reber ES. Understanding and improving medical student specialty choice: a synthesis of the literature using decision theory as a referent. *Teach Learn Med* 2001;13(2):117-29. doi: 10.1207/S15328015TLM1302_7
 - 11. Al-Ansari SS, Khafagy MA. FACTORS AFFECTING THE CHOICE OF HEALTH SPECIALTY BY MEDICAL GRADUATES. *Journal of Family & Community Medicine* 2015;13(3):119-23.
- 422 12. Leduc N, Vanasse A, Scott I, et al. The career decision-making process of medical students and residents and the choice of specialty and practice location: how does Postgraduate Medical Education fit in? 2011
- 425 13. Delamothe T. Modernising Medical Careers: final report. BMJ 2008;336(7635):54-55.
 - Goldacre MJ, Laxton L, Harrison EM, et al. Early career choices and successful career progression in surgery in the UK: prospective cohort studies. *Bmc Surgery* 2010;10:11. doi: 10.1186/1471-2482-10-32
- 429 15. Weissman C, Zisk-Rony RY, Schroeder JE, et al. Medical specialty considerations by medical students early in their clinical experience. *Isr J Health Policy Res* 2012;1(1):13. doi: 10.1186/2045-4015-1-13
 - 16. Jackson C, Ball J, Hirsh W, et al. Informing choices: the need for career advice in medical training. Cambridge: National institute for careers Education and Counseling 2003
 - 17. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *J Clin Epidemiol* 2009;62(10):1006-12. doi: 10.1016/j.jclinepi.2009.06.005
 - 18. Rostom A, Dube C, Cranney A, et al. Celiac disease. *Evid Rep Technol Assess (Summ)* 2004(104):1-6. [published Online First: 2004/09/07]
- 439 19. Borenstein M, Hedges LV, Higgins JP, et al. A basic introduction to fixed-effect and random-effects models for meta-analysis. *Res Synth Methods* 2010;1(2):97-111. doi: 10.1002/jrsm.12
- 441 20. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. *BMJ* 2003;327(7414):557-60. doi: 10.1136/bmj.327.7414.557
- 443 21. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Stat Med* 2002;21(11):1539-58. doi: 10.1002/sim.1186
- 22. Sterne JA, Juni P, Schulz KF, et al. Statistical methods for assessing the influence of study characteristics on treatment effects in 'meta-epidemiological' research. *Stat Med* 2002;21(11):1513-24. doi: 10.1002/sim.1184
- 448 23. Borenstein M, Hedges LV, Higgins J, et al. Criticisms of meta analysis. *Introduction to meta-analysis* 2009:377-87.
- 450 24. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple,

- 25. Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. *J Clin Epidemiol* 2001;54(10):1046-55.
- 26. Duval S, Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. *Biometrics* 2000;56(2):455-63. [published Online First: 2000/07/06]
 - 27. Bodenheimer T, Berenson RA, Rudolf P. The primary care-specialty income gap: why it matters. *Annals of internal medicine* 2007;146(4):301-6.
- 28. Bodenheimer T, Pham HH. Primary care: current problems and proposed solutions. *Health Aff (Millwood)* 2010;29(5):799-805. doi: 10.1377/hlthaff.2010.0026
- 29. Association AH. The hospital workforce shortage: Immediate and future. *Trend Watch* 2001;3(2):1-8.
 - 30. Compton MT, Frank E, Elon L, et al. Changes in US medical students' specialty interests over the course of medical school. *Journal of General Internal Medicine* 2008;23(7):1095-100. doi: 10.1007/s11606-008-0579-z
- 31. Indyk D, Deen D, Fornari A, et al. The influence of longitudinal mentoring on medical student selection of primary care residencies. *BMC medical education* 2011;11(1):27.
- 32. Gill H, McLeod S, Duerksen K, et al. Factors influencing medical students' choice of family medicine Effects of rural versus urban background. *Canadian Family Physician* 2012;58(11):E649-E57.
- 33. Richardson JD. Workforce and lifestyle issues in general surgery training and practice. *Archives of surgery (Chicago, Ill: 1960)* 2002;137(5):515-20.
- 34. Newton DA, Grayson MS, Thompson LF. The variable influence of lifestyle and income on medical students' career specialty choices: data from two U.S. medical schools, 1998-2004. Academic medicine: journal of the Association of American Medical Colleges 2005;80(9):809-14.
- 35. Orrico K. Ensuring an adequate neurosurgical workforce for 21st century. Surgeons AAoN 2012
- 36. Wright SM, Wong A, Newill CA. The impact of role models on medical students. *Journal of General Internal Medicine* 1997;12(1):53-56.
- 37. Glazer GM, Ruiz-Wibbelsmann JA. Decades of perceived mediocrity: prestige and radiology. *Radiology* 2011;260(2):311-16.
- 38. Schwartzbaum AM, McGrath JH, Rothman RA. The perception of prestige differences among medical subspecialities. *Soc Sci Med* 1973;7(5):365-71.
- 39. Parsa S, Aghazadeh A, Nejatisafa AA, et al. Freshmen versus Interns' Specialty Interests. *Archives of Iranian Medicine* 2010;13(6):509-15.
- 40. Komorita SS. Attitude Content, Intensity, and the Neutral Point on a Likert Scale. *J Soc Psychol* 1963;61:327-34. doi: 10.1080/00224545.1963.9919489
- 41. Baggaley AR, Hull AL. The effect of nonlinear transformations on a Likert scale. *Eval Health Prof* 1983;6(4):483-91.
- 42. Norman G. Likert scales, levels of measurement and the "laws" of statistics. *Advances in health sciences education : theory and practice* 2010;15(5):625-32. doi: 10.1007/s10459-010-9222-y
- 43. Smith F, Lambert TW, Goldacre MJ. Factors influencing junior doctors' choices of future specialty: trends over time and demographics based on results from UK national surveys. *Journal of the Royal Society of Medicine* 2015;108(10):396-405. doi: 10.1177/0141076815599674
- 44. Cochran A, Melby S, Neumayer LA. An Internet-based survey of factors influencing medical student selection of a general surgery career. *American Journal of Surgery* 2005;189(6):742-46. doi: 10.1016/j.amjsurg.2005.03.019
- 45. Hauer KE, Durning SJ, Kernan WN, et al. Factors associated with medical students' career choices regarding internal medicine. *Jama-Journal of the American Medical Association* 2008;300(10):1154-64. doi: 10.1001/jama.300.10.1154
- 46. Johnson AL, Sharma J, Chinchilli VM, et al. Why do medical students choose orthopaedics as a career? *The Journal of bone and joint surgery American volume* 2012;94(11):e78. doi: 10.2106/jbjs.k.00826 [published Online First: 2012/05/29]
- 47. Kiolbassa K, Miksch A, Hermann K, et al. Becoming a general practitioner Which factors have most impact on career choice of medical students? *Bmc Family Practice* 2011;12:7. doi: 10.1186/1471-2296-12-25
- 48. Klingensmith ME, Cogbill TH, Luchette F, et al. Factors Influencing the Decision of Surgery Residency Graduates to Pursue General Surgery Practice Versus Fellowship. *Annals of*

- 510 Surgery 2015;262(3):449-55. doi: 10.1097/sla.000000000001435
- 49. Lee JY, Kerbl DC, McDougall EM, et al. Medical Students Pursuing Surgical Fields Have No
 512 Greater Innate Motor Dexterity than Those Pursuing Nonsurgical Fields. *Journal of Surgical Education* 2012;69(3):360-63. doi: 10.1016/j.jsurg.2011.11.005
 50. Macdonald C, Cawood T, Factors influencing career decisions in internal medicine. *Internal*
 - 50. Macdonald C, Cawood T. Factors influencing career decisions in internal medicine. *Internal Medicine Journal* 2012;42(8):918-23. doi: 10.1111/j.1445-5994.2012.02793.x
 - 51. Paiva RE, Vu NV, Verhulst SJ. The effect of clinical experiences in medical school on specialty choice decisions. *J Med Educ* 1982;57(9):666-74.
 - 52. Ni Chroinin D, Cronin E, Cullen W, et al. Would you be a geriatrician? Student career preferences and attitudes to a career in geriatric medicine. *Age Ageing* 2013;42(5):654-7. doi: 10.1093/ageing/aft093 [published Online First: 2013/08/07]
 - 53. Rogers LQ, Fincher RM, Lewis LA. Factors influencing medical students to choose primary care or non-primary care specialties. *Academic medicine : journal of the Association of American Medical Colleges* 1990;65(9 Suppl):S47-8.
 - 54. Abendroth J, Schnell U, Lichte T, et al. Motives of former interns in general practice for speciality-choice--results of a cross-sectional study among graduates 2007 to 2012. *GMS Zeitschrift fur medizinische Ausbildung* 2014;31(1):Doc11. doi: 10.3205/zma000903 [published Online First: 2014/02/28]
 - 55. Alawad A, Khan WS, Abdelrazig YM, et al. Factors considered by undergraduate medical students when selecting specialty of their future careers. *Pan African Medical Journal* 2015;20:6. doi: 10.11604/pamj.2015.20.102.4715
 - Azizzadeh A, McCollum CH, Miller CC, 3rd, et al. Factors influencing career choice among medical students interested in surgery. Curr Surg 2003;60(2):210-3. doi: 10.1016/s0149-7944(02)00679-7 [published Online First: 2004/02/20]
 - 57. Celenza A, Bharath J, Scop J. Improving the attractiveness of an emergency medicine career to medical students: An exploratory study. *Emergency Medicine Australasia* 2012;24(6):625-33. doi: 10.1111/j.1742-6723.2012.01607.x
 - 58. Dolan-Evans E, Rogers GD. Barriers for students pursuing a surgical career and where the Surgical Interest Association can intervene. *Anz Journal of Surgery* 2014;84(6):406-11. doi: 10.1111/ans.12521
 - 59. Boyd JS, Clyne B, Reinert SE, et al. Emergency Medicine Career Choice: A Profile of Factors and Influences from the Association of American Medical Colleges (AAMC) Graduation Questionnaires. *Academic Emergency Medicine* 2009;16(6):544-49. doi: 10.1111/j.1553-2712.2009.00385.x
 - 60. Egerton EA. Choice of career of doctors who graduated from Queen's University, Belfast in 1977. *Med Educ* 1985;19(2):131-7.
 - 61. Diderichsen S, Johansson EE, Verdonk P, et al. Few gender differences in specialty preferences and motivational factors: a cross-sectional Swedish study on last-year medical students. *Bmc Medical Education* 2013;13:8. doi: 10.1186/1472-6920-13-39
 - 62. Ferrari S, Reggianini C, Mattei G, et al. International Study of Student Career Choice in Psychiatry (ISoSCCiP): Results from Modena, Italy. *International Review of Psychiatry* 2013;25(4):450-59. doi: 10.3109/09540261.2013.804402
 - 63. Freire MDM, Jordao LMR, Ferreira ND, et al. Motivation Towards Career Choice of Brazilian Freshman Students in a Fifteen-Year Period. *Journal of Dental Education* 2011;75(1):115-21.
 - 64. Buddeberg-Fischer B, Klaghofer R, Abel T, et al. Swiss residents' speciality choices--impact of gender, personality traits, career motivation and life goals. *BMC Health Serv Res* 2006;6:137. doi: 10.1186/1472-6963-6-137
 - 65. Dorsey ER, Jarjoura D, Rutecki GW. The influence of controllable lifestyle and sex on the specialty choices of graduating U.S. medical students, 1996-2003. *Academic medicine : journal of the Association of American Medical Colleges* 2005;80(9):791-6. [published Online First: 2005/08/27]
 - 66. Ekenze SO, Ugwumba FO, Obi UM, et al. Undergraduate Surgery Clerkship and the Choice of Surgery as a Career: Perspective from a Developing Country. *World Journal of Surgery* 2013;37(9):2094-100. doi: 10.1007/s00268-013-2073-y
 - 67. Barikani A, Afaghi M, Barikani F, et al. Perception of the medical students on their future career in Qazvin University of Medical Sciences. *Global journal of health science* 2012;4(4):176-80. doi: 10.5539/gjhs.v4n4p176 [published Online First: 2012/09/18]
 - 68. Bittaye M, Odukogbe AT, Nyan O, et al. Medical students' choices of specialty in The Gambia: the need for career counseling. *BMC Med Educ* 2012;12:72. doi: 10.1186/1472-6920-12-72

69. Bonura EM, Lee ES, Ramsey K, et al. Factors Influencing Internal Medicine Resident Choice of
 Infectious Diseases or Other Specialties: A National Cross-sectional Study. *Clinical Infectious Diseases* 2016;63(2):155-63. doi: 10.1093/cid/ciw263

- 70. Al-Fouzan R, Al-Ajlan S, Marwan Y, et al. Factors affecting future specialty choice among medical students in Kuwait. *Medical Education Online* 2012;17:7. doi: 10.3402/meo.v17i0.19587
- 71. AlKot MM, Gouda MA, KhalafAllah MT, et al. Family Medicine in Egypt From Medical Students' Perspective: A Nationwide Survey. *Teaching and Learning in Medicine* 2015;27(3):264-73. doi: 10.1080/10401334.2015.1044654
- 72. Borges NJ, Manuel RS, Duffy RD, et al. Influences on specialty choice for students entering person-oriented and technique-oriented specialties. *Medical Teacher* 2009;31(12):1086-88. doi: 10.3109/01421590903183787
- 73. Budd S, Kelley R, Day R, et al. Student attitudes to psychiatry and their clinical placements. *Medical Teacher* 2011;33(11):E586-E92. doi: 10.3109/0142159x.2011.610836
- 74. Corrigan MA, Shields CJ, Redmond HP. Factors influencing surgical career choices and advancement in Ireland and Britain. *World Journal of Surgery* 2007;31(10):1921-29. doi: 10.1007/s00268-007-9175-3
- 75. Davis CR, Trevatt AEJ, McGoldrick RB, et al. How to train plastic surgeons of the future. *Journal of Plastic Reconstructive and Aesthetic Surgery* 2016;69(8):1134-40. doi: 10.1016/j.bjps.2016.05.001
- 76. Deutsch T, Lippmann S, Frese T, et al. Who wants to become a general practitioner? Student and curriculum factors associated with choosing a GP career a multivariable analysis with particular consideration of practice-orientated GP courses. *Scandinavian Journal of Primary Health Care* 2015;33(1):47-53. doi: 10.3109/02813432.2015.1020661
- 77. Gardner SP, Roberts-Thomson KF. The effect of a change in selection procedures on students' motivation to study dentistry. *Australian Dental Journal* 2014;59(1):2-8. doi: 10.1111/adj.12141
- 78. Dias MS, Sussman JS, Durham S, et al. Perceived benefits and barriers to a career in pediatric neurosurgery: a survey of neurosurgical residents Clinical article. *Journal of Neurosurgery-Pediatrics* 2013;12(5):422-33. doi: 10.3171/2013.5.peds12597
- 79. Goltz CJ, Bachusz RC, Mancini E, et al. Medical Student Career Survey-Vascular Surgery Awareness Initiative. *Annals of Vascular Surgery* 2013;27(2):225-31. doi: 10.1016/j.avsg.2012.02.012
- 80. Gupta NB, Khadilkar SV, Bangar SS, et al. Neurology as career option among postgraduate medical students. *Annals of Indian Academy of Neurology* 2013;16(4):478-82. doi: 10.4103/0972-2327.120427
- 81. Hanzlick R, Prahlow JA, Denton S, et al. Selecting forensic pathology as a career A survey of the post with an eye on the future. *American Journal of Forensic Medicine and Pathology* 2008;29(2):114-22. doi: 10.1097/PAF.0b013e318174f0a9
- 82. Harris MC, Marx J, Gallagher PR, et al. General vs subspecialty pediatrics Factors leading to residents' career decisions over a 12-year period. *Archives of Pediatrics & Adolescent Medicine* 2005;159(3):212-16. doi: 10.1001/archpedi.159.3.212
- 83. Hauer KE, Fagan MJ, Kernan W, et al. Internal medicine clerkship directors' perceptions about student interest in internal medicine careers. *Journal of General Internal Medicine* 2008;23(7):1101-04. doi: 10.1007/s11606-008-0640-y
- 84. Labiris G, Vamvakerou V, Tsolakaki O, et al. Perceptions of Greek medical students regarding medical profession and the specialty selection process during the economic crisis years. Health Policy 2014;117(2):203-09. doi: 10.1016/j.healthpol.2014.04.009
- 85. Lambert TW, Goldacre MJ, Bron AJ. Career choices for ophthalmology made by newly qualified doctors in the United Kingdom, 1974-2005. *Bmc Ophthalmology* 2008;8:9. doi: 10.1186/1471-2415-8-3
- 86. Shah HH, Jhaveri KD, Sparks MA, et al. Career Choice Selection and Satisfaction among US
 Adult Nephrology Fellows. Clinical Journal of the American Society of Nephrology
 2012;7(9):1513-20. doi: 10.2215/cjn.01620212
- 622 87. Lefevre JH, Roupret M, Kerneis S, et al. Career choices of medical students: a national survey of 623 1780 students. *Medical Education* 2010;44(6):603-12. doi: 624 10.1111/j.1365-2923.2010.03707.x
- 88. Vicente B, Rosel L. Challenges for psychiatric recruitment and training in Chile. *International Review of Psychiatry* 2013;25(4):413-18. doi: 10.3109/09540261.2013.822348
- 89. Wiesenfeld L, Abbey S, Takahashi SG, et al. Choosing Psychiatry as a Career: Motivators and

- Deterrents at a Critical Decision-Making Juncture. *Canadian Journal of Psychiatry-Revue Canadienne De Psychiatrie* 2014;59(8):450-54.
 - 90. Lam CYY, Cheung CSY, Hui ASY. Factors influencing the career interest of medical graduates in obstetrics and gynaecology in Hong Kong: a cross-sectional questionnaire survey. *Hong Kong Medical Journal* 2016;22(2):138-43.
 - 91. Hartung PJ, Taber BJ, Richard GV. The physician values in practice scale: Construction and initial validation. *Journal of Vocational Behavior* 2005;67(2):309-20. doi: 10.1016/j.jvb.2004.05.008
 - 92. Girasek E, Molnar R, Eke E, et al. The medical career choice motivations Results from a Hungarian study. *Central European Journal of Medicine* 2011;6(4):502-09. doi: 10.2478/s11536-011-0034-0
 - 93. Zuccato JA, Kulkarni AV. The Impact of Early Medical School Surgical Exposure on Interest in Neurosurgery. *Canadian Journal of Neurological Sciences* 2016;43(3):410-16. doi: 10.1017/cjn.2015.332
 - 94. Wilbanks L, Spollen J, Messias E. Factors Influencing Medical School Graduates Toward a Career in Psychiatry: Analysis from the 2011-2013 Association of American Medical Colleges Graduation Questionnaire. Academic Psychiatry 2016;40(2):255-60. doi: 10.1007/s40596-015-0287-z
 - 95. West CP, Drefahl MM, Popkave C, et al. Internal Medicine Resident Self-report of Factors Associated with Career Decisions. *Journal of General Internal Medicine* 2009;24(8):946-49. doi: 10.1007/s11606-009-1039-0
 - 96. Watmough S, Taylor D, Ryland I. Using questionnaires to determine whether medical graduates' career choice is determined by undergraduate or postgraduate experiences. *Medical Teacher* 2007;29(8):830-32. doi: 10.1080/01421590701551755
 - 97. Thakur A, Fedorka P, Ko C, et al. Impact of mentor guidance in surgical career selection. *Journal of Pediatric Surgery* 2001;36(12):1802-04. doi: 10.1053/jpsu.2001.28842
 - 98. Scott I, Gowans M, Wright B, et al. Determinants of choosing a career in surgery. *Medical Teacher* 2011;33(12):1011-17. doi: 10.3109/0142159x.2011.558533
 - 99. Schnuth RL, Vasilenko P, Mavis B, et al. What influences medical students to pursue careers in obstetrics and gynecology? *American Journal of Obstetrics and Gynecology* 2003;189(3):639-43. doi: 10.1067/s0002-9378(03)00886-x
 - 100. Richards JMJ, Drummond R, Murray J, et al. WHAT PROPORTION OF BASIC SURGICAL TRAINEES CONTINUE IN A SURGICAL CAREER? A SURVEY OF THE FACTORS WHICH ARE IMPORTANT IN INFLUENCING CAREER DECISIONS. Surgeon-Journal of the Royal Colleges of Surgeons of Edinburgh and Ireland 2009;7(5):270-75.
 - 101. Reed CE, Vaporciyan AA, Erikson C, et al. Factors Dominating Choice of Surgical Specialty. *Journal of the American College of Surgeons* 2010;210(3):319-24. doi: 10.1016/j.jamcollsurg.2009.11.016
 - 102. de Souza LCL, Mendonca VRR, Garcia GBC, et al. Medical Specialty Choice and Related Factors of Brazilian Medical Students and Recent Doctors. *Plos One* 2015;10(7):15. doi: 10.1371/journal.pone.0133585
 - 103. Pikoulis E, Avgerinos ED, Pedeli X, et al. Medical students' perceptions on factors influencing a surgical career: The fate of general surgery in Greece. *Surgery* 2010;148(3):510-15. doi: 10.1016/j.surg.2010.01.013
 - 104. Ozer U, Ceri V, Carpar E, et al. Factors Affecting the Choice of Psychiatry as a Specialty and Satisfaction among Turkish Psychiatry Residents. *Academic Psychiatry* 2016;40(2):299-303. doi: 10.1007/s40596-015-0346-5
 - 105. Noble J, Hechter FJ, Karaiskos N, et al. Motivational factors and future life plans of orthodontic residents in the United States. *American Journal of Orthodontics and Dentofacial Orthopedics* 2010;137(5):623-30. doi: 10.1016/j.ajodo.2008.03.034
- 678 106. Noble J. Factors influencing career choice in ophthalmology. *Canadian Journal of Ophthalmology-Journal Canadien D Ophtalmologie* 2006;41(5):596-99.
- 107. Newton DA, Grayson MS, Thompson LF. The variable influence of lifestyle and income on medical students' career specialty choices: Data from two US medical schools, 1998-2004. Academic Medicine 2005;80(9):809-14. doi: 10.1097/00001888-200509000-00005
- 683 108. Moore HB, Moore PK, Grant AR, et al. Future of acute care surgery: A perspective from the next generation. *Journal of Trauma and Acute Care Surgery* 2012;72(1):94-99. doi: 10.1097/TA.0b013e31823b990a
- 686 109. Momen AA, Shakurnia A. Factors Influencing Pediatric Specialty Choice among Pediatric

- 110. Mehmood SI, Kumar A, Al-Binali A, et al. Specialty preferences: Trends and perceptions among Saudi undergraduate medical students. *Medical Teacher* 2012;34:S51-S60. doi: 10.3109/0142159x.2012.656753
- 111. Loriot Y, Albiges-Sauvin L, Dionysopoulos D, et al. Why do residents choose the medical oncology specialty? Implications for future recruitment-results of the 2007 French Association of Residents in Oncology (AERIO) Survey. *Annals of Oncology* 2010;21(1):161-65. doi: 10.1093/annonc/mdp294
- 112. Lefevre JH, Karila L, Kerneis S, et al. Motivation of French medical students to pursue surgical careers: Results of national survey of 1742 students. *Journal of Visceral Surgery* 2010;147(3):E181-E86. doi: 10.1016/j.jviscsurg.2010.08.004
- 113. Vo A, McLean L, McInnes MDF. Medical specialty preferences in early medical school training in Canada. *Int J Med Educ* 2017;8:400-07. doi: 10.5116/ijme.59f4.3c15
- 114. Grasreiner D, Dahmen U, Settmacher U. Specialty preferences and influencing factors: a repeated cross-sectional survey of first- to sixth-year medical students in Jena, Germany. BMC medical education 2018;18 doi: ARTN 103

10.1186/s12909-018-1200-8

115. Alkhaneen H, Alhusain F, Alshahri K, et al. Factors influencing medical students' choice of emergency medicine as a career specialty-a descriptive study of Saudi medical students. *International journal of emergency medicine* 2018;11(1):14. doi: 10.1186/s12245-018-0174-y [published Online First: 2018/03/09]

- 710 Legends
- 711 Table 1. Selected Characteristics of the 75 Studies Included in this Systematic
- 712 Review and Meta-analysis
- 713 Table 2. Meta-analyses of the Factors Influencing Medical Students' Choice of
- 714 Subspecialty
- 715 Table 3. Meta-regression of the EOI Value Stratified by Study-level
- 716 Characteristics
- 717 Figure 1. Bar Graph of the Meta-analyses of the Factors Influencing Medical
- 718 Students' Choice of Subspecialty Stratified by Region.
- 719 Figure 2. Bar Graph of the Meta-analyses of the Factors Influencing Medical
- 720 Students' Choice of Subspecialty Stratified by Survey Year.
- 721 Supplements
- 722 Methods S1. Search strategy used in the current systematic review and
- 723 meta-analysis.
- 724 Table S1. Quality Assessment of the Included Studies.
- 725 Table S2. Meta-analyses of the Factors Influencing Medical Students' Choice of
- 726 Subspecialty Stratified by Region and Survey Year.
- 727 Figure S1. Flow Diagram of the Study Inclusion Process.
- 728 Figure S2. Forest Plot of "Academic Interest".
- 729 Figure S3. Forest Plot of "Competencies".
- 730 Figure S4. Forest Plot of "Controllable Lifestyle or Flexible Work Schedule".
- 731 Figure S5. Forest Plot of "Patient Service Orientation".
- 732 Figure S6. Forest Plot of "Medical Teachers or Mentors".
- 733 Figure S7. Forest Plot of "Career Opportunities".
- 734 Figure S8. Forest Plot of "Workload or Working Hours".

- Figure S9. Forest Plot of "Income".
- Figure S10. Forest Plot of "Length of Training".
- Figure S11. Forest Plot of "Prestige".
- Figure S12. Forest Plot of "Advice from Others".
- Figure S13. Forest Plot of "Student Debt".
- Figure S14. Funnel Plots of the Publication Bias Tests of the 12 Factors.

Table 1. Selected Characteristics of the 75 Studies Included in this Systematic Review and Meta-analysis

		Survey	Sample	Average		-
First Author, Year	Country	years	size	age	Men, No. (%)	Scores
Smith et al, 43 2015	UK	2012	2,978	NR	NR	6
Cochran et al,44 2005	USA	2002	408	27.2	214 (52.45)	5
Hauer et al,45 2008	USA	2007	1,177	NR	NR	6
Johnson et al,46 2012	USA	2012	622	NR	NR	6
Kiolbassa et al, ⁴⁷ 2011	Germany	2010	1,114	24.1	408 (36.62)	5
Klingensmith et al,48 2015	USA	2013	792	NR	539 (68.06)	6
Lee et al, ⁴⁹ 2012	USA	2012	100	NR	58 (58)	7
Macdonald et al, ⁵⁰ 2012	New Zealand	2011	134	NR	79 (58.96)	7
Parsa et al, ³⁹ 2010	Iran	2006-2007	137	27.34	49 (35.77)	7
Paiva et al, ⁵¹ 1982	USA	1982	144	NR	NR	6
Ni Chroinin et al, ⁵² 2013	UK	2009-2011	274	NR	112 (40.89)	7
Newton et al, ³⁴ 2005	USA	1998-2004	1,258	NR	642 (51.03)	8
Rogers et al, ⁵³ 1990	USA	1989	266	NR	205 (77.07)	6
Abendroth J et al, ⁵⁴ 2014	Germany	2007-2012	45	NR	14 (31)	7
Alawad et al, ⁵⁵ 2015	USA	2010-2011	45	NR	36 (80)	8
Azizzadeh et al, ⁵⁶ 2003	USA	2002	130	NR	NR	6
Celenza et al, ⁵⁷ 2012	Australia	2009	216	NR	121 (56.02)	8
Dolan-Evans et al,58 2014	Australia	2013	419	NR	215 (51.31)	8
Boyd et al, ⁵⁹ 2009	USA	2005-2006	5,848	NR	2,982 (50.99)	8
Egerton et al,60 1985	Ireland	1977-1981	134	30	82 (61.19)	6
Diderichsen et al, ⁶¹ 2013	Sweden	2006-2009	372	27	157 (42.20)	6
Ferrari et al, ⁶² 2013	Italy, UK	2009-2011	45	25	NR	9
Freire et al, 63 2011	Brazil	2006-2008	290	23	102 (35.17)	7
Buddeberg-Fischer et al,64 2006	Switzerland	2001-2003	522	31.1	241 (46.17)	9
Dorsey et al,65 2005	USA	2003	11,029	NR	4,964 (45.01)	6
Ekenze et al, ⁶⁶ 2013	Nigeria	2009-2010	96	25.9	NR	7
Barikani et al, ⁶⁷ 2012	Australia	2008-2009	49	21.7	NR	6
Bittaye et al, ⁶⁸ 2012	Gambia	2011	106	24.1	48 (45.28)	6
Bonura et al, ⁶⁹ 2016	USA	2015	590	NR	321 (54.40)	9
Al-Fouzan et al, ⁷⁰ 2012	Kuwait	2011-2012	144	NR	NR	7
AlKot et al, ⁷¹ 2015	Egypt	2013	451	21.8	NR	7
Borges et al, 72 2009	USA	2001-2005	341	NR	NR	5
Budd et al, 73 2011	UK	2011	870	22	NR	7
Corrigan et al, 74 2007	Ireland	2007	222	NR	142 (63.96)	7
Davis et al, ⁷⁵ 2016	UK	2016	173	NR	76 (43.93)	7
Deutsch et al,76 2015	Germany	2011	659	27.9	NR	8
Gardner et al, ⁷⁷ 2014	Australia	1993-2005	631	NR	NR	7
Dias et al, 78 2013	UK	2013	495	NR	438 (88.48)	5
Goltz et al, ⁷⁹ 2013	USA	2012	102	24.5	34 (33.33)	6
Gupta et al, 80 2013	India	2013	243	NR	179 (73.36)	6

11 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2	TIG.	2006	1.61	MD	ND	
Hanzlick et al, 81 2008	USA	2006	161	NR	NR	6
Harris et al, 82 2005	USA	1991-2002	104	NR	53 (50.96)	6
Hauer et al, 83 2008	USA	2008	80	NR	NR	6
Labiris et al, ⁸⁴ 2014	Greece	2014	111	23.6	55 (49.54)	6
Lambert et al, 85 2008	UK	2007	17,393	NR	NR	6
Shah et al, 86 2012	USA	2011	892	NR	NR	6
Lefevre et al, 87 2010	USA	2008	1,555	NR	589 (37.88)	6
Vicente et al, 88 2013	Chile	2013	30	NR	NR	6
Wiesenfeld et al,89 2014	Canada	2013	60	NR	NR	7
Lam et al, 90 2016	Hong Kong	2015	228	23	NR	9
Hartung et al, ⁹¹ 2005	USA	2004	192	20.59	74 (38.54)	4
Girasek et al, ⁹² 2011	Hungary	2011	536	NR	NR	5
Zuccato et al, 93 2015	Canada	2012	37	NR	24 (65)	6
Wilbanks et al, ⁹⁴ 2015	USA	2011-2013	29,227	NR	15,164 (51.99)	9
West et al, ⁹⁵ 2009	USA	2005-2007	14,890	NR	8,700 (58.43)	6
Watmough et al, 96 2007	UK	2005	116	NR	66 (56.90)	4
Thakur et al, ⁹⁷ 2001	USA	2001	56	NR	53 (95)	8
Scott et al, 98 2011	Canada	2002-2004	1,542	NR	NR	6
Schnuth et al, 99 2003	USA	2002	203	NR	72 (53.47)	6
Richards et al, 100 2009	UK	2009	150	NR	108 (72.00)	5
Reed et al, 101 2009	USA	2008	2,022	NR	1,354 (66.96)	9
de Souza et al, ¹⁰² 2015	Portugal	2012	1,303	NR	NR	7
Pikoulis et al, 103 2010	Greece	2006-2007	87	NR	NR	6
Ozer et al, 104 2015	Turkey	2013	98	27.7	26 (26.53)	6
Noble et al, 105 2004	Canada	2004	21,296	NR	NR	8
Noble et al, 106 2010	Canada	2007	120	NR	NR	5
Newton et al, 107 2005	USA	2004	1,286	NR	NR	6
Moore et al, 108 2012	USA	2011	337	26	179 (53.12)	6
Momen et al, 109 2015	Iran	2014-2015	38	35.6	11 (29)	6
Mehmood et al, 110 2012	Saudi Arabia	2012	550	NR	348 (63.27)	6
Loriot et al, 111 2010	France	2007	44	NR	17 (39)	7
Lefevre et al, 112 2010	France	2008	522	23.8	198 (37.93)	7
Vo et al, 113 2017	Canada	2017	90	22.5	52 (57.78)	5
Grasreiner et al, 114 2018	Germany	2014-2016	181	24	33 (18.10)	6
Alkhannen et al, 115 2018	Saudi Arabia	2017	436	NA	250 (57.00)	5

Footnotes: scores: quality score of the AHRQ scale.

Table 2. Meta-analyses of the Factors Influencing Medical Students' Choice of Subspecialty

	-	_	-	95 CI%	of EOI	Cochran's	-	-	
T	No. of	Total no. of	EOI	value		Q	I-square	Tau-squ	D 17 1
Factor	studies	participants	value (%)	value		Q	(%)	are	<i>P</i> -Value
			,	Lower	Upper		,		
Academic interests	38	82,366	75.29	66.93	82.11	14719.76	99.70	1.60	< 0.0001
Competencies	17	76,515	55.15	33.63	74.90	23572.74	99.90	3.44	< 0.0001
Controllable lifestyle or flexible work schedule	44	101,001	53.00	47.90	58.03	8624.46	99.50	0.45	< 0.0001
Patient service orientation	37	46,572	50.04	44.65	55.43	2668.79	98.70	0.41	< 0.0001
Medical teachers or	32	85,071	46.93	37.77	56.30	15216.32	99.80	1.14	< 0.0001
Career opportunities	38	81,923	44.00	32.26	48.78	13553.20	99.70	1.15	< 0.0001
Workload or working hours	20	22,051	37.99	29.59	47.19	584.81	98.30	0.69	< 0.0001
Income	50	109,791	34.70	28.36	41.62	16952.48	99.70	1.09	< 0.0001
Length of training	18	42,046	32.30	27.61	37.37	917.21	98.10	0.20	< 0.0001
Prestige	26	30,629	31.17	26.32	37.69	1464.67	98.30	0.52	< 0.0001
Advice from others	18	82,692	28.24	22.26	34.23	7679.73	99.80	0.02	< 0.0001
Student debt	8	38,917	15.33	10.96	21.03	574.81	98.80	0.27	< 0.0001

Table 3. Meta-regression of the EOI Value Stratified by Study-level Characteristics

Factor		estimate	95 CI% o	<i>P</i> -Value	
ractor	estimate		Lower	Upper	_ P-value
	Country	-0.2314	-1.1575	0.6946	0.6302
A 1 * * *	Survey years	0.3811	-0.3580	1.1202	0.2711
Academic interests	Specialty	-0.4892	-1.5345	0.5562	0.4008
	Sample size	0.2362	-0.5488	1.0212	0.6537
	Country	0.6946	-1.1461	0.8938	0.8376
Commission	Survey years	-1.0418	-2.0950	0.0114	0.0151
Competencies	Specialty	0.0904	-1.5786	1.7594	0.9398
	Sample size	-0.5720	-1.8606	0.7166	0.5823
	Country	-0.1261	-1.1461	0.8938	0.9614
Controllable Effected on Controllar and sale date	Survey years	-0.0001	-0.4052	0.4051	0.9822
Controllable lifestyle or flexible work schedule	Specialty	-0.8989	-1.4979	-0.3000	0.0035
	Sample size	-0.0518	-0.4396	0.3361	0.7203
	Country	-0.6238	-1.3118	0.0642	0.0833
	Survey years	-0.0414	-0.6912	0.6083	0.8524
Patient service orientation	Specialty	-1.5982	-2.5227	-0.6737	0.0010
	Sample size	-0.1157	-0.7473	0.5159	0.6358
	Country	0.7395	0.3117	1.1674	0.0007
	Survey years	0.1133	-0.3580	0.5845	0.6376
Medical teachers or mentors	Specialty	0.0605	-0.4441	0.5652	0.8141
	Sample size	-0.1202	-0.5567	0.3163	0.5894
	Country	0.1075	-0.7030	0.9179	0.5828
	Survey years	0.3284	-0.3913	1.0480	0.7546
Career opportunities	Specialty	-0.9292	-1.8015	-0.0570	0.0077
	Sample size	0.3654	0.1156	1.5478	0.0081
	Country	-0.4535	-1.5086	0.6016	0.3981
W 11 1 1: 1	Survey years	0.4624	-0.5417	1.4665	0.3922
Workload or working hours	Specialty	-0.9878	-2.1727	0.1972	0.1070
	Sample size	0.0982	-0.8589	1.0553	0.8205
	Country	0.1058	-0.4665	0.6781	0.7390
*	Survey years	0.0999	-0.4379	0.6377	0.8774
Income	Specialty	-0.6457	-1.3267	0.0352	0.0480
	Sample size	0.0523	-0.4826	0.5872	0.6786
	Country	-0.1559	-1.2782	0.9664	0.7854
I amount of the initial	Survey years	-0.2158	-1.4089	0.9772	0.7229
Length of training	Specialty	0.3959	-0.9585	1.7502	0.5667
	Sample size	0.1565	-0.6631	0.9761	0.7082
	Country	-0.3346	-1.0799	0.4106	0.3485
Prostice	Survey years	-0.4513	-1.1378	0.2352	0.0950
Prestige	Specialty	-1.0112	-1.8980	-0.1244	0.0172
	Sample size	0.0355	-0.6013	0.6723	0.5214
A divise from others	Country	-0.0097	-0.0722	0.0529	0.9328
Advice from others	Survey years	-0.0861	-0.1471	-0.0251	0.0057

	Specialty	-0.2017	-0.2790	-0.1244	< 0.0001
	Sample size	0.2125	0.1309	0.2941	< 0.0001
	Country	2.7853	2.0544	3.5162	0.0001
Student debt	Survey years	-0.1567	-0.6707	0.3573	0.5502
	Sample size	-0.5248	-1.0108	-0.0388	0.0343

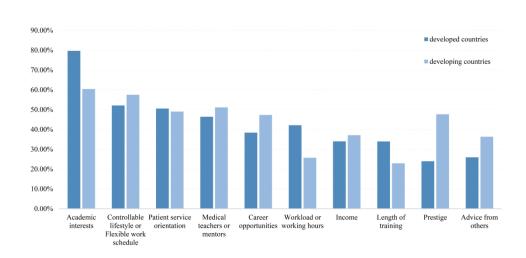


Figure 1. Bar Graph of the Meta-analyses of the Factors Influencing Medical Students' Choice of Subspecialty Stratified by Region.

190x107mm (300 x 300 DPI)

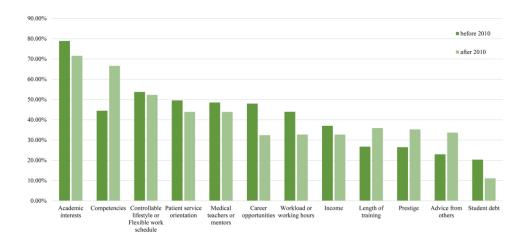


Figure 2. Bar Graph of the Meta-analyses of the Factors Influencing Medical Students' Choice of Subspecialty Stratified by Survey Year.

190x107mm (300 x 300 DPI)

SI Methods. Search strategy used in the current systematic review and metaanalysis.

Medical	Students
mental	Sinucius

- 1. Students, Medical [Mesh]
- 2. Medical students
- 3. Medical student
- 4. Student, Medical
- 5. OR / 1 4

13. Cross sectional study

14. Cross sectional study [Publication

Type]

- 15. Cross sectional study [Mesh Terms]
- 16. Systematic review
- 17. Systematic review [Publication Type]
- 18. Systematic review [Mesh Terms]

Subspecialty Choice

- 6. Career choices
- 7. Choice, Career
- 8. Choices career
- 9. Specialties
- 10. Sub-specialties
- 11. Sub-discipline
- 12. OR / 6 11

- 19. Meta-analysis [Title/Abstract]
- 20. Meta-analysis [Mesh Terms]
- 21. Meta-analysis [Publication Type]
- 22. OR / 12 21

Factors

23. Factors

Combined search

Study design 23. #5 AND #12AND #22 AND #2

Abbreviations: MeSH, Medical Subject Heading in PubMed

Table S1. Quality assessment of the included studies													
Qual	ity assessment criteria	1	2	3	4	5	6	7	8	9	10	11	Scores
1	Smith et al, ⁴¹ 2015	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
2	Cochran et al, 42 2005 Hauer et al, 43 2008	Y	U	Y	Y	N N	Y	N	Y	N	N v	N N	5
3	Johnson et al, 44 2012	Y Y	U U	Y Y	Y Y	N N	Y Y	N N	Y Y	N N	Y Y	N N	6 6
5	Kiolbassa et al, 45 2011	Y	U	Y	Y	N	Y	N	Y	N	N	N	5
6	Klingensmith et al, 46 2015	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
7	Lee et al, ⁴⁷ 2012	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
8	Macdonald et al, ⁴⁸ 2012	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
9	Parsa et al, ³⁷ 2010	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
10	Paiva et al, ⁴⁹ 1982	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
11	Ni Chroinin et al, ⁵⁰ 2013	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
12	Newton et al, ³² 2005	Y	U	Y	Y	Y	Y	Y	Y	N	Y	N	8
13	Rogers et al, ⁵¹ 1990	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
14	Abendroth J et al, ⁵² 2014	Y	U	Y	Y	N	Y	N	Y	N	Y	Y	7
15	Alawad et al, ⁵³ 2015	Y	U	Y	Y	N	Y	Y	Y	Y	Y	N	8
16	Azizzadeh et al, ⁵⁴ 2003	Y	U	Y	Y	Y	Y	N	N	N	Y	N	6
17	Celenza et al, ⁵⁵ 2012	Y	U	Y	Y	Y	Y	Y	N	Y	Y	N	8
18	Dolan-Evans et al, ⁵⁶ 2014	Y	U	Y	Y	Y	Y	N	Y	N	Y	Y	8
19	Boyd et al, ⁵⁷ 2009	Y	U	Y	Y	Y	Y	Y	Y	N	Y	N	8
20	Egerton et al, ⁵⁸ 1985 Diderichsen et al, ⁵⁹ 2013	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
21		Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
22 23	Ferrari et al, ⁶⁰ 2013 Freire et al, ⁶¹ 2011	Y Y	U U	Y Y	Y Y	Y Y	Y Y	Y	Y Y	Y	Y	N N	9
23 24	Buddeberg-Fischer et al, ⁶² 2006	Y	U	Y	Y	n N	Y	N Y	Y	N Y	Y Y	Y	7 9
25	Dorsey et al, 63 2005	Y	U	Y	Y	N	Y	N	Y	n N	Y	n N	6
26	Ekenze et al, 64 2013	Y	U	Y	Y	Y	Y	Y	N	N	Y	N	7
27	Barikani et al, ⁶⁵ 2012	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
28	Bittaye et al, 66 2012	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
39	Bonura et al, ⁶⁷ 2016	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	N	9
30	Al-Fouzan et al, ⁶⁸ 2012	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
31	AlKot et al, ⁶⁹ 2015	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
32	Borges et al, ⁷⁰ 2009	Y	U	Y	Y	N	Y	N	N	N	Y	N	5
33	Budd et al, ⁷¹ 2011	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
34	Corrigan et al, ⁷² 2007	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
35	Davis et al, ⁷³ 2016	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
36	Deutsch et al, ⁷⁴ 2015	Y	U	Y	Y	Y	Y	N	Y	Y	Y	N	8
37	Gardner et al, ⁷⁵ 2014	Y	U	Y	Y	N	Y	N	Y	N	Y	N	7
38	Dias et al, ⁷⁶ 2013	Y	U	Y	Y	N	Y	N	N	N	Y	N	5
39	Goltz et al, ⁷⁷ 2013	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
40	Gupta et al, ⁷⁸ 2013	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
41	Hanzlick et al, ⁷⁹ 2008	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
42	Harris et al, 80 2005	Y Y	U		Y	N	Y	N	Y	N	Y	N	6
43 44	Hauer et al, ⁸¹ 2008 Labiris et al, ⁸² 2014	Y Y	U U	Y Y	Y Y	N N	Y Y	N N	Y Y	N N	Y Y	N N	6 6
45	Lambert et al, 83 2008	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
46	Shah et al, 84 2012	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
47	Lefevre et al, 85 2010	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
48	Vicente et al, 86 2013	Y	U	Y	Y	N	N	Y	N	Y	Y	N	6
49	Wiesenfeld et al, ⁸⁷ 2014	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
50	Lam et al, ⁸⁸ 2016	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	N	9
51	Hartung et al, ⁸⁹ 2005	Y	U	Y	Y	N	Y	N	N	N	N	N	4
52	Girasek et al, ⁹⁰ 2011	Y	U	Y	Y	N	Y	N	N	N	Y	N	5
53	Zuccato et al,91 2015	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
54	Wilbanks et al, ⁹² 2015	Y	U	Y	Y	N	Y	Y	Y	Y	Y	Y	9
55	West et al, ⁹³ 2009	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
56	Watmough et al,94 2007	Y	U	Y	Y	N	N	N	N	N	Y	N	4
57	Thakur et al, ⁹⁵ 2001	Y	U	Y	Y	Y	Y	Y	N	Y	Y	N	8
58	Scott et al, 96 2011	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
59	Schnuth et al, ⁹⁷ 2003	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
60	Richards et al, ⁹⁸ 2009	Y	U	Y	Y	N	Y	N	N	N	Y	N	5
61	Reed et al, 99 2009	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	N	9
62	de Souza et al, 100 2015	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
63	Pikoulis et al, ¹⁰¹ 2010	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
64	Ozer et al, ¹⁰² 2015	Y	U	Y	Y	N	N	Y	N	Y	Y	N	6
65	Noble et al, ¹⁰³ 2004	Y	U	Y	Y	Y	Y	Y	Y	N	Y	N	8
66	Noble et al, ¹⁰⁴ 2010	Y	U	Y	Y	N	Y	N	N	N	Y	N	5
67	Newton et al, ¹⁰⁵ 2005	Y	U	Y	Y	N	Y	Y	N	N	Y	N	6
68	Moore et al, ¹⁰⁶ 2012	Y	U	Y	Y	Y	Y	N	Y	N	N	N	6
69 70	Momen et al, ¹⁰⁷ 2015	Y	U	Y	Y	N N	Y	N N	Y	N N	Y	N N	6
70	Mehmood et al, ¹⁰⁸ 2012	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
71 72	Loriot et al., 109 2010	Y	U	Y	Y	Y	Y	N N	Y	N N	Y v	N N	7
72 73	Lefevre et al, ¹¹⁰ 2010 Vo et al, ¹¹¹ 2017	Y v	U U	Y	Y v	Y V	Y N	N N	Y N	N N	Y v	N N	7 5
73 74	Vo et al, 111 2017 Grasreiner et al, 112 2018	Y Y	U	Y Y	Y Y	Y Y	N Y	N N	N N	N N	Y Y	N N	5 6
74 75	All-harmon et al. 113 2018	Y V	U	Y V	Y V	Y N	Y N	N V	IN NI	IN NI	Y V	IN NI	5

Quality assessment criteria in detail

Alkhannen et al,¹¹³ 2018

- 1. Define the source of information (survey, record review).
- 2. List the inclusion and exclusion criteria for the exposed and unexposed subjects (cases and controls) or refer to previous publications.
- 3. Indicate the time period used for identifying patients.
- 4. Indicate whether the subjects were consecutive if not population-based.
- 5. Indicate whether the evaluators of the subjective components of the study were masked to the other aspects of participants' status.
- 6. Describe any assessments undertaken for quality assurance purposes (e.g., test/retest of primary outcome measurements)
- 7. Explain any patient exclusion from the analyses.
- 8. Describe how confounding was assessed and/or controlled.
- 9. If applicable, explain how missing data were handled in the analysis.
- 10. Summarize the patient response rates and the completeness of the data collection.
- 11. Clarify what follow-up, if any, was expected and the percentage of patients with incomplete data or follow-up.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

"Y": Yes; "N": No; "U": Unclear.

Table S2. Meta-analyses of the Factors Influencing Medical Students' Choice of Subspecialty Stratified by Region and Survey Year.

Forder		No. of	Total no. of	Extent of	95 CI% o	f EOI value	I-square	Р-	Q-		
Factor		studies	participants	influence (%)	Lower	Upper	(%)	Value	Value		
	developed	28	80,000	79.66	70.73	86.39	99.8	0.02	3.51		
Academic interest	developing	10	2,366	60.41	43.44	75.19	98.0	0.02	3.31		
readenne interest	before 2010	29	44,174	78.88	69.04	86.22	99.7	0.40	1.21		
	after 2010	9	38,192	71.54	57.66	82.27	99.6	00	1.21		
Competencies	before 2010	9	43,134	44.40	29.11	60.83	99.8	0.21	1.86		
Competencies	after 2010	8	33,381	66.60	34.48	88.31	99.8	0.21	1.00		
	developed	37	100,980	52.11	46.52	57.65	99.6	0.63	0.68		
Controllable lifestyle or	developing	7	2,017	57.50	45.81	68.41	95.9	0.03	0.00		
flexible work schedule	before 2010	22	62,945	53.72	47.48	59.84	99.4	0.97	0.05		
	after 2010	22	40,056	52.29	43.51	60.93	99.2	0.97	0.03		
	developed	27	44,235	50.56	44.68	56.42	98.8	0.74	0.49		
Patient service orientation	developing	10	2,337	49.02	31.62	66.67	98.1	0.74	0.48		
Patient service orientation	before 2010	18	40,997	49.56	43.29	55.84	98.8	0.70	0.54		
	after 2010	19	5,579	43.87	38.62	63.80	98.3	0.70	0.54		
	developed	28	84,076	46.43	36.63	56.52	99.8	0.72	0.40		
	developing	4	995	51.14	33.97	68.04	95.4	0.73	0.48		
Medical teachers or mentors	before 2010	21	49,654	48.48	36.93	60.19	99.8				
	after 2010	11	35,417	43.87	27.94	61.18	99.7	0.70	0.54		
	developed	31	79,867	38.41	29.61	48.04	99.8	0.60	0.60	0.50	
	developing	7	2,056	47.32	30.38	64.91	98.1		0.74		
Career opportunities	before 2010	20	43,417	47.97	33.54	62.74	99.8				
	after 2010	18	38,506	32.38	21.68	45.31	99.5		1.68		
	developed	15	20,970	42.14	31.35	53.72	98.6				
	developing	5	1,081	25.72	13.29	43.88	95.3	0.34	1.39		
Workload or working hours	before 2010	9	19,456	43.93	29.43	59.54	98.8				
	after 2010	11	2,595	32.70	29.43	59.54	97.4	0.41	1.21		
	developed	39	107,091	34.01	26.89	41.93	99.8				
	developing	11	2,700	37.11	27.06	48.41	96.4	0.84	0.29		
Income	before 2010	25	68,714	37.11	25.95	49.62	99.8				
	after 2010	25	41,077	32.67	26.04	49.02	98.9	0.41	1.18		
					28.72	39.60	98.4				
	developed	15	41,246	33.95				0.31	1.48		
Length of training	developing	3	800	22.92	10.94	41.85	94.0				
	before 2010	7	8,811	26.72	15.89	41.29	98.9	0.28	1.59		
	after 2010	11	33,234	35.87	29.67	42.59	96.9				
	developed	17	27,987	23.96	19.20	29.47	97.3	0.01	4.71		
Prestige	developing	9	2,642	47.65	34.41	61.24	97.6				
	before 2010	12	25,542	26.46	20.78	33.03	96.7	0.25	1.67		
	after 2010	14	5,087	35.22	24.70	47.40	98.3				
	developed	14	81,205	25.95	19.27	32.64	99.8	0.36	1.33		
Advice from others	developing	4	1,487	36.34	18.91	53.77	98.1				
	before 2010	10	48,319	22.93	17.85	28.01	99.5	0.31	1.47		
	after 2010	8	34,373	33.65	25.12	42.18	99.1		•		
Student debt	before 2010	5	6,610	20.29	15.86	25.57	81.8	0.69	0.59		
	after 2010	3	32,307	11.08	1.58	49.08	99.6				

Figure S1. Flow Diagram of the Study Inclusion.

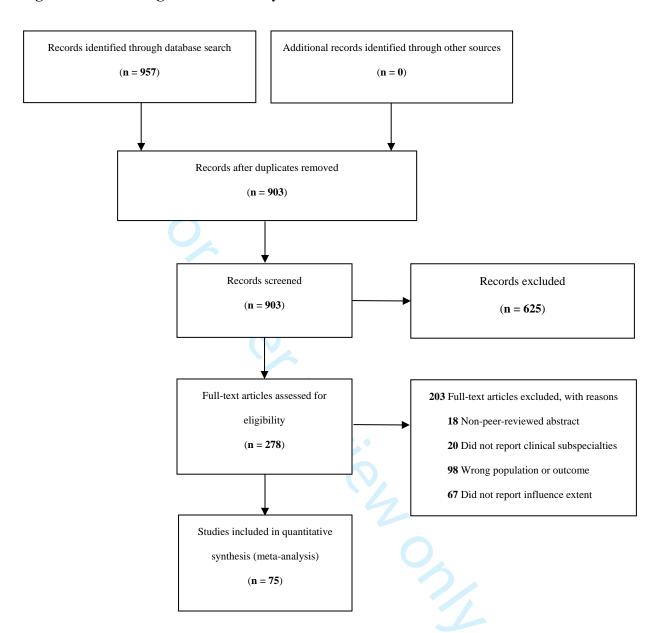


Figure S2. Forest Plot of "Academic Interest".

Study	Events	Total		Proportion	95%-CI	Weight (fixed)	Weight (random)
Smith et al, 2015	2424	2978	+	0.81	[0.80; 0.83]	3.8%	2.7%
Klingensmith et al, 2015	87	792 -	-		[0.09; 0.13]	0.6%	2.7%
Macdonald et al, 2012	119	134	<u> </u>		[0.82; 0.94]	0.1%	2.6%
Ni Chroinin et al, 2013	266	274	+		[0.94; 0.99]	0.1%	2.5%
Azizzadeh et al. 2003	102	130	 		[0.70; 0.85]	0.2%	2.7%
Celenza et al. 2012	151	216	- 		[0.63; 0.76]	0.4%	2.7%
Dolan-Evans et al, 2014	288	419	-	0.69	[0.64; 0.73]	0.7%	2.7%
Diderichsen et al, 2013	342	372	+	0.92	[0.89; 0.94]	0.2%	2.7%
Buddeberg-Fischer et al, 2006	351	522	-+	0.67	[0.63; 0.71]	1.0%	2.7%
Ekenze et al, 2013	40	96		0.42	[0.32; 0.52]	0.2%	2.7%
Al-Fouzan et al, 2012	58	144		0.40	[0.32; 0.49]	0.3%	2.7%
AlKot et al, 2015	117	451	-	0.26	[0.22; 0.30]	0.7%	2.7%
Borges et al, 2009	208	341		0.61	[0.56; 0.66]	0.7%	2.7%
Budd et al, 2011	531	870	-	0.61	[0.58; 0.64]	1.7%	2.7%
Corrigan et al, 2007	211	222	+		[0.91; 0.98]	0.1%	2.6%
Davis et al, 2016	151	173	-		[0.81; 0.92]	0.2%	2.6%
Gardner et al, 2014	542	631	i +		[0.83; 0.89]	0.6%	2.7%
Gupta et al, 2013	143	243			[0.52; 0.65]	0.5%	2.7%
Labiris et al, 2014	93	111	_		[0.76; 0.90]	0.1%	2.6%
Lambert et al, 2008		17393	+		[0.40; 0.42]	35.0%	2.7%
Shah et al, 2012	676	892	 		[0.73; 0.79]	1.4%	2.7%
Lefevre et al, 2010	1107	1555	!= -		[0.69; 0.73]	2.7%	2.7%
Wiesenfeld et al, 2014	38	60			[0.50; 0.75]	0.1%	2.6%
Girasek et al, 2011	500	548	+		[0.89; 0.93]	0.4%	2.7%
Zuccato et al, 2015	32	37			[0.71; 0.95]	0.0%	2.4%
Wilbanks et al, 2015	27251		•		[0.93; 0.94]	15.3%	2.7%
Schnuth et al, 2003	144	203	††		[0.64; 0.77]	0.3%	2.7%
Richards et al, 2009	140	150	-		[0.88; 0.97]	0.1%	2.6%
Pikoulis et al, 2010	47	87			[0.43; 0.65]	0.2%	2.7%
Ozer et al, 2015	44	98			[0.35; 0.55]	0.2%	2.7%
Noble et al, 2010	107	120			[0.82; 0.94]	0.1%	2.6%
Noble et al, 2004	16836		*		[0.79; 0.80]	29.4%	2.7%
Moore et al, 2012	270	337	į –		[0.75; 0.84]	0.4%	2.7%
Momen et al, 2015	27	38			[0.54; 0.85]	0.1%	2.5%
Mehmood et al, 2012	387	550	Ţ.		[0.66; 0.74]	1.0%	2.7%
Loriot et al, 2010	43	44			[0.88; 1.00]	0.0%	1.7%
Lefevre et al, 2010	282	522	—		[0.50; 0.58]	1.1%	2.7%
Vo et al, 2017	79	90		0.88	[0.79; 0.94]	0.1%	2.6%
Fixed effect model		82366	↓		[0.69; 0.70]		
Random effects model				0.75	[0.67; 0.82]	-	100.0%
Heterogeneity: $I^2 = 99.7\%$, $\tau^2 = 4$	1.6002, <i>p</i> =	0					
			0.2 0.4 0.6 0.8				

Figure S3. Forest Plot of "Competencies".

Study	Events	Total			ī		Proportion	95%-CI	W(fixed)	W(random)
Smith et al, 2015	1471	2978					0.49	[0.48; 0.51]	8.1%	5.9%
Lee et al, 2012	12	100		i			0.12	[0.06; 0.20]	0.1%	5.8%
Alawad et al, 2015	12	45					0.27	[0.15; 0.42]	0.1%	5.8%
Celenza et al, 2012	105	216		-			0.49	[0.42; 0.55]	0.6%	5.9%
Diderichsen et al, 2013	305	372		į		\rightarrow	0.82	[0.78; 0.86]	0.6%	5.9%
Bittaye et al, 2012	81	106			-		0.76	[0.67; 0.84]	0.2%	5.9%
Harris et al, 2005	62	104		j -	∔.		0.60	[0.50; 0.69]	0.3%	5.9%
Lambert et al, 2008	5523	17393		+			0.32	[0.31; 0.32]	40.9%	5.9%
Lefevre et al, 2010	267	1555	+	- 1			0.17	[0.15; 0.19]	2.4%	5.9%
Wilbanks et al, 2015	27731	29227		1			0.95	[0.95; 0.95]	15.4%	5.9%
Thakur et al, 2001	29	56		+	·		0.52	[0.38; 0.65]	0.2%	5.8%
Reed et al, 2009	1302	2022		- 1	*		0.64	[0.62; 0.66]	5.0%	5.9%
Noble et al, 2010	56	120		+	+		0.47	[0.38; 0.56]	0.3%	5.9%
Noble et al, 2004	2560	21296		i			0.12	[0.12; 0.12]	24.4%	5.9%
Moore et al, 2012	270	337		1		\rightarrow	0.80	[0.75; 0.84]	0.6%	5.9%
Momen et al, 2015	30	38			i —		0.79	[0.63; 0.90]	0.1%	5.7%
Mehmood et al, 2012	462	550		- 1		+	0.84	[0.81; 0.87]	0.8%	5.9%
Fixed effect model		76515					0.42	[0.41; 0.42]	100%	
Random effects mode						_		[0.34; 0.75]		100%
Heterogeneity: I-squared=		-squared	1=3.439. r	<0.0001			0.00	[5.5., 5., 6]		10070
gy, r oquarou		2 4 2 4 1 0 0		1	Ť	\neg				
			0.2	0.4	0.6	8.0				

The EOI value

Figure S4. Forest Plot of "Controllable Lifestyle or Flexible Work Schedule".

			_			Weight	Weight
Study	Events	Total		Proportion	95%-CI	(fixed)	(random)
Smith et al, 2015	1432	2978	#	0.48	[0.46; 0.50]	3.3%	2.4%
Cochran et al, 2005	204	408	- 	0.50	[0.45; 0.55]	0.4%	2.4%
Hauer et al, 2008	355	1177	+ !	0.30	[0.28; 0.33]	1.1%	2.4%
Kiolbassa et al, 2011	39	1114	+	0.04	[0.03; 0.05]	0.2%	2.3%
Lee et al, 2012	16	100			[0.09; 0.25]	0.1%	2.1%
Macdonald et al, 2012	80	134	++-		[0.51; 0.68]	0.1%	2.3%
Parsa et al, 2010	116	137			[0.78; 0.90]	0.1%	2.1%
Newton et al, 2005	761	1258	 		[0.58; 0.63]	1.3%	2.4%
Rogers et al, 1990	132	266			[0.43; 0.56]	0.3%	2.3%
Abendroth J et al, 2014	30	45	 		[0.51; 0.80]	0.0%	2.0%
Alawad et al, 2015	16	45			[0.22; 0.51]	0.0%	2.0%
Azizzadeh et al, 2003	85	130			[0.57; 0.74]	0.1%	2.2%
Celenza et al, 2012	156 309	216 419			[0.66; 0.78]	0.2%	2.3% 2.4%
Dolan-Evans et al, 2014	3695	5848			[0.69; 0.78]	0.4% 6.0%	2.4%
Boyd et al, 2009 Ferrari et al, 2013	31	45	1		[0.62; 0.64]	0.0%	2.4%
Dorsey et al, 2005	4516	11029			[0.40; 0.42]	11.7%	2.4%
Bittaye et al, 2012	63	1029			[0.49; 0.69]	0.1%	2.4%
AlKot et al, 2015	182	451	- !!		[0.36; 0.45]	0.5%	2.4%
Borges et al, 2009	309	338	_		[0.88; 0.94]	0.1%	2.2%
Budd et al, 2011	627	870	+		[0.69; 0.75]	0.8%	2.4%
Davis et al, 2016	67	173			[0.31; 0.46]	0.2%	2.3%
Deutsch et al, 2015	591	657	-		[0.87; 0.92]	0.3%	2.3%
Dias et al, 2013	81	495	+		[0.13; 0.20]	0.3%	2.3%
Goltz et al, 2013	64	102	++-	0.63	[0.53; 0.72]	0.1%	2.2%
Gupta et al, 2013	85	243		0.35	[0.29; 0.41]	0.2%	2.3%
Harris et al, 2005	55	104	- ! ! -	0.53	[0.43; 0.63]	0.1%	2.2%
Labiris et al, 2014	76	111	i	0.68	[0.59; 0.77]	0.1%	2.2%
Hartung et al, 2005	10	192	+		[0.03; 0.09]	0.0%	2.0%
Girasek et al, 2011	342	537	i —		[0.59; 0.68]	0.5%	2.4%
Zuccato et al, 2015	29	37			[0.62; 0.90]	0.0%	1.8%
Wilbanks et al, 2015	21043	29227			[0.71; 0.73]	25.9%	2.4%
West et al, 2009	10088	14890			[0.67; 0.69]	14.3%	2.4%
Scott et al, 2011	988	1542 150	. ! ! *		[0.62; 0.66]	1.6%	2.4%
Richards et al, 2009	42 1001	2022			[0.21; 0.36]	0.1% 2.2%	2.3% 2.4%
Reed et al, 2009	702	1303	<u> </u>		[0.47; 0.52]	1.4%	2.4%
de Souza et al, 2015 Noble et al, 2004	9009	21296	- I		[0.51; 0.57]	22.8%	2.4%
Newton et al, 2005	729	1286			[0.42, 0.43]	1.4%	2.4%
Moore et al, 2012	270	337			[0.75; 0.84]	0.2%	2.3%
Loriot et al, 2010	15	44	!		[0.20; 0.50]	0.0%	2.0%
Lefevre et al, 2010	170	522	- !		[0.29; 0.37]	0.5%	2.4%
Grasreiner et al, 2018	103	181	- -		[0.49; 0.64]	0.2%	2.3%
Alkhannen et al, 2018	204	436			[0.42; 0.52]	0.5%	2.4%
Fixed effect model		103001	•		[0.57; 0.57]	100.0%	
Random effects model			<u> </u>	0.53	[0.48; 0.58]		100.0%
Heterogeneity: $I^2 = 99.5\%$,	$\tau^2 = 0.448$	9, p = 0	00 04 00 00				
			0.2 0.4 0.6 0.8				

Figure S5. Forest Plot of "Patient Service Orientation".

Study	Events	Total		Proportion	95%-CI	Weight (fixed)	Weight (random)
Hauer et al, 2008	450	1177	+	0.38	[0.35; 0.41]	2.8%	3.0%
Kiolbassa et al, 2011	32	1114	-	0.03	[0.02; 0.04]	0.3%	2.8%
Lee et al, 2012	30	100		0.30	[0.21; 0.40]	0.2%	2.7%
Parsa et al, 2010	104	137	ļ 	0.76	[0.68; 0.83]	0.3%	2.7%
Rogers et al, 1990	148	266			[0.49; 0.62]	0.7%	2.9%
Abendroth J et al, 2014	19	45	 i		[0.28; 0.58]	0.1%	2.4%
Alawad et al, 2015	5	45			[0.04; 0.24]	0.0%	1.9%
Azizzadeh et al, 2003	81	130	- +		[0.53; 0.71]	0.3%	2.8%
Celenza et al, 2012	111	216			[0.45; 0.58]	0.5%	2.9%
Dolan-Evans et al, 2014	290	419			[0.65; 0.74]	0.9%	2.9%
Diderichsen et al, 2013	298	372	<u> </u>		[0.76; 0.84]	0.6%	2.9%
Freire et al, 2011	19		+		[0.04; 0.10]	0.2%	2.6%
Bittaye et al, 2012	79	106	<u> </u>		[0.65; 0.82]	0.2%	2.7%
Al-Fouzan et al, 2012	66	144			[0.38; 0.54]	0.4%	2.8%
AlKot et al, 2015	160	451	-		[0.31; 0.40]	1.0%	2.9%
Borges et al, 2009	229	341			[0.62; 0.72]	0.8%	2.9%
Davis et al, 2016	151	173			[0.81; 0.92]	0.2%	2.7%
Deutsch et al, 2015 Gardner et al, 2014	379 531	659 633			[0.54; 0.61] [0.81; 0.87]	1.6% 0.9%	2.9% 2.9%
Dias et al, 2013	226	495			[0.61, 0.67]	1.2%	2.9%
Goltz et al. 2013	13	102			[0.41, 0.50]	0.1%	2.5%
Hauer et al, 2008	10	80			[0.07, 0.21]	0.1%	2.3%
Hartung et al, 2005	29	192			[0.00, 0.22]	0.1%	2.7%
Zuccato et al, 2015	34	37			[0.78; 0.98]	0.2%	1.6%
West et al. 2009	10423				[0.70, 0.30]	31.6%	3.0%
Schnuth et al. 2003	132	203	<u> </u>		[0.58; 0.72]	0.5%	2.8%
Pikoulis et al, 2010	29	87			[0.24; 0.44]	0.2%	2.7%
Ozer et al, 2015	15	98			[0.09; 0.24]	0.1%	2.5%
Noble et al, 2010	56	120			[0.38; 0.56]	0.3%	2.8%
Noble et al, 2004	13605	21296			[0.63; 0.65]	49.6%	3.0%
Moore et al, 2012	270	337	-		[0.75; 0.84]	0.5%	2.9%
Momen et al, 2015	32	38			[0.69; 0.94]	0.1%	2.0%
Mehmood et al, 2012	460	550	+	0.84	[0.80; 0.87]	0.8%	2.9%
Lefevre et al, 2010	127	522	+	0.24	[0.21; 0.28]	1.0%	2.9%
Vo et al, 2017	74	90		0.82	[0.73; 0.89]	0.1%	2.5%
Grasreiner et al, 2018	70	181		0.39	[0.32; 0.46]	0.4%	2.8%
Alkhannen et al, 2018	217	436	+	0.50	[0.45; 0.55]	1.1%	2.9%
Fixed effect model		46572			[0.63; 0.64]	100.0%	
Random effects model				0.50	[0.45; 0.55]		100.0%
Heterogeneity: $I^2 = 98.7\%$,	$\tau^2 = 0.407$	$^{\prime}9, p=0$					
			0.2 0.4 0.6 0.8				

Figure S6. Forest Plot of "Medical Teachers or Mentors".

Study	Events	Total			Proportion	95%-CI	Weight (fixed)	Weight (random)
Smith et al, 2015	688	2978	+	1	0.23	[0.22; 0.25]	3.1%	3.2%
Cochran et al, 2005	347	408		· -		[0.81; 0.88]	0.3%	3.2%
Lee et al, 2012	6	100	!	!	0.06	[0.02; 0.13]	0.0%	2.8%
Macdonald et al, 2012	84	134		 	0.63	[0.54; 0.71]	0.2%	3.1%
Paiva et al, 1982	100	144			0.69	[0.61; 0.77]	0.2%	3.1%
Abendroth J et al, 2014	9	45			0.20	[0.10; 0.35]	0.0%	2.9%
Azizzadeh et al, 2003	90	130		i ——	0.69	[0.61; 0.77]	0.2%	3.1%
Celenza et al, 2012	114	216	÷	 	0.53	[0.46; 0.60]	0.3%	3.2%
Boyd et al, 2009	4054	5848			0.69	[0.68; 0.71]	7.4%	3.2%
Ekenze et al, 2013	13	96		!	0.14	[0.07; 0.22]	0.1%	3.0%
Bittaye et al, 2012	70	106		<u> </u> — —	0.66	[0.56; 0.75]	0.1%	3.1%
Bonura et al, 2016	191	590	-	ł	0.32	[0.29; 0.36]	0.8%	3.2%
Gardner et al, 2014	59	631	+		0.09	[0.07; 0.12]	0.3%	3.2%
Dias et al, 2013	169	495	-	į	0.34	[0.30; 0.39]	0.7%	3.2%
Goltz et al, 2013	17	102		-	0.17	[0.10; 0.25]	0.1%	3.0%
Gupta et al, 2013	153	243		i—	0.63	[0.57; 0.69]	0.3%	3.2%
Hanzlick et al, 2008	88	161	 	 	0.55	[0.47; 0.63]	0.2%	3.2%
Harris et al, 2005	73	104		i ——	0.70	[0.60; 0.79]	0.1%	3.1%
Hauer et al, 2008	58	80		i ——	0.72	[0.61; 0.82]	0.1%	3.1%
Shah et al, 2012	580	892		+	0.65	[0.62; 0.68]	1.2%	3.2%
Lefevre et al, 2010	638	1555	+	į	0.41	[0.39; 0.44]	2.2%	3.2%
Wilbanks et al, 2015	21328			+		[0.72; 0.73]	34.3%	3.2%
West et al, 2009		14890		+	0.63	[0.62; 0.64]	20.7%	3.2%
Watmough et al, 2007	37	116		1	0.32	[0.24; 0.41]	0.1%	3.1%
Thakur et al, 2001	34	56		+	0.61	[0.47; 0.74]	0.1%	3.0%
Scott et al, 2011	669	1542	+	į		[0.41; 0.46]	2.3%	3.2%
Richards et al, 2009	105	150		· —		[0.62; 0.77]	0.2%	3.1%
Reed et al, 2009	1101	2022		+		[0.52; 0.57]	3.0%	3.2%
Noble et al, 2010	55	120				[0.37; 0.55]	0.2%	3.1%
Noble et al, 2004		21296	+			[0.20; 0.21]	20.3%	3.2%
Mehmood et al, 2012	358	550		į —		[0.61; 0.69]	0.7%	3.2%
Loriot et al, 2010	9	44			0.20	[0.10; 0.35]	0.0%	2.9%
Fixed effect model		85071		ó		[0.54; 0.55]	100.0%	
Random effects mode			<u> </u>	<u> </u>	0.47	[0.38; 0.56]		100.0%
Heterogeneity: $I^2 = 99.8\%$, τ ² = 1.143	39, p = 0						
			0.2 0.4	0.6 0.8				

Figure S7. Forest Plot of "Career Opportunities".

			I	I	•			
Study	Events	Total		0 4	Proportion	95%-CI	W(fixed)	W(random)
Conith at al 2015	500	2070		İ	0.47	[0.40, 0.40]	0.00/	0.70/
Smith et al, 2015 Hauer et al, 2008	503 944	2978 1114	-	11 _		[0.16; 0.18] [0.82; 0.87]	2.6% 0.9%	2.7% 2.7%
Klingensmith et al, 2015	71	792	+	i T		[0.02, 0.07]	0.4%	2.7%
	59	134	*	1		[0.07, 0.11]	0.4%	2.6%
Macdonald et al, 2012	118	274					0.4%	2.7%
Ni Chroinin et al, 2013	141	266	_	II.		[0.37; 0.49]	0.4%	2.7%
Rogers et al, 1990		45				[0.47; 0.59]	0.4%	2.7%
Abendroth J et al, 2014	22 100		<u> </u>			[0.34; 0.64]		
Azizzadeh et al. 2003		130		1		[0.69; 0.84]	0.1%	2.6%
Celenza et al, 2012	84	216				[0.32; 0.46]	0.3%	2.7%
Dolan-Evans et al, 2014		419		i_ —		[0.58; 0.68]	0.6%	2.7%
Boyd et al, 2009	3096	5848		1"		[0.52; 0.54]	9.0%	2.7%
Egerton et al, 1985	41	134				[0.23; 0.39]	0.2%	2.6%
Diderichsen et al, 2013	246	372		i		[0.61; 0.71]	0.5%	2.7%
Ferrari et al, 2013	40	45				[0.76; 0.96]	0.0%	2.3%
Barikani et al, 2012	24	49	-	1		[0.34; 0.64]	0.1%	2.5%
Al-Fouzan et al, 2012	32	144		1		[0.16; 0.30]	0.2%	2.6%
AlKot et al, 2015	166	451	-			[0.32; 0.41]	0.6%	2.7%
Corrigan et al, 2007	120	222		 		[0.47; 0.61]	0.3%	2.7%
Gardner et al, 2014	515	629		+		[0.79; 0.85]	0.6%	2.7%
Dias et al, 2013	144	495		1		[0.25; 0.33]	0.6%	2.7%
Gupta et al, 2013	39	243				[0.12; 0.21]	0.2%	2.6%
Hauer et al, 2008	51	80		1		[0.52; 0.74]	0.1%	2.6%
Labiris et al, 2014	46	111	-			[0.32; 0.51]	0.2%	2.6%
Lambert et al, 2008		17393	D			[0.13; 0.14]	12.6%	2.7%
Shah et al, 2012	42	892	+			[0.03; 0.06]	0.2%	2.7%
Vicente et al, 2013	29	34				[0.69; 0.95]	0.0%	2.3%
Wiesenfeld et al, 2014	49	60		i		[0.70; 0.90]	0.1%	2.5%
Lam et al, 2016	18	228				[0.05; 0.12]	0.1%	2.6%
Girasek et al, 2011	346	536				[0.60; 0.69]	0.8%	2.7%
Wilbanks et al, 2015		29227		1 .		[0.56; 0.57]	44.4%	2.7%
West et al, 2009	10311			3		[0.68; 0.70]	19.6%	2.7%
Watmough et al, 2007	56	116		 		[0.39; 0.58]	0.2%	2.6%
Reed et al, 2009	361	2022	+			[0.16; 0.20]	1.8%	2.7%
Ozer et al, 2015	39	98				[0.30; 0.50]	0.1%	2.6%
Noble et al, 2010	32	120		1		[0.19; 0.36]	0.1%	2.6%
Mehmood et al, 2012	427	550		+		[0.74; 0.81]	0.6%	2.7%
Loriot et al, 2010	11	44		1	0.25	[0.13; 0.40]	0.1%	2.5%
Lefevre et al, 2010	97	522	+	: :	0.19	[0.15; 0.22]	0.5%	2.7%
Fixed effect model		81923			0.50	[0.49; 0.50]	100%	1.——
Random effects model		www.commodea	<	>		[0.36; 0.53]	1	100%
Heterogeneity: I-squared=9	9.7%, tau-	squared	I=1.146, p<0.000	1				
(E)(2 (2) (E)(50						
			0.2 0.4	0.6 0.8				
			The	OI value				

Figure S8. Forest Plot of "Workload or Working Hours".

riguit 50. roit	3t 1 10t	UI	Workioau of	VVOLKI	ig Hour	•		
Study	Events	Total			Proportion	95%-CI	Weight (fixed)	Weight (random)
Cochran et al, 2005	143	408			0.35	[0.30; 0.40]	2.0%	5.3%
Ni Chroinin et al, 2013	203	274			0.74	[0.68; 0.79]	1.1%	5.2%
Alawad et al, 2015	9	45			0.20	[0.10; 0.35]	0.2%	4.5%
Azizzadeh et al, 2003	78	130			0.60	[0.51; 0.68]	0.7%	5.2%
Celenza et al, 2012	48	216	→		0.22	[0.17; 0.28]	0.8%	5.2%
Dolan-Evans et al, 2014	259	419		-	0.62	[0.57; 0.66]	2.1%	5.3%
Bittaye et al, 2012	54	106			0.51	[0.41; 0.61]	0.6%	5.1%
Al-Fouzan et al, 2012	32	144			0.22	[0.16; 0.30]	0.5%	5.1%
Gardner et al, 2014	474	632		-	0.75	[0.71; 0.78]	2.5%	5.3%
Dias et al, 2013	75	495	+		0.15	[0.12; 0.19]	1.3%	5.3%
Gupta et al, 2013	5	243	+		0.02	[0.01; 0.05]	0.1%	4.2%
Hauer et al, 2008	3	80			0.04	[0.01; 0.11]	0.1%	3.6%
Lambert et al, 2008	5702	17393	+		0.33	[0.32; 0.33]	81.1%	5.4%
Zuccato et al, 2015	14	37	- -	_	0.38	[0.22; 0.55]	0.2%	4.6%
Schnuth et al, 2003	60	203	-+-		0.30	[0.23; 0.36]	0.9%	5.2%
Noble et al, 2010	92	120			0.77	[0.68; 0.84]	0.5%	5.1%
Moore et al, 2012	236	337		-	0.70	[0.65; 0.75]	1.5%	5.3%
Momen et al, 2015	15	38	- -	<u> </u>	0.39	[0.24; 0.57]	0.2%	4.6%
Mehmood et al, 2012	241	550			0.44	[0.40; 0.48]	2.9%	5.3%
Grasreiner et al, 2018	69	181	#		0.38	[0.31; 0.46]	0.9%	5.2%
Fixed effect model		22051	ò		0.36	[0.35; 0.36]	100.0%	
Random effects model	l				0.38	[0.30; 0.47]		100.0%
Heterogeneity: $I^2 = 98.3\%$,	$\tau^2 = 0.686$	67, p < 0).01	1 -		_		
- ,			0.2 0.4	0.6 0.8				

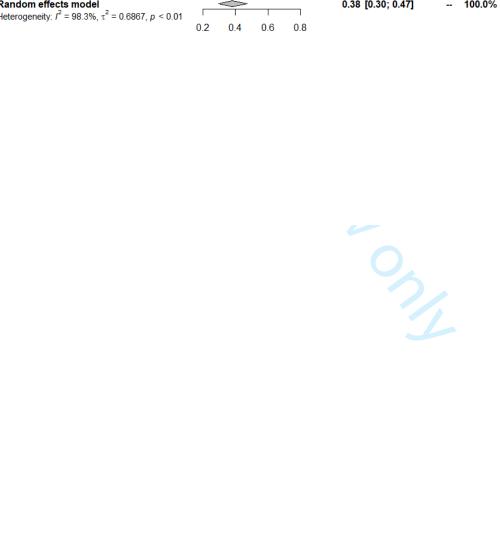


Figure S9. Forest Plot of "Income".

Study	Events	Total		Proportion	95%-CI	Weight (fixed)	Weight (random)
Smith et al, 2015	334	2978	+ :!	0.11	[0.10; 0.12]	1.5%	2.1%
Johnson et al, 2012	293	622		0.11		0.8%	2.1%
Klingensmith et al, 2015	79	792	+	0.47		0.4%	2.0%
Macdonald et al, 2012	60	134	<u> </u>		[0.36; 0.54]	0.4%	2.0%
Parsa et al. 2010	102	137	<u> </u>	- 0.74		0.2%	2.0%
Paiva et al, 1982	36	144			[0.18; 0.33]	0.1%	2.0%
Ni Chroinin et al, 2013	156	274		0.57		0.3%	2.0%
Newton et al, 2005	787	1258	+		[0.60; 0.65]	1.5%	2.1%
Rogers et al, 1990	101	266		0.38		0.3%	2.0%
Abendroth J et al, 2014	16	45		0.36	. , .	0.1%	1.9%
Alawad et al, 2015	3	45		0.07		0.0%	1.6%
Azizzadeh et al, 2003	71	130	₩	0.55	[0.46; 0.63]	0.2%	2.0%
Boyd et al, 2009	2342	5848	=	0.40	[0.39; 0.41]	7.2%	2.1%
Egerton et al, 1985	10	134		0.07	[0.04; 0.13]	0.0%	1.9%
Diderichsen et al, 2013	231	372	<u> </u>	0.62	[0.57; 0.67]	0.5%	2.0%
Ferrari et al, 2013	24	45		0.53	[0.38; 0.68]	0.1%	1.9%
Freire et al, 2011	48	290		0.17		0.2%	2.0%
Barikani et al, 2012	12	49		0.24		0.0%	1.9%
Bittaye et al, 2012	60	106			[0.47; 0.66]	0.1%	2.0%
Al-Fouzan et al, 2012	40	144		0.28		0.1%	2.0%
AlKot et al, 2015	174	451	!!-	0.39		0.6%	2.1%
Borges et al, 2009	256	338	<u> </u>		[0.71; 0.80]	0.3%	2.0%
Budd et al, 2011	278	870	*1		[0.29; 0.35]	1.0%	2.1%
Davis et al, 2016	77	173		0.45		0.2%	2.0%
Deutsch et al, 2015	411	658		0.62	. , .	0.8%	2.1%
Dias et al, 2013	147 56	495 243		0.30	[0.26; 0.34]	0.5% 0.2%	2.1% 2.0%
Gupta et al, 2013 Harris et al, 2005	40	104	<u> </u>		L	0.2%	2.0%
Hauer et al, 2008	13	80			[0.29; 0.49]	0.1%	1.9%
Labiris et al, 2014	66	111			[0.50; 0.69]	0.1%	2.0%
Lambert et al, 2008	1249	17393			[0.07; 0.08]	6.0%	2.0%
Shah et al, 2012	88	892			[0.07, 0.00]	0.4%	2.0%
Lefevre et al, 2010	246	1555	+		[0.14; 0.18]	1.1%	2.1%
Wiesenfeld et al, 2014	25	60			[0.29; 0.55]	0.1%	1.9%
Girasek et al, 2011	93	532	+	0.17		0.4%	2.0%
Zuccato et al, 2015	5	37			[0.05; 0.29]	0.0%	1.7%
Wilbanks et al, 2015	13448	29227	+		[0.45; 0.47]	37.5%	2.1%
West et al, 2009	8562	14890		0.58		18.8%	2.1%
Watmough et al, 2007	38	116		0.33		0.1%	2.0%
Reed et al, 2009	423	2022	+	0.21	[0.19; 0.23]	1.7%	2.1%
de Souza et al, 2015	754	1303	+	0.58	[0.55; 0.61]	1.6%	2.1%
Ozer et al, 2015	29	98		0.30	[0.21; 0.40]	0.1%	2.0%
Noble et al, 2010	93	120		— 0.78	[0.69; 0.85]	0.1%	2.0%
Noble et al, 2004	2359	21296	D .	0.11	[0.11; 0.12]	10.8%	2.1%
Newton et al, 2005	772	1286	+		[0.57; 0.63]	1.6%	2.1%
Moore et al, 2012	236	337		0.70		0.4%	2.0%
Momen et al, 2015	13	38		0.34	. , .	0.0%	1.9%
Mehmood et al, 2012	253	550	-		[0.42; 0.50]	0.7%	2.1%
Lefevre et al, 2010	159	522		0.30	. , .	0.6%	2.1%
Grasreiner et al, 2018	25	181	—	0.14	[0.09; 0.20]	0.1%	2.0%
Fixed effect model		109791	<u></u>		[0.37; 0.38]	100.0%	400.00/
Random effects model		2 n = 0		0.35	[0.28; 0.42]	-	100.0%
Heterogeneity: $I^2 = 99.7\%$, τ = 1.088	s, p = 0	0.2 0.4 0.6 0.	Q			
			0.2 0.4 0.0 0.	U			

Figure S10. Forest Plot of "Length of Training".

Study	Events	Total						Proportion	95%-CI	W(fixed)	W(random)
					1						
Cochran et al, 2005	122	408		\rightarrow					[0.25; 0.35]		6.0%
Klingensmith et al, 2015		792	8-	-	į				[0.23; 0.29]		6.2%
Paiva et al, 1982	41	144	N-	-	- !				[0.21; 0.37]		5.5%
Azizzadeh et al, 2003	71	130			- 1	-	_		[0.46; 0.63]		5.6%
Dolan-Evans et al, 2014	206	419			į .	-		0.49	[0.44; 0.54]	1.1%	6.1%
Boyd et al, 2009	2493	5848			**			0.43	[0.41; 0.44]	14.6%	6.4%
Bittaye et al, 2012	39	106			+;-			0.37	[0.28; 0.47]	0.3%	5.3%
Al-Fouzan et al, 2012	10	144			1			0.07	[0.03; 0.12]	0.1%	4.2%
Dias et al, 2013	282	495			- 1	-	+	0.57	[0.52; 0.61]	1.2%	6.1%
Goltz et al, 2013	35	102		-				0.34	[0.25; 0.44]	0.2%	5.3%
Wiesenfeld et al, 2014	30	60			+	-		0.50	[0.37; 0.63]	0.2%	4.8%
Zuccato et al, 2015	17	37		÷	\rightarrow	+		0.46	[0.29; 0.63]	0.1%	4.2%
Wilbanks et al, 2015	12250	29227			+			0.42	[0.41; 0.42]	72.5%	6.4%
Thakur et al, 2001	14	56	-	-	- ;			0.25	[0.14; 0.38]	0.1%	4.4%
Schnuth et al, 2003	17	203			i			0.08	[0.05; 0.13]	0.2%	4.9%
Reed et al, 2009	298	2022	+		1			0.15	[0.13; 0.16]	2.6%	6.3%
de Souza et al, 2015	342	1303		+	- 1			0.26	[0.24; 0.29]	2.6%	6.3%
Mehmood et al, 2012	186	550		<u> </u>	-			0.34	[0.30; 0.38]	1.3%	6.2%
Fixed effect model		42046			ò			0.40	[0.40; 0.41]	100%	
Random effects model					> ;			0.32	[0.28; 0.37]		100%
Heterogeneity: I-squared=	98.1%, tau-	-squared	=0.2038, p<0	.0001	+						
			0.1 0.2	0.3	0.4	0.5	0.6				
			0.1 0.2				0.0				
				The	EOI v	alue					

Figure S11. Forest Plot of "Prestige".

Study	Events	Total				Proportion	95%-CI	Weight (fixed)	Weight (random)
5		407		:					
Parsa et al, 2010	93	137	į				[0.59; 0.76]	0.5%	4.0%
Rogers et al, 1990	90	266		-			[0.28; 0.40]	1.0%	4.1%
Abendroth J et al, 2014	9	45	- + +				[0.10; 0.35]	0.1%	3.3%
Alawad et al, 2015	_1	45	 ;				[0.00; 0.12]	0.0%	1.4%
Azizzadeh et al, 2003	56	130	- !		-		[0.34; 0.52]	0.6%	4.0%
Egerton et al, 1985	9	134	;				[0.03; 0.12]	0.1%	3.4%
Ferrari et al, 2013	18	45	+	-	_		[0.26; 0.56]	0.2%	3.6%
Bittaye et al, 2012	75	106	- !				[0.61; 0.79]	0.4%	3.9%
Al-Fouzan et al, 2012	44	144	+	_			[0.23; 0.39]	0.5%	4.0%
AlKot et al, 2015	112	451	- + 				[0.21; 0.29]	1.5%	4.1%
Budd et al, 2011	125	870	+			0.14	[0.12; 0.17]	1.9%	4.1%
Deutsch et al, 2015	278	654		-		0.43	[0.39; 0.46]	2.8%	4.2%
Dias et al, 2013	86	495	+			0.17	[0.14; 0.21]	1.2%	4.1%
Gupta et al, 2013	44	243					[0.13; 0.24]	0.6%	4.0%
Hauer et al, 2008	10	80	i			0.12	[0.06; 0.22]	0.2%	3.5%
Lefevre et al, 2010	169	1555	+			0.11	[0.09; 0.13]	2.6%	4.2%
Hartung et al, 2005	45	192				0.23	[0.18; 0.30]	0.6%	4.0%
Girasek et al, 2011	341	537	į			0.64	[0.59; 0.68]	2.2%	4.1%
Scott et al, 2011	386	1542	+			0.25	[0.23; 0.27]	5.0%	4.2%
Noble et al, 2010	39	120	+			0.32	[0.24; 0.42]	0.5%	3.9%
Noble et al, 2004	5586	21296	+			0.26	[0.26; 0.27]	71.5%	4.2%
Moore et al, 2012	202	337	į			0.60	[0.54; 0.65]	1.4%	4.1%
Momen et al, 2015	19	38	į			0.50	[0.33; 0.67]	0.2%	3.5%
Mehmood et al, 2012	359	550	1			0.65	[0.61; 0.69]	2.2%	4.1%
Grasreiner et al, 2018	31	181				0.17	[0.12; 0.23]	0.4%	3.9%
Alkhannen et al, 2018	196	436		-		0.45	[0.40, 0.50]	1.9%	4.1%
Fixed effect model		30629	ó			0.28	[0.28; 0.29]	100.0%	
Random effects mode	l		_<	<u> </u>		0.31	[0.25; 0.38]		100.0%
Heterogeneity: $I^2 = 98.3\%$,	$\tau^2 = 0.518$	81, p < 0			7				
			0.2	0.4	0.6				

Figure S12. Forest Plot of "Advice from Others".

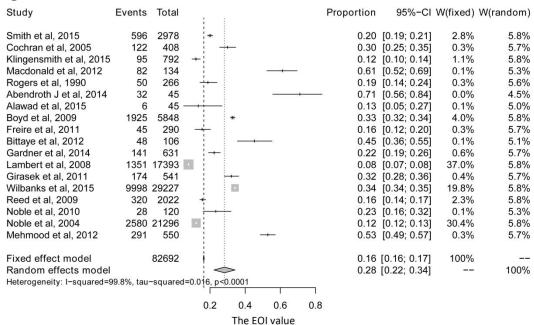


Figure S13. Forest Plot of "Student Debt".

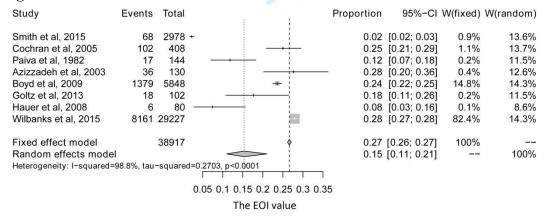
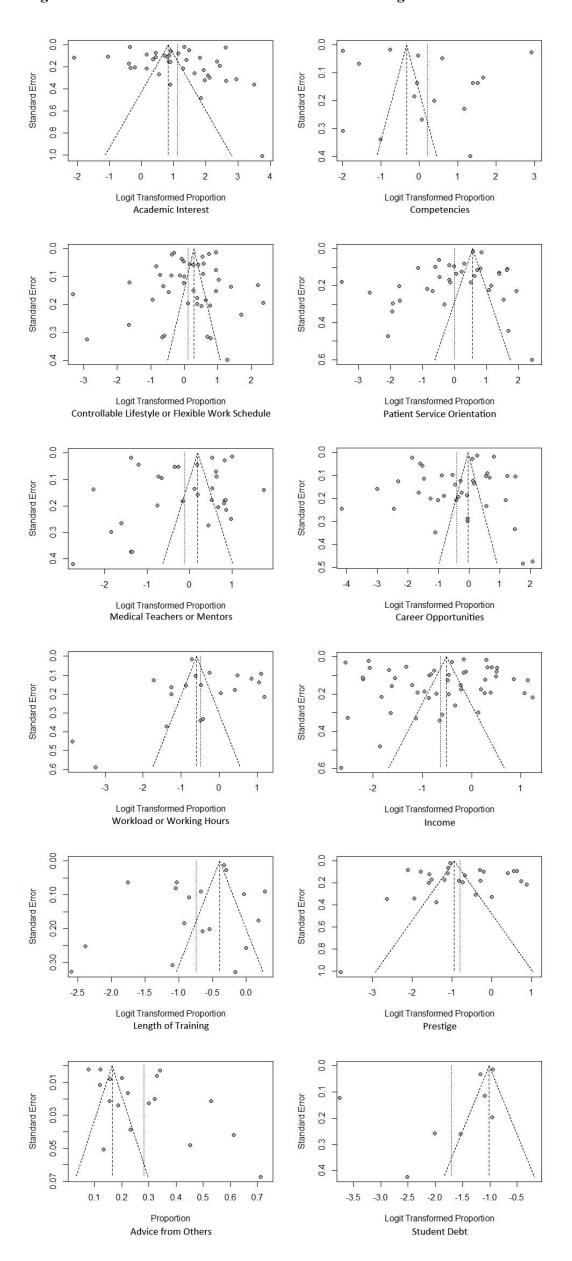



Figure S14. Funnel Plots of the Publication Bias Testing of the 12 Factors.

47

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT	•		
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2-3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
B Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	3
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5-6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6-7
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6-7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	7

44 45 46

47

PRISMA 2009 Checklist

		Page 1 of 2	
Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	5, 7
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	7-8
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	8
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	8
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	8-9
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	8-9
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	8-9
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	9-13
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	13
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	14
FUNDING	1		
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	15

41 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. 42 doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.

MOOSE Checklist for Meta-analyses of Observational Studies

Item No	Recommendation	Reported on Page No
Reporting o	f background should include	
1	Problem definition	5
2	Hypothesis statement	5
3	Description of study outcome(s)	5
4	Type of exposure or intervention used	5
5	Type of study designs used	5
6	Study population	5
Reporting o	f search strategy should include	
7	Qualifications of searchers (eg, librarians and investigators)	6
8	Search strategy, including time period included in the synthesis and key words	5
9	Effort to include all available studies, including contact with authors	5
10	Databases and registries searched	5
11	Search software used, name and version, including special features used (eg, explosion)	6
12	Use of hand searching (eg, reference lists of obtained articles)	5
13	List of citations located and those excluded, including justification	5-6
14	Method of addressing articles published in languages other than English	5
15	Method of handling abstracts and unpublished studies	5
16	Description of any contact with authors	5
Reporting o	f methods should include	
17	Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested	6
18	Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	6-7
19	Documentation of how data were classified and coded (eg, multiple raters, blinding and interrater reliability)	6-7
20	Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	6
21	Assessment of study quality, including blinding of quality assessors, stratification or regression on possible predictors of study results	6
22	Assessment of heterogeneity	6
23	Description of statistical methods (eg, complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated	6-7
24	Provision of appropriate tables and graphics	5-7
Reporting o	f results should include	
25	Graphic summarizing individual study estimates and overall estimate	8
26	Table giving descriptive information for each study included	7
27	Results of sensitivity testing (eg, subgroup analysis)	8
28	Indication of statistical uncertainty of findings	7-9

Item No	Recommendation	Reported on Page No	
Reporting of discussion should include			
29	Quantitative assessment of bias (eg, publication bias)	13	
30	Justification for exclusion (eg, exclusion of non-English language citations)	13-14	
31	Assessment of quality of included studies	13-14	
Reporting of	conclusions should include		
32	Consideration of alternative explanations for observed results	14	
33	Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)	14	
34	Guidelines for future research	14	
35	Disclosure of funding source	15	

From: Stroup DF, Berlin JA, Morton SC, et al, for the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) Group. Meta-analysis of Observational Studies in Epidemiology. A Proposal for Reporting. *JAMA*. 2000;283(15):2008-2012. doi: 10.1001/jama.283.15.2008.

Transcribed from the original paper within the NEUROSURGERY® Editorial Office, Atlanta, GA, United Sates. August 2012.

BMJ Open

Factors Influencing Subspecialty Choice Among Medical Students: A Systematic Review and Meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022097.R3
Article Type:	Research
Date Submitted by the Author:	15-Jan-2019
Complete List of Authors:	Yang, Yahan; Sun Yat-Sen University Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology; Sun Yat-Sen University, Zhongshan School of Medicine Li, Jiawei; Sun Yat-Sen University, Zhongshan School of Mathematics Wu, Xiaohang; Sun Yat-Sen University Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology Wang, Jinghui; Sun Yat-Sen University Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology Li, Wangting; Sun Yat-Sen University Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology Zhu, Yi; University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology; Sun Yat-Sen University Zhongshan Ophthalmic Center, Cataract Chen, Chuan; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University; University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology Lin, Haotian; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Cataract
Primary Subject Heading :	Medical education and training
Secondary Subject Heading:	Medical education and training
Keywords:	Medical students, Career choice, Meta-analysis

SCHOLARONE™ Manuscripts

- 1 Title Page
- Factors Influencing Subspecialty Choice Among Medical Students: A Systematic
- 3 Review and Meta-analysis
- 4 Yahan Yang, M.D.^{1, 2}; Jiawei Li, M.D.³; Xiaohang Wu, M.D.¹; Jinghui Wang, M.D.¹;
- Wangting Li, M.D.¹; Yi Zhu, M.D.^{1,4}; Chuan Chen, M.D.^{1,4}; Haotian Lin, M.D., Ph.
- 6 D^{1#}

- 8 Institution: 1. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic
- 9 Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, People's Republic
- 10 of China
- 2. Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- 3. Zhongshan School of Mathematics, Sun Yat-sen University, Guangzhou, China
- 4. Department of Molecular and Cellular Pharmacology, University of Miami Miller
- 14 School of Medicine, Miami, Florida 33136, USA.

- **#Editorial Correspondence:**
- 17 Prof. Haotian Lin
- 18 Zhongshan Ophthalmic Center, Sun Yat-sen University

- 19 Xian Lie South Road 54#
- Guangzhou, China, 510060.
- 21 Telephone number: +86-020-87330493
- 22 Fax: +86-020-87333271
- E-mail: haot.lin@hotmail.com
- Word count for text: 3122

ABSTRACT

Objective To characterize the contributing factors that affect medical students' subspecialty choice and to estimate the extent of influence of individual factors on the students' decision-making process.

Design Systematic review and meta-analysis.

Methods A systematic search of the Cochrane Library, ERIC, Web of Science, CNKI and PubMed databases was conducted for studies published between January 1977 and June 2018. Information concerning study characteristics, influential factors, and the extent of their influence (EOI) was extracted independently by two trained investigators. EOI is the percentage level that describes how much each of the factors influenced students' choice of subspecialty. The recruited medical students include students in medical school, internship, residency training and fellowship, who are about to or have just made a specialty choice. The estimates were pooled using a random-effects meta-analysis model due to the between-study heterogeneity.

Results Data were extracted from 75 studies (882,209 individuals). Overall, the factors influencing medical students' choice of subspecialty training mainly included academic interests (75.29%), competencies (55.15%), controllable lifestyles or flexible work schedules (53.00%), patient service orientation (50.04%), medical teachers or mentors (46.93%), career opportunities (44.00%), workload or working hours (37.99%), income (34.70%), length of training

(32.30%), prestige (31.17%), advice from others (28.24%), and student debt			
(15.33%), with significant between-study heterogeneity (P <0.0001). Subgroup			
analyses revealed that the EOI of academic interests was higher in developed			
countries than that in developing countries (79.66% [95% confidence interval			
(CI), 70.73%; 86.39%] vs. 60.41% [95% CI, 43.44%; 75.19%]; <i>Q</i> =3.51			
P=0.02). The EOI value of prestige was lower in developed countries than that			
in developing countries (23.96% [95% CI, 19.20%; 29.47%] vs. 47.65% [95%			
CI, 34.41%; 61.24%]; <i>Q</i> =4.71 <i>P</i> =0.01).			

Conclusions This systematic review and meta-analysis provided a quantitative evaluation of the top 12 influencing factors associated with medical students' choice of subspecialty. Our findings provide the basis for the development of specific, effective strategies to optimize the distribution of physicians among different departments by modifying these influencing factors.

60 Systematic review registration PROSPERO CRD42017053781.

61 STRENGTHS AND LIMITATIONS OF THIS STUDY

- This is the first study that provide a systematic estimate of the factors associated with medical students' subspecialty choices.
- A large number of studies conducted in varied populations have been included.
- The differences in the characteristics of country, survey years, specialty, the type of data used and sample size across studies represent a major limitation of our study.

68 KEYWORDS Medical students, career choice, meta-analysis

Introduction

Because of the population aging, increased workload on doctors through increased number of consultations and in managing patients with multi-morbidity, the demand for physicians continues to increase; however, an imbalance in the supply of physicians in different subspecialties has become a growing concern in both developed and developing countries. ¹⁻⁵ Some specialties and subspecialties, such as family medicine and palliative medicine, ⁶⁷ are experiencing a desperate shortage of physicians, whereas other specialties and subspecialties, such as cardiology, ophthalmology and ear, nose and throat (ENT) surgery, are highly competitive specialties with low success rate for candidates. ⁸⁹

Specialty choice is the product of a complex interconnection of student expectation, department expectation, and competition for available spots, and student choice is where the choice begins. Previous studies have suggested that medical students' choice of subspecialty is essential to the maintenance of an adequate medical workforce and a balanced development of the medical system. However, the influencing factors underlying students' subspecialty choice have not been systemically reviewed. Recent changes in the training and practice environment may influence medical students' career choice. Additionally, the variability in preferences over time and in students' attitudes towards career choices can further complicate this assessment. For example, a study in the UK indicated that half of the medical students made a definitive subspecialty choice during their first year of medical school. However, students were prone to changing their subspecialty preference during

medical school and internship.¹⁵ Notably, students may also reject certain subspecialties during their medical school training, even those they have previously seriously considered.¹⁶ Therefore, identifying the factors that influence students' choice of subspecialty will enable a better understanding of the current shortage/overload of physicians in specific fields and contribute to policy-building and decision-making to improve the training and recruitment of students in the future.

We thus conducted a systematic review and a meta-analysis to investigate the influencing factors and the extent of their influence on the choice of subspecialty training among medical students. More specifically, we focused on the following questions. First, can we gain a better understanding of students' preferences for medical specialty according to the primary influencing factor? Second, do the subgroups according to world region and survey years examined in this study differ significantly with regard to the weight that students place on the identified influencing factor?

Methods

We developed a review protocol (registration number: PROSPERO CRD42017053781) prior to commencing the study. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was used to ensure the reporting quality of this review (**Fig. S1**).¹⁷

Search Strategy and Study Eligibility

We performed a literature search in June 2018 using the Cochrane Library, Medline,

Web of Science, CNKI and ERIC databases without language restrictions. Articles were screened by title, abstract and reference list, and by correspondence with study investigators. Potentially relevant papers were first identified by reviewing the titles and abstracts, and the full text of each retrieved article was then assessed. A detailed example of search strategy for Medline/PubMed is shown in **Methods S1**. Studies were included if they were systematic review or cross-sectional studies, reported data on medical students, were published in peer-reviewed journals, and used a validated method to assess the EOI on the choice of subspecialty, such as pediatric gastroenterology and vascular surgery, or its corresponding specialty, such as pediatrics and surgery. Because of the differences between medical education systems in the world, the medical students we recruited includes the student in medical school, internship, residency training and fellowship, containing the students who about to make a specialty choice and students who has just made a specialty choice. A guide to medical specialty, available at https://www.abms.org/member-boards/specialtysubspecialty-certificates/, were used to identify the medical specialty and subspecialty of our research. We also conducted an additional search using OpenGrey. However, no additional articles were further included. All searches were performed using Google chrome (version 54.0.2840).

Data Extraction and Quality Assessment

Each article was reviewed by two trained investigators (Y.Y. and J.L.) and the following information was independently extracted from each selected article using a standardized form: study design, geographic location, years of survey, journal, sample

size, average age of the participants, the number and percentage of male participants, and the influencing factors and the extent of their influence. A third investigator was consulted if disagreements occurred. Each study may involve one or several influencing factors. An 11-item checklist which was recommended by Agency for Healthcare Research and Quality (AHRQ), used for cross-sectional studies ¹⁸, available at https://www.ncbi.nlm.nih.gov/books/NBK35156/, were used to assess the quality of the studies. All discrepancies were resolved via discussion and consensus.

Statistical Analysis

As considerable heterogeneity was expected because of the multiple sources of variances, a random effects meta-analysis model was used to estimate the influencing factors and the extent of their influence. Between-study heterogeneity was assessed using the Cochran's Q-test, and was quantified with the I^2 statistic, which was calculated to describe the percentage of total variation caused by heterogeneity across studies, with \geq 50% indicating considerable heterogeneity. Potential sources of heterogeneity were identified using meta-regression. Pour categorical covariates were defined as potential sources of heterogeneity by examining the studies conducted in the United States (US) vs. the studies conducted in other countries, the studies conducted before 2010 vs. those conducted after 2010, the studies concerning subspecialty only vs. those that were not specific to a subspecialty, and the studies with a sample size \leq 200 vs. the studies with a sample size \geq 200. Subgroup analyses were performed for each factor in the studies in developed countries vs. developing countries and studies conducted before 2010 vs. after 2010. The EOI value of competencies in

developing countries was not statistically significant (81.21% [95% CI, 75.27%; 86.51%], P=0.1436), and no studies on the influence of student debt in developing countries were found. The Q-test based on the analysis of variance was used to compare the subgroups, with a significance threshold of 5%.²³ The influence of individual studies on the overall EOI value was explored by serially excluding each study in a sensitivity analysis. Publication bias was investigated using a funnel plot test and Egger's test.²⁴ ²⁵ Fill and trim approach, which imputes estimates from hypothetical negative unpublished reports, ²⁶ was also used to investigate the publication bias if the Egger's significant. All analyses were performed test was using R (version 3.3.1, The R Foundation, Vienna, Austria). The statistical tests were 2-sided with a significance threshold of P < 0.05.

Patient and public involvement: Patients and the public were not involved in development of the research question and outcome measures, nor the study design. The study does not involve patient recruitment, and patients were not involved in conduct of the study. We plan to liaise closely with patients, special interest groups, and charities in the dissemination of our results in printed and electronic media.

Results

Study Characteristics

Seventy-five cross-sectional studies involving a total of 882,209 individuals that published between January 1977 and May 2018 were included in the present research (**Table 1**). Thirty-four studies were conducted in North America, 24 in Europe, 7 in

Asia, 5 in Oceania, 3 in Africa, and 2 in South America. The median number of participants per study was 243 (range 37-29,227). Fourteen studies included students who had already selected subspecialties, whereas 61 did not. The influencing factors were ranked according to the frequency of occurrence and each factor was identified when at least 5 papers were available describing it. The influencing factors for subspecialty choice were then classified according to 17 aspects, including academic interests, controllable lifestyle or flexible work schedule (defined as flexibility that allows physicians to control the number of hours devoted to practicing the specialty), competencies, patient service orientation, medical teachers or mentors, career opportunities, workload or working hours (characterized by the physician's time spent on professional responsibilities), income, prestige, length of training, advice from others (advice from family, friends, and other students), student debt, experience with the subject, working environment, personality, gender and job security. Personality and gender are common factors that affect the choice of subspecialty among medical students, but most of the relevant literature has not reported on the extent of these factors' influence. Moreover, the funnel plots were clearly asymmetrical with regard to experience with the subject, the working environment and job variety, indicating the existence of publication bias. Thus, the analysis of the remaining 12 influencing factors were shown in this paper. Studies assessed for influencing factors using questionnaires validated to medical students asking the extent of certain factors the studies investigated. Quality assessment scores for the included studies are listed in Table 1. None of the studies received a point for the second AHRQ Quality Indicator, which requires studies to list the inclusion and exclusion criteria for exposed and unexposed

subjects (cases and controls) or refer to previous publications, since no comparison studies were referenced in the analyzed articles. For the remaining 10 criteria, 6 studies received 9 points, 8 studies received 8 points, 17 studies received 7 points, 33 studies received 6 points, 9 studies received 5 points and 2 studies received 4 points (scores for individual studies are presented in **Table S1**).

Primary Analysis

A meta-analysis was performed on the 12 influencing factors (**Table 2**): academic interests (**Fig. S2**), competencies (**Fig. S3**), controllable lifestyle or flexible work schedule (**Fig. S4**), patient service orientation (**Fig. S5**), medical teachers or mentors (**Fig. S6**), career opportunities (**Fig. S7**), workload or working hours (**Fig. S8**), income (**Fig. S9**), length of training (**Fig. S10**), prestige (**Fig. S11**), advice from others (**Fig. S12**) and student debt (**Fig. S13**). All the factors were significant with evidence of between-study heterogeneity (P<0.0001). A sensitivity analysis, in which the meta-analysis was serially repeated after the exclusion of each study, demonstrated that no individual study affected the overall extent of a factor's influence.

Meta-regression and Subgroup Analysis

We performed meta-regression to identified the potential sources of heterogeneity using common instructions when at least 5 studies were available and at least 2 studies were in each comparator subgroup (**Table 3**). Some of the heterogeneities observed among the 12 factors can be partially explained by country, survey years, specialty and sample size.

EOI values were further analyzed by subgroup (**Table S2**) according to world region (**Fig. 1**) and survey year (**Fig. 2**). The EOI value of academic interests in developed countries was higher than that in developing countries (79.66% [95% CI, 70.73%; 86.39% vs. 60.41% [95% CI, 43.44%; 75.19%]; *Q*=3.51 *P*=0.02). Conversely, a lower EOI value of prestige was found in studies conducted in developed countries than in developing countries (23.96% [95% CI, 19.20%; 29.47%] vs. 47.65% [95% CI, 34.41%; 61.24%]; *Q*=4.71 *P*=0.01). No statistically significant subgroup differences in the EOI values of the other influencing factors were noted between developed countries and developing countries. In addition, no statistically significant differences in the EOI values of the influencing factors were observed when subgroup analysis was performed by survey year.

Assessment of Publication Bias

We generated a funnel plot with proportion as the abscissa and standard error as the ordinate. A visual inspection of the funnel plots revealed minimal asymmetry among the various influencing factors (**Fig. S14**), and the results were concentrated in the narrow upper part of the graph. There was evidence of small study effect in the meta-analysis of "patient service orientation" (Egger's test P=0.02). However, the trim-and-fill method showed the publication-bias corrected estimate remained statistically significant (63.79%, 95% CI, 58.20%; 69.04%).

Discussion

244 Implications

This systematic review and meta-analysis involved 75 studies with 882,209 medical students. Twelve influencing factors were analyzed. These factors can be classified into two categories: economic factors and non-economic factors. We found that the EOI of the economic factors, including income (34.70%) and student debt (15.33%), may not depend on the region's level of economic development. However, income remained a major influencing factor in the process of choosing a specialty or subspecialty. In the US, 15% of full-time family medicine physicians earned less than \$100,000 in 2004, which is significantly less than the income earned by invasive cardiologists (median income=\$427,815), neurosurgeons (median income=\$211,094), and orthopedists (median income=\$335,646).²⁷ This economic inequality made family medicine less attractive to medical school graduates.²⁸ Benefits such as health insurance and tuition reimbursement have been shown to be the most common economic incentives used to attract applicants.²⁹ The non-economic factors can be divided into individual factors, specialty-related factors and others. First, individual factors, including academic interest and competencies, have a considerable impact on students' subspecialty choice, with EOI values of 75.29% and 55.15%, respectively. In addition, in the subgroup analysis, although academic interests were less influential in developing countries than in developed countries (79.66% [95% CI, 70.73%; 86.39% vs. 60.41% [95% CI, 43.44%;

75.19%]; Q=3.51 P=0.02), they were still the most influential of the 12 factors

regardless of regional economic level. These findings indicate that subspecialties with

a shortage of manpower may attract more students by increasing students' interests and

improving the quality of education. Previous studies indicated that early specialty exposure in medical education may arouse students' academic interest and improve their clinical competence.²⁸ ³⁰ For example, an elective extracurricular program designed to facilitate early contact with family medicine physicians was found to significantly improve students' interest and clinical skills, especially communication skills, in family medicine.³¹ Furthermore, dispelling myths and espousing the positive aspects of a discipline may provide a better understanding of certain specialties; this approach could also be effective in increasing students' academic interest.³² For instance, family medicine is often considered a discipline that requires less professional skills and knowledge. This misconception demotivates students from choosing family medicine as their future career specialty, and this trend may eventually lead to a shortage of family physicians.³² Eliminating such prejudices may help students pay greater attention to the areas in short supply and restore their interests in other specialties.

Second, the specialty-related factors included controllable lifestyle/flexible work schedule (EOI of 53.00%), career opportunities (EOI of 44.00%), workload (EOI of 37.99%) and training length (EOI of 32.30%). Of these factors, lifestyle varied between different areas. Additionally, although certain specialties, such as general surgery, seem to have an adequate number of surgeons on a per capita basis in the US, there is still a poor geographic distribution within the surgical workforce according to the type of surgical practice.³³ The inflexible lifestyle is a common reason that students perceive surgery to be less attractive.³³ Reorganization of expected work hours within shared

practices and the increased use of physician extenders and technologies such as electronic medical records may give physicians more flexibility in work schedules.³⁴ Moreover, providing promotion opportunities and shortening the length of training are possible strategies to recruit new staff in subspecialties that require a long period of post-graduate residency training, such as neurosurgery.³⁵

Finally, other factors such as service orientation (EOI of 50.74%), medical teachers or mentors (EOI of 46.93%), prestige (EOI of 34.68%), and advice from others (EOI of 28.24%) also contribute to the decision-making process of medical students. For example, the desire to care for patients with end-stage diseases contributed to the decision to enter palliative medicine in 86% of the medical students.⁷ Additionally, exposure to mentors in a particular clinical field such as internal medicine has been strongly associated with medical students' choice of clinical field.³⁶ Moreover, improving the occupational prestige of areas such as family medicine, pathology, and radiology may help reshape the distribution of the workforce. ^{30 37 38}

In our study, several findings are especially noteworthy. First, interest was far more important than income in deciding subspecialty. In our study, interest was the topranked influencing factor (EOI of 75.29%) of subspecialty choice, while income was ranked lower (EOI of 34.70%). This finding argues against the possible default belief that raising physician's wages alone could solve the uneven distribution of clinicians among subspecialties. Our findings highlight that cultivating and stimulating students' professional interests may help improve the maldistribution of medical resources in a more efficient and cost-saving manner.

Second, improving abilities in a certain subspecialty of interest can greatly affect medical students' professional choice. In our study, competencies ranked second in influence, which may reflect the impact of admission conditions on students' choice of subspecialty. Hence, to reduce the risk that students are restricted to the subspecialty of their interest due to a lack of personal skills, medical education should focus more on enhancing students' personal competencies in addition to their academic interests. Third, balancing medical resources is a complex process in practical terms, as the influencing factors are not mutually exclusive. The shortage of physicians in certain subspecialties may increase physician workload, resulting in less time for teaching. Hence, the quality of teaching cannot be guaranteed, and students may tend to avoid choosing these subspecialties, thus worsening the imbalance in the medical workforce. Additionally, some of the 12 factors identified are not amenable to practical interventions. For example, prestige cannot be immediately increased using interventional strategies.³⁷ Overall, effective strategies must be multi-pronged and incorporate several different aspects, and maldistribution in the workforce should not be tackled through a simple adjustment of one influencing factor.

Interpretations of the results of this meta-analysis

Our meta-regression stratified by the study-level characteristics found that country, survey years, subspecialty and sample size may contribute to the heterogeneity between studies. There was no significant difference in the sensitivity analysis, which indicated that the results of the meta-analysis were convincing. The funnel plots and Egger's tests revealed that most of the publication bias was small (P>0.05), except for

the meta-analysis of "patient service orientation". Moreover, the majority of the studies collected in the database were from developed countries rather than developing countries.

Limitations

Several limitations should be considered when interpreting the findings of this study. First, the students involved in our study included medical students at different stages of their medical education. Students' perception about different subspecialties may change during medical training until the students applies for specialty training. For example, compared to an intern, a freshman student may place greater emphasis on income and prestige when considering a career choice.³⁹ A subgroup analysis stratified by the stages of medical education and a secondary meta-analysis of longitudinal studies may better reflect changes in influencing factors and the extent of their influence over time. Second, our meta-analysis summarized the data from different geographic regions around the world, and the general conclusions may not be appropriate to guide policy development in each region. Enhanced effort is needed to develop specific intervention strategies according to the specific economic level, religious beliefs, healthcare system, educational system and endemic diseases of different countries and regions. Subgroup analysis stratified by organizational and medical training factors would provide more information of the factors influencing subspecialty choice among medical students. Third, the surveys in the various studies were also conducted using different methods. Most of the questionnaires used a Likert scale. Therefore, when we converted the results to a percentage representing the extent

of a factor's influence, the Likert scale items were treated as interval data.⁴⁰⁻⁴² Consequently, there may have been differences in the conversion process. Finally, the analysis relied on aggregated published data. A multicenter prospective study would provide more accurate estimate of the influencing factors and the extent of their influence on medical students' choice of subspecialty.

Conclusion

In conclusion, this systematic review and meta-analysis provided a summary evaluation of 12 influencing factors and the extent of their influence on the choice of subspecialty training among medical students. Understanding students' attitudes toward their subspecialty decision-making process could provide the basis for developing strategies to increase the attractiveness of subspecialties experiencing a shortage of manpower, thereby balancing the distribution of medical recourses.

Contributors: Haotian Lin contributed to the conceptualizing and design of the study, and to research funding, coordinated the research and oversaw the project. Yahan Yang, Jiawei Li and Xiaohang Wu contributed to data collection and interpretation, and to data analysis. Jinghui Wang, Yi Zhu, Chuan Chen and Wangting Li contributed to the design of the study. All authors contributed to the drafting and revision of the paper and approved the final manuscript for publication. No patients or the public were involved in the development and design of this research.

Funding: The principal investigator of this study (Haotian Lin) is currently supported by National key R & D project (2018YFC010302), the Key Research Plan for the National Natural Science Foundation of China Cultivation Project (91546101), the National Natural Science Foundation of China (81770967), the Fundamental Research Funds for the Central Universities (16ykjc28), the Guangdong Provincial Natural Science Foundation for Distinguished Young Scholars of China (2014A030306030), the Guangdong Province Universities and Colleges Youth Pearl River Scholar Funded Scheme (2016), the Clinical Research and Translational Medical Center of Pediatric Cataract in Guangzhou City (201505032017516), and Ministry of Science and Technology of China Grants (2015CB964600). These sponsors and funding organizations had no role in the design or performance of this study.

- **Competing Interests:** The authors declare no competing financial interests.
- Data sharing: Extracted data are available upon request to the corresponding author.

388 References

- Zurn P, Dal Poz MR, Stilwell B, et al. Imbalance in the health workforce. *Hum Resour Health* 2004;2(1):13. doi: 10.1186/1478-4491-2-13
- 2. Diallo K, Zurn P, Gupta N, et al. Monitoring and evaluation of human resources for health: an international perspective. *Hum Resour Health* 2003;1(1):3. doi: 10.1186/1478-4491-1-3
- 393 3. Anderson GF, Hussey PS. Population aging: A comparison among industrialized countries. *Health Affair* 2000;19(3):191-203. doi: DOI 10.1377/hlthaff.19.3.191
- 4. Hobbs FDR, Bankhead C, Mukhtar T, et al. Clinical workload in UK primary care: a retrospective
 analysis of 100 million consultations in England, 2007-14. *Lancet* 2016;387(10035):2323-30.
 doi: 10.1016/S0140-6736(16)00620-6
- 5. Reeve J, Blakeman T, Freeman GK, et al. Generalist solutions to complex problems: generating practice-based evidence the example of managing multi-morbidity. *Bmc Fam Pract* 2013;14 doi: Artn 112
- 401 10.1186/1471-2296-14-112
- 402 6. Bodenheimer T. Primary care--will it survive? *N Engl J Med* 2006;355(9):861-4. doi: 10.1056/NEJMp068155
- LeGrand SB, Heintz JB. Palliative Medicine Fellowship: A Study of Resident Choices. *Journal of Pain and Symptom Management* 2012;43(3):558-68. doi: 10.1016/j.jpainsymman.2011.04.018
- 406 8. Kim YY, Kim UN, Kim YS, et al. Factors associated with the specialty choice of Korean medical students: a cross-sectional survey. *Human Resources for Health* 2016;14:8. doi: 10.1186/s12960-016-0141-8
- 9. McNally SA. Competition ratios for different specialties and the effect of gender and immigration
 status. J R Soc Med 2008;101(10):489-92. doi: 10.1258/jrsm.2008.070284
- 411 10. Reed VA, Jernstedt GC, Reber ES. Understanding and improving medical student specialty choice:
 412 a synthesis of the literature using decision theory as a referent. *Teach Learn Med*413 2001;13(2):117-29. doi: 10.1207/S15328015TLM1302 7
- 414 11. Al-Ansari SS, Khafagy MA. FACTORS AFFECTING THE CHOICE OF HEALTH SPECIALTY
 415 BY MEDICAL GRADUATES. Journal of Family & Community Medicine 2015;13(3):119 416 23.
- 417 12. Leduc N, Vanasse A, Scott I, et al. The career decision-making process of medical students and 418 residents and the choice of specialty and practice location: how does Postgraduate Medical 419 Education fit in? 2011
- 420 13. Delamothe T. Modernising Medical Careers: final report. BMJ 2008;336(7635):54-55.
- 14. Goldacre MJ, Laxton L, Harrison EM, et al. Early career choices and successful career progression
 in surgery in the UK: prospective cohort studies. *Bmc Surgery* 2010;10:11. doi: 10.1186/1471 2482-10-32

- 424 15. Weissman C, Zisk-Rony RY, Schroeder JE, et al. Medical specialty considerations by medical students early in their clinical experience. *Isr J Health Policy Res* 2012;1(1):13. doi: 10.1186/2045-4015-1-13
- 427 16. Jackson C, Ball J, Hirsh W, et al. Informing choices: the need for career advice in medical training.
 428 *Cambridge: National institute for careers Education and Counseling* 2003
- 429 17. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-430 analyses: the PRISMA statement. *J Clin Epidemiol* 2009;62(10):1006-12. doi: 10.1016/j.jclinepi.2009.06.005
- 18. Rostom A, Dube C, Cranney A, et al. Celiac disease. *Evid Rep Technol Assess (Summ)* 2004(104):1 6. [published Online First: 2004/09/07]
- 19. Borenstein M, Hedges LV, Higgins JP, et al. A basic introduction to fixed-effect and random-effects
 models for meta-analysis. Res Synth Methods 2010;1(2):97-111. doi: 10.1002/jrsm.12
- 436 20. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. *BMJ* 2003;327(7414):557-60. doi: 10.1136/bmj.327.7414.557
- 438 21. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Stat Med* 439 2002;21(11):1539-58. doi: 10.1002/sim.1186
- 22. Sterne JA, Juni P, Schulz KF, et al. Statistical methods for assessing the influence of study characteristics on treatment effects in 'meta-epidemiological' research. *Stat Med* 2002;21(11):1513-24. doi: 10.1002/sim.1184
- 23. Borenstein M, Hedges LV, Higgins J, et al. Criticisms of meta analysis. *Introduction to meta-analysis* 2009:377-87.
- 24. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. *BMJ* 1997;315(7109):629-34.
- 25. Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis.
 J Clin Epidemiol 2001;54(10):1046-55.
- 26. Duval S, Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. *Biometrics* 2000;56(2):455-63. [published Online First: 2000/07/06]
- 27. Bodenheimer T, Berenson RA, Rudolf P. The primary care-specialty income gap: why it matters.
 Annals of internal medicine 2007;146(4):301-6.
- 28. Bodenheimer T, Pham HH. Primary care: current problems and proposed solutions. *Health Aff* (*Millwood*) 2010;29(5):799-805. doi: 10.1377/hlthaff.2010.0026
- 456 29. Association AH. The hospital workforce shortage: Immediate and future. *Trend Watch* 2001;3(2):1-457 8.
- 30. Compton MT, Frank E, Elon L, et al. Changes in US medical students' specialty interests over the course of medical school. *Journal of General Internal Medicine* 2008;23(7):1095-100. doi:

- 460 10.1007/s11606-008-0579-z
- 31. Indyk D, Deen D, Fornari A, et al. The influence of longitudinal mentoring on medical student selection of primary care residencies. *BMC medical education* 2011;11(1):27.
- 463 32. Gill H, McLeod S, Duerksen K, et al. Factors influencing medical students' choice of family
 464 medicine Effects of rural versus urban background. *Canadian Family Physician*465 2012;58(11):E649-E57.
- 33. Richardson JD. Workforce and lifestyle issues in general surgery training and practice. *Archives of surgery (Chicago, Ill : 1960)* 2002;137(5):515-20.
- 34. Newton DA, Grayson MS, Thompson LF. The variable influence of lifestyle and income on medical students' career specialty choices: data from two U.S. medical schools, 1998-2004. *Academic medicine : journal of the Association of American Medical Colleges* 2005;80(9):809-14.
- 471 35. Orrico K. Ensuring an adequate neurosurgical workforce for 21st century. Surgeons AAoN 2012
- 472 36. Wright SM, Wong A, Newill CA. The impact of role models on medical students. *Journal of General*473 *Internal Medicine* 1997;12(1):53-56.
- 37. Glazer GM, Ruiz-Wibbelsmann JA. Decades of perceived mediocrity: prestige and radiology.
 Radiology 2011;260(2):311-16.
- 38. Schwartzbaum AM, McGrath JH, Rothman RA. The perception of prestige differences among medical subspecialities. *Soc Sci Med* 1973;7(5):365-71.
- 39. Parsa S, Aghazadeh A, Nejatisafa AA, et al. Freshmen versus Interns' Specialty Interests. *Archives* of Iranian Medicine 2010;13(6):509-15.
- 480 40. Komorita SS. Attitude Content, Intensity, and the Neutral Point on a Likert Scale. *J Soc Psychol* 1963:61:327-34. doi: 10.1080/00224545.1963.9919489
- 482 41. Baggaley AR, Hull AL. The effect of nonlinear transformations on a Likert scale. *Eval Health Prof* 1983;6(4):483-91.
- 484 42. Norman G. Likert scales, levels of measurement and the "laws" of statistics. *Advances in health* 485 *sciences education : theory and practice* 2010;15(5):625-32. doi: 10.1007/s10459-010-9222-y
- 43. Smith F, Lambert TW, Goldacre MJ. Factors influencing junior doctors' choices of future specialty:
 487 trends over time and demographics based on results from UK national surveys. *Journal of the*488 *Royal Society of Medicine* 2015;108(10):396-405. doi: 10.1177/0141076815599674
- 489 44. Cochran A, Melby S, Neumayer LA. An Internet-based survey of factors influencing medical student
 490 selection of a general surgery career. *American Journal of Surgery* 2005;189(6):742-46. doi:
 491 10.1016/j.amjsurg.2005.03.019
- 492 45. Hauer KE, Durning SJ, Kernan WN, et al. Factors associated with medical students' career choices 493 regarding internal medicine. *Jama-Journal of the American Medical Association* 494 2008;300(10):1154-64. doi: 10.1001/jama.300.10.1154

- 495 46. Johnson AL, Sharma J, Chinchilli VM, et al. Why do medical students choose orthopaedics as a 496 career? *The Journal of bone and joint surgery American volume* 2012;94(11):e78. doi: 10.2106/jbjs.k.00826 [published Online First: 2012/05/29]
- 47. Kiolbassa K, Miksch A, Hermann K, et al. Becoming a general practitioner Which factors have 499 most impact on career choice of medical students? *Bmc Family Practice* 2011;12:7. doi: 500 10.1186/1471-2296-12-25
- 48. Klingensmith ME, Cogbill TH, Luchette F, et al. Factors Influencing the Decision of Surgery
 Residency Graduates to Pursue General Surgery Practice Versus Fellowship. *Annals of Surgery* 2015;262(3):449-55. doi: 10.1097/sla.000000000001435
- 49. Lee JY, Kerbl DC, McDougall EM, et al. Medical Students Pursuing Surgical Fields Have No
 505 Greater Innate Motor Dexterity than Those Pursuing Nonsurgical Fields. *Journal of Surgical Education* 2012;69(3):360-63. doi: 10.1016/j.jsurg.2011.11.005
- 50. Macdonald C, Cawood T. Factors influencing career decisions in internal medicine. *Internal Medicine Journal* 2012;42(8):918-23. doi: 10.1111/j.1445-5994.2012.02793.x
- 509 51. Paiva RE, Vu NV, Verhulst SJ. The effect of clinical experiences in medical school on specialty choice decisions. *J Med Educ* 1982;57(9):666-74.
- 52. Ni Chroinin D, Cronin E, Cullen W, et al. Would you be a geriatrician? Student career preferences and attitudes to a career in geriatric medicine. *Age Ageing* 2013;42(5):654-7. doi: 10.1093/ageing/aft093 [published Online First: 2013/08/07]
- 53. Rogers LQ, Fincher RM, Lewis LA. Factors influencing medical students to choose primary care or
 non-primary care specialties. *Academic medicine : journal of the Association of American Medical Colleges* 1990;65(9 Suppl):S47-8.
- 54. Abendroth J, Schnell U, Lichte T, et al. Motives of former interns in general practice for specialitychoice--results of a cross-sectional study among graduates 2007 to 2012. *GMS Zeitschrift fur* medizinische Ausbildung 2014;31(1):Doc11. doi: 10.3205/zma000903 [published Online First: 2014/02/28]
- 55. Alawad A, Khan WS, Abdelrazig YM, et al. Factors considered by undergraduate medical students
 when selecting specialty of their future careers. *Pan African Medical Journal* 2015;20:6. doi: 10.11604/pamj.2015.20.102.4715
- 524 56. Azizzadeh A, McCollum CH, Miller CC, 3rd, et al. Factors influencing career choice among medical 525 students interested in surgery. *Curr Surg* 2003;60(2):210-3. doi: 10.1016/s0149-526 7944(02)00679-7 [published Online First: 2004/02/20]
- 57. Celenza A, Bharath J, Scop J. Improving the attractiveness of an emergency medicine career to 528 medical students: An exploratory study. *Emergency Medicine Australasia* 2012;24(6):625-33. 529 doi: 10.1111/j.1742-6723.2012.01607.x
- 58. Dolan-Evans E, Rogers GD. Barriers for students pursuing a surgical career and where the Surgical Interest Association can intervene. *Anz Journal of Surgery* 2014;84(6):406-11. doi: 10.1111/ans.12521

- 533 59. Boyd JS, Clyne B, Reinert SE, et al. Emergency Medicine Career Choice: A Profile of Factors and
 534 Influences from the Association of American Medical Colleges (AAMC) Graduation
 535 Questionnaires. *Academic Emergency Medicine* 2009;16(6):544-49. doi: 10.1111/j.1553536 2712.2009.00385.x
- 537 60. Egerton EA. Choice of career of doctors who graduated from Queen's University, Belfast in 1977.
 538 *Med Educ* 1985;19(2):131-7.
- 539 61. Diderichsen S, Johansson EE, Verdonk P, et al. Few gender differences in specialty preferences and 540 motivational factors: a cross-sectional Swedish study on last-year medical students. *Bmc Medical Education* 2013;13:8. doi: 10.1186/1472-6920-13-39
- 62. Ferrari S, Reggianini C, Mattei G, et al. International Study of Student Career Choice in Psychiatry
 (ISoSCCiP): Results from Modena, Italy. *International Review of Psychiatry* 2013;25(4):450 59. doi: 10.3109/09540261.2013.804402
- 545 63. Freire MDM, Jordao LMR, Ferreira ND, et al. Motivation Towards Career Choice of Brazilian 546 Freshman Students in a Fifteen-Year Period. *Journal of Dental Education* 2011;75(1):115-21.
- 547 64. Buddeberg-Fischer B, Klaghofer R, Abel T, et al. Swiss residents' speciality choices--impact of
 548 gender, personality traits, career motivation and life goals. *BMC Health Serv Res* 2006;6:137.
 549 doi: 10.1186/1472-6963-6-137
- 65. Dorsey ER, Jarjoura D, Rutecki GW. The influence of controllable lifestyle and sex on the specialty
 choices of graduating U.S. medical students, 1996-2003. Academic medicine: journal of the
 Association of American Medical Colleges 2005;80(9):791-6. [published Online First:
 2005/08/27]
- 66. Ekenze SO, Ugwumba FO, Obi UM, et al. Undergraduate Surgery Clerkship and the Choice of
 Surgery as a Career: Perspective from a Developing Country. World Journal of Surgery
 2013;37(9):2094-100. doi: 10.1007/s00268-013-2073-y
- 67. Barikani A, Afaghi M, Barikani F, et al. Perception of the medical students on their future career in
 Qazvin University of Medical Sciences. *Global journal of health science* 2012;4(4):176-80.
 doi: 10.5539/gjhs.v4n4p176 [published Online First: 2012/09/18]
- 560 68. Bittaye M, Odukogbe AT, Nyan O, et al. Medical students' choices of specialty in The Gambia: the need for career counseling. *BMC Med Educ* 2012;12:72. doi: 10.1186/1472-6920-12-72
- 69. Bonura EM, Lee ES, Ramsey K, et al. Factors Influencing Internal Medicine Resident Choice of
 Infectious Diseases or Other Specialties: A National Cross-sectional Study. *Clinical Infectious Diseases* 2016;63(2):155-63. doi: 10.1093/cid/ciw263
- 70. Al-Fouzan R, Al-Ajlan S, Marwan Y, et al. Factors affecting future specialty choice among medical students in Kuwait. *Medical Education Online* 2012;17:7. doi: 10.3402/meo.v17i0.19587
- 71. AlKot MM, Gouda MA, KhalafAllah MT, et al. Family Medicine in Egypt From Medical Students'
 Perspective: A Nationwide Survey. *Teaching and Learning in Medicine* 2015;27(3):264-73.
 doi: 10.1080/10401334.2015.1044654

- 72. Borges NJ, Manuel RS, Duffy RD, et al. Influences on specialty choice for students entering person oriented and technique-oriented specialties. *Medical Teacher* 2009;31(12):1086-88. doi:
 10.3109/01421590903183787
- 73. Budd S, Kelley R, Day R, et al. Student attitudes to psychiatry and their clinical placements. *Medical Teacher* 2011;33(11):E586-E92. doi: 10.3109/0142159x.2011.610836
- 74. Corrigan MA, Shields CJ, Redmond HP. Factors influencing surgical career choices and
 advancement in Ireland and Britain. World Journal of Surgery 2007;31(10):1921-29. doi:
 10.1007/s00268-007-9175-3
- 75. Davis CR, Trevatt AEJ, McGoldrick RB, et al. How to train plastic surgeons of the future. *Journal of Plastic Reconstructive and Aesthetic Surgery* 2016;69(8):1134-40. doi: 10.1016/j.bjps.2016.05.001
- 76. Deutsch T, Lippmann S, Frese T, et al. Who wants to become a general practitioner? Student and curriculum factors associated with choosing a GP career a multivariable analysis with particular consideration of practice-orientated GP courses. *Scandinavian Journal of Primary Health Care* 2015;33(1):47-53. doi: 10.3109/02813432.2015.1020661
- 585 77. Gardner SP, Roberts-Thomson KF. The effect of a change in selection procedures on students' 586 motivation to study dentistry. *Australian Dental Journal* 2014;59(1):2-8. doi: 10.1111/adj.12141
- 78. Dias MS, Sussman JS, Durham S, et al. Perceived benefits and barriers to a career in pediatric neurosurgery: a survey of neurosurgical residents Clinical article. *Journal of Neurosurgery-Pediatrics* 2013;12(5):422-33. doi: 10.3171/2013.5.peds12597
- 79. Goltz CJ, Bachusz RC, Mancini E, et al. Medical Student Career Survey-Vascular Surgery
 Awareness Initiative. Annals of Vascular Surgery 2013;27(2):225-31. doi:
 10.1016/j.avsg.2012.02.012
- 80. Gupta NB, Khadilkar SV, Bangar SS, et al. Neurology as career option among postgraduate medical
 students. *Annals of Indian Academy of Neurology* 2013;16(4):478-82. doi: 10.4103/0972 2327.120427
- 597 81. Hanzlick R, Prahlow JA, Denton S, et al. Selecting forensic pathology as a career A survey of the 598 post with an eye on the future. *American Journal of Forensic Medicine and Pathology* 599 2008;29(2):114-22. doi: 10.1097/PAF.0b013e318174f0a9
- 600 82. Harris MC, Marx J, Gallagher PR, et al. General vs subspecialty pediatrics Factors leading to 601 residents' career decisions over a 12-year period. *Archives of Pediatrics & Adolescent Medicine* 602 2005;159(3):212-16. doi: 10.1001/archpedi.159.3.212
- 83. Hauer KE, Fagan MJ, Kernan W, et al. Internal medicine clerkship directors' perceptions about student interest in internal medicine careers. *Journal of General Internal Medicine* 2008;23(7):1101-04. doi: 10.1007/s11606-008-0640-y
- 84. Labiris G, Vamvakerou V, Tsolakaki O, et al. Perceptions of Greek medical students regarding medical profession and the specialty selection process during the economic crisis years. *Health*

- *Policy* 2014;117(2):203-09. doi: 10.1016/j.healthpol.2014.04.009
- 85. Lambert TW, Goldacre MJ, Bron AJ. Career choices for ophthalmology made by newly qualified
 doctors in the United Kingdom, 1974-2005. *Bmc Ophthalmology* 2008;8:9. doi: 10.1186/1471 2415-8-3
- 86. Shah HH, Jhaveri KD, Sparks MA, et al. Career Choice Selection and Satisfaction among US Adult
 Nephrology Fellows. *Clinical Journal of the American Society of Nephrology* 2012;7(9):1513 20. doi: 10.2215/cjn.01620212
- 87. Lefevre JH, Roupret M, Kerneis S, et al. Career choices of medical students: a national survey of 1780 students. *Medical Education* 2010;44(6):603-12. doi: 10.1111/j.1365-2923.2010.03707.x
- 88. Vicente B, Rosel L. Challenges for psychiatric recruitment and training in Chile. *International Review of Psychiatry* 2013;25(4):413-18. doi: 10.3109/09540261.2013.822348
- 89. Wiesenfeld L, Abbey S, Takahashi SG, et al. Choosing Psychiatry as a Career: Motivators and
 Deterrents at a Critical Decision-Making Juncture. Canadian Journal of Psychiatry-Revue
 Canadienne De Psychiatrie 2014;59(8):450-54.
- 90. Lam CYY, Cheung CSY, Hui ASY. Factors influencing the career interest of medical graduates in
 obstetrics and gynaecology in Hong Kong: a cross-sectional questionnaire survey. *Hong Kong Medical Journal* 2016;22(2):138-43.
- 91. Hartung PJ, Taber BJ, Richard GV. The physician values in practice scale: Construction and initial validation. *Journal of Vocational Behavior* 2005;67(2):309-20. doi: 10.1016/j.jvb.2004.05.008
- 92. Girasek E, Molnar R, Eke E, et al. The medical career choice motivations Results from a Hungarian
 study. *Central European Journal of Medicine* 2011;6(4):502-09. doi: 10.2478/s11536-011-0034-0
- 93. Zuccato JA, Kulkarni AV. The Impact of Early Medical School Surgical Exposure on Interest in
 Neurosurgery. Canadian Journal of Neurological Sciences 2016;43(3):410-16. doi:
 10.1017/cjn.2015.332
- 94. Wilbanks L, Spollen J, Messias E. Factors Influencing Medical School Graduates Toward a Career
 in Psychiatry: Analysis from the 2011-2013 Association of American Medical Colleges
 Graduation Questionnaire. Academic Psychiatry 2016;40(2):255-60. doi: 10.1007/s40596-015 0287-z
- 95. West CP, Drefahl MM, Popkave C, et al. Internal Medicine Resident Self-report of Factors
 Associated with Career Decisions. *Journal of General Internal Medicine* 2009;24(8):946-49.
 doi: 10.1007/s11606-009-1039-0
- 640 96. Watmough S, Taylor D, Ryland I. Using questionnaires to determine whether medical graduates'
 641 career choice is determined by undergraduate or postgraduate experiences. *Medical Teacher*642 2007;29(8):830-32. doi: 10.1080/01421590701551755
- 97. Thakur A, Fedorka P, Ko C, et al. Impact of mentor guidance in surgical career selection. *Journal of Pediatric Surgery* 2001;36(12):1802-04. doi: 10.1053/jpsu.2001.28842

- 98. Scott I, Gowans M, Wright B, et al. Determinants of choosing a career in surgery. *Medical Teacher* 2011;33(12):1011-17. doi: 10.3109/0142159x.2011.558533
- 99. Schnuth RL, Vasilenko P, Mavis B, et al. What influences medical students to pursue careers in obstetrics and gynecology? *American Journal of Obstetrics and Gynecology* 2003;189(3):639-43. doi: 10.1067/s0002-9378(03)00886-x
- 100. Richards JMJ, Drummond R, Murray J, et al. WHAT PROPORTION OF BASIC SURGICAL
 TRAINEES CONTINUE IN A SURGICAL CAREER? A SURVEY OF THE FACTORS
 WHICH ARE IMPORTANT IN INFLUENCING CAREER DECISIONS. Surgeon-Journal of
 the Royal Colleges of Surgeons of Edinburgh and Ireland 2009;7(5):270-75.
- 654 101. Reed CE, Vaporciyan AA, Erikson C, et al. Factors Dominating Choice of Surgical Specialty.
 655 *Journal of the American College of Surgeons* 2010;210(3):319-24. doi:
 656 10.1016/j.jamcollsurg.2009.11.016
- 657 102. de Souza LCL, Mendonca VRR, Garcia GBC, et al. Medical Specialty Choice and Related Factors 658 of Brazilian Medical Students and Recent Doctors. *Plos One* 2015;10(7):15. doi: 659 10.1371/journal.pone.0133585
- 103. Pikoulis E, Avgerinos ED, Pedeli X, et al. Medical students' perceptions on factors influencing a
 surgical career: The fate of general surgery in Greece. Surgery 2010;148(3):510-15. doi:
 10.1016/j.surg.2010.01.013
- 104. Ozer U, Ceri V, Carpar E, et al. Factors Affecting the Choice of Psychiatry as a Specialty and
 Satisfaction among Turkish Psychiatry Residents. *Academic Psychiatry* 2016;40(2):299-303.
 doi: 10.1007/s40596-015-0346-5
- 105. Noble J, Hechter FJ, Karaiskos N, et al. Motivational factors and future life plans of orthodontic
 residents in the United States. *American Journal of Orthodontics and Dentofacial Orthopedics* 2010;137(5):623-30. doi: 10.1016/j.ajodo.2008.03.034
- 106. Noble J. Factors influencing career choice in ophthalmology. *Canadian Journal of Ophthalmology-* Journal Canadien D Ophtalmologie 2006;41(5):596-99.
- 107. Newton DA, Grayson MS, Thompson LF. The variable influence of lifestyle and income on
 medical students' career specialty choices: Data from two US medical schools, 1998-2004.
 Academic Medicine 2005;80(9):809-14. doi: 10.1097/00001888-200509000-00005
- 108. Moore HB, Moore PK, Grant AR, et al. Future of acute care surgery: A perspective from the next generation. *Journal of Trauma and Acute Care Surgery* 2012;72(1):94-99. doi: 10.1097/TA.0b013e31823b990a
- 677 109. Momen AA, Shakurnia A. Factors Influencing Pediatric Specialty Choice among Pediatric 678 Residents of Ahvaz Jundishapur University of Medical Sciences. *International Journal of Pediatrics-Mashhad* 2015;3(3):701-06.
- 110. Mehmood SI, Kumar A, Al-Binali A, et al. Specialty preferences: Trends and perceptions among
 Saudi undergraduate medical students. *Medical Teacher* 2012;34:S51-S60. doi:
 10.3109/0142159x.2012.656753

- 111. Loriot Y, Albiges-Sauvin L, Dionysopoulos D, et al. Why do residents choose the medical oncology
 specialty? Implications for future recruitment-results of the 2007 French Association of
 Residents in Oncology (AERIO) Survey. *Annals of Oncology* 2010;21(1):161-65. doi:
 10.1093/annonc/mdp294
 - 112. Lefevre JH, Karila L, Kerneis S, et al. Motivation of French medical students to pursue surgical careers: Results of national survey of 1742 students. *Journal of Visceral Surgery* 2010;147(3):E181-E86. doi: 10.1016/j.jviscsurg.2010.08.004
- 690 113. Vo A, McLean L, McInnes MDF. Medical specialty preferences in early medical school training in Canada. *Int J Med Educ* 2017;8:400-07. doi: 10.5116/ijme.59f4.3c15
 - 114. Grasreiner D, Dahmen U, Settmacher U. Specialty preferences and influencing factors: a repeated cross-sectional survey of first- to sixth-year medical students in Jena, Germany. *BMC medical education* 2018;18 doi: ARTN 103
- 695 10.1186/s12909-018-1200-8
- 115. Alkhaneen H, Alhusain F, Alshahri K, et al. Factors influencing medical students' choice of
 697 emergency medicine as a career specialty-a descriptive study of Saudi medical students.
 698 International journal of emergency medicine 2018;11(1):14. doi: 10.1186/s12245-018-0174-y
 699 [published Online First: 2018/03/09]

701 Legends

- 702 Table 1. Selected Characteristics of the 75 Studies Included in this Systematic
- 703 Review and Meta-analysis
- 704 Table 2. Meta-analyses of the Factors Influencing Medical Students' Choice of
- 705 Subspecialty
- 706 Table 3. Meta-regression of the EOI Value Stratified by Study-level
- 707 Characteristics
- 708 Figure 1. Bar Graph of the Meta-analyses of the Factors Influencing Medical
- 709 Students' Choice of Subspecialty Stratified by Region.
- 710 Figure 2. Bar Graph of the Meta-analyses of the Factors Influencing Medical
- 711 Students' Choice of Subspecialty Stratified by Survey Year.
- 712 Supplements
- 713 Methods S1. Search strategy used in the current systematic review and meta-
- 714 analysis.
- 715 Table S1. Quality Assessment of the Included Studies.
- 716 Table S2. Meta-analyses of the Factors Influencing Medical Students' Choice of
- 717 Subspecialty Stratified by Region and Survey Year.
- 718 Figure S1. Flow Diagram of the Study Inclusion Process.
- 719 Figure S2. Forest Plot of "Academic Interest".

- 720 Figure S3. Forest Plot of "Competencies".
- 721 Figure S4. Forest Plot of "Controllable Lifestyle or Flexible Work Schedule".
- 722 Figure S5. Forest Plot of "Patient Service Orientation".
- 723 Figure S6. Forest Plot of "Medical Teachers or Mentors".
- 724 Figure S7. Forest Plot of "Career Opportunities".
- 725 Figure S8. Forest Plot of "Workload or Working Hours".
- 726 Figure S9. Forest Plot of "Income".
- 727 Figure S10. Forest Plot of "Length of Training".
- 728 Figure S11. Forest Plot of "Prestige".
- 729 Figure S12. Forest Plot of "Advice from Others".
- 730 Figure S13. Forest Plot of "Student Debt".
- 731 Figure S14. Funnel Plots of the Publication Bias Tests of the 12 Factors.

Table 1. Selected Characteristics of the 75 Studies Included in this Systematic Review and Meta-analysis

Vears Size Age Age Size Age Size Age Size Age Size Age Size Age Size Age Size Age Size Age	7° 4	C: ···	Survey	Sample	Average	M. N. (0/)	G
ochran et al, 42 2005 USA 2002 408 27.2 214 (52.45) 5 auer et al, 45 2008 USA 2007 1,177 NR NR 6 chinson et al, 46 2012 USA 2012 622 NR NR 6 iciblassa et al, 47 2011 Germany 2010 1,114 24.1 408 (36.62) 5 lingensmith et al, 48 2015 USA 2013 792 NR 539 (68.06) 6 see et al, 49 2012 USA 2012 100 NR 58 (58) 7 sacdonald et al, 50 2012 New Zealand 2011 134 NR 79 (58.96) 7 straa et al, 30 2010 Iran 2006-2007 137 27.34 49 (35.77) 7 straa et al, 51 1982 USA 1982 144 NR NR 6 si Chroinin et al, 52 2013 UK 2009-2011 274 NR 112 (40.89) 7 sewton et al, 30 2005 USA 1998-2004 1,258 NR<	First Author, Year	Country	years	size	age	Men, No. (%)	Scores
ochran et al, 42 2005 USA 2002 408 27.2 214 (52.45) 5 auer et al, 45 2008 USA 2007 1,177 NR NR 6 chinson et al, 46 2012 USA 2012 622 NR NR 6 iciblassa et al, 47 2011 Germany 2010 1,114 24.1 408 (36.62) 5 lingensmith et al, 48 2015 USA 2013 792 NR 539 (68.06) 6 see et al, 49 2012 USA 2012 100 NR 58 (58) 7 sacdonald et al, 50 2012 New Zealand 2011 134 NR 79 (58.96) 7 straa et al, 30 2010 Iran 2006-2007 137 27.34 49 (35.77) 7 straa et al, 51 1982 USA 1982 144 NR NR 6 si Chroinin et al, 52 2013 UK 2009-2011 274 NR 112 (40.89) 7 sewton et al, 30 2005 USA 1998-2004 1,258 NR<	Smith et al. 43 2015	UK	2012	2,978	NR	NR	6
thison et al, 46 2012 USA 2012 622 NR NR NR 6 tolobassa et al, 47 2011 Germany 2010 1,114 24.1 408 (36.62) 5 tolobassa et al, 47 2011 USA 2013 792 NR 539 (68.06) 6 to et al, 48 2012 USA 2012 100 NR 58 (58) 7 tolobassa et al, 49 2012 USA 2012 100 NR 58 (58) 7 tolobassa et al, 49 2012 New Zealand 2011 134 NR 79 (58.96) 7 tolobassa et al, 49 2012 New Zealand 2011 134 NR 79 (58.96) 7 tolobassa et al, 49 2010 Iran 2006-2007 137 27.34 49 (35.77) 7 tolobassa et al, 49 2013 UK 2009-2011 274 NR NR NR 6 tolobassa et al, 49 2013 UK 2009-2011 274 NR 112 (40.89) 7 tolobassa et al, 49 2005 USA 1989-2004 1,258 NR 642 (51.03) 8 tolobassa et al, 49 2014 Germany 2007-2012 45 NR 14 (31) 7 tolobassa et al, 49 2014 USA 2010-2011 45 NR 36 (80) 8 tolobassa et al, 49 2003 USA 2002 130 NR NR 6 tolobassa et al, 49 2014 Australia 2009 2116 NR 121 (56.02) 8 tolobassa et al, 40 2013 NR NR 215 (51.31) 8 tolobassa et al, 40 2013 NR NR 215 (51.31) 8 tolobassa et al, 40 2013 NR NR 215 (51.31) 8 tolobassa et al, 40 2013 NR NR 9 tolobassa et al, 40 2013 NR NR 9 tolobassa et al, 40 2013 NR NR 9 tolobassa et al, 40 2013 NR NR 9 tolobassa et al, 40 2013 NR NR 9 tolobassa et al, 40 2013 NR NR 9 tolobassa et al, 40 2013 NR NR 9 tolobassa et al, 40 2013 NR NR 9 tolobassa et al, 40 2013 NR NR 9 tolobassa et al, 40 2013 NR NR 9 tolobassa et al, 40 2013 NR 9 Propose e	Cochran et al, ⁴⁴ 2005						
ingensmith et al, 47 2011 Germany 2010 1,114 24.1 408 (36.62) 5 dingensmith et al, 48 2015 USA 2013 792 NR 539 (68.06) 6 de et al, 49 2012 USA 2012 100 NR 58 (58) 7 diadonald et al, 50 2012 New Zealand 2011 134 NR 79 (58.96) 7 direct at al, 50 2012 New Zealand 2011 134 NR 79 (58.96) 7 direct at al, 50 2012 USA 1982 144 NR NR NR 6 di Chroinin et al, 52 2013 UK 2009-2011 274 NR 112 (40.89) 7 direct at al, 51 1982 USA 1982-2004 1,258 NR 642 (51.03) 8 direct at al, 51 2015 USA 1989-2004 1,258 NR 642 (51.03) 8 direct at al, 51 2015 USA 2016-2011 45 NR 14 (31) 7 direct at al, 52 2013 USA 2010-2011 45 NR 36 (80) 8 direct at al, 55 2015 USA 2010-2011 45 NR 36 (80) 8 direct at al, 57 2012 Australia 2009 216 NR 121 (56.02) 8 direct at al, 59 2009 USA 2005-2006 5,848 NR 2,982 (50.99) 8 direct at al, 60 1985 Ireland 1977-1981 134 30 82 (61.19) 6 direct at al, 60 1985 Ireland 1977-1981 134 30 82 (61.19) 6 direct at al, 60 2013 Nigeria 2009-2011 45 NR 4,964 (45.01) 6 direct at al, 60 2013 Nigeria 2009-2010 96 25.9 NR 7 arikani et al, 60 2013 Nigeria 2009-2010 96 25.9 NR 7 direct at al, 60 2012 Australia 2009-2010 96 25.9 NR 7 direct at al, 60 2012 Australia 2008-2009 49 21.7 NR 6 direct at al, 60 2012 Australia 2008-2009 49 21.7 NR 6 direct at al, 60 2012 Australia 2008-2009 49 21.7 NR 6 direct at al, 60 2012 Australia 2008-2009 49 21.7 NR 6 direct at al, 60 2012 Australia 2008-2009 49 21.7 NR 6 direct at al, 60 2012 Australia 2008-2009 49 21.7 NR 6 direct at al, 60 2012 Australia 2008-2009 49 21.7 NR 6 direct at al, 60 2012 Australia 2008-2009 49 21.7 NR 6 direct at al, 60 2012 Australia 2008-2009 49 21.7 NR 6 direct at al, 60 2012 Australia 2008-2009 49 21.7 NR 6 direct at al, 60 2012 Australia 2008-2009 49 21.7 NR 6 direct at al, 60 2012 Australia 2008-2009 49 21.7 NR 6 direct at al, 60 2012 Australia 2008-2009 49 21.7 NR 6 direct at al, 60 2012 Australia 2008-2009 49 21.7 NR 6 direct at al, 60 2012 Australia 2008-2009 49 21.7 NR 6 direct at al, 60 2012 Australia 2008-2009 49 21.7 NR 6 direct at al, 60 2012 Australia 2008	Hauer et al,45 2008	USA	2007	1,177	NR	NR	6
lingensmith et al,48 2015 USA 2013 792 NR 539 (68.06) 6 et et al,49 2012 USA 2012 100 NR 58 (58) 7 acadonald et al,50 2012 New Zealand 2011 134 NR 79 (58.96) 7 arsa et al,39 2010 Iran 2006-2007 137 27.34 49 (35.77) 7 arsa et al,51 1982 USA 1982 144 NR NR NR 6 it Chroinin et al,52 2013 UK 2009-2011 274 NR 112 (40.89) 7 ewton et al,54 2005 USA 1998-2004 1,258 NR 642 (51.03) 8 acgers et al,53 1990 USA 1989 266 NR 205 (77.07) 6 accorded to al,54 2014 Germany 2007-2012 45 NR 14 (31) 7 accorded to al,55 2015 USA 2010-2011 45 NR 36 (80) 8 accorded et al,56 2003 USA 2002 130 NR NR NR 6 accorded et al,57 2012 Australia 2009 216 NR 121 (56.02) 8 accorded et al,59 2009 USA 2005-2006 5,848 NR 2,982 (50.99) 8 accorded et al,50 2013 Italy, UK 2009-2011 45 NR 2,982 (50.99) 8 accorded et al,60 1985 Ireland 1977-1981 134 30 82 (61.19) 6 accorded et al,60 2013 Italy, UK 2009-2011 45 NR 9 accorded et al,60 2013 Italy, UK 2009-2011 45 NR 9 accorded et al,60 2013 Italy, UK 2009-2011 45 NR 9 accorded et al,60 2013 Italy, UK 2009-2011 45 SNR 9 accorded et al,60 2013 Italy, UK 2009-2011 45 SNR 9 accorded et al,60 2013 Italy, UK 2009-2011 45 SNR 9 accorded et al,60 2013 Italy, UK 2009-2011 45 SNR 9 accorded et al,60 2013 Italy, UK 2009-2011 45 SNR 9 accorded et al,60 2013 Italy, UK 2009-2011 45 SNR 9 accorded et al,60 2013 Italy, UK 2009-2011 45 SNR 9 accorded et al,60 2013 Nigeria 2006-2008 290 23 102 (35.17) 7 accorded et al,60 2013 Nigeria 2009-2010 96 25.9 NR 7 accorded al,60 2013 Nigeria 2009-2010 96 25.9 NR 7 accorded al,60 2013 Nigeria 2009-2010 96 25.9 NR 7 accorded al,60 2012 Australia 2008-2009 49 21.7 NR 6 accorded al,60 2012 Gambia 2011 106 24.1 48 (45.28) 6	Johnson et al,46 2012	USA	2012	622	NR	NR	6
tee et al, 49 2012 USA 2012 100 NR 58 (58) 7 acadonald et al, 50 2012 New Zealand 2011 134 NR 79 (58.96) 7 arsa et al, 39 2010 Iran 2006-2007 137 27.34 49 (35.77) 7 aiva et al, 51 1982 USA 1982 144 NR NR NR 6 i Chroinin et al, 52 2013 UK 2009-2011 274 NR 112 (40.89) 7 ewton et al, 34 2005 USA 1998-2004 1,258 NR 642 (51.03) 8 agers et al, 53 1990 USA 1989 266 NR 205 (77.07) 6 bendroth J et al, 54 2014 Germany 2007-2012 45 NR 14 (31) 7 lawad et al, 55 2015 USA 2010-2011 45 NR 36 (80) 8 zizzadeh et al, 56 2003 USA 2002 130 NR NR NR 6 elenza et al, 57 2012 Australia 2009 216 NR 121 (56.02) 8 alona-Evans et al, 58 2014 Australia 2013 419 NR 215 (51.31) 8 aboyd et al, 59 2009 USA 2005-2006 5,848 NR 2,982 (50.99) 8 gerton et al, 60 1985 Ireland 1977-1981 134 30 82 (61.19) 6 iderichsen et al, 61 2013 Sweden 2006-2009 372 27 157 (42.20) 6 arrari et al, 62 2013 Italy, UK 2009-2011 45 25 NR 9 arrich et al, 63 2011 Brazil 2006-2008 290 23 102 (35.17) 7 arrikani et al, 62 2013 Nigeria 2009-2010 96 25.9 NR 4,964 (45.01) 6 arraria et al, 69 2013 Nigeria 2009-2010 96 25.9 NR 7 arrikani et al, 69 2012 Australia 2008-2009 49 21.7 NR 6 attaye et al, 68 2012 Gambia 2011 106 24.1 48 (45.28) 6	Kiolbassa et al, ⁴⁷ 2011	Germany	2010	1,114	24.1	408 (36.62)	5
Acadonal et al, \$\frac{50}{2}\$ 2012 New Zealand 2011 134 NR 79 (58.96) 7 Arra et al, \$\frac{30}{2}\$ 2010 Iran 2006-2007 137 27.34 49 (35.77) 7 Aviva et al, \$\frac{51}{2}\$ 1982 USA 1982 144 NR NR NR 6 6 6 6 6 Chroinin et al, \$\frac{52}{2}\$ 2013 UK 2009-2011 274 NR 112 (40.89) 7 8 8 8 8 8 8 8 8 8 8 8 8	Klingensmith et al, ⁴⁸ 2015	USA	2013	792	NR	539 (68.06)	6
trsa et al, ⁵⁹ 2010	Lee et al, ⁴⁹ 2012	USA	2012	100	NR	58 (58)	7
tiva et al, 51 1982 USA 1982 144 NR NR NR 66 i Chroinin et al, 52 2013 UK 2009-2011 274 NR 112 (40.89) 7 ewton et al, 34 2005 USA 1998-2004 1,258 NR 642 (51.03) 8 ergers et al, 53 1990 USA 1989 266 NR 205 (77.07) 6 bendroth J et al, 54 2014 Germany 2007-2012 45 NR 14 (31) 7 lawad et al, 55 2015 USA 2010-2011 45 NR 36 (80) 8 erzizzadeh et al, 56 2003 USA 2002 130 NR NR NR 6 elenza et al, 57 2012 Australia 2009 216 NR 121 (56.02) 8 elenza et al, 59 2009 USA 2005-2006 5,848 NR 2,982 (50.99) 8 errari et al, 50 1985 Ireland 1977-1981 134 30 82 (61.19) 6 errari et al, 50 2013 Italy, UK 2009-2011 45 NR 9 errer et al, 50 2013 Italy, UK 2009-2011 45 NR 9 errer et al, 60 2013 Nr 9 NR 9 errari et al, 60 2013 Nr 9 NR 9 errari et al, 60 2013 Nr 9 NR 9 Orsey et al, 65 2013 Nr 9 NR 9 NR 9 Orsey et al, 65 2013 Nr 9 NR 9 Orsey et al, 65 2013 Nr 9 NR 9 Orsey et al, 65 2013 Nr 9 NR 9 Orsey et al, 65 2013 Nr 9 NR 9 Orsey et al, 65 2013 Nr 9 Orsey et al, 66 2013 Nr 9 Orsey et al, 66 2013 Nr 9 Orsey et al, 66 2013 Nr 9 Orsey et al, 66 2013 Nr 9 Orsey et al, 66 2013 Nr 9 Orsey et al, 66 2013 Nr 9 Orsey et al, 68 2012 Gambia 2011 106 24.1 48 (45.28) 6 Orse et al, 68 2012 Gambia 2011 106 24.1 48 (45.28)	Macdonald et al,50 2012	New Zealand	2011	134	NR	79 (58.96)	7
i Chroinin et al, 52 2013 UK 2009-2011 274 NR 112 (40.89) 7 ewton et al, 34 2005 USA 1989-2004 1,258 NR 642 (51.03) 8 ogers et al, 53 1990 USA 1989 266 NR 205 (77.07) 6 bendroth J et al, 54 2014 Germany 2007-2012 45 NR 14 (31) 7 lawad et al, 55 2015 USA 2010-2011 45 NR 36 (80) 8 zizzadeh et al, 56 2003 USA 2002 130 NR NR 36 (80) 8 elenza et al, 57 2012 Australia 2009 216 NR 121 (56.02) 8 olan-Evans et al, 58 2014 Australia 2013 419 NR 215 (51.31) 8 oyd et al, 59 2009 USA 2005-2006 5,848 NR 2,982 (50.99) 8 gerton et al, 60 1985 Ireland 1977-1981 134 30 82 (61.19) 6 errari et al, 62 2013 Italy, UK 2009-2011 45 NR 9 reire et al, 63 2011 Brazil 2006-2008 290 23 102 (35.17) 7 addeberg-Fischer et al, 64 2006 Switzerland 2001-2003 522 31.1 241 (46.17) 9 orsey et al, 65 2005 USA 2008-2009 49 21.7 NR 6 etrage et al, 68 2012 Gambia 2011 106 24.1 48 (45.28) 6	Parsa et al, ³⁹ 2010	Iran	2006-2007	137	27.34	49 (35.77)	7
ewton et al, ³⁴ 2005 USA 1998-2004 1,258 NR 642 (51.03) 8 begers et al, ⁵³ 1990 USA 1989 266 NR 205 (77.07) 6 bendroth J et al, ⁵⁴ 2014 Germany 2007-2012 45 NR 14 (31) 7 lawad et al, ⁵⁵ 2015 USA 2010-2011 45 NR 36 (80) 8 belenza et al, ⁵⁶ 2003 USA 2002 130 NR NR NR 6 belenza et al, ⁵⁷ 2012 Australia 2009 216 NR 121 (56.02) 8 belenza et al, ⁵⁸ 2014 Australia 2013 419 NR 215 (51.31) 8 belenza et al, ⁵⁹ 2009 USA 2005-2006 5,848 NR 2,982 (50.99) 8 belenza et al, ⁶⁰ 1985 Ireland 1977-1981 134 30 82 (61.19) 6 belenza et al, ⁶¹ 2013 Sweden 2006-2009 27 157 (42.20) 6 berrari et al, ⁶² 2013 Italy, UK 2009-2011 2006-2008 290 23 102 (35.17) 7 belenza et al, ⁶⁴ 2006 Switzerland 2001-2003 522 31.1 241 (46.17) 9 belenza et al, ⁶⁵ 2012 Australia 2008-2009 49 21.7 NR 6 belenza et al, ⁶⁶ 2012 Australia 2008-2009 49 21.7 NR 6 belenza et al, ⁶⁸ 2012 Gambia 2011 106 24.1 48 (45.28) 6	Paiva et al, ⁵¹ 1982	USA	1982	144	NR	NR	6
bendroth J et al, 53 1990 USA 1989 266 NR 205 (77.07) 6 bendroth J et al, 54 2014 Germany 2007-2012 45 NR 14 (31) 7 lawad et al, 55 2015 USA 2010-2011 45 NR 36 (80) 8 zizzadeh et al, 56 2003 USA 2002 130 NR NR NR 6 lelenza et al, 57 2012 Australia 2009 216 NR 121 (56.02) 8 lolan-Evans et al, 58 2014 Australia 2013 419 NR 215 (51.31) 8 loyd et al, 59 2009 USA 2005-2006 5,848 NR 2,982 (50.99) 8 lerton et al, 60 1985 Ireland 1977-1981 134 30 82 (61.19) 6 letrichsen et al, 61 2013 Sweden 2006-2009 372 27 157 (42.20) 6 letrichsen et al, 62 2013 Italy, UK 2009-2011 45 25 NR 9 letric et al, 63 2011 Brazil 2006-2008 290 23 102 (35.17) 7 luddeberg-Fischer et al, 64 2006 Switzerland 2001-2003 522 31.1 241 (46.17) 9 lorsey et al, 65 2005 USA 2003 11,029 NR 4,964 (45.01) 6 letrichsen et al, 67 2012 Australia 2008-2009 49 21.7 NR 6 littaye et al, 68 2012 Gambia 2011 106 24.1 48 (45.28) 6	Ni Chroinin et al, ⁵² 2013	UK	2009-2011	274	NR	112 (40.89)	7
bendroth J et al, 54 2014 Germany 2007-2012 45 NR 14 (31) 7 lawad et al, 55 2015 USA 2010-2011 45 NR 36 (80) 8 zizzadeh et al, 56 2003 USA 2002 130 NR NR NR 6 elenza et al, 57 2012 Australia 2009 216 NR 121 (56.02) 8 olan-Evans et al, 58 2014 Australia 2013 419 NR 215 (51.31) 8 ovd et al, 59 2009 USA 2005-2006 5,848 NR 2,982 (50.99) 8 gerton et al, 60 1985 Ireland 1977-1981 134 30 82 (61.19) 6 elerichsen et al, 61 2013 Sweden 2006-2009 372 27 157 (42.20) 6 errari et al, 62 2013 Italy, UK 2009-2011 45 25 NR 9 erice et al, 63 2011 Brazil 2006-2008 290 23 102 (35.17) 7 auddeberg-Fischer et al, 64 2006 Switzerland 2001-2003 522 31.1 241 (46.17) 9 orsey et al, 65 2005 USA 2003 11,029 NR 4,964 (45.01) 6 kenze et al, 66 2013 Nigeria 2009-2010 96 25.9 NR 7 arikani et al, 67 2012 Australia 2008-2009 49 21.7 NR 6 etitaye et al, 68 2012 Gambia 2011 106 24.1 48 (45.28) 6	Newton et al, ³⁴ 2005	USA	1998-2004	1,258	NR	642 (51.03)	8
lawad et al, 55 2015 USA 2010-2011 45 NR 36 (80) 8 zizzadeh et al, 56 2003 USA 2002 130 NR NR NR 6 elenza et al, 57 2012 Australia 2009 216 NR 121 (56.02) 8 clenza et al, 58 2014 Australia 2013 419 NR 215 (51.31) 8 clenza et al, 59 2009 USA 2005-2006 5,848 NR 2,982 (50.99) 8 clerton et al, 60 1985 Ireland 1977-1981 134 30 82 (61.19) 6 clerrari et al, 61 2013 Sweden 2006-2009 372 27 157 (42.20) 6 clerrari et al, 62 2013 Italy, UK 2009-2011 45 25 NR 9 clerre et al, 63 2011 Brazil 2006-2008 290 23 102 (35.17) 7 clerrary et al, 65 2005 USA 2003 11,029 NR 4,964 (45.01) 6 clerrary et al, 66 2013 Nigeria 2009-2010 96 25.9 NR 7 arikani et al, 67 2012 Australia 2008-2009 49 21.7 NR 6 clerrary et al, 68 2012 Gambia 2011 106 24.1 48 (45.28) 6	Rogers et al, ⁵³ 1990	USA	1989	266	NR	205 (77.07)	6
zizzadeh et al, ⁵⁶ 2003 USA 2002 130 NR NR 0R 6 elenza et al, ⁵⁷ 2012 Australia 2009 216 NR 121 (56.02) 8 olan-Evans et al, ⁵⁸ 2014 Australia 2013 419 NR 215 (51.31) 8 oyd et al, ⁵⁹ 2009 USA 2005-2006 5,848 NR 2,982 (50.99) 8 gerton et al, ⁶⁰ 1985 Ireland 1977-1981 134 30 82 (61.19) 6 iderichsen et al, ⁶¹ 2013 Sweden 2006-2009 372 27 157 (42.20) 6 errari et al, ⁶² 2013 Italy, UK 2009-2011 45 25 NR 9 reire et al, ⁶³ 2011 Brazil 2006-2008 290 23 102 (35.17) 7 orsey et al, ⁶⁵ 2005 USA 2003 11,029 NR 4,964 (45.01) 6 exenze et al, ⁶⁶ 2013 Nigeria 2009-2010 96 25.9 NR 7 arikani et al, ⁶⁷ 2012 Australia 2008-2009 49 21.7 NR 6 ittaye et al, ⁶⁸ 2012 Gambia 2011 106 24.1 48 (45.28) 6	Abendroth J et al, ⁵⁴ 2014	Germany	2007-2012	45	NR	14 (31)	7
elenza et al, ⁵⁷ 2012 Australia 2009 216 NR 121 (56.02) 8 colan-Evans et al, ⁵⁸ 2014 Australia 2013 419 NR 215 (51.31) 8 coyd et al, ⁵⁹ 2009 USA 2005-2006 5,848 NR 2,982 (50.99) 8 gerton et al, ⁶⁰ 1985 Ireland 1977-1981 134 30 82 (61.19) 6 ciderichsen et al, ⁶¹ 2013 Sweden 2006-2009 372 27 157 (42.20) 6 cerrari et al, ⁶² 2013 Italy, UK 2009-2011 45 25 NR 9 ceire et al, ⁶³ 2011 Brazil 2006-2008 290 23 102 (35.17) 7 cuddeberg-Fischer et al, ⁶⁴ 2006 Switzerland 2001-2003 522 31.1 241 (46.17) 9 corsey et al, ⁶⁵ 2005 USA 2003 11,029 NR 4,964 (45.01) 6 corrarikani et al, ⁶⁷ 2012 Australia 2008-2009 49 21.7 NR 6 cittaye et al, ⁶⁸ 2012 Gambia 2011 106 24.1 48 (45.28) 6	Alawad et al,55 2015	USA	2010-2011	45	NR	36 (80)	8
olan-Evans et al, 58 2014 Australia 2013 419 NR 215 (51.31) 8 oyd et al, 59 2009 USA 2005-2006 5,848 NR 2,982 (50.99) 8 gerton et al, 60 1985 Ireland 1977-1981 134 30 82 (61.19) 6 iderichsen et al, 61 2013 Sweden 2006-2009 372 27 157 (42.20) 6 gertari et al, 62 2013 Italy, UK 2009-2011 45 25 NR 9 reire et al, 63 2011 Brazil 2006-2008 290 23 102 (35.17) 7 auddeberg-Fischer et al, 64 2006 Switzerland 2001-2003 522 31.1 241 (46.17) 9 orsey et al, 65 2005 USA 2003 11,029 NR 4,964 (45.01) 6 senze et al, 66 2013 Nigeria 2009-2010 96 25.9 NR 7 arikani et al, 67 2012 Australia 2008-2009 49 21.7 NR 6 itataye et al, 68 2012 Gambia 2011 106 24.1 48 (45.28) 6	Azizzadeh et al, ⁵⁶ 2003	USA	2002	130	NR	NR	6
byd et al, ⁵⁹ 2009 USA 2005-2006 5,848 NR 2,982 (50.99) 8 gerton et al, ⁶⁰ 1985 Ireland 1977-1981 134 30 82 (61.19) 6 derichsen et al, ⁶¹ 2013 Sweden 2006-2009 372 27 157 (42.20) 6 derrari et al, ⁶² 2013 Italy, UK 2009-2011 45 25 NR 9 derice et al, ⁶³ 2011 Brazil 2006-2008 290 23 102 (35.17) 7 deddeberg-Fischer et al, ⁶⁴ 2006 Switzerland 2001-2003 522 31.1 241 (46.17) 9 derrari et al, ⁶⁵ 2005 USA 2003 11,029 NR 4,964 (45.01) 6 derrari et al, ⁶⁶ 2013 Nigeria 2009-2010 96 25.9 NR 7 derrikani et al, ⁶⁷ 2012 Australia 2008-2009 49 21.7 NR 6 derrari et al, ⁶⁸ 2012 Gambia 2011 106 24.1 48 (45.28) 6	Celenza et al, ⁵⁷ 2012	Australia	2009	216	NR	121 (56.02)	8
gerton et al, 60 1985 Ireland 1977-1981 134 30 82 (61.19) 6 diderichsen et al, 61 2013 Sweden 2006-2009 372 27 157 (42.20) 6 derrari et al, 62 2013 Italy, UK 2009-2011 45 25 NR 9 derrari et al, 63 2011 Brazil 2006-2008 290 23 102 (35.17) 7 diddeberg-Fischer et al, 64 2006 Switzerland 2001-2003 522 31.1 241 (46.17) 9 derrari et al, 65 2005 USA 2003 11,029 NR 4,964 (45.01) 6 derrari et al, 66 2013 Nigeria 2009-2010 96 25.9 NR 7 derikani et al, 67 2012 Australia 2008-2009 49 21.7 NR 6 derrari et al, 68 2012 Gambia 2011 106 24.1 48 (45.28) 6	Oolan-Evans et al,58 2014	Australia	2013	419	NR	215 (51.31)	8
iderichsen et al, 61 2013 Sweden 2006-2009 372 27 157 (42.20) 6 errari et al, 62 2013 Italy, UK 2009-2011 45 25 NR 9 reire et al, 63 2011 Brazil 2006-2008 290 23 102 (35.17) 7 uddeberg-Fischer et al, 64 2006 Switzerland 2001-2003 522 31.1 241 (46.17) 9 orsey et al, 65 2005 USA 2003 11,029 NR 4,964 (45.01) 6 kenze et al, 66 2013 Nigeria 2009-2010 96 25.9 NR 7 arikani et al, 67 2012 Australia 2008-2009 49 21.7 NR 6 itatye et al, 68 2012 Gambia 2011 106 24.1 48 (45.28) 6	Boyd et al, ⁵⁹ 2009	USA	2005-2006	5,848	NR	2,982 (50.99)	8
errari et al, 62 2013 Italy, UK 2009-2011 45 25 NR 9 reire et al, 63 2011 Brazil 2006-2008 290 23 102 (35.17) 7 ruddeberg-Fischer et al, 64 2006 Switzerland 2001-2003 522 31.1 241 (46.17) 9 rorsey et al, 65 2005 USA 2003 11,029 NR 4,964 (45.01) 6 reire et al, 66 2013 Nigeria 2009-2010 96 25.9 NR 7 rarikani et al, 67 2012 Australia 2008-2009 49 21.7 NR 6 rittaye et al, 68 2012 Gambia 2011 106 24.1 48 (45.28) 6	Egerton et al,60 1985	Ireland	1977-1981	134	30	82 (61.19)	6
reire et al, ⁶³ 2011 Brazil 2006-2008 290 23 102 (35.17) 7 uddeberg-Fischer et al, ⁶⁴ 2006 Switzerland 2001-2003 522 31.1 241 (46.17) 9 orsey et al, ⁶⁵ 2005 USA 2003 11,029 NR 4,964 (45.01) 6 kenze et al, ⁶⁶ 2013 Nigeria 2009-2010 96 25.9 NR 7 arikani et al, ⁶⁷ 2012 Australia 2008-2009 49 21.7 NR 6 ittaye et al, ⁶⁸ 2012 Gambia 2011 106 24.1 48 (45.28) 6	Diderichsen et al,61 2013	Sweden	2006-2009	372	27	157 (42.20)	6
uddeberg-Fischer et al,64 2006 Switzerland 2001-2003 522 31.1 241 (46.17) 9 orsey et al,65 2005 USA 2003 11,029 NR 4,964 (45.01) 6 kenze et al,66 2013 Nigeria 2009-2010 96 25.9 NR 7 arikani et al,67 2012 Australia 2008-2009 49 21.7 NR 6 ittaye et al,68 2012 Gambia 2011 106 24.1 48 (45.28) 6	Ferrari et al, ⁶² 2013	Italy, UK	2009-2011	45	25	NR	9
orsey et al, 65 2005 USA 2003 11,029 NR 4,964 (45.01) 6 kenze et al, 66 2013 Nigeria 2009-2010 96 25.9 NR 7 arikani et al, 67 2012 Australia 2008-2009 49 21.7 NR 6 kittaye et al, 68 2012 Gambia 2011 106 24.1 48 (45.28) 6	Freire et al, ⁶³ 2011	Brazil	2006-2008	290	23	102 (35.17)	7
kenze et al, 66 2013 Nigeria 2009-2010 96 25.9 NR 7 arikani et al, 67 2012 Australia 2008-2009 49 21.7 NR 6 ittaye et al, 68 2012 Gambia 2011 106 24.1 48 (45.28) 6	Buddeberg-Fischer et al,64 2006	Switzerland	2001-2003	522	31.1	241 (46.17)	9
arikani et al, ⁶⁷ 2012 Australia 2008-2009 49 21.7 NR 6 ittaye et al, ⁶⁸ 2012 Gambia 2011 106 24.1 48 (45.28) 6	Oorsey et al,65 2005	USA	2003	11,029	NR	4,964 (45.01)	6
ittaye et al, ⁶⁸ 2012 Gambia 2011 106 24.1 48 (45.28) 6	Ekenze et al,66 2013	Nigeria	2009-2010	96	25.9	NR	7
	Barikani et al, ⁶⁷ 2012	Australia	2008-2009	49	21.7	NR	6
onura et al, ⁶⁹ 2016 USA 2015 590 NR 321 (54.40) 9	Bittaye et al,68 2012	Gambia	2011	106	24.1	48 (45.28)	6
	Bonura et al, ⁶⁹ 2016	USA	2015	590	NR	321 (54.40)	9
l-Fouzan et al, ⁷⁰ 2012 Kuwait 2011-2012 144 NR NR 7	Al-Fouzan et al,70 2012	Kuwait	2011-2012	144	NR	NR	7
IKot et al, ⁷¹ 2015 Egypt 2013 451 21.8 NR 7	AlKot et al, ⁷¹ 2015	Egypt	2013	451	21.8	NR	7
orges et al, ⁷² 2009 USA 2001-2005 341 NR NR 5	Borges et al, ⁷² 2009	USA	2001-2005	341	NR	NR	5
udd et al, ⁷³ 2011 UK 2011 870 22 NR 7	Budd et al, ⁷³ 2011	UK	2011	870	22	NR	7
orrigan et al, ⁷⁴ 2007 Ireland 2007 222 NR 142 (63.96) 7	Corrigan et al, ⁷⁴ 2007	Ireland	2007	222	NR	142 (63.96)	7
avis et al, ⁷⁵ 2016 UK 2016 173 NR 76 (43.93) 7	Davis et al, ⁷⁵ 2016	UK	2016	173	NR	76 (43.93)	7

Deutsch et al, % 2015 Germany 2011 659 27,9 NR							
Dias et al, Part	Deutsch et al, ⁷⁶ 2015	Germany	2011	659	27.9	NR	8
Goltz et al, 90 2013	Gardner et al, ⁷⁷ 2014	Australia	1993-2005	631	NR	NR	7
Gupta et al, 0 2013	Dias et al, ⁷⁸ 2013	UK	2013	495	NR	438 (88.48)	5
Hanzlick et al, 81 2008 USA 2006 161 NR NR 53 (50.96) 6 Hauer et al, 82 2005 USA 1991-2002 104 NR 53 (50.96) 6 Hauer et al, 82 2008 USA 2008 80 NR NR 66 Labiris et al, 84 2014 Greece 2014 111 23.6 55 (49.54) 6 Lambert et al, 85 2008 UK 2007 17,393 NR NR NR 6 Shah et al, 85 2012 USA 2011 892 NR NR NR 6 Shah et al, 85 2012 USA 2011 892 NR NR 6 Vicente et al, 87 2010 USA 2008 1,555 NR 589 (37.88) 6 Vicente et al, 87 2014 Canada 2013 60 NR NR NR 6 Wiesenfeld et al, 89 2014 Hungary 2015 228 23 NR 9 Hartung et al, 97 2015 USA 2004 192 20.59 74 (38.54) 4 Girasek et al, 92 2011 Hungary 2011 536 NR NR 55 Wilbanks et al, 94 2015 USA 2011-2013 29,227 NR 15,164 (51.99) 9 West et al, 89 2007 UK 2005 116 NR 8,700 (58.43) 6 Watmough et al, 89 2007 UK 2005 116 NR 53 (95) 8 Scott et al, 89 2007 UK 2002 203 NR 72 (53.47) 6 Scott et al, 89 2007 UK 2002 203 NR 72 (53.47) 6 Scott et al, 89 2009 USA 2002-2004 1,542 NR NR 66 Scott et al, 89 2009 USA 2002-2004 1,542 NR NR 72 Scott et al, 80 2009 USA 2002-2004 1,542 NR NR 66 Scott et al, 80 2009 USA 2002-2004 1,542 NR NR 72 (53.47) 6 Scott et al, 80 2009 USA 2002-2004 1,542 NR NR 72 (53.47) 6 Scott et al, 80 2010 Greece 2006-2007 87 NR NR 1,354 (66.96) 9 de Souze et al, 100 2009 USA 2008 2,022 NR 1,354 (66.96) 9 de Souze et al, 100 2009 USA 2008 2,022 NR 1,354 (66.96) 9 de Souze et al, 100 2009 USA 2008 2,022 NR NR 1,354 (66.96) 9 de Souze et al, 100 2009 USA 2008 2,022 NR NR 1,354 (66.96) 9 de Souze et al, 100 2009 USA 2008 2,022 NR NR NR 6 Schmuth et al, 80 2001 Greece 2006-2007 87 NR NR NR 6 Schmuth et al, 80 2001 Greece 2006-2007 87 NR NR NR 6 Schmuth et al, 80 2001 Greece 2006-2007 87 NR NR NR 6 Schmuth et al, 80 2001 Greece 2006-2007 87 NR NR NR 6 Schmuth et al, 80 2001 Greece 2006-2007 87 NR NR NR 6 Schmuth et al, 80 2001 Greece 2006-2007 87 NR NR NR 6 Schmuth et al, 80 2001 Greece 2006-2007 87 NR NR NR 6 Schmuth et al, 80 2001 Greece 2006-2007 87 NR NR NR 6 Schmuth et al, 80 2001 Greece 2006-2007 87 NR NR NR 6 Schmuth et al, 80 2001 Greece 2006-2007 87 NR NR NR 6 Schmuth et al,	Goltz et al, ⁷⁹ 2013	USA	2012	102	24.5	34 (33.33)	6
Hauris et al,82 2005 Hauer et al,83 2008 USA USA 2008 80 NR NR R 6 Labiris et al,44 2014 Greece 2014 111 23.6 55 (49.54) 6 Lambert et al,85 2008 UK 2007 17,393 NR NR NR 6 Labiris et al,45 2012 USA 2011 892 NR NR R 6 Lefevre et al,87 2010 USA 2008 Lefevre et al,87 2010 USA 2008 Lises field et al,80 2013 Chile 2013 30 NR NR R 6 Vicente et al,87 2010 USA 2013 Go NR NR R 6 Vicente et al,87 2014 Canada 2013 Chile 2013 30 NR NR R R 6 Hartung et al,90 2016 Hong Kong 2015 228 23 NR NR 9 Hartung et al,90 2016 Hong Kong 2015 228 23 NR NR 55 Zuccato et al,82 2011 Hungary 2011 536 NR NR 5 Zuccato et al,82 2015 USA 2011-2013 29,227 NR 15,164 (51.99) West et al,82 2009 USA 2005-2007 14,890 NR 8,700 (58.43) 6 Watmough et al,90 2007 UK 2005 Scott et al,92 2001 USA 2001 Scott et al,92 2001 USA 2001 Scott et al,93 2009 USA 2002 203 NR 72 (53.47) 6 Richards et al,102 2009 USA 2002 203 NR 72 (53.47) 6 Richards et al,102 2009 USA 2008 2002 203 NR 72 (53.47) 6 Richards et al,102 2015 Portugal 2012 1,303 NR NR 6 6 Ozer et al,103 2010 Canada 2004 21,296 NR NR 8 NR 6 Ozer et al,105 2004 Canada 2004 2014 2015 NR NR 6 Ozer et al,105 2015 USA 2004 2013 38 35.6 11 (29) 6 Mohone et al,105 2015 Iran 2014-2015 NR NR 6 Annene et al,102 2015 NR NR 6 Canada 2004 21,296 NR NR NR 6 Canada 2004 21,296 NR NR NR 6 Ozer et al,105 2015 Canada 2004 21,296 NR NR NR 6 Ozer et al,105 2015 Canada 2004 21,296 NR NR NR 6 Canada 2004 21,296 NR NR NR 6 Canada 2004 21,296 NR NR NR 6 Canada 2004 21,296 NR NR NR 6 Canada 2004 21,296 NR NR NR 6 Canada 2004 21,296 NR NR NR 6 Canada 2004 21,296 NR NR NR 6 Canada 2004 21,296 NR NR NR 6 Canada 2004 21,296 NR NR NR 6 Canada 2004 21,296 NR NR NR 6 Canada 2004 21,296 NR NR NR 6 Canada 2004 21,296 NR NR NR 6 Canada Canada 2004 21,296 NR NR	Gupta et al,80 2013	India	2013	243	NR	179 (73.36)	6
Hauer et al, 32 2008 USA 2008 80 NR NR OR 6 Labiris et al, 34 2014 Greece 2014 111 23.6 55 (49.54) 6 Lambert et al, 35 2008 UK 2007 17,393 NR NR NR 6 Shah et al, 36 2012 USA 2011 892 NR NR NR 6 Lefevre et al, 37 2010 USA 2008 1,555 NR 589 (37.88) 6 Vicente et al, 39 2014 Canada 2013 60 NR NR NR 6 Wiesenfeld et al, 39 2014 Canada 2013 60 NR NR NR 7 Lam et al, 30 2016 Hong Kong 2015 228 23 NR 9 Hartung et al, 30 2016 Hungary 2011 536 NR NR NR 5 Giraske et al, 30 2011 Hungary 2011 536 NR NR NR 5 Wilbanks et al, 30 2015 USA 2004 192 20.59 74 (38.54) 4 Wilbanks et al, 30 2015 USA 2001 37 NR 24 (65) 6 Wilbanks et al, 30 2015 USA 2001 37 NR 24 (65) 6 Wilbanks et al, 30 2015 USA 2005 2007 14,890 NR 8,700 (58.43) 6 Watmough et al, 30 2007 UK 2005 116 NR NR 53 (95) 8 Scott et al, 30 2011 Canada 2002-2004 1,542 NR NR 66 (56.90) 4 Thakur et al, 30 2009 USA 2002 203 NR 72 (53.47) 6 Schuth et al, 30 2009 UK 2009 150 NR 108 (72.00) 5 Reed et al, 30 2015 Turkey 2013 98 27.7 26 (26.53) 6 Reed et al, 30 2015 Turkey 2013 98 27.7 26 (26.53) 6 Noble et al, 30 2015 Turkey 2013 98 27.7 26 (26.53) 6 Noble et al, 30 2015 USA 2004 1,296 NR NR 8 NR 6 Ozer et al, 30 2015 USA 2004 1,296 NR NR 8 NR 6 Ozer et al, 30 2015 USA 2004 21,296 NR NR 8 NR 6 Ozer et al, 30 2015 Turkey 2013 98 27.7 26 (26.53) 6 Noble et al, 30 2015 USA 2004 1,296 NR NR 8 NR 6 Ozer et al, 40 2015 USA 2004 1,286 NR NR 8 NR 6 Ozer et al, 40 2015 USA 2004 1,286 NR NR 8 Oxbert et al, 40 2015 USA 2004 1,286 NR NR 8 Oxbert et al, 40 2015 USA 2004 1,286 NR NR 8 Oxbert et al, 40 2015 USA 2004 1,286 NR NR 8 Oxbert et al, 40 2015 USA 2004 1,286 NR NR 8 Oxbert et al, 40 2015 USA 2004 1,286 NR NR 8 Oxbert et al, 40 2015 USA 2004 1,286 NR NR 8 Oxbert et al, 40 2015 USA 2004 1,286 NR NR 8 Oxbert et al, 40 2015 USA 2004 1,286 NR NR 8 Oxbert et al, 40 2015 USA 2004 1,286 NR NR 8 Oxbert et al, 40 2015 USA 2004 1,286 NR NR 9 Oxbert et al, 40 2015 USA 2004 1,286 NR NR 9 Oxbert et al, 40 2015 USA 2004 1,286 NR NR 9 Oxbert et al, 40 2015 USA 2004 1,286 NR NR 9 Oxbert et al, 40 2015 USA 201	Hanzlick et al,81 2008	USA	2006	161	NR	NR	6
Labiris et al, 84 2014 Greece 2014 111 23.6 55 (49.54) 6 Lambert et al, 85 2008 UK 2007 17,393 NR NR NR 6 Shah et al, 86 2012 USA 2011 892 NR NR NR 6 Lefevre et al, 87 2010 USA 2008 1,555 NR 589 (37.88) 6 Vicente et al, 89 2013 Chile 2013 30 NR NR NR 6 Wiesenfeld et al, 89 2014 Canada 2013 60 NR NR NR 7 Lam et al, 90 2016 Hong Kong 2015 228 23 NR 9 Hartung et al, 91 2005 USA 2004 192 20.59 74 (38.54) 4 Girasck et al, 92 2011 Hungary 2011 536 NR NR NR 5 Zuccato et al, 92 2011 Hungary 2011 536 NR NR 15, 164 (51.99) 9 West et al, 92 2015 USA 2012-2013 29.227 NR 15, 164 (51.99) 9 West et al, 92 2009 USA 2005-2007 14,890 NR 8,700 (58.43) 6 Watmough et al, 96 2007 UK 2005 116 NR 66 (56.90) 4 Thakur et al, 92 2001 USA 2001 56 NR S3 (95) 8 Scott et al, 92 2001 USA 2002 203 NR 72 (53.47) 6 Schuth et al, 99 2003 USA 2002 203 NR 72 (53.47) 6 Schuth et al, 90 2009 USA 2009 150 NR 108 (72.00) 5 Reed et al, 100 2009 USA 2008 2,022 NR 1,354 (66.96) 9 de Souza et al, 100 2009 USA 2008 2,022 NR 1,354 (66.96) 9 de Souza et al, 100 2015 Portugal 2012 1,303 NR NR 7 Pikoulis et al, 100 2010 Greece 2006-2007 87 NR NR NR 6 Ozer et al, 100 2015 Turkey 2013 98 27.7 26 (26.53) 6 Noble et al, 100 2015 USA 2004 1,296 NR NR 8 NR 6 Ozer et al, 100 2015 USA 2004 1,296 NR NR 8 NR 6 Ozer et al, 100 2015 USA 2004 1,296 NR NR 8 NR 6 Ozer et al, 100 2015 USA 2004 1,286 NR NR 6 Ozer et al, 100 2015 USA 2004 1,286 NR NR 8 Oxore et al, 100 2015 USA 2004 1,286 NR NR 16 Oxer et al, 100 2015 USA 2004 1,286 NR NR 16 Oxer et al, 100 2015 USA 2004 1,286 NR NR 16 Oxer et al, 100 2015 USA 2004 1,286 NR NR 16 Oxer et al, 100 2015 USA 2004 1,286 NR NR 16 Oxer et al, 100 2015 USA 2004 1,286 NR NR 16 Oxer et al, 100 2015 USA 2004 1,286 NR NR 16 Oxer et al, 100 2015 USA 2004 1,286 NR NR 17 (39) 7 Oxer et al, 100 2015 USA 2004 1,286 NR NR 348 (63.27) 6 User et al, 100 2015 USA 2004 1,286 NR NR 348 (63.27) 6 User et al, 100 2015 USA 2004 NR 348 (63.27) 6 User et al, 100 2015 USA 2004 1,286 NR NR 348 (63.27) 6 User et al, 100 2016 USA 2016 Saudi Arabia 2012 S50 NR	Harris et al,82 2005	USA	1991-2002	104	NR	53 (50.96)	6
Lambert et al, 85 2008 UK 2007 17,393 NR NR 6	Hauer et al,83 2008	USA	2008	80	NR	NR	6
Shah et al, 85 2012 USA 2011 892 NR NR 6	Labiris et al,84 2014	Greece	2014	111	23.6	55 (49.54)	6
Lefevre et al, 87 2010	Lambert et al,85 2008	UK	2007	17,393	NR	NR	6
Vicente et al, 88 2013 Chile 2013 30 NR NR 6 Wiesenfeld et al, 89 2014 Canada 2013 60 NR NR 7 Lam et al, 90 2016 Hong Kong 2015 228 23 NR 9 Hartung et al, 91 2005 USA 2004 192 20.59 74 (38.54) 4 Girasek et al, 91 2011 Hungary 2011 536 NR NR 24 (65) 6 Wilbanks et al, 92 2015 USA 2011-2013 29,227 NR 15,164 (51.99) 9 West et al, 92 2009 USA 2005-2007 14,890 NR 8,700 (58.43) 6 Watmough et al, 96 2007 UK 2005 116 NR 66 (56.90) 4 Thakur et al, 97 2001 USA 2001 56 NR 53 (95) 8 Scott et al, 98 2011 Canada 2002-2004 1,542 NR NR 6 Schnuth et al, 99 2003 USA 2002 203	Shah et al,86 2012	USA	2011	892	NR	NR	6
Wiesenfeld et al, 89 2014 Canada 2013 60 NR NR 7 Lam et al, 90 2016 Hong Kong 2015 228 23 NR 9 Hartung et al, 91 2005 USA 2004 192 20.59 74 (38.54) 4 Girasek et al, 92 2011 Hungary 2011 536 NR NR 5 Zuccato et al, 93 2015 Canada 2012 37 NR 24 (65) 6 Wilbanks et al, 94 2015 USA 2011-2013 29,227 NR 15,164 (51.99) 9 West et al, 95 2009 USA 2005-2007 14,890 NR 8,700 (58.43) 6 Watmough et al, 96 2007 UK 2005 116 NR 66 (56.00) 4 Thakur et al, 97 2001 USA 2001-2004 1,542 NR NR 6 Schutth et al, 99 2003 USA 2002-2004 1,542 NR NR 6 Schutth et al, 100 2009 UK 2009 150 NR	Lefevre et al,87 2010	USA	2008	1,555	NR	589 (37.88)	6
Lam et al, 90 2016 Hong Kong 2015 228 23 NR 9 Hartung et al, 91 2005 USA 2004 192 20.59 74 (38.54) 4 Girasek et al, 92 2011 Hungary 2011 536 NR NR NR 5 Zuccato et al, 93 2015 Canada 2012 37 NR 24 (65) 6 Wilbanks et al, 94 2015 USA 2011-2013 29,227 NR 15,164 (51.99) 9 West et al, 95 2009 USA 2005-2007 14,890 NR 8,700 (58.43) 6 Watmough et al, 96 2007 UK 2005 116 NR 66 (56.90) 4 Thakur et al, 97 2001 USA 2001 56 NR 53 (95) 8 Scott et al, 98 2011 Canada 2002-2004 1,542 NR NR 66 Schnuth et al, 90 2003 USA 2002 203 NR 72 (53.47) 6 Richards et al, 100 2009 USA 2008 2,022 NR 1,354 (66.96) 9 de Souza et al, 101 2009 USA 2008 2,022 NR 1,354 (66.96) 9 de Souza et al, 102 2015 Portugal 2012 1,303 NR NR 7 Pikoulis et al, 103 2010 Greece 2006-2007 87 NR NR NR 6 Ozer et al, 104 2015 Turkey 2013 98 27.7 26 (26.53) 6 Noble et al, 105 2004 Canada 2004 21,296 NR NR 8 Noble et al, 105 2004 Canada 2004 1,286 NR NR 5 Noble et al, 105 2010 USA 2004 1,286 NR NR 5 Noble et al, 105 2012 USA 2011 337 26 179 (53.12) 6 Momen et al, 109 2015 Iran 2014-2015 38 35.6 11 (29) 6 Momen et al, 110 2012 Saudi Arabia 2012 550 NR 348 (63.27) 6 Lefevre et al, 111 2010 France 2008 522 23.8 198 (37.93) 7 Vo et al, 113 2017 Canada 2017 90 22.5 52 (57.78) 5 Grasreiner et al, 114 2018 Germany 2014-2016 181 24 33 (18.10) 6	Vicente et al, 88 2013	Chile	2013	30	NR	NR	6
Hartung et al, 91 2005 Girasek et al, 92 2011 Hungary 2011 536 NR NR 5 Zuccato et al, 93 2015 Canada 2012 37 NR 24 (65) 6 Wilbanks et al, 94 2015 USA 2011-2013 29,227 NR 15,164 (51.99) 9 West et al, 95 2009 USA 2005-2007 14,890 NR 8,700 (58.43) 6 Watmough et al, 96 2007 UK 2005 Thakur et al, 97 2001 USA 2001 56 NR Scott et al, 98 2011 Canada 2002-2004 1,542 NR NR 66 (56.90) 4 Thakur et al, 99 2003 USA Schuth et al, 99 2003 USA Zuccato et al, 100 2009 UK 2009 150 NR 108 (72.00) 5 Reed et al, 101 2009 USA 2008 2,022 NR 1,354 (66.96) 9 de Souza et al, 102 2015 Portugal 2012 1,303 NR NR NR 6 Ozer et al, 103 2010 Greece 2006-2007 87 NR NR NR 6 Ozer et al, 106 2010 Canada 2004 21, 296 NR NR NR 8 Noble et al, 108 2010 Canada 2004 1,286 NR NR 8 NR 6 Moror et al, 108 2012 USA 2004 1,286 NR NR 6 Moror et al, 109 2015 Iran 2014-2015 Saudi Arabia 2012 550 NR 348 (63.27) 6 Hungary 2014-2016 181 24 33 (18.10) 6 Grasreiner et al, 114 2018 Germany 2014-2016 181 24 33 (18.10) 6 Grasreiner et al, 114 2018	Wiesenfeld et al,89 2014	Canada	2013	60	NR	NR	7
Girasek et al, 92 2011 Hungary 2011 536 NR NR 24 (65) 6 Zuccato et al, 93 2015 Canada 2012 37 NR 24 (65) 6 Wilbanks et al, 94 2015 USA 2011-2013 29,227 NR 15,164 (51.99) 9 West et al, 95 2009 USA 2005-2007 14,890 NR 8,700 (58.43) 6 Watmough et al, 96 2007 UK 2005 116 NR 66 (56.90) 4 Thakur et al, 97 2001 USA 2001 56 NR 53 (95) 8 Scott et al, 98 2011 Canada 2002-2004 1,542 NR NR 6 Schnuth et al, 99 2003 USA 2002 203 NR 72 (53.47) 6 Richards et al, 100 2009 UK 2009 150 NR 108 (72.00) 5 Reed et al, 101 2009 USA 2008 2,022 NR 1,354 (66.96) 9 de Souza et al, 102 2015 Portugal 2012 1,303 NR NR NR 6 Ozer et al, 103 2010 Greece 2006-2007 87 NR NR NR 6 Ozer et al, 104 2015 Turkey 2013 98 27.7 26 (26.53) 6 Noble et al, 105 2004 Canada 2004 21,296 NR NR NR 8 Noble et al, 106 2010 Canada 2004 1,286 NR NR 8 Noble et al, 107 2005 USA 2004 1,286 NR NR 6 Moore et al, 108 2012 USA 2011 337 26 179 (53.12) 6 Mehmood et al, 109 2015 Iran 2014-2015 38 35.6 11 (29) 6 Mehmood et al, 110 2012 Saudi Arabia 2012 550 NR 348 (63.27) 6 Loriot et al, 111 2010 France 2007 44 NR 17 (39) 7 Lefevre et al, 111 2010 France 2008 522 23.8 198 (37.93) 7 Vo et al, 113 2017 Canada 2017 90 22.5 52 (57.78) 5 Grasreiner et al, 114 2018 Germany 2014-2016 181 24 33 (18.10) 6	Lam et al,90 2016	Hong Kong	2015	228	23	NR	9
Zuccato et al, 93 2015 Canada 2012 37 NR 24 (65) 6 Wilbanks et al, 94 2015 USA 2011-2013 29,227 NR 15,164 (51.99) 9 West et al, 95 2009 USA 2005-2007 14,890 NR 8,700 (58.43) 6 Watmough et al, 96 2007 UK 2005 116 NR 66 (56.90) 4 Thakur et al, 97 2001 USA 2001 56 NR 53 (95) 8 Scott et al, 98 2011 Canada 2002-2004 1,542 NR NR 6 Schnuth et al, 99 2003 USA 2002 203 NR 72 (53.47) 6 Richards et al, 100 2009 UK 2009 150 NR 108 (72.00) 5 Reed et al, 101 2009 USA 2008 2,022 NR 1,354 (66.96) 9 de Souza et al, 102 2015 Portugal 2012 1,303 NR NR NR 7 Pikoulis et al, 102 2015 Turkey 2013	Hartung et al, ⁹¹ 2005	USA	2004	192	20.59	74 (38.54)	4
Wilbanks et al, 94 2015 West et al, 95 2009 USA 2005-2007 14,890 NR 8,700 (58.43) 6 Watmough et al, 96 2007 UK 2005 116 NR 66 (56.90) 4 Thakur et al, 97 2001 USA 2001 56 NR 53 (95) 8 Scott et al, 98 2011 Canada 2002-2004 1,542 NR NR 6 Schnuth et al, 99 2003 Richards et al, 100 2009 UK 2009 USA 2009 150 NR 108 (72.00) 5 Reed et al, 101 2009 USA 2008 2,022 NR 1,354 (66.96) 9 de Souza et al, 102 2015 Portugal 2012 1,303 NR NR NR 6 Ozer et al, 104 2015 Turkey 2013 98 27.7 26 (26.53) 6 Noble et al, 105 2004 Canada 2004 21,296 NR NR NR 8 NR 8 NR 8 Noble et al, 107 2005 USA 2004 1,286 NR NR R 6 Moore et al, 109 2015 Iran 2014-2015 Jana 2014-2015 NR 348 (63.27) 6 Mehmood et al, 110 2012 Saudi Arabia 2012 550 NR 348 (63.27) 6 Lefevre et al, 112 2010 France 2008 522 23.8 198 (37.93) 7 Vo et al, 113 2017 Canada 2017 90 22.5 52 (57.78) 5 Grasreiner et al, 114 2018 Germany 2014-2016 181 24 33 (18.10) 6	Girasek et al, ⁹² 2011	Hungary	2011	536	NR	NR	5
West et al, 95 2009 USA 2005-2007 14,890 NR 8,700 (58.43) 6 Watmough et al, 96 2007 UK 2005 116 NR 66 (56.90) 4 Thakur et al, 97 2001 USA 2001 56 NR 53 (95) 8 Scott et al, 98 2011 Canada 2002-2004 1,542 NR NR NR 6 Schnuth et al, 99 2003 USA 2002 203 NR 72 (53.47) 6 Richards et al, 100 2009 UK 2009 150 NR 108 (72.00) 5 Reed et al, 101 2009 USA 2008 2,022 NR 1,354 (66.96) 9 de Souza et al, 102 2015 Portugal 2012 1,303 NR NR NR 7 Pikoulis et al, 103 2010 Greece 2006-2007 87 NR NR NR 6 Ozer et al, 104 2015 Turkey 2013 98 27.7 26 (26.53) 6 Noble et al, 105 2004 Canada	Zuccato et al,93 2015	Canada	2012	37	NR	24 (65)	6
Watmough et al, 96 2007 UK 2005 116 NR 66 (56.90) 4 Thakur et al, 97 2001 USA 2001 56 NR 53 (95) 8 Scott et al, 98 2011 Canada 2002-2004 1,542 NR NR 6 Schnuth et al, 99 2003 USA 2002 203 NR 72 (53.47) 6 Richards et al, 100 2009 UK 2009 150 NR 108 (72.00) 5 Reed et al, 101 2009 USA 2008 2,022 NR 1,354 (66.96) 9 de Souza et al, 102 2015 Portugal 2012 1,303 NR NR NR 7 Pikoulis et al, 103 2010 Greece 2006-2007 87 NR NR NR 6 Ozer et al, 104 2015 Turkey 2013 98 27.7 26 (26.53) 6 Noble et al, 105 2004 Canada 2004 21,296 NR NR NR Newton et al, 107 2005 USA 2014 <t< td=""><td>Wilbanks et al,94 2015</td><td>USA</td><td>2011-2013</td><td>29,227</td><td>NR</td><td>15,164 (51.99)</td><td>9</td></t<>	Wilbanks et al,94 2015	USA	2011-2013	29,227	NR	15,164 (51.99)	9
Thakur et al, 97 2001 USA 2001 56 NR 53 (95) 8 Scott et al, 98 2011 Canada 2002-2004 1,542 NR NR 6 Schnuth et al, 99 2003 USA 2002 203 NR 72 (53.47) 6 Richards et al, 100 2009 UK 2009 150 NR 108 (72.00) 5 Reed et al, 101 2009 USA 2008 2,022 NR 1,354 (66.96) 9 de Souza et al, 102 2015 Portugal 2012 1,303 NR NR NR 7 Pikoulis et al, 103 2010 Greece 2006-2007 87 NR NR NR 6 Ozer et al, 104 2015 Turkey 2013 98 27.7 26 (26.53) 6 Noble et al, 105 2004 Canada 2004 21,296 NR NR NR 8 Noble et al, 106 2010 Canada 2007 120 NR NR NR 5 Newton et al, 107 2005 USA 2004 1,286 NR NR NR 6 Moore et al, 108 2012 USA 2011 337 26 179 (53.12) 6 Momen et al, 109 2015 Iran 2014-2015 38 35.6 11 (29) 6 Mehmood et al, 110 2012 Saudi Arabia 2012 550 NR 348 (63.27) 6 Loriot et al, 111 2010 France 2007 44 NR 17 (39) 7 Lefevre et al, 112 2010 France 2008 522 23.8 198 (37.93) 7 Vo et al, 113 2017 Canada 2017 90 22.5 52 (57.78) 5 Grasreiner et al, 114 2018 Germany 2014-2016 181 24 33 (18.10) 6	West et al, ⁹⁵ 2009	USA	2005-2007	14,890	NR	8,700 (58.43)	6
Scott et al, 98 2011 Canada 2002-2004 1,542 NR NR 6 Schnuth et al, 99 2003 USA 2002 203 NR 72 (53.47) 6 Richards et al, 100 2009 UK 2009 150 NR 108 (72.00) 5 Reed et al, 101 2009 USA 2008 2,022 NR 1,354 (66.96) 9 de Souza et al, 102 2015 Portugal 2012 1,303 NR NR NR 7 Pikoulis et al, 103 2010 Greece 2006-2007 87 NR NR NR 6 Ozer et al, 104 2015 Turkey 2013 98 27.7 26 (26.53) 6 Noble et al, 105 2004 Canada 2004 21,296 NR NR NR 8 Noble et al, 106 2010 Canada 2007 120 NR NR 8 Newton et al, 108 2012 USA 2014 1,286 NR NR 6 Momen et al, 109 2015 Iran 2014-201	Watmough et al,96 2007	UK	2005	116	NR	66 (56.90)	4
Schnuth et al, 99 2003 USA 2002 203 NR 72 (53.47) 6 Richards et al, 100 2009 UK 2009 150 NR 108 (72.00) 5 Reed et al, 101 2009 USA 2008 2,022 NR 1,354 (66.96) 9 de Souza et al, 102 2015 Portugal 2012 1,303 NR NR NR 7 Pikoulis et al, 103 2010 Greece 2006-2007 87 NR NR NR 6 Ozer et al, 104 2015 Turkey 2013 98 27.7 26 (26.53) 6 Noble et al, 105 2004 Canada 2004 21,296 NR NR NR 8 Noble et al, 106 2010 Canada 2007 120 NR NR 8 Newton et al, 107 2005 USA 2004 1,286 NR NR NR 6 Moore et al, 108 2012 USA 2011 337 26 179 (53.12) 6 Mehmood et al, 109 2015 Iran <td>Thakur et al,⁹⁷ 2001</td> <td>USA</td> <td>2001</td> <td>56</td> <td>NR</td> <td>53 (95)</td> <td>8</td>	Thakur et al, ⁹⁷ 2001	USA	2001	56	NR	53 (95)	8
Richards et al, 100 2009 UK 2009 150 NR 108 (72.00) 5 Reed et al, 101 2009 USA 2008 2,022 NR 1,354 (66.96) 9 de Souza et al, 102 2015 Portugal 2012 1,303 NR NR NR 7 Pikoulis et al, 103 2010 Greece 2006-2007 87 NR NR NR 6 Ozer et al, 104 2015 Turkey 2013 98 27.7 26 (26.53) 6 Noble et al, 105 2004 Canada 2004 21,296 NR NR NR 8 Noble et al, 106 2010 Canada 2007 120 NR NR NR 5 Newton et al, 106 2012 USA 2004 1,286 NR NR NR 6 Momen et al, 109 2015 Iran 2014-2015 38 35.6 11 (29) 6 Mehmood et al, 110 2012 Saudi Arabia 2012 550 NR 348 (63.27) 6 Loriot et al, 1	Scott et al,98 2011	Canada	2002-2004	1,542	NR	NR	6
Reed et al, 101 2009 USA 2008 2,022 NR 1,354 (66.96) 9 de Souza et al, 102 2015 Portugal 2012 1,303 NR NR NR 7 Pikoulis et al, 103 2010 Greece 2006-2007 87 NR NR NR 6 Ozer et al, 104 2015 Turkey 2013 98 27.7 26 (26.53) 6 Noble et al, 105 2004 Canada 2004 21,296 NR NR NR 8 Noble et al, 106 2010 Canada 2007 120 NR NR NR 5 Newton et al, 106 2010 USA 2004 1,286 NR NR NR 6 Moore et al, 108 2012 USA 2011 337 26 179 (53.12) 6 Mehmood et al, 110 2012 Saudi Arabia 2012 550 NR 348 (63.27) 6 Loriot et al, 111 2010 France 2007 44 NR 17 (39) 7 Lefevre et al, 113 20	Schnuth et al, ⁹⁹ 2003	USA	2002	203	NR	72 (53.47)	6
de Souza et al, 102 2015 Portugal 2012 1,303 NR NR 7 Pikoulis et al, 103 2010 Greece 2006-2007 87 NR NR NR 6 Ozer et al, 104 2015 Turkey 2013 98 27.7 26 (26.53) 6 Noble et al, 105 2004 Canada 2004 21,296 NR NR NR 8 Noble et al, 106 2010 Canada 2007 120 NR NR NR 5 Newton et al, 107 2005 USA 2004 1,286 NR NR NR 6 Moore et al, 108 2012 USA 2011 337 26 179 (53.12) 6 Mehmood et al, 109 2015 Iran 2014-2015 38 35.6 11 (29) 6 Mehmood et al, 110 2012 Saudi Arabia 2012 550 NR 348 (63.27) 6 Loriot et al, 111 2010 France 2007 44 NR 17 (39) 7 Lefevre et al, 112 2010 <t< td=""><td>Richards et al,¹⁰⁰ 2009</td><td>UK</td><td>2009</td><td>150</td><td>NR</td><td>108 (72.00)</td><td>5</td></t<>	Richards et al, ¹⁰⁰ 2009	UK	2009	150	NR	108 (72.00)	5
Pikoulis et al, 103 2010 Greece 2006-2007 87 NR NR OR 6 Ozer et al, 104 2015 Turkey 2013 98 27.7 26 (26.53) 6 Noble et al, 105 2004 Canada 2004 21,296 NR NR NR 8 Noble et al, 106 2010 Canada 2007 120 NR NR NR 5 Newton et al, 107 2005 USA 2004 1,286 NR NR NR 6 Moore et al, 108 2012 USA 2011 337 26 179 (53.12) 6 Mehmood et al, 109 2015 Iran 2014-2015 38 35.6 11 (29) 6 Mehmood et al, 110 2012 Saudi Arabia 2012 550 NR 348 (63.27) 6 Loriot et al, 111 2010 France 2007 44 NR 17 (39) 7 Lefevre et al, 112 2010 France 2008 522 23.8 198 (37.93) 7 Vo et al, 113 2017 <	Reed et al, ¹⁰¹ 2009	USA	2008	2,022	NR	1,354 (66.96)	9
Ozer et al, 104 2015 Turkey 2013 98 27.7 26 (26.53) 6 Noble et al, 105 2004 Canada 2004 21,296 NR NR NR 8 Noble et al, 106 2010 Canada 2007 120 NR NR NR 5 Newton et al, 107 2005 USA 2004 1,286 NR NR NR 6 Moore et al, 108 2012 USA 2011 337 26 179 (53.12) 6 Mehmood et al, 109 2015 Iran 2014-2015 38 35.6 11 (29) 6 Mehmood et al, 110 2012 Saudi Arabia 2012 550 NR 348 (63.27) 6 Loriot et al, 111 2010 France 2007 44 NR 17 (39) 7 Lefevre et al, 112 2010 France 2008 522 23.8 198 (37.93) 7 Vo et al, 113 2017 Canada 2017 90 22.5 52 (57.78) 5 Grasreiner et al, 114 2018 Germany <td>de Souza et al,¹⁰² 2015</td> <td>Portugal</td> <td>2012</td> <td>1,303</td> <td>NR</td> <td>NR</td> <td>7</td>	de Souza et al, ¹⁰² 2015	Portugal	2012	1,303	NR	NR	7
Noble et al, 105 2004 Canada 2004 21,296 NR NR 8 Noble et al, 106 2010 Canada 2007 120 NR NR NR 5 Newton et al, 107 2005 USA 2004 1,286 NR NR NR 6 Moore et al, 108 2012 USA 2011 337 26 179 (53.12) 6 Momen et al, 109 2015 Iran 2014-2015 38 35.6 11 (29) 6 Mehmood et al, 110 2012 Saudi Arabia 2012 550 NR 348 (63.27) 6 Loriot et al, 111 2010 France 2007 44 NR 17 (39) 7 Lefevre et al, 112 2010 France 2008 522 23.8 198 (37.93) 7 Vo et al, 113 2017 Canada 2017 90 22.5 52 (57.78) 5 Grasreiner et al, 114 2018 Germany 2014-2016 181 24 33 (18.10) 6	Pikoulis et al, ¹⁰³ 2010	Greece	2006-2007	87	NR	NR	6
Noble et al, 106 2010 Canada 2007 120 NR NR 5 Newton et al, 107 2005 USA 2004 1,286 NR NR NR 6 Moore et al, 108 2012 USA 2011 337 26 179 (53.12) 6 Momen et al, 109 2015 Iran 2014-2015 38 35.6 11 (29) 6 Mehmood et al, 110 2012 Saudi Arabia 2012 550 NR 348 (63.27) 6 Loriot et al, 111 2010 France 2007 44 NR 17 (39) 7 Lefevre et al, 112 2010 France 2008 522 23.8 198 (37.93) 7 Vo et al, 113 2017 Canada 2017 90 22.5 52 (57.78) 5 Grasreiner et al, 114 2018 Germany 2014-2016 181 24 33 (18.10) 6	Ozer et al, 104 2015	Turkey	2013	98	27.7	26 (26.53)	6
Newton et al, 107 2005 USA 2004 1,286 NR NR 6 Moore et al, 108 2012 USA 2011 337 26 179 (53.12) 6 Momen et al, 109 2015 Iran 2014-2015 38 35.6 11 (29) 6 Mehmood et al, 110 2012 Saudi Arabia 2012 550 NR 348 (63.27) 6 Loriot et al, 111 2010 France 2007 44 NR 17 (39) 7 Lefevre et al, 112 2010 France 2008 522 23.8 198 (37.93) 7 Vo et al, 113 2017 Canada 2017 90 22.5 52 (57.78) 5 Grasreiner et al, 114 2018 Germany 2014-2016 181 24 33 (18.10) 6	Noble et al, 105 2004	Canada	2004	21,296	NR	NR	8
Moore et al, ¹⁰⁸ 2012 USA 2011 337 26 179 (53.12) 6 Momen et al, ¹⁰⁹ 2015 Iran 2014-2015 38 35.6 11 (29) 6 Mehmood et al, ¹¹⁰ 2012 Saudi Arabia 2012 550 NR 348 (63.27) 6 Loriot et al, ¹¹¹ 2010 France 2007 44 NR 17 (39) 7 Lefevre et al, ¹¹² 2010 France 2008 522 23.8 198 (37.93) 7 Vo et al, ¹¹³ 2017 Canada 2017 90 22.5 52 (57.78) 5 Grasreiner et al, ¹¹⁴ 2018 Germany 2014-2016 181 24 33 (18.10) 6	Noble et al, 106 2010	Canada	2007	120	NR	NR	5
Momen et al, 109 2015 Iran 2014-2015 38 35.6 11 (29) 6 Mehmood et al, 110 2012 Saudi Arabia 2012 550 NR 348 (63.27) 6 Loriot et al, 111 2010 France 2007 44 NR 17 (39) 7 Lefevre et al, 112 2010 France 2008 522 23.8 198 (37.93) 7 Vo et al, 113 2017 Canada 2017 90 22.5 52 (57.78) 5 Grasreiner et al, 114 2018 Germany 2014-2016 181 24 33 (18.10) 6	Newton et al, ¹⁰⁷ 2005	USA	2004	1,286	NR	NR	6
Mehmood et al, 110 2012 Saudi Arabia 2012 550 NR 348 (63.27) 6 Loriot et al, 111 2010 France 2007 44 NR 17 (39) 7 Lefevre et al, 112 2010 France 2008 522 23.8 198 (37.93) 7 Vo et al, 113 2017 Canada 2017 90 22.5 52 (57.78) 5 Grasreiner et al, 114 2018 Germany 2014-2016 181 24 33 (18.10) 6	Moore et al, 108 2012	USA	2011	337	26	179 (53.12)	6
Loriot et al, 111 2010 France 2007 44 NR 17 (39) 7 Lefevre et al, 112 2010 France 2008 522 23.8 198 (37.93) 7 Vo et al, 113 2017 Canada 2017 90 22.5 52 (57.78) 5 Grasreiner et al, 114 2018 Germany 2014-2016 181 24 33 (18.10) 6	Momen et al, 109 2015	Iran	2014-2015	38	35.6	11 (29)	6
Lefevre et al, 112 2010 France 2008 522 23.8 198 (37.93) 7 Vo et al, 113 2017 Canada 2017 90 22.5 52 (57.78) 5 Grasreiner et al, 114 2018 Germany 2014-2016 181 24 33 (18.10) 6	Mehmood et al, ¹¹⁰ 2012	Saudi Arabia	2012	550	NR	348 (63.27)	6
Vo et al, 113 2017 Canada 2017 90 22.5 52 (57.78) 5 Grasreiner et al, 114 2018 Germany 2014-2016 181 24 33 (18.10) 6	Loriot et al, ¹¹¹ 2010	France	2007	44	NR	17 (39)	7
Grasreiner et al, ¹¹⁴ 2018 Germany 2014-2016 181 24 33 (18.10) 6	Lefevre et al, ¹¹² 2010	France	2008	522	23.8	198 (37.93)	7
	Vo et al, ¹¹³ 2017	Canada	2017	90	22.5	52 (57.78)	5
Alkhannen et al, ¹¹⁵ 2018 Saudi Arabia 2017 436 NA 250 (57.00) 5	Grasreiner et al, ¹¹⁴ 2018	Germany	2014-2016	181	24	33 (18.10)	6
	Alkhannen et al, ¹¹⁵ 2018	Saudi Arabia	2017	436	NA	250 (57.00)	5

Footnotes: scores: quality score of the AHRQ scale.

Table 2. Meta-analyses of the Factors Influencing Medical Students' Choice of Subspecialty

Factor	No. of	Total no. of	EOI value	95 CI% o	f EOI value	Cochran's	I-square	Tau-	<i>P</i> -Value
	studies	participants	(%)	Lower	Lower Upper		(%)	square	
Academic interests	38	82,366	75.29	66.93	82.11	14719.76	99.70	1.60	< 0.0001
Competencies	17	76,515	55.15	33.63	74.90	23572.74	99.90	3.44	< 0.0001
Controllable lifestyle or flexible work schedule	44	101,001	53.00	47.90	58.03	8624.46	99.50	0.45	< 0.0001
Patient service orientation	37	46,572	50.04	44.65	55.43	2668.79	98.70	0.41	< 0.0001
Medical teachers or mentors	32	85,071	46.93	37.77	56.30	15216.32	99.80	1.14	< 0.0001
Career opportunities	38	81,923	44.00	32.26	48.78	13553.20	99.70	1.15	< 0.0001
Workload or working hours	20	22,051	37.99	29.59	47.19	584.81	98.30	0.69	< 0.0001
Income	50	109,791	34.70	28.36	41.62	16952.48	99.70	1.09	< 0.0001
Length of training	18	42,046	32.30	27.61	37.37	917.21	98.10	0.20	< 0.0001
Prestige	26	30,629	31.17	26.32	37.69	1464.67	98.30	0.52	< 0.0001
Advice from others	18	82,692	28.24	22.26	34.23	7679.73	99.80	0.02	< 0.0001
Student debt	8	38,917	15.33	10.96	21.03	574.81	98.80	0.27	< 0.0001

Table 3. Meta-regression of the EOI Value Stratified by Study-level Characteristics

			95 CI% o	f estimate	
Factor		estimate			<i>P</i> -Value
			Lower	Upper	_
	Country	-0.2314	-1.1575	0.6946	0.6302
Academic interests	Survey years	0.3811	-0.3580	1.1202	0.2711
	Specialty	-0.4892	-1.5345	0.5562	0.4008
	Sample size	0.2362	-0.5488	1.0212	0.6537
	Country	0.6946	-1.1461	0.8938	0.8376
Competencies	Survey years	-1.0418	-2.0950	0.0114	0.0151
•	Specialty	0.0904	-1.5786	1.7594	0.9398
	Sample size	-0.5720	-1.8606	0.7166	0.5823
	Country	-0.1261	-1.1461	0.8938	0.9614
Controllable lifestyle or flexible work schedule	Survey years	-0.0001	-0.4052	0.4051	0.9822
,	Specialty	-0.8989	-1.4979	-0.3000	0.0035
	Sample size	-0.0518	-0.4396	0.3361	0.7203
	Country	-0.6238	-1.3118	0.0642	0.0833
Patient service orientation	Survey years	-0.0414	-0.6912	0.6083	0.8524
	Specialty	-1.5982	-2.5227	-0.6737	0.0010
	Sample size	-0.1157	-0.7473	0.5159	0.6358
	Country	0.7395	0.3117	1.1674	0.0007
Medical teachers or mentors	Survey years	0.1133	-0.3580	0.5845	0.6376
	Specialty	0.0605	-0.4441	0.5652	0.8141
	Sample size	-0.1202	-0.5567	0.3163	0.5894
	Country	0.1075	-0.7030	0.9179	0.5828
Career opportunities	Survey years	0.3284	-0.3913	1.0480	0.7546
carrott opposition	Specialty	-0.9292	-1.8015	-0.0570	0.0077
	Sample size	0.3654	0.1156	1.5478	0.0081
	Country	-0.4535	-1.5086	0.6016	0.3981
Workload or working hours	Survey years	0.4624	-0.5417	1.4665	0.3922
	Specialty	-0.9878	-2.1727	0.1972	0.1070
	Sample size	0.0982	-0.8589	1.0553	0.8205
	Country	0.1058	-0.4665	0.6781	0.7390
Income	Survey years	0.0999	-0.4379	0.6377	0.8774
-	Specialty	-0.6457	-1.3267	0.0352	0.0480
	Sample size	0.0523	-0.4826	0.5872	0.6786
	Country	-0.1559	-1.2782	0.9664	0.7854
Length of training	Survey years	-0.2158	-1.4089	0.9772	0.7229
0 v- v	Specialty	0.3959	-0.9585	1.7502	0.5667
	Sample size	0.1565	-0.6631	0.9761	0.7082

	Country	-0.3346	-1.0799	0.4106	0.3485
Prestige	Survey years	-0.4513	-1.1378	0.2352	0.0950
S	Specialty	-1.0112	-1.8980	-0.1244	0.0172
	Sample size	0.0355	-0.6013	0.6723	0.5214
	Country	-0.0097	-0.0722	0.0529	0.9328
Advice from others	Survey years	-0.0861	-0.1471	-0.0251	0.0057
	Specialty	-0.2017	-0.2790	-0.1244	< 0.0001
	Sample size	0.2125	0.1309	0.2941	< 0.0001
	Country	2.7853	2.0544	3.5162	0.0001
Student debt	Survey years	-0.1567	-0.6707	0.3573	0.5502
	Sample size	-0.5248	-1.0108	-0.0388	0.0343

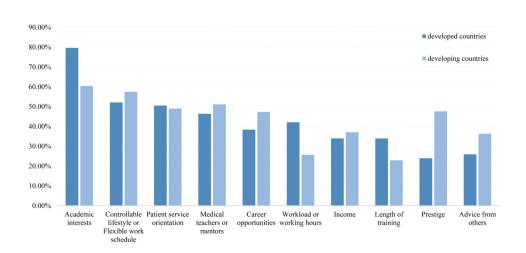


Figure 1. Bar Graph of the Meta-analyses of the Factors Influencing Medical Students' Choice of Subspecialty Stratified by Region.

190x107mm (300 x 300 DPI)

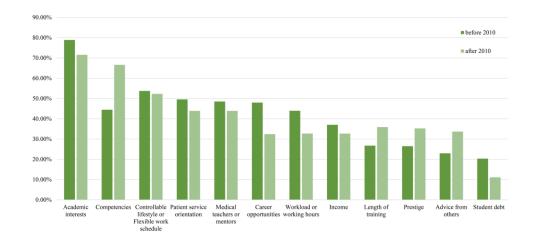


Figure 2. Bar Graph of the Meta-analyses of the Factors Influencing Medical Students' Choice of Subspecialty Stratified by Survey Year.

190x107mm (300 x 300 DPI)

SI Methods. Search strategy used in the current systematic review and metaanalysis.

Medical Students

- 1. Students, Medical [Mesh]
- 2. Medical students
- 3. Medical student
- 4. Student, Medical
- 5. OR / 1 4

- 13. Cross sectional study
- 14. Cross sectional study [Publication

Type]

- 15. Cross sectional study [Mesh Terms]
- 16. Systematic review
- 17. Systematic review [Publication Type]
- 18. Systematic review [Mesh Terms]

Subspecialty Choice

- 6. Career choices
- 7. Choice, Career
- 8. Choices career
- 9. Specialties
- 10. Sub-specialties
- 11. Sub-discipline
- 12. OR / 6 11

- 19. Meta-analysis [Title/Abstract]
- 20. Meta-analysis [Mesh Terms]
- 21. Meta-analysis [Publication Type]
- 22. OR / 12 21

Factors

23. Factors

Combined search

Study design

23. #5 AND #12AND #22 AND #2

Abbreviations: MeSH, Medical Subject Heading in PubMed

Table S1 Quality assessment of the included studies

BMJ Open

Table S1. Quality assessment of the included studies													
Quality	y assessment criteria	1	2	3	4	5	6	7	8	9	10	11	Scores
1	Smith et al, ⁴¹ 2015	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
2	Cochran et al, 42 2005 Hauer et al, 43 2008	Y	U	Y	Y	N	Y	N	Y	N	N	N	5
3	Johnson et al, 44 2012	Y Y	U U	Y Y	Y Y	N N	Y Y	N N	Y Y	N N	Y Y	N N	6 6
5	Kiolbassa et al, ⁴⁵ 2011	Y	U	Y	Y	N	Y	N	Y	N	N	N	5
6	Klingensmith et al,46 2015	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
7	Lee et al, ⁴⁷ 2012	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
8	Macdonald et al, ⁴⁸ 2012	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
9	Parsa et al, ³⁷ 2010	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
10 11	Paiva et al, ⁴⁹ 1982 Ni Chroinin et al, ⁵⁰ 2013	Y Y	U U	Y Y	Y Y	N Y	Y Y	N N	Y Y	N N	Y Y	N N	6 7
12	Newton et al, ³² 2005	Y	U	Y	Y	Y	Y	Y	Y	N	Y	N	8
13	Rogers et al, ⁵¹ 1990	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
14	Abendroth J et al, ⁵² 2014	Y	U	Y	Y	N	Y	N	Y	N	Y	Y	7
15	Alawad et al, ⁵³ 2015	Y	U	Y	Y	N	Y	Y	Y	Y	Y	N	8
16	Azizzadeh et al, ⁵⁴ 2003	Y	U	Y	Y	Y	Y	N	N	N	Y	N	6
17	Celenza et al, ⁵⁵ 2012 Dolan-Evans et al, ⁵⁶ 2014	Y	U	Y	Y	Y	Y	Y	N	Y	Y	N	8
18 19	Boyd et al, ⁵⁷ 2009	Y Y	U U	Y Y	Y Y	Y Y	Y Y	N Y	Y Y	N N	Y Y	Y N	8
20	Egerton et al, ⁵⁸ 1985	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
21	Diderichsen et al, ⁵⁹ 2013	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
22	Ferrari et al,60 2013	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	N	9
23	Freire et al, ⁶¹ 2011	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
24	Buddeberg-Fischer et al, ⁶² 2006	Y	U	Y	Y	N	Y	Y	Y	Y	Y	Y	9
25	Dorsey et al, ⁶³ 2005 Ekenze et al, ⁶⁴ 2013	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
26 27	Barikani et al, 65 2012	Y Y	U U	Y Y	Y Y	Y N	Y Y	Y N	N Y	N N	Y Y	N N	7 6
28	Bittaye et al, ⁶⁶ 2012	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
39	Bonura et al, ⁶⁷ 2016	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	N	9
30	Al-Fouzan et al, ⁶⁸ 2012	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
31	AlKot et al, ⁶⁹ 2015	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
32	Borges et al, ⁷⁰ 2009	Y	U	Y	Y	N	Y	N	N	N	Y	N	5
33	Budd et al, ⁷¹ 2011	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
34 35	Corrigan et al, ⁷² 2007 Davis et al, ⁷³ 2016	Y Y	U U	Y Y	Y Y	Y Y	Y Y	N N	Y Y	N N	Y Y	N N	7 7
36	Deutsch et al, ⁷⁴ 2015	Y	U	Y	Y	Y	Y	N	Y	Y	Y	N	8
37	Gardner et al, ⁷⁵ 2014	Y	U	Y	Y	N	Y	N	Y	N	Y	N	7
38	Dias et al, ⁷⁶ 2013	Y	U	Y	Y	N	Y	N	N	N	Y	N	5
39	Goltz et al, ⁷⁷ 2013	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
40	Gupta et al, ⁷⁸ 2013	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
41 42	Hanzlick et al, ⁷⁹ 2008 Harris et al, ⁸⁰ 2005	Y Y	U U	Y Y	Y Y	N N	Y	N N	Y	N N	Y Y	N N	6
43	Hauer et al, ⁸¹ 2008	Y	U	Y	Y	N	Y Y	N	Y Y	N	Y	N N	6 6
44	Labiris et al, 82 2014	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
45	Lambert et al,83 2008	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
46	Shah et al,84 2012	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
47	Lefevre et al, ⁸⁵ 2010	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
48	Vicente et al, 86 2013	Y	U	Y	Y	N	N	Y	N	Y	Y	N	6
49 50	Wiesenfeld et al, ⁸⁷ 2014 Lam et al, ⁸⁸ 2016	Y Y	U U	Y Y	Y	Y	Y Y	N Y	Y Y	N Y	Y Y	N N	7 9
51	Hartung et al, ⁸⁹ 2005	Y	U	Y	Y	N N	Y	n N	n N	n N	n N	N	4
52	Girasek et al, 90 2011	Y	U	Y	Y	N	Y	N	N	N	Y	N	5
53	Zuccato et al, ⁹¹ 2015	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
54	Wilbanks et al, ⁹² 2015	Y	U	Y	Y	N	Y	Y	Y	Y	Y	Y	9
55	West et al, ⁹³ 2009	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
56	Watmough et al, ⁹⁴ 2007	Y	U	Y	Y	N	N	N	N	N	Y	N	4
57 58	Thakur et al, 95 2001 Scott et al, 96 2011	Y Y	U U	Y Y	Y Y	Y N	Y Y	Y	N Y	Y N	Y Y	N N	8 6
59	Schnuth et al, 97 2003	Y	U	Y	Y	N	Y	N N	Y	N	Y	N	6
60	Richards et al, 98 2009	Y	U	Y	Y	N	Y	N	N	N	Y	N	5
61	Reed et al, 99 2009	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	N	9
62	de Souza et al, ¹⁰⁰ 2015	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
63	Pikoulis et al, ¹⁰¹ 2010	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
64	Ozer et al, ¹⁰² 2015	Y	U	Y	Y	N	N	Y	N	Y	Y	N	6
65	Noble et al, ¹⁰³ 2004	Y	U	Y	Y	Y	Y	Y	Y	N	Y	N	8
66 67	Noble et al, ¹⁰⁴ 2010 Newton et al, ¹⁰⁵ 2005	Y Y	U U	Y Y	Y Y	N N	Y Y	N Y	N N	N N	Y Y	N N	5 6
68	Moore et al, 106 2012	Y Y	U	Y Y	Y Y	N Y	Y Y	Y N	N Y	N N	Y N	N N	6
69	Momen et al, ¹⁰⁷ 2015	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
70	Mehmood et al, ¹⁰⁸ 2012	Y	U	Y	Y	N	Y	N	Y	N	Y	N	6
71	Loriot et al, 109 2010	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
72	Lefevre et al, 110 2010	Y	U	Y	Y	Y	Y	N	Y	N	Y	N	7
73	Vo et al, ¹¹¹ 2017	Y	U	Y	Y	Y	N	N	N	N	Y	N	5
74	Grasreiner et al, ¹¹² 2018	Y	U	Y	Y	Y	Y	N	N	N	Y	N	6

Quality assessment criteria in detail

Alkhannen et al,¹¹³ 2018

- 1. Define the source of information (survey, record review).
- 2. List the inclusion and exclusion criteria for the exposed and unexposed subjects (cases and controls) or refer to previous publications.

N

N

Y

N

N

Y

N

U

- $3. \ Indicate the time period used for identifying patients.\\$
- 4. Indicate whether the subjects were consecutive if not population-based.
- 5. Indicate whether the evaluators of the subjective components of the study were masked to the other aspects of participants' status.
- 6. Describe any assessments undertaken for quality assurance purposes (e.g., test/retest of primary outcome measurements)
- 7. Explain any patient exclusion from the analyses.
- $8.\ Describe\ how\ confounding\ was\ assessed\ and/or\ controlled.$
- 9. If applicable, explain how missing data were handled in the analysis.
- 10. Summarize the patient response rates and the completeness of the data collection.
- 11. Clarify what follow-up, if any, was expected and the percentage of patients with incomplete data or follow-up.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

11. Clarify what follow-up, if any, w
"Y": Yes; "N": No; "U": Unclear.

Table S2. Meta-analyses of the Factors Influencing Medical Students' Choice of Subspecialty Stratified by Region and Survey Year.

-		No. of	Total no. of	Extent of	95 CI% o	of EOI value	I-square	P-	Q-
Factor		studies	participants	influence (%)	Lower	Upper	(%)	Value	Value
	developed	28	80,000	79.66	70.73	86.39	99.8	0.02	3.51
Academic interest	developing	10	2,366	60.41	43.44	75.19	98.0	0.02	3.31
Academic interest	before 2010	29	44,174	78.88	69.04	86.22	99.7	0.40	1.21
	after 2010	9	38,192	71.54	57.66	82.27	99.6	0.40	1.21
Competencies	before 2010	9	43,134	44.40	29.11	60.83	99.8	0.21	1.86
Competencies	after 2010	8	33,381	66.60	34.48	88.31	99.8	0.21	1.00
	developed	37	100,980	52.11	46.52	57.65	99.6	0.62	0.60
Controllable lifestyle or	developing	7	2,017	57.50	45.81	68.41	95.9	0.63	0.68
flexible work schedule	before 2010	22	62,945	53.72	47.48	59.84	99.4		.
	after 2010	22	40,056	52.29	43.51	60.93	99.2	0.97	0.05
	developed	27	44,235	50.56	44.68	56.42	98.8		
	developing	10	2,337	49.02	31.62	66.67	98.1	0.74	0.48
Patient service orientation	before 2010	18	40,997	49.56	43.29	55.84	98.8		
	after 2010	19	5,579	43.87	38.62	63.80	98.3	0.70	0.54
	developed	28	84,076	46.43	36.63	56.52	99.8		
	developed	4	995	51.14	33.97	68.04	95.4	0.73	0.48
Medical teachers or mentors									
	before 2010	21	49,654	48.48	36.93	60.19	99.8	0.70	0.54
	after 2010	11	35,417	43.87	27.94	61.18	99.7		
	developed	31	79,867	38.41	29.61	48.04	99.8	0.60	0.74
Career opportunities	developing	7	2,056	47.32	30.38	64.91	98.1		
	before 2010	20	43,417	47.97	33.54	62.74	99.8	0.24	1.68
	after 2010	18	38,506	32.38	21.68	45.31	99.5		
	developed	15	20,970	42.14	31.35	53.72	98.6	0.34	1.39
Workload or working hours	developing	5	1,081	25.72	13.29	43.88	95.3		
	before 2010	9	19,456	43.93	29.43	59.54	98.8	0.41	1.21
	after 2010	11	2,595	32.70	29.43	59.54	97.4	0.11	1.21
	developed	39	107,091	34.01	26.89	41.93	99.8	0.84	0.29
Income	developing	11	2,700	37.11	27.06	48.41	96.4	0.04	0.27
meome	before 2010	25	68,714	37.01	25.95	49.62	99.8	0.41	1.18
	after 2010	25	41,077	32.67	26.04	40.07	98.9	0.41	1.18
	developed	15	41,246	33.95	28.72	39.60	98.4	0.21	1.40
T	developing	3	800	22.92	10.94	41.85	94.0	0.31	1.48
Length of training	before 2010	7	8,811	26.72	15.89	41.29	98.9		
	after 2010	11	33,234	35.87	29.67	42.59	96.9	0.28	1.59
	developed	17	27,987	23.96	19.20	29.47	97.3		
	developing	9	2,642	47.65	34.41	61.24	97.6	0.01	4.71
Prestige	before 2010	12	25,542	26.46	20.78	33.03	96.7		
	after 2010	14	5,087	35.22	24.70	47.40	98.3	0.25	1.67
	developed	14	81,205	25.95	19.27	32.64	99.8		
	-					53.77	99.8 98.1	0.36	1.33
Advice from others	developing	4	1,487	36.34	18.91				
	before 2010	10	48,319	22.93	17.85	28.01	99.5	0.31	1.47
	after 2010	8	34,373	33.65	25.12	42.18	99.1		
Student debt	before 2010	5	6,610	20.29	15.86	25.57	81.8	0.69	0.59
	after 2010	3	32,307	11.08	1.58	49.08	99.6		

Figure S1. Flow Diagram of the Study Inclusion.

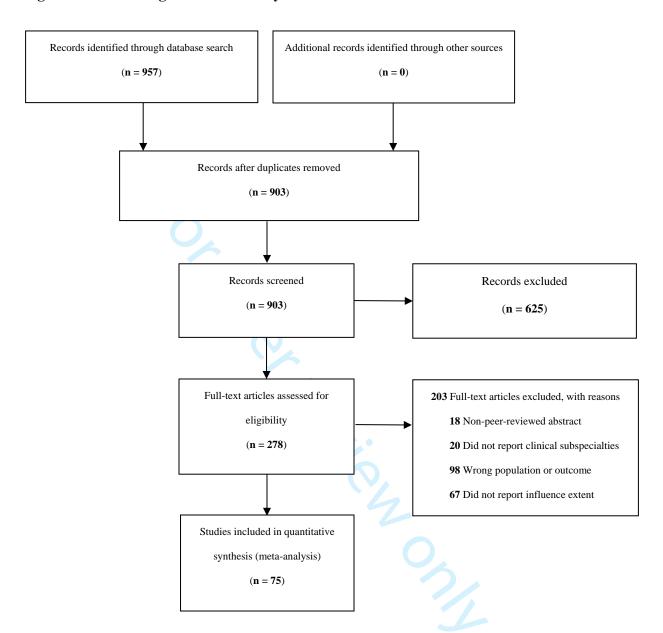


Figure S2. Forest Plot of "Academic Interest".

Study	Events	Total		Proportion	95%-CI	Weight (fixed)	Weight (random)
Smith et al, 2015	2424	2978	11.	0.81	[0.80; 0.83]	3.8%	2.7%
Klingensmith et al, 2015	87	792	.		[0.00; 0.03]	0.6%	2.7%
Macdonald et al, 2012	119	134			[0.82; 0.94]	0.1%	2.6%
Ni Chroinin et al, 2013	266	274	+		[0.94; 0.99]	0.1%	2.5%
Azizzadeh et al, 2003	102	130			[0.70; 0.85]	0.2%	2.7%
Celenza et al. 2012	151	216	- 		[0.63; 0.76]	0.4%	2.7%
Dolan-Evans et al, 2014	288	419	-	0.69	[0.64; 0.73]	0.7%	2.7%
Diderichsen et al, 2013	342	372	+		[0.89; 0.94]	0.2%	2.7%
Buddeberg-Fischer et al, 2006	351	522	+	0.67	[0.63; 0.71]	1.0%	2.7%
Ekenze et al, 2013	40	96		0.42	[0.32; 0.52]	0.2%	2.7%
Al-Fouzan et al, 2012	58	144		0.40	[0.32; 0.49]	0.3%	2.7%
AlKot et al, 2015	117	451	+	0.26	[0.22; 0.30]	0.7%	2.7%
Borges et al, 2009	208	341			[0.56; 0.66]	0.7%	2.7%
Budd et al, 2011	531	870	-		[0.58; 0.64]	1.7%	2.7%
Corrigan et al, 2007	211	222	+		[0.91; 0.98]	0.1%	2.6%
Davis et al, 2016	151	173			[0.81; 0.92]	0.2%	2.6%
Gardner et al, 2014	542	631	+		[0.83; 0.89]	0.6%	2.7%
Gupta et al, 2013	143	243			[0.52; 0.65]	0.5%	2.7%
Labiris et al, 2014	93	111	_ ! -		[0.76; 0.90]	0.1%	2.6%
Lambert et al, 2008		17393	*		[0.40; 0.42]	35.0%	2.7%
Shah et al, 2012	676	892	i †		[0.73; 0.79]	1.4%	2.7%
Lefevre et al, 2010	1107	1555	**		[0.69; 0.73]	2.7%	2.7%
Wiesenfeld et al, 2014	38	60			[0.50; 0.75]	0.1%	2.6%
Girasek et al, 2011	500	548			[0.89; 0.93]	0.4%	2.7%
Zuccato et al, 2015	32 27251	37			[0.71; 0.95]	0.0%	2.4% 2.7%
Wilbanks et al, 2015		203	•		[0.93; 0.94]	15.3%	2.7% 2.7%
Schnuth et al, 2003	144	150			[0.64; 0.77]	0.3% 0.1%	2.7%
Richards et al. 2009	140 47	150 87			[0.88; 0.97] [0.43; 0.65]	0.1%	2.5%
Pikoulis et al, 2010 Ozer et al, 2015	44	98			[0.45, 0.65]	0.2%	2.7%
Noble et al, 2010	107	120			[0.82; 0.94]	0.2 %	2.7 %
Noble et al, 2004	16836				[0.79; 0.80]	29.4%	2.7%
Moore et al. 2012	270	337	-		[0.75; 0.84]	0.4%	2.7%
Momen et al, 2015	27	38			[0.54; 0.85]	0.1%	2.5%
Mehmood et al, 2012	387	550	 _		[0.66; 0.74]	1.0%	2.7%
Loriot et al, 2010	43	44			[0.88; 1.00]	0.0%	1.7%
Lefevre et al. 2010	282	522	 !!		[0.50; 0.58]	1.1%	2.7%
Vo et al, 2017	79	90	 		[0.79; 0.94]	0.1%	2.6%
Fixed effect model		82366		0.70	[0.69; 0.70]	100.0%	
Random effects model			<u></u>	0.75	[0.67; 0.82]		100.0%
Heterogeneity: $I^2 = 99.7\%$, $\tau^2 = 1$	1.6002, p =	0	1 1 1				
			0.2 0.4 0.6 0.8				

Figure S3. Forest Plot of "Competencies".

Study	Events	Total				Proportion	95%-CI	W(fixed)	W(random)	
Smith et al, 2015 Lee et al, 2012 Alawad et al, 2015 Celenza et al, 2012 Diderichsen et al, 2013 Bittaye et al, 2012 Harris et al, 2005 Lambert et al, 2008 Lefevre et al, 2010 Wilbanks et al, 2015 Thakur et al, 2001 Reed et al, 2009 Noble et al, 2010 Noble et al, 2010 Moore et al, 2012 Momen et al, 2015 Mehmood et al, 2012	267 27731 29 1302 56	2978 100 45 216 372 106 104 17393 1555 2922 120 21296 337 38 550		*	+++	0.12 0.27 0.49 0.82 0.76 0.60 0.32 0.17 0.95 0.52 0.64 0.47 0.12 0.80 0.79	[0.48; 0.51] [0.06; 0.20] [0.15; 0.42] [0.42; 0.55] [0.78; 0.86] [0.67; 0.84] [0.50; 0.69] [0.31; 0.32] [0.15; 0.19] [0.95; 0.95] [0.38; 0.65] [0.62; 0.66] [0.38; 0.56] [0.12; 0.12] [0.75; 0.84] [0.63; 0.90] [0.81; 0.87]		5.9% 5.8% 5.9% 5.9% 5.9% 5.9% 5.9% 5.9% 5.9% 5.9	
Fixed effect model Random effects mode Heterogeneity: I-squared=		76515 -squared	I=3.43 <u>9,</u>	p<0.001	-		[0.41; 0.42] [0.34; 0.75]	100%	 100%	
			0.2	0.4 0.6	0.8					
				The EOI valu	ie					
				•						

Figure S4. Forest Plot of "Controllable Lifestyle or Flexible Work Schedule".

Study	Events	Total	_	Proportion	95%-CI	Weight (fixed)	Weight (random)
Smith et al, 2015	1432	2978	+	0.48	[0.46; 0.50]	3.3%	2.4%
Cochran et al, 2005	204	408	<u></u> !		[0.45; 0.55]	0.4%	2.4%
Hauer et al, 2008	355	1177	+		[0.48; 0.33]	1.1%	2.4%
Kiolbassa et al, 2011	39	1114			[0.03; 0.05]	0.2%	2.3%
Lee et al, 2012	16	100			[0.09; 0.25]	0.1%	2.1%
Macdonald et al, 2012	80	134	 		[0.51; 0.68]	0.1%	2.3%
Parsa et al, 2010	116	137	 		[0.78; 0.90]	0.1%	2.1%
Newton et al, 2005	761	1258	 		[0.58; 0.63]	1.3%	2.4%
Rogers et al, 1990	132	266	<u>→</u> ‡;		[0.43; 0.56]	0.3%	2.3%
Abendroth J et al, 2014	30	45	 	0.67	[0.51; 0.80]	0.0%	2.0%
Alawad et al, 2015	16	45			[0.22; 0.51]	0.0%	2.0%
Azizzadeh et al, 2003	85	130	 	0.65	[0.57; 0.74]	0.1%	2.2%
Celenza et al, 2012	156	216		0.72	[0.66; 0.78]	0.2%	2.3%
Dolan-Evans et al, 2014	309	419	+	0.74	[0.69; 0.78]	0.4%	2.4%
Boyd et al, 2009	3695	5848	□	0.63	[0.62; 0.64]	6.0%	2.4%
Ferrari et al, 2013	31	45	 	0.69	[0.53; 0.82]	0.0%	2.0%
Dorsey et al, 2005	4516	11029	■		[0.40; 0.42]	11.7%	2.4%
Bittaye et al, 2012	63	106	 		[0.49; 0.69]	0.1%	2.2%
AlKot et al, 2015	182	451	-		[0.36; 0.45]	0.5%	2.4%
Borges et al, 2009	309	338			[0.88; 0.94]	0.1%	2.2%
Budd et al, 2011	627	870	+		[0.69; 0.75]	0.8%	2.4%
Davis et al, 2016	67	173			[0.31; 0.46]	0.2%	2.3%
Deutsch et al, 2015	591	657			[0.87; 0.92]	0.3%	2.3%
Dias et al, 2013	81	495	+		[0.13; 0.20]	0.3%	2.3%
Goltz et al, 2013	64	102			[0.53; 0.72]	0.1%	2.2%
Gupta et al, 2013	85	243	-]		[0.29; 0.41]	0.2%	2.3%
Harris et al, 2005	55	104	<u> </u>		[0.43; 0.63]	0.1%	2.2%
Labiris et al, 2014	76	111 192	. !		[0.59; 0.77]	0.1%	2.2% 2.0%
Hartung et al, 2005 Girasek et al, 2011	10 342	537	<u> </u>		[0.03; 0.09] [0.59; 0.68]	0.0% 0.5%	2.0%
Zuccato et al, 2015	29	37			[0.62; 0.90]	0.5%	1.8%
Wilbanks et al, 2015	21043	29227	+		[0.02, 0.90]	25.9%	2.4%
West et al, 2009	10088	14890			[0.67; 0.69]	14.3%	2.4%
Scott et al, 2001	988	1542	11.		[0.62; 0.66]	1.6%	2.4%
Richards et al, 2009	42	150			[0.21; 0.36]	0.1%	2.3%
Reed et al. 2009	1001	2022	+		[0.47; 0.52]	2.2%	2.4%
de Souza et al, 2015	702	1303	<u>;</u> ;		[0.51; 0.57]	1.4%	2.4%
Noble et al, 2004	9009	21296	.		[0.42; 0.43]	22.8%	2.4%
Newton et al, 2005	729	1286	_	0.57		1.4%	2.4%
Moore et al, 2012	270	337		0.80	[0.75; 0.84]	0.2%	2.3%
Loriot et al, 2010	15	44		0.34	[0.20; 0.50]	0.0%	2.0%
Lefevre et al, 2010	170	522	-	0.33	[0.29; 0.37]	0.5%	2.4%
Grasreiner et al, 2018	103	181	++-	0.57	[0.49; 0.64]	0.2%	2.3%
Alkhannen et al, 2018	204	436		0.47	[0.42; 0.52]	0.5%	2.4%
Fixed effect model		103001	i		[0.57; 0.57]	100.0%	
Random effects mode				0.53	[0.48; 0.58]		100.0%
Heterogeneity: $I^2 = 99.5\%$	$\tau^{-} = 0.448$	9, p = 0	0.2 0.4 0.6 0.8				
			0.2 0.4 0.6 0.8				

Figure S5. Forest Plot of "Patient Service Orientation".

Study	Events	Total			Proportion	95%-CI	Weight (fixed)	Weight (random)
Hauer et al, 2008	450	1177	+	!	0.38	[0.35; 0.41]	2.8%	3.0%
Kiolbassa et al, 2011	32	1114	-			[0.02; 0.04]	0.3%	2.8%
Lee et al, 2012	30	100				[0.21; 0.40]	0.2%	2.7%
Parsa et al, 2010	104	137		i ——	0.76	[0.68; 0.83]	0.3%	2.7%
Rogers et al, 1990	148	266	 	← ¦	0.56	[0.49; 0.62]	0.7%	2.9%
Abendroth J et al, 2014	19	45		-	0.42	[0.28; 0.58]	0.1%	2.4%
Alawad et al, 2015	5	45			0.11	[0.04; 0.24]	0.0%	1.9%
Azizzadeh et al, 2003	81	130	-		0.62	[0.53; 0.71]	0.3%	2.8%
Celenza et al, 2012	111	216		- <u> </u>	0.51	[0.45; 0.58]	0.5%	2.9%
Dolan-Evans et al, 2014	290	419		 		[0.65; 0.74]	0.9%	2.9%
Diderichsen et al, 2013	298	372		į 		[0.76; 0.84]	0.6%	2.9%
Freire et al, 2011	19		+			[0.04; 0.10]	0.2%	2.6%
Bittaye et al, 2012	79	106		j		[0.65; 0.82]	0.2%	2.7%
Al-Fouzan et al, 2012	66	144	-+			[0.38; 0.54]	0.4%	2.8%
AlKot et al, 2015	160	451	-			[0.31; 0.40]	1.0%	2.9%
Borges et al, 2009	229	341		+-		[0.62; 0.72]	0.8%	2.9%
Davis et al, 2016	151	173				[0.81; 0.92]	0.2%	2.7%
Deutsch et al, 2015	379	659	-	- i		[0.54; 0.61]	1.6%	2.9%
Gardner et al, 2014	531	633		+		[0.81; 0.87]	0.9%	2.9%
Dias et al, 2013	226	495	-	İ		[0.41; 0.50]	1.2%	2.9%
Goltz et al, 2013	13	102	—			[0.07; 0.21]	0.1%	2.5%
Hauer et al, 2008	10	80	—	i		[0.06; 0.22]	0.1%	2.3%
Hartung et al, 2005	29	192	-			[0.10; 0.21]	0.2%	2.7%
Zuccato et al, 2015	34	37				[0.78; 0.98]	0.0%	1.6%
West et al, 2009	10423					[0.69; 0.71]	31.6%	3.0%
Schnuth et al, 2003	132	203		1		[0.58; 0.72]	0.5%	2.8%
Pikoulis et al, 2010	29 15	87 98				[0.24; 0.44]	0.2% 0.1%	2.7% 2.5%
Ozer et al, 2015 Noble et al, 2010	56	120		_		[0.09; 0.24] [0.38; 0.56]	0.1%	2.8%
Noble et al, 2004	13605			i		[0.63; 0.65]	49.6%	3.0%
Moore et al. 2012	270	337		T -		[0.75; 0.84]	0.5%	2.9%
Momen et al, 2015	32	38		i		[0.75, 0.84]	0.5%	2.9%
Mehmood et al, 2012	460	550		_		[0.80; 0.87]	0.1%	2.0%
Lefevre et al, 2010	127	522	+	i i		[0.00, 0.07]	1.0%	2.9%
Vo et al, 2017	74	90		<u> </u>		[0.73; 0.89]	0.1%	2.5%
Grasreiner et al, 2018	70	181		i		[0.73, 0.03]	0.1%	2.8%
Alkhannen et al, 2018	217	436	<u> </u>			[0.45; 0.55]	1.1%	2.9%
, and an interfer of all, 2010	211	400		į	0.50	[0.40, 0.00]	1.170	2.5/0
Fixed effect model		46572		i	0.64	[0.63; 0.64]	100.0%	
Random effects model			÷.			[0.45; 0.55]		100.0%
Heterogeneity: $I^2 = 98.7\%$,		79, p = 0			-100	,		
5 ,,		71	0.2 0.4	0.6 0.8				

Figure S6. Forest Plot of "Medical Teachers or Mentors".

							Weight	Weight
Study	Events	Total			Proportion	95%-CI	(fixed)	(random)
Smith et al, 2015	688	2978	+		0.23	[0.22; 0.25]	3.1%	3.2%
Cochran et al, 2005	347	408		· -	0.85	[0.81; 0.88]	0.3%	3.2%
Lee et al, 2012	6	100		-	0.06	[0.02; 0.13]	0.0%	2.8%
Macdonald et al, 2012	84	134			0.63	[0.54; 0.71]	0.2%	3.1%
Paiva et al, 1982	100	144		ļ ——	0.69	[0.61; 0.77]	0.2%	3.1%
Abendroth J et al, 2014	9	45			0.20	[0.10; 0.35]	0.0%	2.9%
Azizzadeh et al, 2003	90	130		· —	0.69	[0.61; 0.77]	0.2%	3.1%
Celenza et al, 2012	114	216	+	 -	0.53	[0.46; 0.60]	0.3%	3.2%
Boyd et al, 2009	4054	5848		E	0.69	[0.68; 0.71]	7.4%	3.2%
Ekenze et al, 2013	13	96	→	-	0.14	[0.07; 0.22]	0.1%	3.0%
Bittaye et al, 2012	70	106		i	0.66	[0.56; 0.75]	0.1%	3.1%
Bonura et al, 2016	191	590	-	-	0.32	[0.29; 0.36]	0.8%	3.2%
Gardner et al, 2014	59	631	+		0.09	[0.07; 0.12]	0.3%	3.2%
Dias et al, 2013	169	495	-	į	0.34	[0.30; 0.39]	0.7%	3.2%
Goltz et al, 2013	17	102			0.17	[0.10; 0.25]	0.1%	3.0%
Gupta et al, 2013	153	243		i	0.63	[0.57; 0.69]	0.3%	3.2%
Hanzlick et al, 2008	88	161		 	0.55	[0.47; 0.63]	0.2%	3.2%
Harris et al, 2005	73	104			0.70	[0.60; 0.79]	0.1%	3.1%
Hauer et al, 2008	58	80		· —	0.72	[0.61; 0.82]	0.1%	3.1%
Shah et al, 2012	580	892		-	0.65	[0.62; 0.68]	1.2%	3.2%
Lefevre et al, 2010	638	1555	+		0.41	[0.39; 0.44]	2.2%	3.2%
Wilbanks et al, 2015	21328			+		[0.72; 0.73]	34.3%	3.2%
West et al, 2009		14890		+	0.63	[0.62; 0.64]	20.7%	3.2%
Watmough et al, 2007	37	116			0.32	[0.24; 0.41]	0.1%	3.1%
Thakur et al, 2001	34	56			0.61	[0.47; 0.74]	0.1%	3.0%
Scott et al, 2011	669	1542	+	į		[0.41; 0.46]	2.3%	3.2%
Richards et al, 2009	105	150				[0.62; 0.77]	0.2%	3.1%
Reed et al, 2009	1101	2022		+		[0.52; 0.57]	3.0%	3.2%
Noble et al, 2010	55	120		 		[0.37; 0.55]	0.2%	3.1%
Noble et al, 2004		21296	+			[0.20; 0.21]	20.3%	3.2%
Mehmood et al, 2012	358	550		į —		[0.61; 0.69]	0.7%	3.2%
Loriot et al, 2010	9	44			0.20	[0.10; 0.35]	0.0%	2.9%
Fixed effect model		85071		į	0.55	[0.54; 0.55]	100.0%	
Random effects model				>	0.47	[0.38; 0.56]		100.0%
Heterogeneity: $I^2 = 99.8\%$,	$\tau^2 = 1.143$	89, p = 0		1 1				
			0.2 0.4	0.6 0.8				

Figure S7. Forest Plot of "Career Opportunities".

8				1 1				
Study	Events	Total		e 4	Proportion	95%-CI	W(fixed)	W(random)
0	500	0070	1920		0.47	[0.40, 0.40]	0.00/	0.70/
Smith et al, 2015	503	2978	*			[0.16; 0.18]	2.6%	2.7%
Hauer et al, 2008	944	1114	2762	#		[0.82; 0.87]	0.9%	2.7%
Klingensmith et al, 2015	71	792	+			[0.07; 0.11]	0.4%	2.7%
Macdonald et al, 2012	59	134	0.	TT .		[0.35; 0.53]	0.2%	2.6%
Ni Chroinin et al, 2013	118	274	_			[0.37; 0.49]	0.4%	2.7%
Rogers et al, 1990	141	266		1		[0.47; 0.59]	0.4%	2.7%
Abendroth J et al, 2014	22	45	8			[0.34; 0.64]	0.1%	2.5%
Azizzadeh et al, 2003	100	130				[0.69; 0.84]	0.1%	2.6%
Celenza et al, 2012	84	216	-+	11		[0.32; 0.46]	0.3%	2.7%
Dolan-Evans et al, 2014		419		-		[0.58; 0.68]	0.6%	2.7%
Boyd et al, 2009	3096	5848		i a		[0.52; 0.54]	9.0%	2.7%
Egerton et al, 1985	41	134				[0.23; 0.39]	0.2%	2.6%
Diderichsen et al, 2013	246	372		1 -		[0.61; 0.71]	0.5%	2.7%
Ferrari et al, 2013	40	45				[0.76; 0.96]	0.0%	2.3%
Barikani et al, 2012	24	49	(<u>2)</u>	11 -		[0.34; 0.64]	0.1%	2.5%
Al-Fouzan et al, 2012	32	144				[0.16; 0.30]	0.2%	2.6%
AlKot et al, 2015	166	451	-	-1 1		[0.32; 0.41]	0.6%	2.7%
Corrigan et al, 2007	120	222		+-	0.54	[0.47; 0.61]	0.3%	2.7%
Gardner et al, 2014	515	629		+		[0.79; 0.85]	0.6%	2.7%
Dias et al, 2013	144	495		1 1	0.29	[0.25; 0.33]	0.6%	2.7%
Gupta et al, 2013	39	243	-			[0.12; 0.21]	0.2%	2.6%
Hauer et al, 2008	51	80		I 		[0.52; 0.74]	0.1%	2.6%
Labiris et al, 2014	46	111		+1 1		[0.32; 0.51]	0.2%	2.6%
Lambert et al, 2008		17393	IDI		0.13	[0.13; 0.14]	12.6%	2.7%
Shah et al, 2012	42	892	+	11	0.05	[0.03; 0.06]	0.2%	2.7%
Vicente et al, 2013	29	34			0.85	[0.69; 0.95]	0.0%	2.3%
Wiesenfeld et al, 2014	49	60		II —	0.82	[0.70; 0.90]	0.1%	2.5%
Lam et al, 2016	18	228			0.08	[0.05; 0.12]	0.1%	2.6%
Girasek et al, 2011	346	536		+	0.65	[0.60; 0.69]	0.8%	2.7%
Wilbanks et al, 2015	16610	29227		+	0.57	[0.56; 0.57]	44.4%	2.7%
West et al, 2009	10311	14890			0.69	[0.68; 0.70]	19.6%	2.7%
Watmough et al, 2007	56	116	-	- - 	0.48	[0.39; 0.58]	0.2%	2.6%
Reed et al, 2009	361	2022	+	1 1	0.18	[0.16; 0.20]	1.8%	2.7%
Ozer et al, 2015	39	98		 	0.40	[0.30; 0.50]	0.1%	2.6%
Noble et al, 2010	32	120			0.27	[0.19; 0.36]	0.1%	2.6%
Mehmood et al, 2012	427	550		+		[0.74; 0.81]	0.6%	2.7%
Loriot et al, 2010	11	44		. []	0.25	[0.13; 0.40]	0.1%	2.5%
Lefevre et al, 2010	97	522	-		0.19	[0.15; 0.22]	0.5%	2.7%
				1 1				
Fixed effect model		81923		i	0.50	[0.49; 0.50]	100%	
Random effects model			<	\Rightarrow		[0.36; 0.53]	17-14	100%
Heterogeneity: I-squared=9	9.7%, tau-	-squared	=1.146, p<0.00	01				
		5/						
			0.2	4 0.6 0.8				
			The	FOLucius				

Figure S8. Forest Plot of "Workload or Working Hours".

riguit 50. roit	3t 1 10t	, UI	Workioau of	VVOLKI	ig Hours	•		
Study	Events	Total			Proportion	95%-CI	Weight (fixed)	Weight (random)
Cochran et al, 2005	143	408			0.35	[0.30; 0.40]	2.0%	5.3%
Ni Chroinin et al, 2013	203	274			0.74	[0.68; 0.79]	1.1%	5.2%
Alawad et al, 2015	9	45			0.20	[0.10; 0.35]	0.2%	4.5%
Azizzadeh et al, 2003	78	130			0.60	[0.51; 0.68]	0.7%	5.2%
Celenza et al, 2012	48	216	→		0.22	[0.17; 0.28]	0.8%	5.2%
Dolan-Evans et al, 2014	259	419		-	0.62	[0.57; 0.66]	2.1%	5.3%
Bittaye et al, 2012	54	106			0.51	[0.41; 0.61]	0.6%	5.1%
Al-Fouzan et al, 2012	32	144			0.22	[0.16; 0.30]	0.5%	5.1%
Gardner et al, 2014	474	632		-	0.75	[0.71; 0.78]	2.5%	5.3%
Dias et al, 2013	75	495	+		0.15	[0.12; 0.19]	1.3%	5.3%
Gupta et al, 2013	5	243	+		0.02	[0.01; 0.05]	0.1%	4.2%
Hauer et al, 2008	3	80			0.04	[0.01; 0.11]	0.1%	3.6%
Lambert et al, 2008	5702	17393	+		0.33	[0.32; 0.33]	81.1%	5.4%
Zuccato et al, 2015	14	37	- -	_	0.38	[0.22; 0.55]	0.2%	4.6%
Schnuth et al, 2003	60	203	-+-		0.30	[0.23; 0.36]	0.9%	5.2%
Noble et al, 2010	92	120			0.77	[0.68; 0.84]	0.5%	5.1%
Moore et al, 2012	236	337		-	0.70	[0.65; 0.75]	1.5%	5.3%
Momen et al, 2015	15	38	- -	<u> </u>	0.39	[0.24; 0.57]	0.2%	4.6%
Mehmood et al, 2012	241	550			0.44	[0.40; 0.48]	2.9%	5.3%
Grasreiner et al, 2018	69	181	#		0.38	[0.31; 0.46]	0.9%	5.2%
Fixed effect model		22051	ò		0.36	[0.35; 0.36]	100.0%	
Random effects model	l				0.38	[0.30; 0.47]		100.0%
Heterogeneity: $I^2 = 98.3\%$,	$\tau^2 = 0.686$	67, p < 0).01	1 -		_		
- ,			0.2 0.4	0.6 0.8				

Figure S9. Forest Plot of "Income".

Study	Events	Total		Proportion	95%-CI	Weight (fixed)	Weight (random)
Smith et al, 2015	334	2978	+	0.11	[0.10; 0.12]	1.5%	2.1%
Johnson et al, 2012	293	622	 	0.47	[0.43; 0.51]	0.8%	2.1%
Klingensmith et al, 2015	79	792	+	0.10	[0.08; 0.12]	0.4%	2.0%
Macdonald et al, 2012	60	134	 	0.45	[0.36; 0.54]	0.2%	2.0%
Parsa et al, 2010	102	137		0.74	[0.66; 0.82]	0.1%	2.0%
Paiva et al, 1982	36	144	→ -	0.25	[0.18; 0.33]	0.1%	2.0%
Ni Chroinin et al, 2013	156	274		0.57		0.3%	2.0%
Newton et al, 2005	787	1258	<u> </u>	0.63		1.5%	2.1%
Rogers et al, 1990	101 16	266 45		0.38	[0.32; 0.44]	0.3% 0.1%	2.0% 1.9%
Abendroth J et al, 2014 Alawad et al, 2015	3	45	 []	0.30	[0.22; 0.51]	0.1%	1.6%
Azizzadeh et al, 2003	71	130	<u> </u>	0.55		0.0%	2.0%
Boyd et al, 2009	2342	5848	-		[0.39; 0.41]	7.2%	2.1%
Egerton et al, 1985	10	134		0.07		0.0%	1.9%
Diderichsen et al, 2013	231	372	₩ →	0.62		0.5%	2.0%
Ferrari et al, 2013	24	45	 	0.53	[0.38; 0.68]	0.1%	1.9%
Freire et al, 2011	48	290		0.17		0.2%	2.0%
Barikani et al, 2012	12	49		0.24	[0.13; 0.39]	0.0%	1.9%
Bittaye et al, 2012	60	106		0.57	[0.47; 0.66]	0.1%	2.0%
Al-Fouzan et al, 2012	40	144	 		[0.21; 0.36]	0.1%	2.0%
AlKot et al, 2015	174	451	 	0.39		0.6%	2.1%
Borges et al, 2009	256	338			[0.71; 0.80]	0.3%	2.0%
Budd et al, 2011	278	870	7		[0.29; 0.35]	1.0%	2.1%
Davis et al, 2016	77	173			[0.37; 0.52]	0.2%	2.0%
Deutsch et al, 2015 Dias et al, 2013	411 147	658 495		0.62 0.30	[0.59; 0.66]	0.8% 0.5%	2.1% 2.1%
Gupta et al, 2013	56	243			[0.20, 0.34]	0.3%	2.1%
Harris et al, 2005	40	104		0.23	[0.10, 0.23]	0.2%	2.0%
Hauer et al, 2008	13	80			[0.09; 0.26]	0.1%	1.9%
Labiris et al, 2014	66	111	₩	0.59		0.1%	2.0%
Lambert et al, 2008	1249	17393			[0.07; 0.08]	6.0%	2.1%
Shah et al, 2012	88	892	+		[0.08; 0.12]	0.4%	2.0%
Lefevre et al, 2010	246	1555	+	0.16	[0.14; 0.18]	1.1%	2.1%
Wiesenfeld et al, 2014	25	60	- 		[0.29; 0.55]	0.1%	1.9%
Girasek et al, 2011	93	532	-	0.17	[0.14; 0.21]	0.4%	2.0%
Zuccato et al, 2015	5	37		0.14	. , .	0.0%	1.7%
Wilbanks et al, 2015	13448	29227		0.46	[0.45; 0.47]	37.5%	2.1%
West et al, 2009	8562 38	14890 116	+	0.58	[0.57; 0.58]	18.8% 0.1%	2.1% 2.0%
Watmough et al, 2007 Reed et al, 2009	423	2022	+	0.33 0.21	[0.24; 0.42]	1.7%	2.0%
de Souza et al, 2015	754	1303	<u> </u>	0.58	[0.19, 0.23]	1.6%	2.1%
Ozer et al, 2015	29	98			[0.21; 0.40]	0.1%	2.0%
Noble et al, 2010	93	120		- 0.78	[0.69; 0.85]	0.1%	2.0%
Noble et al, 2004	2359	21296	1	0.11	[0.11; 0.12]	10.8%	2.1%
Newton et al, 2005	772	1286	+	0.60	[0.57; 0.63]	1.6%	2.1%
Moore et al, 2012	236	337		0.70	[0.65; 0.75]	0.4%	2.0%
Momen et al, 2015	13	38		0.34	[0.20; 0.51]	0.0%	1.9%
Mehmood et al, 2012	253	550	+	0.46	[0.42; 0.50]	0.7%	2.1%
Lefevre et al, 2010	159	522		0.30	. , .	0.6%	2.1%
Grasreiner et al, 2018	25	181		0.14	[0.09; 0.20]	0.1%	2.0%
Fixed effect model		109791			[0.37; 0.38]	100.0%	
Random effects model				0.35	[0.28; 0.42]		100.0%
Heterogeneity: $I^2 = 99.7\%$,	$\tau = 1.088$	3, p = 0	0.2 0.4 0.6 0.				
			0.2 0.4 0.0 0.0	J			

Figure S10. Forest Plot of "Length of Training".

Study	Events	Total				Proportion	95%-CI	W(fixed)	W(random)
				İ					
Cochran et al, 2005	122	408					[0.25; 0.35]	0.9%	6.0%
Klingensmith et al, 2015	206	792	-	İ			[0.23; 0.29]	1.6%	6.2%
Paiva et al, 1982	41	144		1			[0.21; 0.37]	0.3%	5.5%
Azizzadeh et al, 2003	71	130		\downarrow \longrightarrow			[0.46; 0.63]	0.3%	5.6%
Dolan-Evans et al, 2014	206	419		-		0.49	[0.44; 0.54]	1.1%	6.1%
Boyd et al, 2009	2493	5848				0.43	[0.41; 0.44]	14.6%	6.4%
Bittaye et al, 2012	39	106				0.37	[0.28; 0.47]	0.3%	5.3%
Al-Fouzan et al, 2012	10	144	:	1		0.07	[0.03; 0.12]	0.1%	4.2%
Dias et al, 2013	282	495		-	+	0.57	[0.52; 0.61]	1.2%	6.1%
Goltz et al, 2013	35	102		-		0.34	[0.25; 0.44]	0.2%	5.3%
Wiesenfeld et al, 2014	30	60		+ +		0.50	[0.37; 0.63]	0.2%	4.8%
Zuccato et al, 2015	17	37		+		0.46	[0.29; 0.63]	0.1%	4.2%
Wilbanks et al, 2015	12250	29227		+		0.42	[0.41; 0.42]	72.5%	6.4%
Thakur et al, 2001	14	56		- [0.25	[0.14; 0.38]	0.1%	4.4%
Schnuth et al, 2003	17	203	-	i		0.08	[0.05; 0.13]	0.2%	4.9%
Reed et al, 2009	298	2022	+	1		0.15	[0.13; 0.16]	2.6%	6.3%
de Souza et al, 2015	342	1303	-	1		0.26	[0.24; 0.29]	2.6%	6.3%
Mehmood et al, 2012	186	550	+	•		0.34	[0.30; 0.38]	1.3%	6.2%
Fixed effect model		12016		Ì		0.40	[0 40, 0 44]	1000/	
		42046		Y			[0.40; 0.41]	100%	100%
Random effects model	0 40/ 4		-0.0000 - 40.0004	1		0.32	[0.28; 0.37]		100%
Heterogeneity: I-squared=9	o. 170, tau-	squared	-0.2036, p<0.0001	i ,	\neg				
			0.1 0.2 0.3	0.4 0.5	0.6				
			The E	OI value					

Figure S11. Forest Plot of "Prestige".

								Weight	Weight
Study	Events	Total				Proportion	95%-CI		(random)
Parsa et al, 2010	93	137	1			0.68	[0.59; 0.76]	0.5%	4.0%
Rogers et al, 1990	90	266	-			0.34	[0.28; 0.40]	1.0%	4.1%
Abendroth J et al, 2014	9	45		 		0.20	[0.10; 0.35]	0.1%	3.3%
Alawad et al, 2015	1	45	;			0.02	[0.00; 0.12]	0.0%	1.4%
Azizzadeh et al, 2003	56	130	i		-	0.43	[0.34; 0.52]	0.6%	4.0%
Egerton et al, 1985	9	134	 ;			0.07	[0.03; 0.12]	0.1%	3.4%
Ferrari et al, 2013	18	45	+	 	_	0.40	[0.26; 0.56]	0.2%	3.6%
Bittaye et al, 2012	75	106	į			0.71	[0.61; 0.79]	0.4%	3.9%
Al-Fouzan et al, 2012	44	144	+			0.31	[0.23; 0.39]	0.5%	4.0%
AlKot et al, 2015	112	451				0.25	[0.21; 0.29]	1.5%	4.1%
Budd et al, 2011	125	870	+			0.14	[0.12; 0.17]	1.9%	4.1%
Deutsch et al, 2015	278	654		-		0.43	[0.39; 0.46]	2.8%	4.2%
Dias et al, 2013	86	495	→ į			0.17	[0.14; 0.21]	1.2%	4.1%
Gupta et al, 2013	44	243				0.18	[0.13; 0.24]	0.6%	4.0%
Hauer et al, 2008	10	80	i			0.12	[0.06; 0.22]	0.2%	3.5%
Lefevre et al, 2010	169	1555	+			0.11	[0.09; 0.13]	2.6%	4.2%
Hartung et al, 2005	45	192				0.23	[0.18; 0.30]	0.6%	4.0%
Girasek et al, 2011	341	537	İ		-		[0.59; 0.68]	2.2%	4.1%
Scott et al, 2011	386	1542	*			0.25	[0.23; 0.27]	5.0%	4.2%
Noble et al, 2010	39	120	+	 		0.32	[0.24; 0.42]	0.5%	3.9%
Noble et al, 2004	5586	21296	+			0.26	[0.26; 0.27]	71.5%	4.2%
Moore et al, 2012	202	337				0.60	[0.54; 0.65]	1.4%	4.1%
Momen et al, 2015	19	38	į			0.50	[0.33; 0.67]	0.2%	3.5%
Mehmood et al, 2012	359	550	1		-	0.65	[0.61; 0.69]	2.2%	4.1%
Grasreiner et al, 2018	31	181	- → i			0.17	[0.12; 0.23]	0.4%	3.9%
Alkhannen et al, 2018	196	436		-		0.45	[0.40; 0.50]	1.9%	4.1%
Fixed effect model		30629	į			0.28	[0.28; 0.29]	100.0%	
Random effects mode	_		_<	<u>></u>		0.31	[0.25; 0.38]		100.0%
Heterogeneity: $I^2 = 98.3\%$,	$\tau^2 = 0.518$	81, p < 0	.01		ı				
			0.2	0.4	0.6				

Figure S12. Forest Plot of "Advice from Others".

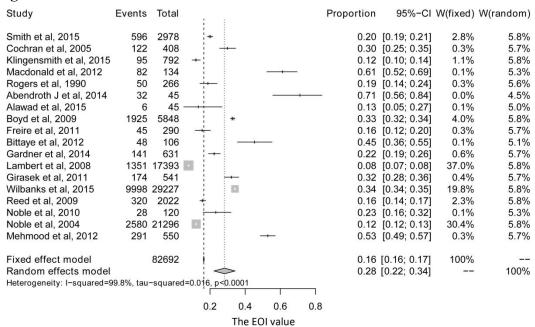
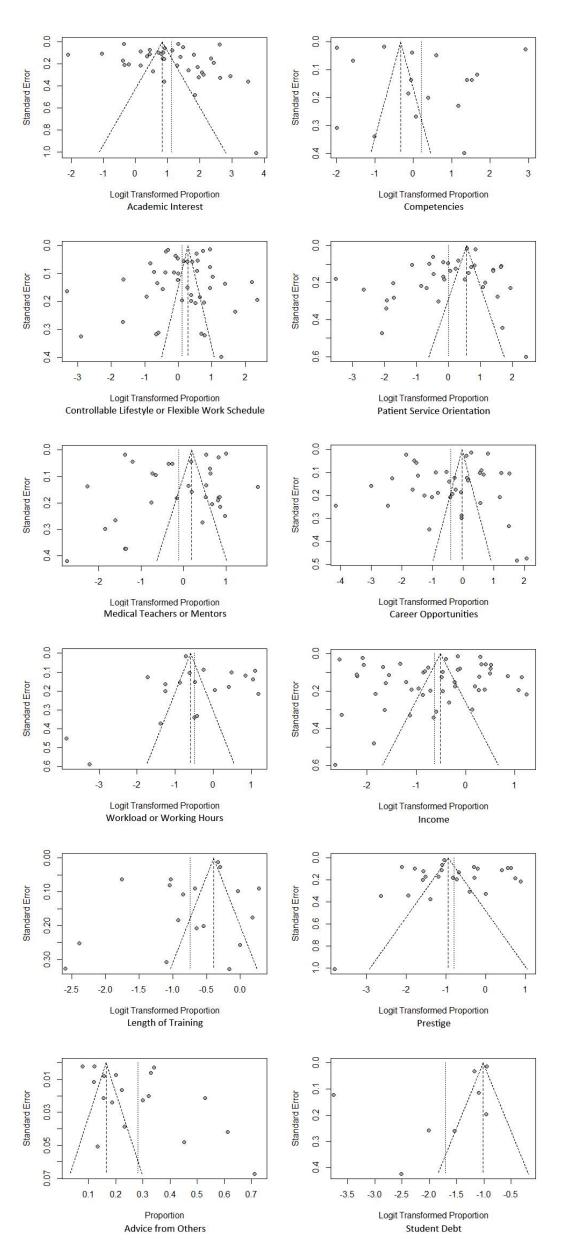



Figure S13. Forest Plot of "Student Debt".

Study	Events	Total		Proportion	95%-CI	W(fixed)	W(random)
Smith et al, 2015	68	2978	-	0.02	[0.02; 0.03]	0.9%	13.6%
Cochran et al, 2005	102	408		0.25	[0.21; 0.29]	1.1%	13.7%
Paiva et al, 1982	17	144	 	0.12	[0.07; 0.18]	0.2%	11.5%
Azizzadeh et al, 2003	36	130	- -	0.28	[0.20; 0.36]	0.4%	12.6%
Boyd et al, 2009	1379	5848	+	0.24	[0.22; 0.25]	14.8%	14.3%
Goltz et al, 2013	18	102	 	0.18	[0.11; 0.26]	0.2%	11.5%
Hauer et al, 2008	6	80		0.08	[0.03; 0.16]	0.1%	8.6%
Wilbanks et al, 2015	8161	29227	+	0.28	[0.27; 0.28]	82.4%	14.3%
Fixed effect model		38917	\(\)	0.27	[0.26; 0.27]	100%	
Random effects mode				0.15	[0.11; 0.21]		100%
Heterogeneity: I-squared=	98.8%, tau-	-squared	=0.2703, p<0.0001				
			0.05 0.1 0.15 0.2 0.25 0.3 0.35	5			
			The EOI value				

Figure S14. Funnel Plots of the Publication Bias Testing of the 12 Factors.

47

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2-3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	3
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5-6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6-7
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6-7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	7

44 45 46

47

PRISMA 2009 Checklist

		Page 1 of 2	
Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	5, 7
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	7-8
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	8
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	8
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	8-9
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	8-9
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	8-9
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	9-13
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	13
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	14
FUNDING	1		
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	15

41 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. 42 doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.

MOOSE Checklist for Meta-analyses of Observational Studies

Item No	Recommendation	Reported on Page No
Reporting o	of background should include	1
1	Problem definition	5
2	Hypothesis statement	5
3	Description of study outcome(s)	5
4	Type of exposure or intervention used	5
5	Type of study designs used	5
6	Study population	5
Reporting o	of search strategy should include	
7	Qualifications of searchers (eg, librarians and investigators)	6
8	Search strategy, including time period included in the synthesis and key words	5
9	Effort to include all available studies, including contact with authors	5
10	Databases and registries searched	5
11	Search software used, name and version, including special features used (eg, explosion)	6
12	Use of hand searching (eg, reference lists of obtained articles)	5
13	List of citations located and those excluded, including justification	5-6
14	Method of addressing articles published in languages other than English	5
15	Method of handling abstracts and unpublished studies	5
16	Description of any contact with authors	5
Reporting o	f methods should include	
17	Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested	6
18	Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	6-7
19	Documentation of how data were classified and coded (eg, multiple raters, blinding and interrater reliability)	6-7
20	Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	6
21	Assessment of study quality, including blinding of quality assessors, stratification or regression on possible predictors of study results	6
22	Assessment of heterogeneity	6
23	Description of statistical methods (eg, complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated	6-7
24	Provision of appropriate tables and graphics	5-7
Reporting o	of results should include	
25	Graphic summarizing individual study estimates and overall estimate	8
26	Table giving descriptive information for each study included	7
27	Results of sensitivity testing (eg, subgroup analysis)	8
28	Indication of statistical uncertainty of findings	7-9

Item No	Recommendation	Reported on Page No
Reporting of	discussion should include	
29	Quantitative assessment of bias (eg, publication bias)	13
30	Justification for exclusion (eg, exclusion of non-English language citations)	13-14
31	Assessment of quality of included studies	13-14
Reporting of	conclusions should include	
32	Consideration of alternative explanations for observed results	14
33	Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)	14
34	Guidelines for future research	14
35	Disclosure of funding source	15

From: Stroup DF, Berlin JA, Morton SC, et al, for the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) Group. Meta-analysis of Observational Studies in Epidemiology. A Proposal for Reporting. *JAMA*. 2000;283(15):2008-2012. doi: 10.1001/jama.283.15.2008.

Transcribed from the original paper within the NEUROSURGERY® Editorial Office, Atlanta, GA, United Sates. August 2012.