

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Self-rated health and levels of C-reactive protein in rural areas of China: the role of education

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-027659
Article Type:	Research
Date Submitted by the Author:	01-Nov-2018
Complete List of Authors:	Tu, Raoping; Nagasaki University Institute of Tropical Medicine, Department of International Health Pan, Kuan-Yu; Karolinska Institutet Department of Neurobiology Care Sciences and Society, Aging Research Center Cai, Guoxi; Nagasaki Prefectural Institute of Environment and Public Health Yamamoto, Taro; Nagasaki University Institute of Tropical Medicine, Department of International Health Wang, Hui-Xin; Stressforskningsinstitutet; Karolinska Institutet Department of Neurobiology Care Sciences and Society, Aging Research Center
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, SOCIAL MEDICINE
	·

Title page

Self-rated health and levels of C-reactive protein in rural areas of China: the role of education

Author's names and affiliation:

Raoping Tu^{1,2}, Kuan-Yu Pan³, Guoxi Cai^{1,4}, Taro Yamamoto^{1,*}, Hui-Xin Wang^{3,5,*} ¹ Department of International Health, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.

² Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.

³ Aging Research Center, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm University, Stockholm, Sweden.

⁴Nagasaki Prefectural Institute of Environment and Public Health, Nagasaki, Japan.

⁵ Stress Research Institute, Stockholm University, Stockholm, Sweden.

*Correspondence to:

1. Department of International Health, Institute of Tropical Medicine (NEKKEN),

Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan

Tel: +81-095-819-7853, Fax: +81-095-819-7869

Taro Yamamoto

E-mail: y-taro@nagasaki-u.ac.jp

2. Stress Research Institute, Stockholm University, SE-106 91 Stockholm, Sweden

ABSTRACT

Objectives This study aims to examine the association between self-rated health (SRH) and levels of C-reactive protein (CRP) among adults aged 45 to 101 years old in rural areas of China, and to explore the role of education in the association.

Design Cross-sectional study

Setting The study population was derived from two databases in China: Nanping (Nanping project, NP) and the China Health and Retirement Longitudinal Study (CHARLS).

Participants 646 participants from a rural area of NP, and 8555 rural participants from CHARLS.

Methods CRP was measured using a high sensitivity sandwich enzyme immunoassay in NP and immunoturbidimetric assay in CHARLS. SRH was assessed by self-rated health questionnaires and categorized into good and poor. Education was measured by maximum years of schooling and dichotomized into illiterate and literate. Multivariate linear regression models were used to study the associations.

Results Compared to people with good SRH, those with poor SRH had higher levels of CRP in NP (β =0.16, 95%CI -0.02 to 0.34) and in CHARLS (β =0.07, 95%CI 0.02 to 0.11). This was especially in men and literate people after adjusting for potential confounders. Similar findings were observed in the pooled population (β =0.08, 95%CI 0.03 to 0.12), in men (β =0.13, 95%CI 0.06 to 0.20) and in literate people (β =0.12, 95%CI 0.06 to 0.18).

Conclusion Poor SRH may be a predicator of elevated levels of CRP among middle-

aged and older people in rural areas, especially in men and literate people.

Keywords Self-rated health; C-reactive protein; Education level

Strengths and limitations of this study

- Our study population comes from two databases, including one national representative sample derived from CHARLS, making our results highly generalizable to the national rural population of China.
- CRP is an objective measure performed by health professionals using validated methods, making it more reliable than subjective measures.
- The application of both linear and logistic regressions ensured our confidence in the findings and facilitated the interpretation of the results.
- It is a cross-sectional study design, thus it is difficult to demonstrate the temporality.
- Convenient sampling in the NP study may bias the results towards over estimation, because the small sample size may limit the study power and increase the risk of false positive findings. Thus, the results from the NP study should be referred to with caution. However, similar results were observed using a national representative sample from CHARLS.

 Text

INTRODUCTION

C-reactive protein (CRP), a marker of systemic inflammation, has been shown to be involved in crucial pathogenesis in a variety of negative health outcomes, including cardiovascular diseases,[1, 2] diabetes,[3] cancer,[4] and cognitive decline.[5] Since the value of CRP in the prediction of prognoses in health outcomes has been recognized, it is important, from a public health perspective, to identify people at risk of elevated CRP in an efficient and simple way.

It is well known that self-rated health (SRH) can be simply measured through an individual's subjective perception of his own health, thus many health authorities have introduced SRH for surveillance.[6] SRH has been featured as a strong predictor for functional ability,[7] onset of chronic diseases,[8] and mortality.[9, 10] The association between SRH and CRP has been tested in previous works, but the results have been inconsistent.[11-14] These discrepancies may be due to differences in characteristics of the study populations. For example, a Japanese study demonstrated an association between poor SRH and elevated CRP value in women, but not in men (age range 40-69).[14] Among hospital-based studies, poor SRH was associated with elevated CRP in female patients (mean age $63.3\pm8.7/62.5\pm8.9$ in control/intervention group) with coronary heart disease,[12] but not in some patients with breast cancer (mean age 55.2 ± 8.4).[15]

It is noteworthy that studies concerning the association between SRH and CRP were mostly conducted in developed countries where the study populations were relatively well educated. [11-14] It has been shown that people with different education levels have different perceptions of health.[16] This suggests that the association between SRH and CRP may also be different

among people with different educational levels.[17] However, to our knowledge, no study has focused on the difference between illiterate and literate people. In China, despite the decrease in illiteracy from 1990 to 2010, there continues to be large differences between urban and rural areas: the rate of illiteracy in rural areas is more than two times that of urban areas.[18] Considering the lack of resources in rural areas, identifying people at risk of negative health outcomes using a simple measure such as SRH is warranted.

In the current study, we use two databases from China: to examine the association between SRH and CRP among middle-aged and older people in rural areas, and to explore whether the SRH-CRP association varies across age, sex and education levels.

ez ez.

METHODS

Study population

Nanping project (NP)

NP is a 2015, voluntary participation, cross-sectional study consisting of residents aged 18 years or older from one county of Nanping City in Fujian Province, China. Seven villages were selected based on recommendations from local health workers, since the residents in these areas are known to be highly cooperative.

As showed in Figure 1, a total of 797 people were enrolled. To match with the age range of study population from the CHARLS, we excluded 98 participants under 45 years old. Those with CRP concentrations higher than 6.25 mg/L in dried blood spots (DBS), which is comparable to 10 mg/L at serum level[19] (n=25), were excluded due to potential acute inflammatory conditions. After further excluding people with missing information on CRP values (n=3) and SRH (n=25), 646 people remained in our current study.

China Health and Retirement Longitudinal Study (CHARLS)

The CHARLS is a nationally representative longitudinal study. Eligible people were selected through a multistage probability sampling, and detailed descriptions of sampling method are provided in the users' guide.[20] In this current study, we used data from the baseline survey in 2011 because the CRP data was only available in that year. This is a secondary analysis of the CHARLS public database.

Overall, 17430 people were examined at baseline (Figure 1). People who lived in communities, or in both villages and communities (n=4562), and had CRP>10mg/L (n=429) were excluded. We further excluded people with missing data on CRP (n=3810) and SRH (n=74). Finally, 8555 (69%) people were included in our analysis.

Self-rated health (SRH)

SRH was assessed by one question: 'In general how would you rate your health?' Response options were 'good', 'average', 'poor', and 'very poor'.

C-reactive protein (CRP)

NP

Finger prick blood samples were collected by health workers using a filter paper, known as DBS. We kept the DBS at room temperature for a few days after being desiccated during the investigation period, then stored them in the Fujian Medical University at –20°. We used high sensitivity sandwich enzyme immunoassay method to measure CRP concentrations by applying monoclonal antibodies.[19] Further details of the protocols have been presented elsewhere.[21]

CHARLS

The venous blood samples were collected by trained staff from local Chinese Center for Disease Control and Prevention (China CDC). Plasma samples were collected and preserved in 0.5 mL cryovial at -20°C, delivered to Beijing CDC within 2 weeks. Plasma CRP was determined by the immunoturbidimetric assay method at Capital Medical University.[22]

Covariates

In both cohorts, all participants were interviewed face-to-face by trained interviewers using a questionnaire that covers information on age, sex, education, marital status, smoking, alcohol consumption, and health status. Height and weight were measured by interviewers using standard anthropometers.

Education level was determined by maximum years of schooling: 0 year (illiterate), 1-6 years (elementary school), 7-9 years (junior high school), 10-12 years (senior high school), >12 years (college or above). Due to the fact that more than 30% of both the NP and CHARLS samples were illiterate, we dichotomized education into 0 year (illiterate) and >0 year (literate). Age was dichotomized as 45-60 years versus \geq 60 years old, and marital status as married versus non-married. BMI was calculated by dividing weight (kg) by height squared (m²) and categorized as underweight (<18.5), normal weight (18.5-24.99), overweight (25-29.99), and obese (\geq 30). Smoking was dichotomized into current smokers and non-current smokers (including former smokers). Alcohol consumption was categorized as regular drinkers (more than 3 times per week) and non-regular drinkers.

Health status was measured by asking the participants whether they had any moderate/severe

BMJ Open

disease symptoms (e.g., fever) in the last month, or used antihypertensive or antidiabetic medications in the NP, and whether they had ever been diagnosed by a doctor with any diseases (e.g., hypertension), or often suffered from any pain currently in CHARLS. People answering positively were categorized as unhealthy, otherwise healthy.

Statistical analysis

First, data from the NP and CHARLS were analyzed separately. We applied one-way ANOVA to examine the differences of CRP in characteristics in each dataset by using F-distribution. The CRP variable was log-transformed because it was not normally distributed. The association between SRH and CRP was estimated by β -coefficient and a 95% confidence interval (CI) using linear regression in two datasets. The first estimate was respective; in the second, datasets were pooled. Fixed-effect meta-analysis was used to examine the heterogeneity. Then we reran the linear regression using the pooled dataset.

Next, to facilitate the interpretation of the association between SRH and CRP, multivariate logistic analysis was performed to estimate odds ratios (ORs) and 95% CIs in the two datasets separately. We categorized CRP into two levels: low (<3mg/L) and high ($\geq3mg/L$).[23] Using fixed-effect meta-analysis to examine the heterogeneity of two datasets again. Later, logistic regression was conducted in the combined population.

Age, sex and education were introduced into the basic-adjusted model. Further, we additionally adjusted for marital status, smoking, alcohol consumption, BMI, and health status.[24, 25] All analyses were repeated in the stratified analyses by age, sex and education.

In addition, we conducted multiple imputation for missing data. For further sensitivity analyses,

we performed additional analyses: 1) We adjusted for psychological distress in the NP and depression in CHARLS; 2) We used sampling weights to derive national estimates in CHARLS; [20] 3) We re-ran linear regression after excluding illiterate participants in order to compare with previous studies; 4) Since the social economic status-psychological well-being association was strong in poor areas,[26] we further adjusted for self-rated household income in the NP and self-rated household living standards in CHARLS as their assessment of social economic status were different.

All statistical analyses were performed with Stata 13.0 (Stata Corp, College Station, TX, USA).

RESULTS

Characteristics of the participants

The CRP levels across different characteristics of participants were compared in each dataset separately. Table 1 shows that in both datasets that older age people, higher BMI's, poorer SRH, or an unhealthy status were more likely to have elevated levels of CRP. The findings were inconsistent with sex, education, marital status, smoking and alcohol consumption in the two datasets. People with missing CRP values in NP and CHARLS were better educated and reported better health status compared to those who remained in the analyses (data not shown).

Page 11 of 27	Page	11	of 27	
---------------	------	----	-------	--

			BMJ Open		mjopen-2018-027659 on	
Table 1 CRP values across of		he study population	on		<u>د</u>	
	<u>NP (n=646)</u> CRP ^a	F	Р	CHARLS (n=8 CRP	$\frac{(333)}{F}$	Р
Age		(1, 644)=14.04	<0.001		(1, 8551)=89.38	<0
45-60	0.6 (0.3 to 1.2)	(1,011) 1101	0.001	0.9 (0.5 to 1.7)	Ť	0.
≥60	0.8 (0.4 to 1.8)			1.1 (0.6 to 2.1)	2019.	
Sex		(1, 644)=6.53	0.011	((1, 8546)= 5 .94	0.0
Men	0.6 (0.3 to 1.3)			1.0 (0.5 to 2.0)	2	
Women	0.8 (0.4 to 1.7)			0.9 (0.5 to 1.8)	oaded	
Education		(1, 644)=8.46	0.004	· · · · · ·	(1, 8549)=3.01	0.3
Illiterate	0.9 (0.4 to 1.8)			1.0 (0.5 to 2.0)	http	
Literate	0.6 (0.3 to 1.3)			0.9 (0.5 to 1.9)	://bm	
Marital status		(1, 644)=0.47	0.495	, í	(1, 8553)=22.48	<0
Married	0.7 (0.3 to 1.5)			0.9 (0.5 to 1.9)	n.bn	
Non-married	0.7 (0.4 to 1.7)			1.1 (0.6 to 2.4)		
Smoking		(1, 644)=0.53	0.467		(1, 8552) = ₫.20	0.0
Current smokers	0.6 (0.3 to 1.4)			1.0 (0.5 to 2.0)		
Non-current smokers	0.7 (0.4 to 1.6)			0.9 (0.5 to 1.9)	April 19,	
Alcohol consumption		(1, 644)=10.94	0.001		(1, 8550)=9.23	0.6
Regular drinkers	0.5 (0.3 to 1.1)			0.9 (0.5 to 1.9)	2 4	
Non-regular drinkers	0.8 (0.4 to 1.6)			1.0 (0.5 to 1.9)	by gu	
BMI		(3, 642)=17.91	< 0.001		$(3, 7360) = \frac{9}{2}3.38$	<0
Underweight (<18.5)	0.5 (0.2 to 1.4)			0.8 (0.5 to 1.9)	Prote	
Normal weight (18.5-25)	0.6 (0.3 to 1.1)			0.8 (0.5 to 1.7)	ecter	
Overweight (25-30)	1.2 (0.6 to 2.3)			1.2 (0.7 to 2.3)	d by	
		iew only - http://bmi			rotected by copyright.	

Page 12 of 27

			BMJ Open		mjopen-2018-027659	
Obese (≥30)	1.6 (1.0 to 4.4)			1.9 (0.9 to 3.3)	7659	
Self-rated health	× ,	(3, 642)=2.36	0.071		(3, 8551) = 20.63	< 0.001
Good	0.6 (0.3 to 1.7)			0.9 (0.5 to 1.8)	9	
Average	0.7 (0.3 to 1.5)			0.9 (0.5 to 1.8)	November 2019	
Poor	0.8 (0.4 to 1.5)			1.0 (0.6 to 2.1)	nber	
Very poor	1.0 (0.5 to 2.3)			1.1 (0.6 to 2.3)	2019	
Health status ^b		(1, 643)=9.47	0.002		(1, 8488) = §8.03	< 0.001
Healthy	0.5 (0.3 to 1.3)			0.8 (0.5 to 1.7)		
Unhealthy	0.8 (0.4 to 1.6)			1.0 (0.5 to 2.0)	wnloaded	
Healthy: no such report. ^c Missing values: NP: 1 missing in health s CHARLS: 2 missing in a consumption, 1191 missi	nge, 7 missing in sex, 4 n		on,1 missir	ng in smoking, 3 m	open.bmj.condon April 19, 2024 by guest. Protected by copyright	
	For peer rev	iew only - http://bmj	jopen.bmj.co	om/site/about/guidel	ب ة ines.xhtml	

SRH and CRP

Table 2 presents the association between SRH and CRP in the two individual populations. In the NP, a borderline statistically significant association was observed between very poor SRH and elevated levels of CRP (β =0.39, 95%CI -0.07 to 0.85) in basic-adjusted model, while the association was attenuated after adjusting for confounders (β =0.29, 95%CI -0.15 to 0.73). In CHARLS, poor and very poor SRH were both associated with higher CRP (β =0.06, 95%CI 0 to 0.12; β =0.11, 95%CI 0.01 to 0.22). As there were similar effects on CRP in both two datasets, we combined 'good' and 'average' as good SRH, 'poor' and 'very poor' as poor SRH, and found that poor SRH was statistically significantly associated with higher levels of CRP both in NP (β =0.16, 95%CI -0.02 to 0.34) and CHARLS (β =0.07, 95%CI 0.02 to 0.11) (Table 2).

		Model1 ^a		Model2 ^b	
	Ν	β (95%CI)	Р	β (95%CI)	Р
NP					
Good	188	Ref.		Ref.	
Average	270	-0.03 (-0.22 to 0.17)	0.792	-0.05 (-0.24 to 0.14)	0.589
Poor	165	0.12 (-0.10 to 0.34)	0.292	0.10 (-0.11 to 0.32)	0.349
Very Poor	23	0.39 (-0.07 to 0.85)	0.093	0.29 (-0.15 to 0.73)	0.202
Good/Poor	458/188	0.17 (-0.01 to 0.35)	0.067	0.16 (-0.02 to 0.34)	0.07′
CHARLS					
Good	1794	Ref.		Ref.	
Average	4157	0.01 (-0.04 to 0.06)	0.613	0 (-0.05 to 0.06)	0.91
Poor	2157	0.10 (0.04 to 0.15)	0.001	0.06 (0 to 0.12)	0.05
Very Poor	447	0.16 (0.06 to 0.25)	0.001	0.11 (0.01 to 0.22)	0.03
Good/Poor	5951/2604	0.10 (0.05 to 0.14)	< 0.001	0.07 (0.02 to 0.11)	0.004
NP+CHARLS					
Good/Poor	6409/2792	0.11 (0.06 to 0.15)	< 0.001	0.08 (0.03 to 0.12)	0.00

Table 2 Association between self-rated health and C-reactive protein	ein
--	-----

^a Adjusted for age, sex, education

^b Adjusted for age, sex, education, marital status, smoking, alcohol consumption, BMI, health status

As the same direction and a very low level of heterogeneity (I-squared< 0.001%) were observed in the two datasets (data not shown), we pooled the data and re-ran the linear regression analyses in the combined populations. The statistically significant SRH-CRP association was observed again in the pooled population (β =0.08, 95%CI 0.03 to 0.12) (Table2).

The roles of age, sex, and education in the association between SRH and CRP

The association between SRH and CRP stratified by age, sex, education is showed in Figure 2. In middle-aged people, worse SRH was associated with higher CRP both in NP (β =0.42, 95%CI 0.14 to 0.71) and CHARLS (β =0.06, 95%CI -0.01 to 0.12). Among older people, a similar trend was observed in CHARLS (β =0.08, 95%CI 0.02 to 0.15), but not in the NP. When stratified by sex, we found a statistically significant SRH-CRP association among men both in NP (β =0.27, 95%CI -0.03 to 0.57) and CHARLS (β =0.12, 95%CI 0.05 to 0.19), but not in women. In a stratified analysis by education, the association between SRH and CRP was seen in literate people both in NP (β =0.26, 95%CI 0.02 to 0.51) and CHARLS (β =0.11, 95%CI 0.05 to 0.16), but not in illiterate people.

In the pooled population, the SRH-CRP association was repeated in the middle-aged (β =0.08, 95%CI 0.02 to 0.14), older people (β =0.08, 95%CI 0.02 to 0.15), men (β =0.13, 95%CI 0.06 to 0.20), and literate people (β =0.12, 95%CI 0.06 to 0.18) (Figure 2).

Furthermore, we applied a logistic regression based on the pooled data. The odds ratio (OR) for having elevated levels of CRP in those with poor SRH was 1.18 in the total population (95%CI 1.03 to 1.37), 1.26 in men (95%CI 1.02 to 1.56), and 1.23 in the literate people (95%CI 1.03 to 1.48). Similar ORs were observed in the middle-aged and older people (Supplementary File: Table S1).

Additional analysis

BMJ Open

Similar results were observed using data from multiple imputations for missing data and from sensitivity analyses further adjusting for psychological distress in the NP and depression in CHARLS. Identical trends of age and sex differences as main results were observed in literate people in both datasets, but not in the illiterate. Additional adjustment for socio-economic status did not result in any further changes.

Patient and public involvement

There were no participants involved in the development of this study.

DISCUSSION

In this study, based on 9201 rural area residents from two databases, we found statistically significant associations between poor SRH and elevated levels of CRP in middle-aged and older people, especially in men and the literate.

Our finding that poorer SRH is associated with elevated levels of CRP is in line with previous studies that included participants with similar age ranges as our study participants.[11, 14] In addition, we found that poor SRH was associated with elevated CRP level in literate participants, but not in illiterate ones, which was consistent with one previous study.[17] Indeed, similar results were also shown in studies on SRH and mortality. [27, 28] The likely explanation may be that illiterate people tend to have poorer health-related knowledge and access to health care,[16] and thus may misinterpret the feeling that they have in health. [29] It has been shown that poor SRH in the less educated people mainly represents less serious diseases.[30] In fact, we found that illiterate people were more likely to rate their health as poor and to report illness or pain both in NP and CHARLS (Supplementary File: Table S2). In addition, illiterate people may have to withstand more pressure as they have less social and

financial resources, thus, other factors rather than actual health condition may contribute to the reported poor SRH.

The association between poor SRH and elevated levels of CRP among older people (aged≥60 years) was observed in CHARLS, but not in NP. And in both populations, poor SRH was only associated with elevated levels of CRP in men, not in women. These findings may also be explained by education levels in each subgroup. That is, the proportion of illiterate people was relatively higher in older adults in NP (76.2%) than in CHARLS (58.3%) as shown in Table S2 (Supplementary File), and there was a higher proportion of illiterate women in both populations. Furthermore, after excluding the illiterate people, we observed similar age and sex differences in the associations between SRH and CRP among the literate people, which was the same as in the main results. This suggests that education might play a role in the SRH-CRP association. In addition, consistent findings were also observed in urban areas of CHARLS (data not shown), furthermore, adjusting for social economic status did not change SRH-CRP association (data not shown), suggesting social economic status may not be a major contributor to the SRH-CRP association.

We found that SRH-CRP associations were only observed in men, and not in women. Possibly this sex-differential finding was bound to the differences in reporting SRH by sex. Previous studies have shown that the poor SRH in women can reflect both serious and non-serious diseases, whereas in men it tends to reflect serious diseases.[31] Broad dimensions of health perceptions may lead to lesser accuracy of SRH in women. Second, educational difference between sexes can well explain the different findings between our study and the Iwate-KENCO study in Japan.[14] Our study population consisted of rural people in China with features of low literacy, especially in women, whereas in the Iwate-KENCO study, almost half of the

BMJ Open

participants had more than 9 years of schooling.

SRH is an inclusive and dynamic evaluation of physical and psychological health, and social status. It has been shown that SRH may reflect an individual's resources (e.g., education level), [32] influence stress levels and health behaviors (e.g., physical activity), and affect immune function.[33] Poor SRH may also reflect a poor current physical (e.g., inaccessibility to health service) and social environment (e.g., limited social network), these negative circumstances can limit ones coping ability and produce psychological stress. It is known that stress can activate the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis, and contribute to the production of stress hormones, leading to the secretion of CRP.[34, 35] In addition, people with poor SRH were more likely to be physically inactive,[36] and having an inactive lifestyle has been suggested to potentially weaken the immune system and facilitate the inflammation process through the release of pro-inflammatory adipokines.[37] Furthermore, poor SRH may also reflects poor medication adherence,[38] such as low aspirin adherence, which has been associated with elevated levels of CRP in the first 3 months after acute coronary syndrome.[39]

CONCLUSION

This study provides evidence that SRH, a simple measure, may be used as an indicator of illphysical health among middle-aged and older literate people, but not among the illiterate people, in rural area. Future studies are needed to confirm our results and extend these findings to larger and more diverse populations, or with other health outcomes. Identification of simple health indictors for illiterate people are warranted.

What is already known on this subject?

- Inconsistent findings of the association between self-rated health and C-reactive protein in developed countries.
 - Currently, no study concerning the difference between literate and illiterate people on the self-rated health and C-reactive protein association.

What this study adds?

- Self-rated health may serve as a relevant health predictor for people living in rural areas of developing countries.
- Poor self-rated health is associated with elevated levels of C-reactive protein in literate people, but not in the illiterate people. This suggests that education can improve the implementation and accuracy of SRH measurement by facilitating the understanding of correct health concepts.

Acknowledgments We would like to express our sincere gratitude to the participants and local staff in NP project. We are grateful for those supporters: Fukui University (Aki Yazawa); National Center for Global Health and Medicine, Japan (Yosuke Inoue); Nagasaki Prefectural Institute of Environment and Public Health (Guoxi Cai); Fujian Medical University (Fei He, Jie Chen); Fujian Provincial Center for Disease Control and Prevention (Meng Huang) during the data collection in NP Project. Data from China Health and Retirement Longitudinal Study (CHARLS) were collected by the National School of Development at Peking University, China. We appreciated to University of Copenhagen (Tianwei Xu); Fujian Provincial Center for Disease Control and Prevention (Sabin Nundu) for providing valuable comments in analysis and interpretation of data.

Contributors HW, KP and RT conceptualized the study. RT analyzed the data and drafted the manuscript. HW, KP, GC, TY contributed to critical revisions of the manuscript. RT and HW

BMJ Open

are responsible for ensuring the integrity and accuracy of the study. All authors have read and approved the final manuscript.

Funding This study is financed by the Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Japan (Raoping Tu); the Stockholm University (Hui-Xin Wang); the Ministry of Education of Taiwan, the Swedish National Graduate School on Ageing and Health (SWEA), and Gamla Tjänarinnor Foundation (Kuan-Yu Pan). NP Project was financially supported by the JSPS KAKENHI from the Japan Society for the Promotion of Science (13J06172).

Competing Interests None declared.

Patient consent Not required.

Ethics approval The Ethics Committee for Medical Research at the University of Tokyo (No. 10515-(1)) and the Ethics Committee of the Institute of Tropical Medicine at Nagasaki University (No. 120910100-5) approved the study protocol of NP. The Medical Ethics Committee of Peking University approved the research protocol of CHARLS.

Provenance and peer review Not commissioned; externally peer reviewed

Data sharing statement All of the CHARLS data will be accessible to researchers around the world at at the CHARLS project website (<u>http://charls.pku.edu.cn/en</u>). No additional data available.

Figure legends

Figure 1 Flowchart of the study populations in NP and CHARLS

Figure 2 Linear association between poor self-rated health and elevated levels of CRP in NP, CHARLS, and combined populations of NP and CHARLS: stratified by age, sex and education. SRH is dichotomized into two groups (poor to very poor versus good to average). Models are simultaneously adjusted for age, sex, education, marital status, smoking, alcohol consumption, BMI, health status.

SUPPLEMENTARY FILE

 Table S1 Association between self-rated health and levels of C-reactive protein: stratified by

 age, sex and education (combined population, logistic)

Table S2 Characteristics of the study sample: stratified by age, sex, education

References

1 Black PH, Garbutt LD. Stress, inflammation and cardiovascular disease. *Journal of psychosomatic research* 2002;52:1-23.

2 Ridker PM. From C-Reactive Protein to Interleukin-6 to Interleukin-1. *Circulation Research* 2016;118:145-56.

3 Barzilaym JI, Freedland ES. Inflammation and its relationship to insulin resistance, type 2 diabetes mellitus, and endothelial dysfunction. *Metabolic syndrome and related disorders* 2003;1:55-67.

4 Wang J, Lee IM, Tworoger SS, *et al.* Plasma C-reactive protein and risk of breast cancer in two prospective studies and a meta-analysis. *Cancer Epidemiol Biomarkers Prev* 2015;24:1199-206.

5 Panza F, Solfrizzi V, Logroscino G, *et al.* Current epidemiological approaches to the metabolic-cognitive syndrome. *J Alzheimers Dis* 2012;30 Suppl 2:S31-75.

6 Salomon JA, Nordhagen S, Oza S, *et al.* Are Americans feeling less healthy? The puzzle of trends in self-rated health. *Am J Epidemiol* 2009;170:343-51.

7 Idler EL, Kasl SV. Self-ratings of health: do they also predict change in functional ability? *J Gerontol B Psychol Sci Soc Sci* 1995;50:S344-53.

8 Latham K, Peek CW. Self-Rated Health and Morbidity Onset Among Late Midlife U.S. Adults. *The Journals of Gerontology Series B: Psychological Sciences and Social Sciences* 2012;68:107-16.

9 DeSalvo KB, Bloser N, Reynolds K, *et al.* Mortality prediction with a single general selfrated health question. A meta-analysis. *J Gen Intern Med* 2006;21:267-75.

10 Singh-Manoux A, Dugravot A, Shipley MJ, *et al.* The association between self-rated health and mortality in different socioeconomic groups in the GAZEL cohort study. *Int J Epidemiol*

2007;36:1222-8.

11 Christian LM, Glaser R, Porter K, *et al.* Poorer self-rated health is associated with elevated inflammatory markers among older adults. *Psychoneuroendocrinology* 2011;36:1495-504.

12 Janszky I, Lekander M, Blom M, *et al.* Self-rated health and vital exhaustion, but not depression, is related to inflammation in women with coronary heart disease. *Brain Behav Immun* 2005;19:555-63.

13 Shanahan L, Bauldry S, Freeman J, *et al.* Self-rated health and C-reactive protein in young adults. *Brain, Behavior, and Immunity* 2014;36:139-46.

14 Tanno K, Ohsawa M, Onoda T, *et al.* Poor self-rated health is significantly associated with elevated C-reactive protein levels in women, but not in men, in the Japanese general population. *Journal of Psychosomatic Research* 2012;73:225-31.

15 Orre IJ, Reinertsen KV, Aukrust P, *et al.* Higher levels of fatigue are associated with higher CRP levels in disease-free breast cancer survivors. *J Psychosom Res* 2011;71:136-41.

16 Spuling SM, Huxhold O, Wurm S. Predictors of Self-Rated Health: Does Education Play a Role Above and Beyond Age? *J Gerontol B Psychol Sci Soc Sci* 2017;72:415-24.

17 Dowd JB, Zajacova A. Does self-rated health mean the same thing across socioeconomic groups? Evidence from biomarker data. *Ann Epidemiol* 2010;20:743-9.

18 Guo S, Guo Y. Spotlight on China: Changes in education under China's market economy: Springer 2016.

19 Brindle E, Fujita M, Shofer J, *et al.* Serum, plasma, and dried blood spot high-sensitivity C-reactive protein enzyme immunoassay for population research. *J Immunol Methods* 2010;362:112-20.

20 Zhao Y, Strauss J, Yang G, et al. China health and retirement longitudinal study-2011-2012 national baseline users' guide. Beijing: National School of Development, Peking University 2013.

BMJ Open

21 Yazawa A, Inoue Y, Cai G, *et al.* Epstein-Barr virus antibody titer as a stress biomarker and its association with social capital in rural Fujian communities, China. *Am J Hum Biol* 2018:e23135.

22 Zhao Y, Crimmins E, Hu P, *et al.* CHARLS Blood Sample Users' Guide. National School of Development, Peking University 2014.

23 Pearson TA. Markers of Inflammation and Cardiovascular Disease: Application to Clinical and Public Health Practice: A Statement for Healthcare Professionals From the Centers for Disease Control and Prevention and the American Heart Association. *Circulation* 2003;107:499-511.

24 Kiecolt-Glaser JK, Gouin JP, Hantsoo L. Close relationships, inflammation, and health. *Neurosci Biobehav Rev* 2010;35:33-8.

25 Zheng H, Thomas PA. Marital status, self-rated health, and mortality: overestimation of health or diminishing protection of marriage? *Journal of health and social behavior* 2013;54:128-43.

26 Howell RT, Howell CJ. The relation of economic status to subjective well-being in developing countries: a meta-analysis. *Psychol Bull* 2008;134:536-60.

27 Dowd JB, Zajacova A. Does the predictive power of self-rated health for subsequent mortality risk vary by socioeconomic status in the US? *Int J Epidemiol* 2007;36:1214-21.

28 Huisman M, van Lenthe F, Mackenbach J. The predictive ability of self-assessed health for mortality in different educational groups. *Int J Epidemiol* 2007;36:1207-13.

29 Franks P, Gold MR, Fiscella K. Sociodemographics, self-rated health, and mortality in the US. *Social Science & Medicine* 2003;56:2505-14.

30 Regidor E, Guallar-Castillon P, Gutierrez-Fisac JL, *et al.* Socioeconomic variation in the magnitude of the association between self-rated health and mortality. *Ann Epidemiol* 2010;20:395-400.

 31 Benyamini Y, Leventhal EA, Leventhal H. Gender differences in processing information for making self-assessments of health. *Psychosomatic Medicine* 2000;62:354-64.

32 Benyamini Y. Why does self-rated health predict mortality? An update on current knowledge and a research agenda for psychologists. *Psychol Health* 2011;26:1407-13.

33 Lekander M, Elofsson S, Neve IM, *et al.* Self-rated health is related to levels of circulating cytokines. *Psychosom Med* 2004;66:559-63.

34 Coussons-Read ME, Okun ML, Nettles CD. Psychosocial stress increases inflammatory markers and alters cytokine production across pregnancy. *Brain Behav Immun* 2007;21:343-50.

35 Shivpuri S, Gallo LC, Crouse JR, *et al.* The association between chronic stress type and C-reactive protein in the multi-ethnic study of atherosclerosis: does gender make a difference? *J Behav Med* 2012;35:74-85.

36 Molarius A, Berglund K, Eriksson C, *et al.* Socioeconomic conditions, lifestyle factors, and self-rated health among men and women in Sweden. *European journal of public health* 2007;17:125-33.

37 Gleeson M, Bishop NC, Stensel DJ, *et al.* The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. *Nat Rev Immunol* 2011;11:607-15.

38 DiMatteo MR, Haskard KB, Williams SL. Health beliefs, disease severity, and patient adherence: a meta-analysis. *Medical care* 2007:521-8.

39 Kronish IM, Rieckmann N, Shimbo D, *et al.* Aspirin adherence, aspirin dosage, and C-reactive protein in the first 3 months after acute coronary syndrome. *Am J Cardiol* 2010;106:1090-4.

Population N	(Good/Poor)		β (95% CI)	Р
I.NP				
45≤Age<60	208/59		0.42 (0.14 to 0.71)	₩ .003
Age≥60	250/129	+	0.03 (-0.20 to 0.26)	
Men	192/69	_	0.27 (-0.03 to 0.57)	iri 190.075
Women	266/119		0.10 (-0.12 to 0.32)	as
Illiterate	174/91		0.04 (-0.22 to 0.30)	D .743
Literate	284/97	0	0.26 (0.02 to 0.51)	1390.034 Momjope
2.CHARLS		6		n-201
45≤Age<60	3468/1235		0.06 (-0.01 to 0.12)	8 .074
Age≥60	2481/1369		0.08 (0.02 to 0.15)	99.013 99.013
Men	2989/1053	+	0.12 (0.05 to 0.19)	₹.001
Women	2957/1549	• 2.	0.02 (-0.04 to 0.08)	en €.420 20
Illiterate	1767/1068		0 (-0.08 to 0.07)	.960 .960
Literate	4181/1535	•- 2	0.11 (0.05 to 0.16)	Open: first pablished as 10-7136-001 136-001 136-001 136-001 136-001 1918-001 19
3.NP+CHARLS				n mo
45 <u><</u> Age<60	3676/1294	→	0.08 (0.02 to 0.14)	.013
Age≥60	2731/1498	→	0.08 (0.02 to 0.15)).012
Men	3181/1122		0.13 (0.06 to 0.20)	₹ 0.001
Women	3223/1668		0.03 (-0.03 to 0.09)	0.276 April 9.862
Illiterate	1941/1159	+	0.01 (-0.07 to 0.08)	
Literate	4465/1632		0.12 (0.06 to 0.18)	9.001 9.001 9.001 9.001 9.001

Figure 2 Linear association between poor self-rated health and elevated levels of CRP in NP, CHARLS, and combined gopulations of NP and CHARLS: stratified by age, sex and education. SRH is dichotomized into two groups (poor to very poor versus good to average). Models are simultaneously adjusted for age, sex, education, marital status, smoking, alcohol consumption, BMI, health status.

Page 26 of 27

SUPPLEMENTARY FILE

	N (Good/Poor)	Self-rated health (Good/Poor)	Р
Total	6409/2792	1.18 (1.03 to 1.37)	0.020
Age			
45-60	3676/1294	1.22 (0.98 to 1.52)	0.076
≥60	2731/1498	1.17 (0.97 to 1.41)	0.098
Sex			
Men	3181/1122	1.26 (1.02 to 1.56)	0.031
Women	3223/1668	1.12 (0.92 to 1.35)	0.270
Education			
Illiterate	1941/1159	1.12 (0.89 to 1.41)	0.339
Literate	4465/1632	1.23 (1.03 to 1.48)	0.025

Table S1Association between self-rated health and levels of C-reactiveprotein: stratified by age, sex and education (combined population, logistic)

Adjusted for age, sex, education, marital status, smoking, alcohol consumption, BMI, health status.

	NP			CHARLS		
	Illiterate	literate	Р	Illiterate	literate	Р
Age			< 0.001			< 0.001
45-60	63 (23.8)	204 (53.5)		1182 (41.7)	3519 (61.6)	
≥60	202 (76.2)	177 (46.5)		1652 (58.3)	2196 (38.4)	
Sex			< 0.001			< 0.001
Men	77 (29.1)	184 (48.3)		638 (22.5)	3402 (59.6)	
Women	188 (70.9)	197 (51.7)		2194 (77.5)	2310 (40.4)	
Self-rated health			0.067			< 0.001
Good	74 (27.9)	114 (29.9)		517 (18.2)	1277 (22.3)	
Average	100 (37.7)	170 (44.6)		1250 (44.1)	2904 (50.8)	
Poor	82 (30.9)	83 (21.8)		878 (31)	1278 (22.4)	
Very poor	9 (3.4)	14 (3.7)		190 (6.7)	257 (4.5)	
Health status			0.002			< 0.001
Healthy	37 (14)	90 (23.7)		605 (21.5)	1483 (26.2)	
Unhealthy	228 (86)	290 (76.3)		2213 (78.5)	4186 (73.8)	

BMJ Open

The role of education in the association between self-rated health and levels of C-reactive protein: a cross-sectional study in rural areas of China

	I
Journal:	BMJ Open
Manuscript ID	bmjopen-2018-027659.R1
Article Type:	Original research
Date Submitted by the Author:	23-Feb-2019
Complete List of Authors:	Tu, Raoping; Nagasaki University Institute of Tropical Medicine, Department of International Health; Nagasaki University Graduate School of Biomedical Sciences, Leading Program Pan, Kuan-Yu; Karolinska Institutet, Stockholm University, Department of Neurobiology, Care Sciences and Society (NVS), Aging Research Center Cai, Guoxi; Nagasaki Prefectural Institute of Environment and Public Health; Nagasaki University Institute of Tropical Medicine, Department of International Health Yamamoto, Taro; Nagasaki University Institute of Tropical Medicine, Department of International Health Wang, Hui-Xin; Stockholm University, Stress Research Institute; Karolinska Institutet, Department of Neurobiology, Care Sciences and Society (NVS), Aging Research Center
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, SOCIAL MEDICINE

SCHOLARONE[™] Manuscripts

2		
3 4	1	Title page
5		
6 7	2	The role of education in the association between self-rated health and levels of C-
8		
9	3	reactive protein: a cross-sectional study in rural areas of China
10 11		
12	4	
13		
14 15	5	Author's names and affiliation:
16		
17	6	Raoping Tu ^{1,2} , Kuan-Yu Pan ³ , Guoxi Cai ^{1,4} , Taro Yamamoto ^{1,*} , Hui-Xin Wang ^{3,5,*}
18		
19 20	7	¹ Department of International Health, Institute of Tropical Medicine (NEKKEN),
21		
22	8	Nagasaki University, Nagasaki, Japan.
23		
24 25	9	² Leading Program, Graduate School of Biomedical Sciences, Nagasaki University,
26	-	
27	10	Nagasaki, Japan.
28		
29 30	11	³ Aging Research Center, Department of Neurobiology, Care Sciences and Society
31		riging research center, Department of Redicorology, care sciences and scenery
32	12	(NVS), Karolinska Institutet, Stockholm University, Stockholm, Sweden.
33 34	12	
35	13	⁴ Nagasaki Prefectural Institute of Environment and Public Health, Nagasaki, Japan.
36	15	Rugusuki i Tereeturui institute of Environment une Fuorie Freutui, Rugusuki, supun.
37	14	⁵ Stress Research Institute, Stockholm University, Stockholm, Sweden.
38 39	14	Siless Research Institute, Stockholm Chiversity, Stockholm, Sweden.
40	15	
41	15	
42 43	16	
44	10	
45	17	*Correspondence to:
46	17	Correspondence to.
47 48	10	1. Department of International Health, Institute of Tropical Medicine (NEKKEN),
49	18	1. Department of international Health, institute of fropical Medicine (NEKKEN),
50	10	Nagagali University 1 12 4 Salvamata Nagagali 952 9522 Japan
51 52	19	Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
53	20	T-1, 191 005 910 7952 F 191 005 910 7970
54	20	Tel: +81-095-819-7853, Fax: +81-095-819-7869
55	- ·	
56 57	21	Taro Yamamoto
58	-	
59	22	E-mail: <u>y-taro@nagasaki-u.ac.jp</u>
60		

3		
4 5	1	2. Stress Research Institute, Stockholm University, SE-106 91 Stockholm, Sweden
6	-	
7	2	Tel: +46-08-5537-8941
8		
9 10	3	Hui-Xin Wang
10		
12	4	E-mail: <u>huixin.wang@su.se</u>
13		
14	5	
15 16		
10	6	
18	0	
19	7	
20	7	
21 22		
22 23	8	Word count: 2883
24		
25	9	
26		
27	10	
28 29		
30	11	
31		
32	12	
33	12	Word count: 2883
34 35		
36	13	
37		
38	14	
39 40		
40 41	15	
42		
43	16	
44		
45 46	17	
40 47		
48	18	
49	10	
50	10	
51 52	19	
52		
54	20	
55		
56	21	
57 58		
58 59	22	
60		

1

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
9 10	
10	
11	
12	
13	
14	
15	
16	
16 17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
26 27	
28	
20	
30	
31	
21	
32	
33	
34	
35	
36 37	
37	
38	
39	
40	
41	
42	
42	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54 55	
56	
57	
58	
59	
60	

1	ABSTRACT
2	Objectives This study aims to examine the association between self-rated health (SRH)
3	and levels of C-reactive protein (CRP) among adults aged 45 to 101 years old in rural
4	areas of China, and to explore the role of education in the association.
5	Design Cross-sectional study
6	Setting The study population was derived from two databases in China: Nanping
7	(Nanping project, NP) and the China Health and Retirement Longitudinal Study
8	(CHARLS).
9	Participants 646 participants from a rural area of NP, and 8555 rural participants from
10	CHARLS.
11	Methods CRP was measured using a high sensitivity sandwich enzyme immunoassay
12	in NP and immunoturbidimetric assay in CHARLS. SRH was assessed by self-rated
13	health questionnaires and categorized into good and poor. Education was measured by
14	maximum years of schooling and dichotomized into illiterate and literate. Multivariate
15	linear regression models were used to study the associations.
16	Results Compared to people with good SRH, those with poor SRH had higher levels
17	of CRP in NP (β=0.16, 95%CI -0.02 to 0.34) and in CHARLS (β=0.07, 95%CI 0.02 to
18	0.11). This was especially in men and literate people after adjusting for potential
19	confounders. Similar findings were observed in the pooled population (β =0.08, 95%CI
20	0.03 to 0.12), in men (β =0.13, 95%CI 0.06 to 0.20) and in literate people (β =0.12,
21	95%CI 0.06 to 0.18).

Conclusion Poor SRH may be a predicator of elevated levels of CRP among middle-22

	1	age	d and older people in rural areas, especially in men and literate people.		
	2				
	3	Ke	words Self-rated health; C-reactive protein; Education level		
	4				
	5	Str	engths and limitations of this study		
	6	•	Our study population comes from two databases, including one national		
	7		representative sample derived from CHARLS, making our results highly		
	8		generalizable to the national rural population of China.		
	9	•	CRP is an objective measure performed by health professionals using validated		
	10		methods, making it more reliable than subjective measures.		
	11	•	The application of both linear and logistic regressions ensured our confidence in		
	12		the findings and facilitated the interpretation of the results.		
	13	•	Cross-sectional study design prevents us from making causal inferences.		
	14	•	Convenience sampling in the NP study may bias the results towards over-		
	15		estimation.		
16	Te	xt			
17					
18	IN	TRO	DUCTION		
19	C-	react	ive protein (CRP), a marker of systemic inflammation, has been shown to be involved		
20	in crucial pathogenesis in a variety of negative health outcomes, including cardiovascular				
21	diseases, ¹² diabetes, ³ cancer, ⁴ and cognitive decline. ⁵ Since the value of CRP in the prediction				
22	of	prog	moses in health outcomes has been recognized, it is important, from a public health		
23	per	rspec	ctive, to identify people at risk of elevated CRP in an efficient and simple way.		

BMJ Open

It is well known that self-rated health (SRH) can be simply measured through an individual's subjective perception of his own health, thus many health authorities have introduced SRH for surveillance.⁶ SRH has been featured as a strong predictor for functional ability,⁷ onset of chronic diseases,⁸ and mortality.⁹¹⁰ The association between SRH and CRP has been tested in previous works, but the results have been inconsistent.¹¹⁻¹⁴ These discrepancies may be due to differences in characteristics of the study populations. For example, a Japanese study demonstrated an association between poor SRH and elevated CRP value in women, but not in men (age range 40-69).¹⁴ Among hospital-based studies, poor SRH was associated with elevated CRP in female patients (mean age $63.3\pm8.7/62.5\pm8.9$ in control/intervention group) with coronary heart disease,¹² but not in some patients with breast cancer (mean age 55.2±8.4).15

It is noteworthy that studies concerning the association between SRH and CRP were mostly conducted in developed countries where the study populations were relatively well educated.¹¹⁻ ¹⁴ It has been shown that people with different education levels have different perceptions of health.¹⁶ This suggests that the association between SRH and CRP may also be different among people with different educational levels.¹⁷ However, to our knowledge, no study has focused on the difference between illiterate and literate people. In China, despite the decrease in illiteracy from 1990 to 2010, there continues to be large differences between urban and rural areas: the rate of illiteracy in rural areas is more than two times that of urban areas.¹⁸ Considering the lack of resources in rural areas, identifying people at risk of negative health outcomes using a simple measure such as SRH is warranted.

In the current study, we use two databases from China: to examine the association between

SRH and CRP among middle-aged and older people in rural areas, and to explore whether the
 SRH-CRP association varies across age, sex and education levels.

METHODS

5 Study population

6 Nanping project (NP)

NP is a 2015, voluntary participation, cross-sectional study consisting of residents aged 18 years or older from one county of Nanping City in Fujian Province, China. Seven villages were selected based on recommendations from local health workers, since the residents in these areas are known to be highly cooperative.

As showed in Figure 1, a total of 797 people were enrolled. To match with the age range of study population from the CHARLS, we excluded 98 participants under 45 years old. Those with CRP concentrations higher than 6.25 mg/L in dried blood spots (DBS), which is comparable to 10 mg/L at serum level¹⁹ (n=25), were excluded due to potential acute inflammatory conditions. After further excluding people with missing information on CRP values (n=3) and SRH (n=25), 646 people remained in our current study.

19 China Health and Retirement Longitudinal Study (CHARLS)

The CHARLS is a nationally representative longitudinal study. Eligible people were selected through a multistage probability sampling, and detailed descriptions of sampling method are provided in the users' guide.²⁰ In this current study, we used data from the baseline survey in 2011 because the CRP data was only available in that year. This is a secondary analysis of the CHARLS public database.

BMJ Open

4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
52	
53	
54	
55	
56	
57	
58	
59	
72	

Overall, 17430 people were examined at baseline (Figure 1). People who lived in communities,
 or in both villages and communities (n=4562), and had CRP>10mg/L (n=429) were excluded.
 We further excluded people with missing data on CRP (n=3810) and SRH (n=74). Finally,
 8555 (69%) people were included in our analysis.

6 Self-rated health (SRH)

SRH was assessed by one question: 'In general how would you rate your health?' Response
options were 'good', 'average', 'poor', and 'very poor'.

9

5

10 C-reactive protein (CRP)

11 NP

Finger prick blood samples were collected by health workers using a filter paper, known as DBS. We kept the DBS at room temperature for a few days after being desiccated during the investigation period, then stored them in the Fujian Medical University at –20°. We used high sensitivity sandwich enzyme immunoassay method to measure CRP concentrations by applying monoclonal antibodies.¹⁹ Further details of the protocols have been presented elsewhere.²¹

18

19 CHARLS

The venous blood samples were collected by trained staff from local Chinese Center for
Disease Control and Prevention (China CDC). Plasma samples were collected and preserved
in 0.5 mL cryovial at -20°C, delivered to Beijing CDC within 2 weeks. Plasma CRP was
determined by the immunoturbidimetric assay method at Capital Medical University.²²

24

60

25 Covariates

In both cohorts, all participants were interviewed face-to-face by trained interviewers using a
 questionnaire that covers information on age, sex, education, marital status, smoking, alcohol
 consumption, and health status. Height and weight were measured by interviewers using
 standard anthropometers.

Education level was determined by maximum years of schooling: 0 year (illiterate), 1-6 years (elementary school), 7-9 years (junior high school), 10-12 years (senior high school), >12 years (college or above). Due to the fact that more than 30% of both the NP and CHARLS samples were illiterate, we dichotomized education into 0 year (illiterate) and >0 year (literate). Age was dichotomized as 45-60 years versus \geq 60 years old, and marital status as married versus non-married. BMI was calculated by dividing weight (kg) by height squared (m²) and categorized as underweight (<18.5), normal weight (18.5-24.99), overweight (25-29.99), and obese (\geq 30). Smoking was dichotomized into current smokers and non-current smokers (including former smokers). Alcohol consumption was categorized as regular drinkers (more than 3 times per week) and non-regular drinkers.

 Health status was measured by asking the participants whether they had any moderate/severe disease symptoms (e.g., fever) in the last month, or used antihypertensive or antidiabetic medications in the NP, and whether they had ever been diagnosed by a doctor with any diseases (e.g., hypertension), or often suffered from any pain currently in CHARLS. People answering positively were categorized as unhealthy, otherwise healthy.

23 Statistical analysis

First, data from the NP and CHARLS were analyzed separately. We applied one-way ANOVA
to examine the differences of CRP in characteristics in each dataset by using F-distribution.

Page 9 of 33

BMJ Open

The CRP variable was log-transformed because it was not normally distributed. The association
between SRH and CRP was estimated by β-coefficient and a 95% confidence interval (CI)
using linear regression in two datasets. The first estimate was respective; in the second, datasets
were pooled. Fixed-effect meta-analysis was used to examine the heterogeneity. Then we reran the linear regression using the pooled dataset.

Next, to facilitate the interpretation of the association between SRH and CRP, multivariate logistic analysis was performed to estimate odds ratios (ORs) and 95% CIs in the two datasets separately. We categorized CRP into two levels: low (<3mg/L) and high ($\geq 3mg/L$).²³ Using fixed-effect meta-analysis to examine the heterogeneity of two datasets again. Later, logistic regression was conducted in the combined population.

Age, sex and education were introduced into the basic-adjusted model. Further, we additionally adjusted for marital status, smoking, alcohol consumption, BMI, and health status.^{24 25} All analyses were repeated in the stratified analyses by age, sex and education.

In addition, we conducted multiple imputation for missing data. For further sensitivity analyses, we performed additional analyses: 1) We adjusted for psychological distress in the NP and depression in CHARLS; 2) We used sampling weights to derive national estimates in CHARLS:²⁰ 3) We re-ran linear regression after excluding illiterate participants in order to compare with previous studies; 4) Since the social economic status-psychological well-being association was strong in poor areas,²⁶ we further adjusted for self-rated household income in the NP and self-rated household living standards in CHARLS as their assessment of social economic status were different.

2		
3 4	1	All statistical analyses were performed with Stata 13.0 (Stata Corp, College Station, TX, USA).
4 5		
6	2	
7 8	3	Patient and public involvement
9		•
10 11	4	There were no participants involved in the development of this study.
12 13	5	
14	c	
15 16	6	RESULTS
17 18	7	Characteristics of the participants
19	8	The CRP levels across different characteristics of participants were compared in each dataset
20 21		
22	9	separately. Table 1 shows that in both datasets that older age people, higher BMI's, poorer
23 24 25	10	SRH, or an unhealthy status were more likely to have elevated levels of CRP. The findings
25 26 27	11	were inconsistent with sex, education, marital status, smoking and alcohol consumption in the
28 29	12	two datasets. People with missing CRP values in NP and CHARLS were better educated and
30 31	13	reported better health status compared to those who remained in the analyses (Supplementary
32	15	
33 34	14	File: Table S1 and Table S2).
35 36	15	
37		
38 39		
40		
41		
42 43		
45 44		
45		
46		
47 48		
40 49		
50		
51		
52		
53 54		
54 55		
56		
57		
58		
59		
60		

Page	1	1	of	33
------	---	---	----	----

Table 1	CRP values across	characteristics	of the study population	
	NP (n=646)		CHARLS (n=8555)	
	CRP ^a	Р	CRP	Р
Age		< 0.001		< 0.001
45-60	0.6 (0.3 to 1.2)		0.9 (0.5 to 1.7)	
≥60	0.8 (0.4 to 1.8)		1.1 (0.6 to 2.1)	
Sex		0.011		0.003
Men	0.6 (0.3 to 1.3)		1.0 (0.5 to 2.0)	
Women	0.8 (0.4 to 1.7)		0.9 (0.5 to 1.8)	
Education		0.004		0.316
Illiterate	0.9 (0.4 to 1.8)		1.0 (0.5 to 2.0)	
Literate	0.6 (0.3 to 1.3)		0.9 (0.5 to 1.9)	
Marital status		0.495		< 0.001
Married	0.7 (0.3 to 1.5)		0.9 (0.5 to 1.9)	
Non-married	0.7 (0.4 to 1.7)		1.1 (0.6 to 2.4)	
Smoking		0.467		0.041
Current smokers	0.6 (0.3 to 1.4)		1.0 (0.5 to 2.0)	
Non-current smokers	0.7 (0.4 to 1.6)		0.9 (0.5 to 1.9)	
Alcohol consumption		0.001		0.635
Regular drinkers	0.5 (0.3 to 1.1)		0.9 (0.5 to 1.9)	
Non-regular drinkers	0.8 (0.4 to 1.6)		1.0 (0.5 to 1.9)	
BMI		< 0.001		< 0.001
Underweight (<18.5)	0.5 (0.2 to 1.4)		0.8 (0.5 to 1.9)	
Normal weight (18.5-25)	0.6 (0.3 to 1.1)		0.8 (0.5 to 1.7)	
Overweight (25-30)	1.2 (0.6 to 2.3)		1.2 (0.7 to 2.3)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				BMJ Open	
delf-rated health0.071<0.001	Obese (≥30)	1.6 (1.0 to 4.4)		1.9 (0.9 to 3.3)	
Good $0.6 (0.3 to 1.7)$ $0.9 (0.5 to 1.8)$ Average $0.7 (0.3 to 1.5)$ $0.9 (0.5 to 1.8)$ Poor $0.8 (0.4 to 1.5)$ $1.0 (0.6 to 2.1)$ Very poor $1.0 (0.5 to 2.3)$ $1.1 (0.6 to 2.3)$ lealth status ^b 0.002 <0.001	self-rated health		0.071		< 0.001
Average0.7 (0.3 to 1.5)0.9 (0.5 to 1.8)Poor0.8 (0.4 to 1.5)1.0 (0.6 to 2.1)Very poor1.0 (0.5 to 2.3)1.1 (0.6 to 2.3)Iealth statusb0.002<0.001	Good	0.6 (0.3 to 1.7)		0.9 (0.5 to 1.8)	
Poor0.8 (0.4 to 1.5)1.0 (0.6 to 2.1)Very poor1.0 (0.5 to 2.3)1.1 (0.6 to 2.3)Iealth statusb0.002<0.001	Average	0.7 (0.3 to 1.5)		0.9 (0.5 to 1.8)	
Very poor1.0 (0.5 to 2.3)1.1 (0.6 to 2.3)Iealth statusb0.002<0.001	Poor	0.8 (0.4 to 1.5)		1.0 (0.6 to 2.1)	
Health status ^b 0.002 <0.001	Very poor	1.0 (0.5 to 2.3)		1.1 (0.6 to 2.3)	
Healthy Unhealthy0.5 (0.3 to 1.3)0.8 (0.5 to 1.7)Unhealthy0.8 (0.4 to 1.6)1.0 (0.5 to 2.0)Median (interquartile range); comparison was done with log-transformed values. Health status: Unhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive or ntidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered from a ain currently (CHARLS). Healthy: no such report.Missing values: UP: 1 missing in health status. CHARLS: 2 missing in age, 7 missing in sex, 4 missing in education, 1 missing in smoking, 3 missing in lcohol consumption, 1191 missing in BMI, 65 missing in health status.	Iealth status ^b		0.002		< 0.001
Unhealthy0.8 (0.4 to 1.6)1.0 (0.5 to 2.0)Median (interquartile range); comparison was done with log-transformed values.Health status:Unhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive or ntidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered from a ain currently (CHARLS). Healthy: no such report.Missing values: IP: 1 missing in health status.CHARLS: 2 missing in age, 7 missing in sex, 4 missing in education, 1 missing in smoking, 3 missing in lcohol consumption, 1191 missing in BMI, 65 missing in health status.	Healthy	0.5 (0.3 to 1.3)		0.8 (0.5 to 1.7)	
 Median (interquartile range); comparison was done with log-transformed values. Health status: Unhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive or ntidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered from a ain currently (CHARLS). Healthy: no such report. Missing values: IP: 1 missing in health status. CHARLS: 2 missing in age, 7 missing in sex, 4 missing in education, 1 missing in smoking, 3 missing in leohol consumption, 1191 missing in BMI, 65 missing in health status. 	Unhealthy	0.8 (0.4 to 1.6)		1.0 (0.5 to 2.0)	
	,	<i>c): 1100111</i> , 100 20001 10p c	<i>.</i>		

SRH and CRP

Table 2 presents the association between SRH and CRP in the two individual populations. In the NP, a borderline statistically significant association was observed between very poor SRH and elevated levels of CRP (β =0.39, 95%CI -0.07 to 0.85) in basic-adjusted model, while the association was attenuated after adjusting for confounders (β =0.29, 95%CI -0.15 to 0.73). Despite insignificance, the estimated effect of SRH started to change direction from average SRH ($\beta = -0.05$) to poor SRH ($\beta = 0.10$). In CHARLS, poor and very poor SRH were both associated with higher CRP (β =0.06, 95%CI 0 to 0.12; β =0.11, 95%CI 0.01 to 0.22). Considering the same pattern in both two datasets that poor and very poor SRH have similar effect on CRP and so as good and average SRH, and that there are limited number of participants with very poor SRH in NP, we combined 'good' and 'average' as good SRH, 'poor' and 'very poor' as poor SRH. Further, we found that poor SRH was associated with higher levels of CRP both in NP (β=0.16, 95%CI -0.02 to 0.34) and CHARLS (β=0.07, 95%CI 0.02 to 0.11) (Table 2).

 Table 2
 Association between self-rated health and C-reactive protein

		Model1 ^a		Model2 ^b	
	Ν	β (95%CI)	Р	β (95%CI)	Р
NP					
Good	188	Ref.		Ref.	
Average	270	-0.03 (-0.22 to 0.17)	0.792	-0.05 (-0.24 to 0.14)	0.589
Poor	165	0.12 (-0.10 to 0.34)	0.292	0.10 (-0.11 to 0.32)	0.349
Very Poor	23	0.39 (-0.07 to 0.85)	0.093	0.29 (-0.15 to 0.73)	0.202
Good/Poor	458/188	0.17 (-0.01 to 0.35)	0.067	0.16 (-0.02 to 0.34)	0.077
CHARLS					
Good	1794	Ref.		Ref.	
Average	4157	0.01 (-0.04 to 0.06)	0.613	0.00 (-0.05 to 0.06)	0.911
Poor	2157	0.10 (0.04 to 0.15)	0.001	0.06 (0.00 to 0.12)	0.055
Very Poor	447	0.16 (0.06 to 0.25)	0.001	0.11 (0.01 to 0.22)	0.036
Good/Poor	5951/2604	0.10 (0.05 to 0.14)	< 0.001	0.07 (0.02 to 0.11)	0.004
NP+CHARLS					
Good	1982	Ref.		Ref.	
Average	4427	0.02 (-0.03 to 0.07)	0.379	0.01 (-0.04 to 0.06)	0.643

	Poor	2322	0.11 (0.05 to 0.16)	< 0.001	0.08 (0.02 to 0.14)	0.013
	Very Poor	470	0.18 (0.09 to 0.28)	< 0.001	0.14 (0.04 to 0.24)	0.007
	Good/Poor ^a Adjusted for age	6409/2792	0.11 (0.06 to 0.15)	< 0.001	0.08 (0.03 to 0.12)	0.001
			n, marital status, smoki	ng, alcohol	consumption, BMI, hea	alth status
1	5 0	, , ,			1 / /	
2	As the same direct	ion of effect o	f estimate and a very lo	w level of l	neterogeneity (I-square	d<
3	0.001%) were obse	erved in the two	o datasets (data not show	vn), we poo	led the data and re-ran t	he
4	linear regression an	nalyses in the	combined populations.	The associa	tion between poorer SF	RH
5	and higher CRP wa	as observed in t	the pooled population (β	=0.08, 95%	CI 0.03 to 0.12) (Table	2).
6						
7	The roles of age, s	ex, and educa	tion in the association	between S	RH and CRP	
8	The association bet	tween SRH and	d CRP stratified by age,	sex, educat	ion is showed in Figure	2.
9	In middle-aged pe	ople, worse S	RH was associated with	h higher C	TRP both in NP (β =0.4	42,
LO	95%CI 0.14 to 0.7	(1) and CHAR	LS (β=0.06, 95%CI -0	.01 to 0.12). Among older people	, a
1	similar trend was o	bserved in CH	ARLS (β=0.08, 95%CI (0.02 to 0.15), but not in the NP. Wh	en
12	stratified by sex, we found a statistically significant SRH-CRP association among men both in					
L3	NP (β=0.27, 95%C	CI -0.03 to 0.5	7) and CHARLS (β =0.	12, 95%CI	0.05 to 0.19), but not	in
L4	women. In a stratif	ied analysis by	education, the associat	ion between	n SRH and CRP was se	en
15	in literate people bo	oth in NP (β=0	.26, 95%CI 0.02 to 0.51) and CHAI	RLS (β=0.11, 95%CI 0.	05
.6	to 0.16), but not in	illiterate peop	le.			
17						
18	In the pooled popu	lation, the SRI	H-CRP association was	repeated in	the middle-aged (β =0.0)8,
9	95%CI 0.02 to 0.14	4), older peopl	e (β=0.08, 95%CI 0.02 t	o 0.15), me	n (β=0.13, 95%CI 0.06	to
0	0.20), and literate p	people (β=0.12	, 95%CI 0.06 to 0.18) (Figure 2).		

 Furthermore, we applied a logistic regression based on the pooled data. The OR for having

1

BMJ Open

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
20 27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
45 46
40 47
47 48
49 50
50
51
52
53
54
55
56
57
58
59

elevated levels of CRP in those with poor SRH was 1.18 in the total population (95%CI 1.03
to 1.37), 1.26 in men (95%CI 1.02 to 1.56), and 1.23 in the literate people (95%CI 1.03 to
1.48). Similar ORs were observed in the middle-aged and older people (Supplementary File:
Table S3).

6 Additional analysis

Similar results were observed using data from multiple imputations for missing data (Supplementary File: Table S4 and Table S5). and from sensitivity analyses further adjusting for psychological distress in the NP and depression in CHARLS. Identical trends of age and sex differences as main results were observed in literate people in both datasets, but not in the illiterate. Additional adjustment for socio-economic status did not result in any further changes.

13 **DISCUSSION**

In this study, based on 9201 residents in rural area, we found that poor SRH is associated with an elevated level of CRP in middle-aged and older people, especially among the literate and men.

17

12

Our finding of the association between poorer SRH and higher CRP level is in line with results from previous studies that included participants in similar age as our study participants.^{11 14} Yet, those studies mainly looked at people living in industrialized countries with higher education while our participants resided in less developed country with features of low literacy.

22

60

Possible pathways linking poor SRH and elevated level of CRP could be due to psychological
stress and health behavior. Poor SRH may reflect a poor physical (e.g., inaccessibility to health
service) and social environment (e.g., limited social network), which can limit one's coping

ability and induce psychological stress. It is known that stress can activate the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis, contributing to the production of stress hormones, which in turn increase the secretion of CRP.^{27 28} In addition, people with poor SRH were less likely to have an active lifestyle.²⁹ Having an inactive lifestyle has been suggested to potentially weaken the immune system and facilitate the inflammation processes through the release of pro-inflammatory adipokines.³⁰ Furthermore, poor SRH may also reflects poor medication adherence,³¹ such as low aspirin adherence, which has been associated with elevated levels of CRP in the first 3 months after acute coronary syndrome.³² By contrary, elevated CRP has been linked to depressive symptom or psychological distress symptom,^{33 34} which may also result in poorly rated health status in individuals.

It is notable that poor SRH was associated with an elevated CRP level in literate participants, but not in the illiterate participants, which was consistent with one previous study.¹⁷ Indeed, similar results were also shown in studies focusing on SRH and mortality.^{35 36} One of the possible explanations may be that illiterate people are often lack of health-related knowledge and access to health care,¹⁶ and thus may misinterpret the feeling that they have in their bodies.³⁷ It has been shown that poor SRH in the less educated people mainly represents less serious diseases.³⁸ In our study, we also found that illiterate people were more likely to rate their health as poor and to report illness or pain both in NP and CHARLS (Supplementary File: Table S6). Moreover, illiterate people may have to withstand more pressure as they have less social and financial resources. Thus, other factors may contribute to the reported poor SRH, rather than actual health condition.

We found that SRH-CRP associations were only observed in men, but not in women, which may be due to the potential sex differences in reporting SRH. Previous studies have shown that

Page 17 of 33

BMJ Open

the poor SRH in women can reflect both serious and non-serious diseases, whereas it tends to reflect serious diseases in men.³⁹ Broad dimensions of health perceptions may lead to less accurate SRH in women. In addition, the proportion of illiterate people among women is much higher than that among men in both datasets, this may explain the different findings between our study and the Iwate-KENCO study from Japan.¹⁴

The discrepant findings between two datasets are worthy of discussion. First, the association between poor SRH and elevated CRP values among older people (aged 260 years) was observed in CHARLS, but not in NP. And in both populations, poor SRH was only associated with higher CRP in men, not in women. These findings may also be explained by educational level in each subgroup. That is, the proportion of illiterate people was relatively higher in older adults in NP (76.2%) than in CHARLS (58.3%) as shown in Table S6 (Supplementary File), and there was a higher proportion of illiterate people in women in both populations. Second, after excluding the illiterate people, we observed similar age and sex differences in the associations between SRH and CRP among the literate, i.e. poor SRH is associated with elevated CRP values among literate people, especially in men, which was the same as the main results. This suggests that education might play a role in the SRH-CRP association. Third, similar results were observed in urban areas of CHARLS, and further adjusting for socioeconomic status (i.e. self-rated household income in NP, self-rated household living standards in CHARLS) did not change the SRH-CRP association (data not shown), suggesting socioeconomic status might not influence the SRH-CRP association.

This study provides evidence that SRH, a simple measure, may be used as an indicator of illphysical health among middle-aged and older literate people, but not among the illiterate people, in rural area. In China, the implementation of health surveillance is more challenging

in rural than in urban areas because of the discrepancy in the aging processes,⁴⁰ knowledge gaps¹⁸ and income inequality between these two areas. Elevated CRP has been associated with various physical¹⁻⁴ and psychological health outcomes^{33 34} Thus, our results support the consideration of using an efficient and cost-effective way, such as SRH, to monitor the health status in rural population where medical resources are limited. Future studies are needed to confirm our results and extend these findings to larger and more diverse populations, or with other health outcomes. Identification of simple health indictors for illiterate people are warranted.

Acknowledgments We would like to express our sincere gratitude to the participants and local staff in NP project. We are grateful for those supporters: Fukui University (Aki Yazawa); National Center for Global Health and Medicine, Japan (Yosuke Inoue); Nagasaki Prefectural Institute of Environment and Public Health (Guoxi Cai); Fujian Medical University (Fei He, Jie Chen); Fujian Provincial Center for Disease Control and Prevention (Meng Huang) during the data collection in NP Project. Data from China Health and Retirement Longitudinal Study (CHARLS) were collected by the National School of Development at Peking University, China. We appreciated to University of Copenhagen (Tianwei Xu); Fujian Provincial Center for Disease Control and Prevention (Xiuquan Lin); Nagasaki University (Sabin Nundu) for providing valuable comments in analysis and interpretation of data.

Contributors RT, HW and KP conceptualized the study. RT analyzed the data and drafted the manuscript. HW, KP, GC, TY contributed to critical revisions of the manuscript. RT and HW are responsible for ensuring the integrity and accuracy of the study. All authors have read and approved the final manuscript.

BMJ Open

Funding This study is financed by the Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Japan (Raoping Tu); the Swedish Research Council (grant number: 2018-02998, Hui-Xin Wang); the Ministry of Education of Taiwan, the Swedish National Graduate School on Ageing and Health (SWEA), and Gamla Tjänarinnor Foundation (Kuan-Yu Pan). NP Project was financially supported by the JSPS KAKENHI from the Japan Society for the Promotion of Science (13J06172). Competing Interests None declared. Patient consent Not required. Ethics approval The Ethics Committee for Medical Research at the University of Tokyo (No. 10515-(1)) and the Ethics Committee of the Institute of Tropical Medicine at Nagasaki University (No. 120910100-5) approved the study protocol of NP. The Medical Ethics Committee of Peking University approved the research protocol of CHARLS. Provenance and peer review Not commissioned; externally peer reviewed **Data sharing statement** All of the CHARLS data will be accessible to researchers around the world at the CHARLS project website (http://charls.pku.edu.cn/en). No additional data available.

7 24

59 25

2 3	1
4 5	
6 7	2
8 9	3
10 11	4
12 13	5
14 15	6
16 17 18	7
19 20	8
21 22	9
23 24 25	10
25 26 27	11
28 29	12
30 31	13
32 33 34	14
35 36	15
37 38	16
39 40 41	17
42 43	18
44 45	19
46 47 48	20
49 50	21
51 52	22
53 54	23
55 56 57	24
57 58 59	25

1

Figure legends 1

Figure 1 Flowchart of the study populations in NP and CHARLS 2

Figure 2 β-coefficient and 95% confidence interval (CI) of CRP in relation to poor self-rated 3 health from linear regression models stratified by age, sex and education in NP, CHARLS, and 4 the pooled populations of the two datasets. SRH is dichotomized as poor to very poor versus 5 good to average. Models are simultaneously adjusted for age, sex, education, marital status, 6 7 smoking, alcohol consumption, BMI, health status.

9 SUPPLEMENTARY FILE

Table S1 Characteristics of study sample in NP without and with missing values in CRP 10

Table S2 Characteristics of study sample in CHARLS without and with missing values in CRP 11

Table S3 Odds ratio and 95% confidence interval (95% CI) between poor self-rated health and 12

levels of C-reactive protein: stratified by age, sex and education (pooled population, logistic) 13

Table S4 Association between self-rated health and C-reactive protein (After multiple 14 imputation) 15

Table S5 Association between self-rated health and C-reactive protein: stratified by age, sex 16

and education (After multiple imputation) 17

Table S6 Characteristics of the study samples: stratified by datasets and education 18

2 3 4	1	Ref	ferences
- 5 6	2	1	Black PH, Garbutt LD. Stress, inflammation and cardiovascular disease. Journal of
7 8	3		psychosomatic research 2002;52:1-23.
9 10 11	4	2	Ridker PM. From C-Reactive Protein to Interleukin-6 to Interleukin-1. Circulation
12 13	5		<i>Research</i> 2016;118:145-56.
14 15	6	3	Barzilaym JI, Freedland ES. Inflammation and its relationship to insulin resistance, type 2
16 17 18	7		diabetes mellitus, and endothelial dysfunction. Metabolic syndrome and related disorders
19 20	8		2003;1:55-67.
21 22	9	4	Wang J, Lee IM, Tworoger SS, et al. Plasma C-reactive protein and risk of breast cancer
23 24 25	10		in two prospective studies and a meta-analysis. Cancer Epidemiol Biomarkers Prev
26 27	11		2015;24:1199-206.
28 29	12	5	Panza F, Solfrizzi V, Logroscino G, et al. Current epidemiological approaches to the
30 31 32	13		metabolic-cognitive syndrome. J Alzheimers Dis 2012;30 Suppl 2:S31-75.
33 34	14	6	Salomon JA, Nordhagen S, Oza S, et al. Are Americans feeling less healthy? The puzzle
35 36	15		of trends in self-rated health. Am J Epidemiol 2009;170:343-51.
37 38	16	7	Idler EL, Kasl SV. Self-ratings of health: do they also predict change in functional ability?
39 40 41	17		J Gerontol B Psychol Sci Soc Sci 1995;50:8344-53.
42 43	18	8	Latham K, Peek CW. Self-Rated Health and Morbidity Onset Among Late Midlife U.S.
44 45	19		Adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences
46 47 48	20		2012;68:107-16.
49 50	21	9	DeSalvo KB, Bloser N, Reynolds K, et al. Mortality prediction with a single general self-
51 52	22		rated health question. A meta-analysis. J Gen Intern Med 2006;21:267-75.
53 54 55	23	10	Singh-Manoux A, Dugravot A, Shipley MJ, et al. The association between self-rated
56 57	24		health and mortality in different socioeconomic groups in the GAZEL cohort study. Int J
58 59	25		<i>Epidemiol</i> 2007;36:1222-8.
60			

1	
2	
3	
4	
5	
4 5 6 7	
/	
8	
9 10	
11	
12	
13	
14	
12 13 14 15	
16	
16 17	
18	
19	
20 21 22 23	
21	
22	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34 25	
35	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48 49	
49 50	
50 51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	11	Christian LM, Glaser R, Porter K, et al. Poorer self-rated health is associated with elevated
2		inflammatory markers among older adults. Psychoneuroendocrinology 2011;36:1495-504.
3	12	Janszky I, Lekander M, Blom M, et al. Self-rated health and vital exhaustion, but not
4		depression, is related to inflammation in women with coronary heart disease. Brain Behav
5		Immun 2005;19:555-63.
6	13	Shanahan L, Bauldry S, Freeman J, et al. Self-rated health and C-reactive protein in young
7		adults. Brain, Behavior, and Immunity 2014;36:139-46.
8	14	Tanno K, Ohsawa M, Onoda T, et al. Poor self-rated health is significantly associated with
9		elevated C-reactive protein levels in women, but not in men, in the Japanese general
10		population. Journal of Psychosomatic Research 2012;73:225-31.
11	15	Orre IJ, Reinertsen KV, Aukrust P, et al. Higher levels of fatigue are associated with higher
12		CRP levels in disease-free breast cancer survivors. J Psychosom Res 2011;71:136-41.
13	16	Spuling SM, Huxhold O, Wurm S. Predictors of Self-Rated Health: Does Education Play
14		a Role Above and Beyond Age? J Gerontol B Psychol Sci Soc Sci 2017;72:415-24.
15	17	Dowd JB, Zajacova A. Does self-rated health mean the same thing across socioeconomic
16		groups? Evidence from biomarker data. Ann Epidemiol 2010;20:743-9.
17	18	Guo S, Guo Y. Spotlight on China: Changes in education under China's market economy:
18		Springer, 2016.
19	19	Brindle E, Fujita M, Shofer J, et al. Serum, plasma, and dried blood spot high-sensitivity
20		C-reactive protein enzyme immunoassay for population research. J Immunol Methods
21		2010;362:112-20.
22	20	Zhao Y, Strauss J, Yang G, et al. China health and retirement longitudinal study-2011-
23		2012 national baseline users' guide. National School of Development, Peking University,
24		2013.
25	21	Yazawa A, Inoue Y, Cai G, et al. Epstein-Barr virus antibody titer as a stress biomarker

BMJ Open

2 3	1		and its association with social capital in rural Fujian communities, China. Am J Hum Biol
4 5	2		2018:e23135.
6 7	Z		2018.625155.
8 9	3	22	Zhao Y, Crimmins E, Hu P, et al. CHARLS Blood Sample Users' Guide. National School
10 11	4		of Development, Peking University, 2014.
12 13	5	23	Pearson TA. Markers of Inflammation and Cardiovascular Disease: Application to Clinical
14 15	6		and Public Health Practice: A Statement for Healthcare Professionals From the Centers for
16 17	7		Disease Control and Prevention and the American Heart Association. Circulation
18 19 20	8		2003;107:499-511.
21	0	24	Kiecolt-Glaser JK, Gouin JP, Hantsoo L. Close relationships, inflammation, and health.
22 23	9	24	Riecon-Olasei JR, Obuli JF, Hantsob L. Close relationships, initalilitation, and health.
24 25	10		Neurosci Biobehav Rev 2010;35:33-8.
26 27	11	25	Zheng H, Thomas PA. Marital status, self-rated health, and mortality: overestimation of
28 29	12		health or diminishing protection of marriage? Journal of health and social behavior
30 31	13		2013;54:128-43.
32 33 34	14	26	Howell RT, Howell CJ. The relation of economic status to subjective well-being in
35 36	15		developing countries: a meta-analysis. Psychol Bull 2008;134:536-60.
37 38	16	27	Coussons-Read ME, Okun ML, Nettles CD. Psychosocial stress increases inflammatory
39 40	17		markers and alters cytokine production across pregnancy. Brain Behav Immun
41 42	18		2007;21:343-50.
43 44		• •	
45 46	19	28	Shivpuri S, Gallo LC, Crouse JR, et al. The association between chronic stress type and
40 47 48	20		C-reactive protein in the multi-ethnic study of atherosclerosis: does gender make a
49 50	21		difference? J Behav Med 2012;35:74-85.
51 52	22	29	Molarius A, Berglund K, Eriksson C, et al. Socioeconomic conditions, lifestyle factors,
53 54	23		and self-rated health among men and women in Sweden. European journal of public health
55 56 57	24		2007;17:125-33.
57 58 59 60	25	30	Gleeson M, Bishop NC, Stensel DJ, et al. The anti-inflammatory effects of exercise:

1 2			
2 3 4	1		mechanisms and implications for the prevention and treatment of disease. Nat Rev
5 6	2		Immunol 2011;11:607-15.
7 8 9	3	31	DiMatteo MR, Haskard KB, Williams SL. Health beliefs, disease severity, and patient
10 11	4		adherence: a meta-analysis. Medical care 2007:521-8.
12 13	5	32	Kronish IM, Rieckmann N, Shimbo D, et al. Aspirin adherence, aspirin dosage, and C-
14 15 16	6		reactive protein in the first 3 months after acute coronary syndrome. Am J Cardiol
17 18	7		2010;106:1090-4.
19 20	8	33	Valkanova V, Ebmeier KP, Allan CL. CRP, IL-6 and depression: a systematic review and
21 22	9		meta-analysis of longitudinal studies. J Affect Disord 2013;150(3):736-44.
23 24 25	10	34	Wium-Andersen MK, Orsted DD, Nielsen SF, et al. Elevated C-reactive protein levels,
26 27	11		psychological distress, and depression in 73, 131 individuals. JAMA Psychiatry
28 29	12		2013;70(2):176-84.
30 31 32	13	35	Dowd JB, Zajacova A. Does the predictive power of self-rated health for subsequent
33 34	14		mortality risk vary by socioeconomic status in the US? Int J Epidemiol 2007;36:1214-21.
35 36	15	36	Huisman M, van Lenthe F, Mackenbach J. The predictive ability of self-assessed health
37 38	16		for mortality in different educational groups. Int J Epidemiol 2007;36:1207-13.
39 40 41	17	37	Franks P, Gold MR, Fiscella K. Sociodemographics, self-rated health, and mortality in the
42 43	18		US. Social Science & Medicine 2003;56:2505-14.
44 45	19	38	Regidor E, Guallar-Castillon P, Gutierrez-Fisac JL, et al. Socioeconomic variation in the
46 47 48	20		magnitude of the association between self-rated health and mortality. Ann Epidemiol
49 50	21		2010;20:395-400.
51 52	22	39	Benyamini Y, Leventhal EA, Leventhal H. Gender differences in processing information
53 54	23		for making self-assessments of health. Psychosomatic Medicine 2000;62:354-64.
55 56 57	24	40	Gong P, Liang S, Carlton EJ, et al. Urbanisation and health in China. The Lancet
58 59 60	25		2012;379(9818):843-52.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

N (Goo	od/Poor SRH)		β (95% CI)	Р
.NP				
45≤Age<60	208/59			₽.003
Age≥60	250/129	+	0.03 (-0.20 to 0.26)	
				first
Men	192/69	++	- — 0.27 (-0.03 to 0.57)	€075
Women	266/119		0.10 (-0.12 to 0.32)	ති.365 as
Illiterate	174/91 -	<u> </u>	0.04 (-0.22 to 0.30)	
Literate	284/97	+	0.26 (0.02 to 0.51)	<u>.</u> 1034
CHARLS				omjopen
				-2018
45 <u><</u> Age<60	3468/1235		0.06 (-0.01 to 0.12)	ð.074
Age≥60	2481/1369		0.08 (0.02 to 0.15)	Open: first pablished as 10.41360 mjopen-2018-027689 on 19 November 2019-Dovelloaded from http://bmjopen.bmjcc.001
Men	2989/1053	+	0.12 (0.05 to 0.19)	∞ ∳.001
Women	2957/1549		0.02 (-0.04 to 0.08)) 1900.42(
Illiterate	1767/1068		0.00 (-0.08 to 0.07)	2019 Д.960
Literate	4181/1535	•-	0.11 (0.05 to 0.16)	≦001
				badec
.NP+CHARLS				d from h
45≤Age<60	3676/1294	_ _	0.08 (0.02 to 0.14)	013
Age≥60	2731/1498	→	0.08 (0.02 to 0.15)	जू कु.012
				∍n.br
Men	3181/1122	│ ─ ◆──	0.13 (0.06 to 0.20)	
Women	3223/1668	_ + •	0.03 (-0.03 to 0.09)	m 20.27€ April 19,2094 by guest. Pro
				April
Illiterate	1941/1159	+	0.01 (-0.07 to 0.08)	
Literate	4465/1632	│ _ ←	0.12 (0.06 to 0.18)	∰.001
				by c

Figure 2 β -coefficient and 95% confidence interval (CI) of CRP in relation to poor self-rated health from linear regression models stratified by age, sex and education in NP, CHARLS, and the pooled populations of the two datasets. SRH is did otomized as poor to very poor versus good to average. Models are simultaneously adjusted for age, sex, education, marital status, smoking, alcohol consumption, BMI, health status.

SUPPLEMENTARY FILE

	Non-missing ^a (n=646)	Missing ^a (n=2)	Р
Age			0.093
<60	267(41.3)	2(100)	
≥60	379(58.7)	0(0)	
Sex			0.24
Men	261(40.4)	0(0)	
Women	385(59.6)	2(100)	
Education			0.239
Illiterate	265(41.0)	0(0)	
Literate	381(59.0)	2(100)	
Marital status			0.49
Married	522(80.8)	2(100)	
Non-married	124(19.2)	0(0)	
Smoking			0.582
Current smokers	85(13.2)	0(0)	
Non-current smokers	561(86.8)	2(100)	
Drinking			0.489
Regular drinkers	125(19.4)	0(0)	
Non-regular drinkers	521(80.7)	2(100)	
BMI			0.810
Underweight (<18.5)	30(4.60)	0(0)	
Normal weight (18.5-25)	436(67.5)	2(100)	
Overweight (25-30)	158(24.5)	0(0)	
Obese (≥30)	22(3.4)	0(0)	
Self-rated health			0.184
Good	188(29.1)	2(100)	
Average	270(41.8)	0(0)	
Poor	165(25.5)	0(0)	
Very poor	23(3.6)	0(0)	
Health status ^b			0.018
Healthy	127(19.7)	2(100)	
Unhealthy	518(80.2)	0(0)	
Missing	1(0.2)	0(0)	

^a Data are presented as n (%)

^b Healthy status:

Unhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive or antidiabetic medications (NP).

Healthy: No such report.

Table S2 Characteristics of study	y sample in CHARLS without and with missing values in CRP
	y sumple in CITAILS without and with inissing values in CIA

	Non-missing ^a (n=8555)	Missing ^a (n=3810)	Р
Age			0.002
<60	4703(55.0)	2226(58.4)	
≥60	3850(45.0)	1583(41.6)	
Missing	2(0)	1(0)	
Sex			< 0.001
Men	4042(47.3)	2014(52.9)	
Women	4506(52.7)	1794(47.1)	
Missing	7(0.1)	2(0.1)	
Education			0.001
Illiterate	2835(33.1)	1160(30.5)	
Literate	5716(66.8)	2643(69.4)	
Missing	4(0.1)	7(0.2)	
Marital status			0.001
Married	7517(87.9)	3263(85.6)	
Non-married	1038(12.1)	547(14.4)	
Smoking			0.113
Current smokers	2561(29.9)	1086(28.5)	
Non-current smokers	5993(70.1)	2722(71.4)	
Missing	1(0)	2(0.1)	
Drinking			0.024
Regular drinkers	998(11.7)	399(10.5)	
Non-regular drinkers	7554(88.3)	• 3406(89.4)	
Missing	3(0)	5(0.1)	
BMI			< 0.001
Underweight (<18.5)	535(6.3)	206(5.4)	
Normal weight (18.5-25)		1790(47.0)	
Overweight (25-30)	1819(21.3)	592(15.5)	
Obese (\geq 30)	291(3.4)	101(2.7)	
Missing	1191(13.9)	1121(29.4)	
Self-rated health		(->)	0.002
Good	1794(21.0)	910(23.9)	
Average	4157(48.6)	1798(47.2)	
Poor	2157(25.2)	894(23.5)	
Very poor	447(5.2)	208(5.5)	
Health status ^b		200(0.0)	< 0.001
Healthy	2089(24.4)	1160(30.5)	0.001
Unhealthy	6401(74.8)	2607(68.4)	
Missing	65(0.8)	43(1.1)	

^a Data are presented as n (%)

^b Healthy status:

> Unhealthy: Had been diagnosed by a doctor with any disease or often suffered from any pain currently (CHARLS).

Healthy: No such report.

Table S3 Odds ratio and 95% confidence interval (95% CI) between poor self-	
rated health and levels of C-reactive protein: stratified by age, sex and	
education (pooled population, logistic)	

	N (Good/Poor)	OR (95%CI) ^a	Р
Total	6409/2792	1.18 (1.03 to 1.37)	0.020
Age			
45-60	3676/1294	1.22 (0.98 to 1.52)	0.076
≥60	2731/1498	1.17 (0.97 to 1.41)	0.098
Sex			
Men	3181/1122	1.26 (1.02 to 1.56)	0.031
Women	3223/1668	1.12 (0.92 to 1.35)	0.270
Education			
Illiterate	1941/1159	1.12 (0.89 to 1.41)	0.339
Literate	4465/1632	1.23 (1.03 to 1.48)	0.025

^a Adjusted for age, sex, education, marital status, smoking, alcohol

consumption, BMI, health status.

 Table S4 Association between self-rated health and C-reactive protein (After multiple imputation)

		Model1 ^a		Model2 ^b	
	Ν	β (95%CI)	Р	β (95%CI)	Р
NP					
Good	190	Ref.		Ref.	
Average	270	-0.02 (-0.22 to 0.18)	0.825	-0.05 (-0.24 to 0.14)	0.602
Poor	165	0.12 (-0.10 to 0.35)	0.275	0.11 (-0.11 to 0.32)	0.341
Very Poor	23	0.40 (-0.06 to 0.86)	0.089	0.29 (-0.15 to 0.73)	0.200
Good/Poor	460/188	0.17 (-0.01 to 0.35)	0.064	0.16 (-0.02 to 0.34)	0.076
CHARLS					
Good	2704	Ref.		Ref.	
Average	5955	0.01 (-0.04 to 0.06)	0.717	0.00 (-0.05 to 0.05)	0.962
Poor	3051	0.07 (0.01 to 0.14)	0.016	0.06 (0.00 to 0.12)	0.052
Very Poor	655	0.11 (0.02 to 0.21)	0.023	0.10 (0.00 to 0.20)	0.041
Good/Poor	8659/3706	0.08 (0.03 to 0.12)	0.002	0.07 (0.02 to 0.12)	0.009
NP+CHARLS					
Good	2894	Ref.		Ref.	
Average	6225	0.02 (-0.02 to 0.06)	0.349	0.01 (-0.03 to 0.05)	0.639
Poor	3216	0.08 (0.03 to 0.13)	0.002	0.07 (0.02 to 0.11)	0.009
Very Poor	678	0.13 (0.04 to 0.22)	0.005	0.12 (0.03 to 0.21)	0.012
Good/Poor	9119/3894	0.07 (0.03 to 0.11)	< 0.001	0.07 (0.03 to 0.11)	0.001

^a Adjusted for age, sex, education

^b Adjusted for age, sex, education, marital status, smoking, alcohol consumption, BMI, health status

Page	30	of	33
------	----	----	----

	N (Good/Poor)	β (95%CI) ^a	Р
NP		• ` ` `	
Age			
45-60	210/59	0.42 (0.14 to 0.71)	0.003
≥60	250/129	0.03 (-0.20 to 0.26)	0.792
Sex		``````````````````````````````````````	
Men	192/69	0.27 (-0.03 to 0.57)	0.075
Women	268/119	0.10 (-0.12 to 0.32)	0.370
Education			
Illiterate	174/91	0.04 (-0.22 to 0.30)	0.743
Literate	286/97	0.26 (0.02 to 0.51)	0.034
CHARLS			
Age			
45-60	5183/1746	0.08 (0.02 to 0.13)	0.007
≥60	3473/1960	0.06 (0.00 to 0.12)	0.064
Sex			
Men	4505/1551	0.09 (0.02 to 0.17)	0.019
Women	4148/2152	0.03 (-0.03 to 0.08)	0.310
Education			
Illiterate	2485/1510	0.02 (-0.04 to 0.08)	0.504
Literate	6167/2192	0.08 (0.02 to 0.13)	0.006
NP+CHARLS			
Age			
45-60	5393/1805	0.09 (0.03 to 0.14)	0.002
≥60	3723/2089	0.06 (0.00 to 0.13)	0.040
Sex			
Men	4697/1620	0.11 (0.03 to 0.18)	0.007
Women	4416/2271	0.03 (-0.02 to 0.08)	0.213
Education			
Illiterate	2659/1601	0.03 (-0.03 to 0.09)	0.377
Literate	6453/2289	0.09 (0.03 to 0.14)	0.002

Table S5 Association between self-rated health and C-reactive protein: stratified by age, sex and education (After multiple imputation)

^a Adjusted for age, sex, education, marital status, smoking, alcohol consumption BML health status

consumption, BMI, health status

	NP			CHARLS		
	Illiterate	literate	Р	Illiterate	literate	Р
Age			< 0.001			< 0.00
45-60	63 (23.8)	204 (53.5)		1182 (41.7)	3519 (61.6)	
≥60	202 (76.2)	177 (46.5)		1652 (58.3)	2196 (38.4)	
Sex			< 0.001			< 0.00
Men	77 (29.1)	184 (48.3)		638 (22.5)	3402 (59.6)	
Women	188 (70.9)	197 (51.7)		2194 (77.5)	2310 (40.4)	
Self-rated health			0.067			< 0.00
Good	74 (27.9)	114 (29.9)		517 (18.2)	1277 (22.3)	
Average	100 (37.7)	170 (44.6)		1250 (44.1)	2904 (50.8)	
Poor	82 (30.9)	83 (21.8)		878 (31)	1278 (22.4)	
Very poor	9 (3.4)	14 (3.7)		190 (6.7)	257 (4.5)	
Health status		, ,	0.002			< 0.0
Healthy	37 (14)	90 (23.7)		605 (21.5)	1483 (26.2)	
Unhealthy	228 (86)	290 (76.3)		2213 (78.5)	4186 (73.8)	

Table S6 Characteristics of the study samples: stratified by datasets and education

		프 BMJ Open 영 역 신	Pa
	ST	ROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>cross-sectional studies</i>	
Section/Topic	Item #	Recommendation 6	Reported on page #
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	P1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	P3
Introduction	1		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	P4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	P5-6
Methods	1		
Study design	4	Present key elements of study design early in the paper	P6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	P6-8
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	P6-7
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	P7-8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	P7-8
Bias	9	Describe any efforts to address potential sources of bias	P9
Study size	10	Explain how the study size was arrived at	P6-7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which group by the second	P8-9
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	P8-9
		(b) Describe any methods used to examine subgroups and interactions	P8-9
		(c) Explain how missing data were addressed	P9
		(d) If applicable, describe analytical methods taking account of sampling strategy	P9
		(e) Describe any sensitivity analyses	P9
Results		copyright	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 mjopen-2018

by copyright

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined or eligibility,	Figure 1
		confirmed eligible, included in the study, completing follow-up, and analysed C	
		(b) Give reasons for non-participation at each stage	Figure 1
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	P10-12
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	P12
Outcome data	15*	Report numbers of outcome events or summary measures	P11-12
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision deg, 95% confidence	P13-14, why: P9
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	P8-9
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time \ddot{a} eriod	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	P15
Discussion			
Key results	18	Summarise key results with reference to study objectives	P15
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	P4
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	P15-17
Generalisability	21	Discuss the generalisability (external validity) of the study results	P17-18
Other information		April	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for tree original study on	P19
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in dehort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicinearg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.secobe-statement.org.

The role of education in the association between self-rated health and levels of C-reactive protein: a cross-sectional study in rural areas of China

	I
Journal:	BMJ Open
Manuscript ID	bmjopen-2018-027659.R2
Article Type:	Original research
Date Submitted by the Author:	31-Aug-2019
Complete List of Authors:	Tu, Raoping; School of Nursing, Yangzhou University; Nagasaki University Institute of Tropical Medicine, Department of International Health Pan, Kuan-Yu; Karolinska Institutet, Stockholm University, Department of Neurobiology, Care Sciences and Society (NVS), Aging Research Center Cai, Guoxi; Nagasaki Prefectural Institute of Environment and Public Health; Nagasaki University Institute of Tropical Medicine, Department of International Health Yamamoto, Taro; Nagasaki University Institute of Tropical Medicine, Department of International Health Wang, Hui-Xin; Stockholm University, Stress Research Institute; Karolinska Institutet, Department of Neurobiology, Care Sciences and Society (NVS), Aging Research Center
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, SOCIAL MEDICINE

SCHOLARONE[™] Manuscripts

BMJ Open

2		
3 4	1	Title page
5	T	The page
6 7	2	The role of education in the association between self-rated health and levels of C-
8 9 10	3	reactive protein: a cross-sectional study in rural areas of China
11 12 13	4	
13 14 15	5	Author's names and affiliation:
16 17 18	6	Raoping Tu ^{1,2,3} , Kuan-Yu Pan ⁴ , Guoxi Cai ^{2,5} , Taro Yamamoto ^{2,*} , Hui-Xin Wang ^{4,6,*}
19 20	7	¹ School of Nursing, Yangzhou University, Yangzhou, China
21 22 23	8	² Department of International Health, Institute of Tropical Medicine (NEKKEN),
24 25 26	9	Nagasaki University, Nagasaki, Japan.
27 28	10	³ Leading Program, Graduate School of Biomedical Sciences, Nagasaki University,
29 30 31	11	Nagasaki, Japan.
32 33	12	⁴ Aging Research Center, Department of Neurobiology, Care Sciences and Society
34 35 36	13	(NVS), Karolinska Institutet, Stockholm University, Stockholm, Sweden.
37 38 39	14	⁵ Nagasaki Prefectural Institute of Environment and Public Health, Nagasaki, Japan.
40 41	15	⁶ Stress Research Institute, Stockholm University, Stockholm, Sweden.
42 43 44	16	
45 46 47	17	
47 48 49	18	*Correspondence to:
50 51 52	19	1. Department of International Health, Institute of Tropical Medicine (NEKKEN),
53 54	20	Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
55 56 57	21	Tel: +81-095-819-7853, Fax: +81-095-819-7869
58 59 60	22	Taro Yamamoto

2		
3		
4	1	E-mail: <u>y-taro@nagasaki-u.ac.jp</u>
5 6		
7	2	2. Stress Research Institute, Stockholm University, SE-106 91 Stockholm, Sweden
8		
9	2	$T_{0} + 46 00 5527 0041$
10	3	Tel: +46-08-5537-8941
11		
12	4	Hui-Xin Wang
13		
14	5	E-mail: <u>huixin.wang@su.se</u>
15	J	L-man. <u>muran.wang@su.se</u>
16		
17	6	
18		
19 20	7	
20	,	
21 22		
22	8	
24		
25	9	Word count: 2808
26		
27	4.0	
28	10	Word count: 2808
29		
30	11	
31		
32	10	
33	12	
34		
35	13	
36		
37 38	14	
30 39	14	
40		
41	15	
42		
43	16	
44		
45	47	
46	17	
47		
48	18	
49 50		
50 51	19	
51	19	
52 53		
53 54	20	
55		
56	21	
57		
58	. -	
59	22	
60		

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26 27	
27 20	
28 29	
29 30	
30 31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	ABSTRACT
2	Objectives This study aims to examine the association between self-rated health (SRH)
3	and levels of C-reactive protein (CRP) among adults aged 45 to 101 years old in rural
4	areas of China, and to explore the role of education in the association.
5	Design Cross-sectional study
6	Setting The study population was derived from two databases in China: Nanping
7	project (NP) and the China Health and Retirement Longitudinal Study (CHARLS).
8	Participants 646 participants from a rural area of Nanping (NP) and 8555 rural
9	participants from a national representative sample of China (CHARLS).
10	Methods CRP was measured using a high sensitivity sandwich enzyme immunoassay
11	in the NP and immunoturbidimetric assay in the CHARLS. SRH was assessed by self-
12	rated health questionnaires and categorized into good and poor. Education was
13	measured by the maximum years of schooling and dichotomized into illiterate and
14	literate. Multivariate linear regression models were used to study the associations.
15	Results Compared to people with good SRH, those with poor SRH had higher levels
16	of CRP in NP (β=0.16, 95% CI -0.02 to 0.34) and in CHARLS (β=0.07, 95% CI 0.02
17	to 0.11). This was especially in men and literate people after adjusting for potential
18	confounders. Similar findings were observed in the pooled population (β =0.08, 95% CI
19	0.03 to 0.12), in men (β =0.13, 95% CI 0.06 to 0.20), and in literate people (β =0.12, 95%
20	CI 0.06 to 0.18).
21	Conclusion Poor SRH may be a predicator of elevated levels of CRP among middle-

aged and older people in rural areas, especially in men and literate people.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3 4		1	
5			
6 7		2	Keywords Self-rated health; C-reactive protein; Education level
8			
9		3	
10			
11 12		4	Strengths and limitations of this study
13			8
14		5	• Our study population came from two databases, including one national
15 16		-	
17		6	representative sample derived from the China Health and Retirement Longitudinal
18		U	representative sample derived nom the emili freditit and rectrement Dongitalitati
19		7	Study (CHARLS), making our results highly generalizable to the national rural
20 21		,	Study (CHARLES), making our results mgmy generalizable to the national rular
21		8	population of China.
23		0	population of China.
24		9	• Cranative protein (CDD) was an abjective measure performed by health
25 26		9	• C-reactive protein (CRP) was an objective measure performed by health
20		4.0	un faminale mine andidated with de maline it mens which he with a fam
28		10	professionals using validated methods, making it more reliable than subjective
29			
30 31		11	measures.
32			
33		12	Cross-sectional study design prevented us from making causal inferences.
34 35			
35 36		13	• Convenience sampling in the Nanping project and the relatively large proportion
37			4
38		14	of CHARLS participants with missing values in CRP may have introduced bias.
39 40			
40		15	 Residual confounding or hidden bias cannot be ruled out due to lack of
42			
43		16	information on some potential confounders, such as clinical cardiovascular risk
44 45			
46		17	factors (e.g, HDL-C, HbA1c), acute inflammatory conditions, medication use,
47			
48 49		18	etc.
49 50	19	Te	ext
51	15	10	
52	20		
53 54			
55	21	IN	TRODUCTION
56		~	
57 58	22	C-	reactive protein (CRP), a marker of systemic inflammation, has been shown to be involved
59	23	in	crucial pathogenesis in a variety of negative health outcomes, including cardiovascular
60	20	111	eracial pathogenesis in a variety of negative nearth outcomes, merading cardiovascular

Page 5 of 30

BMJ Open

diseases,¹² diabetes,³ cancer,⁴ and cognitive decline.⁵ Since the value of CRP in the prediction of prognoses in health outcomes has been recognized, it is important, from a public health perspective, to identify people at risk of elevated CRP in an efficient and simple way.

Self-rated health (SRH) refers to an individual's subjective perception of his/her own health and can be easily measured. Despite this, SRH has been featured as a strong predictor for functional ability,⁶ chronic diseases,⁷ and mortality.⁸⁹ Therefore, many health authorities have introduced SRH for surveillance.¹⁰ The association between SRH and CRP has been examined in previous studies, but the results were inconsistent.¹¹⁻¹⁴ These discrepancies may be due to differences in characteristics of the study populations (e.g., age and sex) and study design. For example, a Japanese study demonstrated an association between poor SRH and an elevated CRP value in women, but not in men (age range 40-69).¹⁴ In contrast, in an US sample of younger adults (mean age 28.42±1.78), current SRH was not associated with CRP in women, whereas the association was shown in men.¹³ Among hospital-based studies, poor SRH was associated with higher CRP in female patients with coronary heart disease,¹² but not in patients with breast cancer.¹⁵ In community-based studies, there has been a cross-sectional association between SRH and CRP, ^{13 14} but no evidence indicating longitudinal association.¹⁶

As SRH measures personal perception of health, it can be influenced by other factors beyond the real health status. For example, people with different educational levels may have different perceptions of health.¹⁷ This education-related difference in perception of health may further play a role in the association between SRH and health outcomes. Indeed, a stronger association between SRH and mortality among higher educated than lower educated individuals has been shown in two studies.¹⁸ ¹⁹ Since CRP has been recognized as an important predicator of mortality,²⁰ education seems to modify its relationship with SRH.²¹ It is noteworthy that studies

concerning the association between SRH and CRP were mostly conducted in developed countries where the study populations were relatively well educated.¹¹⁻¹⁴ To our knowledge, no study has focused on the difference in the association between SRH and CRP between illiterate and literate people. In China, despite the decrease in illiteracy from 1990 to 2010, there continues to be large difference between urban and rural areas: the rate of illiteracy in rural areas is two times more than that of urban areas.²² Considering the lack of resources in rural areas, identifying people at risk of negative health outcomes using a simple measure such as SRH is warranted.

In the current study, we use two databases from China to examine the association between SRH and CRP among middle-aged and older people in rural areas, and to explore whether the SRH-CRP association varies across age $(45-60/\geq 60)$, sex (men/women), and educational levels elien (illiterate/literate).

METHODS

Study population

Nanping project (NP)

NP is a 2015, voluntary participation, cross-sectional study consisting of residents aged 18 years or older from one county of Nanping City in Fujian Province, China. Seven villages were selected based on recommendations from local health workers, since the residents in these areas are known to be highly cooperative.

As showed in Figure 1, a total of 797 people were enrolled in the NP. To match with the age range of study population from the CHARLS, we excluded 98 participants under 45 years old. Those with CRP concentrations higher than 6.25 mg/L in dried blood spots (DBS), which is

Page 7 of 30

1

BMJ Open

2
3
4
5
6
7
, ,
8
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 24 25 26 27 28 9 30 31 23 34 35 37
22
23
24
25
26
20
27
28
29
30
21
31 32 33 34 35 36 37 38
32
33
34
25
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
54
55
56
57
58
59
60

1	comparable to 10 mg/L at serum level ²³ (n=25), were excluded due to potential acute
2	inflammatory conditions. After further excluding people with missing information on CRP
3	(n=2), SRH (n=25), and on both CRP and SRH (n=1), 646 people remained in current study.
4	
5	China Health and Retirement Longitudinal Study (CHARLS)
6	The CHARLS is a nationally representative longitudinal study. Eligible people were selected
7	through a multistage probability sampling, and detailed descriptions of sampling method are
8	provided in the users' guide. ²⁴ In this current study, we used data from the baseline survey in
9	2011 because the CRP data was only available in that year. This is a secondary analysis of the
10	CHARLS public database.
11	
12	Overall, 17430 people were examined at baseline (Figure 1). People who lived in communities,
13	or in both villages and communities (n=4562), and had CRP>10mg/L (n=429) were excluded.
14	We further excluded people with missing data on CRP (n=3810), SRH (n=28), and on both
15	CRP and SRH (n=46). Finally, 8555 (69%) people were included in the analytical sample.
16	
17	Self-rated health (SRH)
18	SRH was assessed by one question: 'In general how would you rate your health?' Response
19	options were 'good', 'average', 'poor', and 'very poor'.
20	
21	C-reactive protein (CRP)
22	NP
23	Finger prick blood samples were collected by health workers using a filter paper, known as
24	DBS. We kept the DBS at room temperature for a few days after being desiccated during the
25	investigation period, then stored them in the Fujian Medical University at -20° . We used high

¢

sensitivity sandwich enzyme immunoassay method to measure CRP concentrations by
 applying monoclonal antibodies.²³ Further details of the protocols have been presented
 elsewhere.²⁵

5 CHARLS

The venous blood samples were collected by trained staff from local Chinese Center for
Disease Control and Prevention (China CDC). Plasma samples were collected and preserved
in 0.5 mL cryovial at -20°C, delivered to Beijing CDC within 2 weeks. Plasma CRP was
determined by the immunoturbidimetric assay method at Capital Medical University.²⁶

11 Covariates

In both cohorts, all participants were interviewed face-to-face by trained interviewers using a questionnaire that covers information on age, sex, education, marital status, smoking, alcohol consumption, and health status. Height and weight were measured by interviewers using standard anthropometers.

Education level was determined by maximum years of schooling: 0 year (illiterate), 1-6 years (elementary school), 7-9 years (junior high school), 10-12 years (senior high school), >12 years (college or above). Due to the fact that more than 30% of both the NP and CHARLS samples were illiterate, we dichotomized education into 0 year (illiterate) and >0 year (literate). Age was dichotomized as 45-60 years versus ≥ 60 years old, and marital status as married versus non-married. BMI was calculated by dividing weight (kg) by height squared (m²) and categorized as underweight (<18.5), normal weight (18.5-24.99), overweight (25-29.99), and obese (≥30). Smoking was dichotomized into current smokers and non-current smokers (including former smokers). Alcohol consumption was categorized as regular drinkers (more

BMJ Open

than 3 times per week) and non-regular drinkers.

Health status was measured by asking the participants whether they had any moderate/severe disease symptoms (e.g., fever) in the last month, or used antihypertensive or antidiabetic medications in the NP, and whether they had ever been diagnosed by a doctor with any diseases (e.g., hypertension), or often suffered from any pain currently in CHARLS. People answering positively were categorized as unhealthy, otherwise healthy.

Statistical analysis

First, data from the NP and CHARLS were analyzed separately. We applied one-way ANOVA to examine the differences of CRP in characteristics in each dataset by using F-distribution. The CRP variable was log-transformed because it was not normally distributed. The association between SRH and CRP was estimated by β -coefficient and a 95% confidence interval (CI) using linear regression in two datasets. The first estimate was respective; in the second, datasets were pooled. Fixed-effect meta-analysis was used to examine the heterogeneity. Then we re-ran the linear regression using the pooled dataset.

Age, sex and education were introduced into the basic-adjusted model. Further, we additionally adjusted for marital status, smoking, alcohol consumption, BMI, and health status.^{27 28} All analyses were repeated in the stratified analyses by age, sex and levels of education.

In order to compare our results with previous studies that including participant with formal education only, we performed additional linear regression analysis stratified by age and sex among illiterate and literate participants separately.

2	
2	
5	
4	
5	
6	
7	
8	
0	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
2/	
3 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 23 24 25 26 7 28 9 30 31 22 23 24 25 26 7 28 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 37 8 37 8 37 8 37 8 37 8 37 8 9 10 11 12 23 24 25 26 7 28 9 30 31 22 23 24 25 26 7 20 31 22 23 24 25 26 7 28 30 31 22 33 34 35 36 37 8 37 33 37 37 37 37 37 37 37 37 37 37 37	
25	
26	
27	
28	
29	
30	
21	
22	
32	
33	
34	
35	
36	
37	
20	
38	
29	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
53	
54	
55	
56	
57	
58	
59	
60	

1

1 All statistical analyses were performed with Stata 13.0 (Stata Corp, College Station, TX, USA).

Patient and public involvement

There were no participants involved in the development of this study.

RESULTS 6

2

3

4

5

7 **Characteristics of the participants**

The CRP levels across different characteristics of participants were compared in each dataset 8 9 separately. Table 1 shows that in both datasets that older age people, higher BMI's, poorer SRH, or an unhealthy status were more likely to have elevated levels of CRP. The findings 10 were inconsistent with sex, education, marital status, smoking and alcohol consumption in the 11 two datasets. People with missing CRP values in NP and CHARLS were better educated and 12 reported better health status compared to those who remained in the analyses (Supplementary 13 File: Table S1 and Table S2). 14

Page	1	1	of 30	
------	---	---	-------	--

Table 1		characteristic	es of the study population	
	NP (n=646)		CHARLS (n=8555	
	Median (IQR) ^a	Pb	Median (IQR) ^a	P ^b
Age		< 0.001		< 0.001
45-60	0.6 (0.3 to 1.2)		0.9 (0.5 to 1.7)	
≥60	0.8 (0.4 to 1.8)		1.1 (0.6 to 2.1)	
Sex		0.011		0.003
Men	0.6 (0.3 to 1.3)		1.0 (0.5 to 2.0)	
Women	0.8 (0.4 to 1.7)		0.9 (0.5 to 1.8)	
Education		0.004		0.316
Illiterate	0.9 (0.4 to 1.8)		1.0 (0.5 to 2.0)	
Literate	0.6 (0.3 to 1.3)		0.9 (0.5 to 1.9)	
Marital status		0.495		< 0.001
Married	0.7 (0.3 to 1.5)		0.9 (0.5 to 1.9)	
Non-married	0.7 (0.4 to 1.7)		1.1 (0.6 to 2.4)	
Smoking		0.467		0.041
Current smokers	0.6 (0.3 to 1.4)		1.0 (0.5 to 2.0)	
Non-current smokers	0.7 (0.4 to 1.6)		0.9 (0.5 to 1.9)	
Alcohol consumption		0.001		0.635
Regular drinkers	0.5 (0.3 to 1.1)		0.9 (0.5 to 1.9)	
Non-regular drinkers	0.8 (0.4 to 1.6)		1.0 (0.5 to 1.9)	
BMI		< 0.001		< 0.001
Underweight (<18.5)	0.5 (0.2 to 1.4)		0.8 (0.5 to 1.9)	
Normal weight (18.5- 24.99)	0.6 (0.3 to 1.1)		0.8 (0.5 to 1.7)	

Overweight (25-29.99) 1.2 (0.6 to 2.3) 1.2 (0.7 to 2.3) Obese (≥30) 1.6 (1.0 to 4.4) 1.9 (0.9 to 3.3) Self-rated health 0.071 <0.001 Good 0.6 (0.3 to 1.7) 0.9 (0.5 to 1.8) Average 0.7 (0.3 to 1.5) 0.9 (0.5 to 1.8) Poor 0.8 (0.4 to 1.5) 1.0 (0.6 to 2.1) Very poor 1.0 (0.5 to 2.3) 1.1 (0.6 to 2.3) Health status ^c 0.002 <0.001 Healthy 0.5 (0.3 to 1.3) 0.8 (0.5 to 1.7) Unhealthy 0.8 (0.4 to 1.6) 1.0 (0.5 to 2.0) ^a Median (interquartile range) • • ^b ANOVA was applied to compare the mean of log-transformed values of CRP. ° ^c Health status: Unhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive or antidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered fro pain currently (CHARLS). Healthy: no such report. Missing values: NDV to the tot by to the tot.	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				BMJ Open	
Obese (\geq 30)1.6 (1.0 to 4.4)1.9 (0.9 to 3.3)Self-rated health0.071<0.001Good0.6 (0.3 to 1.7)0.9 (0.5 to 1.8)Average0.7 (0.3 to 1.5)0.9 (0.5 to 1.8)Poor0.8 (0.4 to 1.5)1.0 (0.6 to 2.1)Very poor1.0 (0.5 to 2.3)1.1 (0.6 to 2.3)Health statuse0.002<0.001Healthy0.5 (0.3 to 1.3)0.8 (0.5 to 1.7)Unhealthy0.8 (0.4 to 1.6)1.0 (0.5 to 2.0)AMedian (interquartile range) \diamond ANOVA was applied to compare the mean of log-transformed values of CRP. \diamond Health status:Unhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive or antidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered from pain currently (CHARLS). Healthy: no such report.Missing values:NDND1.0 kl to to to the kl to to to the kl to the kl to to the kl to to the kl to the	Obese (≥ 30)1.6 (1.0 to 4.4)1.9 (0.9 to 3.3)Self-rated health0.071<0.001Good0.6 (0.3 to 1.7)0.9 (0.5 to 1.8)Average0.7 (0.3 to 1.5)0.9 (0.5 to 1.8)Poor0.8 (0.4 to 1.5)1.0 (0.6 to 2.1)Very poor1.0 (0.5 to 2.3)1.1 (0.6 to 2.3)Health status ^c 0.002<0.001Healthy0.5 (0.3 to 1.3)0.8 (0.5 to 1.7)Unhealthy0.8 (0.4 to 1.6)1.0 (0.5 to 2.0)*Median (interquartile range)>> ANOVA was applied to compare the mean of log-transformed values of CRP.*Health status:Unhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive or antidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered from bain currently (CHARLS). Healthy: no such report.Wissing values:NP: 1 missing in health status.CHARLS: 2 missing in age, 7 missing in sex, 4 missing in education, 1 missing in smoking, 3 missing alcohol consumption, 1191 missing in BMI, 65 missing in health status.	Overweight (25-29.99)	1.2 (0.6 to 2.3)		1.2 (0.7 to 2.3)	
elf-rated health 0.071 <0.001	elf-rated health 0.071 <0.001Good $0.6 (0.3 \text{ to } 1.7)$ $0.9 (0.5 \text{ to } 1.8)$ Average $0.7 (0.3 \text{ to } 1.5)$ $0.9 (0.5 \text{ to } 1.8)$ Poor $0.8 (0.4 \text{ to } 1.5)$ $1.0 (0.6 \text{ to } 2.1)$ Very poor $1.0 (0.5 \text{ to } 2.3)$ $1.1 (0.6 \text{ to } 2.3)$ ealth statuse 0.002 <0.001	Obese (≥30)	1.6 (1.0 to 4.4)		1.9 (0.9 to 3.3)	
Good $0.6 (0.3 \text{ to } 1.7)$ $0.9 (0.5 \text{ to } 1.8)$ Average $0.7 (0.3 \text{ to } 1.5)$ $0.9 (0.5 \text{ to } 1.8)$ Poor $0.8 (0.4 \text{ to } 1.5)$ $1.0 (0.6 \text{ to } 2.1)$ Very poor $1.0 (0.5 \text{ to } 2.3)$ $1.1 (0.6 \text{ to } 2.3)$ ealth statusc 0.002 <0.001Healthy $0.5 (0.3 \text{ to } 1.3)$ $0.8 (0.5 \text{ to } 1.7)$ Unhealthy $0.8 (0.4 \text{ to } 1.6)$ $1.0 (0.5 \text{ to } 2.0)$ Median (interquartile range)NOVA was applied to compare the mean of log-transformed values of CRP.NOVA was applied to compare the mean of log-transformed values of CRP.Healthy:Self-reported moderate to severe symptoms in the last month or used antihypertensive or tidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered froin currently (CHARLS). Healthy: no such report.issing values:Deletion in currently (CHARLS). Healthy: no such report.	Good $0.6 (0.3 \text{ to } 1.7)$ $0.9 (0.5 \text{ to } 1.8)$ Average $0.7 (0.3 \text{ to } 1.5)$ $0.9 (0.5 \text{ to } 1.8)$ Poor $0.8 (0.4 \text{ to } 1.5)$ $1.0 (0.6 \text{ to } 2.1)$ Very poor $1.0 (0.5 \text{ to } 2.3)$ $1.1 (0.6 \text{ to } 2.3)$ ealth statuse 0.002 <0.001 Healthy $0.5 (0.3 \text{ to } 1.3)$ $0.8 (0.5 \text{ to } 1.7)$ Unhealthy $0.8 (0.4 \text{ to } 1.6)$ $1.0 (0.5 \text{ to } 2.0)$ Median (interquartile range) $NOVA$ was applied to compare the mean of log-transformed values of CRP.Iealth status:healthy:Self-reported moderate to severe symptoms in the last month or used antihypertensive ortidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered fromin currently (CHARLS). Healthy: no such report.issing values:P: 1 missing in health status.HARLS: 2 missing in age, 7 missing in sex, 4 missing in education, 1 missing in smoking, 3 missingcohol consumption, 1191 missing in BMI, 65 missing in health status.	lf-rated health		0.071		< 0.001
Average0.7 (0.3 to 1.5)0.9 (0.5 to 1.8)Poor0.8 (0.4 to 1.5)1.0 (0.6 to 2.1)Very poor1.0 (0.5 to 2.3)1.1 (0.6 to 2.3)ealth statusc0.002<0.001Healthy0.5 (0.3 to 1.3)0.8 (0.5 to 1.7)Unhealthy0.8 (0.4 to 1.6)1.0 (0.5 to 2.0)Median (interquartile range)0.8 (0.4 to 1.6)1.0 (0.5 to 2.0)NOVA was applied to compare the mean of log-transformed values of CRP.Iealth status:whealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive or tidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered from in currently (CHARLS). Healthy: no such report.	Average0.7 (0.3 to 1.5)0.9 (0.5 to 1.8)Poor0.8 (0.4 to 1.5)1.0 (0.6 to 2.1)Very poor1.0 (0.5 to 2.3)1.1 (0.6 to 2.3)ealth statuse0.002<0.001	Good	0.6 (0.3 to 1.7)		0.9 (0.5 to 1.8)	
Poor0.8 (0.4 to 1.5)1.0 (0.6 to 2.1)Very poor1.0 (0.5 to 2.3)1.1 (0.6 to 2.3)ealth statusc0.002<0.001Healthy0.5 (0.3 to 1.3)0.8 (0.5 to 1.7)Unhealthy0.8 (0.4 to 1.6)1.0 (0.5 to 2.0)Median (interquartile range)ANOVA was applied to compare the mean of log-transformed values of CRP.Health status:nhealthy:Self-reported moderate to severe symptoms in the last month or used antihypertensive orntidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered frotin currently (CHARLS). Healthy: no such report.tissing values:Delay is the last to be blacked.	Poor0.8 (0.4 to 1.5)1.0 (0.6 to 2.1)Very poor1.0 (0.5 to 2.3)1.1 (0.6 to 2.3)ealth statuse0.002<0.001	Average	0.7 (0.3 to 1.5)		0.9 (0.5 to 1.8)	
Very poor1.0 (0.5 to 2.3)1.1 (0.6 to 2.3)ealth statusc0.002<0.001Healthy0.5 (0.3 to 1.3)0.8 (0.5 to 1.7)Unhealthy0.8 (0.4 to 1.6)1.0 (0.5 to 2.0)Median (interquartile range)ANOVA was applied to compare the mean of log-transformed values of CRP.Health status:nhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive orntidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered froain currently (CHARLS). Healthy: no such report.Iissing values:Data in in in backle to the status:	Very poor1.0 (0.5 to 2.3)1.1 (0.6 to 2.3)ealth statuse0.002<0.001	Poor	0.8 (0.4 to 1.5)		1.0 (0.6 to 2.1)	
ealth status ^c 0.002 <0.001 Healthy 0.5 (0.3 to 1.3) 0.8 (0.5 to 1.7) Unhealthy 0.8 (0.4 to 1.6) 1.0 (0.5 to 2.0) Median (interquartile range) ANOVA was applied to compare the mean of log-transformed values of CRP. Health status: nhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive or atidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered from an currently (CHARLS). Healthy: no such report. Iissing values: Path is in a field beta	ealth status ^c 0.002 <0.001	Very poor	1.0 (0.5 to 2.3)		1.1 (0.6 to 2.3)	
Healthy0.5 (0.3 to 1.3)0.8 (0.5 to 1.7)Unhealthy0.8 (0.4 to 1.6)1.0 (0.5 to 2.0)Median (interquartile range)ANOVA was applied to compare the mean of log-transformed values of CRP.Health status:nhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive ortidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered froin currently (CHARLS). Healthy: no such report.	Healthy 0.5 (0.3 to 1.3) 0.8 (0.5 to 1.7) Unhealthy 0.8 (0.4 to 1.6) 1.0 (0.5 to 2.0) Median (interquartile range) ANOVA was applied to compare the mean of log-transformed values of CRP. Health status: Image: Compare the mean of log-transformed values of CRP. Healthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive or tidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered from in currently (CHARLS). Healthy: no such report. issing values: P: 1 missing in health status. HARLS: 2 missing in age, 7 missing in sex, 4 missing in education, 1 missing in smoking, 3 missing cohol consumption, 1191 missing in BMI, 65 missing in health status.	ealth status ^c		0.002		< 0.001
Unhealthy 0.8 (0.4 to 1.6) 1.0 (0.5 to 2.0) Median (interquartile range) ANOVA was applied to compare the mean of log-transformed values of CRP. Health status: Image: Compare the mean of log-transformed values of CRP. Inhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive or tidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered from the currently (CHARLS). Healthy: no such report. Issing values: Image: Compare the test of the test of the compare test of the compare.	Unhealthy0.8 (0.4 to 1.6)1.0 (0.5 to 2.0)Median (interquartile range)ANOVA was applied to compare the mean of log-transformed values of CRP.Health status:nhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive ortidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered fromin currently (CHARLS). Healthy: no such report.issing values:P: 1 missing in health status.HARLS: 2 missing in age, 7 missing in sex, 4 missing in education, 1 missing in smoking, 3 missingcohol consumption, 1191 missing in BMI, 65 missing in health status.	Healthy	0.5 (0.3 to 1.3)		0.8 (0.5 to 1.7)	
Median (interquartile range) ANOVA was applied to compare the mean of log-transformed values of CRP. Health status: nhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive or ntidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered fro ain currently (CHARLS). Healthy: no such report. lissing values:	 Median (interquartile range) ANOVA was applied to compare the mean of log-transformed values of CRP. Health status: Inhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive or ntidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered from ain currently (CHARLS). Healthy: no such report. Iissing values: P: 1 missing in health status. HARLS: 2 missing in age, 7 missing in sex, 4 missing in education, 1 missing in smoking, 3 missing cohol consumption, 1191 missing in BMI, 65 missing in health status. 	Unhealthy	0.8 (0.4 to 1.6)		1.0 (0.5 to 2.0)	
CHARLS: 2 missing in health status. CHARLS: 2 missing in age, 7 missing in sex, 4 missing in education, 1 missing in smoking, 3 missing alcohol consumption, 1191 missing in BMI, 65 missing in health status.		Jnhealthy: Self-reported mod ntidiabetic medications (NP) ain currently (CHARLS). He	lerate to severe symp ; Had been diagnose ealthy: no such repor	ptoms in the ed by a docto rt.	last month or used antihy r with any disease or ofte	pertensive or n suffered from

SRH and CRP

Table 2 presents the association between SRH and CRP in the two individual populations. In the NP, a borderline statistically significant association was observed between very poor SRH and elevated levels of CRP (β =0.39, 95%CI -0.07 to 0.85) in basic-adjusted model, while the association was attenuated after adjusting for confounders (β =0.29, 95%CI -0.15 to 0.73). Despite insignificance, the estimated effect of SRH started to change direction from average SRH ($\beta = -0.05$) to poor SRH ($\beta = 0.10$). In CHARLS, poor and very poor SRH were both associated with higher CRP (β =0.06, 95%CI 0.00 to 0.12; β =0.11, 95%CI 0.01 to 0.22). Considering the same pattern in both two datasets that poor and very poor SRH have similar effect on CRP and so as good and average SRH, and that there are limited number of participants with very poor SRH in NP, we combined 'good' and 'average' as good SRH, 'poor' and 'very poor' as poor SRH. Further, we found that poor SRH was associated with higher levels of CRP both in NP (β=0.16, 95%CI -0.02 to 0.34) and CHARLS (β=0.07, 95%CI 0.02 to 0.11) (Table 2). N

 Table 2
 Association between self-rated health and C-reactive protein

		Model1 ^a		Model2 ^b	
	Ν	β (95%CI)	Р	β (95%CI)	Р
NP					
Good health	188	Ref.		Ref.	
Average	270	-0.03 (-0.22 to 0.17)	0.792	-0.05 (-0.24 to 0.14)	0.589
Poor	165	0.12 (-0.10 to 0.34)	0.292	0.10 (-0.11 to 0.32)	0.349
Very Poor	23	0.39 (-0.07 to 0.85)	0.093	0.29 (-0.15 to 0.73)	0.202
Good/Poor ^c	458/188	0.17 (-0.01 to 0.35)	0.067	0.16 (-0.02 to 0.34)	0.077
CHARLS					
Good health	1794	Ref.		Ref.	
Average	4157	0.01 (-0.04 to 0.06)	0.613	0.00 (-0.05 to 0.06)	0.911
Poor	2157	0.10 (0.04 to 0.15)	0.001	0.06 (0.00 to 0.12)	0.055
Very Poor	447	0.16 (0.06 to 0.25)	0.001	0.11 (0.01 to 0.22)	0.036
Good/Poor	5951/2604	0.10 (0.05 to 0.14)	< 0.001	0.07 (0.02 to 0.11)	0.004
NP+CHARLS					
Good health	1982	Ref.		Ref.	
Average	4427	0.02 (-0.03 to 0.07)	0.379	0.01 (-0.04 to 0.06)	0.643

	Poor	2322	0.11 (0.05 to 0.16)	< 0.001	0.08 (0.02 to 0.14)	0.013
	Very Poor	470	0.18 (0.09 to 0.28)	< 0.001	0.14 (0.04 to 0.24)	0.007
	Good/Poor	6409/2792	0.11 (0.06 to 0.15)	< 0.001	0.08 (0.03 to 0.12)	0.001
	^a Adjusted for age			1 1 1		1.1
1	° Good= Good+A		n, marital status, smokin Poor+Very Poor	ng, alcohol	consumption, BMI, hea	alth status
2	As the same direct	ion of effect of	f estimate and a very lo	w level of	neterogeneity (I-square	d<
3	0.001%) were obse	erved in the two	datasets (data not show	vn), we poo	led the data and re-ran t	ihe
4	-		combined populations.		_	
5	and higher CRP wa	is observed in t	he pooled population (β	=0.08,95%	CI 0.03 to 0.12) (Table	2).
6						
7	The roles of age, s	ex, and educa	tion in the association	between S	RH and CRP	
8	The association bet	tween SRH and	CRP stratified by age,	sex, educat	ion is showed in Figure	2.
9		-	RH was associated wit	-		
10	95%CI 0.14 to 0.7	1) and CHAR	LS (β=0.06, 95%CI -0	.01 to 0.12	Among older people	, a
11	similar trend was o	bserved in CHA	ARLS (β=0.08, 95%CI (0.02 to 0.15), but not in the NP. Wh	en
12	stratified by sex, w	e found a statis	stically significant SRH	-CRP assoc	iation among men both	in
13	NP (β=0.27, 95%C	CI -0.03 to 0.5	7) and CHARLS (β =0.	12, 95%CI	0.05 to 0.19), but not	in
14	women. In a stratif	ied analysis by	education, the associat	ion between	n SRH and CRP was se	en
15	in literate people be	oth in NP (β=0.	26, 95%CI 0.02 to 0.51) and CHAI	RLS (β=0.11, 95%CI 0.	05
16	to 0.16), but not in	illiterate peopl	e.			
17						
18	In the pooled popu	lation, the SRH	I-CRP association was	repeated in	the middle-aged (β =0.0)8,
19	95%CI 0.02 to 0.14	1), older people	e (β=0.08, 95%CI 0.02 t	to 0.15), me	n (β=0.13, 95%CI 0.06	to
• •	(1, 2, 0) $(1, 1)$	1 (0 0 10		C ¹ O)		

22 Additional analyses

0.20), and literate people (β=0.12, 95%CI 0.06 to 0.18) (Figure 2).

BMJ Open

Identical trends with respect to the modifying effect of age and sex on the association between
 SRH and CRP were observed among literate people, but not among illiterate people
 (Supplementary File: Table S3).

DISCUSSION

In this study, based on 9201 residents in rural area of China, we found that poor SRH was
associated with an elevated level of CRP in middle-aged and older people, especially among
the men and literate.

Our finding of the association between poorer SRH and higher CRP level was in line with results from previous studies that included participants at similar age as our study participants.^{11 14} Yet, those studies mainly included people living in industrialized countries with higher education, while our participants resided in less developed country with features of low literacy.

Possible pathways linking poor SRH and an elevated level of CRP could be related to psychological stress and health behaviors. Poor SRH may reflect a poor physical (e.g., inaccessibility to health service) and social (e.g., limited social network) environment, which can limit one's coping ability and induce psychological stress. It is known that stress can activate the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis, contributing to the production of stress hormones, which in turn increase the secretion of CRP.^{29 30} In addition, people with poor SRH were less likely to have an active lifestyle.³¹ Having an inactive lifestyle has been suggested to potentially weaken the immune system and facilitate the inflammation processes through the release of pro-inflammatory adipokines.³²

It is notable that poor SRH was associated with an elevated CRP level in literate participants, but not in the illiterate participants, which was consistent with one previous study.²¹ Similar findings were also shown in studies focusing on SRH and mortality.^{18 19} One of the possible explanations may be that illiterate people are often lack of health-related knowledge and access to health care,¹⁷ and thus may misinterpret the feeling that they have in their bodies.³³ It has been shown that poor SRH in the less educated people mainly represents less serious diseases.³⁴ In our study, we also found that illiterate people were more likely to rate their health as poor and to report illness or pain both in NP and CHARLS. Moreover, illiterate people may have to withstand more pressure as they have less social and financial resources. Thus, other factors may contribute to the reported poor SRH, rather than actual health condition.

We found that SRH-CRP associations were only observed in men, but not in women, which may be due to the potential sex differences in reporting SRH. Previous studies have shown that the poor SRH in women can reflect both serious and non-serious diseases, whereas it tends to reflect serious diseases in men.³⁵ Broad dimensions of health perceptions may lead to less accurate SRH in women. In addition, the proportion of illiterate people among women is much higher than that among men in both datasets. This may explain the inconsistent findings between our study (6% participants with more than 9 years of schooling) and the Iwate-KENCO study from Japan, in which the corresponding figure was 46%.¹⁴

Findings from two datasets were not completely consistent. The association between poor SRH and elevated CRP values among older people (aged ≥ 60 years) was observed in CHARLS, but not in NP. In both populations, poor SRH was only associated with higher CRP in men, not in women. One of the explanations for these findings may be related to educational levels in the two study populations. Indeed, the proportion of illiterate people was relatively higher in older Page 17 of 30

BMJ Open

adults in NP (76.2%) than in CHARLS (58.3%), and there was a higher proportion of illiterate
people in women in both populations. Second, we observed similar age and sex differences in
the associations between SRH and CRP among the literate: poor SRH was associated with
elevated CRP values, especially in men, which was the same as the main results. This suggests
that education might play a role in the SRH-CRP association.

This study provides evidence that SRH, a simple measurement, may be used as an indicator of bad physical health among middle-aged and older literate people, but not among the illiterate people, in rural area. In China, the implementation of health surveillance is more challenging in rural than in urban areas because of the discrepant aging processes,³⁶ knowledge gaps²² and income inequality between these two areas. Elevated CRP has been associated with various physical¹⁻⁴ and psychological health outcomes ^{37 38} Thus, our results support the consideration of using an efficient and cost-effective way, such as SRH, to monitor the health status in rural population where medical resources are limited. Future studies are needed to confirm our results and extend these findings to larger and more diverse populations. Moreover, identification of simple health indictors for illiterate people are warranted.

Acknowledgments We would like to express our sincere gratitude to the participants and local staff in NP project. We are grateful for those supporters: Harvard University (Aki Yazawa); National Center for Global Health and Medicine, Japan (Yosuke Inoue); Nagasaki Prefectural Institute of Environment and Public Health (Guoxi Cai); Fujian Medical University (Fei He, Jie Chen); Fujian Provincial Center for Disease Control and Prevention (Meng Huang) during the data collection in NP. Data from China Health and Retirement Longitudinal Study (CHARLS) were collected by the National School of Development at Peking University, China. We appreciated to University of Copenhagen (Tianwei Xu); Fujian Provincial Center for

Disease Control and Prevention (Xiuquan Lin); Nagasaki University (Sabin Nundu) for providing valuable comments in analysis and interpretation of data.

4 Contributors HW, RT, and KP conceptualized the study. RT analyzed the data and drafted
5 the manuscript. HW, KP, GC, TY contributed to critical revisions of the manuscript. RT and
6 HW are responsible for ensuring the integrity and accuracy of the study. All authors have read
7 and approved the final manuscript.

Funding This study is financed by the Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Japan (Raoping Tu); the Swedish Research Council (Grant no: 2018-02998) and the Swedish Research Council for Health, Working Life and Welfare (Forte) (2019-01120) (Hui-Xin Wang); the Ministry of Education of Taiwan, the Swedish National Graduate School on Ageing and Health (SWEA), and Gamla Tjänarinnor Foundation (Kuan-Yu Pan). NP was financially supported by the JSPS KAKENHI from the Japan Society for the Promotion of Science (13J06172).

Competing Interests None declared.

Patient consent Not required.

Ethics approval The Ethics Committee for Medical Research at the University of Tokyo (No.
10515-(1)) and the Ethics Committee of the Institute of Tropical Medicine at Nagasaki
University (No.120910100-5) approved the study protocol of NP. The Medical Ethics
Committee of Peking University approved the research protocol of CHARLS.

2		
3	1	
4	T	
5 6 7	2	Provenance and peer review Not commissioned; externally peer reviewed
, 8 9	3	
10 11	4	Data sharing statement All of the CHARLS data will be accessible to researchers around the
12 13 14	5	world at the CHARLS project website (http://charls.pku.edu.cn/en). No additional data
14 15 16	6	available.
17 18	7	
19 20 21	8	Figure legends
22 23	9	Figure 1 Flowchart of the study populations in NP and CHARLS
24 25	10	Figure 2 β-coefficient and 95% confidence interval (CI) of CRP in relation to poor self-rated
26 27 28	11	health from linear regression models stratified by age, sex and education in NP, CHARLS, and
29 30	12	the pooled populations of the two datasets. SRH is dichotomized as poor to very poor versus
31 32	13	good to average. When stratified by age, models are adjusted for sex, education, marital status,
33 34 35	14	smoking, alcohol consumption, BMI, health status; when stratified by sex, models are adjusted
36 37	15	for age, education, marital status, smoking, alcohol consumption, BMI, health status; when
38 39	16	stratified by education, models are adjusted for age, sex, marital status, smoking, alcohol
40 41 42	17	consumption, BMI, health status.
43	18	
44 45 46	19	SUPPLEMENTARY FILE
47 48	20	Table S1 Characteristics of study sample in NP without and with missing values in CRP
49 50	21	Table S2 Characteristics of study sample in CHARLS without and with missing values in CRP
51 52 53	22	Table S3 Association between self-rated health and C-reactive protein among illiterate and
54 55	23	literate people: stratified by age and sex
56 57	24	
58 59 60	25	

1			
2 3 4	1		
5 6	2	Re	ferences
7 8	3	1	Black PH, Garbutt LD. Stress, inflammation and cardiovascular disease. Journal of
9 10 11	4		psychosomatic research 2002;52:1-23.
12 13	5	2	Ridker PM. From C-Reactive Protein to Interleukin-6 to Interleukin-1. Circulation
14 15 16	6		<i>Research</i> 2016;118:145-56.
17 18	7	3	Barzilaym JI, Freedland ES. Inflammation and its relationship to insulin resistance, type 2
19 20	8		diabetes mellitus, and endothelial dysfunction. Metabolic syndrome and related disorders
21 22 23	9		2003;1:55-67.
23 24 25	10	4	Wang J, Lee IM, Tworoger SS, et al. Plasma C-reactive protein and risk of breast cancer
26 27	11		in two prospective studies and a meta-analysis. Cancer Epidemiol Biomarkers Prev
28 29	12		2015;24:1199-206.
30 31 32	13	5	Panza F, Solfrizzi V, Logroscino G, et al. Current epidemiological approaches to the
33 34	14		metabolic-cognitive syndrome. J Alzheimers Dis 2012;30 Suppl 2:S31-75.
35 36	15	6	Idler EL, Kasl SV. Self-ratings of health: do they also predict change in functional ability?
37 38 39	16		J Gerontol B Psychol Sci Soc Sci 1995;50:S344-53.
40 41	17	7	Latham K, Peek CW. Self-Rated Health and Morbidity Onset Among Late Midlife U.S.
42 43	18		Adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences
44 45 46	19		2012;68:107-16.
40 47 48	20	8	DeSalvo KB, Bloser N, Reynolds K, et al. Mortality prediction with a single general self-
49 50	21		rated health question. A meta-analysis. J Gen Intern Med 2006;21:267-75.
51 52	22	9	Singh-Manoux A, Dugravot A, Shipley MJ, et al. The association between self-rated
53 54 55	23		health and mortality in different socioeconomic groups in the GAZEL cohort study. Int J
56 57	24		<i>Epidemiol</i> 2007;36:1222-8.
58 59 60	25	10	Salomon JA, Nordhagen S, Oza S, et al. Are Americans feeling less healthy? The puzzle

1 2			
2 3 4	1		of trends in self-rated health. Am J Epidemiol 2009;170:343-51.
5 6	2	11	Christian LM, Glaser R, Porter K, et al. Poorer self-rated health is associated with elevated
7 8 9	3		inflammatory markers among older adults. <i>Psychoneuroendocrinology</i> 2011;36:1495-504.
10 11	4	12	Janszky I, Lekander M, Blom M, et al. Self-rated health and vital exhaustion, but not
12 13 14	5		depression, is related to inflammation in women with coronary heart disease. Brain Behav
14 15 16	6		<i>Immun</i> 2005;19:555-63.
17 18	7	13	Shanahan L, Bauldry S, Freeman J, et al. Self-rated health and C-reactive protein in young
19 20	8		adults. Brain, Behavior, and Immunity 2014;36:139-46.
21 22 23	9	14	Tanno K, Ohsawa M, Onoda T, et al. Poor self-rated health is significantly associated with
24 25	10		elevated C-reactive protein levels in women, but not in men, in the Japanese general
26 27	11		population. Journal of Psychosomatic Research 2012;73:225-31.
28 29 30	12	15	Orre IJ, Reinertsen KV, Aukrust P, et al. Higher levels of fatigue are associated with higher
31 32	13		CRP levels in disease-free breast cancer survivors. J Psychosom Res 2011;71:136-41.
33 34	14	16	Tamura T, Naito M, Maruyama K, et al. The association between self-rated health and
35 36 37	15		high-sensitivity C-reactive protein level: a cross-sectional and 5-year longitudinal study.
37 38 39	16		BMC Public Health 2018;18(1):1380. doi: 10.1186/s12889-018-6251-6
40 41	17	17	Spuling SM, Huxhold O, Wurm S. Predictors of Self-Rated Health: Does Education Play
42 43	18		a Role Above and Beyond Age? J Gerontol B Psychol Sci Soc Sci 2017;72:415-24.
44 45 46	19	18	Dowd JB, Zajacova A. Does the predictive power of self-rated health for subsequent
47 48	20		mortality risk vary by socioeconomic status in the US? Int J Epidemiol 2007;36:1214-21.
49 50	21	19	Huisman M, van Lenthe F, Mackenbach J. The predictive ability of self-assessed health
51 52 53	22		for mortality in different educational groups. Int J Epidemiol 2007;36:1207-13.
54 55	23	20	Li Y, Zhong X, Cheng G, et al. Hs-CRP and all-cause, cardiovascular, and cancer mortality
56 57	24		risk: A meta-analysis. Atherosclerosis 2017;259:75-82.
58 59 60	25	21	Dowd JB, Zajacova A. Does self-rated health mean the same thing across socioeconomic

¢

2			
3 4	1		groups? Evidence from biomarker data. Ann Epidemiol 2010;20:743-9.
5 6	2	22	Guo S, Guo Y. Spotlight on China: Changes in education under China's market economy:
7 8 9	3		Springer, 2016.
9 10 11	4	23	Brindle E, Fujita M, Shofer J, et al. Serum, plasma, and dried blood spot high-sensitivity
12 13	5		C-reactive protein enzyme immunoassay for population research. J Immunol Methods
14 15	6		2010;362:112-20.
16 17 18	7	24	Zhao Y, Strauss J, Yang G, et al. China health and retirement longitudinal study-2011-
19 20	8		2012 national baseline users' guide. National School of Development, Peking University,
21 22	9		2013.
23 24 25	10	25	Yazawa A, Inoue Y, Cai G, et al. Epstein-Barr virus antibody titer as a stress biomarker
25 26 27	11		and its association with social capital in rural Fujian communities, China. Am J Hum Biol
28 29	12		2018:e23135.
30 31	13	26	Zhao Y, Crimmins E, Hu P, et al. CHARLS Blood Sample Users' Guide. National School
32 33 34	14		of Development, Peking University, 2014.
35 36	15	27	Kiecolt-Glaser JK, Gouin JP, Hantsoo L. Close relationships, inflammation, and health.
37 38	16		Neurosci Biobehav Rev 2010;35:33-8.
39 40 41	17	28	Zheng H, Thomas PA. Marital status, self-rated health, and mortality: overestimation of
42 43	18		health or diminishing protection of marriage? Journal of health and social behavior
44 45	19		2013;54:128-43.
46 47	20	29	Coussons-Read ME, Okun ML, Nettles CD. Psychosocial stress increases inflammatory
48 49 50	21		markers and alters cytokine production across pregnancy. Brain Behav Immun
51 52	22		2007;21:343-50.
53 54	23	30	Shivpuri S, Gallo LC, Crouse JR, et al. The association between chronic stress type and
55 56 57	24		C-reactive protein in the multi-ethnic study of atherosclerosis: does gender make a
58 59	25		difference? J Behav Med 2012;35:74-85.
60			

BMJ Open

3
4
5
6
7
, 8
9
10
11
12
13
14
15
16 17
17
18
19
20
∠∪ ว1
∠ I วว
21 22 23
23
24
25
26
27
28
29
30
31
32
33
34
35
36
30 27
37
38
39
40
41
42
43
44
45
46
47
48
49
5 0
50
52
53
54
55
56
57
58
59

60

Molarius A, Berglund K, Eriksson C, *et al.* Socioeconomic conditions, lifestyle factors,
 and self-rated health among men and women in Sweden. *European journal of public health* 2007;17:125-33.

Gleeson M, Bishop NC, Stensel DJ, *et al.* The anti-inflammatory effects of exercise:
mechanisms and implications for the prevention and treatment of disease. *Nat Rev Immunol* 2011;11:607-15.

7 33 Franks P, Gold MR, Fiscella K. Sociodemographics, self-rated health, and mortality in the
8 US. *Social Science & Medicine* 2003;56:2505-14.

9 34 Regidor E, Guallar-Castillon P, Gutierrez-Fisac JL, *et al.* Socioeconomic variation in the 10 magnitude of the association between self-rated health and mortality. *Ann Epidemiol*11 2010;20:395-400.

- Benyamini Y, Leventhal EA, Leventhal H. Gender differences in processing information
 for making self-assessments of health. *Psychosomatic Medicine* 2000;62:354-64.
- 14 36 Gong P, Liang S, Carlton EJ, *et al.* Urbanisation and health in China. *The Lancet* 15 2012;379(9818):843-52.
- 16 37 Valkanova V, Ebmeier KP, Allan CL. CRP, IL-6 and depression: a systematic review and
 17 meta-analysis of longitudinal studies. *J Affect Disord* 2013;150(3):736-44.
- 38 Wium-Andersen MK, Orsted DD, Nielsen SF, *et al.* Elevated C-reactive protein levels,
 psychological distress, and depression in 73, 131 individuals. *JAMA Psychiatry*2013;70(2):176-84.

N (Goo	od/Poor SRH)		β ^a (95% CI)	Р
1.NP				
45≤Age<60	208/59		0.42 (0.14 to 0.71)	₩.003
Age≥60	250/129	+	0.03 (-0.20 to 0.26)	
Men	192/69	+	— 0.27 (-0.03 to 0.57)	ङ्ख ब्रि.075
Women	266/119		0.10 (-0.12 to 0.32)	a
Illiterate	174/91	<u> </u>	0.04 (-0.22 to 0.30)	
Literate	284/97	0	0.26 (0.02 to 0.51)	Open: first pablished as 10:41360 cm 2018 0:27 6:9 on 19 16 vember 2019 0:001
2.CHARLS				pen-2
45 <u><</u> Age<60	3468/1235		0.06 (-0.01 to 0.12)	a.074
Age≥60	2481/1369		0.08 (0.02 to 0.15)	89.013 9
Men	2989/1053	+	0.12 (0.05 to 0.19)	- 19 ₽.001
Women	2957/1549	+	0.02 (-0.04 to 0.08)	en €.420 er ≥
Illiterate	1767/1068		0.00 (-0.08 to 0.07)	о 19.960
Literate	4181/1535	•- 2	0.11 (0.05 to 0.16)	ov ≪10.001
3.NP+CHARLS	5			lloaded from http://www.013
45 <u><</u> Age<60	3676/1294		0.08 (0.02 to 0.14)	Q.013
Age≥60	2731/1498		0.08 (0.02 to 0.15)	a).012
Men	3181/1122		0.13 (0.06 to 0.20)	.bn ≪0.001
Women	3223/1668	_	0.03 (-0.03 to 0.09)	0.276 April 19.862
Illiterate	1941/1159	_	0.01 (-0.07 to 0.08)	₽ <u>1</u> 9.862
Literate	4465/1632	_ _	0.12 (0.06 to 0.18)	2099.001 2099.001
	3	I	.8	/ gues

Figure 2 β -coefficient and 95% confidence interval (CI) of CRP in relation to poor self-rated health from linear regression models stratified by age, sex and education in NP, CHARLS, and the pooled populations of the two datasets. SRH is dichotomized as poor to very poor versus good to average. When stratified by age, models are adjusted for sex, education, marital status, smoking, alcohol consumption, BMI, health status; when stratified by education, models are adjusted for age, sex marital status, smoking, alcohol consumption, BMI, health status; when stratified by education, models are adjusted for age, sex marital status, smoking, alcohol consumption, BMI, health status; when stratified by education, models are adjusted for age, sex marital status, smoking, alcohol consumption, BMI, health status:

^a The average CRP changes in response to one-unit shift in SRH.

SUPPLEMENTARY FILE

	Non-missing ^a (n=646)	Missing ^a (n=2)	Р
Age			0.093
<60	267(41.3)	2(100)	
≥60	379(58.7)	0(0)	
Sex			0.245
Men	261(40.4)	0(0)	
Women	385(59.6)	2(100)	
Education			0.239
Illiterate	265(41.0)	0(0)	
Literate	381(59.0)	2(100)	
Marital status			0.491
Married	522(80.8)	2(100)	
Non-married	124(19.2)	0(0)	
Smoking			0.582
Current smokers	85(13.2)	0(0)	
Non-current smokers	561(86.8)	2(100)	
Drinking			0.489
Regular drinkers	125(19.4)	0(0)	
Non-regular drinkers	521(80.7)	2(100)	
BMI			0.810
Underweight (<18.5)	30(4.60)	0(0)	
Normal weight (18.5-25)	436(67.5)	2(100)	
Overweight (25-30)	158(24.5)	0(0)	
Obese (≥30)	22(3.4)	0(0)	
Self-rated health			0.184
Good	188(29.1)	2(100)	
Average	270(41.8)	0(0)	
Poor	165(25.5)	0(0)	
Very poor	23(3.6)	0(0)	
Health status ^b			0.018
Healthy	127(19.7)	2(100)	
Unhealthy	518(80.2)	0(0)	
Missing	1(0.2)	0(0)	

^a Data are presented as n (%).

^b Healthy status:

Unhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive or antidiabetic medications (NP).

Healthy: No such report.

Table S2 Characteristics of study	y sample in CHARLS without and with missing values in CRP

	Non-missing ^a (n=8555)	Missing ^a (n=3810)	Р
Age			0.002
<60	4703(55.0)	2226(58.4)	
≥60	3850(45.0)	1583(41.6)	
Missing	2(0)	1(0)	
Sex			< 0.001
Men	4042(47.3)	2014(52.9)	
Women	4506(52.7)	1794(47.1)	
Missing	7(0.1)	2(0.1)	
Education			0.001
Illiterate	2835(33.1)	1160(30.5)	
Literate	5716(66.8)	2643(69.4)	
Missing	4(0.1)	7(0.2)	
Marital status			0.001
Married	7517(87.9)	3263(85.6)	
Non-married	1038(12.1)	547(14.4)	
Smoking			0.113
Current smokers	2561(29.9)	1086(28.5)	
Non-current smokers	5993(70.1)	2722(71.4)	
Missing	1(0)	2(0.1)	
Drinking			0.024
Regular drinkers	998(11.7)	399(10.5)	
Non-regular drinkers	7554(88.3)	3406(89.4)	
Missing	3(0)	5(0.1)	
BMI			< 0.001
Underweight (<18.5)	535(6.3)	206(5.4)	
Normal weight (18.5-25)	4719(55.2)	1790(47.0)	
Overweight (25-30)	1819(21.3)	592(15.5)	
Obese (≥30)	291(3.4)	101(2.7)	
Missing	1191(13.9)	1121(29.4)	
Self-rated health			0.002
Good	1794(21.0)	910(23.9)	
Average	4157(48.6)	1798(47.2)	
Poor	2157(25.2)	894(23.5)	
Very poor	447(5.2)	208(5.5)	
Health status ^b			< 0.001
Healthy	2089(24.4)	1160(30.5)	
Unhealthy	6401(74.8)	2607(68.4)	
Missing	65(0.8)	43(1.1)	

^b Healthy status: 58 59

60

Unhealthy: Had been diagnosed by a doctor with any disease or often suffered from any pain currently (CHARLS).

Healthy: No such report.

	Ν	Age<60	Ν	Age≥60	Ν	Men	NN	Women
lliterate							765	
NP							7659 on	
Good	47	Ref.	127	Ref.	56	Ref.	1183	Ref.
Poor	16	0.35 (-0.27 to 0.97)	75	-0.01 (-0.32 to 0.29)	21	0.03(-0.53 to 0.59)	705	0.04 (-0.26 to 0.34
CHARLS							dme	
Good	777	Ref.	989	Ref.	406	Ref.	70vember 13399	Ref.
Poor	405	-0.07 (-0.19 to 0.05)	663	0.05 (-0.05 to 0.15)	232	-0.06(-0.24 to 0.11)	835	0.02 (-0.07 to 0.1)
NP+CHARLS							Dov	
Good	824	Ref.	1116	Ref.	462	Ref.	1477 908	Ref.
Poor	421	-0.05 (-0.17 to 0.07)	738	0.05 (-0.05 to 0.14)	253	-0.04(-0.2 to 0.13)	90 §	0.02 (-0.06 to 0.1)
Literate							d fro	
NP							m	
Good	161	Ref.	123	Ref.	136	Ref.	148	Ref.
Poor	43	0.47 (0.14 to 0.8)**	54	0.08 (-0.3 to 0.45)	48	0.4 (0.03 to 0.77)*	from http://bmjopen 1499 15997	0.17 (-0.16 to 0.5)
CHARLS							oper	
Good	2690	Ref.	1490	Ref.	2581	Ref.		Ref.
Poor	829	0.11 (0.03 to 0.19)**	706	0.11 (0.02 to 0.19)*	821	0.16 (0.08 to 0.24)**	71 17 17 5	0.03 (-0.05 to 0.12
NP+CHARLS							n/ o	
Good	2851	Ref.	1613	Ref.	2717	Ref.	1735	Ref.
Poor	872	0.13 (0.06 to 0.21)**	760	0.11 (0.02 to 0.19)*	869	0.17 (0.1 to 0.25)**		0.04 (-0.04 to 0.13
∠HARLS: 1) III *P<0.05 **P<0.01	iterate: 1	missing in age, 5 missi	ng in se	x; 2) Literate: 1 missing	in age, 4	t missing in sex.	2024 by guest. Protected by copyright	

mjopen-20

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 29 of 30

		BMJ Open	
	STI	ROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>cross-sectional studies</i>	
Section/Topic	Item #	Recommendation 10	Reported on page
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	P1
		∃ (b) Provide in the abstract an informative and balanced summary of what was done and what was found	P3
Introduction		7 20	
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	P4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	P5-6
Methods	1		
Study design	4	Present key elements of study design early in the paper	P6-7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	P6-9
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	P7-9
Bias	9	Describe any efforts to address potential sources of bias	Р9
Study size	10	Explain how the study size was arrived at	P6-7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	P8-9
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	P9
		(b) Describe any methods used to examine subgroups and interactions	P9
		(c) Explain how missing data were addressed 0 (d) If applicable, describe analytical methods taking account of sampling strategy 0	P10,12
		(d) If applicable, describe analytical methods taking account of sampling strategy	P6-7
		(e) Describe any sensitivity analyses	P9
Results			

		BMJ Open BMJ Open BMJ Open 201	Page
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	Figure 1
		(b) Give reasons for non-participation at each stage	Figure 1
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	P10-12
		(b) Indicate number of participants with missing data for each variable of interest	P12
Outcome data	15*	Report numbers of outcome events or summary measures	P11-12
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision deg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	P13-14, why: P9
		(b) Report category boundaries when continuous variables were categorized	P8-9
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	P15
Discussion		ter en	
Key results	18	Summarise key results with reference to study objectives	P15
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	P4
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	P15-17
Generalisability	21	Discuss the generalisability (external validity) of the study results	P17
Other information		Apri	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	P18

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in controls in case-control studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine at http://www.plosmedicine http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.settoe-statement.org. by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

The role of education in the association between self-rated health and levels of C-reactive protein: a cross-sectional study in rural areas of China

	1
Journal:	BMJ Open
Manuscript ID	bmjopen-2018-027659.R3
Article Type:	Original research
Date Submitted by the Author:	14-Oct-2019
Complete List of Authors:	Tu, Raoping; School of Nursing, Yangzhou University; Nagasaki University Institute of Tropical Medicine, Department of International Health and Medical Anthropology Pan, Kuan-Yu; Karolinska Institutet, Stockholm University, Department of Neurobiology, Care Sciences and Society (NVS), Aging Research Center Cai, Guoxi; Nagasaki Prefectural Institute of Environment and Public Health; Nagasaki University Institute of Tropical Medicine, Department of International Health and Medical Anthropology Yamamoto, Taro; Nagasaki University Institute of Tropical Medicine, Department of International Health and Medical Anthropology Wang, Hui-Xin; Stockholm University, Stress Research Institute; Karolinska Institutet, Department of Neurobiology, Care Sciences and Society (NVS), Aging Research Center
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, SOCIAL MEDICINE

SCHOLARONE[™] Manuscripts

BMJ Open

2		
3		-m' (1
4	1	Title page
5		
6 7	2	The role of education in the association between self-rated health and levels of C-
8 9		
	3	reactive protein: a cross-sectional study in rural areas of China
10		
11	4	
12	4	
13 14		
14	5	Author's names and affiliation:
16		
17	c	Deconing Tul 23 Kuen Vu Don4 Guevi Cai 25 Tare Vememote 2* Hui Vin Wong 46*
17	6	Raoping Tu ^{1,2,3} , Kuan-Yu Pan ⁴ , Guoxi Cai ^{2,5} , Taro Yamamoto ^{2,*} , Hui-Xin Wang ^{4,6,*}
19		
20	7	¹ School of Nursing, Yangzhou University, Yangzhou, China
20		
22	_	
23	8	² Department of International Health and Medical Anthropology, Institute of Tropical
23		
25	9	Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.
26	5	(i (Divisi), i (ugusuni oniversity, i (ugusuni, supun.
27		
28	10	³ Leading Program, Graduate School of Biomedical Sciences, Nagasaki University,
29		
30	11	Nagasaki, Japan.
31	11	Nagasaki, Japan.
32		
33	12	⁴ Aging Research Center, Department of Neurobiology, Care Sciences and Society
34		
35	10	(NIVE) Kanalingha Ingtitutat Staalkalm University Staalkalm Swadan
36	13	(NVS), Karolinska Institutet, Stockholm University, Stockholm, Sweden.
37		
38	14	⁵ Nagasaki Prefectural Institute of Environment and Public Health, Nagasaki, Japan.
39		
40		
41	15	⁶ Stress Research Institute, Stockholm University, Stockholm, Sweden.
42		
43	16	
44	10	
45		
46	17	
47		
48	18	*Correspondence to:
49	10	Correspondence to.
50		
51	19	1. Department of International Health and Medical Anthropology, Institute of
52		
53	20	Territal Malining (NERVEN) Namali University 1 12 4 Salamata Namali
54	20	Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki
55		
56	21	852-8523, Japan
57		
58		
59	22	Tel: +81-095-819-7853, Fax: +81-095-819-7869
60		

2	
3	
4	
5	
6 7	
7	
8	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
16 17	
10	
18	
19	
20	
20 21 22 23 24 25 26 27 28 29	
22	
22	
23	
24	
25	
26	
27	
20	
28	
29	
30	
31	
22	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

- 2 E-mail: <u>y-taro@nagasaki-u.ac.jp</u>
- 2. Stress Research Institute, Stockholm University, SE-106 91 Stockholm, Sweden
- 4 Tel: +46-08-5537-8941
- 5 Hui-Xin Wang
- 6 E-mail: <u>huixin.wang@su.se</u>

7		
8		
9		
10	Word count:2982	
11		
12		
13		
14		
15		
16		
17		
18		
19		

20 21 22

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23 24	
24	
25 26	
20 27	
27	
20 29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	ABSTRACT
2	Objectives This study aims to examine the association between self-rated health (SRH)
3	and levels of C-reactive protein (CRP) among adults aged 45 to 101 years old in rural
4	areas of China, and to explore the role of education in the association.
5	Design Cross-sectional study
6	Setting The study population was derived from two databases in China: Nanping
7	project (NP) and the China Health and Retirement Longitudinal Study (CHARLS).
8	Participants 646 participants from a rural area of Nanping (NP) and 8555 rural
9	participants from a national representative sample of China (CHARLS).
10	Methods CRP was measured using a high sensitivity sandwich enzyme immunoassay
11	in the NP and immunoturbidimetric assay in the CHARLS. SRH was assessed by self-
12	rated health questionnaires and categorized into good and poor. Education was
13	measured by the maximum years of schooling and dichotomized into illiterate and
14	literate. Multivariate linear regression models were used to study the associations.
15	Results Compared to people with good SRH, those with poor SRH had higher levels
16	of CRP in NP (β=0.16, 95% CI -0.02 to 0.34) and in CHARLS (β=0.07, 95% CI 0.02
17	to 0.11). This was especially in men and literate people after adjusting for potential
18	confounders. Similar findings were observed in the pooled population (β =0.08, 95% CI
19	0.03 to 0.12), in men (β =0.13, 95% CI 0.06 to 0.20), and in literate people (β =0.12, 95%
20	CI 0.06 to 0.18).
21	Conclusion Poor SRH may be a predicator of elevated levels of CRP among middle-

aged and older people in rural areas, especially in men and literate people.

2			
3		1	
4 5		1	
6			
7		2	Keywords Self-rated health; C-reactive protein; Education level
8			
9		3	
10		0	
11			
12		4	Strengths and limitations of this study
13			
14		5	• Our study population came from two databases, including one national
15 16			
17		6	representative sample derived from the China Health and Retirement Longitudinal
18		0	representative sample derived from the China freatth and Rethement Longitudinal
19			
20		7	Study (CHARLS), making our results highly generalizable to the national rural
21			
22		8	population of China.
23		0	population of china.
24			
25		9	• C-reactive protein (CRP) was an objective measure performed by health
26			
27		10	professionals using validated methods, making it more reliable than subjective
28			
29 30		11	
31		11	measures.
32			
33		12	• Cross-sectional study design prevented us from making causal inferences.
34			
35		13	• Convenience sampling in the Nanping project and the relatively large proportion
36			
37			
38		14	of CHARLS participants with missing values in CRP may have introduced bias.
39			
40 41		15	Residual confounding or hidden bias cannot be ruled out due to lack of
41 42			
43		16	information on some potential confounders, such as clinical cardiovascular risk
44		10	mormation on some potential comounders, such as ennied editiovasedial risk
45			
46		17	factors (e.g, HDL-C, HbA1c), acute inflammatory conditions, medication use,
47			
48		18	etc.
49			
50	19	Te	xt
51 52			
52 53	20		
54			
55	21	IN	TRODUCTION
56			
57	22	C-	reactive protein (CRP), a marker of systemic inflammation, has been shown to be involved
58			
59	23	in	crucial pathogenesis in a variety of negative health outcomes, including cardiovascular
60	-		

Page 5 of 31

BMJ Open

diseases,¹² diabetes,³ cancer,⁴ and cognitive decline.⁵ Since the value of CRP in the prediction of prognoses in health outcomes has been recognized, it is important, from a public health perspective, to identify people at risk of elevated CRP in an efficient and simple way.

Self-rated health (SRH) refers to an individual's subjective perception of his/her own health and can be easily measured. Despite this, SRH has been featured as a strong predictor for functional ability,⁶ chronic diseases,⁷ and mortality.⁸⁹ Therefore, many health authorities have introduced SRH for surveillance.¹⁰ The association between SRH and CRP has been examined in previous studies, but the results were inconsistent.¹¹⁻¹⁴ These discrepancies may be due to differences in characteristics of the study populations (e.g., age and sex) and study design. For example, a Japanese study demonstrated an association between poor SRH and an elevated CRP value in women, but not in men (age range 40-69).¹⁴ In contrast, in an US sample of younger adults (mean age 28.42±1.78), current SRH was not associated with CRP in women, whereas the association was shown in men.¹³ Among hospital-based studies, poor SRH was associated with higher CRP in female patients with coronary heart disease,¹² but not in patients with breast cancer.¹⁵ In community-based studies, there has been a cross-sectional association between SRH and CRP, ^{13 14} but no evidence indicating longitudinal association.¹⁶

As SRH measures personal perception of health, it can be influenced by other factors beyond the real health status. For example, people with different educational levels may have different perceptions of health.¹⁷ This education-related difference in perception of health may further play a role in the association between SRH and health outcomes. Indeed, a stronger association between SRH and mortality among higher educated than lower educated individuals has been shown in two studies.¹⁸ ¹⁹ Since CRP has been recognized as an important predicator of mortality,²⁰ education seems to modify its relationship with SRH.²¹ It is noteworthy that studies

concerning the association between SRH and CRP were mostly conducted in developed countries where the study populations were relatively well educated.¹¹⁻¹⁴ To our knowledge, no study has focused on the difference in the association between SRH and CRP between illiterate and literate people. In China, despite the decrease in illiteracy from 1990 to 2010, there continues to be large difference between urban and rural areas: the rate of illiteracy in rural areas is two times more than that of urban areas.²² Considering the lack of resources in rural areas, identifying people at risk of negative health outcomes using a simple measure such as SRH is warranted.

In the current study, we use two databases from China to examine the association between SRH and CRP among middle-aged and older people in rural areas, and to explore whether the SRH-CRP association varies across age $(45-60/\geq 60)$, sex (men/women), and educational levels elien (illiterate/literate).

METHODS

Study population

Nanping project (NP)

NP is a 2015, voluntary participation, cross-sectional study consisting of residents aged 18 years or older from one county of Nanping City in Fujian Province, China. Seven villages were selected based on recommendations from local health workers, since the residents in these areas are known to be highly cooperative.

As showed in Figure 1, a total of 797 people were enrolled in the NP. To match with the age range of study population from the CHARLS, we excluded 98 participants under 45 years old. Those with CRP concentrations higher than 6.25 mg/L in dried blood spots (DBS), which is

Page 7 of 31

1 2

BMJ Open

3	
4	
5	
6	
5 6 7	
8	
9	
9 10	
10	
11	
12	
13	
14	
15	
16	
16 17	
17	
18	
19	
20	
21 22	
22	
22 23	
23	
24 24	
25	
26	
26 27	
28	
20	
29	
30	
31	
32	
33	
34	
34 25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
47 48	
49	
50	
51	
52	
53	
53 54	
54 55	
56	
57	
58	
59	
60	

comparable to 10 mg/L at serum level²³ (n=25), were excluded due to potential acute 1 inflammatory conditions. After further excluding people with missing information on CRP 2 (n=2), SRH (n=25), and on both CRP and SRH (n=1), 646 people remained in current study. 3 4 China Health and Retirement Longitudinal Study (CHARLS) 5 The CHARLS is a nationally representative longitudinal study. Eligible people were selected 6 7 through a multistage probability sampling, and detailed descriptions of sampling method are provided in the users' guide.²⁴ In this current study, we used data from the baseline survey in 8 9 2011 because the CRP data was only available in that year. This is a secondary analysis of the CHARLS public database. 10 11 Overall, 17430 people were examined at baseline (Figure 1). People who lived in communities, 12 or in both villages and communities (n=4562), and had CRP>10mg/L (n=429) were excluded. 13 We further excluded people with missing data on CRP (n=3810), SRH (n=28), and on both 14 CRP and SRH (n=46). Finally, 8555 (69%) people were included in the analytical sample. 15 16 Self-rated health (SRH) 17 SRH was assessed by one question: 'In general how would you rate your health?' Response 18 options were 'good', 'average', 'poor', and 'very poor'. 19 20 **C-reactive protein (CRP)** 21 NP 22 Finger prick blood samples were collected by health workers using a filter paper, known as 23 DBS. We kept the DBS at room temperature for a few days after being desiccated during the 24 investigation period, then stored them in the Fujian Medical University at -20° . We used high 25

sensitivity sandwich enzyme immunoassay method to measure CRP concentrations by
 applying monoclonal antibodies.²³ Further details of the protocols have been presented
 elsewhere.²⁵

5 CHARLS

The venous blood samples were collected by trained staff from local Chinese Center for
Disease Control and Prevention (China CDC). Plasma samples were collected and preserved
in 0.5 mL cryovial at -20°C, delivered to Beijing CDC within 2 weeks. Plasma CRP was
determined by the immunoturbidimetric assay method at Capital Medical University.²⁶

11 Covariates

In both cohorts, all participants were interviewed face-to-face by trained interviewers using a questionnaire that covers information on age, sex, education, marital status, smoking, alcohol consumption, and health status. Height and weight were measured by interviewers using standard anthropometers.

Education level was determined by maximum years of schooling: 0 year (illiterate), 1-6 years (elementary school), 7-9 years (junior high school), 10-12 years (senior high school), >12 years (college or above). Due to the fact that more than 30% of both the NP and CHARLS samples were illiterate, we dichotomized education into 0 year (illiterate) and >0 year (literate). Age was dichotomized as 45-60 years versus ≥ 60 years old, and marital status as married versus non-married. BMI was calculated by dividing weight (kg) by height squared (m²) and categorized as underweight (<18.5), normal weight (18.5-24.99), overweight (25-29.99), and obese (≥30). Smoking was dichotomized into current smokers and non-current smokers (including former smokers). Alcohol consumption was categorized as regular drinkers (more

BMJ Open

than 3 times per week) and non-regular drinkers.

Health status was measured by asking the participants whether they had any moderate/severe disease symptoms (e.g., fever) in the last month, or used antihypertensive or antidiabetic medications in the NP, and whether they had ever been diagnosed by a doctor with any diseases (e.g., hypertension), or often suffered from any pain currently in CHARLS. People answering positively were categorized as unhealthy, otherwise healthy.

Statistical analysis

First, data from the NP and CHARLS were analyzed separately. We applied one-way ANOVA to examine the differences of CRP in characteristics in each dataset by using F-distribution. The CRP variable was log-transformed because it was not normally distributed. The association between SRH and CRP was estimated by β -coefficient and a 95% confidence interval (CI) using linear regression in two datasets. The first estimate was respective; in the second, datasets were pooled. Fixed-effect meta-analysis was used to examine the heterogeneity. Then we re-ran the linear regression using the pooled dataset.

Age, sex and education were introduced into the basic-adjusted model. Further, we additionally adjusted for marital status, smoking, alcohol consumption, BMI, and health status.^{27 28} All analyses were repeated in the stratified analyses by age, sex and levels of education.

In order to compare our results with previous studies that including participant with formal education only, we performed additional linear regression analysis stratified by age and sex among illiterate and literate participants separately.

1 2		
2 3 4	1	All statistical analyses were performed with Stata 13.0 (Stata Corp, College Station, TX, USA).
5 6	2	
7 8 9	3	Patient and public involvement
9 10 11	4	There were no participants involved in the development of this study.
12 13	5	
14 15	6	RESULTS
16 17 18	7	Characteristics of the participants
19 20	8	The CRP levels across different characteristics of participants were compared in each dataset
21 22	9	separately. Table 1 shows that in both datasets that older age people, higher BMI's, poorer
23 24 25	10	SRH, or an unhealthy status were more likely to have elevated levels of CRP. The findings
26 27	11	were inconsistent with sex, education, marital status, smoking and alcohol consumption in the
28 29	12	two datasets. People with missing CRP values in NP and CHARLS were better educated and
30 31 32	13	reported better health status compared to those who remained in the analyses (Supplementary
33 34	14	File: Table S1 and Table S2).
35 36	15	
37 38		
39 40		
41 42		
43 44 45		
45 46 47		
48		
49 50		
51 52		
53 54		
55		
56 57		
58 59		
60		

Table 1		characteristic	es of the study population	
	$\frac{\text{NP}(n=646)}{(100)^{3}}$	Dh	CHARLS (n=8555	
Ago	Median (IQR) ^a	P ^b <0.001	Median (IQR) ^a	P ^b <0.001
Age 45-60	0.6 (0.3 to 1.2)	<0.001	0.9 (0.5 to 1.7)	<0.001
43-60 ≥60	0.8 (0.4 to 1.8)			
≥00 Sex	0.8 (0.4 10 1.8)	0.011	1.1 (0.6 to 2.1)	0.003
Men	0.6 (0.3 to 1.3)	0.011	1.0 (0.5 to 2.0)	0.003
Women	0.8 (0.4 to 1.7)		0.9 (0.5 to 1.8)	
Education	0.8 (0.4 10 1.7)	0.004	0.9 (0.3 to 1.8)	0.316
Illiterate	0.9 (0.4 to 1.8)	0.004	1.0 (0.5 to 2.0)	0.510
Literate	0.6 (0.3 to 1.3)		0.9 (0.5 to 1.9)	
Marital status	0.0 (0.3 to 1.3)	0.495	0.9 (0.3 to 1.9)	< 0.001
Married	0.7 (0.3 to 1.5)	0.7/5	0.9 (0.5 to 1.9)	<0.001
Non-married	0.7 (0.4 to 1.7)		1.1 (0.6 to 2.4)	
Smoking	0.7 (0.4 to 1.7)	0.467	1.1 (0.0 to 2.4)	0.041
Current smokers	0.6 (0.3 to 1.4)	0.407	1.0 (0.5 to 2.0)	0.041
Non-current smokers	0.7 (0.4 to 1.6)		0.9 (0.5 to 1.9)	
Alcohol consumption	0.7 (0.1 00 1.0)	0.001		0.635
Regular drinkers	0.5 (0.3 to 1.1)	01001	0.9 (0.5 to 1.9)	
Non-regular drinkers	0.8 (0.4 to 1.6)		1.0 (0.5 to 1.9)	
BMI		< 0.001		< 0.001
Underweight (<18.5)	0.5 (0.2 to 1.4)		0.8 (0.5 to 1.9)	
Normal weight (18.5- 24.99)	0.6 (0.3 to 1.1)		0.8 (0.5 to 1.7)	

Overweight (25-29.99) 1.2 (0.6 to 2.3) 1.2 (0.7 to 2.3) Obese (\geq 30) 1.6 (1.0 to 4.4) 1.9 (0.9 to 3.3) Self-rated health 0.071 <0.001 Good 0.6 (0.3 to 1.7) 0.9 (0.5 to 1.8) Average 0.7 (0.3 to 1.5) 0.9 (0.5 to 1.8) Poor 0.8 (0.4 to 1.5) 1.0 (0.6 to 2.1) Very poor 1.0 (0.5 to 2.3) 1.1 (0.6 to 2.3) Health status ^c 0.002 <0.001 Healthy 0.5 (0.3 to 1.3) 0.8 (0.5 to 1.7) Unhealthy 0.8 (0.4 to 1.6) 1.0 (0.5 to 2.0) * Median (interquartile range) * * b ANOVA was applied to compare the mean of log-transformed values of CRP. ° ° Health status: Unhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive of antidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered f pain currently (CHARLS) Healthy: no such report	BMJ Open Overweight (25-29.99) 1.2 (0.6 to 2.3) 1.2 (0.7 to 2.3) Obese (≥30) 1.6 (1.0 to 4.4) 1.9 (0.9 to 3.3) Self-rated health 0.071 <0.001 Good 0.6 (0.3 to 1.7) 0.9 (0.5 to 1.8) Average 0.7 (0.3 to 1.5) 0.9 (0.5 to 1.8) Poor 0.8 (0.4 to 1.5) 1.0 (0.6 to 2.1) Very poor 1.0 (0.5 to 2.3) 1.1 (0.6 to 2.3) Health statuse 0.002 <0.001 Mcdian (interquartile range) 0.8 (0.4 to 1.6) 1.0 (0.5 to 2.0) * Mcdian (interquartile range) * NOVA was applied to compare the mean of log-transformed values of CRP. * Health Self-reported moderate to severe symptoms in the last month or used antihypertensive or antidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered from pair currently (CHARLS). Healthy: no such report. Missing values: NP: 1 missing in health status. CHARLS: 2 missing in age, 7 missing in sex, 4 missing in education, 1 missing in smoking, 3 missing alcohol consumption, 1191 missing in BMI, 65 missing in health status.			BMJ Open	
Obese (\geq 30)1.6 (1.0 to 4.4)1.9 (0.9 to 3.3)Self-rated health0.071<0.001Good0.6 (0.3 to 1.7)0.9 (0.5 to 1.8)Average0.7 (0.3 to 1.5)0.9 (0.5 to 1.8)Poor0.8 (0.4 to 1.5)1.0 (0.6 to 2.1)Very poor1.0 (0.5 to 2.3)1.1 (0.6 to 2.3)Health statusc0.002<0.001Healthy0.5 (0.3 to 1.3)0.8 (0.5 to 1.7)Unhealthy0.8 (0.4 to 1.6)1.0 (0.5 to 2.0)PANOVA was applied to compare the mean of log-transformed values of CRP.Health status:Unhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive of antidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered for pain currently (CHARLS).	Obese (≥ 30)1.6 (1.0 to 4.4)1.9 (0.9 to 3.3)Self-rated health0.071<0.001Good0.6 (0.3 to 1.7)0.9 (0.5 to 1.8)Average0.7 (0.3 to 1.5)0.9 (0.5 to 1.8)Poor0.8 (0.4 to 1.5)1.0 (0.6 to 2.1)Very poor1.0 (0.5 to 2.3)1.1 (0.6 to 2.3)Health status ^e 0.002<0.001Healthy0.5 (0.3 to 1.3)0.8 (0.5 to 1.7)Unhealthy0.8 (0.4 to 1.6)1.0 (0.5 to 2.0)*Median (interquartile range)>> ANOVA was applied to compare the mean of log-transformed values of CRP.*Health status:Unhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive or antidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered from pain currently (CHARLS). Healthy: no such report.Missing values:NP: 1 missing in health status.CHARLS: 2 missing in age, 7 missing in sex, 4 missing in education, 1 missing in smoking, 3 missing alcohol consumption, 1191 missing in BMI, 65 missing in health status.	Overweight (25-29.99)	1.2 (0.6 to 2.3)	1.2 (0.7 to 2.3)	
Self-rated health 0.071 <0.001	Self-rated health 0.071 <0.001Good $0.6 (0.3 \text{ to } 1.7)$ $0.9 (0.5 \text{ to } 1.8)$ Average $0.7 (0.3 \text{ to } 1.5)$ $0.9 (0.5 \text{ to } 1.8)$ Poor $0.8 (0.4 \text{ to } 1.5)$ $1.0 (0.6 \text{ to } 2.1)$ Very poor $1.0 (0.5 \text{ to } 2.3)$ $1.1 (0.6 \text{ to } 2.3)$ Health statuse 0.002 <0.001	Obese (\geq 30)	1.6 (1.0 to 4.4)	1.9 (0.9 to 3.3)	
Good $0.6 (0.3 \text{ to } 1.7)$ $0.9 (0.5 \text{ to } 1.8)$ Average $0.7 (0.3 \text{ to } 1.5)$ $0.9 (0.5 \text{ to } 1.8)$ Poor $0.8 (0.4 \text{ to } 1.5)$ $1.0 (0.6 \text{ to } 2.1)$ Very poor $1.0 (0.5 \text{ to } 2.3)$ $1.1 (0.6 \text{ to } 2.3)$ Health statusc 0.002 <0.001Healthy $0.5 (0.3 \text{ to } 1.3)$ $0.8 (0.5 \text{ to } 1.7)$ Unhealthy $0.8 (0.4 \text{ to } 1.6)$ $1.0 (0.5 \text{ to } 2.0)$ Median (interquartile range) $0.8 (0.4 \text{ to } 1.6)$ $1.0 (0.5 \text{ to } 2.0)$ ANOVA was applied to compare the mean of log-transformed values of CRP.Health status:Jnhealthy:Self-reported moderate to severe symptoms in the last month or used antihypertensive oruntidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered for an currently (CHARLS) Healthy: no such report	Good $0.6 (0.3 \text{ to } 1.7)$ $0.9 (0.5 \text{ to } 1.8)$ Average $0.7 (0.3 \text{ to } 1.5)$ $0.9 (0.5 \text{ to } 1.8)$ Poor $0.8 (0.4 \text{ to } 1.5)$ $1.0 (0.6 \text{ to } 2.1)$ Very poor $1.0 (0.5 \text{ to } 2.3)$ $1.1 (0.6 \text{ to } 2.3)$ Health statuse 0.002 <0.001	Self-rated health	0.071		< 0.001
Average $0.7 (0.3 \text{ to } 1.5)$ $0.9 (0.5 \text{ to } 1.8)$ Poor $0.8 (0.4 \text{ to } 1.5)$ $1.0 (0.6 \text{ to } 2.1)$ Very poor $1.0 (0.5 \text{ to } 2.3)$ $1.1 (0.6 \text{ to } 2.3)$ Health statusc 0.002 <0.001Healthy $0.5 (0.3 \text{ to } 1.3)$ $0.8 (0.5 \text{ to } 1.7)$ Unhealthy $0.8 (0.4 \text{ to } 1.6)$ $1.0 (0.5 \text{ to } 2.0)$ Median (interquartile range)ANOVA was applied to compare the mean of log-transformed values of CRP.Health status:Jnhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive oruntidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered for a pain currently (CHARLS)	Average0.7 (0.3 to 1.5)0.9 (0.5 to 1.8)Poor0.8 (0.4 to 1.5)1.0 (0.6 to 2.1)Very poor1.0 (0.5 to 2.3)1.1 (0.6 to 2.3)Health statuse0.002<0.001	Good	0.6 (0.3 to 1.7)	0.9 (0.5 to 1.8)	
Poor0.8 (0.4 to 1.5)1.0 (0.6 to 2.1)Very poor1.0 (0.5 to 2.3)1.1 (0.6 to 2.3)Health statusc0.002<0.001Healthy0.5 (0.3 to 1.3)0.8 (0.5 to 1.7)Unhealthy0.8 (0.4 to 1.6)1.0 (0.5 to 2.0)Median (interquartile range)PANOVA was applied to compare the mean of log-transformed values of CRP.Health status:Unhealthy:Self-reported moderate to severe symptoms in the last month or used antihypertensive orUnhealthy:Self-reported moderate to severe symptoms in the last month or used antihypertensive orIntidiabetic medications (NP);Healthy: no such report	Poor0.8 (0.4 to 1.5)1.0 (0.6 to 2.1)Very poor1.0 (0.5 to 2.3)1.1 (0.6 to 2.3)Health statusc0.002<0.001	Average	0.7 (0.3 to 1.5)	0.9 (0.5 to 1.8)	
Very poor1.0 (0.5 to 2.3)1.1 (0.6 to 2.3)Health statusc0.002<0.001Healthy0.5 (0.3 to 1.3)0.8 (0.5 to 1.7)Unhealthy0.8 (0.4 to 1.6)1.0 (0.5 to 2.0)Median (interquartile range)ANOVA was applied to compare the mean of log-transformed values of CRP.Health status:Jnhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive orInitiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered for a pain currently (CHARLS)	Very poor1.0 (0.5 to 2.3)1.1 (0.6 to 2.3)Health statuse0.002<0.001	Poor	0.8 (0.4 to 1.5)	1.0 (0.6 to 2.1)	
Health status ^c 0.002 <0.001 Healthy 0.5 (0.3 to 1.3) 0.8 (0.5 to 1.7) Unhealthy 0.8 (0.4 to 1.6) 1.0 (0.5 to 2.0) P Median (interquartile range) P ANOVA was applied to compare the mean of log-transformed values of CRP. P Health status: Unhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive or antidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered for pain currently (CHARLS) Healthy: no such report	Health statuse 0.002 <0.001	Very poor	1.0 (0.5 to 2.3)	1.1 (0.6 to 2.3)	
Healthy0.5 (0.3 to 1.3)0.8 (0.5 to 1.7)Unhealthy0.8 (0.4 to 1.6)1.0 (0.5 to 2.0)Median (interquartile range)PANOVA was applied to compare the mean of log-transformed values of CRP.PHealth status:Unhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive or antidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered f pain currently (CHARLS) Healthy: no such report	Healthy 0.5 (0.3 to 1.3) 0.8 (0.5 to 1.7) Unhealthy 0.8 (0.4 to 1.6) 1.0 (0.5 to 2.0) P Median (interquartile range) ANOVA was applied to compare the mean of log-transformed values of CRP. P Health status: Unhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive or antidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered from pain currently (CHARLS). Healthy: no such report. Missing values: NP: 1 missing in health status. CHARLS: 2 missing in age, 7 missing in sex, 4 missing in education, 1 missing in smoking, 3 missing alcohol consumption, 1191 missing in BMI, 65 missing in health status.	Health status ^c	0.002		< 0.001
Unhealthy0.8 (0.4 to 1.6)1.0 (0.5 to 2.0)Median (interquartile range)ANOVA was applied to compare the mean of log-transformed values of CRP.Health status:Jnhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive orntidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered fain currently (CHARLS)Healthy: no such report	Unhealthy0.8 (0.4 to 1.6)1.0 (0.5 to 2.0)Median (interquartile range)ANOVA was applied to compare the mean of log-transformed values of CRP.Health status:Unhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive orIndiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered from ain currently (CHARLS). Healthy: no such report.Missing values:VP: 1 missing in health status.CHARLS: 2 missing in age, 7 missing in sex, 4 missing in education, 1 missing in smoking, 3 missing loohol consumption, 1191 missing in BMI, 65 missing in health status.	Healthy	0.5 (0.3 to 1.3)	0.8 (0.5 to 1.7)	
Median (interquartile range) ANOVA was applied to compare the mean of log-transformed values of CRP. Health status: Jnhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive of intidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered for pain currently (CHARLS) Healthy: no such report	 Median (interquartile range) ANOVA was applied to compare the mean of log-transformed values of CRP. Health status: Unhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive or antidiabetic medications (NP); Had been diagnosed by a doctor with any disease or often suffered from pain currently (CHARLS). Healthy: no such report. Missing values: NP: 1 missing in health status. CHARLS: 2 missing in age, 7 missing in sex, 4 missing in education,1 missing in smoking, 3 missing allochol consumption, 1191 missing in BMI, 65 missing in health status. 	Unhealthy	0.8 (0.4 to 1.6)	1.0 (0.5 to 2.0)	
Missing values: NP: 1 missing in health status. CHARLS: 2 missing in age, 7 missing in sex, 4 missing in education,1 missing in smoking, 3 missi alcohol consumption, 1191 missing in BMI, 65 missing in health status.		antidiabetic medications (NP); pain currently (CHARLS). He	Had been diagnosed by a do althy: no such report.	the last month or used antihyp ctor with any disease or ofter	n suffered from

SRH and CRP

Table 2 presents the association between SRH and CRP in the two individual populations. In the NP, a borderline statistically significant association was observed between very poor SRH and elevated levels of CRP (β =0.39, 95%CI -0.07 to 0.85) in basic-adjusted model, while the association was attenuated after adjusting for confounders (β =0.29, 95%CI -0.15 to 0.73). Despite insignificance, the estimated effect of SRH started to change direction from average SRH ($\beta = -0.05$) to poor SRH ($\beta = 0.10$). In CHARLS, poor and very poor SRH were both associated with higher CRP (β =0.06, 95%CI 0.00 to 0.12; β =0.11, 95%CI 0.01 to 0.22). Considering the same pattern in both two datasets that poor and very poor SRH have similar effect on CRP and so as good and average SRH, and that there are limited number of participants with very poor SRH in NP, we combined 'good' and 'average' as good SRH, 'poor' and 'very poor' as poor SRH. Further, we found that poor SRH was associated with higher levels of CRP both in NP (β=0.16, 95%CI -0.02 to 0.34) and CHARLS (β=0.07, 95%CI 0.02 to 0.11) (Table 2).

 Table 2
 Association between self-rated health and C-reactive protein

		Model1 ^a		Model2 ^b	
	Ν	β (95%CI)	Р	β (95%CI)	Р
NP					
Good health	188	Ref.		Ref.	
Average	270	-0.03 (-0.22 to 0.17)	0.792	-0.05 (-0.24 to 0.14)	0.589
Poor	165	0.12 (-0.10 to 0.34)	0.292	0.10 (-0.11 to 0.32)	0.349
Very Poor	23	0.39 (-0.07 to 0.85)	0.093	0.29 (-0.15 to 0.73)	0.202
Good/Poor ^c	458/188	0.17 (-0.01 to 0.35)	0.067	0.16 (-0.02 to 0.34)	0.077
CHARLS					
Good health	1794	Ref.		Ref.	
Average	4157	0.01 (-0.04 to 0.06)	0.613	0.00 (-0.05 to 0.06)	0.911
Poor	2157	0.10 (0.04 to 0.15)	0.001	0.06 (0.00 to 0.12)	0.055
Very Poor	447	0.16 (0.06 to 0.25)	0.001	0.11 (0.01 to 0.22)	0.036
Good/Poor	5951/2604	0.10 (0.05 to 0.14)	< 0.001	0.07 (0.02 to 0.11)	0.004
NP+CHARLS					
Good health	1982	Ref.		Ref.	
Average	4427	0.02 (-0.03 to 0.07)	0.379	0.01 (-0.04 to 0.06)	0.643

	Poor	2322	0.11 (0.05 to 0.16)	< 0.001	0.08 (0.02 to 0.14)	0.013
	Very Poor	470	0.18 (0.09 to 0.28)	< 0.001	0.14 (0.04 to 0.24)	0.007
	Good/Poor	6409/2792	0.11 (0.06 to 0.15)	< 0.001	0.08 (0.03 to 0.12)	0.001
	^a Adjusted for age			ng alaahal	consumption, BMI, hea	1th status
1	° Good= Good+A			lig, alcolloi	consumption, Bivit, nee	inin status
2	As the same direct	ion of effect of	f estimate and a very lo	w level of l	neterogeneity (I-square	d<
3	0.001%) were obse	erved in the two	datasets (data not show	vn), we poo	led the data and re-ran t	he
4					tion between poorer SF	
5	and higher CRP wa	is observed in t	he pooled population (β	=0.08,95%	CI 0.03 to 0.12) (Table)	2).
6						
7	The roles of age, s	ex, and educa	tion in the association	between S	RH and CRP	
8	The association bet	ween SRH and	CRP stratified by age,	sex, educat	ion is showed in Figure	2.
9	In middle-aged pe	ople, worse S	RH was associated wi	th higher C	TRP both in NP ($\beta=0.4$	12,
10	95%CI 0.14 to 0.7	1) and CHAR	LS (β=0.06, 95%CI -0	.01 to 0.12). Among older people	, a
11	similar trend was o	bserved in CHA	ARLS (β=0.08, 95%CI	0.02 to 0.15), but not in the NP. Wh	en
12	stratified by sex, w	e found a statis	tically significant SRH	-CRP assoc	iation among men both	in
13	NP (β=0.27, 95%C	CI -0.03 to 0.5	7) and CHARLS (β =0.	.12, 95%CI	0.05 to 0.19), but not	in
14	women. In a stratif	ied analysis by	education, the associat	tion between	n SRH and CRP was se	en
15	in literate people bo	oth in NP (β=0.	26, 95%CI 0.02 to 0.51) and CHAI	RLS (β=0.11, 95%CI 0.	05
16	to 0.16), but not in	illiterate peopl	e.			
17						
18	In the pooled popu	lation, the SRI	I-CRP association was	repeated in	the middle-aged (β =0.0)8,
19	95%CI 0.02 to 0.14	4), older people	e (β=0.08, 95%CI 0.02 t	to 0.15), me	n (β=0.13, 95%CI 0.06	to

20 0.20), and literate people (β =0.12, 95%CI 0.06 to 0.18) (Figure 2).

22 Additional analyses

BMJ Open

Identical trends with respect to the modifying effect of age and sex on the association between
 SRH and CRP were observed among literate people, but not among illiterate people
 (Supplementary File: Table S3).

DISCUSSION

In this study, based on 9201 residents in rural area of China, we found that poor SRH was
associated with an elevated level of CRP in middle-aged and older people, especially among
the men and literate.

Our finding of the association between poorer SRH and higher CRP level was in line with results from previous studies that included participants at similar age as our study participants.^{11 14} Yet, those studies mainly included people living in industrialized countries with higher education, while our participants resided in less developed country with features of low literacy.

Possible pathways linking poor SRH and an elevated level of CRP could be related to psychological stress and health behaviors. Poor SRH may reflect a poor physical (e.g., inaccessibility to health service) and social (e.g., limited social network) environment, which can limit one's coping ability and induce psychological stress. It is known that stress can activate the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis, contributing to the production of stress hormones, which in turn increase the secretion of CRP.^{29 30} In addition, people with poor SRH were less likely to have an active lifestyle.³¹ Having an inactive lifestyle has been suggested to potentially weaken the immune system and facilitate the inflammation processes through the release of pro-inflammatory adipokines.³²

It is notable that poor SRH was associated with an elevated CRP level in literate participants, but not in the illiterate participants, which was consistent with one previous study.²¹ Similar findings were also shown in studies focusing on SRH and mortality.¹⁸ ¹⁹ One of the possible explanations may be that illiterate people are often lack of health-related knowledge and access to health care,¹⁷ and thus may misinterpret the feeling that they have in their bodies.³³ It has been shown that poor SRH in the less educated people mainly represents less serious diseases.³⁴ In our study, we also found that illiterate people were more likely to rate their health as poor and to report illness or pain both in NP and CHARLS. Moreover, illiterate people may have to withstand more pressure as they have less social and financial resources. Thus, other factors may contribute to the reported poor SRH, rather than actual health condition.

We found that SRH-CRP associations were only observed in men, but not in women, which may be due to the potential sex differences in reporting SRH. Previous studies have shown that the poor SRH in women can reflect both serious and non-serious diseases, whereas it tends to reflect serious diseases in men.³⁵ Broad dimensions of health perceptions may lead to less accurate SRH in women. In addition, the proportion of illiterate people among women is much higher than that among men in both datasets. This may explain the inconsistent findings between our study (6% participants with more than 9 years of schooling) and the Iwate-KENCO study from Japan, in which the corresponding figure was 46%.¹⁴

Findings from two datasets were not completely consistent. The association between poor SRH and elevated CRP values among older people (aged ≥60 years) was observed in CHARLS, but not in NP. In both populations, poor SRH was only associated with higher CRP in men, not in women. One of the explanations for these findings may be related to educational levels in the two study populations. Indeed, the proportion of illiterate people was relatively higher in older

Page 17 of 31

BMJ Open

adults in NP (76.2%) than in CHARLS (58.3%), and there was a higher proportion of illiterate
people in women in both populations. Second, we observed similar age and sex differences in
the associations between SRH and CRP among the literate: poor SRH was associated with
elevated CRP values, especially in men, which was the same as the main results. This suggests
that education might play a role in the SRH-CRP association.

The strengths of the current study include the objective measure of CRP, the use of two different study populations to increase the confidence of our findings, and the high generalizability of our results to rural population of China given the use of national representative sample, CHARLS.

There are several limitations that should be considered. First, the cross-sectional study design prevented us from making causal inferences. Second, CRP was evaluated using different methods in NP and CHARLS. Nevertheless, the association between SRH and CRP did not differ between the two cohorts. Third, the self-reported SRH and some of the covariates may introduce reporting bias. Fourth, selection bias may arise due to the use of convenience sampling in NP. However, the results from NP were similar to those from CHARLS, which is a national representative sample. Finally, residual confounding or hidden bias cannot be ruled out due to lack of information on some potential confounders, such as clinical cardiovascular risk factors (e.g. HDL-C, HbA1c), acute inflammatory conditions, and medication use.

This study provides evidence that SRH, a simple measurement, may be used as an indicator of bad physical health among middle-aged and older literate people, but not among the illiterate people, in rural area. In China, the implementation of health surveillance is more challenging in rural than in urban areas because of the discrepant aging processes,³⁶ knowledge gaps²² and

income inequality between these two areas. Elevated CRP has been associated with various physical¹⁻⁴ and psychological health outcomes. ^{37 38} Thus, our results support the consideration of using an efficient and cost-effective way, such as SRH, to monitor the health status in rural population where medical resources are limited. Future studies are needed to confirm our results and extend these findings to larger and more diverse populations. Moreover, identification of simple health indictors for illiterate people are warranted.

Acknowledgments We would like to express our sincere gratitude to the participants and local staff in NP project. We are grateful for those supporters: Harvard University (Aki Yazawa); National Center for Global Health and Medicine, Japan (Yosuke Inoue); Nagasaki Prefectural Institute of Environment and Public Health (Guoxi Cai); Fujian Medical University (Fei He, Jie Chen); Fujian Provincial Center for Disease Control and Prevention (Meng Huang) during the data collection in NP. Data from China Health and Retirement Longitudinal Study (CHARLS) were collected by the National School of Development at Peking University, China. We appreciated to University of Copenhagen (Tianwei Xu); Fujian Provincial Center for Disease Control and Prevention (Xiuquan Lin); Nagasaki University (Sabin Nundu) for providing valuable comments in analysis and interpretation of data.

Contributors HW, RT, and KP conceptualized the study. RT analyzed the data and drafted the manuscript. HW, KP, GC, TY contributed to critical revisions of the manuscript. RT and HW are responsible for ensuring the integrity and accuracy of the study. All authors have read and approved the final manuscript.

Funding This study is financed by the Program for Nurturing Global Leaders in Tropical and
 Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki

Page 19 of 31

BMJ Open

University, Japan (Raoping Tu); the Swedish Research Council (Grant no: 2018-02998) and the Swedish Research Council for Health, Working Life and Welfare (Forte) (2019-01120) (Hui-Xin Wang); the Ministry of Education of Taiwan, the Swedish National Graduate School on Ageing and Health (SWEA), and Gamla Tjänarinnor Foundation (Kuan-Yu Pan). NP was financially supported by the JSPS KAKENHI from the Japan Society for the Promotion of Science (13J06172). Competing Interests None declared. Patient consent Not required. Ethics approval The Ethics Committee for Medical Research at the University of Tokyo (No. 10515-(1)) and the Ethics Committee of the Institute of Tropical Medicine at Nagasaki University (No.120910100-5) approved the study protocol of NP. The Medical Ethics Committee of Peking University approved the research protocol of CHARLS. **Provenance and peer review** Not commissioned; externally peer reviewed Data sharing statement All of the CHARLS data will be accessible to researchers around the world at the CHARLS project website (http://charls.pku.edu.cn/en). No additional data available. **Figure legends** Figure 1 Flowchart of the study populations in NP and CHARLS

Figure 2 β-coefficient and 95% confidence interval (CI) of CRP in relation to poor self-rated health from linear regression models stratified by age, sex and education in NP, CHARLS, and the pooled populations of the two datasets. SRH is dichotomized as poor to very poor versus good to average. When stratified by age, models are adjusted for sex, education, marital status, smoking, alcohol consumption, BMI, health status; when stratified by sex, models are adjusted for age, education, marital status, smoking, alcohol consumption, BMI, health status; when stratified by education, models are adjusted for age, sex, marital status, smoking, alcohol consumption, BMI, health status. SUPPLEMENTARY FILE Table S1 Characteristics of study sample in NP without and with missing values in CRP Table S2 Characteristics of study sample in CHARLS without and with missing values in CRP Table S3 Association between self-rated health and C-reactive protein among illiterate and literate people: stratified by age and sex

1			
2 3	1		
4	1		
5 6	2		
7 8	3	Ref	ferences
9 10 11	4	1	Black PH, Garbutt LD. Stress, inflammation and cardiovascular disease. Journal of
12 13	5		psychosomatic research 2002;52:1-23.
14 15 16	6	2	Ridker PM. From C-Reactive Protein to Interleukin-6 to Interleukin-1. Circulation
17 18	7		<i>Research</i> 2016;118:145-56.
19 20	8	3	Barzilaym JI, Freedland ES. Inflammation and its relationship to insulin resistance, type 2
21 22 23	9		diabetes mellitus, and endothelial dysfunction. Metabolic syndrome and related disorders
23 24 25	10		2003;1:55-67.
26 27	11	4	Wang J, Lee IM, Tworoger SS, et al. Plasma C-reactive protein and risk of breast cancer
28 29	12		in two prospective studies and a meta-analysis. Cancer Epidemiol Biomarkers Prev
30 31 32	13		2015;24:1199-206.
33 34	14	5	Panza F, Solfrizzi V, Logroscino G, et al. Current epidemiological approaches to the
35 36	15		metabolic-cognitive syndrome. J Alzheimers Dis 2012;30 Suppl 2:S31-75.
37 38 39	16	6	Idler EL, Kasl SV. Self-ratings of health: do they also predict change in functional ability?
40 41	17		J Gerontol B Psychol Sci Soc Sci 1995;50:8344-53.
42 43	18	7	Latham K, Peek CW. Self-Rated Health and Morbidity Onset Among Late Midlife U.S.
44 45 46	19		Adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences
40 47 48	20		2012;68:107-16.
49 50	21	8	DeSalvo KB, Bloser N, Reynolds K, et al. Mortality prediction with a single general self-
51 52	22		rated health question. A meta-analysis. J Gen Intern Med 2006;21:267-75.
53 54 55	23	9	Singh-Manoux A, Dugravot A, Shipley MJ, et al. The association between self-rated
56 57	24		health and mortality in different socioeconomic groups in the GAZEL cohort study. Int J
58 59 60	25		<i>Epidemiol</i> 2007;36:1222-8.

¢

1			
2 3 4	1	10	Salomon JA, Nordhagen S, Oza S, et al. Are Americans feeling less healthy? The puzzle
5 6	2		of trends in self-rated health. Am J Epidemiol 2009;170:343-51.
7 8 9	3	11	Christian LM, Glaser R, Porter K, et al. Poorer self-rated health is associated with elevated
) 10 11	4		inflammatory markers among older adults. <i>Psychoneuroendocrinology</i> 2011;36:1495-504.
12 13	5	12	Janszky I, Lekander M, Blom M, et al. Self-rated health and vital exhaustion, but not
14 15 16	6		depression, is related to inflammation in women with coronary heart disease. Brain Behav
17 18	7		<i>Immun</i> 2005;19:555-63.
19 20	8	13	Shanahan L, Bauldry S, Freeman J, et al. Self-rated health and C-reactive protein in young
21 22 23	9		adults. Brain, Behavior, and Immunity 2014;36:139-46.
23 24 25	10	14	Tanno K, Ohsawa M, Onoda T, et al. Poor self-rated health is significantly associated with
26 27	11		elevated C-reactive protein levels in women, but not in men, in the Japanese general
28 29	12		population. Journal of Psychosomatic Research 2012;73:225-31.
30 31 32	13	15	Orre IJ, Reinertsen KV, Aukrust P, et al. Higher levels of fatigue are associated with higher
33 34	14		CRP levels in disease-free breast cancer survivors. J Psychosom Res 2011;71:136-41.
35 36	15	16	Tamura T, Naito M, Maruyama K, et al. The association between self-rated health and
37 38 39	16		high-sensitivity C-reactive protein level: a cross-sectional and 5-year longitudinal study.
40 41	17		BMC Public Health 2018;18(1):1380. doi: 10.1186/s12889-018-6251-6
42 43	18	17	Spuling SM, Huxhold O, Wurm S. Predictors of Self-Rated Health: Does Education Play
44 45 46	19		a Role Above and Beyond Age? J Gerontol B Psychol Sci Soc Sci 2017;72:415-24.
40 47 48	20	18	Dowd JB, Zajacova A. Does the predictive power of self-rated health for subsequent
49 50	21		mortality risk vary by socioeconomic status in the US? Int J Epidemiol 2007;36:1214-21.
51 52 53	22	19	Huisman M, van Lenthe F, Mackenbach J. The predictive ability of self-assessed health
55 55	23		for mortality in different educational groups. Int J Epidemiol 2007;36:1207-13.
56 57	24	20	Li Y, Zhong X, Cheng G, et al. Hs-CRP and all-cause, cardiovascular, and cancer mortality
58 59 60	25		risk: A meta-analysis. Atherosclerosis 2017;259:75-82.

1 2			
2 3 4	1	21	Dowd JB, Zajacova A. Does self-rated health mean the same thing across socioeconomic
5 6	2		groups? Evidence from biomarker data. Ann Epidemiol 2010;20:743-9.
7 8 9	3	22	Guo S, Guo Y. Spotlight on China: Changes in education under China's market economy:
10 11	4		Springer, 2016.
12 13	5	23	Brindle E, Fujita M, Shofer J, et al. Serum, plasma, and dried blood spot high-sensitivity
14 15 16	6		C-reactive protein enzyme immunoassay for population research. J Immunol Methods
17 18	7		2010;362:112-20.
19 20	8	24	Zhao Y, Strauss J, Yang G, et al. China health and retirement longitudinal study-2011-
21 22 23	9		2012 national baseline users' guide. National School of Development, Peking University,
24 25	10		2013.
26 27	11	25	Yazawa A, Inoue Y, Cai G, et al. Epstein-Barr virus antibody titer as a stress biomarker
28 29 30	12		and its association with social capital in rural Fujian communities, China. Am J Hum Biol
30 31 32	13		2018:e23135.
33 34	14	26	Zhao Y, Crimmins E, Hu P, et al. CHARLS Blood Sample Users' Guide. National School
35 36 27	15		of Development, Peking University, 2014.
37 38 39	16	27	Kiecolt-Glaser JK, Gouin JP, Hantsoo L. Close relationships, inflammation, and health.
40 41	17		Neurosci Biobehav Rev 2010;35:33-8.
42 43	18	28	Zheng H, Thomas PA. Marital status, self-rated health, and mortality: overestimation of
44 45 46	19		health or diminishing protection of marriage? Journal of health and social behavior
47 48	20		2013;54:128-43.
49 50	21	29	Coussons-Read ME, Okun ML, Nettles CD. Psychosocial stress increases inflammatory
51 52 53	22		markers and alters cytokine production across pregnancy. Brain Behav Immun
54 55	23		2007;21:343-50.
56 57	24	30	Shivpuri S, Gallo LC, Crouse JR, et al. The association between chronic stress type and
58 59 60	25		C-reactive protein in the multi-ethnic study of atherosclerosis: does gender make a

3 4	1		di
5 6	2	31	М
7 8	3		an
9 10 11	4		20
12 13	5	32	G
14 15	6		m
16 17 18	7		In
19 20	8	33	Fr
21 22	9		U
23 24 25	10	34	Re
26 27	11		m
28 29	12		20
30 31 32	13	35	Be
33 34	14		fo
35 36	15	36	G
37 38 39	16		20
40 41	17	37	V
42 43	18		m
44 45	19	38	W
46 47 48	20		ps
49 50	21		20
51 52			
53 54			
55 56			
57 58			
58 59			
60			

1 2

1 difference? *J Behav Med* 2012;35:74-85.

- Molarius A, Berglund K, Eriksson C, *et al.* Socioeconomic conditions, lifestyle factors,
 and self-rated health among men and women in Sweden. *European journal of public health*2007;17:125-33.
- Gleeson M, Bishop NC, Stensel DJ, *et al.* The anti-inflammatory effects of exercise:
 mechanisms and implications for the prevention and treatment of disease. *Nat Rev Immunol* 2011;11:607-15.
- 8 33 Franks P, Gold MR, Fiscella K. Sociodemographics, self-rated health, and mortality in the
 9 US. *Social Science & Medicine* 2003;56:2505-14.
- 34 Regidor E, Guallar-Castillon P, Gutierrez-Fisac JL, *et al.* Socioeconomic variation in the
 magnitude of the association between self-rated health and mortality. *Ann Epidemiol* 2010;20:395-400.
 - 35 Benyamini Y, Leventhal EA, Leventhal H. Gender differences in processing information
 for making self-assessments of health. *Psychosomatic Medicine* 2000;62:354-64.
 - 15 36 Gong P, Liang S, Carlton EJ, *et al.* Urbanisation and health in China. *The Lancet*16 2012;379(9818):843-52.
 - 37 Valkanova V, Ebmeier KP, Allan CL. CRP, IL-6 and depression: a systematic review and
 meta-analysis of longitudinal studies. *J Affect Disord* 2013;150(3):736-44.
 - Wium-Andersen MK, Orsted DD, Nielsen SF, *et al.* Elevated C-reactive protein levels,
 psychological distress, and depression in 73, 131 individuals. *JAMA Psychiatry*2013;70(2):176-84.

$45 \le Age < 60$ $3468/1235$ $0.06 (-0.0)$ $Age \ge 60$ $2481/1369$ $ \leftarrow 0.08 (0.02)$ Men $2989/1053$ $ \leftarrow 0.12 (0.05)$ Women $2957/1549$ $ \leftarrow 0.00 (-0.0)$ Illiterate $1767/1068$ $ \leftarrow 0.00 (-0.0)$ Literate $4181/1535$ $ \leftarrow 0.011 (0.05)$ NP+CHARLS $ \leftarrow 0.08 (0.02)$ Age ≥ 60 $2731/1498$ $ \leftarrow 0.13 (0.06)$ Men $3181/1122$ $ \leftarrow 0.13 (0.06)$ Women $3223/1668$ $ \leftarrow 0.03 (-0.0)$	I)	Р
Age ≥ 60 250/129 0.03 (-0.2 Men 192/69 0.27 (-0.0 Women 266/119 0.10 (-0.1 Illiterate 174/91 0.04 (-0.2 Literate 284/97 0.26 (0.02 2CHARLS 45 \leq Age<60 3468/1235 0.26 (0.02 Men 2989/1053 0.12 (0.05 0.08 (0.02 Men 2989/1053 0.12 (0.05 0.00 (-0.0 Men 2989/1053 0.00 (-0.0 0.11 (0.05 Women 2957/1549 0.00 (-0.0 0.08 (0.02 Literate 4181/1535 0.11 (0.05 0.08 (0.02 NP+CHARLS 45 \leq Age<60 3676/1294 0.08 (0.02 Men 3181/1122 0.13 (0.06 0.03 (-0.0 Women 3223/1668 0.03 (-0.0 0.03 (-0.0		
Men 192/69 $$ 0.27 (-0.0 Women 266/119 $$ 0.10 (-0.1 Illiterate 174/91 $$ 0.04 (-0.2 Literate 284/97 $$ 0.26 (0.02 2.CHARLS 45 \leq Age<60 3468/1235 $$ 0.06 (-0.0 Age \geq 60 2481/1369 $$ 0.12 (0.05 Men 2989/1053 $$ 0.12 (0.05 Women 2957/1549 $$ 0.00 (-0.0 Illiterate 1767/1068 $$ 0.00 (-0.0 Literate 4181/1535 $$ 0.11 (0.05 3.NP+CHARLS $45 \leq$ Age<60 3676/1294 $$ 0.08 (0.02 Men 3181/1122 $$ 0.13 (0.06 Women 3223/1668 $$ 0.13 (0.06	to 0.71)	₩ 2.003
Women $266/119$ \bullet	to 0.26)	9.792
Women 266/119 $ 0.10 (-0.1)$ Illiterate 174/91 $ 0.04 (-0.2)$ Literate 284/97 $0.26 (0.02)$ 2.CHARLS $45 \le Age < 60$ $3468/1235$ $0.06 (-0.0)$ Age ≥ 60 2481/1369 $ 0.08 (0.02)$ Men 2989/1053 $ 0.12 (0.05)$ Women 2957/1549 $ 0.00 (-0.0)$ Illiterate 1767/1068 $ 0.00 (-0.0)$ Literate 4181/1535 $ 0.01 (0.02)$ 3.NP+CHARLS $ 0.08 (0.02)$ $-$ Men 3181/1122 $ 0.13 (0.06)$ Men 3181/1122 $ 0.03 (-0.0)$	6 to 0.57)	ารี 20.075
Literate $284/97$ $$ $0.26 (0.02)$ 2.CHARLS $45 \leq Age < 60$ $3468/1235$ $0.06 (-0.0)$ $Age \geq 60$ $2481/1369$ $$ $0.08 (0.02)$ Men $2989/1053$ $+$ $0.12 (0.05)$ Women $2957/1549$ $+$ $0.02 (-0.0)$ Illiterate $1767/1068$ $+$ $0.00 (-0.0)$ Literate $4181/1535$ $+$ $0.11 (0.05)$ 3.NP+CHARLS $45 \leq Age < 60$ $3676/1294$ $+$ $0.08 (0.02)$ Men $3181/1122$ $+$ $0.13 (0.06)$ $0.03 (-0.0)$ Men $3181/1122$ $+$ $0.13 (0.06)$ $0.03 (-0.0)$	to 0.32)	0 10 10 10 10 10 10 10 10 10 10 10 10 10
2.CHARLS $45 \le Age < 60$ $3468/1235$ $0.06 (-0.0)$ $Age \ge 60$ $2481/1369$ $ \leftarrow 0.08 (0.02)$ Men $2989/1053$ $ \leftarrow 0.12 (0.05)$ Women $2957/1549$ $ \leftarrow 0.00 (-0.0)$ Illiterate $1767/1068$ $ \leftarrow 0.00 (-0.0)$ Literate $4181/1535$ $ \leftarrow 0.11 (0.05)$ 3.NP+CHARLS $45 \le Age < 60$ $3676/1294$ $- \leftarrow 0.08 (0.02)$ Men $3181/1122$ $- \leftarrow 0.13 (0.00)$ $0.03 (-0.0)$ Men $3181/1122$ $- \leftarrow 0.13 (0.00)$ $0.03 (-0.0)$	to 0.30)	
Age ≥ 60 2481/1369 0.08 (0.02 Men 2989/1053 0.12 (0.05 Women 2957/1549 0.02 (-0.0 Illiterate 1767/1068 0.00 (-0.0 Literate 4181/1535 0.11 (0.05 3.NP+CHARLS 0.08 (0.02 Men 3181/1122 0.03 (0.02 Men 3181/1122 0.13 (0.06 Women 3223/1668 0.03 (-0.0	to 0.51)	13 9 0.034
Age ≥ 60 2481/1369 0.08 (0.02 Men 2989/1053 0.12 (0.05 Women 2957/1549 0.02 (-0.0 Illiterate 1767/1068 0.00 (-0.0 Literate 4181/1535 0.11 (0.05 3.NP+CHARLS 0.08 (0.02 Men 3181/1122 0.03 (0.02 Women 3223/1668 0.13 (0.06		open-20
Men 2989/1053 $$ $0.12 (0.05)$ Women 2957/1549 $$ $0.02 (-0.0)$ Illiterate 1767/1068 $$ $0.00 (-0.0)$ Literate 4181/1535 $$ $0.11 (0.05)$ 3.NP+CHARLS $45 \leq Age < 60$ $3676/1294$ $$ $0.08 (0.02)$ Men $3181/1122$ $$ $0.13 (0.06)$ Women $3223/1668$ $$ $0.13 (0.06)$	to 0.12)	₹ 20.074
Women 2957/1549 $+$ $0.02 (-0.0)$ Illiterate 1767/1068 $+$ $0.00 (-0.0)$ Literate 4181/1535 $+$ $0.11 (0.05)$ 3.NP+CHARLS $45 \le Age < 60$ $3676/1294$ $+$ $0.08 (0.02)$ Age ≥ 60 $2731/1498$ $+$ $0.13 (0.06)$ Men $3181/1122$ $+$ $0.13 (0.06)$ Women $3223/1668$ $+$ $0.03 (-0.0)$	to 0.15)	89.013 99.013
Illiterate 1767/1068 \cdots $0.00 (-0.0)$ Literate 4181/1535 \cdots $0.11 (0.05)$ 3.NP+CHARLS $45 \le Age < 60$ $3676/1294$ \bullet $0.08 (0.02)$ $Age \ge 60$ $2731/1498$ \bullet $0.08 (0.02)$ Men $3181/1122$ \bullet $0.13 (0.06)$ Women $3223/1668$ \bullet $0.03 (-0.0)$	to 0.19)	i 50 € 1001
Literate $4181/1535$ $0.11 (0.05)$ $3.NP+CHARLS$ $45 \le Age < 60$ $3676/1294$ \bullet $0.08 (0.02)$ $Age \ge 60$ $2731/1498$ \bullet $0.08 (0.02)$ Men $3181/1122$ \bullet $0.13 (0.06)$ Women $3223/1668$ \bullet $0.03 (-0.0)$	to 0.08)	en 19.420
$3.NP+CHARLS$ $45 \le Age < 60$ $3676/1294$ \bullet $0.08 (0.02)$ $Age \ge 60$ $2731/1498$ \bullet $0.08 (0.02)$ Men $3181/1122$ \bullet $0.13 (0.06)$ Women $3223/1668$ \bullet $0.03 (-0.0)$	to 0.07)	.960
$45 \le Age < 60$ $3676/1294$ \bullet $0.08 \ (0.02)$ $Age \ge 60$ $2731/1498$ \bullet $0.08 \ (0.02)$ Men $3181/1122$ \bullet $0.13 \ (0.06)$ Women $3223/1668$ \bullet $0.03 \ (-0.06)$	to 0.16)	ov ∰0.001
Age ≥ 60 2731/1498 - 0.08 (0.02) Men 3181/1122 - 0.13 (0.06) Women 3223/1668 0.03 (-0.0)		Bmail Open: first published as 10:11360mjopen-2018-027669 on 19 Revence 2019-Downloaded from http://bmiepen.bmj@om_On_April 19, 2094 by guest. P Bmail Open: first published as 10:11360mjopen-2018-027669 on 19 Revence 2019-Downloaded from http://bmiepen.bmj@om_On_April 19, 2094 by guest. P
Men 3181/1122 0.13 (0.06 Women 3223/1668 0.03 (-0.0	to 0.14)	.013
Women 3223/1668 0.03 (-0.0	to 0.15)	.012
	to 0.20)	∰ €0.001
Illiterate 1941/1159 0.01 (-0.0	to 0.09)	⊉.276
	7 to 0.08)	9rii 9.862
Literate 4465/1632 - 0.12 (0.06	to 0.18)	¦ĝ ∰2.001 ⊌

Figure 2 β -coefficient and 95% confidence interval (CI) of CRP in relation to poor self-rated health from linear regression models stratified by age, sex and education in NP, CHARLS, and the pooled populations of the two datasets. SRH is dichotomized as poor to very poor versus good to average. When stratified by age, models are adjusted for sex, education, marital status, smoking, alcohol consumption, BMI, health status; when stratified by sex, models are adjusted for age, education marital status, smoking, alcohol consumption, BMI, health status; when stratified by education, models are adjusted for age, sex marital status, smoking, alcohol consumption, BMI, health status; when stratified by education, models are adjusted for age, sex marital status, smoking, alcohol consumption, BMI, health status.

^a The average CRP changes in response to one-unit shift in SRH.

SUPPLEMENTARY FILE

	Non-missing ^a (n=646)	Missing ^a (n=2)	Р
Age			0.093
<60	267(41.3)	2(100)	
≥60	379(58.7)	0(0)	
Sex			0.24
Men	261(40.4)	0(0)	
Women	385(59.6)	2(100)	
Education			0.239
Illiterate	265(41.0)	0(0)	
Literate	381(59.0)	2(100)	
Marital status			0.491
Married	522(80.8)	2(100)	
Non-married	124(19.2)	0(0)	
Smoking			0.582
Current smokers	85(13.2)	0(0)	
Non-current smokers	561(86.8)	2(100)	
Drinking			0.489
Regular drinkers	125(19.4)	0(0)	
Non-regular drinkers	521(80.7)	2(100)	
BMI			0.810
Underweight (<18.5)	30(4.60)	0(0)	
Normal weight (18.5-25)	436(67.5)	2(100)	
Overweight (25-30)	158(24.5)	0(0)	
Obese (≥30)	22(3.4)	0(0)	
Self-rated health			0.184
Good	188(29.1)	2(100)	
Average	270(41.8)	0(0)	
Poor	165(25.5)	0(0)	
Very poor	23(3.6)	0(0)	
Health status ^b			0.018
Healthy	127(19.7)	2(100)	
Unhealthy	518(80.2)	0(0)	
Missing	1(0.2)	0(0)	

^a Data are presented as n (%).

^b Healthy status:

Unhealthy: Self-reported moderate to severe symptoms in the last month or used antihypertensive or antidiabetic medications (NP).

Healthy: No such report.

Table S2 Characteristics of study	y sample in CHARLS without and with missing values in CRP
Tuble 62 Characteristics of State	y sumple in ern need without and with inissing values in ere

	Non-missing ^a (n=8555)	Missing ^a (n=3810)	Р
Age			0.002
<60	4703(55.0)	2226(58.4)	
≥60	3850(45.0)	1583(41.6)	
Missing	2(0)	1(0)	
Sex			< 0.001
Men	4042(47.3)	2014(52.9)	
Women	4506(52.7)	1794(47.1)	
Missing	7(0.1)	2(0.1)	
Education			0.001
Illiterate	2835(33.1)	1160(30.5)	
Literate	5716(66.8)	2643(69.4)	
Missing	4(0.1)	7(0.2)	
Marital status			0.001
Married	7517(87.9)	3263(85.6)	
Non-married	1038(12.1)	547(14.4)	
Smoking		. /	0.113
Current smokers	2561(29.9)	1086(28.5)	
Non-current smokers	5993(70.1)	2722(71.4)	
Missing	1(0)	2(0.1)	
Drinking			0.024
Regular drinkers	998(11.7)	399(10.5)	
Non-regular drinkers	7554(88.3)	3406(89.4)	
Missing	3(0)	5(0.1)	
BMI			< 0.001
Underweight (<18.5)	535(6.3)	206(5.4)	
Normal weight (18.5-25)		1790(47.0)	
Overweight (25-30)	1819(21.3)	592(15.5)	
Obese (≥30)	291(3.4)	101(2.7)	
Missing	1191(13.9)	1121(29.4)	
Self-rated health	. ,		0.002
Good	1794(21.0)	910(23.9)	
Average	4157(48.6)	1798(47.2)	
Poor	2157(25.2)	894(23.5)	
Very poor	447(5.2)	208(5.5)	
Health status ^b			< 0.001
Healthy	2089(24.4)	1160(30.5)	
Unhealthy	6401(74.8)	2607(68.4)	
Missing	65(0.8)	43(1.1)	

^a Data are presented as n (%)

^b Healthy status:
^b Healthy: Had 1

Unhealthy: Had been diagnosed by a doctor with any disease or often suffered from any pain currently (CHARLS).

Healthy: No such report.

Page 29 of 31

	N	Age<60	Ν	Age≥60	N	Men	N N	tified by age and sex Women
Illiterate	11	iige too	11	1190_00	11		27659	vv omen
NP							19 on	
Good	47	Ref.	127	Ref.	56	Ref.	1133	Ref.
Poor	16	0.35 (-0.27 to 0.97)	75	-0.01 (-0.32 to 0.29)	21	0.03(-0.53 to 0.59)	70vember 1329 833	0.04 (-0.26 to 0.34)
CHARLS							emb	
Good	777	Ref.	989	Ref.	406	Ref.	1359	Ref.
Poor	405	-0.07 (-0.19 to 0.05)	663	0.05 (-0.05 to 0.15)	232	-0.06(-0.24 to 0.11)	83 <u></u> ,	0.02 (-0.07 to 0.1)
NP+CHARLS							Dov	
Good	824	Ref.	1116	Ref.	462	Ref.	1477	Ref.
Poor	421	-0.05 (-0.17 to 0.07)	738	0.05 (-0.05 to 0.14)	253	-0.04(-0.2 to 0.13)	90 8	0.02 (-0.06 to 0.1)
Literate							d fro	
NP							m ht	
Good	161	Ref.	123	Ref.	136	Ref.	148	Ref.
Poor	43	0.47 (0.14 to 0.8)**	54	0.08 (-0.3 to 0.45)	48	0.4 (0.03 to 0.77)*	49 <mark>2</mark>	0.17 (-0.16 to 0.5)
CHARLS							oper	
Good	2690	Ref.	1490	Ref.	2581	Ref.	15 <mark>9</mark> 7	Ref.
Poor	829	0.11 (0.03 to 0.19)**	706	0.11 (0.02 to 0.19)*	821	0.16 (0.08 to 0.24)**	Down77 90 and from https://bmjopen.97 148 49 00 00 00 00 00 00 00 00 00 00 00 00 00	0.03 (-0.05 to 0.12)
NP+CHARLS							n/ o	
Good	2851	Ref.	1613	Ref.	2717	Ref.	1745 767	Ref.
Poor	872	0.13 (0.06 to 0.21)**	760	0.11 (0.02 to 0.19)*	869	0.17 (0.1 to 0.25)**	$76\overline{\overline{2}}$	0.04 (-0.04 to 0.13)

CHARLS: 1) Iliterate: 1 missing in age, 3 missing in sex; 2) Literate: 1 missing in age, 4 missing in sex. *P<0.05

**P<0.01

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

9, 2024 by guest. Protected by copyright.

		BMJ Open	Pag
	STI	ROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>cross-sectional studies</i>	
Section/Topic	ltem #	Recommendation 0	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	P1
		글 (b) Provide in the abstract an informative and balanced summary of what was done and what was found	P3
Introduction	1		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	P4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	P5-6
Methods			
Study design	4	Present key elements of study design early in the paper	P6-7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	P6-9
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	P6-7
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	P7-9
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	P7-9
Bias	9	Describe any efforts to address potential sources of bias	P9
Study size	10	Explain how the study size was arrived at	P6-7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which group by the second	P8-9
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	P9
		(b) Describe any methods used to examine subgroups and interactions	P9
		(c) Explain how missing data were addressed Image: Comparison of the state of t	P10,12
			P6-7
		(e) Describe any sensitivity analyses	P9
Results			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 mjopen-2018

by copyright

		Ť	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined or eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	Figure 1
		(b) Give reasons for non-participation at each stage	Figure 1
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	P10-12
		(b) Indicate number of participants with missing data for each variable of interest	P12
Outcome data	15*	Report numbers of outcome events or summary measures	P11-12
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision deg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	P13-14, why: P9
		(b) Report category boundaries when continuous variables were categorized	P8-9
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	P15
Discussion		nttp:/	
Key results	18	Summarise key results with reference to study objectives	P15
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	P4, P17
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	P15-17
Generalisability	21	Discuss the generalisability (external validity) of the study results	P17-18
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	P18-19

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in dehort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicinearg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.secobe-statement.org.