Exploring the concept of pain of Australian children with and without pain: qualitative study

Joshua W Pate, Tim Noblet, Julia M Hush, Mark J. Hancock, Renee Sandells, Meg Pounder, Verity Pacey

ABSTRACT

Objective A person’s concept of pain can be defined as how they understand what pain actually is, what function it serves and what biological processes are thought to underpin it. This study aimed to explore the concept of pain in children with and without persistent pain.

Design In-depth, face-to-face interviews with drawing tasks were conducted with 16 children (aged 8–12 years) in New South Wales, Australia. Thematic analysis was used to analyse and synthesise the data.

Setting Children with persistent pain were identified from a pain clinic waiting list in Australia, and children without pain were identified through advertising flyers and email bulletins at a university and hospital.

Participants Eight children had persistent pain and eight children were pain free.

Results Four themes emerged from the data: ‘my pain-related knowledge’, ‘pain in the world around me’, ‘pain in me’ and ‘communicating my concept of pain’. A conceptual framework of the potential interactions between the themes resulting from the analysis is proposed. The concept of pain of Australian children aged 8–12 years varied depending on their knowledge, experiences and literacy levels. For example, when undertaking a drawing task, children with persistent pain tended to draw emotional elements to describe pain, whereas children who were pain free did not.

Conclusions Gaining an in-depth understanding of a child’s previous pain-related experiences and knowledge is important to facilitate clear and meaningful pain science education. The use of age-appropriate language, in combination with appropriate assessment and education tasks such as drawing and discussing vignettes, allowed children to communicate their individual concept of pain.

INTRODUCTION

Estimates of point prevalence of persistent pain (pain that extends beyond the expected period of healing) throughout childhood range from 11% to 54%, which is comparable to that for adults. Persistent pain in children has detrimental effects on a child’s quality of life and is a significant socio-economic and health problem. For example, persistent pain in childhood could predict persistent pain in adulthood and is associated with increased pain-related disability, school absence, poorer reading levels and emotional distress. An increasing number of children are being admitted to hospitals for treatment of persistent pain and health service costs are high.

Multidisciplinary pain management is currently the gold standard for persistent pain management. An important part of the multidisciplinary approach is pain science education, aiming to change a person’s concept of pain and to improve pain and function by teaching the underlying biopsychosocial mechanisms of pain. A person’s concept of pain can be defined as how they understand ‘what pain actually is, what function it serves and what biological processes are thought to underpin it’, these can be summarised as the ‘what, why and how of pain’. Clinically, a range of methods for educational assessments and treatments are used for adults with persistent pain including drawing tasks. Despite drawing tasks being a robust interview strategy with children, these methods have not been applied to
paediatric pain research to investigate a child’s concept of pain.18

Limited research has been conducted that focuses on a child’s concept of pain. For example, children who are pain free have been asked to describe sensations relating to a grazed knee, an injection and a headache.19 In addition, pain-specific behaviours, pain quality and pain intensity have been investigated in children with pain.20 However, a child’s concept of pain, as defined in the previous paragraph, has not been specifically investigated in children with or without persistent pain. Therefore, this remains poorly understood, providing clinicians little guidance on how to provide pain science education to children with persistent pain as part of multidisciplinary management, or to children who are pain free as a strategy to prevent future pain, using language which is clear and unambiguous to a child. The aims of this study were (1) to explore the concept of pain of children diagnosed with persistent pain, and (2) to qualitatively compare the concept of pain between children who have pain with those who are pain free.

METHODS

All participants’ parents provided informed consent prior to participation in the study, and verbal assent was obtained from the participants prior to the commencement of the interview.

Study design

This qualitative study used one-on-one interviews, lasting approximately 30 min, with children aged 8–12 years. To ensure explicit and comprehensive study reporting, the widely used Consolidated Criteria for Reporting Qualitative Health Research21 was implemented. Children were asked to answer questions and complete activities relating to their concept of pain. By adapting grounded theory and using thematic analysis,22 23 concepts in the transcripts were inductively identified and recorded and then a coding structure was iteratively developed and refined until the aims of the study were achieved. Themes and subthemes were developed from data analysis and synthesis.

Participants

Two groups of children aged 8–12 years in the state of New South Wales, Australia, were purposefully recruited: children who had persistent pain (greater than 3 months) and children who were pain free and healthy by parent report. Parent report was used to minimise burden on the children being interviewed. The absence, presence and/or persistence of pain was later confirmed throughout the interviews, allowing opportunity to clarify any discrepancies between reporting. Children were excluded from the study if they (1) had received pain science education from a healthcare professional, (2) were deemed not medically fit to be part of this research study by their treating physician/surgeon or (3) were unable to participate in a 30 min interview based on parent report.

A minimum age for participants was set at 8 years, the youngest age a child can typically self-report and provide meaningful responses in interviews due to their linguistic and cognitive development.24 The maximum age of participation was 12 years, an age prior to when abstract thinking capacities typically develop in the teenage years.25 The age range was determined to meet a clinical need highlighted by research team members to provide improved assessment and management resources for preteenage children. A pragmatic approach incorporating age limits, rather than a formal assessment of cognitive development or language abilities, allows for direct applicability in time-limited clinical settings.

A purposive selection strategy was used to identify children of varying demographics and pain characteristics who were likely to meet the eligibility criteria. For all children, a mix of gender, age and ethnic backgrounds was sought to capture diversity of experiences. For the children with persistent pain, purposive sampling attended to capturing variations in the duration and location of pain. Children were consecutively identified from The Children’s Hospital at Westmead, Australia Complex Pain Service waiting list, and through advertising flyers and email bulletins at Macquarie University and The Children’s Hospital at Westmead.

Children were interviewed until data saturation was reached. Data saturation was defined as when no additional new information was attained with additional interviews regarding the final themes. The three researchers analysing the data (JWP, VP and TN) met fortnightly throughout data collection and the thematic analysis to determine when data saturation was reached. Data collection was stopped when all three researchers agreed that saturation had taken place.

Interview script

An interview script was developed (table 1) to investigate a child’s concept of pain based on seven domains (eg, ‘How pain works’). These domains were proposed in a recent survey of paediatric pain experts by categorising items from the revised Neurophysiology of Pain Questionnaire26 and Explain Pain Target Concepts,27 and they were rated as relevant and appropriate.28 The interview script aligned with guidelines for interviewing children,29 30 and strategies supported by these guidelines were used in the interviews. For example, children were asked to choose their three favourite coloured pens as an icebreaker activity; these pens were then used for the drawing activities. In addition, vignettes with familiar media and cartoon characters were used to increase engagement.32 For example, an open-ended question of ‘How does pain work?’ was followed by a child-friendly cartoon video accessible on YouTube33 and children were asked, ‘Which body part decides when you will feel pain?’.

This question was explained, and clarification of understanding was ensured by asking response-dependent

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Interview script</th>
</tr>
</thead>
<tbody>
<tr>
<td>How does pain work?</td>
<td>Children were asked to describe their understanding of pain.</td>
</tr>
<tr>
<td>Where does pain come from?</td>
<td>Children were asked to draw a picture of a source of pain and describe it.</td>
</tr>
<tr>
<td>How do you know you have pain?</td>
<td>Children were asked to describe the sensations they experience when they feel pain.</td>
</tr>
<tr>
<td>Why do you think pain happens?</td>
<td>Children were asked to speculate on the cause of pain.</td>
</tr>
<tr>
<td>Which body part decides when you will feel pain?</td>
<td>Children were asked to choose a body part and explain their decision.</td>
</tr>
<tr>
<td>How does pain go away?</td>
<td>Children were asked to describe strategies for managing pain.</td>
</tr>
</tbody>
</table>
follow-up questions such as ‘What else does your brain do?’.

The team of investigators (including physiotherapists, clinical psychologists and experts in methodology) provided feedback regarding script development. Pilot testing on three healthy pain-free children (aged 7, 8 and 10 years), discussions with education and linguistics experts, and further review by the investigators, resulted in rewording of several questions to ensure that the questions and language were appropriate for children aged 8–12 years. For example, clarifying questions using synonyms (such as ‘replace the word ‘helpful’ with ‘useful’ if needed’, and ask ‘What word could we use instead of that?’) were incorporated. Following an iterative process, appropriate terminology and language resulting from interviews informed the focus of subsequent interviews until data saturation was reached.

Data collection

Semistructured interviews were all conducted by JWP (male physiotherapist, a PhD candidate and no previous relationship with potential participants). To maximise feelings of physical and emotional comfort, interviews took place at a location chosen by the participant (The Children’s Hospital at Westmead, Macquarie University, or in participants’ homes). Parents/caregivers (from now on referred to as ‘parents’) were invited to be present for each interview but no questions were asked of them. Parents were asked not to contribute unless they felt that their child was upset or appeared distressed, at which point the interview was to be terminated and an offer to speak to the clinical psychologist would be made.

A PowerPoint presentation displayed prompts on a laptop screen to guide the discussion. The interviews were audio recorded to enable transcription. Field notes of contextual details and non-verbal expressions were recorded for data analysis and interpretation. For respondent checking, a summary of the interview transcript was provided to families for comment and feedback to enhance the analytical framework, and a full copy of the transcript was available on request.

A range of demographic characteristics, including age, sex, ethnicity, school year, postcode (for socioeconomic status: using the Australian Socio-Economic Indexes For Areas (SEIFA)35), parental education level and working status were collected in a demographics questionnaire completed by parents. For children with persistent pain, parent-reported location and duration of pain were also collected before the commencement of the interview.

Data triangulation (using multiple methods to enhance understanding) was achieved by including a drawing task during the interviews. For this drawing task, children were asked to ‘draw whatever the word ‘pain’ makes you think of’. This follows methodology of a study investigating the concept of death in children.36 To explore the language children use to describe components of the nervous system and their familiarity with the anatomical components of this system, a second written task involved labelling a diagram of their nervous system (brain, spinal cord and nerves).37 If a child had difficulty with this,
they were asked to verbally label the diagram, or point to where their own brain, spinal cord and nerves are on their own body.

Analysis

Audio recordings from interviews were transcribed by JWP verbatim. VP and TN checked transcripts for accuracy. An adapted grounded theory approach was used to analyse and synthesise the data. Data were independently coded line by line by three researchers (JWP, VP and TN) using NVivo software. Drawings were thematically analysed by the investigators as has been done in previous research. Analytical methods were inductively developed and fully agreed on by these three researchers through a rigorous iterative process. The themes were scrutinised by a team of subject experts including paediatric clinical psychologists, physiotherapists, academics and methodological experts, in two meetings during the analytical process and one final meeting to attain 100% consensus.

Public and patient involvement

Patients were involved in piloting the interview script to identify the most appropriate language to be used in the interviews and the time required to participate. The thematic analysis was directly informed by participants as it was an iterative process. Patients and the general public were not involved in informing other stages of the research process.

RESULTS

Information sheets were distributed and 16 recruitment emails in total were sent to parents of children who contacted the investigators stating that they wanted to participate. All families replied to the invitation and consented to participate. Therefore, 16 participants, 8 with persistent pain and 8 children who were pain free, were enrolled in the study and completed an interview between October 2017 and February 2018 before data saturation was reached. The median and IQR interview duration was 33 (27–36) min. The three researchers (JWP, VP and TN) coding the transcripts agreed on the correctness of the transcripts, with no disagreements identified.

Participants

The participants included nine males and seven females, with a median (IQR) age of 10.0 (8.8–11.0) years. All participants identified themselves as Australian, with seven participants reporting a second ethnicity including Chinese, Lebanese, Indian, Dutch and Eurasian. The median (IQR) Index of Relative Socio-economic Advantage and Disadvantage SEIFA scores (Likert scale of 1–5 rating from disadvantaged to advantaged) was 4 (2.8–5). Of participants with persistent pain, five children in total reported back pain (63%), two children reported headaches (25%) and one child reported neck pain (13%). Pain duration ranged from 1 to 10 years with two participants reporting lifelong permanent physical disabilities. No discrepancies between parent and child reports of the participant’s pain history were identified.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>9 (56)</td>
</tr>
<tr>
<td>Female</td>
<td>7 (44)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4 (25)</td>
</tr>
<tr>
<td>9</td>
<td>3 (19)</td>
</tr>
<tr>
<td>10</td>
<td>4 (25)</td>
</tr>
<tr>
<td>11</td>
<td>3 (19)</td>
</tr>
<tr>
<td>12</td>
<td>2 (13)</td>
</tr>
<tr>
<td>Persistent pain</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8 (50)</td>
</tr>
<tr>
<td>Duration</td>
<td></td>
</tr>
<tr>
<td>0–1 year</td>
<td>0 (0)</td>
</tr>
<tr>
<td>1–2 years</td>
<td>5 (63)</td>
</tr>
<tr>
<td>3–5 years</td>
<td>2 (25)</td>
</tr>
<tr>
<td>6–10 years</td>
<td>1 (13)</td>
</tr>
<tr>
<td>11+ years</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Location</td>
<td></td>
</tr>
<tr>
<td>Headache only</td>
<td>2 (25)</td>
</tr>
<tr>
<td>Back only</td>
<td>2 (25)</td>
</tr>
<tr>
<td>Neck only</td>
<td>1 (13)</td>
</tr>
<tr>
<td>Multiple sites</td>
<td>3 (38)</td>
</tr>
<tr>
<td>No</td>
<td>8 (50)</td>
</tr>
<tr>
<td>Interview setting</td>
<td></td>
</tr>
<tr>
<td>Home</td>
<td>9 (56)</td>
</tr>
<tr>
<td>University</td>
<td>6 (38)</td>
</tr>
<tr>
<td>Hospital</td>
<td>1 (6)</td>
</tr>
</tbody>
</table>

Characteristics may not sum to exactly 100% due to the effect of rounding.

Key themes

Four themes emerged from the data: ‘my pain-related knowledge’, ‘pain in the world around me’, ‘pain in me’ and ‘communicating my concept of pain’. The first three themes focus on the content that participants conveyed, whereas the fourth theme focuses on the method they used to convey this content. Illustrative quotations for each theme are provided in table 3.

Theme 1: my pain-related knowledge

Participant knowledge of the purpose of pain, pain-related anatomy and pain mechanisms varied between Table 2 Demographics of the participants

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>9 (56)</td>
</tr>
<tr>
<td>Female</td>
<td>7 (44)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4 (25)</td>
</tr>
<tr>
<td>9</td>
<td>3 (19)</td>
</tr>
<tr>
<td>10</td>
<td>4 (25)</td>
</tr>
<tr>
<td>11</td>
<td>3 (19)</td>
</tr>
<tr>
<td>12</td>
<td>2 (13)</td>
</tr>
<tr>
<td>Persistent pain</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8 (50)</td>
</tr>
<tr>
<td>Duration</td>
<td></td>
</tr>
<tr>
<td>0–1 year</td>
<td>0 (0)</td>
</tr>
<tr>
<td>1–2 years</td>
<td>5 (63)</td>
</tr>
<tr>
<td>3–5 years</td>
<td>2 (25)</td>
</tr>
<tr>
<td>6–10 years</td>
<td>1 (13)</td>
</tr>
<tr>
<td>11+ years</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Location</td>
<td></td>
</tr>
<tr>
<td>Headache only</td>
<td>2 (25)</td>
</tr>
<tr>
<td>Back only</td>
<td>2 (25)</td>
</tr>
<tr>
<td>Neck only</td>
<td>1 (13)</td>
</tr>
<tr>
<td>Multiple sites</td>
<td>3 (38)</td>
</tr>
<tr>
<td>No</td>
<td>8 (50)</td>
</tr>
<tr>
<td>Interview setting</td>
<td></td>
</tr>
<tr>
<td>Home</td>
<td>9 (56)</td>
</tr>
<tr>
<td>University</td>
<td>6 (38)</td>
</tr>
<tr>
<td>Hospital</td>
<td>1 (6)</td>
</tr>
</tbody>
</table>
Table 3: Quotations to illustrate the subthemes of the four main themes

<table>
<thead>
<tr>
<th>Themes and subthemes</th>
<th>Quotations</th>
</tr>
</thead>
</table>
| **1. My pain-related knowledge:** - Varied knowledge of pain’s purpose, pain-related anatomy and pain mechanisms. | “…To alert your body that there is a virus and you are sick or something.” (Boy, 9, persistent pain)
“…It’s to know you’ve hurt your knee and you need to stop playing.” (Boy, 8, persistent pain)
“The nerves feel it, then they tell the brain, [draws line up to brain outside body] and then the brain tells the nerve maybe.” (Boy, 9, persistent pain)
“Umm because like your nerves send like… It’s like a phone call to your brain saying “I just hurt myself” and then your brain will say, “oh like that’s going to hurt” and you go aww!” (Girl, 10, pain-free)
“Maybe [people with higher sensitivity] have more nerves? And some people might have a little less.” (Boy, 11, pain-free) |
| **2. Pain in the world around me:** - Contextual influences on a child’s concept of pain | “My mum… she has… and my teacher… they might have to get knee replacements. My teacher had one. And my mum has to get one. And my neighbour got one.” (Girl, 9, persistent pain)
[When asked where he learnt about the role of the brain] “Well I learnt most of it off TV, and a little bit from school.” (Boy, 12, persistent pain) |
| **- Perceptions of how other people respond to pain** | “…Some people might be more sensitive than others. Like, I guess some people who play like full contact sports they would be more tough because they are used to the punching and everything. And people who don’t do any sports or who are really sensitive naturally—you just go like “that!” (touches hand to desk lightly) it really, really hurts.” (Girl, 10, pain-free)
“I guess it’s just how you’re born. And how your nerves work.” (Girl, 10, pain-free)
“Some people have stronger muscles… It’s a matter between weakness and strength.” (Boy, 11, persistent pain)
[When asked about sensitivity] “It means umm… more vulnerable”. “…Umm well not really, because some people have a high pain tolerance. Because if Sarah, Mary and I did that, Mary and Sarah would be crying because they have low pain tolerances. Because I’m kind of tougher than them, I’m the oldest.” (Girl, 11, pain-free)
[When asked if different people feel the same amount of pain with the same hammer-hitting-thumb-injury] “We wouldn’t feel the same amount of pain. Because you’re older and I’m younger. I can’t hold in the pain as much as you. So I’d feel more than you.” (Boy, 8, pain-free)
“Well, if you’re like 96 or something you’d feel pain like kids… Because you’re getting old.” (Boy, 8, pain-free)
“[Adults] may be more used to it, because they may have hit it before—depending how often! Because they may have had longer time to experience pain on their thumbs.” (Boy, 10, persistent pain) |
| **3. Pain in me:** - Experiences of any pain/injury | “Well pain is like if you’ve hurt yourself, it’s the physical contact and it hurts. Or like after surgeries you’d have like pain and it hurts to move.” (Girl, 12, persistent pain)
“It helps us not get into any more trouble… it’ll help us to not do [an injury] again. We’ll remember last time and [do the task] differently.” (Boy, 8, pain-free)
“Well if you really didn’t like something, like a sport, then you don’t have to play it. It’d be helpful maybe.” (Girl, 10, pain-free)
“If you had, like we have a presentation day that goes for 2 hours at school. If you didn’t want to go, if you have pain you can stay home.” (Girl, 9, persistent pain) |
Table 3 Continued

<table>
<thead>
<tr>
<th>Themes and subthemes</th>
<th>Quotations</th>
</tr>
</thead>
<tbody>
<tr>
<td>- The impact of having persistent pain</td>
<td>“You could go see a doctor” (Boy, 8, pain-free) “If they have pain then they can go to a physio…” (Boy, 8, pain-free) “If you have a sore tummy, and you’re like “oh no I might have appendicitis!” or something like that. And then you go to the doctors and then they’re like “oh no you’re just sick” or something like that. You’re like “Oh thank goodness, I’ve only got a fever!”” (Girl, 11, pain-free) “Umm… I reckon no… I always know about it [pain].” (Boy, 10, persistent pain) “If you defined pain in the dictionary… it would be something that physically hurts you. So it’s a fake thing. Just a warning… It depends what you mean by real?” (Boy, 12, persistent pain) [When asked if pain was always ‘real’] “I think it’s always real. Because sometimes in your body, like right now when I’m talking, pain can still be in your body even if it doesn’t hurt.” (Boy, 8, pain-free)</td>
</tr>
<tr>
<td>- The physical is obvious, but the emotional is hidden</td>
<td>“I reckon if he [the vignette character] looked at like his favourite thing in the world, and got to play with it or … him from his pain because he is focussed on his favourite toy or something, in the world.” (Boy, 10, persistent pain)</td>
</tr>
<tr>
<td>4. Communicating my concept of pain:</td>
<td>Pain is “…when something hurts in your body” (Girl, 10, pain-free)</td>
</tr>
<tr>
<td>- Verbal communication</td>
<td>“The body is fighting the virus or something.” (Boy, 9, persistent pain)</td>
</tr>
<tr>
<td>- Individual engagement</td>
<td>[Pointing to parts of the diagram whilst talking] “[Nerves] release chemicals that flow up to your brain. And then your brain sends down another chemical I think, that gives it pain.” (Boy, 12, persistent pain)</td>
</tr>
</tbody>
</table>

Subtheme: varied knowledge of pain's purpose, pain-related anatomy and pain mechanisms

When asked if pain had a 'job in the body', 11 participants in the pain group (10 with persistent pain and 1 pain free) referred to the idea of pain keeping them safe by protecting, warning, alerting or knowing. The words 'protect', 'warning', 'alerting', and 'knowing' were used to describe their participants' ability to express their concept of pain with younger participants responding in concrete terms while participants who had pain consistently used concrete terms to describe their pain-related knowledge. Age influenced understanding and communication of pain-related knowledge. Age influenced understanding and communication of pain-related knowledge.
participants identified that each would feel a different pain. Participants provided explanations for this such as being inherently different people, having different levels of ‘toughness’ or different ages.

Subtheme: influences of age
Younger participants tended to use simpler terminology. Some participants aged 8 and 9 years more frequently responded ‘I don’t know’ and appeared less confident of their responses, speaking softly when uncertain. In contrast, older participants tended to use more complex terminology, such as phrases like ‘physically harming’. All participants in the study appeared to focus more on concrete ideas than on abstract ideas, such as pain having contextual influences. For example, when asked why pain persists for some people and not for others, the most common response was that the person was not caring for an injury correctly.

Participants’ understanding of pain-related abstract concepts was influenced by their age, reflecting this age group’s stage of cognitive development. Reciting words from a question was seen as distinctly different from understanding a concept. For example, when given a vignette of someone with persisting pain without an injury and asked about pain management strategies, participants responded by suggesting management strategies directly aligned to ‘fixing’ potential causes of the pain (‘not eat as much food if he is eating a lot’ and ‘depending on if he is fit or not, get fit’—table 3).
Theme 2: pain in the world around me
A child’s concept of pain is strongly influenced by their environmental and social context, including perceptions of how other people respond to pain. Consequently, differences in the concept of pain between participants with and without persistent pain were evident.

Subtheme: contextual influences on a child’s concept of pain
A child’s exposure to family, school and media, appeared to influence their concept of pain, to varying extents between individuals. Participants reported they learnt about pain from family members, particularly parents, as well as at school and via media on television and the internet. To explain various aspects of their concept of pain, participants with persistent pain also used examples of their interactions with health professionals discussing their pain experience despite not having previously received specific pain science education. In contrast, participants who were pain-free only used examples of family members and people at school.

Subtheme: perceptions of how other people respond to pain
Participants with and without persistent pain considered other people to be ‘tough’ or ‘weak’ based on their responses to painful experiences. People who felt a lot of pain were perceived by participants as being weaker. People who ignored their pain were perceived as being tougher. The social stigma surrounding pain was also highlighted in phrases describing pain sensitivity. For example, some participants viewed age as a determinant of pain sensitivity, generally stating that ‘toughness’ increases as a person ages until they ‘get old’ when it decreases significantly. Other participants considered toughness to be an inherent quality, while others did not and emphasised ‘getting stronger’ decreases sensitivity to pain.

Theme 3: pain in me
A child’s concept of pain was based on their individual experiences with pain and injury. All participants clearly described physical aspects of pain, whereas emotional aspects were relatively hidden and were revealed only by participants with persistent pain on further verbal probing or drawing tasks. The impact of persistent pain was highly individualised and related deeply to their past experiences.

Subtheme: experiences of any pain/injury
Participants with and without persistent pain explained their concept of pain by using examples of pain and injury from their own experiences. Regarding the purpose that pain serves, most participants reported that pain is sometimes a helpful thing to feel. The most common reason for this was a warning to avoid further problems; however, two participants (one with persistent pain and one without) described the idea of pain being helpful to avoid attending something deemed boring or undesirable such as ‘a sport’ or ‘presentation day’.

Subtheme: the impact of having persistent pain
Participants with persistent pain expressed different aspects of their concept of pain compared with participants without pain, with these aspects being dependent on their individual pain experiences. Participants with persistent pain considered broader aspects of the pain experience when describing what ‘pain’ is, such as the impact of surgery, effects of feelings, the idea of healing and the diverse influences of health professionals.

When participants were provided with a vignette and asked if a character could have pain without knowing about it, participants were generally uncertain with some responding purely based on their own experience without reference to the vignette. There appeared to be a difference in explanations between participants with and without persistent pain; participants who were pain-free responded with regards to the vignette only whereas participants with persistent pain used the vignette with reference to their own personal experience.

Participants with persistent pain focused more on emotional aspects of pain than participants who were pain-free. When undertaking a drawing task, participants with persistent pain tended to draw emotional elements to describe pain, whereas participants who were pain-free did not (figure 1). Some participants were confused when questioned about aspects of their drawing that illustrated emotional pain, mental pain or nightmares, and were unable to verbally communicate how these types of pain related to a person’s overall pain experience.

Further investigating what children think pain is, the discussion around ‘Is pain real?’ varied between participants with and without persistent pain. While some participants in both groups described some confusion around the term ‘real’ when asked this question, most participants with persistent pain said that pain is not always real. In contrast, most participants who were pain-free said that pain is always real. Having persistent pain appeared to influence views on the ‘reality’ of pain.

Subtheme: the physical is obvious, but the emotional is hidden
Participants tended to focus their discussions on physical and visible components of pain-related processes. The most obvious example of this was mentioned previously; that participants without persistent pain did not draw emotional elements of pain.

When participants discussed possible mechanisms for how different factors can influence pain, most participants with persistent pain considered their experiences and stated that they could use self-taught management techniques, such as distracting themselves from pain by listening to music. In stark contrast, participants who were pain-free did not mention cognitive strategies such as distraction. Other than attentional strategies, participants did not mention any other factors that can influence the experience of pain. All children interviewed appeared unsure about the possible influence of other senses on pain, for example, visual input.
Theme 4: communicating my concept of pain

Participants used verbal descriptions, drawings and diagrams to describe their concept of pain with drawing tasks and vignettes aiding some participants’ communication during the interviews. No differences in the use of these methods of communicating were identified between participants who had persistent pain and participants who were pain free.

Subtheme: verbal communication

Participants’ verbal descriptions of their concept of pain were individual and varied. For example, some participants described the physiological processes underpinning pain using terms such as ‘chemicals’ whereas others used terms such as ‘virus’ and ‘disease’. The words ‘pain’, ‘injury’ and ‘hurt’ were used interchangeably by multiple participants. No differences between groups were identified for this transposable use of terms.

Subtheme: individual engagement

The value of the drawing tasks and vignettes appeared to relate to levels of engagement with the task, and this value did not appear related to age, gender or ethnic background. The drawing task was very helpful in enabling some participants to articulate thoughts they had not verbally communicated. Asking the follow-up question, ‘why did you draw that?’ gave participants an opportunity to expand on their thoughts. For example, some participants did not draw anything when first asked, but later drew representations, such as a face with tears. In contrast, four participants did not like the drawing task and did not feel comfortable with this activity, preferring to speak about it and leaving the drawing page mostly blank (8 years, boy, pain free; 12 years, boy, persistent pain; 11 years, girl, pain-free; 8 years, boy, pain free).

Proposed conceptual framework

The potential interactions between the themes resulting from the analysis and a child’s concept of pain form a proposed conceptual framework that is visually presented in figure 3.

The first three themes are inputs and combine in varying proportions to produce the output which is how a child communicates their concept of pain.

DISCUSSION

This study is the first known to the authors to investigate a child’s concept of what pain is, why it exists and how it is experienced. The primary objective of this study was to gain insight into the way that children aged 8–12 years, who have not received pain science education, conceptualise pain. Four themes emerged from the data: my pain-related knowledge, pain in the world around me, pain in me and communicating my concept of pain. Participants’ communication of their concept of pain was based on their individual knowledge and experience. Participants with persistent pain considered broader aspects of pain and focused more on emotional impacts and influences than participants who were pain free.

Children’s experiences of pain have previously been reported in qualitative studies. As examples, one study considered children’s descriptions of types of pain, another focused on painful experiences, another on children’s pain-related vocabulary and a recent study of children aged 10–18 years with neuropathic pain considered personal pain experiences and language used. Similarly in studies of adults, pain experiences have been explored. These studies differed from the present study in that the focus was on the experience of pain, rather than a person’s concept of pain. Children’s conceptual frameworks have been studied using drawings with the concept of death, but the present study is the first to apply drawing methodology to investigate the concept of pain. Metaphors and explanations about pain that clinicians use with children have been discussed in the literature, but the metaphors and explanations that children themselves use have not been explored.

Using the conceptual framework in figure 3, several important issues are raised for future research regarding clinical practice. First, it is currently unknown the extent to which each of the themes impacts on a child’s concept of pain. Does a child’s experience have more of an impact on their concept of pain than the impact of their knowledge or emotions? The relative size of each ‘raindrop’ is not yet known. Nonetheless, the extent to which each theme influences a child’s concept of pain is likely to be highly idiosyncratic, differing from one child to another and also changing over time. Second, it is unknown if other factors contribute to the composition of the puddle. The ‘blank’ raindrops in figure 3 highlight that, for an individual child, there could be other factors involved that were not identified in these interviews. Third, how can changes in a child’s concept of pain ‘puddle’ be assessed? Conceptual change theory suggests that the ‘puddle’ can theoretically change with...
education; however, no research exists to confirm this. A child’s concept of pain assessment tool would be required to investigate this further. Further research would also be required to explore whether the findings relate to children below the age of 8 years, adolescents, adults and non-English speaking populations.

A key principle of clinical practice requiring future exploration is how patient care is appropriately tailored and individualised based on a child’s concept of pain. The language and other communication tools used in this study may be useful for assessing a child’s concept of pain prior to pain science education, to ensure care is individualised based on identified needs. The helpfulness of using a variety of media (eg, drawings, videos and text) appeared to relate more to a child’s level of comfort with the medium or level of engagement, rather than their age. Therefore, as part of a flexible approach to communicating with children, using a range of media is recommended. In particular, drawings can provide more information and/or more accurate information compared with narrative methods, and they can increase comfort, facilitate memory retrieval and help children organise verbal reports.

Both the open-ended drawing and the diagram-labelling task provided helpful information and enhanced other verbal responses in this study. Several participants commented that they enjoyed discussing the vignettes provided, which supports the established benefits of using vignettes clinically and in qualitative research. Because a child’s concept of pain is not always overtly communicated by the child, particularly the ‘hidden’ emotional components which affect communication, using vignettes and drawings in pain science education or assessments may be particularly beneficial in clinical practice. In addition to these future clinical directions, exploring the effects of different pain durations and pain diagnoses on a child’s focus on emotional aspects of pain is warranted.

A further potential clinical implication is that a more flexible and individualised assessment of a child’s concept of pain could directly inform what pain science education is likely to be most beneficial for a child. Pain science education for adults is based on conceptual change theory where the assumption is that misconceptions exist. The results of the current study show that complex concepts are still developing in childhood, and so pain science education for children should also incorporate educational approaches where concepts are taught with gradually increasing complexity built on previous conceptual development. Tailored, individualised pain science education, specifically aimed at addressing the different variables that have made up an individual child’s concept of pain ‘puddle’ (figure 3), appears warranted. Unexplored variables may be impacting on a child’s concept of pain, such as their intellectual and emotional intelligence, their general attitude, fears, social circumstances, perspectives on ‘toughness’ and other aspects of their history. Each individual child may benefit from tailored education provided in different ways. Some children may not require any formal pain science education, but rather benefit most from reassurance from a trusted adult with influence such as a parent, teacher or health professional. Education deemed too complex by a child may result in misunderstanding and fear, which could potentially aid in the development and/or maintenance of persistent pain and disability.

The terminology and understanding of neuroanatomy used in descriptions of a child’s concept of pain are also important given the use of neuroanatomical terms in pain science education. In the current study, children typically conceptualised the nervous system without inclusion of the spinal cord and considered it to have two parts; the brain and a peripheral component, and uncertainty existed regarding how these two parts are connected. Phrases, such as ‘spinal cord’, ‘nerves’ and ‘real’, are likely to be poorly understood and potentially misinterpreted by children. Participants appeared to grasp the concept of the brain receiving warning messages and, based on these messages and many other factors, producing pain to keep the body safe. It is critical to carefully consider language when discussing pain with children, as younger participants in this age group tended to only use and understand simpler terminology. Age-appropriate language used in conversations by health professionals may facilitate the therapeutic alliance. For example, if a child uses a particular word or phrase to describe their concept of pain, a patient-centred empathetic communication strategy would be for the clinician to incorporate the child’s language in the discussion rather than using technical terms. In addition, the apparent lack of awareness regarding how sensory input and distraction can influence pain provides some support for educating children at an age-appropriate level about biological mechanisms underpinning pain.

This study has several strengths and limitations. One strength of this study was the use of drawing tasks and vignettes in the face-to-face interviews as a means of data triangulation. Another strength was the large variations in pain experience among the group of 8–12 year old participants with persistent pain; some participants had lifelong permanent physical disabilities whereas others had recurrent headaches for just over 1 year, capturing individual variability in pain experiences. A limitation of this study is the potential lack of transferability. This study only included children from New South Wales, Australia, who spoke English. It is unknown if the results would be transferable to other cultures and age groups. A further limitation is that other ‘raindrops’ in the proposed conceptual framework could exist that were not identified and explored in these interviews and would be suitable to investigate in future research.

In conclusion, Australian children aged 8–12 years who have not received formal pain science education had concepts of pain that depended on a child’s knowledge and experiences. The importance of gaining an in-depth understanding of a child’s previous pain-related experiences and knowledge is emphasised, to facilitate clear and
meaningful pain science education. The use of age-appropriate language, in combination with assessment and education tasks such as drawing and discussing vignettes, allowed participants with persistent pain to communicate their individual concept of pain. Future research quantitatively assessing a child’s concept of pain is needed to improve and target pain science education for children with pain.

Twitter Joshua W Pate @JoshuaWpate

Acknowledgements The authors thank all the children and their families for their openness and for giving their valuable time, energy and efforts to participate in this study. They also acknowledge Natasha Haynes, Nurse Practitioner from The Children’s Hospital at Westmead Pain Team, who helped to recruit participants and supported the study.

Contributors Conception and design: all authors. Planning and implementation: all authors. Data collection: JWP. Coding data for thematic analysis: JWP, TN, and MH. Data analysis and interpretation: all authors. Drafting the article: JWP. Review and editing: all authors. Overall responsibility: JWP under the supervision of VP, JH and MH.

Funding JWP is a Ph.D. Student funded by a Macquarie University Research Training Program (RTP) full-time scholarship.

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval The study was approved by the Human Research Ethics Committees of Sydney Children’s Hospital Network (Ref: LNR/17/SCHN/268) and Macquarie University (Ref: 2501700820).

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Deidentified transcripts and drawings, and the unpublished protocol, will be made available upon reasonable request from Joshua Pate (https://orcid.org/0000-0002-1049-3916) until 2024 as per ethical approval. Reuse without ethical approval is not permitted. A data-sharing agreement will require a commitment to using the data only for specified research purposes, to securing the data appropriately and to destroying the data after a nominated period.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD Joshua W Pate http://orcid.org/0000-0002-1049-3916

REFERENCES

38. QSR International Pty Ltd. NVivo qualitative data analysis software (version 9). Australia: QSR International Pty Ltd Doncaster, Vic, 2006.

Open access

