A.1 Data

A.1.1 Data Collection

We collected Twitter data beginning in 2012. However, the tweets collected during 2012-13 flu
season were removed in this study, because the data did not cover the complete flu season. We
discarded retweets and non-English tweets." For the CDC data, we collected the data from the
2013 to 2017 flu seasons, where each flu season starts in July and ends in May in the following
year. To match CDC data, we removed tweets posted in June. The statistical description of our
final data is listed in Table 1.

Table 1. Overview of Twitter data in this study

Flu Season Tweet count Unique user count
2013 July - 2014 May 264,171 199,733
2014 July - 2015 May 336,644 219,012
2015 July - 2016 May 232,591 147,564
2016 July - 2017 May 263,535 175,770

Total 1,124,839 742,079

A.1.2 Data Preprocessing

Tweets have some unique characteristics that do not exist in traditional text, such as hashtags,
hyperlinks, and colloquial language. To make the text more appropriate for natural language
processing tools, we preprocessed each tweet according to the following steps:
1. Hyperlinks, hashtags, user mentions in each tweet were replaced with “<url>”,
“<hashtag>", and “<user>" respectively.
2. Repeated punctuation was replaced with “[punctuation] <repeat>".
3. Each tweet was lowercased and tokenized using NLTK.?

A.1.3 Data Annotation

To build training data, we collected annotations for a random sample of 10,000 tweets from the
full collection. Annotations were obtained from Amazon Mechanical Turk,® with three
independent annotations per tweet. Tweets were labeled with the following:
e Does this message indicate that someone received, or intended to receive, a flu
vaccine? (yes or no)
o If yes: has the person already received a vaccine, or do they intend to receive the
vaccine in the future.

We refer to tweets labeled “yes” as “intention/receipt” and tweets labeled “no” as “other”.



We rejected annotators whose agreement was anomalously low (percentage agreement was <
60%). Three bad annotators were removed from our final dataset. We took a majority vote on
the remaining 29,970 annotations to obtain the final labels. If there was not a majority label, then
we defaulted to the “other” label. The dataset contained 10,000 tweets, with 32.8% labeled as
positive for “intention/receipt”, with a kappa score of 0.79, using Fleiss’ kappa to measure the
inter-annotator agreement.* Then we manually corrected 168 labels of the dataset and finally
obtained 31.1% labeled as positive for “intention/receipt”.

A.2 Automatic Assessment Methods

To automatically identify tweets expressing vaccination intention/receipt, we used the labeled
data to train two machine learning classifiers: Logistic Regression (LR) and Convolutional
Neural Network (CNN). The LR model achieved the best performance among other classifiers in
our previous study.® We implemented Logistic Regression (LR) classifier using the scikit-learn
toolkit.® CNN has been drawn significant attention in recent years because of its impressive
performance on text classification tasks.” We trained the two models on the annotated Twitter
data. After optimizing the model parameters and hyperparameters, we compared the two
models. We finally chose the model that achieved the best performance in the validation
experiments.

A.2.1 Logistic Regression

We fed the LR model with TF-IDF weighted n-gram (uni-, bi- and tri-gram) features, as well as
part-of-speech (POS) counts from TweeboParser,® and emoji and emoticon features derived
from two open lexicons.[9, 10] Feature counts were normalized to sum to 1 within each tweet.
The list of features we used in this study are shown in Table 2.

Table 2 Details of the feature set for Logistic Regression classifier

Feature name Feature attributes
N-gram TF-IDF scores of unigrams, bigrams, trigrams
Part-of-Speech Counts of POS tags, normalized by the total tags in the tweet
Emoji Counts of negative and positive emojis, normalized by total
counts.
Emoticon Counts of negative and positive (—:moticons, normalized by total
counts.

We balanced the weight of each label by adjusting weights inversely proportional to class
frequencies in the training dataset. We adopted cross entropy as the loss function with [2norm
penalty for weight regularization.



A.2.2 Convolutional Neural Network
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Figure 1. The architecture of the CNN model.

The embedding layer converts processed tweets into an embedding matrix of floating point
values, where each row is a vector representation of a word. The embedding matrix is then fed
into the convolutional layer, where the matrix will be screened and sampled by the filters. We
set 150 filters in this layer. Each filter is a square sliding window and we defined three different
sizes of filters: 3*3, 4*4, 5*5. We set the filter stride to 1 and padding mode to “VALID”. We
obtained the squares by sliding the filters over the matrix. Those captured squares will be fed
into the next layer, the pooling layer. We adopt 1-max pooling as the strategy to extract a max
scalar value from each square, which outputs the maximum value. We stack another
convolutional layer and pooling layer following the first pooling layer, for which the operation
steps are the same.

Outputs from the stacked convolutional and pooling layers are flattened, concatenated and fed
to the next layer, the dense layer, where it learns and generates a fixed representation for each
tweet. We set the activation function as rectified linear unit (ReLU)."" We set the output
dimension of this dense layer to 150. A dropout was applied in the layer, where dropout is a
standard method to prevent overfitting by randomly set a proportion of values to zero during
training.'?

We fed the outputs from the dense layer to the sigmoid function to predict the final binary label,
“‘intention/receipt” or “other”. We adopted the binary cross entropy function with (2 penalty to
calculate the loss of predictions. Adam with a learning rate of 0.001 and decay of 0.003 was
adopted to optimize the parameters.™

A.2.3 Experiment Settings

We randomly sliced the dataset into three pieces: 80% as training set, 10% as development set
and 10% as testing set. We trained our two methods, LR and CNN, on the training set, tuned
parameters on the development set, and evaluated the methods on the testing set. We



balanced weights of predicted labels in the two models. The models’ parameters were selected
by accuracy on the development set. The CNN model was trained by 10 epochs, batch size was
set by 64, and the dropout rate was set to 0.2. We fixed the length of inputs by either padding
sentence to 40 words or slicing the first 40 words. Outputs of the classifiers are probabilities of
“‘intention/receipt”, which consider true only if the values are equal to or larger than 0.5 and vice
versa. “Precision”, “recall”, “f1-score” were used to evaluate the performance of each method on
the testing set. We focused on the performance of “intention/receipt”, not “other” label, which

consistently keeps the same evaluation metrics with our previous work.®

A.2.4 Selecting Word Embeddings

Word embedding is a language modeling technique that maps words into a set of word
vectors.™ The CNN model in our study was fed with the word vectors. There are two popular
frameworks to generate the vectors, Word2vec and GloVe.[14, 15] We selected the best
embedding model from the following options:

1. We obtained pre-trained word embedding by running word2vec from Gensim over our
collected tweet dataset.'® We set the tool’'s default settings except for changing minimum
count of words to 1 and number of iterations to 15. We finally obtained 100 dimensional
embedding for each word (denoted as word2vec).

2. We obtained an embedding model by GloVe with its default parameter settings from its
official website (denoted as glovec).

3. Google provides pretrained word2vec embeddings on its news dataset, and Stanford
provides pretrained GloVe embeddings on its Twitter dataset (denoted as pre-word2vec
and pre-glovec respectively)."

4. Character-level embeddings have recently been shown to perform well on text
classification."” We built word embeddings using a one-hot encoding of characters
(denoted as character).

We fed the different embedding models to the same CNN model with the fixed parameters. We
evaluated the performance by precision, recall and F1-score. The performance is shown in

Table 3.

Table 3 Performance of different word embeddings on our dataset.

Word Embeddings Precision Recall F1-score
word2vec 0.894 0.800 0.843
glovec 0.820 0.751 0.784
pre-glovec 0.794 0.800 0.797
pre-word2vec 0.895 0.767 0.826
character 0.858 0.729 0.788




Finally, we chose the word2vec model trained on the collected data in this study, because it
achieves the best performance. We also trained embeddings with 50 and 200 dimensions for
both Word2vec and GloVe, but their performance was worse than with 100 dimensions. The
word embedding trained on our collected data outperformed pre-trained models from Google
and Stanford. Thus, we chose this embedding model for our experiments.

A.2.5 Test Performance of Classifiers

Table 4 Classification performance on test data.

Method Precision Recall F1-score
LR-ngram* 0.837 0.799 0.818
CNN-embedding 0.894 0.800 0.843
LR-embedding- 0.828 0.651 0.729
average

We used the precision, recall, and F1-score to measure the performance of the two classifiers.
We selected the classifier for our analysis tasks based on the best F1-score. We show the test
performance in Table 4, where embedding refers to the word vectors from the selected
word2vec model, and embedding-average means the trained features of LR are word vectors
created by averaging the word vectors of all words in each tweet. Compared to the other two
models, the CNN-embedding has better precision and F1-score. We finally selected CNN-
embedding for categorizing all the tweets we collected.

A.3 Validation Experiments

In this section, we provide additional details and experiments on the validation process of
comparing the Twitter data to the CDC data.

A.3.1 Experimental Steps

We ran both classifiers (LR and CNN) on all tweets from the 2013 to 2017 seasons to obtain
labeled tweets. We restricted the analysis to tweets from the United States. We validated our
approach across three dimensions: time, geography, and demography.

e Time:

a. We counted both the weekly and monthly number of tweets classified as
“‘intention/receipt”. To be consistent with CDC’s week definitions, we used the
epidemiological week instead of the ISO week to calculate the counts. The data
from Twitter and CDC were normalized by z-score separately.

b. Because the types of data were time-series, we ran the time series model,
“autoregressive integrated moving average” (ARIMA), to obtain relationship
Twitter and CDC, which was (p, d, q) = (0, 1, 0). The result suggested a linear



relationship between the trends of CDC and Twitter. We then fitted the time
series data by a linear regression model using Twitter trends to predict CDC
trends.

c. We additionally calculated Pearson correlation and Spearman correlation scores
on the Twitter counts and CDC data.

e Geography:

a. For geographic regions (referred to as “Region”), we aggregated the total counts
of “intention/receipt” tweets for the 10 HHS regions separately. In the “Region-
year” experiment, we treated the regional tweets in each flu season as a
separate point. We normalized the counts of “Region” and “Region-year” by
dividing the number of tweets from that region, using the random sample of
tweets from the Twitter streaming API.

b. For “State” and “State-year”, we excluded five locations, Northern Mariana
Islands, US Virgin Islands, Puerto Rico, Guam, and District of Columbia. These
experiments follow the same process as the region experiments, but within
individual US states.

All the values were normalized by z-scores.
d. We validated the geographic data by measuring Pearson and Spearman
correlations.
e Demography:

a. For “Gender”, we first counted positive tweets separately for males and females
for each flu season. We divided the female counts by male counts of each flu
season to generate gender ratios for the Twitter data. Finally, the ratios were
normalized by z-score.
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A.3.2 Correlation Results

Table 5.1 shows the Pearson correlations over time for both the CNN and LR models. Table 5.2
shows the correlations over geography for the LR model.

Table 5.1 Validation by Pearson correlation for time.

Validation All 2013-14 2014-15 | 2015-16 | 2016-17
model season season season season
CNN 0.899 0.897 0.985 0.985 0.967
LR 0.897 0.927 0.992 0.985 0.984

Table 5.2 Validation of LR by Pearson correlation for geography.

Validation State State Region | Region
model year year
LR 0.433 0.212 0.456 -0.121




Table 6.1 shows the Spearman correlation by time, and Table 6.2 shows the Spearman
correlation by geography.

As the data is split into finer granularities, such as State or State-year, the correlation scores
tend to decrease. This might be caused by a smaller sample size of tweets in the smaller bins.

This suggests that if we could obtain more data, this approach will be more accurate.

Table 6.1 Validation by Spearman correlation for time.

Validation All 2013-14 2014-15 | 2015-16 | 2016-17
model season season season season
CNN 0.929 0.948 0.970 0.900 0.943
LR 0.934 0.957 0.975 0.936 0.943

Table 6.2 Validation by Spearman correlation score for geography.

Validation State State Region Region

model year year
CNN 0.402 0.236 0.552 -0.088
LR 0.446 0.208 0.455 -0.133

A.3.4 Validation of “Other” Tweets

We have focused on the “intention/receipt” tweets under the assumption that they will be more
meaningful than the tweets classified as “other”, i.e., tweets that contain vaccine-related
phrases but do not explicitly state that someone received or intends to receive a vaccine. In this
section, we measured the predictive value of the “other” tweets, which might also correlate with
CDC data, and we compare the correlations to the correlations of the “intention/receipt” tweets.

We kept the same experiment settings for the tweets of the “other” label as the
“‘intention/receipt” tweets. We calculated the Pearson correlation with the CDC data. The results
are shown in Table 7. We plot the monthly flu vaccine prevalence between “other” (denote as
Twitter-Other) and the CDC and weekly prevalence of Twitter data in Figure 2. The “other”
tweets have lower Pearson correlation than “intention/receipt” tweets overall with the CDC data.
In Figure 2.2, the other tweets in the dataset have very high week-to-week variability, with
numerous spikes that do not fit the seasonal trends. This suggests that our classifier is reducing
the noise and improving our identification of vaccine behaviors.



Table 7 Validation Results of CNN and LR by “other” label.

Validation Task CNN LR
All seasons 0.820 0.844
State 0.173 0.200
State-year 0.111 0.134
Region 0.587 0.589
Region-year 0.451 0.500
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Figure 2.1 Monthly prevalence of “Other” trends from Twitter compared to the CDC.
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Figure 2.2. Weekly time series of tweets classified as “Other” by LR (a) and CNN (b).




A.4 Additional Analyses

A.4.1 Sensitivity of the Classification Threshold
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Figure 3. The relationship between the prediction threshold and correlation coefficient.

In this section, we explore how the threshold of classifiers impacts the Pearson correlation.
Specifically, the threshold of how the probability of a tweet being positive before it is actually
positive. By default, anything with probability greater than or equal to 0.5 is classified as
positive, but this threshold can be raised to increase precision (at the expense of recall).

In Figure 3(a) and 3(b), we plotted the relationship between Pearson correlation and prediction
threshold for both LR and CNN. Both approaches show that increasing the predicting threshold
can improve the correlation coefficient. Increasing the threshold indicates higher confidence of
the classifier, that is to say, a tweet will only be considered as “intention/receipt” when the
classifier has high confidence. In the view of the classifier, only the tweets have enough
evidence to indicate vaccination will be classified as “intention/receipt”. Additionally, we could
find that when the threshold of CNN is set to near 0.950, the correlation score decreases
rapidly, so raising the threshold does not always improve performance monotonically.
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Figure 4 The relationship between the F1 score and correlation coefficient.

In Figure 4(a) and 4(b), we explore the relationship between the F1-score and Pearson
correlation, because our criteria for selecting the best classifier was by F1-score. The CNN
classifier reaches the highest correlation coefficient at around an F1-score of 0.500. Under both
models, the correlation drops when the F1 score is too high, likely because the optimal balance
is high precision and low recall, even if that drops the F1 score.

For the LR model, while the correlation varies with F1 score, the correlation values are all very
similar, and all are above .900. However, the CNN model is not very stable with respect to the
correlation coefficient, which might indicate the LR is more robust. We also combined the two

approaches to see if we could achieve better performance in the next section.

A.4.2 An Ensemble Perspective of the Two Models

We combined the two models using two linear combination approaches: combining monthly
counts of tweets from the LR and CNN (weighted-counts), and combining the prediction
probabilities of each approach (weighted-prob). We calculated the combination by the formulas
below:

Weighted — output = Y2, W; * X; (1),
Wi = ot @)
' ?=1F1i ’

where F1 is the F1-score of each classifier achieved on the test data, and X; is the count
number of each classifier for “weighted-counts” or the predicted probability of “intention/receipt”
of each tweet by i-th classifier. Specifically, the weighted-count is the weighted sum of weighted
counts from the LR and CNN approaches; for weighted-prob, instead of counts, we calculated
the prediction probability of each tweet by the weighted sum of the probabilities from each
classifier. The F1-score of each method was used as the weight in the Equation (1). The
weights were normalized by the sum of weights to ensure they are within 0 and 1, as shown in
Equation (2).



For the validation, we evaluated the performance of the tweets classified as “intention/receipt”
and “other”. We validated the two ensemble approaches by calculating Pearson correlation with
the CDC data. The results are shown in Table 8. We find that the weighted-counts performs
slightly better than the weighted-prob on the tweets classified as “intention/receipt”. The
ensemble ways show promising results, outperforming a single classifier.

Table 8. Validation Results of CNN and LR.

Intention/receipt Other
Validation Task
Weighted- Weighted- Weighted- Weighted-
Counts Prob Counts Prob
All seasons 0.899 0.895 0.835 0.840
State 0.406 0.437 0.188 0.192
State-year 0.296 0.281 0.092 0.115
Region 0.475 0.432 0.588 0.591
Region-year 0.325 0.264 0.480 0.497

A.4.3 Simpson’s Paradox

In our previous work,® LR achieved a .90 correlation on the three consecutive flu seasons
(2013-14, 2014-15, 2015-16). In this work, we added a fourth flu season, and LR received a
lower correlation score after adding the 2016-17 season. To explore why the correlation
dropped, we calculated the correlation on the 2016-17 by itself, to see if this season had a lower
correlation that caused the overall correlation to drop. The results are shown in Table 9,
comparing the first three seasons (2013-16), the fourth season (2016-17), and all four seasons.

Surprisingly, we discovered that the CNN achieves lower correlation scores than LR on both
Seasons 2013-16 and Season 2016-17, even though it exceeds LR on all seasons. This
behavior could be explained by “Simpson’s paradox”, a common paradoxical phenomenon in
data analysis.™

Table 9 Pearson correlation of two different time periods.

Intention/receipt
Validation Task

CNN LR
Seasons 2013-16 0.892 0.903
Season 2016-17 0.967 0.984
All seasons 0.899 0.897




A.4.4 Additional Trend Figures
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Figure 5. Monthly prevalence of vaccination trends from Twitter and CDC.

Figure 5 shows both the CNN time series (blue) alongside the LR time series (green) and CDC
data. There are only minor differences in the trends of the two models. Notice that each peak of
the plots is usually in October of the flu season. Yet, there is a distinct peak between Jan. 2014
and Feb. 2014, which might indicate many people also talked about taking flu vaccination shots
during that time.

We visualized vaccine coverage in the 50 states each flu season in the Figure 6."° We find there
are some similar patterns between the Twitter and CDC that the states in the northeast of US
show high vaccine coverage and southeast of the US show the lower vaccine coverage, while
there are also some clear differences, for example, in the Twitter data, Washington and Oregon
show consistently very dark colors.



Figure 6. Flu vaccine trends of both the Twitter and CDC in the U.S.
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