OHCA resuscitation. We investigated the recruiting process and characteristics of the lay volunteers.

Method From September 1st 2017, lay-persons have been able to download the ‘HeartRunner’-application and register as a lay volunteer in the Capital Region of Denmark comprising 1.8 million inhabitants. Recruiting strategies included advertisements outdoors and in newspapers, e-information, and through nationwide television coverage.

Results During the first four months, 14,935 people registered as lay volunteers (=820,100,000 inhabitants); 52.3% were male and 28.3% were health care professionals. Median age at registration was 36 years (27-48). In total, 278 suspected OHCA were registered and 3029 lay volunteers were alerted (mean of 11 volunteers per alarm). Of all alerted lay volunteers, 51.3% (n=1,554) responded to the alarm and 56.9% (n=884) accepted the mission. Of them, 53.7% were male, 32.0% were health care professionals, and median age was 38 years (27-49). The most effective recruiting strategy was nationwide television broadcast, which recruited nearly 6000 volunteers in one day.

Conclusion Lay-persons can be recruited through a smartphone application based response system, and a high proportion accepts to volunteer as first responder in OHCA resuscitation.

Conflict of interest None

Funding Dr. L. Andelius is supported by a fund from The Danish foundation TrygFonden, who has no influence on study design; in the collection, analysis, or interpretation of data.

For Out-of-Hospital Cardiac Arrest (OHCA) at Public Locations Community Bystander Defibrillation Rescue Has Better Impact on Patient Outcomes Compared with Dispatcher-Assisted Telephone CPR (DATCPR)

Aim Mathematical optimisation of automated external defibrillator (AED) placements has the potential to improve out-of-hospital cardiac arrest (OHCA) coverage and reverse the negative effects of limited AED accessibility. However, the generalizability of optimisation approaches has not yet been investigated.

Method We examined the performance and generalizability of a spatiotemporal AED placement optimisation methodology, initially developed for Toronto, Canada, to the new study setting of Copenhagen, Denmark. We identified all atraumatic treated public OHCA (1994-2016) and all registered AEDs (2016) in Copenhagen, Denmark. We then calculated the coverage loss associated with limited temporal accessibility of registered AEDs, and used a spatiotemporal optimisation model to quantify the potential coverage gain of optimised AED deployment. Coverage gain of spatiotemporal deployment over a spatial-only solution was quantified through 10-fold cross-validation. Statistical testing was performed using χ^2 and McNemar’s tests.

Results We identified 2149 public OHCA and 1573 registered AED locations. Coverage loss was found to be 24.4% (1,104 OHCA covered under assumed 24/7 coverage, and 835 OHCA under actual coverage). The relative coverage gain from using the spatiotemporal model over a spatial-only approach was 15.3%. Temporal and geographical trends in coverage gain were similar to Toronto.

Conclusion Without modification, a previously developed spatiotemporal AED optimisation approach was applied to Copenhagen, resulting in similar OHCA coverage findings as Toronto, despite large geographic and cultural differences between the two cities. In addition to reinforcing the importance of temporal accessibility of AEDs, these similarities demonstrate the generalizability of optimisation approaches to improve AED placement and accessibility.

References

Conflict of interest None

Funding This work was funded by the ZOLL Foundation (ZOLL Foundation Research Grant) and supported by the Danish foundation TrygFonden with no commercial interest in the field of cardiac arrest.