Appendix 2 prisoner_hybrid_functions

Calculate daily discount rate using annual discount rate 3%
discount_c<-{(1+0.03)^(1/365)}-1
discounted.value<-function(value,day){
 discounted<-value/(1+discount_c)^day
}

Fit the Gamma distribution using method of moments
gamfit_mom = function(x){
 # assume x is a vector of data
 m = mean(x)
 v = var(x)
 se2 = v/length(x)
 shp = m^2/se2
 sc = se2/m
 return(c(shp, sc))
}

Fit the Beta distribution using method of moments
betafit_mom = function(p, n){
 # p is the estimated proportion, n sample size used to calculate
 se2 = p*(1-p)/n # variance of the mean
 sumab = (p*(1-p)/se2) -1
 ab = p*sumab
 bb = (1-p)*sumab
return(c(ab, bb))

Fit the Beta distribution using mean and variance
betafit=function(mu, var){
 alpha <- ((1 - mu) / var - 1 / mu) * mu ^ 2
 beta <- alpha * (1 / mu - 1)
 return(c(alpha, beta))
}

update transition data frame
transition.updated<- function(transition, day, c, p, h, e, total, cost_c, cost_p, cost_h, cost_e, QALY_c, QALY_p, QALY_h, QALY_e){
 transition<- rbind(transition, data.frame(day=day, community=c, prison=p, hospital=h, ED=e, total=total, Cost_c=cost_c, Cost_p=cost_p, Cost_h=cost_h, Cost_e=cost_e, QALY_c=QALY_c, QALY_p=QALY_p, QALY_h=QALY_h, QALY_e=QALY_e))
}

function to calculate the number of people in prison every day
total.prison<- function(L, time_to_event){
 if(L>time_to_event){
 }else{
 no.p<- sum(n.p)
 }
 return(no.p)
}
function to calculate the number of people in hospital every day

total.hospital <- function(L, time_to_event) {
 if(L > time_to_event) {
 no.h <- N.h[L-1] + n.h[L] - n.h[L-time_to_event]
 } else {
 no.h <- sum(n.h)
 }
 return(no.h)
}