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ABSTRACT
Introduction  Docosahexaenoic acid (DHA) accumulates 
in the frontal lobes (responsible for higher-order cognitive 
skills) of the fetal brain during the last trimester of 
pregnancy. Infants born preterm miss some of this in utero 
provision of DHA, and have an increased risk of suboptimal 
neurodevelopment. It is thought that supplementing infants 
born preterm with DHA may improve developmental 
outcomes. The aim of this follow-up is to determine 
whether DHA supplementation in infants born preterm can 
improve areas of the brain associated with frontal lobe 
function, namely attention and distractibility.
Methods and analysis  We will assess a subset 
of children from the N-3 (omega-3) Fatty Acids 
for Improvement in Respiratory Outcomes (N3RO) 
multicentre double-blind randomised controlled trial 
of DHA supplementation. Infants born <29 weeks’ 
completed gestation were randomised to receive an 
enteral emulsion containing 60 mg/kg/day of DHA or a 
control emulsion from within the first 3 days of enteral 
feeding until 36 weeks’ postmenstrual age.  Children will 
undergo multiple measures of attention at 18 months’ 
corrected age. The primary outcome is the average time 
to be distracted when attention is focused on a toy. 
Secondary outcomes are other aspects of attention, and 
(where possible) an assessment of cognition, language 
and motor development with the Bayley Scales of Infant 
and Toddler Development, Third Edition.  A minimum of 
72 children will be assessed to ensure 85% power to 
detect an effect on the primary outcome. Families, and 
research personnel are blinded to group assignment. All 
analyses will be conducted according to the intention-
to-treat principal.
Ethics and dissemination  All procedures were approved 
by the relevant institutional ethics committees prior to 
commencement of the study. Results will be disseminated 
in peer-reviewed journal publications and academic 
presentations.
Trial registration number  ACTRN12612000503820; Pre-
results.

Introduction 
Brain development
Brain development starts early during gesta-
tion and occurs in a lawful order, with rapid 
periods of change occurring in specific neuro-
logical regions at different times. During 
the first month following conception, brain 
development commences with the differ-
entiation of neural progenitor cells (neural 
stem cells). The neural tube, consisting of the 
cells that become the nervous system, forms 
around 3–4 weeks’ postconception. Once 
formed, the neural tube begins to differen-
tiate into the structures that will become the 
spinal cord, the brain stem and cerebellum 
and the cerebral hemispheres. There is an 
intense period of neuronal proliferation1 and 
by the end of the embryonic period (concep-
tion to 8 weeks) the preliminary structures for 
the central nervous system, and peripheral 
nervous system, are distinctly present.2 

During the fetal period (postconception 
week 9 until birth), dramatic brain growth 
results in the development of surface folds 
(the sulci) and ridges (the gyri) character-
istic of the mature brain. During this period, 

Strengths and limitations of this study

►► This follow-up study builds on a well-powered and 
well-conducted randomised controlled trial.

►► A specialised assessment of early higher order cog-
nitive functioning as well as a standardised global 
assessment will be used to evaluate efficacy of the 
intervention to effect brain development.

►► No planned adjustments for multiple comparisons 
may be a limitation.
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nerve cells migrate to their final location within the brain 
(covering larger distances as the brain grows in size) and 
differentiate into their specialised mature features.2 3

A fetal brain ‘growth spurt’ starts at around midpreg-
nancy (20 weeks’ postconception)4 5 and continues until 
term (40 weeks’ postconception). Functioning neurons 
transmit electrical impulses along their axons to commu-
nicate with other neurons through synapses. By the end 
of the second trimester (4–6 months), the majority of cells 
and structures are present, the cerebral cortex divides 
into two distinct hemispheres and some sensory informa-
tion can be detected by the fetus.

During the last trimester (7–9 months), the brain 
roughly doubles in size from an estimated 125–375 g4 
and the frontal lobes undergo an intense period of 
growth.4 5 As neurons migrate to their final location 
within the brain, they extend axonal processes that 
make up neural networks for communication.2 Axonal 
networks eventually develop into the white matter of the 
brain when they are myelinated, while the neuronal cell 
bodies comprise the grey matter. Neural tissue increases 
in volume rapidly at a rate of approximately 22 mL/
week.6 The gyri and sulci develop on the surface of the 
brain and the various neural structures become increas-
ingly pronounced and refined. By term, the majority of 
neurons that will be present in adulthood have emerged.7 
The abundance of cells created during early proliferative 
periods are reduced after birth.2

A new-born full-term baby has a brain that is approxi-
mately 400 g, roughly 25% of its adult size. The brain of 
a term-born infant has over 100 billion neurons; approx-
imately the same number as an adult brain, but has 10 
times fewer connections between neurons. At term, the 
brainstem is fully functional and capable of regulating 
vital autonomic functions such as breathing, regulation 
of heart rate and body temperature, processing of some 
basic sensory input (ie, visual, touch, auditory) and coor-
dination of some movement.

While the fetal period is the peak time for brain growth, 
rapid development continues across the first two postnatal 
years so that by 24 months of age the brain is 80% of its 
adult weight.8 Myelination (the process whereby myelin, a 
fatty sheath, wraps around an axon) speeds up the rate an 
electrical impulse will pass along the axon. Synaptogen-
esis (creation of synapses), and pruning of unused excess 
synapses are also major postnatal processes in brain devel-
opment.2 Myelin is white and gives axonal pathways in 
the brain its characteristic appearance as ‘white matter’. 
Each neuron can have connections with over 1000 other 
neurons. Synapses are created at a rapid rate during the 
first 3 years such that over this period, connectivity of the 
brain exceeds levels in the adult brain.9 Synapses are then 
subsequently either pruned or strengthened.

Myelination and synaptogenesis are thought to increase 
the rate of information processing and are localised to 
specific areas of the brain at specific times. Theoreti-
cally, these processes continually enable the attainment 
of new developmental milestones between birth and 

early childhood. During infancy, myelination and synap-
togenesis processes are restricted to sensory and motor 
areas, followed by structures that contribute to aspects of 
language, memory, cognition and emotion. In the first 
6 months of life, rapid advances in visual and auditory 
processing as well as motor skills will allow an infant to 
orient, recognise and track a familiar moving object or 
person. Over the course of 18 months, an infant will grow 
into an active, mobile toddler capable of eating solids, 
speaking in two-word sentences and expressing emotions.

One specific area of the brain that develops rapidly 
across the last trimester and first 24 postnatal months 
are the frontal lobes. They are considered to be the most 
recent neural structures to have evolved, and are the 
largest relative to body mass in humans (as compared with 
other animals.10 11 They are the last region of the brain 
to mature.8 11 They develop rapidly in utero and increase 
quickly in size from birth to 2 years of age with continued 
slower growth until young adulthood.11 The frontal lobes 
are thought to mediate higher order cognitive skills 
known as ‘executive’ functions. Such skills are thought 
to involve the ability to integrate and process information 
from numerous cortical and subcortical areas. Executive 
functions involve integrating information from various 
regions of the brain, such that attention and action can 
act in the service of future or present goals. The initial 
forms of this integration can be seen in the control of 
attention, and inhibition of processing task-irrelevant 
sensory input. Eventually, these integrative functions are 
manifest in terms of planning, problem solving, mental 
flexibility and decision-making; when applied to emotion 
or the execution of behaviour, these functions contribute 
to the concept of self-regulation. Executive functions 
emerge during the second year, and continue developing 
throughout childhood and into adolescence.8

Nutrition and brain development
The first 1000 days of life (conception through to 24 
months of age) have been highlighted as a critical period 
of importance for nutrition and for brain develop-
ment.12–14 Developmental processes are highly dependent 
on the timed presence of specific nutrients in sufficient 
quantities. Hence, nutrition is considered to be one of 
the most influential non-genetic factors affecting early 
brain development. The effects of prenatal malnutrition 
or specific micronutrient deficiencies can be difficult to 
compensate for later in childhood, even when nutritional 
status is corrected.15 16

Observational studies often show links between expo-
sure to (or lack of) specific nutrients during pregnancy 
or infancy and child brain development.17–22 General 
malnutrition (lack of calories, protein) in childhood is 
associated with impairments in intellectual abilities, work 
capacity, educational achievement behavioural func-
tioning and even delayed mental and motor development 
up to adolescence23 and severe child malnutrition has 
been linked to lower IQ, poorer cognitive function, lower 
academic performance and more behaviour problems.24 
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Iron-deficiency anaemia in the first 1000 days of life results 
in an increased risk of poor cognitive, motor, social-emo-
tional, language, behavioural and neurophysiological 
development as well as a 6–15 point drop in develop-
mental test scores compared with iron-sufficient infants, 
with deficits in cognition and school achievement lasting 
into adolescence.25 A meta-analysis of observational 
studies showed that individuals who lived in iodine-defi-
cient areas scored 13.5 IQ points lower than individuals 
in iodine-sufficient areas.26 Zinc deficiency during preg-
nancy and lactation has been linked to congenital abnor-
malities and deficiency in children is associated with 
apathy and lethargy, reduced learning capacity and even 
mental retardation.27

Much has been learnt about the effects of nutri-
tional deficiencies on brain development from observa-
tional studies of populations with endemic deficiency. 
However, given the concurrence of nutritional deficien-
cies with other risk factors for suboptimal development 
such as poor sanitation, education and healthcare as 
well as poverty, randomised controlled trials (RCTs) 
are needed to provide causal evidence. Benefit from 
nutritional supplements has been difficult to elucidate 
with prenatal, postnatal and infant intervention (range 
of individual nutrients, macronutrients or multiple 
micronutrients) trials often showing no effect on brain 
development,28–63 even in populations with endemic defi-
ciencies.31 37–39 44–46 48 51–54

Assessing early neurodevelopment
One of the primary reasons thought to contribute to the 
lack of detectable effects after intervention is the sensi-
tivity of outcome measures to nutritional influence. A 
single-nutrient intervention is likely to have a relatively 
modest effect on early brain development in a generally 
well-nourished population. Most intervention studies 
use global tests of early development, such as the Bayley 
Scales of Infant Development (now third edition).64 
These are standardised in their administration, scoring 
and interpretation, they have direct relevance to clinical 
practice and they allow comparability between the results 
of studies. However, they are designed for use in the clin-
ical setting to detect problematic development and assign 
intervention. Scores are standardised so that the perfor-
mance of an infant or child undergoing assessment can 
be compared with the expected abilities typical of chil-
dren at that age. Hence, these tests are well adapted for 
detecting delay but not for detecting small differences 
in abilities between normally developing children. Addi-
tionally, by summing abilities across multiple neurodevel-
opmental domains, outcome scores on global tests may 
lack the sensitivity to detect differences in specific neural 
functions.65 A wider range of tests with more specificity 
is available to assess the functioning of older children; 
however, follow-up of RCTs longitudinally is costly and at 
risk of attrition bias.

To adequately evaluate the efficacy of nutritional 
interventions to impact early neurodevelopment, there 

are recommendations that researchers use assessment 
measures that involve the specific neurological domains 
hypothesised to be influenced by dietary manipula-
tion.65–67 In the case of nutrition in the first 1000 days, 
an assessment of early frontal lobe functioning would be 
appropriate.

Executive function skills have recently become of 
interest to developmental researchers as it is possible to 
conduct behavioural assessments of executive functions 
from a young age, they are governed by the frontal lobes 
and they play a role in the development of cognition and 
social skills.68 69 Some have shown that variation within the 
(hypothesised) normal range of development of executive 
function skills can be predictive of meaningful outcomes 
such as children’s theory of mind (ability to reason about 
the mental states of others and self),69 70 which has been 
implicated in preadolescent social competence.71 Atten-
tion is an executive function that has been of particular 
interest to researchers, and assessments of early attention 
show promise for assessing the efficacy of prenatal and 
early infant nutrition interventions to enhance brain 
development.

The construct of attention covers multiple processes, 
with the most commonly studied and recognised being 
endogenous attention.72 Endogenous attention is an 
individual’s control over the allocation of attention to a 
stimulus, object or event, based on internal processes.72 
Control of attention refers to direction and maintenance 
of attention towards central, focal stimulus and inhibition 
of sensory input from non-relevant or peripheral stimuli. 
Importantly, this involves the ability to maintain atten-
tional focus to a target stimulus while resisting distracting 
stimuli.

Attention has a well-documented functional develop-
ment in the developmental psychology literature and has 
been found to be predictive of later outcomes.73 Visual 
attention is largely exogenously driven during early 
infancy; fixations are automatically drawn to stimuli from 
the first day of life.74–76 For example, movement in the 
visual periphery will result in the automatic redirection of 
infant gaze or fixation. This type of attention is orienting 
and investigative and may facilitate infant learning.74 
Basic endogenous attentional control emerges at the end 
of the first year and is signified by the infant’s ability to 
actively select which stimuli to attend.72 74 76 The ability 
to sustain attention (ie, inhibit the impulse to shift the 
focus of attention) develops at about 12 months of age, 
allowing toddlers to engage with complex toys, although 
they can still be easily distracted by novel stimuli.72 74 
When attention is engaged and sustained, it can be differ-
entiated from more casual forms of attending through 
autonomic measures such as heart rate.74 76 77 Looking 
during periods when heart rate is not decelerated may 
reflect a lower quality or lesser amount of information 
processing.76 78

Early visual attention can also be measured by providing 
an infant or child with a toy to play with freely while 
recording their eye contact with the toy and/or heart 
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rate.79–85 Independent play with toys provides an oppor-
tunity to observe changes in the child’s spontaneous 
ability to focus attention and resist distraction. Histori-
cally, measures of attention in infants and children have 
explored the development of attention in early child-
hood,80 83–85 and associations of attention with later devel-
opmental outcomes.86 87

Gains in attention regulation (such as ability to divide 
attention between stimuli, focus on important stimuli and 
inhibit distraction) has been found to predict growth in 
emergent literacy, vocabulary and math skills over the 
prekindergarten year86 and is essential for enhancing 
and facilitating learning.73 86 Two reviews have concluded 
that measures of attention in infancy are closely related 
to concurrent and later outcomes of traditional psycho-
metric assessments of intelligence and language.75 88 Poor 
attention at the beginning of kindergarten age (4 years 
10 months to 5 years 11 months) has been shown to be 
associated with lower academic achievement and peer 
rejection when entering kindergarten.87

The executive control of attention has been linked 
to frontal lobe functioning in a number of studies.89–91 
Resisting distraction (a component of the ability to 
sustain attention on a focal point in the face of competing 
stimuli) is also thought to be mediated by frontal lobe 
structures; adults with damage to the frontal cortex often 
have difficulty maintaining attention to a conversation 
within a noisy crowded room.92 93

Colombo et al were the first to adapt the various age-ap-
propriate typical measures of infant attention from the 
developmental psychology literature for assessing efficacy 
of a nutritional intervention.79 The investigators were able 
to demonstrate an association between fetal docosahex-
aenoic acid (DHA) exposure and favourable outcomes 
across multiple attention abilities in infants 4, 6, 8, 12 and 
18 months of age.79 81 Since then, the attention assess-
ment (or aspects of it) has been applied to infants in trials 
of zinc supplements,54 sphingomyelin fortified milk94 and 
omega-3 fatty acid intervention,41 95 as well as RCTs of 
DHA during pregnancy.96 97

Docosahexaenoic acid and brain development
The brain is roughly 10% lipids (such as sterols (choles-
terol), and omega-3, omega-6 and omega-9 fatty 
acids) that serve as functional components of cellular 
membranes.98–100 DHA is an omega-3 long-chain polyun-
saturated fatty acid  (LCPUFA) found in fish oil. It has 
been of great interest to nutritional researchers in recent 
years due to its hypothesised role in the brain, and in 
neural tissue development. DHA is a structural compo-
nent of the phospholipid bilayer of cell membranes 
where it plays an integral role in membrane fluidity.101 
Although present in all human cell membranes, DHA is 
concentrated in the cells of the central nervous system, 
particularly the brain, where it is a prominent fatty 
acid.102 103 DHA accumulates in neural tissues throughout 
fetal, neonatal, infant and childhood development but is 
accrued at the greatest velocity during the last trimester 

of pregnancy104 during the peak period of rapid and 
intense brain growth.4 5

High concentrations of DHA have been shown to accu-
mulate in the cerebral cortex and synapses of mice, rats, 
baboons and other mammals.105–107 Depriving animals 
of all omega-3 fatty acids leads to reduced brain tissue 
DHA108–112 as well as less DHA incorporated into the 
fetal rat growth cone,113 with compensatory increases in 
omega-6 fatty acid levels112 114 particularly in the frontal 
lobes.115 116 In one rat study, severe omega-3 fatty acid 
deprivation during gestation lead to modified catechol-
amine biosynthesis in the brain and induced behavioural 
disturbances and decreased learning in the offspring.117 
Other animal studies have linked omega-3 fatty acid 
deprivation to poorer orientation and motor skills,118 
losses in spatial memory, lower cognitive and learning 
abilities110 as well as lower performance on memory tasks 
and complex learning behaviours,116 119 suggesting defi-
cits in abilities that reflect the functioning of the frontal 
lobes.110 116 119 Human deprivation of omega-3 fatty acids 
at the same severity of deprivation in these animal studies 
is highly unlikely to occur; however, the animal models 
establish the importance of DHA for brain function.

It has been estimated that the human fetus 
acquires ~70 mg of omega-3 LCPUFA, largely as DHA, per 
day during the spurt of rapid growth in the last trimester.120 
The DHA requirement of the fetus is thought to exceed 
the DHA intake of pregnant women consuming Western 
diets, with observational studies linking increased DHA 
intake (from seafood) in pregnancy to enhanced vocabu-
lary comprehension,121 receptive vocabulary21 and verbal 
IQ20 122 and that consuming more than the recommended 
quantity of fish during pregnancy is associated with 
higher child cognitive scores.20 123 However, RCTs of DHA 
supplementation during pregnancy show little, if any, 
advantage to child neurodevelopment outcomes.29 It may 
be that prenatal DHA supplementation has no benefit for 
children’s cognitive outcomes because fetal neurological 
structures of the brain are protected in utero. Preferential 
transfer of DHA across the placenta124 125upregulation of 
maternal DHA synthesis during pregnancy and maternal 
stores of DHA126 may protect the DHA supply to the fetus. 
Most prenatal DHA RCTs have been restricted to infants 
born after a full gestation and hence only involve children 
who have had the benefit of the intrauterine supply of 
DHA during the peak period of fetal DHA accrual.104 127 
However, infants born preterm are denied the maternal 
supply of DHA while the brain is undergoing rapid 
development.

DHA and neurodevelopment of infants born preterm
Children born preterm (born before 37 weeks’ completed 
gestation) can be categorised as moderate-to-late preterm 
(32 to  <37 weeks), very preterm (28 to  <32 weeks) or 
extremely preterm (<28 weeks).128 Advances in clinical 
practice have led to increased survival rates of infants 
born preterm; however, the prevalence of neurological 
deficits has not decreased.129 130 The rapid period of brain 
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development that normally occurs in utero happens after 
birth in infants born very or extremely preterm. Between 
29 and 40 weeks’ (term equivalent) postmenstrual age, 
the brain grows from 150 to 400 mL. Growth and develop-
ment are genetically preprogrammed to occur during this 
age range. Preterm neonates are vulnerable to malnutri-
tion and nutrient-specific deficiencies due to their high 
nutritional requirements, limited gastric capacity and 
feeding challenges.

Children who were born preterm have a higher risk 
of deficits in cognition,131 132 behaviour131 133–137 and 
attention138 when compared with their term-born coun-
terparts. In a meta-analysis of case-control studies (7000 
infants born between 1980 and 2009), the IQ of school-age 
children who were born preterm was 11.9 points lower 
(95% CI 10.5 to 13.4) overall, and 13.9 points (95% CI 
11.5 to 16.2, almost 1 SD) lower in infants born <28 weeks 
than term-born controls.139 The risk of poor outcome 
increases as gestational age decreases.131 140 In infants 
born <33 weeks, it is estimated that the IQ decreases 1.5 
points for every week born preterm.134 The lack of associ-
ation between year of birth and IQ suggests that no gains 
in neurodevelopment have been made for infants born 
extremely preterm over the last 25 years.139 The most 
recent global report of 15 million preterm infants born in 
2010 showed that 52% of survivors born <28 weeks’ gesta-
tion have some form of neurodevelopmental disability.141

Inadequate nutrient availability, such as DHA, may 
contribute to the poor developmental outcomes of infants 
born preterm. Infants born preterm miss placental provi-
sions and rely on breast milk or supplemented infant 
formula to meet their nutrient needs. However, the 
amount of DHA received in utero (~60 mg/kg/day) is 
much higher than the level provided in breast milk or 
current standard preterm infant formula (~20 mg/kg/
day). Fetal synthesis of DHA from its precursor fatty acid, 
alpha-linolenic acid, is low such that the fetus is depen-
dent on the supply of DHA from the mother.142 Hence, 
infants born preterm who are deprived the full placental 
transfer of DHA that occurs during a term pregnancy have 
lower neural tissue DHA levels than term-born infants.104

Early studies of DHA supplementation for preterm 
infants were restricted to infants fed formula. Interventions 
compared formulas containing some DHA with formulas 
that contained no DHA.143–150 Findings of improvements 
to infant development of visual acuity after DHA inter-
vention in some trials148 149 151 led to the standard prac-
tice of preterm infant formulas containing ~0.3% of total 
fatty acids as DHA. This provides the same level of DHA 
as most breast milk in Western populations but does not 
match the normal in utero accretion.

Neurodevelopmental assessments of preterm infants in 
DHA intervention studies have inconsistent results.34 35 152 
Three possible factors that have contributed to the contra-
dictory findings are (1) neurodevelopmental assess-
ments include predominantly global assessments, such 
as the Bayleys Scales of Infant Development34 35 152 that 
lack the sensitivity and specificity to detect effects to the 

performance of the frontal lobe (where DHA normally 
accumulates rapidly during the last trimester of preg-
nancy); (2) feeding complications (new-born preterm 
infants can take up to 4 weeks to achieve full enteral feeds) 
resulting in delays to achieving the desired DHA dose, 
and are subject to feeding protocols which often differ 
between hospitals; (3) while breast feeding is supported 
as a source of great benefit to infants, it is not possible 
to control the dose of DHA received by the infant from 
breast milk as supplementing lactating women results in 
wide variation of DHA content in breast milk.153

The present study: DHA for preterm infant neurodevelopment
A novel method of DHA supplementation for preterm 
infants has recently been developed as part of the N-3 
(omega-3) Fatty Acids for Improvement in Respiratory 
Outcomes (N3RO) trial.154 155 This new intervention is an 
enteral emulsion that overcomes the issues of supplemen-
tation by allowing direct delivery of DHA at the desired 
dose within the first days of life. There is no need to wait 
until infants are on full enteral feeds as the emulsion is 
given through the feeding tube immediately prior to a 
milk feed.

This intervention has been administered in a RCT of 
infants born  <29 weeks’ gestation.154 155 These infants 
are a particularly high-risk population of children born 
preterm. Over half will have cognitive deficits, academic 
underachievement and behavioural problems.156 By 
school-age children who were born extremely preterm, 
when compared with children born at term, have: a 
14-point lower IQ, as well as attention, memory, language, 
visual spatial, executive function and behaviour impair-
ments; and poorer reading, spelling and mathematics.156 
They are also the subgroup within the preterm popula-
tion that is the most at  risk of insufficient DHA accre-
tion157 having missed 11, and up to 16, weeks of placental 
DHA transfer which cannot be replaced with current 
neonatal feeding practices.158 The N3RO RCT therefore 
offers a unique opportunity to examine the effects of 
DHA supplementation on attention in those infants most 
at risk.

The specialised assessment of attention in these N3RO 
infants provides an excellent opportunity to reveal the 
importance of DHA exposure for early brain develop-
ment. Our objective is to evaluate whether DHA supple-
mentation in infants born <29 weeks’ gestation can affect 
areas of the brain associated with frontal lobe function, 
namely attention and distractibility.

Methods
Study design
This study is a prospective follow-up of a subsample of 
infants from the N3RO RCT. Children will be invited to 
undergo an assessment when they are 18±3 months of age 
(corrected age for preterm birth). All families, and study 
staff will remain blinded to group treatment allocation 
for the duration of the follow-up.
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The N3RO trial enrolled 1273 infants born <29 weeks’ 
completed gestation from 13 centres in Australia, New 
Zealand and Singapore between 18 June 2012 and 30 
September 2015.154 155 Infants were ineligible to enrol 
in the N3RO trial if they were participating in another 
fatty acid intervention trial, they had a major congenital 
or chromosomal abnormality, they were receiving intra-
venous lipids containing fish oil, or if a breast feeding 
mother was taking >250 mg/day DHA supplements.154 155

Infants were enrolled within 3 days of their first enteral 
feed and randomised to receive an enteral emulsion 
containing either 60 mg of DHA per kg of body weight 
per day, or a control soy emulsion without DHA. DHA 
and control emulsions were identical in packaging, 
labelling, viscosity and colour. The intervention was 
administered from enrolment through to 36 weeks’ post-
menstrual age or discharge home (whichever occurred 
first). Randomisation was through a computer-generated 
schedule with stratification for centre, sex and gestational 
age (<27 completed weeks’ gestation or 27 to <29 weeks' 
gestation). Infants from multiple births were randomised 
individually. At randomisation, infants were assigned a 
unique study identification number with a corresponding 
unique study product identification number so that fami-
lies as well as clinical and all study personnel were blinded 
to group allocation.

The primary outcome of the N3RO trial was phys-
iological bronchopulmonary dysplasia assessed at 36 
weeks’ postmenstrual age or discharge home, whichever 
occurred first.154 155

Participants
Children from the N3RO trial are eligible for inclu-
sion in this 18-month follow-up if they were born at 
the Women’s and Children’s Hospital (n=133), or the 
Flinders Medical Centre (n=59), Adelaide, Australia. 
Appointments will be conducted in study clinics at the 
hospital and medical centre between 2015 and mid-2016. 
Children will be ineligible if they have died, if caregivers 
have withdrawn from the N3RO trial, if they are over 2.5 
years corrected age when screened for the follow-up or 
have a medically diagnosed major pathology that would 
invalidate the assessment (eg, severe cerebral palsy). 
The primary outcome of this study is based on a child 
resisting auditory and visual distraction, and tracking 
child eye-movements, facial expression and hand move-
ments while playing with a toy. Major pathologies will 
be excluded if they are likely to influence the child’s 
abilities during the assessment, for example, blindness, 
deafness or difficulties with motor movements. Pathol-
ogies will be identified in the routine follow-up care of 
extremely preterm infants. An experienced neonatal 
clinician will review all identified pathologies and advise 
the likelihood of interference with performance in the 
assessments. Potential participants will be screened for 
eligibility until the sample specified in the sample size 
calculation is obtained.

Measures
Background information
Sociodemographic data (such as parental age, educa-
tion, employment, gestational age, birth weight, sex) 
were collected for the N3RO trial at trial entry. Informa-
tion regarding breast  feeding, formula and consump-
tion of DHA supplements and DHA-rich foods will be 
captured by a questionnaire completed via an interview 
at the 18-month appointment. Caregivers will be asked 
whether the child was ever breastfed (including putting 
the infant to the breast or giving expressed breast milk 
even just once), and if yes the age of the child when breast 
feeding ceased (multiple choice response with options 
‘≤6 months, 7–12 months, 13–18 months, older than 18 
months and still breast feeding or unknown’). We will ask 
whether the child regularly received an infant formula 
after discharge from hospital, and if yes, caregivers will 
be asked to specify the name and brand of the primary 
formula used in the first 12 months so that DHA content 
can be included in analyses. Caregivers will be asked 
whether the child has consumed infant or toddler milk 
containing DHA, omega-3 egg, normal egg, fish, DHA-for-
tified foods (such as milk or yoghurt) or a supplement 
containing DHA in the week preceding the appointment. 
Caregivers will be asked to complete a Home Screening 
Questionnaire159 at the time of the appointment.

Attention assessment
The attention assessments will be conducted in accor-
dance with previous research and our assessment manual 
(see online supplementary file 1).79 81 96 The assessments 
will take place in a plain, quiet room with children seated 
on their caregiver’s lap. Parents will be asked to refrain 
from interacting with their child during attention tasks. 
JVC Enviro-S memory camcorders (GZ-MS120) will 
record the tasks so that data can be extracted after the 
assessment. A Soniq E23Z13AT2 23 inch HD LED LCD 
flat screen television will be positioned 1 m away from the 
child on a 45-degree viewing angle while a mirror behind 
the child reflects the television screen to the camcorder. 
All essential speech is preprepared as a standard script.

There are three attention tasks in the assessment for 
infants aged 18 months, each of which has one main 
outcome and four to five other outcomes. In each task, 
the child will be given a toy(s) to play with freely and eye 
movements to and from the toys will be measured.

First is the Single Object task, primarily assessing the 
ability to sustain attention to a single complex stimulus 
in the absence of competition or distraction. The child 
is given a single, complex toy with multiple buttons and 
functions (the Leapfrog My Discovery House) with which 
to play for 5 min. The main outcome of the Single Object 
task is the proportion (%) of time spent in attention 
(looking at the toy) during the 5 min of free-play. Other 
outcomes from the Single Object task are (1) total dura-
tion of time spent in attention (looking at the toy); (2) 
number of episodes of attention (looks to the toy); (3) 
average duration of episode of attention (average length 
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of look to the toy); (4) length of the longest episode of 
attention (longest look to the toy).

The second task is the Multiple Object task, primarily 
measuring the ability to sustain attention to a stimulus 
(one toy) in the presence of continuous competition 
(four other toys). The child is given five toys (squeaking 
rubber frog, alligator with rattle, plane with wheels and 
a button for sound, plastic turtle with see through shell 
containing beads and three stackable Fisher-Price blocks) 
to play with simultaneously for 5 min. The main outcome 
of the Multiple Object task is the number of shifts in atten-
tion (looking between the five toys). Other outcomes 
from the Multiple Object task are (1) total duration of 
time spent in attention (looking at the toys); (2) number 
of episodes of inattention (looks away from the toys); (3) 
average duration of episode of attention (average length 
of look to the toys, where shifting between toys counts as 
one look so long as there is no inattention); (4) propor-
tion (%) of time spent in attention (looking at the toys); 
(5) length of the longest episode of attention (longest 
look to the toys, where shifting between toys counts as 
one look so long as there is no inattention).

The final task is the Distractibility   task, primarily 
measuring the ability to maintain attention to a target 
object (the toy) in the presence of a distracting and 
competing stimulus (the television). The child is given 
four toys (plastic-pieces turtle with four detachable mini 
turtles, Fisher-Price Rock-a-Stack set of stackable rings, 
Fisher-Price shape sorter and a Fisher-Price plastic train 
set with buttons and removable blocks) to play with one 
at a time, for 3 min each. The television plays a DVD 
consisting of seven-second distractor segments (segments 
of various children’s programmes) with pseudorandom 
5–25 s intervals of black, blank screen in order to distract 
the child’s attention from the toy. Consecutive segments 
are from different programmes so that there is no story 
line that a child can anticipate or follow. There are 
approximately eight distractor segments for the 3 min 
of playtime with each toy. The DVD is paused when toys 
were changed over, or if a toy falls on the floor and has to 
be retrieved.

At the onset of each distractor segment in the Distracti-
bility task, the child’s state of attention is coded as focused 
attention (looking at and concentrating on the toy and 
engaged in active learning), casual attention (looking 
at the toy but not engaged in active learning) or other 
(not looking at the toy). State of attention (focused 
or casual) is based on the combination of child facial 
expression (ie, furrowed brow (focused) or smiling 
(casual)) and behavioural manipulations of the toy (ie, 
small careful movements or explorations of a feature of 
the toy (focused) or large careless general movements 
(casual)).72 79 The main outcome of the Distractibility 
task is the average latency to turn to the distractor during 
focused attention (how long the child takes to look at 
the television if a distractor segment started when the 
child’s attention was focused on the toy, averaged across 
the four toys). Other outcomes from the Distractibility 

task (averaged across the four toys) are (1) propor-
tion of times distracted (turned to the television when 
a distractor segment started) during focused attention; 
(2) average latency to turn to the distractor during 
casual attention; (3) proportion of times distracted 
during casual attention; (4) total duration of time spent 
looking at the distractor segments; (5) total duration of 
time spent looking at the television when there was no 
distractor segment.

Video recordings of each task will be downloaded to 
a computer and viewed after the appointment using 
Pinnacle Studio Plus (12th Edition) Video Editing Soft-
ware with a built-in timer and a shuttle jog (Contour 
ShuttleExpress) for frame-by-frame viewing. This will be 
necessary to record the exact timing of eye-movements to 
and from the toys, and to and from the television. An indi-
vidual ‘episode’ of attention (a look at the toy(s)) or inat-
tention (looking away from the toy(s)) of any duration is 
included for the Distractibility task but is only counted if 
it is ≥1 s in duration in the Single Object task79 or ≥0.5 s 
in duration in the Multiple Object task.81 Any interrup-
tions during free-play (such as parental interactions) that 
influence the child’s actions will be coded as interference 
and not included as part of the assessment. Twenty five 
per cent of children will be coded by two people to verify 
agreement and stability of data extraction procedures. 
Data extraction reliability will be compared using paired 
samples t-tests, and two-tailed Pearson’s paired samples 
correlations.

Bayley Scales of Infant and Toddler Development, Third 
Edition (Bayley-III)
The Bayley-III is a test of global development for children 
under 42 months.64 A psychologist-administered Cogni-
tive Scale, Motor Scale and Language Scale are stan-
dardised according to corrected age to have mean of 100 
and SD of 15. The cognitive scale evaluates sensorimotor 
development, exploration and manipulation, object relat-
edness, concept formation, memory and simple problem 
solving. The language scale is a composite of receptive 
communication (verbal comprehension, vocabulary) 
and expressive communication (babbling, gesturing and 
utterances). The motor scale evaluates both gross and 
fine motor functioning. Extremely preterm children 
are assessed with the Bayley-III as part of their routine 
clinical care when they are 24 months’ corrected age. 
Parent-rated Adaptive Behaviour and Social-Emotional 
Functioning scales are also available in the Bayley-III but 
will not be not administered.

Procedure
Families of eligible children will be sent a letter of invi-
tation 2 months before their child’s birthday, followed 
by a telephone call to book appointments. All appoint-
ments will be conducted in study-specific clinic rooms at 
the Women’s and Children’s Hospital and the Flinders 
Medical Centre. Consent, attention assessment and back-
ground questionnaires will take place at the appointment.
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Children in the N3RO trial from the Women’s and Chil-
dren’s Hospital and Flinders Medical Centre are included 
in routine clinical follow-up care for preterm infants. 
This includes a Bayley-III assessment and general medical 
examination at approximately 24 months’ corrected age. 
Bayley-III results from these assessments will be collected 
from the medical records of consenting participants for 
this study.

Sample size
To achieve 85% power to detect a difference of 0.8 s 
(SD=1 s) in latency to turn to the distractor during focused 
attention, a minimum of 36 children per group need to 
be assessed (total 72). Previously, an average difference 
of 1.1 s in latency at 12 and 18 months of age was found 
between term-born children dichotomised into high 
and low maternal DHA level at birth.81 As the current 
follow-up will be analysed according to randomised allo-
cation of DHA, and children will be 18 months of age, the 
expected difference is narrower. The power calculation 
accounts for a 19% inflation factor for clustering due to 
multiple births. The inflation for clustering is based on 
18-month Bayley Scales of Infant Development results in 
another of our studies with twins and triplets who were 
born <33 weeks’ gestation,160 where on average there were 
1.28 children per mother and the intraclustering coeffi-
cient for Mental Development Index scores were 0.68.

Statistical analysis and data management
Data collected at the follow-up appointment will be in 
the form of hard copy questionnaires, video recordings 
and excel spreadsheets with the extracted data from the 
attention assessment. Data will be identified through the 
randomisation ID numbers assigned at enrolment into 
the N3RO trial. Hard copy data will be kept in a locked 
office at each site, and electronic data will be stored on 
secure servers at the South Australian Health and Medical 
Research Institute with access granted only to study 
staff. Documents will be retained for 30 years after study 
completion in accordance with data retention schedules 
with research involving minors, and afterwards will be 
destroyed through confidential document disposal.

All analyses will be conducted according to intention-
to-treat principle and according to an a priori statistical 
analysis plan. Intervention groups will be dummy coded to 
allow analyses to be blinded to treatment group. Baseline 
data will be compared for consenters to the follow-up and 
non-consenters, as well as for consenters to the follow-up 
and the whole of the N3RO sample. Within the follow-up 
sample, baseline characteristics will be compared between 
the DHA group and the control group.

Outcomes of DHA group and control group children 
will be compared using generalised estimated equations 
to account for the clustering of multiple births. The 
primary outcome of this follow-up is the main outcome of 
the Distractibility task assessment: average latency to turn 
to the distractor during focused attention. Secondary 
outcomes include all other attention task outcomes, as 

well as results on the Bayley-III assessment. Longer latency 
to turn to the television and greater duration or propor-
tion of time spent in attention is considered to indicate 
better attention abilities.

Analyses will be conducted unadjusted as well as 
adjusted (primary analyses used to draw conclusions 
about the intervention) for stratification variables (sex, 
centre, gestational age <27 completed weeks or 27 to <29 
weeks at birth). No adjustment will be made for multiple 
preplanned comparisons to ensure possible effects are 
detectable.

Ethical considerations and dissemination of results
This study will be carried out in accordance with the 
Australian National Statement on Ethical Conduct in 
Research Involving Humans, which builds on the ethical 
codes of the Declaration of Helsinki and the Principles 
of International Conference on Harmonisation Good 
Clinical Practice (as adopted in Australia). The N3RO 
Trial and this follow-up are registered on the Australia 
and New Zealand Clinical Trial Registry (ANZCTR: 
ACTRN12612000503820).

Caregivers will be provided with a detailed information 
sheet about the study. Written informed consent will be 
obtained from all families participating in the trial prior 
to commencing any study procedures and caregivers will 
be provided with a copy of the signed consent form. All 
data collected will be treated with confidence and care-
givers will be free to withdraw their children from the 
study at any time. No participants will be identified in the 
dissemination of study results.

The attention assessments will be conducted by a 
trained assessor and do not pose any apparent physical 
risk to children. The attention assessment is enjoyable 
for young children and given the short and engaging 
nature of the toys, children generally maintain interest 
and concentration throughout the assessment. If a 
child becomes upset or uncooperative during the 
assessment, the child will be given time to recover or 
parents offered the opportunity to return and complete 
the assessment on another occasion. The appointment 
will take roughly 45 min to do the attention assessment 
and complete the questionnaires.

Parents will be given AUD$20 to cover travel/parking 
and child care expenses of other siblings not attending 
the appointment.

The results of this follow-up study will be published 
in peer-reviewed journals and presented at academic 
conferences. No individual participants will be identified 
or identifiable. All data will be analysed in deidentified 
form.

Discussion
Attention is increasingly becoming an outcome 
of interest for researchers attempting to evaluate 
early nutritional interventions on brain develop-
ment.41 54 79 81 94–97 161–163 However, at present the clinical 
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relevance of the attention assessment is unknown. 
We will have the combined advantage of a specialised 
measure of early development, which has already shown 
sensitivity to early DHA exposure,79 81 as well as a stan-
dardised measure of global development. We will be 
able to compare performance on the attention assess-
ment with results on the Bayley-III to explore the clin-
ical implications for the measure of attention. It will 
also be important to assess these children at a later age 
with a standardised psychometric assessment to deter-
mine the ability of the attention assessment to predict 
later development, as well as the long-term outcome 
of the intervention. A possible limitation of the study 
design is that a subset of the 1273 children from the 
original trial from 2 of the 13 enrolling centres will be 
invited to participate in this follow-up, possibly intro-
ducing bias due to differences in populations and clin-
ical care between enrolling centres. Participation in the 
follow-up will require attendance at a clinic appoint-
ment, possibly introducing further bias from attrition. 
However, the size of subsample was determined by a 
power calculation, we have no evidence of systematic 
differences in the intervention according to site, and 
we do not believe that the effect of DHA on attention 
will differ according to participation in the study. Char-
acteristics of ineligible children and non-consenters will 
be compared with characteristics of consenters. It may 
also be noteworthy that the DHA intervention from the 
N3RO trial ceased at 36 weeks’ postmenstrual age (or 
discharge home from the hospital—whichever occurred 
first) and infants subsequently received varying doses of 
DHA through formula or breastmilk. The risk of unbal-
anced intake of DHA between study groups during the 
last 4 weeks of the fetal brain growth spurt will need to 
be taken into account when considering study results. 
We hypothesise that providing the estimated in  utero 
provisions of DHA to infants born  <29 weeks’ gesta-
tion will facilitate restoration of normal brain develop-
ment and reduce deficits in early child visual attention, 
distractibility as well as general development captured 
by the Bayley-III.
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