BMJ Open

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>editorial.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Cross-sectional and prospective associations of neighborhood environmental attributes with screen time

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-019608
Article Type:	Research
Date Submitted by the Author:	15-Sep-2017
Complete List of Authors:	Liao, Yung; National Taiwan Normal University, Department of Health Promotion and Health Education; Waseda University, Faculty of Sport Sciences Shibata, Ai ; University of Tsukuba, Faculty of Health and Sport Sciences ISHII, Kaori; Waseda University, Faculty of Sport Sciences Koohsari, Mohammad ; Waseda University, Faculty of Sport Sciences; Australian Catholic University, Institute for Health and Ageing OKA, Koichiro; Faculty of Sport Sciences, Waseda University
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology
Keywords:	screen time, built environment, prospective

BMJ Open

1	Cross-sectional and prospective associations of neighborhood environmental
2	attributes with screen time
3	
4	Yung Liao ^{1,2§} , Ai Shibata ³ , Kaori Ishii ² , Mohammad Javad Koohsari ^{2,4,5} , Koichiro
5	Oka ²
6	
7	¹ Department of Health Promotion and Health Education, National Taiwan Normal
8	University, 162, Heping East Road Section 1, Taipei, Taiwan. YL:
9	liaoyung@ntnu.edu.tw
10	² Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima Tokorozawa,
11	Saitama 359-1192, Japan. KI: ishiikaori@aoni.waseda.jp ; KO: koka@waseda.jp
12	³ Faculty of Health and Sport Sciences, University of Tsukuba, 3-29-1 Otsuka
13	Bunkyo, Tokyo 112-0012, Japan. AS: <u>ai.o.shibata@gmail.com</u>
14	⁴ Institute for Health and Ageing, Australian Catholic University, Level 6, 215 Spring
15	Street, Melbourne, VIC 3000 Australia. MJK: Javad.Koohsari@bakeridi.edu.au
16	⁵ Behavioural Epidemiology Laboratory, Baker IDI Heart and Diabetes Institute,
17	Level 4, 99 Commercial Rd, Melbourne, Victoria 3004, Australia
18	
19	[§] Corresponding author: Y.L., E-mail:liaovung@ntnu.edu.tw
20	Y.L., E-mail: <u>liaoyung@ntnu.edu.tw</u>
21	Tel.: +886-7734-1722; Fax: +886-2-2363-3026
22	

Abstract

23	Objectives:	This study	examined	cross-sectional	and	2-year	^r prospective	associations
----	--------------------	------------	----------	-----------------	-----	--------	--------------------------	--------------

- 24 of perceived and objectively-measured environmental attributes with screen time
- among middle-aged Japanese adults.
- **Design:** Prospective cohort study
- 27 Setting: Nerima and Kanuma City of Japan
- **Participants:** Data were collected from adults aged 40 to 69 years living in 2 cities of
- Japan in 2011 (baseline: n=1011; 55.3 \pm 8.4 years) and again in 2013 (follow-up:
- n=533; 52.7% of baseline sample).
- 31 Measures: The exposure variables were five GIS-based and perceived attributes of
- 32 neighborhood environments (residential density, access to shops and public transport,
- 33 footpaths, street connectivity), respectively. The outcome variables were baseline
- 34 screen time (TV viewing time and leisure-time Internet use) and its change over two
- 35 years. Multilevel generalized linear modelling was used.
- **Results:** At baseline, mean screen time was 2.3 hour/day. There were cross-sectional
- 37 associations of objective (exp(β):1.11; 95%CI: 1.01, 1.22) and perceived (1.12; 1.02,
- 1.23) good access to public transport, perceived good access to shop (1.18; 1.04, 1.36),
- 39 and perceived good street connectivity (1.11; 1.01, 1.23) with higher time spent in
- 40 screen time at baseline. On average, participants slightly decreased screen time from
- 41 2.3 to 2.2 hour/day (p=0.238) over two years. No objective and perceived
- 42 environmental attributes were significantly associated with change in screen time.
- **Conclusions:** Activity-supportive neighborhood environmental attributes appear to be
- 44 related to higher level of screen time cross-sectionally. Pattern of screen time might
- 45 be maintained rather changed over time under the same neighborhood environments.

BMJ Open

1	
2 3 4	
3	
4 5	
6	
6 7 8	
8	
9	
10	
11	
13	
14	
15	
16	
17 19	
19	
20	
21	
22	
23	
24 25	
26	
27	
28	
29	
$\begin{array}{c} 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\end{array}$	
32	
33	
34	
35	
36	
38	
39	
40	
41	
42 43	
44	
45	
46	
47	
48 49	
49 50	
51	
52	
53	
54 55	
55 56	
57	
58	
59	
60	

46 Environmental intervention for promoting physical activity may need to consider the 47 potential negative health impact on screen time in Japan. 48 49 Key words: screen time, built environment, prospective 50 51 Strengths and limitations of this study 52 53 1. This study used both cross-sectional and prospective design to provide more 54 confirmative evidence on this issue. 55 2. This study utilized both subjectively and objectively-measured environmental 56 measures, which could better understand what specific conditions of built 57 environment people actually live in and how people perceive and realize these 58 specific environmental attributes could influence their time spent in screen time 59 3. The outcome variable, self-reported screen time, may be subject to recall bias. 60 4. A potential confounder - self-selection of neighborhoods was not examined in this 61 study. 62 63 64

65 Introduction

66	Sedentary behavior, defined as any waking behavior characterized by an energy
67	expenditure ≤ 1.5 metabolic equivalents while in a sitting or reclining posture, has
68	been recognized a novel risk factor for health [1]. Literature has shown the
69	deleterious associations between sitting time and all-cause mortality, cardiovascular
70	disease, type 2 diabetes, overweight/obesity, specific types of cancer and mental
71	health, independent of physical activity [2,3];. In particular, among several domains
72	of sedentary behavior, screen-based sedentary behavior is highly prevalent and
73	increasing rapidly among adults partly because of easily available media-related
74	technologies [4]. Research has reported screen time (TV viewing and leisure-time
75	Internet use) is associated with negative health outcomes [5-7] and has been found to
76	be a predominant component of leisure-time sedentary behavior in adults [8,9].
77	Therefore, with the increasing engagement of screen time [4,10], there is an urgent
78	need to develop effective strategies to reduce screen time for disease and obesity
79	prevention.
79 80	prevention.
	prevention. From the ecological perspective, it is crucial to better understand environmental
80	
80 81	From the ecological perspective, it is crucial to better understand environmental
80 81 82	From the ecological perspective, it is crucial to better understand environmental determinants of screen time to develop population-based interventions for a long-term
80 81 82 83	From the ecological perspective, it is crucial to better understand environmental determinants of screen time to develop population-based interventions for a long-term impact [10,11]. However, previous studies examining associations between built
80 81 82 83 84	From the ecological perspective, it is crucial to better understand environmental determinants of screen time to develop population-based interventions for a long-term impact [10,11]. However, previous studies examining associations between built environment attributes and screen-based sedentary behavior are limited in several
80 81 82 83 84 85	From the ecological perspective, it is crucial to better understand environmental determinants of screen time to develop population-based interventions for a long-term impact [10,11]. However, previous studies examining associations between built environment attributes and screen-based sedentary behavior are limited in several significant ways. Most of these previous studies were cross-sectional design [12-14],
80 81 82 83 84 85 86	From the ecological perspective, it is crucial to better understand environmental determinants of screen time to develop population-based interventions for a long-term impact [10,11]. However, previous studies examining associations between built environment attributes and screen-based sedentary behavior are limited in several significant ways. Most of these previous studies were cross-sectional design [12-14], reporting from Australia [12,15] and the United States [13,14], as well as more
80 81 82 83 84 85 86 87	From the ecological perspective, it is crucial to better understand environmental determinants of screen time to develop population-based interventions for a long-term impact [10,11]. However, previous studies examining associations between built environment attributes and screen-based sedentary behavior are limited in several significant ways. Most of these previous studies were cross-sectional design [12-14], reporting from Australia [12,15] and the United States [13,14], as well as more focusing on only TV viewing and objectively-measured walkability [12,13,15]. These

- 4 -

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

90	associations [13]. However, it remains unclear what specific conditions of built
91	environment people actually live in and how people perceive and realize these
92	specific environmental attributes could influence their time spent in screen time. Thus,
93	in order to strengthen the basis of evidence for developing environmental
94	interventions, further studies examining longitudinal relationship between specific
95	built perceived and objectively-measured neighborhood environment attributes and
96	screen time in adults are needed. In particular, limited studies have focused on Asian
97	countries, it is crucial to further examine how both perceived and objectively-
98	measured environmental attributes are related to changes in screen time in different
99	density, cultural and environmental contexts. These findings would be important to
100	inform policy makers and intervention designers for developing strategies to reduce
101	the increase in screen time through environmental approaches. Therefore, the present
102	study examined cross-sectional and 2-years prospective associations of objective and
103	perceived environmental attributes with screen time in middle-aged Japanese adults.
104	

BMJ Open: first published as 10.1136/bmjopen-2017-019608 on 2 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

105 Materials and methods

Participants

107 The present study is a prospective cohort study with two waves of data collection:

108 baseline in 2011 and follow-up in 2013. This study used data from a part of the

109 Healthy Built Environment in Japan (HEBEJ) project. At baseline, a total of 3,000

- 110 residents aged 40 to 69 years and living in 2 cities in Japan (Nerima City, part of the
- 111 Tokyo metropolitan area with 716,124 residents and an area of 48 km²; Kanuma City,
- 112 a regional city with 102,348 residents and an area of 491 km²) were randomly
- selected from the registry of residential addresses based on gender, age group, and
- 114 residential city. The baseline survey was completed by 1,076 residents (response rate:

BMJ Open: first published as 10.1136/bmjopen-2017-019608 on 2 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

35.9%). Excluding the missing data, the final sample was 1011 for the cross-sectional analyses. After two year, 533 (52.7 % of the baseline respondents) completed the follow-up survey. **Outcome variable** Participants reported their time spent in the television viewing and leisure-time internet use over a usual week, respectively, which was measured at both baseline and follow-up survey using items with reasonable validity and reliability [16]. The validity and test-retest reliability of the items was both moderate [17]. The outcome variable was calculated by multiplying the number of days participants screen time (the sum of television viewing and leisure-time internet use time) by the average amount of time spent doing so per day. For cross-sectional associations, the outcome variable was baseline screen time per day. For prospective associations, the outcome variable was change of screen time per week from baseline to follow-up survey. **Exposure variables** The exposure variables of this study were five perceived and five objectively-measured environmental attributes at baseline, selected on the basis of walkability components and other environmental attributes from previous reviews [18,19]. The perceived measures included population density, sidewalk availability, access to

- 135 public transportation, access to destinations and street connectivity. They were
- 136 identified using the Japanese version of the IPAQ-E with a 4-point Likert scale
- 137 (strongly agree, somewhat agree, somewhat disagree, and strongly disagree), which
- 138 has been shown to have good reliability [20]. These five perceived environmental
- 139 attributes were categorized into "agree" (strongly agree and somewhat agree) and

- 6 -

BMJ Open

140	"disagree" (somewhat disagree and strongly disagree). Objective environmental
141	attributes was measured using Geographic Information Systems (GIS). The following
142	five measures were calculated for each participant within a 800-m radius buffer of
143	their residential address (this buffer area corresponded to a neighborhood setting,
144	which was also used to obtain participant's perceptions): (1) population density (the
145	number of population per square kilometer); (2) sidewalk availability (the length of
146	roads with sidewalks (m) per square km); (3) access to public transportation (the total
147	number of train stations and bus stops per square km); (4) access to destinations (the
148	total number of 30 destination types including convenience store, supermarket,
149	hardware shop, fruit store, dry cleaning store, coin laundry, clothing store, post office,
150	library, book store, fast food store, café, bank , restaurant, video shop, video rental
151	shop, pharmacy, drug store, the hairdresser's, park, gym, fitness club, sports facility,
152	kindergarten, elementary school, junior high school, high school, 2-year college, 4-
153	year college, university based on a previous study and International Physical Activity
154	Questionnaire-Environmental Module (IPAQ-E) [20,21]; (5) street connectivity (the
155	total number of intersections per square kilometer). These five objectively-measured
156	environmental attributes were dichotomised using the median.
157	

BMJ Open: first published as 10.1136/bmjopen-2017-019608 on 2 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

158 Sociodemographic variables

- 159 Data on respondents' gender (men, women), age (40–49, 50–59, or 60–69 years),
- 160 current marital status (married, unmarried), educational level (less than 13 years, 13
- 161 years or more), employment status (full-time employment, not full-time employment),
- 162 household income (less than 5 million yen, or 5 million yen or more), body mass
- 163 index (less than 25kg/m², 25kg/m² and higher) and residential area (Nerima city and
- 164 Kanuma city) were included.

BMJ Open: first published as 10.1136/bmjopen-2017-019608 on 2 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

1
2 3
4 5
6
8
9 10
11 12
13
14
16 17
18 19
20
21 22
23 24
25 26
27
20 29
30 31
234567890112341567890112342222222222222222222222223333333333
34
36
37 38
39 40
41 42
43 44 45 46
46 47
48 49
50
51 52
52 53 54 55 56
55 56
57 58
59
60

165

166 Statistical analyses

167	For cross-sectional associations, generalized linear modelling (GLM), specifying a
168	gamma distribution and a log link, was utilized to examine cross-sectional
169	associations of perceived and objectively-measured environmental attributes with
170	screen time at baseline because the distribution of outcome variable was skewed. The
171	covariates were adjusted for baseline demographic variables including gender, age,
172	marital status, education attainment, household income, working status and MVPA.
173	For prospective associations, GLM was also used to identify the relationships of
174	perceived and objectively-measured environmental attributes at baseline with follow-
175	up screen time over 2 years, adjusted for socio-demographic variables at baseline,
176	screen time at baseline and employment status change. This approach is equivalent to
177	modelling change in screen time and controls for regression to the mean, which has
178	been used in previous study [15]. Residence area was utilized as the area level unit of
179	all analysis. Results of each model are reported as antilogarithms of the regression
180	coefficients (and their respective 95%CI). The expected proportional increase (for
181	values > 1) or decrease (for values <1) in screen time for "environmental conditions
182	that would support physical activity" environment (reference: "not support" category).
183	Statistical analyses were conducted using STATA 13 (Stata Corp, College Station,
184	Texas); the level of significance was set at $p < 0.05$.
185	

186 **Results**

187 Basic characteristics of the baseline sample (n=1011) and follow-up sample

188 (n=553) are presented in Table 1. On average, baseline screen time was 2.3 hour/day.

189 At baseline, cross-sectional associations of objectively-measured (exp(β):1.11; 95%CI:

BMJ Open

190	1.01, 1.22) and perceived (exp(β):1.12; 95%CI:	1.02, 1.23) good access to public
-----	--	-----------------------------------

- 191 transport, perceived good access to shop $(\exp(\beta):1.18; 95\%$ CI: 1.04, 1.36), and
- 192 perceived good street connectivity ($\exp(\beta)$:1.11; 95%CI: 1.01, 1.23) with higher time
- 193 spent in screen time were found. On average, participants slightly decreased screen
- 194 time from 2.3 to 2.2 hour/day (p=0.238) over two years. For the prospective
- 195 associations, no objectively-measured and perceived environmental attributes were
- 196 significantly associated with change in screen time.

Table 1. Characteristics of baseline and follow-up respondents

R	Sample for cross- sectional analyses (n=1011)	Sample for Prospective analyses (n=533)
Baseline		
Gender, % men	512(51.2)	276(51.8)
Age, mean (SD)	55.(84.3)	54.6(8.3)
Marital status, % married	844(84.3)	454(85.2)
Educational attainment, % with tertiary education	536(53.6)	308(57.8)
Household income, %		0
<¥5,000,000 p.a.	492(49.2)	244(45.8)
¥5,000,000 p.a. + Refusing answer or missing	494(49.4) 15(1.5)	283(53.1) 6(1.1)
Work status, % non-working	743(74.2)	406(76.2)
Physical function, mean (SD)	49.9(6.1)	50(6.3)
BMI, mean (SD)	23(3.2)	22.9(3.3)
MVPA (hr/day), mean (SD)	9.3(13.4)	9.2(12.4)
Screen time (hr/day), mean (SD)	2.3(1.9)	2.3(1.9)
Follow-up		
Change in working status		
Keep working	-	388(72.8)
Start working	-	17(3.2)
Stop working	-	18(3.4)
No working	-	110(20.6)
Screen time (hr/day), mean (SD)	-	2.2(1.7)

BMJ Open: first published as 10.1136/bmjopen-2017-019608 on 2 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2017-019608 on 2 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

201 Table 2: Proportional change (95%CI) in screen time according to objective and perceived

202 environmental attributes at baseline (N=1011)

	Exp(B)	95%CI
erceived		
Residential density (High)	1.02	0.93-1.13
Access to destination (Good)	1.12	1.02-1.23*
Access to public transportation (Good)	1.18	1.04-1.36*
Sidewalk (Yes)	1.06	0.97-1.17
Street connectivity (Good)	1.11	1.01-1.23*
IS		
Residential density (High)	0.96	0.87-1.06
Access to destination (Good)	1.05	0.96-1.16
Access to public transportation (Good)	1.11	1.01-1.22*
Sidewalk (Yes)	0.99	0.91-1.10
Street connectivity (Good)	1.00	0.91-1.11

- 203 * p < 0.05
- 204 Generalized linear model (specifying a gamma distribution and using a log link)
- 205 Covariates: gender, age, marital status, education attainment, household income, employment status,
- 206 car ownership status, BMI and MVPA at baseline
- 207 Results of each model are reported as antilogarithms of the regression coefficients (and their respective
- 208 95%CI). The expected proportional increase (for values > 1) or decrease (for values <1) in screen time
- 209 for "environmental conditions that would support physical activity" (reference: "not support"
- 210 category).

BMJ Open

213 Table 3: Proportional change (95%CI) in screen time over 2 years according to objective and perceived

214 environmental attributes, after adjusted for baseline leisure-time sitting for transport (N=533)

	Exp (B)	95%CI
Perceived		
Residential density (High)	1.11	0.97-1.27
Access to destination (Good)	1.00	0.88-1.14
Access to public transportation (Good)	1.08	0.89-1.3
Sidewalk (Yes)	0.99	0.87-1.12
Street connectivity (Good)	1.06	0.92-1.22
GIS		
Residential density (High)	1.05	0.92-1.2
Access to destination (Good)	1.07	0.94-1.23
Access to public transportation (Good)	1.02	0.9-1.16
Sidewalk (Yes)	1.11	0.98-1.26
Street connectivity (Good)	1.08	0.94-1.24

215 * p < 0.05

216 Generalized linear model (specifying a gamma distribution and using a log link)

217 Covariates: gender, age, marital status, education attainment, household income, BMI, leisure-time

218 sitting for transport and MVPA at baseline, change in employment status and car ownership

219 Results of each model are reported as antilogarithms of the regression coefficients (and their respective

220 95%CI). The expected proportional increase (for values > 1) or decrease (for values <1) in screen time

221 for "environmental conditions that would support physical activity" (reference: "not support" category)

BMJ Open: first published as 10.1136/bmjopen-2017-019608 on 2 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

6

Discussion

224	To our knowledge, this is the first study to examine both cross-sectional and
225	prospective associations between neighborhood environments and screen time using
226	both perceived and objective measures of specific neighborhood environmental
227	attributes among middle-aged Japanese adults in an Asian country. The results of this
228	study support previous finding on built environment attributes of neighborhoods that
229	are related to physical activity also may play an important role in influencing
230	sedentary behavior independently [12,14,15,22] and further extend the results for
231	revealing both perceived (good access to public transport, access to shop, and street
232	connectivity) and objectively-measured (good access to public transport) physical
233	activity-supportive environmental attributes are related to higher levels of screen time
234	cross-sectionally. These findings would be important to inform policy makers and
235	intervention designers that when designing environmental approach to promote
236	physical activity, it would be crucial to consider its negative impact on screen time, at
237	least in Japan.
238	least in Japan.
239	Contrary to expectations, adults who live in neighborhood environment with GIS-
240	measured good access to public transportation, and perceived good access to
241	destinations, good access to public transportation, good street connectivity was
242	positively associated with higher levels of screen time, which have been found to be
243	positively related to higher levels of physical activity [18,23]. The present results
244	were also inconsistent with previous studies which have reported the inverse
245	associations between high walkable environment and screen-based sedentary time
246	from Wastern countries [12,14,15]. Only one Palaium study reported similar result

- from Western countries [12,14,15]. Only one Belgium study reported similar result
- 247 with the present study that high walkable environment is positively associated with

BMJ Open

m
BMJ Open:
0
pe
Ď.
firs
irst pul
lgn
ish
ed
as
10
36
/bn
-ji
BMJ Open: first published as 10.1136/bmjopen-2017-019608 on 2 March 2018. Downlo.
1-2
217
5
196
ő
ğ
2
З
rct
2
22
õ
nlo
Dac
ĕd
led from htt
Ĕ
H
n http://bmj
Ы
g
en.
.bn
<u>ب</u>
m
0
D P
ρ́Ξ.
22
2,2
02
4 0
9 2
nes
st.
Pro
tec
tec
<u>d</u>
<u>۷</u>
g
/rig
ħŧ.

of 18	BMJ Open
240	
248	total sitting time [22]. The possible speculation for these results could be that physical
249	activity-supportive neighborhood environment (e.g. there are so many shops, train
250	stations, and bus stops within 1.6km radius of their house) could reduce the time spent
251	in commute and daily errand, and thus adults may have more leisure-time to engage in
252	screen time. Although there is limited evidence in existing literature to draw the
253	conclusion and possible mechanism regarding the inverse associations between
254	environment and screen time, the present study may have several important
255	implications. First of all, the perceptions of environmental attributes should be
256	considered to be predictors of screen time for future studies. Moreover, further
257	evidence in Asian countries using specific environmental measures are needed due to
258	the difference in residential density, culture and built environment between Western
259	countries and Asian country. Finally, examining the relationships among
260	environmental factors, physical activity and sedentary behavior concurrently would be
261	the priority to better understand the potential positive or negative health effects of
262	environment on both physical activity and sedentary behavior for the policy initiatives.
263	
264	Another novel finding is that no prospective associations of screen time over 2 years
265	with objective and perceived environmental attributes. The possible explanation for
266	this result could be that the follow-up duration of this study was only two years and
267	screen time is a highly domestic behaviour for adults during leisure time, which may
268	maintain for years unless the adjustment of home environment or the change in
269	employment status. Therefore, the present study might provide a preliminary
270	understanding on built environmental determinants of screen time for developing
271	effective population-based interventions [10,11]. Therefore, to further confirm the
272	prospective associations, studies with a longer follow-up time are needed in the future.
	- 13 -

BMJ Open: first published as 10.1136/bmjopen-2017-019608 on 2 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

BMJ Open

This study has several limitations. First, the outcome variable - self-reported screen time may be subject to recall bias. Thus, future studies should consider measuring screen time using objectively measurement to provide more confirmative evidence. Second, a potential confounder - self-selection of neighborhoods was not examined in this study. Despite such limitations, the strengths of this study were the both cross-sectional and prospective design and the utilization of five both subjectively and objectively-measured environmental components, which could provide more confirmative evidence on this issue.

283 Conclusion

Activity-supportive neighborhood environmental attributes appear to be related to
higher level of screen time cross-sectionally. Pattern of screen time might be
maintained rather changed over time under the same neighborhood environments.
Environmental intervention for promoting physical activity may need to consider the
potential negative health impact of screen time in Japan.

Declarations

292 Ethics approval and consent to participate

- 293 Written informed consent was obtained from all respondents. This survey received prior approval from
- the Institutional Ethics Committee of Waseda University.

Consent for publication

- 296 Our manuscript did not include any details, images, or videos relating to individual participants. All
- 297 participants agreed with that their self-reported data will be used for publication.

298 Availability of data and material

- 299 This study used data from a part of the Healthy Built Environment in Japan (HEBEJ) project. Data and
- 300 material is available in Lab of Behavioral Sciences (Oka Koichiro), College of Sport Sciences at
- 301 Waseda University (Address: 2-579-15 Mikajima Tokorozawa, Saitama 359-1192, Japan)

Contributorship statement

- 303 1. Study concept and design: Oka, Shibata, Ishii.
- 304 2. Acquisition, analysis, or interpretation of data: Liao, Shibata
- 305 3. Drafting of the manuscript: Liao, Shibata, Koohsari.
- 306 4. Critical revision of the manuscript for important intellectual content: Oka, Shibata, Ishii, Koohsari
- 307 5. Statistical analysis: Liao, Shibata.
- 308 6. Administrative, technical, or material support: Ishii, Koohsari
- 309 7. Study supervision: Oka, Shibata.

310 Funding

- 311 This study was supported by the Grant-in-Aid for Scientific Research (No.26242070) from Japan
- 312 Society for the Promotion of Science and the 29th Research Grant in Medical and Health Science of
- 313 Meiji Yasuda Life Foundation of Health and Welfare.

Conflict of Interest Statement

- 315 The authors declare that there are no conflicts of interest.
- 316 Acknowledgements
- 317 Not applicable.

References

319	1.	Owen N, Salmon J, Koohsari MJ, Turrell G, Giles-Corti B. Sedentary behaviour
320		and health: mapping environmental and social contexts to underpin chronic
321		disease prevention. Br J Sports Med. 2014;48(3):174-7.
322	2.	Thorp AA, Owen N, Neuhaus M, Dunstan DW. Sedentary behaviors and
323		subsequent health outcomes in adults a systematic review of longitudinal studies,
324		1996-2011. Am J Prev Med. 2011;41(2):207-15.
325	3.	Teychenne M, Ball K, Salmon J. Sedentary behavior and depression among
326		adults: a review. Int J Behav Med. 2010;17:246-54.
327	4.	Institute for Information and Communications Policy. Survey of communication
328		media use and behavior; 2014 [cited 2016 Jul 4]. Available from:
329		http://www.soumu.go.jp/main_content/000357570.pdf (in Japanese)
330	5.	Grontved A, Hu FB. Television viewing and risk of type 2 diabetes,
331		cardiovascular disease, and all-cause mortality: a meta-analysis. JAMA. 2011;
332		305:2448-55.
333	6.	Matthews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, et al.
334		Amount of time spent in sedentary behaviors in the United States, 2003-2004. Am
335		J Epidemiol. 2008;167(7):875-81.
336	7.	Vandelanotte C, Sugiyama T, Gardiner P, Owen N. Associations of leisuretime
337		Internet and computer use with overweight and obesity, physical activity and
338		sedentary behaviors: cross-sectional study. J Med Internet Res. 2009;11(3):e28.
339	8.	Owen N, Leslie E, Salmon J, Fotheringham MJ. Environmental determinants of
340		physical activity and sedentary behavior. Exerc Sport Sci Rev. 2000;28:153-8.

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2017-019608 on 2 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

341	9. Sugiyama T, Healy GN, Dunstan DW, Salmon J, Owen N. Is television viewing
342	time a marker of a broader pattern of sedentary behavior? Ann Behav Med. 2008;
343	35:245-50.
344	10. Owen N, Sugiyama T, Eakin EE, Gardiner PA, Tremblay MS, Sallis JF. Adults'
345	sedentary behavior determinants and interventions. Am J Prev Med. 2011;
346	41(2):189-96.
347	11. Owen N. Sedentary behavior: understanding and influencing adults' prolonged
348	sitting time. Prev Med. 2012;55(6):535-9.
349	12. Sugiyama T, Salmon J, Dunstan DW, Bauman AE, Owen N. Neighborhood
350	walkability and TV viewing time among Australian adults. Am J Prev Med.
351	2007;33(6):444-9.
352	13. Coogan PF, White LF, Evans SR, Palmer JR, Rosenberg L. The Influence of
353	Neighborhood Socioeconomic Status and Walkability on TV viewing time. J Phys
354	Act Health. 2012;9(8):1074-9.
355	14. Kozo J, Sallis JF, Conway TL, Kerr J, Cain K, Saelens BE, et al. Sedentary
356	behaviors of adults in relation to neighborhood walkability and income. Health
357	Psychol. 2012;31(6):704-13.
358	15. Ding D, Sugiyama T, Winkler E, Cerin E, Wijndaele K, Owen N. Correlates of
359	Change in Adults' Television Viewing Time: A Four-Year Follow-up Study. Med
360	Sci Sports Exerc. 2012;44(7):1287-92.
361	16. Salmon J, Owen N, Crawford D, Bauman A, Sallis JF. Physical activity and
362	sedentary behavior: a population-based study of barriers, enjoyment, and
363	preference. Health Psychol. 2003;22(2):178-88.

Page 18 of 18

BMJ Open

364	17. Ishii K, Shibata A, Oka K. Sociodemographic and Anthropometric Factors
365	Associated With Screen-Based Sedentary Behavior Among Japanese Adults: A
366	Population-Based Cross-Sectional Study. J Epidemiol. 2013;23(5):382-8.
367	18. Brownson RC, Hoehner CM, Day K, Forsyth A, Sallis JF. Measuring the built
368	environment for physical activity: state of the science. Am J Prev Med. 2009;
369	36(4):S99-123.e12.
370	19. Saelens BE, Sallis JF, Frank LD. Environmental correlates of walking and cycling:
371	findings from the transportation, urban design, and planning literatures. Ann
372	Behav Med. 2003;25(2):80-9.
373	20. Inoue S, Murase N, Shimomitsu T, Ohya Y, Odagiri Y, Takamiya T, et al.
374	Association of Physical Activity and Neighborhood Environment among Japanese
375	Adults. Prev Med. 2009; 48(4):321-5.
376	21. Hanibuchi T, Kawachi I, Nakaya T, Hirai H, Kondo K. Neighborhood built
377	environment and physical activity of Japanese older adults: results from the Aichi
378	Gerontological Evaluation Study (AGES). BMC Public Health. 2011;11:657.
379	22. Van Dyck D, Cardon G, Deforche B, Owen N, Sallis JF, De Bourdeaudhuij I.
380	Neighborhood walkability and sedentary time in Belgian adults. Am J Prev Med.
381	2010;39(1):25-32.
382	23. Saelens BE, Handy SL. Built environment correlates of walking: a review. Med
383	Sci Sports Exerc. 2008;40:S550-66.

BMJ Open

BMJ Open

Cross-sectional and prospective associations of neighborhood environmental attributes with screen time in Japanese middle-aged and older adults

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-019608.R1
Article Type:	Research
Date Submitted by the Author:	28-Dec-2017
Complete List of Authors:	Liao, Yung; National Taiwan Normal University, Department of Health Promotion and Health Education; Waseda University, Faculty of Sport Sciences Shibata, Ai ; University of Tsukuba, Faculty of Health and Sport Sciences ISHII, Kaori; Waseda University, Faculty of Sport Sciences Koohsari, Mohammad ; Waseda University, Faculty of Sport Sciences; Australian Catholic University, Institute for Health and Ageing OKA, Koichiro; Faculty of Sport Sciences, Waseda University
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology
Keywords:	screen time, built environment, prospective

Page 1 of 25

BMJ Open

1 2		
2	1	Cross-sectional and prospective associations of neighborhood environmental
4		
5	2	attributes with screen time in Japanese middle-aged and older adults
6		
7	3	
8		
9	4	Yung Liao ^{1,2§} , Ai Shibata ³ , Kaori Ishii ² , Mohammad Javad Koohsari ^{2,4,5} , Koichiro
10 11		
12	5	Oka ²
13		
14	6	
15		
16	7	¹ Department of Health Promotion and Health Education, National Taiwan Normal
17		
18	8	University, 162, Heping East Road Section 1, Taipei, Taiwan. YL:
19	_	
20 21	9	<u>liaoyung@ntnu.edu.tw</u>
21	10	
23	10	² Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima Tokorozawa,
24	11	
25	11	Saitama 359-1192, Japan. KI: <u>ishiikaori@aoni.waseda.jp</u> ; KO: <u>koka@waseda.jp</u>
26	10	³ Faculty of Health and Sport Sciences, University of Tsukuba, 3-29-1 Otsuka
27	12	Faculty of Health and Sport Sciences, University of Tsukuba, 3-29-1 Otsuka
28	13	Durlave Telave 112 0012 Janen AS: ei e shihate@gmoil.com
29	15	Bunkyo, Tokyo 112-0012, Japan. AS: <u>ai.o.shibata@gmail.com</u>
30 31	14	⁴ Institute for Health and Ageing, Australian Catholic University, Level 6, 215 Sprin
32	14	institute for meanin and Ageing, Australian Catholic University, Level 0, 215 Sprin
33	15	Street, Melbourne, VIC 3000 Australia. MJK: Javad.Koohsari@bakeridi.edu.au
34	15	Succe, meiodume, vie 5000 Mustana. miste. <u>suva. Koonsunajoakenai.edu.au</u>
35	16	⁵ Behavioural Epidemiology Laboratory, Baker IDI Heart and Diabetes Institute,
36	10	
37	17	Level 4, 99 Commercial Rd, Melbourne, Victoria 3004, Australia
38		
39 40	18	
40 41		[§] Corresponding author:
42	19	[§] Corresponding author:
43		
44	20	Y.L., E-mail: <u>liaoyung@ntnu.edu.tw</u>
45		
46	21	Tel.: +886-7734-1722; Fax: +886-2-2363-3026
47		
48 49	22	
50		
50		
52		
53		
54		
55		
56		
57 58		
58 59		- 1 -
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Abstract

23	Objectives: This study examined cross-sectional and 2-year prospective associations
24	of perceived and objectively-measured environmental attributes with screen time
25	among middle-aged Japanese adults.
26	Design: Prospective cohort study
27	Setting: Nerima and Kanuma City of Japan
28	Participants: Data were collected from adults aged 40 to 69 years living in 2 cities of
29	Japan in 2011 (baseline: n=1011; 55.3±8.4 years) and again in 2013 (follow-up:
30	n=533; 52.7% of baseline sample).
31	Measures: The exposure variables were five GIS-based and perceived attributes of
32	neighborhood environments (residential density, access to shops and public transport,
33	footpaths, street connectivity), respectively. The outcome variables were baseline
34	screen time (TV viewing time and leisure-time Internet use) and its change over two
35	years. Multilevel generalized linear modelling was used.
36	Results: On average, participants' screen time was not statistically different over 2
37	years (2.3 hours/day at baseline and 2.2 hours/day at follow-up; p=0.24). There were
38	cross-sectional associations of objective (exp(β):1.11; 95%CI: 1.01, 1.22) and
39	perceived (1.12; 1.02, 1.23) good access to public transport, perceived good access to
40	shop (1.18; 1.04, 1.36), and perceived good street connectivity (1.11; 1.01, 1.23) with
41	higher time spent in screen time at baseline. No objective and perceived
42	environmental attributes were significantly associated with change in screen time.
43	Conclusions: Activity-supportive neighborhood environmental attributes appear to be
44	related to higher level of screen time cross-sectionally. Pattern of screen time might
45	be maintained rather changed over time under the same neighborhood environments.

BMJ Open

	BMJ Open: first published as 10.1136/bmjopen-2017-019608 on 2 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright
ervention for promoting physical activity may need to consider the	oen: firs
health impact on screen time in Japan.	st publis
	shed as
n time, built environment, prospective	10.113
	36/bmjo
	pen-20
nd limitations of this study	117-019
d both cross-sectional and prospective design to provide more	9608 on
vidence on this issue.	ı 2 Mar
ized both subjectively and objectively-measured environmental	ch 201
ch could better understand what specific conditions of built	3. Dow
eople actually live in and how people perceive and realize these	nloadec
nmental attributes could influence their time spent in screen time	d from h
variable, self-reported screen time, may be subject to recall bias.	nttp://br
ounders such as self-selection of neighborhoods and home	njopen
vere not examined in this study	.bmj.cc
ble may not be representative of the populations of Nerima City and	om/ on
	April 20
	0, 2024
	by gue
	st. Pro
	tected
	by cop
	yright.

1		
2 3	46	Environmental intervention for promoting physical activity may need to consider the
4 5	47	potential negative health impact on screen time in Japan.
6 7	48	
8 9	49	Key words: screen time, built environment, prospective
10 11 12	50	
12 13 14	51	
15 16	52	Strengths and limitations of this study
17	32	Strengths and minitations of this study
18		
19	53	1. This study used both cross-sectional and prospective design to provide more
20		
21 22	54	confirmative evidence on this issue.
22		
23	55	2. This study utilized both subjectively and objectively-measured environmental
25		
26	56	measures, which could better understand what specific conditions of built
27		
28	57	environment people actually live in and how people perceive and realize these
29	50	
30	58	specific environmental attributes could influence their time spent in screen time
31	50	
32 33	59	3. The outcome variable, self-reported screen time, may be subject to recall bias.
33	(0	4. Detential conformation such as calf calculation of mainly bracks and have
35	60	4. Potential confounders such as self-selection of neighborhoods and home
36	61	any ironment were not examined in this study.
37	01	environment were not examined in this study
38	62	5. The final sample may not be representative of the populations of Nerima City and
39	02	5. The final sample may not be representative of the populations of Nermia City and
40	63	Kanuma City.
41 42	05	Kununu Orty.
42	64	
44		
45	65	
46		
47	66	
48		
49		
50 51		
51 52		
53		
54		
55		
56		
57		
58		- 3 -

59

67 Introduction

68	Sedentary behavior, defined as any waking behavior characterized by an energy
69	expenditure ≤ 1.5 metabolic equivalents while in a sitting or reclining posture, has
70	been recognized a novel risk factor for health [1]. Literature has shown the
71	deleterious associations between sitting time and all-cause mortality, cardiovascular
72	disease, type 2 diabetes, overweight/obesity, specific types of cancer and mental
73	health, independent of physical activity [2,3]. In particular, among several domains of
74	sedentary behavior, screen-based sedentary behavior is highly prevalent and
75	increasing rapidly among adults partly because of easily available media-related
76	technologies [4]. Research has reported screen time (TV viewing and leisure-time
77	Internet use) is associated with negative health outcomes [5-7] and has been found to
78	be a predominant component of leisure-time sedentary behavior in adults [8,9].
79	Therefore, with the increasing engagement of screen time [4,10], there is an urgent
80	need to develop effective strategies to reduce screen time for disease and obesity
81	prevention.
82	
83	From the ecological perspective, it is crucial to better understand environmental
84	determinants of screen time to develop population-based interventions for a long-term
85	impact [10,11]. However, previous studies examining associations between built
86	environment attributes and screen-based sedentary behavior are limited in several
87	significant ways. Most of these previous studies were cross-sectional design [12-14],
88	reporting from Australia [12,15] and the United States [13,14], as well as more
89	focusing on only TV viewing and objectively-measured walkability [12,13,15]. These
90	previous studies have reported that lowly walkable neighbourhood environment is
91	associated with higher TV viewing time [12,14,15], whereas one study has found no

BMJ Open

92	associations [13]. However, it remains unclear what specific conditions of built
93	environment people actually live in and how people perceive and realize these
94	specific environmental attributes could influence their time spent in screen time. Thus,
95	in order to strengthen the basis of evidence for developing environmental
96	interventions, further studies examining longitudinal relationship between specific
97	built perceived and objectively-measured neighborhood environment attributes and
98	screen time in adults are needed. In particular, limited studies have focused on Asian
99	countries, it is crucial to further examine how both perceived and objectively-
100	measured environmental attributes are related to changes in screen time in different
101	density, cultural and environmental contexts. These findings would be important to
102	inform policy makers and intervention designers for developing strategies to reduce
103	the increase in screen time through environmental approaches. Therefore, the present
104	study examined cross-sectional and 2-years prospective associations of objective and
105	perceived environmental attributes with screen time in middle-aged Japanese adults.
106	

107 Materials and methods

Participants

109 The present study is a prospective cohort study with two waves of data collection:

110 baseline in 2011 and follow-up in 2013. This study used data from a part of the

111 Healthy Built Environment in Japan (HEBEJ) project. At baseline, a total of 3,000

- residents aged 40 to 69 years and living in 2 cities in Japan (Nerima City, part of the
- 113 Tokyo metropolitan area with 716,124 residents and an area of 48 km²; Kanuma City,
- 114 a regional city with 102,348 residents and an area of 491 km²) were randomly
- selected from the registry of residential addresses based on gender, age group, and
- 116 residential city. The baseline survey was completed by 1,076 residents (response rate:

BMJ Open: first published as 10.1136/bmjopen-2017-019608 on 2 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

35.9%). Excluding the missing data, the final sample was 1.011 for the cross-sectional analyses. After two years, 533 (52.7 % of the baseline respondents) completed the follow-up survey. **Outcome variable** Participants reported their time spent in the television viewing and leisure-time internet use over a usual week (screen time). Participants were asked, "On how many days did you do the activity during leisure time in the past 7 days?" and "On average, how many minutes did you do the activity during leisure time on the days that you did it?" Using this format, we identified time spent sitting in screen time by multiplying the number of days participants watched television and used internet during leisure time by the average amount of time spent doing so per day. The scale was previously shown to have reasonable reliability and validity [16]. The test-retest reliability of the items was moderate (range 0.6-0.8) and the validity, defined as correlations with 3-day behavioral log data was also moderate (range 0.3–0.6) [17]. For cross-sectional associations, the outcome variable was baseline screen time per day. For prospective associations, the outcome variable was change of screen time per week from baseline to follow-up survey. **Exposure variables**

The exposure variables of this study were five environmental attributes – population
density, sidewalk availability, access to public transportation, access to destinations,
and street connectivity – measured both subjectively and objectively at baseline.

- 140 These domains were selected on the basis of walkability components and other
- 141 environmental attributes from previous reviews [18,19]. The perceived measures were

- 6 -

Page 7 of 25

BMJ Open

142	identified using the Japanese version of the International Physical Activity
143	Questionnaire Environmental Module (IPAQ-E) with a 4-point Likert scale (strongly
144	agree, somewhat agree, somewhat disagree, and strongly disagree). The scale has
145	been shown to have good reliability [20]. Five items of IPAQ-E were included: (1)
146	population density ("What is the main type of housing in your neighborhood?" For
147	this question, the five options were detached single-family housing; apartments with
148	2-3 stories; mix of single-family housing and apartments with 2-3 stories; condos
149	with 4–12 stories; and condos with >13 stories); (2) sidewalk availability ("There are
150	sidewalks on most of the streets in my neighbourhood"); (3) access to public
151	transportation ("It is less than a 10-15 min walk to a transit station from my home");
152	(4) access to destinations ("There are many places to go within easy walking distance
153	of my home"); (5) street connectivity ("There are many 4-way intersections in my
154	neighbourhood"). Population density was divided into "lower (detached single-family
155	housing)" and "higher (others)". Other four perceived environmental attributes were
156	categorized into "agree" (strongly agree and somewhat agree) and "disagree"
157	(somewhat disagree and strongly disagree).
158	
159	Objective environmental attributes was measured using Geographic Information
160	Systems (GIS). The following five measures were calculated for each participant
161	within a 800-m radius buffer of their residential address (this buffer area
162	corresponded to a neighborhood setting, which was also used to obtain participant's
163	perceptions): (1) population density (the number of population per square kilometer);
164	(2) sidewalk availability (the length of roads with sidewalks (m) per square km); (3)
165	access to public transportation (the total number of train stations and bus stops per
166	square km); (4) access to destinations (the total number of 30 destination types
	_
	- 7 -

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2017-019608 on 2 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

2
3
4
5
6
7
8
o 9
10
11
12
13
14
15
16 17
17
18
19
20
20
21
24
25
26
27
28
29
30
31
32
33
34
35
35
36 37
37
38
39
40
41
42
43
44
45
46
47
48
50
51
52
53
54
55
56
57
58
59
60
00

1

167 including convenience store, supermarket, hardware shop, fruit store, dry cleaning 168 store, coin laundry, clothing store, post office, library, book store, fast food store, café, 169 bank, restaurant, video shop, video rental shop, pharmacy, drug store, the 170 hairdresser's, park, gym, fitness club, sports facility, kindergarten, elementary school, 171 junior high school, high school, 2-year college, 4-year college, university based on a 172 previous study and IPAQ-E [20,21]; (5) street connectivity (the total number of 173 intersections per square kilometer). These five objectively-measured environmental 174 attributes were dichotomised using the median. 175 Covariates 176 177 The selection of covariates was based on previous studies [22, 23]. Data on 178 respondents' gender (men, women), age (40–49, 50–59, or 60–69 years), current 179 marital status (married, unmarried), educational level (less than 13 years, 13 years or 180 more), employment status (full-time employment, not full-time employment),

181 household income (less than 5 million yen, or 5 million yen or more), body mass

index (less than 25kg/m², 25kg/m² and higher) and residential area (Nerima city and

183 Kanuma city), physical function and moderate-to-vigorous physical activity (MVPA)

184 were included. Physical function was measured by The Japanese version of the

185 Medical Outcomes Study (MOS) Short Form 8-Item Health Survey (SF-8) [24].

186 Participants were ask "During the past 4 weeks, how much did physical health

187 problems limit your physical activities (such as walking or climbing stairs)?". MVPA

- 188 was measured by the self-administered, short Japanese version of the International
- 189 Physical Activity Questionnaire (IPAQ-SV). The test-retest reliability (r = 0.72-0.93)
- 190 and criterion validity (r = 0.39) of the version of the IPAQ-SV are good and
- 191 acceptable, respectively [25]. The total number of minutes per week in vigorous-

BMJ Open

3
1
5
4 5 6 7 8 9 10 11 12 13 14
/
8
9
10
11
12
13
14
15
16
15 16 17 18
1/
18
19
20
21
22
20 21 22 23 24 25 26 27 28 29 30 31 32
24
25
25
25 26 27 28
27
28
29
30
31
32
33
34
35
36
35 36 37 38
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

194 195

196 Statistical analyses

197 For cross-sectional associations, generalized linear modelling (GLM), specifying a 198 gamma distribution and a log link, was utilized to examine cross-sectional 199 associations of perceived and objectively-measured environmental attributes with 200 screen time at baseline because the distribution of outcome variable was skewed. The 201 covariates were adjusted for baseline demographic variables including gender, age, 202 marital status, education attainment, household income, working status and MVPA. 203 For prospective associations, GLM was also used to identify the relationships of 204 perceived and objectively-measured environmental attributes at baseline with follow-205 up screen time over 2 years, adjusted for socio-demographic variables at baseline, 206 screen time at baseline and employment status change. This approach is equivalent to 207 modelling change in screen time and controls for regression to the mean, which has 208 been used in previous study [15]. Residence area was utilized as the area level unit of 209 all analysis. Results of each model are reported as antilogarithms of the regression 210 coefficients (and their respective 95%CI). The expected proportional increase (for 211 values > 1) or decrease (for values < 1) in screen time for "environmental conditions 212 that would support physical activity" environment (reference: "not support" category). 213 For cross-sectional analysis, coefficients less than 1 denote proportionally less time 214 spent in screen time (e.g. Exp (B)=0.95 means 5% less time), whereas coefficients 215 more than 1 denote proportionally more time spent in screen time, relative to the 216 reference category. (e.g. Exp (B)=1.06 means 6% more time). For prospective

BMJ Open

analysis, coefficients less than 1 denote proportionally decreased time spent in screen time, whereas coefficients more than 1 denote proportionally increased time spent in screen time, relative to the reference category. Statistical analyses were conducted using STATA 13 (Stata Corp, College Station, Texas); the level of significance was set at p < 0.05. **Results** Basic characteristics of the baseline sample (n=1011, mean age: 55.8 \pm 4.3 years) and follow-up sample (n=553, mean age: 54.6 \pm 8.3 years) are presented in Table 1. On average, participants' screen time was not statistically different over 2 years (2.3 hours/day at baseline and 2.2 hours/day at follow-up; p=0.24). Table 2 shows that at baseline, after adjusted for potential confounders (model 2), cross-sectional associations of objectively-measured ($\exp(\beta)$:1.11; 95%CI: 1.01, 1.22) and perceived $(\exp(\beta):1.12; 95\%$ CI: 1.02, 1.23) good access to public transport, perceived good access to shop $(\exp(\beta):1.18; 95\%$ CI: 1.04, 1.36), and perceived good street

connectivity $(\exp(\beta):1.11; 95\%$ CI: 1.01, 1.23) with higher time spent in screen time

233 were found. As Table 3 shows, for the prospective associations, no objectively-

234 measured and perceived environmental attributes were significantly associated with

change in screen time.

238 Table 1. Characteristics of baseline and follow-up respondents

	Sample for cross- sectional analyses (n=1011)	Sample for Prospective analyses (n=533)
Baseline		
Gender, % men	512(51.2)	276(51.8)
Age, mean (SD)	55.8(4.3)	54.6(8.3)
Marital status, % married	844(84.3)	454(85.2)
Educational attainment, % with tertiary education	536(53.6)	308(57.8)
Household income, %		
<¥5,000,000 p.a.	492(49.2)	244(45.8)
¥5,000,000 p.a. + Refusing answer or missing	494(49.4) 15(1.5)	283(53.1) 6(1.1)
Work status, % non-working	743(74.2)	406(76.2)
BMI, mean (SD)	23(3.2)	22.9(3.3)
MVPA (hr/week), mean (SD)	9.3(13.4)	9.2(12.4)
Screen time (hr/day), mean (SD)	2.3(1.9)	2.3(1.9)
Follow-up		
Change in working status	-	
Keep working	-	388(72.8)
Start working	-	17(3.2)
Stop working	-	18(3.4)
No working	· · ·	110(20.6)
Screen time (hr/day), mean (SD)	· · ·	2.2(1.7)

239 Abbreviation: MVPA, moderate-to-vigorous physical activity; BMI, body mass index.

BMJ Open: first published as 10.1136/bmjopen-2017-019608 on 2 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

BMJ Open

242 environmental attributes at baseline (N=1011)

		Model 1			Model 2	
	Exp(B)	95%CI	p-value	Exp(B)	95%CI	p-value
Perceived		·	<u>.</u>			
Residential density (High)	1.02	0.91-1.14	0.69	1.02	0.93-1.13	0.66
Access to destination (Good)	1.10	0.99-1.22	0.06	1.12	1.02-1.23	0.02*
Access to public transportation (Good)	1.20	1.03-1.39	0.01*	1.18	1.04-1.36	0.01*
Sidewalk (Yes)	1.04	0.94-1.15	0.43	1.06	0.97-1.17	0.20
Street connectivity (Good)	1.10	0.99-1.23	0.08	1.11	1.01-1.23*	0.04*
GIS						
Residential density (High)	0.96	0.87-1.06	0.45	0.96	0.87-1.06	0.44
Access to destination (Good)	1.07	0.96-1.18	0.21	1.05	0.96-1.16	0.29
Access to public transportation (Good)	1.13	1.03-1.25	0.01*	1.11	1.01-1.22	0.03*
Sidewalk (Yes)	0.99	0.89-1.10	0.88	0.99	0.91-1.10	0.98
Street connectivity (Good)	0.97	0.88-1.08	0.60	1.00	0.91-1.11	0.95

243 * p < 0.05

244 Generalized linear model (specifying a gamma distribution and using a log link)

245 Model 1: Unadjusted model; Model 2: Adjusted for gender, age, marital status, education attainment,

246 household income, employment status, car ownership status, BMI, physical function and MVPA at

247 baseline

248 Results of each model are reported as antilogarithms of the regression coefficients (and their respective

249 95%CI). Coefficients less than 1 denote proportionally less time spent in screen time, whereas

250 coefficients more than 1 denote proportionally more time spent in screen time, relative to the reference

- 251 category.
- 252 Abbreviation: MVPA, moderate-to-vigorous physical activity; BMI, body mass index.

Table 3: Proportional change (95%CI) in screen time over 2 years according to objective and perceived

environmental attributes, after adjusted for baseline leisure-time sitting for transport (N=533)

Residential density (High)1.010.88-1.140.941.05Access to destination (Good)1.060.93-1.200.411.07Access to public transportation (Good)1.020.90-1.160.781.02Sidewalk (Yes)1.100.97-1.240.161.11	95%CI 0.97-1.27 0.88-1.14 0.89-1.30 0.87-1.12	p-value 0.14 0.97 0.46				
Residential density (High)1.061.16-1.250.371.11Access to destination (Good)0.960.84-1.100.541.00Access to public transportation (Good)1.060.87-1.290.541.08Sidewalk (Yes)0.960.84-1.090.500.99Street connectivity (Good)1.030.89-1.190.721.06GISResidential density (High)1.010.88-1.140.941.05Access to destination (Good)1.060.93-1.200.411.07Access to public transportation (Good)1.020.90-1.160.781.02Sidewalk (Yes)1.100.97-1.240.161.11	0.88-1.14 0.89-1.30	0.97 0.46				
Access to destination (Good) 0.96 0.84-1.10 0.54 1.00 Access to public transportation (Good) 1.06 0.87-1.29 0.54 1.08 Sidewalk (Yes) 0.96 0.84-1.09 0.50 0.99 Street connectivity (Good) 1.03 0.89-1.19 0.72 1.06 GIS Residential density (High) 1.01 0.88-1.14 0.94 1.05 Access to destination (Good) 1.06 0.93-1.20 0.41 1.07 Access to public transportation (Good) 1.02 0.90-1.16 0.78 1.02 Sidewalk (Yes) 1.10 0.97-1.24 0.16 1.11	0.88-1.14 0.89-1.30	0.97 0.46				
Access to public transportation (Good)1.060.87-1.290.541.08Sidewalk (Yes)0.960.84-1.090.500.99Street connectivity (Good)1.030.89-1.190.721.06GISResidential density (High)1.010.88-1.140.941.05Access to destination (Good)1.060.93-1.200.411.07Access to public transportation (Good)1.020.90-1.160.781.02Sidewalk (Yes)1.100.97-1.240.161.11	0.89-1.30	0.46				
Sidewalk (Yes) 0.96 0.84-1.09 0.50 0.99 Street connectivity (Good) 1.03 0.89-1.19 0.72 1.06 GIS Residential density (High) 1.01 0.88-1.14 0.94 1.05 Access to destination (Good) 1.06 0.93-1.20 0.41 1.07 Access to public transportation (Good) 1.02 0.90-1.16 0.78 1.02 Sidewalk (Yes) 1.10 0.97-1.24 0.16 1.11						
Street connectivity (Good) 1.03 0.89-1.19 0.72 1.06 GIS Residential density (High) 1.01 0.88-1.14 0.94 1.05 Access to destination (Good) 1.06 0.93-1.20 0.41 1.07 Access to public transportation (Good) 1.02 0.90-1.16 0.78 1.02 Sidewalk (Yes) 1.10 0.97-1.24 0.16 1.11	0.87-1.12					
GIS Residential density (High) 1.01 0.88-1.14 0.94 1.05 Access to destination (Good) 1.06 0.93-1.20 0.41 1.07 Access to public transportation (Good) 1.02 0.90-1.16 0.78 1.02 Sidewalk (Yes) 1.10 0.97-1.24 0.16 1.11		0.84				
Residential density (High)1.010.88-1.140.941.05Access to destination (Good)1.060.93-1.200.411.07Access to public transportation (Good)1.020.90-1.160.781.02Sidewalk (Yes)1.100.97-1.240.161.11	0.92-1.22	0.39				
Access to destination (Good)1.060.93-1.200.411.07Access to public transportation (Good)1.020.90-1.160.781.02Sidewalk (Yes)1.100.97-1.240.161.11						
Access to public transportation (Good)1.020.90-1.160.781.02Sidewalk (Yes)1.100.97-1.240.161.11	0.92-1.20	0.47				
Sidewalk (Yes) 1.10 0.97-1.24 0.16 1.11	0.94-1.23	0.29				
	0.90-1.16	0.74				
	0.98-1.26	0.10				
Street connectivity (Good) 1.04 0.91-1.18 0.58 1.08	0.94-1.24	0.26				
257 * p < 0.05						
258 Generalized linear model (specifying a gamma distribution and using a log link)	Generalized linear model (specifying a gamma distribution and using a log link)					
259 Model 1: Unadjusted model; Model 2: Adjusted for gender, age, marital status, educa	Model 1: Unadjusted model; Model 2: Adjusted for gender, age, marital status, education attainment,					
260 household income, BMI, physical function and MVPA at baseline, change in employ	household income, BMI, physical function and MVPA at baseline, change in employment status and					
261 car ownership.	car ownership.					
262 Results of each model are reported as antilogarithms of the regression coefficients (as	Results of each model are reported as antilogarithms of the regression coefficients (and their respective					
263 95%CI). Coefficients less than 1 denote proportionally decreased time spent in screen	95%CI). Coefficients less than 1 denote proportionally decreased time spent in screen time, whereas					
264 coefficients more than 1 denote proportionally increased time spent in screen time, re	coefficients more than 1 denote proportionally increased time spent in screen time, relative to the					
265 reference category.	reference category.					

266 Abbreviation: MVPA, moderate-to-vigorous physical activity; BMI, body mass index.

BMJ Open: first published as 10.1136/bmjopen-2017-019608 on 2 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Discussion

270	To our knowledge, this is the first study to examine both cross-sectional and
271	prospective associations between neighborhood environments and screen time using
272	both perceived and objective measures of specific neighborhood environmental
273	attributes among middle-aged Japanese adults in an Asian country. The results of this
274	study support previous finding on built environment attributes of neighborhoods that
275	are related to physical activity also may play an important role in influencing
276	sedentary behavior independently [12,14,15,26] and further extend the results for
277	revealing both perceived (good access to public transport, access to shop, and street
278	connectivity) and objectively-measured (good access to public transport) physical
279	activity-supportive environmental attributes are related to higher levels of screen time
280	cross-sectionally. These findings would be important to inform policy makers and
281	intervention designers that when designing environmental approach to promote
282	physical activity, it would be crucial to consider its negative impact on screen time, at
283	least in Japan.
284	
285	Contrary to expectations, adults who live in neighborhood environment with GIS-
286	measured good access to public transportation, and perceived good access to
287	destinations, good access to public transportation, good street connectivity was

288 positively associated with higher levels of screen time, which have been found to be

- 289 positively related to higher levels of physical activity [18,27]. The present results
- 290 were also inconsistent with previous studies which have reported the inverse
- 291 associations between high walkable environment and screen-based sedentary time
- from Western countries [12,14,15]. Only one Belgium study reported similar result
- 293 with the present study that high walkable environment is positively associated with

Page 15 of 25

	쯔
	₹
-	Dpei
	n: fir
	d js
	ublishe
	shec
	as
	<u></u>
	1136
	5/br
-	bmjopen-
	en-2
	017
	5
	1-2017-019608 on 2
	g
	2 Marc
	larc
	:h 2018
	<u>,</u>
	d as 10.1136/bmjopen-2017-019608 on 2 March 2018. Downlo
	nlo
	adec
	fro
	om http://l
1	to://
	B.
ł	ope
	n. bn
	⊒. 8
	Щ Д
	ы Р
	pri:
	ril 20, 2(
	202
	t by
C	que
	št. P
	rote
	čte
	νq μ
	80
	ĭĭ
	,

15 of 25		BMJ Open
	294	total sitting time [26]. The possible speculation for these results could be that physical
	295	activity-supportive neighborhood environment (e.g. there are so many shops, train
	296	stations, and bus stops within 1.6km radius of their house) could reduce the time spent
	297	in commute and daily errand, and thus adults may have more leisure-time to engage in
	298	screen time. Although there is limited evidence in existing literature to draw the
	299	conclusion and possible mechanism regarding the inverse associations between
	300	environment and screen time, the present study may have several important
	301	implications. First of all, the perceptions of environmental attributes should be
	302	considered to be predictors of screen time for future studies. The present results
	303	indicate that perceived environmental attributes might be better predictors of screen
	304	time than objective ones. It is possible how middle-to-older-aged adults perceive and
	305	understand their neighbourhood environment might be more important for their
	306	decision on spending time in screen time in their home. Moreover, further evidence in
	307	Asian countries using specific environmental measures are needed due to the
	308	difference in residential density, culture and built environment between Western
	309	countries and Asian country. Finally, examining the relationships among
	310	environmental factors, physical activity and sedentary behavior concurrently would be
	311	the priority to better understand the potential positive or negative health effects of
	312	environment on both physical activity and sedentary behavior for the policy initiatives.
	313	
	314	Another novel finding is that no prospective associations of screen time over 2 years
	315	with objective and perceived environmental attributes. The possible explanation for
	316	this result could be that the follow-up duration of this study was only two years and
	317	screen time is a highly domestic behaviour for adults during leisure time, which may
	318	maintain for years unless the adjustment of home environment or the change in
		- 15 - For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 16 of 25

BMJ Open: first published as 10.1136/bmjopen-2017-019608 on 2 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

319	employment status. Therefore, the present study might provide a preliminary
320	understanding on built environmental determinants of screen time for developing
321	effective population-based interventions [10,11]. Therefore, to further confirm the
322	prospective associations, studies with a longer follow-up time are needed in the future.
323	
324	This study has several limitations. First, the outcome variable - self-reported screen
325	time may be subject to recall bias. Thus, future studies should consider measuring
326	screen time using objectively measurement to provide more confirmative evidence.
327	Second, the use of the IPAQ-SV may have overestimated time spent in MVPA. Third,
328	potential confounders such as self-selection of neighborhoods and home environment
329	were not examined in this study. Finally, the participants who responded the follow-
330	up survey were more likely to have higher educational levels (58.1% vs. 47.4%, p
331	=0.002) and have higher income (53.4% vs. 43.9%, $p = 0.01$) than those who did not.
332	Thus, the final sample may not be representative of the populations of Nerima City
333	and Kanuma City. Despite such limitations, the strengths of this study were the both
334	cross-sectional and prospective design and the utilization of five both subjectively and
335	objectively-measured environmental components, which could provide more
336	confirmative evidence on this issue.
337	confirmative evidence on this issue.
338	Conclusion
339	Activity-supportive neighborhood environmental attributes appear to be related to
340	higher level of screen time cross-sectionally. Pattern of screen time might be

- 341 maintained rather changed over time under the same neighborhood environments.
- 342 Environmental intervention for promoting physical activity may need to consider the
- 343 potential negative health impact of screen time in Japan.

Declarations

345 Ethics approval and consent to participate

- 346 Written informed consent was obtained from all respondents. This survey received prior approval from
- 347 the Institutional Ethics Committee of Waseda University (2010-238).

Consent for publication

- 349 Our manuscript did not include any details, images, or videos relating to individual participants. All
- 350 participants agreed with that their self-reported data will be used for publication.

351 Availability of data and material

352 This study used data from a part of the Healthy Built Environment in Japan (HEBEJ) project. Data and

BMJ Open: first published as 10.1136/bmjopen-2017-019608 on 2 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

- 353 material is available in Lab of Behavioral Sciences (Oka Koichiro), College of Sport Sciences at
- 354 Waseda University (Address: 2-579-15 Mikajima Tokorozawa, Saitama 359-1192, Japan)

Contributorship statement

- 356 1. Study concept and design: Oka, Shibata, Ishii.
- 357 2. Acquisition, analysis, or interpretation of data: Liao, Shibata
- 358 3. Drafting of the manuscript: Liao, Shibata, Koohsari.
- 359 4. Critical revision of the manuscript for important intellectual content: Oka, Shibata, Ishii, Koohsari
- 360 5. Statistical analysis: Liao, Shibata.
- 361 6. Administrative, technical, or material support: Ishii, Koohsari
- 362 7. Study supervision: Oka, Shibata.

363 Funding

- 364 This study was supported by the Grant-in-Aid for Scientific Research (No.26242070) from Japan
- 365 Society for the Promotion of Science and the 29th Research Grant in Medical and Health Science of
- 366 Meiji Yasuda Life Foundation of Health and Welfare.
- **Conflict of Interest Statement**
- 368 The authors declare that there are no conflicts of interest.
- 369 Acknowledgements
- 370 Not applicable.

References

372	1.	Owen N, Salmon J, Koohsari MJ, Turrell G, Giles-Corti B. Sedentary behaviour
373		and health: mapping environmental and social contexts to underpin chronic
374		disease prevention. Br J Sports Med. 2014;48(3):174-7.
375	2.	Thorp AA, Owen N, Neuhaus M, Dunstan DW. Sedentary behaviors and
376		subsequent health outcomes in adults a systematic review of longitudinal studies,
377		1996-2011. Am J Prev Med. 2011;41(2):207-15.
378	3.	Teychenne M, Ball K, Salmon J. Sedentary behavior and depression among
379		adults: a review. Int J Behav Med. 2010;17:246-54.
380	4.	Institute for Information and Communications Policy. Survey of communication
381		media use and behavior; 2014 [cited 2016 Jul 4]. Available from:
382		http://www.soumu.go.jp/main_content/000357570.pdf (in Japanese)
383	5.	Grontved A, Hu FB. Television viewing and risk of type 2 diabetes,
384		cardiovascular disease, and all-cause mortality: a meta-analysis. JAMA. 2011;
385		305:2448-55.
386	6.	Matthews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, et al.
387		Amount of time spent in sedentary behaviors in the United States, 2003-2004. Am
388		J Epidemiol. 2008;167(7):875-81.
389	7.	Vandelanotte C, Sugiyama T, Gardiner P, Owen N. Associations of leisuretime
390		Internet and computer use with overweight and obesity, physical activity and
391		sedentary behaviors: cross-sectional study. J Med Internet Res. 2009;11(3):e28.
392	8.	Owen N, Leslie E, Salmon J, Fotheringham MJ. Environmental determinants of
393		physical activity and sedentary behavior. Exerc Sport Sci Rev. 2000;28:153-8.

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2017-019608 on 2 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

394	9. Sugiyama T, Healy GN, Dunstan DW, Salmon J, Owen N. Is television viewing
395	time a marker of a broader pattern of sedentary behavior? Ann Behav Med. 2008;
396	35:245-50.
397	10. Owen N, Sugiyama T, Eakin EE, Gardiner PA, Tremblay MS, Sallis JF. Adults'
398	sedentary behavior determinants and interventions. Am J Prev Med. 2011;
399	41(2):189-96.
400	11. Owen N. Sedentary behavior: understanding and influencing adults' prolonged
401	sitting time. Prev Med. 2012;55(6):535-9.
402	12. Sugiyama T, Salmon J, Dunstan DW, Bauman AE, Owen N. Neighborhood
403	walkability and TV viewing time among Australian adults. Am J Prev Med.
404	2007;33(6):444-9.
405	13. Coogan PF, White LF, Evans SR, Palmer JR, Rosenberg L. The Influence of
406	Neighborhood Socioeconomic Status and Walkability on TV viewing time. J Phys
407	Act Health. 2012;9(8):1074-9.
408	14. Kozo J, Sallis JF, Conway TL, Kerr J, Cain K, Saelens BE, et al. Sedentary
409	behaviors of adults in relation to neighborhood walkability and income. Health
410	Psychol. 2012;31(6):704-13.
411	15. Ding D, Sugiyama T, Winkler E, Cerin E, Wijndaele K, Owen N. Correlates of
412	Change in Adults' Television Viewing Time: A Four-Year Follow-up Study. Med
413	Sci Sports Exerc. 2012;44(7):1287-92.
414	16. Salmon J, Owen N, Crawford D, Bauman A, Sallis JF. Physical activity and
415	sedentary behavior: a population-based study of barriers, enjoyment, and
416	preference. Health Psychol. 2003;22(2):178-88.

BMJ Open: first published as 10.1136/bmjopen-2017-019608 on 2 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
41	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
50	

417	17. Ishii K, Shibata A, Oka K. Sociodemographic and Anthropometric Factors
418	Associated With Screen-Based Sedentary Behavior Among Japanese Adults: A
419	Population-Based Cross-Sectional Study. J Epidemiol. 2013;23(5):382-8.
420	18. Brownson RC, Hoehner CM, Day K, Forsyth A, Sallis JF. Measuring the built
421	environment for physical activity: state of the science. Am J Prev Med. 2009;
422	36(4):S99-123.e12.
423	19. Saelens BE, Sallis JF, Frank LD. Environmental correlates of walking and cycling:
424	findings from the transportation, urban design, and planning literatures. Ann
425	Behav Med. 2003;25(2):80-9.
426	20. Inoue S, Murase N, Shimomitsu T, Ohya Y, Odagiri Y, Takamiya T, et al.
427	Association of Physical Activity and Neighborhood Environment among Japanese
428	Adults. Prev Med. 2009; 48(4):321-5.
429	21. Hanibuchi T, Kawachi I, Nakaya T, Hirai H, Kondo K. Neighborhood built
430	environment and physical activity of Japanese older adults: results from the Aichi
431	Gerontological Evaluation Study (AGES). BMC Public Health. 2011;11:657.
432	22. Ding D, Sugiyama T, Winkler E, Cerin E, Wijndaele K, Owen N. Correlates of
433	Change in Adults' Television Viewing Time: A Four-Year Follow-up Study. Med
434	Sci Sports Exerc. 2012;44(7):1287-92.
435	23. Shibata A, Oka K, Sugiyama T, Ding D, Salmon J, Dunstan DW, Owen N.
436	Perceived neighbourhood environmental attributes and prospective changes in TV
437	viewing time among older Australian adults. Int J Behav Nutr Phys Act.
438	2015;12:50.
439	24. Fukuhara S, Suzukamo Y. Manual of the SF- 8 Japanese edition. Kyoto: Institute
440	for Health Outcomes & Process Evaluation Research; 2004. (in Japanese)

BMJ Open

441	25. Murase N, Katsumura T, Ueda C, Inoue S, Shimomitsu T. International
442	Standardization of Physical Activity Level: Reliability and Validity Study of the
443	Japanese Version of the International Physical Activity Questionnaire (IPAQ)
444	(Kosei no Shihyo) J Health Welfare Statistics. 2003;49:1-9. (in Japanese)
445	26. Van Dyck D, Cardon G, Deforche B, Owen N, Sallis JF, De Bourdeaudhuij I.
446	Neighborhood walkability and sedentary time in Belgian adults. Am J Prev Med.
447	2010;39(1):25-32.
448	27. Saelens BE, Handy SL. Built environment correlates of walking: a review. Med
449	Sci Sports Exerc. 2008;40:S550-66.
	Sci Sports Exerc. 2008;40:S550-66.

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract
		Page 1, Line 1-2
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found
		Page 2, Line 2, Line 36 to Page 3, Line 47
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
-		Page 5, Line 92-103
Objectives	3	State specific objectives, including any prespecified hypotheses
·		Page 5, Line 103-105
Methods	(
Study design	4	Present key elements of study design early in the paper
		Page 5, Line 109-110
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
		exposure, follow-up, and data collection
		Page 5, Line 111 to Page 6, Line 119
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of
		selection of participants. Describe methods of follow-up
		Page 5, Line 111 to Page 6, Line 119
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of
		case ascertainment and control selection. Give the rationale for the choice of cases
		and controls
		Cross-sectional study—Give the eligibility criteria, and the sources and methods of
		selection of participants
		(b) Cohort study—For matched studies, give matching criteria and number of
		exposed and unexposed
		Case-control study—For matched studies, give matching criteria and the number of
		controls per case
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable
		Page 6, Line 121 to Page 9, Line 193
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there
		is more than one group
		Page 6, Line 121 to Page 9, Line 193
Bias	9	Describe any efforts to address potential sources of bias
		Page 5, Line 114-116
Study size	10	Explain how the study size was arrived at
-		Page 5, Line 116 to Page 6, line 118
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why
Statistical methods	12	
Statistical methods	12	Page 8, Line 178-183 (<i>a</i>) Describe all statistical methods, including those used to control for confou

1 2		Page 9, Line 196 to Page 10, Line 221
3		(<i>b</i>) Describe any methods used to examine subgroups and interactions
4 5		(c) Explain how missing data were addressed
6		(d) Cohort study—If applicable, explain how loss to follow-up was addressed
7		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was
8 9		addressed
9 10		Cross-sectional study-If applicable, describe analytical methods taking account of
11		sampling strategy
12 13		(\underline{e}) Describe any sensitivity analyses
14	Continued on next page	
15		
16 17		
17		
19		
20		
21 22		
23		
24 25		
25 26		
27		
28 29		
29 30		
31		
32 33		
33 34		
35		
36 37		
38		
39		
40 41		
41		
43		
44 45		
45 46		
47		
48 40		
49 50		
51		
52 53		
55 54		
55		
56 57		
57 58		
59		
60		

BMJ Open: first published as 10.1136/bmjopen-2017-019608 on 2 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

3
4
4 5
6
7
8
9
10
11
12
13
13 14
15
16
17
18
19
20
20
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
40 49
50
51
52
53
54
55
56
57
57 58
59
60

1 2

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible,
	-	examined for eligibility, confirmed eligible, included in the study, completing follow-up, and
		analysed
		Page 10, Line 224-225
		(b) Give reasons for non-participation at each stage
		(c) Consider use of a flow diagram
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information
data		on exposures and potential confounders
		Page 10, Line 224-227
		(b) Indicate number of participants with missing data for each variable of interest
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time
		Page 10, Line 225-227
		Case-control study-Report numbers in each exposure category, or summary measures of
		exposure
		Cross-sectional study—Report numbers of outcome events or summary measures
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and
		why they were included
		Page 10, Line 227-234
		(b) Report category boundaries when continuous variables were categorized
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningfu
		time period
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity
		analyses
		No other analyses were done
Discussion		
Key results	18	Summarise key results with reference to study objectives
		Page 14, Line 269-282
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.
		Discuss both direction and magnitude of any potential bias
		Page 17, Line 323-328
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicit
		of analyses, results from similar studies, and other relevant evidence
		Page 14, Line 284 to Page 16, Line321
Generalisability	21	Discuss the generalisability (external validity) of the study results
		Page 16, Line 328-332
Other informati	on	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable,
		for the original study on which the present article is based
		Page 17, Line 362-365

unexposed groups in cohort and cross-sectional studies.

BMJ Open

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.