

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

The effect of levosimendan on mortality in severe sepsis and septic shock: a meta-analysis of randomized trials

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-019338
Article Type:	Research
Date Submitted by the Author:	25-Aug-2017
Complete List of Authors:	Chang, Wei; Southeast University Zhongda Hospital, Department of Critical Care Medicine Xie, Jianfeng; School of Medicine, Southeast University, Department of Critical Care Medicine Xu, Jing-Yuan; School of Medicine, Southeast University, Department of Critical Care Medicine Yang, Yi; School of Medicine, Southeast University, Department of Critical Care Medicine
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Intensive care, Cardiovascular medicine
Keywords:	sepsis, septic shock, septic cardiomyopathy, levosimendan, dobutamine

Title: The effect of levosimendan on mortality in severe sepsis and septic shock: a meta-analysis of randomized trials Authors: Wei Chang1, Jian-Feng Xie2, Jing-Yuan Xu3, Yi Yang4 1 Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiagiao Rd, Nanjing 210009, P. R. China, ewei 0181@126.com 2 Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing 210009, P. R. China, xie820405@126.com 3 Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing 210009, P. R. China, xujingyuanmail@163.com 4 Corresponding author, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing 210009, P. R. China, yiyiyang2004@163.com

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

ABSTRACT

Objective We aim to synthesize the up-to-date randomized trials to investigate the effects of levosimendan on mortality and clinical outcomes in severe sepsis and septic shock.

Methods A collection of databases including PubMed, EMBASE, Cochrane Central register and Web of Science were searched updated to August, 2017. Randomized trials were included when pertaining the use of levosimendan in severe sepsis or septic shock compared with any category of inotropes, or as an adjunct to standard therapy with mortalities reported. The primary outcome was the mortality at the longest follow-up and the secondary outcomes were clinical performances including serum lactate, cardiac function, vasopressor requirements, fluid infusion and length of intensive care unit (ICU) stay.

Results A final of 10 studies with 1036 patients were included in this meta-analysis. The results revealed that levosimendan could not reduce mortality significantly in septic shock, with a favouring direction towards levosimendan compared with control group (odds ratio 0.88, 95% CI 0.67-1.16, P = 0.36). Levosimendan could reduce serum lactate more effectively, enhance cardiac contractibility with increased cardiac index and left ventricular ejection fraction. However, it could also increase fluid infusion, and no differences in norepinephrine requirement and length of ICU stay were noted. No significant benefit in mortality could be observed of levosimendan vs. dobutamine use, or in patients with definite cardiac dysfunction. Patients younger than 65-year-old and more severe patients (mortality >=50%) were more likely to benefit from levosimendan use, though with no statistical significance.

Conclusions Current evidence is not sufficient to support levosimendan as superior to dobutamine or as an optimal adjunct in severe sepsis and septic shock. More large-scale randomized trials were

necessary for validation of the levosimendan use in sepsis.

Key words sepsis; septic shock; levosimendan; dobutamine; septic cardiomyopathy

Strengths and Limitations of this Study

1. This article synthesized the up-to-date random trials for comprehensive analysis of the effect of levosimendan on mortality in severe sepsis and septic shock.

2. Furthermore, a serious of sub-group analyses were conducted for investigation of the sub-population of patients who were likely to benefit most in levosimendan use.

3. Heterogeneity and biases were appraised between each study, and the optimal of sample size was also calculated.

4. However, the trials included were of limited sample size and quality, and were potentially high biased.

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

BACKGROUND

Sepsis is still a great challenge to the public health and its mortality increases tremendously when severe sepsis and septic shock occurs^[1].The incidence of cardiac dysfunction in severe sepsis and septic shock remains as high as 40%-60%^[2] resulted from infectious process, cytokine storm^[3], decreased myocardial perfusion and pulmonary injuries^[4], and is associated with patient outcomes^[5, 6].

Surviving Sepsis Campaign International Guidelines (2016) recommended the usage of dobutamine infusion in patients with persistent hypo-perfusion despite adequate fluid loading and the use of vasopressor agents (weak recommendation, low quality of evidence)^[7]. However, its effect on mortality in sepsis is still under debate^[8], and its adverse effects including increased myocardial oxygen consumption and risks of dysrhythmia could not be neglected.

Levosimendan, a calcium sensitizer with vasodilatory properties which could improve myocardial contractibility in the absence of increased oxygen consumption, is regarded as a promising adjunct in the treatment of both cardiac systolic and diastolic dysfunctions^[9] and was demonstrated to have a beneficial effect on mortality in various clinical settings^[10, 11].

Levosimendan was demonstrated superior to dobutamine and milrinone in restoring cardiac function in septic animal model^[12]. It could also alleviate inflammatory response by NF-κB-dependent transcription down-regulation^[13] and decreased inducible NO synthetase (iNOS) promoter activity and NO expression in vitro^[14].

Several meta-analyses were conducted to investigate the effects of levosimendan on mortality in sepsis which revealed a beneficial effect on survival, however with limited sample size^[15]. In this study, we aim to make an up-to-date meta-analysis to investigate the effects of levosimendan on

mortality in severe sepsis and septic shock.

METHODS

The manuscript was prepared according to the preferred reporting items for systematic review and meta-analysis (PRISMA) statement^[16, 17].

Eligibility Criteria

We aimed to include all the randomised control trials (RCT) studying levosimendan use versus any categories of inotropes or as an adjunct to standard management in severe sepsis and septic shock. The articles would be included in our study if fulfilling the following criteria: (1) study population of severe sepsis or septic shock in adults, (2) randomized allocation of treatment, (3) comparison of levosimendan with any category of inotropic agents or placebo, with no restrictions on dosage or time limits of levosimendan infusion, (4) data on mortality reported; and exclusion criteria were as follows: (1) duplicates, (2) pediatric subjects, (3) animal experiments or *in vitro* studies, (4) no sepsis population and (5) lack of data on mortality.

Information Sources

Two investigators searched a collection of data-bases including PubMed, EMBASE, Cochrane Central register and Web of Science updated to August, 2017 separately with no language restrictions. When relevant systemic reviews or meta-analyses were found, we ran a backward snowballing to obtain further studies.

Search

Following key words were used as search terms: "levosimendan", "simendan", "Simadax", "dextrosimendan", "sepsis", "severe sepsis", "septicemia" and "septic shock". (Complete search strategy see Supplementary File 1)

Study Selection

Abstracts and titles of the articles were initially viewed separately by two investigators, if potentially relevant, the complete articles were retrieved. Articles were assessed and selected separately by two investigators with disagreements solved by consensus.

Data Items

Information was extracted from each of the included trials on: (1) characteristics of the participants (including gender, age and diagnosis); (2) interventions (including the duration and dosage of the levosimendan or other inotropes); (3) outcome measurements with primary outcome determined as the mortality at the longest follow-up, and secondary outcomes as clinical outcomes including serum lactate level, cardiac function, fluid infusion, vasopressor requirement and length of ICU stay (LOS).

Assessment of Risk of Bias

Internal validity and risks of bias were evaluated by two investigators separately following Cochrane Collaboration Methods protocols^[18]. Risks of bias were assessed by scrutinizing the articles and rated as "Yes", "No" or "Unclear" according to the procedures taken in the articles.

Summary Measures

Dichotomous outcomes were measured as proportions and odds ratio (OR) were calculated. Continuous outcomes were described as mean \pm standard deviation (SD) and calculated by mean difference (MD) or standard mean difference (SMD). The end-point and change range were both compared if the continuous variables were measured at baseline and after treatment. Missing data were imputed from other information whenever possible^[19].

Statistical Analysis

The data retrieved from the pertinent articles were computerized and analyzed by Review Manager 5.3 (The Nordic Cochrane Center, The Cochrane Collaboration, Copenhagen). We used Mantel-Haenszel statistic method for dichotomous variable measurements and inverse variance for continuous variables. Random-effects model was used for better accommodation of heterogeneity. Cochrane I^2 statistic was used for heterogeneity assessment between the studies, with a range of 0% to 30% representing no or mild heterogeneity, 30%-60% moderate heterogeneity, whereas > 60% as high heterogeneity. Publication bias was tested by visual inspection of funnel plots. As for sensitivity analysis, the dataset was analyzed in both fixed and randomized-effects models and the favoring directions were inspected, and each study was removed sequentially and remaining data-set re-analyzed to assess the robustness of the results.

Trial sequential analysis was performed to estimate the optimal sample size for the plausible effects of levosimendan in sepsis^[20]. Statistical significance was set at 2-lateral 0.05 level as hypothesis establishment.

RESULTS

Study Selection

A total of 566 abstracts were yielded from the search strategy, with 121 duplicates were excluded and 192 excluded due to no eligible abstracts. Complete manuscripts of 253 abstracts were retrieved for further assessment, within which 65 were reviews, 106 animal studies, 27 commentaries, 1 study design, 7 non-RCTs, 13 case reports, 2 pediatric patients, 9 non-septic patients, 10 mortality not reported and 3 in vitro studies. A final of 10 studies were included in this meta-analysis^[21-30], within which two were conference abstracts^[21, 22], and one was written in Chinese^[26] [Fig 1].

Study Characteristics

Within the 10 studies enrolling 1036 patients, no differences were present in age and APACHE II scores between the treatment and control group at the baseline. Patients diagnosed as septic shock or severe sepsis after adequate fluid resuscitation were included in each study, and four studies set explicit criteria of cardiac dysfunctions during patient recruitment^[21, 26, 27, 30]. Norepinephrine was used as necessary to achieve the target MAP ranging from 65 to 80mmHg during inotropic therapy depending on the study design. Seven studies used dobutamine (dose ranges from 5µg/kg per min to 20µg/kg per min) as a comparator^[21-24, 26, 27, 30] and three used levosimendan as an adjunct to standard therapy^[25, 28, 29]. Levosimendan was administered as continuous infusion (dose ranges from 0.05µg/kg per min to 2.0µg/kg per min) over 24 hours with no bolus. Parameters reflecting cellular metabolism, microcirculation, hemodynamics, cardiac function and target organ perfusion were measured in individual studies [**Tab 1**].

Syntheses of Results

Mortality data were randomized and calculated from the ten studies, and the final result in mortality at the longest follow-up day revealed no statistical difference, with a favoring towards levosimendan infusion (total events 198/522 vs. 207/514 in levosimendan and control group respectively, OR 0.88, 95% CI 0.67-1.16, P = 0.36), with no evidence of heterogeneity ($I^2 = 3\%$, P = 0.41) [Fig 2].

We conducted a serious of sub-group analyses according to the patients' characteristics. No statistical significance could be observed dividing the patients with definite clinical cardiac dysfunction^[21, 26, 27, 30] (OR 0.96, 95% CI 0.39-1.50, P = 0.43) or those with homogenous cardiac functions^[22-25, 28, 29] (OR 0.73, 95% CI 0.44-1.19, P = 0.21). Patients were also divided according

BMJ Open

to the average age (< 65yr vs. \geq 65yr) and mortality (< 50% vs. \geq 50%), although no statistical significance could be noted between each sub-group, more severe patients with mortality \geq 50%^[21-23, 25, 30] (OR 0.55, 95% 0.30-1.03, *P* = 0.06 vs. OR 0.97, 95% 0.71-1.33, *P* = 0.85) and patients with average age < 65yr^[24, 26, 27, 30] (OR 0.67, 95% CI 0.32-1.40, *P* = 0.29 vs. OR 0.81, 95% CI 0.50-1.32, *P* = 0.40) were more likely to benefit from levosimendan infusion, however, the huge disparities of sample size between each sub-group could not be neglected.

We also compared the effects of levosimendan vs. dobutamine on mortality in sepsis and find no statistical difference in mortality between levosimendan and dobutamine group (OR 0.65, 95% CI 0.39-1.10, P = 0.11) ^[21-24, 26, 27, 30], neither of levosimendan in comparison of standard therapy^[25, 28, 29] (OR 0.80, 95% CI 0.40-1.58, P = 0.52) [Fig 3].

We also extracted and compared the data of lactate reduction^[22, 23, 26, 30], cardiac function including heart rate (HR)^[23, 25-27, 30], cardiac index (CI)^[23, 25-27, 30], left ventricular ejection fraction (LVEF)^[21, 26, 27, 30] and left ventricular stroke work index (LVSWI)^[23, 26, 27, 30], fluid infusion^[23, 26, 30], norepinephrine dosage^[23, 25-27, 30] and length of ICU stay (LOS)^[23, 24, 27-29]. The results revealed that lactate was reduced more effectively, and cardiac function significantly improved (with increased CI, LVEF and LVSWI) in levosimendan group, while the heart rate was decreased though with no significance. Norepinephrine dose was reduced slightly, however total fluid infusion over 24 hours was tremendously increased in levosimendan group. LOS in levosimendan group was slightly shortened (P = 0.29) [**Tab 2**].

Risk of Bias and Sensitivity Analyses

The funnel plot was drawn for testing the bias, and visual inspection of the funnel plot revealed potential asymmetry [Supplementary Fig 1].

The data-set was analyzed both in the fixed and random-effects model for sensitivity analysis and the result revealed no shift of favouring directions [Supplementary Fig 2]. Each trial was removed and remaining dataset re-analyzed subsequently, and the result indicated that the statistical significance became obliviated only when the trial by Gordon AC et al. ^[28], was put into analysis [Supplementary Fig 3].

Trial Sequential Analysis

A trial sequential analysis (TSA) was performed to determine the optimal information size. We estimated a 26% mortality based on the recent epidemiologic data of severe sepsis^[31], and an assumed an average of 20% relative risk reduction in reference to the effect of levosimendan on overall mortality reduction in hospitalized patients^[32] with 80% power and $\alpha = 0.05$ two-sided. The calculation indicated the optimal information size of 2082 patients for detection of the plausible treatment effect of levosimendan in sepsis. The Lan DeMets sequential monitoring boundary constructed by the optimal information size was not crossed, indicating that the cumulative evidence was not conclusive and reliable [Fig 4].

DISSCUSSION

The main finding of this study was that levosimendan could not reduce the mortality in severe sepsis and septic shock patients significantly, although a favoring towards levosimendan could be observed. Furthermore, levosimendan could reduce serum lactate level, improve cardiac function. However, no change in norepinephrine dose but profound increase in fluid infusion, and no difference in LOS has been noted.

We noticed that, albeit improved cardiac function more fluid was infused after levosimendan use for maintenance of the target MAP probably due to its vasodilatory effect, which could exacerbate

pulmonary and peripheral edema and potentially impeding oxygen uptake and exchange. The use of levosimendan was also suggested to be accompanied with higher incidence of life-threatening arrhythmias like supraventricular tachyarrhythmia, which could bring hemodynamic instability and risks to the patients^[28].

The previous study by Zangrillo et al. enrolling a series of small RCTs with limited sample sizes yielded a significantly reduced mortality in levosimendan group in septic shock^[15]. However, it should be concerned that, in our study, statistical significance was obliviated after a large, multi-center RCT with a sample size of 514 patients by Gordon AC et al.^[28] were included, implying that type I error (false positive) due to limited sample size in previous studies should be suspected, necessitating further large-scale randomised studies for the validation of the efficacy of levosimendan use in sepsis. Trial sequential analysis also indicated an optimal sample size of 2082 patients for detection of the plausible effect of levosimendan in sepsis, with current sample size of 1036 patients, suggesting that more trials are needed.

Although no statistical significance could be observed dividing the patients with definite cardiac dysfunction and heterogenous cardiac functions, we thought that further trials separating the participants with cardiac function should be considered, patients with low cardiac output may benefit more from inotropic therapy, and increase the cardiac output to supranormal level does not improve outcomes^[7].

Interestingly, sub-group analysis revealed that patients less than 65-year and with high mortality (>50%) were more likely to benefit from levosimendan use. In spite of the huge disparities in sample size between each group and statistical insignificance, we thought that this benefit gain favouring towards younger and more severe patients may due to the more cardiac reserve and

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

more severe depression of cardiac function, which were to be elucidated in further investigations.

Limitations

Our study had several limitations. The randomized trials included in this meta-analysis were of limited sample size and potentially high bias. The heterogeneity in study design, characteristics and procedure including ethnic and cardiac function of the patients, dosage of levosimendan infusion, target MAP, supportive therapeutic strategy and fluid infusion decision etc. could potentially cause biases between each trial.

CONCLUSION

Although levosimendan could improve clinical outcomes including cardiac output and tissue perfusion compared with dobutamine or standard therapy, it also increases fluid infusion and has no significance on vasopressor requirements, still, it failed to bring significant benefits to mortality in sepsis. More RCTs are necessary for further elucidation of the effects of levosimendan in sepsis, particularly in those with cardiac dysfunctions.

LIST OF ABBREVIATIONS

APACHE Acute Physiology and Chronic Health Evaluation;

CI cardiac index;

HR heart rate;

- ICU intensive care unit;
- iNOS inducible NO synthetase;
- IQR inter-quartile range;
- LOS length of ICU stay;

LV left ventricle;

60

1	
2	
3	LVEF left ventricle ejection fraction;
4	
5	
6	LVSWI left ventricular stroke work index;
7	
8	MAD mean arterial processes
9	MAP mean arterial pressure;
10	
11	MD mean difference;
12	
13	
14	NE norepinephrine;
15	
16	OR odds ratio;
17	
18	
19	RCT randomized control trial;
20	
21	ROS reactive oxygen species;
22	
23	
	SD standard deviation;
24	
25	SMD standard mean difference;
26	
27	
28	TSA trial sequential analysis.
29	SMD standard mean difference; TSA trial sequential analysis. DECLARATIONS Ethics approval and consent to participate Not applicable.
30	DECLARATIONS
31	
32	
33	Ethics approval and consent to participate
34	
35	Not applicable.
36	
37	
38	Consent for publication
39	
40	Not applicable.
41	
42	
43	Availability of data and materials
44	
45	The datasets used and/or analysed during the current study available from the corresponding
46	
47	
48	author on reasonable request.
49	
50	Competing interests
51	competing meet core
52	
53	The authors declare that they have no competing interests.
54	
55	Funding
56	
57	
	13

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

This work is partially supported by grants from the National Natural Science Foundations of China (81501705).

Authors' contributions

WC carried out the analysis and interpretation of data and participated in drafting, editing and submitting the manuscript. The articles were reviewed by two reviewers (WC and JFX) independently in accordance with the inclusion criteria. Disagreements were resolved and by consensus and discussion including a third reviewer (JYX). The quality of the articles was assessed by WC and JFX independently, with disagreements resolved by consulting a third reviewer (JYX). YY was responsible for conception, design and coordination of the study, and revising the manuscript for important intellectual content. All authors read and approved the final é lez manuscript.

Acknowledgements

Not applicable.

Fig 1 Flow diagram of search process and study selection

Fig 2 The effect of levosimendan on mortality in severe sepsis and septic patients

Fig 3 Sub-group analysis. (A) Levosimendan in patients with definite cardiac dysfunction vs. patients with heterogeneous cardiac function [OR (95% CI) 0.76 (0.35-1.50), P = 0.43 vs. 0.73 (0.44-1.19), P = 0.21]; (B) Levosimendan in patients with age >= 65-year-old vs. age < 65-year-old [OR (95% CI) 0.81(0.50-1.32), P = 0.40vs. 0.67(0.32-1.40), P = 0.29; (C) Levosimendan in patients with mortality >=50% vs. morality < 50% [OR (95%)] CI) 0.55 (0.30-1.03), P = 0.06 vs. 0.97 (0.71-1.33), P = 0.85]; (D) Levosimendan vs. dobutamine [OR (95% CI) 0.65 (0.39-1.10), P = 0.11] or standard therapy [OR (95%CI) 0.80 (0.40-1.58), P = 0.52].

Fig 4 Trial sequential analysis. The optimal information size of 2082 patients for detection of the plausible treatment effect of levosimendan in sepsis, and the Lan DeMets sequential monitoring boundary constructed by the optimal information size was not crossed

Tab 1 Characteristics of the included trials. MAP mean artery pressure; LVEF left ventricular ejection fraction; PAOP pulmonary artery occlusion pressure; CI cardiac index; NR not reported; SOFA Sequential Organ Failure Assessment. † A total of 256 patients were finally included for 28-day mortality analysis; ‡ Two patients in control group failed to complete the study and were excluded

Tab 2 Clinical outcomes after randomization. Subscript TRT stands for variables after treatment; Δ stands for change range of variables (value after treatment subscribes value at baseline); CI: cardiac index; HR: heart rate; LVSWI: left ventricular stroke work index; LVEF: left ventricular ejection fraction; NE: Norepinephrine; LOS: length of ICU stay; † Standard mean difference is used in this case due to large difference in means [MD (95% CI) 1464.35 (1182.13-1746.58)].

Supplementary Fig 1 Funnel plot for inspection of bias

Supplementary Fig 2 Sensitivity analysis with data-set analyzed in fixed and random-effects models

Supplementary Fig 3 Sensitivity analysis with single study omitted sequentially

References

- Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013. 39(2): 165-228.
- [2] Pang D, Aneja RK. Levosimendan for Septic Myocardial Dysfunction: Not Yet Ready for Prime Time. Crit Care Med. 2015. 43(11): 2522-3.
- [3] Sato R, Nasu M. A review of sepsis-induced cardiomyopathy. J Intensive Care. 2015. 3: 48.
- [4] Aneman A, Vieillard-Baron A. Cardiac dysfunction in sepsis. Intensive Care Med. 2016. 42(12): 2073-2076.
- [5] Landesberg G, Gilon D, Meroz Y, et al. Diastolic dysfunction and mortality in severe sepsis and septic shock. Eur Heart J. 2012. 33(7): 895-903.
- [6] Gonzalez C, Begot E, Dalmay F, et al. Prognostic impact of left ventricular diastolic function in patients with septic shock. Ann Intensive Care. 2016. 6(1): 36.

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

BMJ Open

1

2 3

4

5

6

7

8 9

10

11

12

13

14 15

16

17

18

19 20

21

22

23

24 25

26

27

28

29

30 31

32

33

34

35 36

37

38

39

40

41 42

43

44

45

46 47

48

49

50

51

52 53

54

55

56 57

58 59

60

[7] Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017. 43(3): 304-377. [8] Annane D, Vignon P, Renault A, et al. Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomised trial. Lancet. 2007. 370(9588): 676-84. [9] Pollesello P, Papp Z, Papp JG. Calcium sensitizers: What have we learned over the last 25 years. Int J Cardiol. 2016. 203: 543-8. [10] Belletti A, Castro ML, Silvetti S, et al. The Effect of inotropes and vasopressors on mortality: a meta-analysis of randomized clinical trials. Br J Anaesth. 2015. 115(5): 656-75. [11] Pollesello P, Parissis J, Kivikko M, Harjola VP. Levosimendan meta-analyses: Is there a pattern in the effect on mortality. Int J Cardiol. 2016. 209: 77-83. Barraud D, Faivre V, Damy T, et al. Levosimendan restores both systolic and diastolic cardiac performance [12] in lipopolysaccharide-treated rabbits: comparison with dobutamine and milrinone. Crit Care Med. 2007. 35(5): 1376-82. Wang Q, Yokoo H, Takashina M, et al. Anti-Inflammatory Profile of Levosimendan in Cecal [13] Ligation-Induced Septic Mice and in Lipopolysaccharide-Stimulated Macrophages. Crit Care Med. 2015. 43(11): e508-20. [14] Sareila O, Korhonen R, Auvinen H, et al. Effects of levo- and dextrosimendan on NF-kappaB-mediated transcription, iNOS expression and NO production in response to inflammatory stimuli. Br J Pharmacol. 2008.155(6): 884-95. Zangrillo A, Putzu A, Monaco F, et al. Levosimendan reduces mortality in patients with severe sepsis and [15] septic shock: A meta-analysis of randomized trials. J Crit Care. 2015. 30(5): 908-13. [16] Moher D, Liberati A, Tetzlaff J, Altman DG Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009. 339: b2535. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and [17] meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009. 339: b2700. [18] Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011. 343: d5928. Wiebe N, Vandermeer B, Platt RW, Klassen TP, Moher D, Barrowman NJ. A systematic review identifies a [19] lack of standardization in methods for handling missing variance data. J Clin Epidemiol. 2006. 59(4): 342-53. Pogue JM, Yusuf S. Cumulating evidence from randomized trials: utilizing sequential monitoring [20] boundaries for cumulative meta-analysis. Control Clin Trials. 1997. 18(6): 580-93; discussion 661-6. [21] Vaitsis J MH, Thomopoulos C MS, Stamatis P. Use of levosimendan in myocardial dysfunction due to sepsis . Alhashemi JA, Alotaibi QA, Abdullah GM, Shalabi SA. Levosimendan vs dobutamine in septic shock. J [22] Crit Care. 2009. 24(3): e14-5. [23] Morelli A, Donati A, Ertmer C, et al. Levosimendan for resuscitating the microcirculation in patients with septic shock: a randomized controlled study. CRITICAL CARE. 2010. 14(6): -. [24] Memis D, Inal MT, Sut N. The effects of levosimendan vs dobutamine added to dopamine on liver functions assessed with noninvasive liver function monitoring in patients with septic shock. J Crit Care. 2012. 27(3): 318.e1-6. [25] Torraco A, Carrozzo R, Piemonte F, et al. Effects of levosimendan on mitochondrial function in patients with septic shock: a randomized trial. Biochimie. 2014. 102: 166-73. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

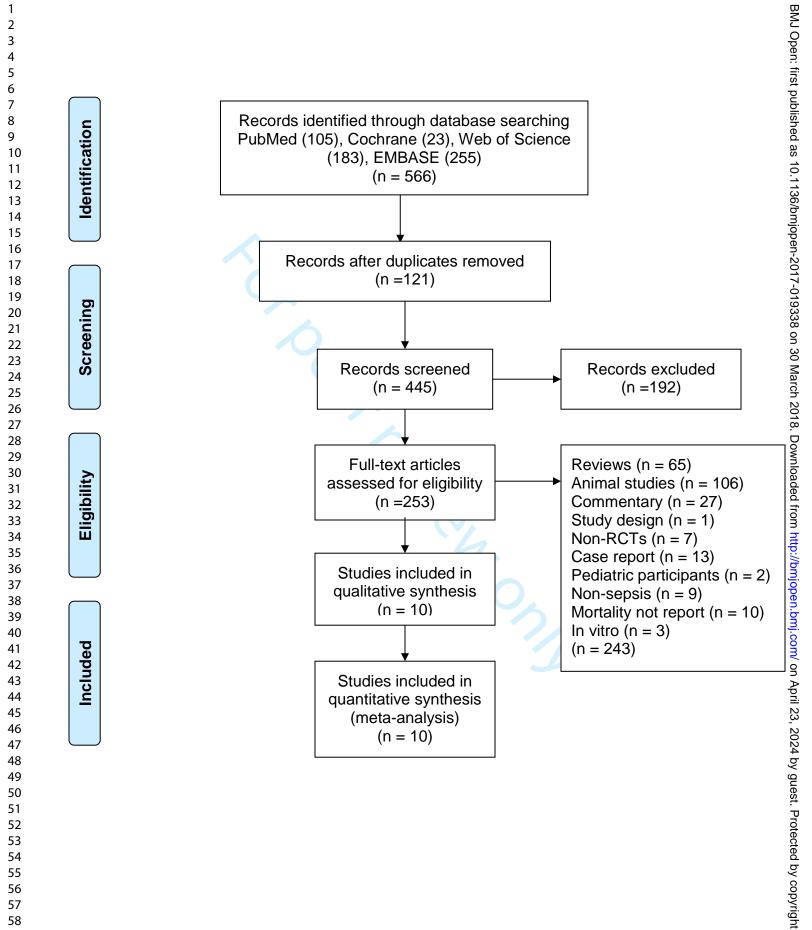
- [26] Fang M, Dong S. [Effects of levosimendan on hemodynamics and cardiac function in patients with septic shock]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2014. 26(10): 692-6.
- [27] Meng JB, Hu MH, Lai ZZ, et al. Levosimendan Versus Dobutamine in Myocardial Injury Patients with Septic Shock: A Randomized Controlled Trial. Med Sci Monit. 2016. 22: 1486-96.
- [28] Gordon AC, Perkins GD, Singer M, et al. Levosimendan for the Prevention of Acute Organ Dysfunction in Sepsis. N Engl J Med. 2016. 375(17): 1638-1648.
- [29] Wang X, Li S. Effect of small-dose levosimendan on mortality rates and organ functions in Chinese elderly patients with sepsis. Clin Interv Aging. 2017. 12: 917-921.
- [30] Morelli A, De Castro S., Teboul J-L, et al. Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression. Intensive Care MedicineIntensive Care Med.. 2005. 31(5): 638-644.
- [31] Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am J Respir Crit Care Med. 2016. 193(3): 259-72.
- [32] Landoni G, Biondi-Zoccai G, Greco M, et al. Effects of levosimendan on mortality and hospitalization. A meta-analysis of randomized controlled studies. Crit Care Med. 2012. 40(2): 634-46.

1												
	First author	Year	Subjects No	Levosimendan group	Control group	Inclusion criteria	Cardiovascular criteria	Levosimendan therapy	Control therapy	Target MAP (mmHg)	Longest follow-up (day)	Primary outcome
3	Alhashemi JA [22]	2009	42	21	21	Severe sepsis/septic shock	NR	0.05 to 2µg/kg per min, 24hr	Dobutamine 5 to 20µg/kg per min, 7 days	≥65	ICU stay	ScvO2 and serum lactate
4	Fang M [26]	2014	36	18	18	Septic shock	LVEF≤45%	Dobutamine 0.5µg/kg per min for 24hr; levosimendan 0.2µg/kg per min 24hr subsequently	Dobutamine 5µg/kg per min, 48hr	NR	28	Hemodynamics and cardiac function
6	Gordon AC [28]	2016	515	258	257*	Septic shock	MAP 60 to 70mmHg	0.05 to 0.2µg/kg per min, 24hr	Standard therapy	65 to 70	Hospital discharge	Daily SOFA score
7	Memis D [24]	2012	30	15	15	Septic shock	MAP≤65mmHg	0.1µg/kg per min, 24hr	Dobutamine 10µg/kg per min, 24hr	>65	NR	Liver function
_	Meng J [27]	2016	38	19	19	Septic shock	MAP≥65mmHg and LVEF ≪45%	0.2µg/kg per min, 24hr	Dobutamine 5µg/kg per min, 24hr	≥65	28	Hemodynamics and myocardial injury biomarkers
9	Morelli A [30]	2005	28	15	13**	Septic shock	MAP 70 to 80mmHg, PAOP ≥12mmHg and LVEF<45%	0.2µg/kg per min, 24hr	Dobutamine 5µg/kg per min, 24hr	70 to 80	30	Hemodynamics and cardiac function
1	Morelli A [23]	2010	40	20	20	Septic shock	MAP≥65mmHg	0.2µg/kg per min, 24hr	Dobutamine 5µg/kg per min, 24hr	70 ± 5	ICU stay	Systemic and microvascular hemodynamics
1	2 ^{Torraco A [25]}	2014	26	13	13	Septic shock	MAP≥65mmHg	0.2µg/kg per min, 24hr	Standard therapy	65 to 75	28	Mitochondrial function
	3 ^{Vaitsis J [21]}	2009	42	23	19	Sepsis	CI<2.2, LVEF<35%	0.1µg/kg per min, 24hr	Dobutamine 5 to 10µg/kg per min, 24hr	>65	30	Mortality at 7 and 30 days
1	4 Wang X [29]	2017	240	120	120	Septic shock	MAP≥65mmHg	0.1-0.2 µg/kg per min, 24 hours	Standard care	≥65	Hospital discharge	Mortality at 28 days, ICU
	•											discharge and hospital discharge

discharge and hospital discharge

15 Note: MAP: mean artery pressure; LVEF: left ventricular ejection fraction; PAOP: pulmonary artery occlusion pressure; CI: cardiac index; NR: not reported; SOFA: Sequential Organ Failure Assessment; * A total of 256 patients were finally included for 28-day mortality analysis; ** Two patients in control group ision pressure, 16 failed to complete the study and were excluded

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

Outcomes	References	No. of subjects	MD [95% CI]	P for overall effect	P for heterogeneity	<i>I</i> ² (%)
Lactate _{TRT}	[22], [23], [26], [27], [30]	184	-1.04 [-1.69, -0.38]	0.02	0.001	77
ΔLactate	[23], [26], [27], [30]	142	-0.99 [-1.64, -0.35]	0.003	0.02	71
CI _{TRT}	[23], [26], [27], [30]	142	0.44 [0.17, 0.70]	0.001	0.03	67
ΔCΙ	[21], [23], [26], [27], [30]	184	0.46 [0.28, 0.65]	< 0.00001	0.003	72
HR _{TRT}	[23], [25-27], [30]	168	-0.71 [-3.70, 2.28]	0.64	0.41	0
ΔHR	[23], [25-27], [30]	168	-3.48 [-8.19, 1.22]	0.15	0.13	45
LVSWI _{TRT}	[26], [27], [30]	102	3.73 [0.49, 6.98]	0.02	0.0009	86
ΔLVSWI	[23], [26], [27], [30]	142	5.00 [3.95, 6.06]	< 0.00001	0.83	0
LVEF _{TRT}	[26], [27], [30]	102	6.76 [3.53, 10.00]	< 0.0001	0.75	0
ΔLVEF	[21], [26], [27], [30]	144	4.98 [0.75, 9.21]	0.02	0.001	81
Norepinephrine dose _{TRT}	[23], [26], [27], [30]	142	-0.08 [-0.21, 0.06]	0.26	< 0.00001	95
ΔNE dose	[23], [25], [27], [30]	132	-0.04 [-0.12, 0.04]	0.3	0.08	55
Fluid infusion in 24-hr	[23], [26], [30]	104	3.78 [0.51, 7.05] *	0.02	< 0.00001	95
LOS	[23], [24], [27-29]	863	-1.36 [-3.87, 1.14]	0.29	0.02	65

Note: Subscript TRT stands for variables after treatment; Δ stands for change range of variables (value after treatment subscribes value at baseline); CI: cardiac index; HR: heart rate; LVSWI: left ventricular stroke work index; LVEF: left ventricular ejection fraction; NE: Norepinephrine; LOS: length of ICU stay; *Standard mean difference (SMD) is used in this case due to large difference in means [MD (95% CI) 1464.35 (1182.13-1746.58)].

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

1 2 3	
1 2 3 4 5 6 7 8 9 10	
10 11 12 13 14	
15 16 17 18 19	
20 21 22 23 24	
25 26 27 28 29 30	
31 32 33 34 35	
36 37 38 39 40	
41 42 43 44 45 46	
47 48 49 50 51	
52 53 54 55 56	
57 58 59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

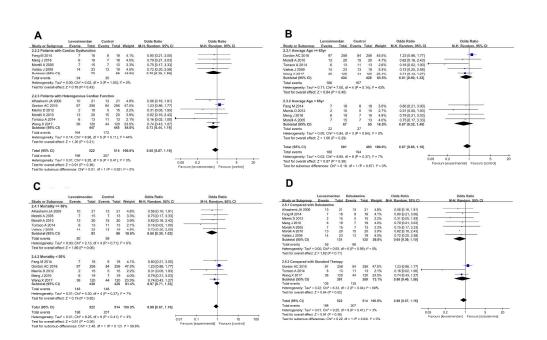
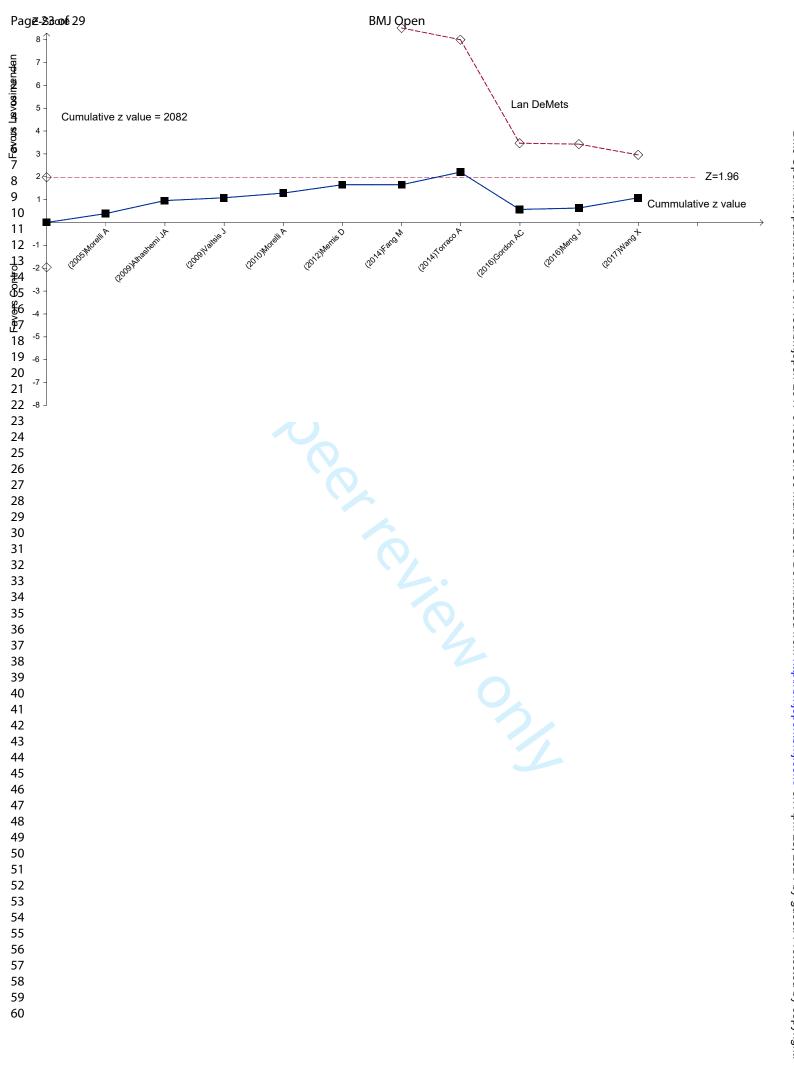
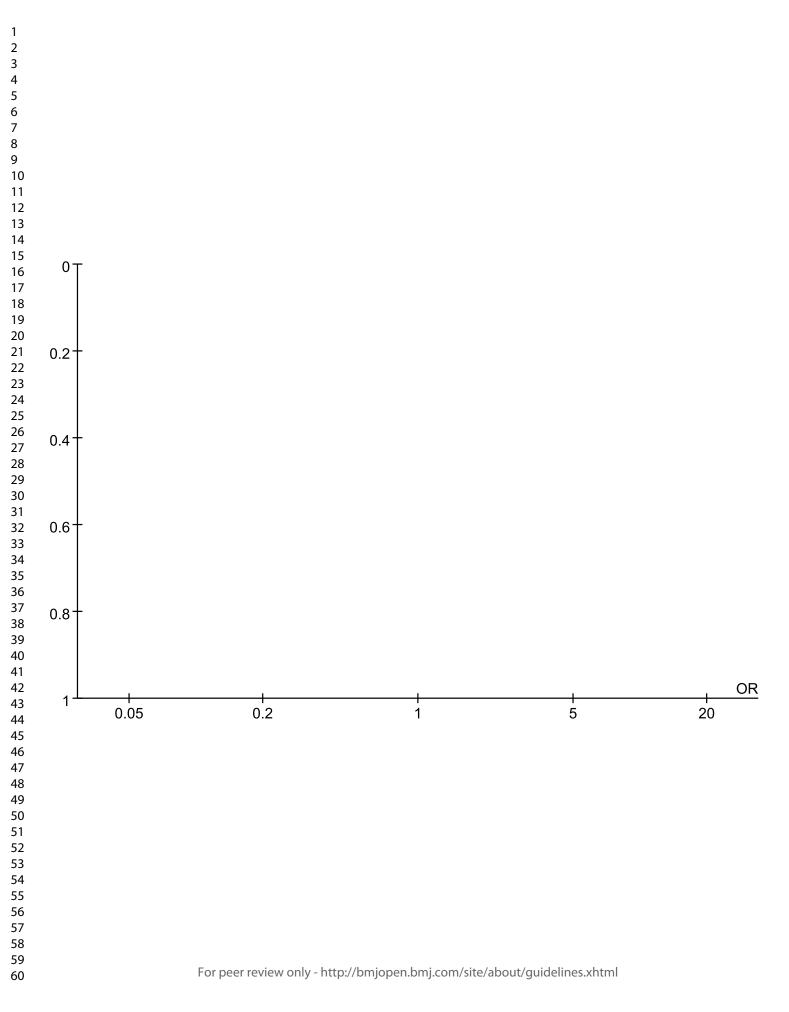
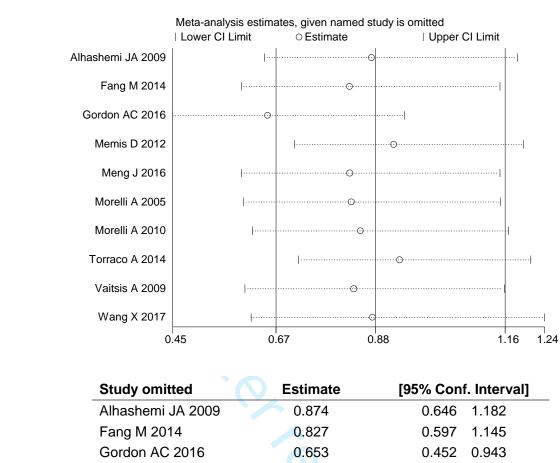




Fig 3 Sub-group analysis. (A) Levosimendan in patients with definite cardiac dysfunction vs. patients with heterogeneous cardiac function [OR (95% CI) 0.76 (0.35-1.50), P = 0.43 vs. 0.73 (0.44-1.19), P = 0.21]; (B) Levosimendan in patients with age >= 65-year-old vs. age < 65-year-old [OR (95% CI) 0.81(0.50-1.32), P = 0.40 vs. 0.67(0.32-1.40), P = 0.29]; (C) Levosimendan in patients with mortality >=50% vs. morality < 50% [OR (95% CI) 0.55 (0.30-1.03), P = 0.06 vs. 0.97 (0.71-1.33), P = 0.85]; (D) Levosimendan vs. dobutamine [OR (95% CI) 0.65 (0.39-1.10), P = 0.11] or standard therapy [OR (95%CI) 0.80 (0.40-1.58), P = 0.52].


1678x1044mm (120 x 120 DPI)

1 2			%
3 4			<i>,</i> ,,
5	Study		Weight
6 7	ID	OR (95% CI)	(M-H)
8 9			
10 11 12	Alhashemi JA 2009	0.56 (0.16, 1.91)	5.45
13 14 15	Fang M 2014	0.80 (0.21, 3.00)	3.91
16 17	Gordon AC 2016	1.23 (0.86, 1.77)	42.10
18 19	Memis D 2012	0.31 (0.05, 1.93)	3.47
20 21 22	Meng J 2016	0.79 (0.21, 3.03)	3.83
23 24	Morelli A 2005	0.75 (0.17, 3.33)	3.20
25 26	Morelli A 2010	0.62 (0.16, 2.43)	4.20
27 28 29	Torraco A 2014	0.16 (0.02, 1.00)	4.74
30 31	Vaitsis A 2009	0.72 (0.20, 2.58)	4.46
32 33	Wang X 2017	0.74 (0.43, 1.27)	24.64
34 35 36	M-H Overall (I-squared = 2.7%, p = 0.414)	0.89 (0.69, 1.15)	100.00
37 38	D+L Overall	0.88 (0.67, 1.16)	
39 40			
41 42			
42 43 44	.0243 1 4	l 1.2	
45	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		
46 47	n-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.	əqoįmd\3£11.01 ss bədzilduq ta	BMJ Open: fir

Fang M 2014	0.827	0.597	1.145
Gordon AC 2016	0.653	0.452	0.943
Memis D 2012	0.921	0.710	1.195
Meng J 2016	0.827	0.598	1.145
Morelli A 2005	0.831	0.602	1.146
Morelli A 2010	0.850	0.621	1.164
Torraco A 2014	0.933	0.719	1.211
Vaitsis A 2009	0.836	0.605	1.155
Wang X 2017	0.876	0.618	1.240
Combined	0.881	0.671	1.157

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

(((((levosimendan) OR simendan) OR Simadax) OR dextrosimendan)) AND ((((sepsis) OR septicemia) OR severe sepsis) OR septic shock)

tor peer terien only

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Pg. 1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	Pg. 2-3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	Pg. 4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	Pg. 4-5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	-
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	Pg. 5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	Pg. 5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Pg. 5
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Pg. 5-6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	Pg. 6
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	Pg. 6
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	Pg. 6
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	Pg. 6
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	Pg. 7

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

Page 29 of 29

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported
Section/topic	T T		on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	Pg. 7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	Pg. 7
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Pg. 7
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Pg. 7-8
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Pg. 8
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Pg. 8
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	Pg. 8-9
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Pg. 9-10
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	Pg. 10
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	Pg. 10-11
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	Pg. 11-12
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	Pg. 12
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	Pg. 13

41 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. 42 doi:10.1371/journal.pmed1000097 For more information, visit: www.prisma-statement.org.

Page 2 of 2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

BMJ Open

The effect of levosimendan on mortality in severe sepsis and septic shock: a meta-analysis of randomized trials

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-019338.R1
Article Type:	Research
Date Submitted by the Author:	07-Dec-2017
Complete List of Authors:	Chang, Wei; Southeast University Zhongda Hospital, Department of Critical Care Medicine Xie, Jianfeng; School of Medicine, Southeast University, Department of Critical Care Medicine Xu, Jing-Yuan; School of Medicine, Southeast University, Department of Critical Care Medicine Yang, Yi; School of Medicine, Southeast University, Department of Critical Care Medicine
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Intensive care, Cardiovascular medicine, Infectious diseases
Keywords:	sepsis, septic shock, septic cardiomyopathy, levosimendan, dobutamine

Title: The effect of levosimendan on mortality in severe sepsis and septic shock: a meta-analysis of randomized trials Authors: Wei Chang1, Jian-Feng Xie2, Jing-Yuan Xu3, Yi Yang4 1 First author, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing 210009, P. R. China, ewei 0181@126.com 2 Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing 210009, P. R. China, xie820405@126.com 3 Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing 210009, P. R. China, xujingyuanmail@163.com 4 Corresponding author, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing 210009, P. R. China, yiyiyang2004@163.com

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

ABSTRACT

Objective We aim to synthesize the up-to-date randomized trials to investigate the effects of levosimendan on mortality and clinical outcomes in severe sepsis and septic shock.

Methods A collection of databases including PubMed, EMBASE, Cochrane Central register and Web of Science were searched updated to August, 2017. Randomized trials were included when relevant to the use of levosimendan in severe sepsis or septic shock compared with any category of inotropes, or as an adjunct to standard therapy with mortalities reported. The primary outcome was the mortality, and the secondary outcomes were clinical performances including serum lactate, cardiac function, vasopressor requirements, fluid infusion and length of intensive care unit (ICU) stay.

Results A final of 10 studies with 1036 patients were included in this meta-analysis. The results revealed that levosimendan could not reduce mortality significantly in septic shock (odds ratio 0.89, 95% CI 0.69-1.16, P = 0.39). Levosimendan could reduce serum lactate more effectively, enhance cardiac contractibility with increased cardiac index and left ventricular ejection fraction. However, it could also increase fluid infusion, and no differences in norepinephrine requirement and length of ICU stay were noted. No significant benefit in mortality could be observed of levosimendan vs. dobutamine use, or in patients with definite cardiac dysfunction.

Conclusions Current evidence is not sufficient to support levosimendan as superior to dobutamine or as an optimal adjunct in severe sepsis and septic shock. More large-scale randomized trials were necessary for the validation of the levosimendan use in sepsis.

Key words sepsis; septic shock; levosimendan; dobutamine; septic cardiomyopathy

Strengths and Limitations of this Study

1. This article synthesized the up-to-date random trials for comprehensive analysis of the effect of levosimendan on mortality in severe sepsis and septic shock.

2. Furthermore, a serious of sub-group analyses were conducted for investigation of the sub-population of patients who were likely to benefit most in levosimendan use.

3. Heterogeneity and biases were appraised between each study, and the optimal of sample size was also calculated.

4. However, the trials included were of limited sample size and quality, and were potentially high

biased.

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

BACKGROUND

6]

Sepsis is still a great challenge to the public health and its mortality increases tremendously when severe sepsis or septic shock occurs^[1]. The incidence of cardiac dysfunction in severe sepsis and septic shock remains as high as 40%-60%^[2] resulted from infectious process, cytokine storm^[3], decreased myocardial perfusion and pulmonary injuries^[4], and is associated with worse outcomes^[5, 1].

Surviving Sepsis Campaign International Guidelines (2016) recommended the usage of dobutamine infusion in patients with persistent hypo-perfusion despite adequate fluid loading and the use of vasopressor agents (weak recommendation, low quality of evidence)^[7]. However, its effect on mortality in sepsis is still under debate^[8], and its adverse effects including increased myocardial oxygen consumption and risks of dysrhythmia could not be neglected.

Levosimendan, a calcium sensitizer with vasodilatory properties which could improve myocardial contractibility in the absence of increased oxygen consumption, is regarded as a promising adjunct in the treatment of both cardiac systolic and diastolic dysfunctions^[9] and was demonstrated to have a beneficial effect on mortality in various clinical settings^[10, 11].

Levosimendan was demonstrated superior to dobutamine and milrinone in restoring cardiac function in septic animal model^[12]. It could also alleviate inflammatory response by NF-κB-dependent transcription down-regulation^[13] and decreased inducible NO synthetase (iNOS) promoter activity and NO expression in vitro^[14].

Several meta-analyses were conducted to investigate the effects of levosimendan on mortality in sepsis which revealed a beneficial effect on survival, however with limited sample size^[15]. In this study, we aim to make an up-to-date meta-analysis to investigate the effects of levosimendan on

mortality in severe sepsis and septic shock.

METHODS

The manuscript was prepared according to the preferred reporting items for systematic review and meta-analysis (PRISMA) statement^[16, 17].

Eligibility Criteria

We aimed to include all the randomised control trials (RCT) studying levosimendan use versus any categories of inotropes or as an adjunct to standard management in severe sepsis and septic shock. The articles would be included in our study if fulfilling the following criteria: (1) study population of severe sepsis or septic shock in adults, (2) randomized allocation of treatment, (3) comparison of levosimendan with any category of inotropic agents or placebo, with no restrictions on dose regimen or time limits of levosimendan infusion, (4) data on mortality reported; and exclusion criteria were as follows: (1) duplicates, (2) pediatric subjects, (3) animal experiments or *in vitro* studies, (4) no sepsis population and (5) lack of data on mortality.

Information Sources

Two investigators searched a collection of data-bases including PubMed, EMBASE, Cochrane Central register and Web of Science updated to July 31, 2017 separately with no language restrictions. When relevant systemic reviews or meta-analyses were found, we ran a backward snowballing to obtain further studies.

Search

Following key words were used as search terms: "levosimendan", "simendan", "Simdax", "dextrosimendan", "sepsis", "severe sepsis", "septicemia" and "septic shock". [Supplementary File

1]

Study Selection

Abstracts and titles of the articles were initially viewed separately by two investigators, if potentially pertinent, the complete articles were retrieved. Articles were assessed and selected separately by two investigators with disagreements solved by consensus.

Data Items

Information was extracted from each of the included trials on: (1) characteristics of the participants (including gender, age and diagnosis); (2) interventions (including the duration and dose regimen of the levosimendan or other inotropes); (3) outcome measurements with primary outcome determined as the mortality (follow-up time was tailored at the approximate duration by the reviewer's consensus), and secondary outcomes as clinical outcomes including serum lactate level, cardiac function including cardiac index (CI), left ventricular ejection fraction (LVEF) and left ventricular stroke work index (LVSWI); fluid infusion, vasopressor requirement and length of ICU stay (LOS).

Assessment of Risk of Bias

Internal validity and risks of bias were evaluated by two investigators separately following Cochrane Collaboration Methods protocols^[18]. Risks of bias were assessed by scrutinizing the articles and rated as "Yes", "No" or "Unclear" according to the procedures taken in the articles.

Summary Measures

Dichotomous outcomes were measured as proportions and odds ratio (OR) were calculated. Continuous outcomes were described as mean ± standard deviation (SD) and calculated by mean difference (MD) or standard mean difference (SMD). The end-point and change range were both compared if the continuous variables were measured at baseline and after treatment. Missing data

were imputed from other information whenever possible^[19][Supplementary File 2].

Statistical Analysis

The data retrieved from the pertinent articles were computerized and analyzed by Review Manager 5.3 (The Nordic Cochrane Center, The Cochrane Collaboration, Copenhagen). We used Mantel-Haenszel statistic method for dichotomous variable (mortality) measurements and inverse variance for continuous variables (lactate level, CI, LVEF, LVSWI, fluid infusion, norepinephrine dose and LOS). Random-effects model was used for better accommodation of heterogeneity. Cochrane I^2 statistic was used for heterogeneity assessment between the studies, with a range of 0% to 30% representing no or mild heterogeneity, 30%-60% moderate heterogeneity, whereas > 60% as high heterogeneity. Publication bias was tested by visual inspection of funnel plots. As for sensitivity analysis, the dataset was analyzed in both fixed and randomized-effects models and the favoring directions were inspected, and each study was removed sequentially and the remaining data-set re-analyzed to assess the robustness of the results.

Trial sequential analysis was performed to estimate the optimal sample size for the plausible effects of levosimendan in sepsis^[20]. Statistical significance was set at 2-lateral 0.05 level as hypothesis establishment.

Sub-group Analysis

Sub-group analyses were conducted dividing studies enrolling the patients with cardiac dysfunction vs. heterogeneous cardiac function. The use of levosimendan vs. dobutamine and vs. standard therapy was also compared. We further attempt to separate the studies with the patients with average age \geq 65-years vs. < 65-years and mortality \geq 50% and < 50% in the hope of finding the sub-population who would potentially benefit from the levosimendan use.

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

RESULTS

Study Selection

A total of 336 abstracts were yielded from the search strategy, with 218 duplicates were excluded and 125 excluded due to no eligible abstracts. Complete manuscripts of 93 abstracts were retrieved for further assessment, within which 46 were animal experiments, 4 non-RCTs, 16 non-septic patients, 8 pediatric patients, 3 with no mortality reported, 6 case reports and 1 study design. A final of 10 studies were included in this meta-analysis^[21-30], within which two were conference abstracts^[21, 22], and one was written in Chinese^[26] [Fig 1].

Study Characteristics

Within the 10 studies enrolling 1036 patients, no differences were present in age and APACHE II scores between the treatment and control group at the baseline. Patients diagnosed as septic shock or severe sepsis after adequate fluid resuscitation were included in each study, and four studies set explicit criteria of cardiac dysfunctions during patient recruitment^[21, 26, 27, 30]. Norepinephrine was used as necessary to achieve the target MAP ranging from 65 to 80mmHg during inotropic therapy depending on the study design. Seven studies used dobutamine (dose ranges from 5µg/kg per min to 20µg/kg per min) as a comparator^[21-24, 26, 27, 30] and three used levosimendan as an adjunct to standard therapy^[25, 28, 29]. Levosimendan was administered as continuous infusion (dose ranges from 0.05µg/kg per min to 2.0µg/kg per min) over 24 hours with no bolus. Parameters reflecting cellular metabolism, microcirculation, hemodynamics, cardiac function and target organ perfusion were measured in individual studies [Tab 1].

Syntheses of Results

Mortality data were randomized and calculated from the ten studies, and the final result in

mortality at the longest follow-up day revealed no statistical difference (total events 187/522 vs. 197/514 in levosimendan and control group respectively, OR 0.89, 95% CI 0.69-1.16, P = 0.39), with no evidence of heterogeneity ($I^2 = 0\%$, P = 0.52) [Fig 2].

We conducted a serious of sub-group analyses according to the patients' characteristics. No statistical significance could be observed dividing the studies enrolling patients with definite clinical cardiac dysfunction^[21, 26, 27, 30] (OR 0.76, 95% CI 0.39-1.50, P = 0.43) or those with homogenous cardiac functions^[22-25, 28, 29] (OR 0.75, 95% CI 0.48-1.19, P = 0.23).

We also compared the effects of levosimendan vs. dobutamine on mortality in sepsis and find no statistical difference in mortality between levosimendan and dobutamine group (OR 0.65, 95% CI 0.39-1.10, P = 0.11) ^[21-24, 26, 27, 30], neither of levosimendan in comparison of standard therapy^[25, 28, 29] (OR 0.82, 95% CI 0.44-1.55, P = 0.54) [Fig 3].

We attempted to divide the studies according to the patients' average age (< 65yr vs. ≥ 65 yr) and mortality (< 50% vs. $\ge 50\%$), and found no statistical significance between each sub-group [Supplementary Fig 1].

We also extracted and compared the data of lactate reduction^[22, 23, 26, 28, 30], measurements reflecting cardiac functions including $CI^{[23, 25-28, 30]}$, $LVEF^{[21, 26, 27, 30]}$ and $LVSWI^{[23, 26, 27, 30]}$, fluid infusion^[23, 26, 28, 30], norepinephrine dosage^[23, 25-27, 30] and $LOS^{[23, 24, 27-29]}$. The results revealed that lactate was more profoundly reduced, and cardiac function significantly improved (with increased CI, LVEF and LVSWI) in levosimendan group. Norepinephrine dose was reduced slightly, however total fluid infusion over 24 hours was tremendously increased in levosimendan group. LOS in levosimendan group was slightly shortened (*P* = 0.29) [Tab 2, Supplementary Fig 2].

Risk of Bias and Sensitivity Analyses

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

The funnel plot was drawn for testing the bias, and visual inspection of the funnel plot revealed potential asymmetry [Supplementary Fig 3].

The data-set was analyzed both in the fixed and random-effects model for sensitivity analysis and the result revealed no shift of favouring directions [Supplementary Fig 4]. Each trial was removed and remaining dataset re-analyzed subsequently, and the result indicated that the statistical significance obscured only when the trial by Gordon AC et al. ^[28], was put into analysis [Supplementary Fig 5].

Trial Sequential Analysis

A trial sequential analysis (TSA) was performed to determine the optimal information size. We estimated a 26% mortality based on the recent epidemiologic data of severe sepsis^[31], and an assumed an average of 20% relative risk reduction in reference to the effect of levosimendan on overall mortality reduction in hospitalized patients^[32] with 80% power and $\alpha = 0.05$ two-sided. The calculation indicated the optimal information size of 2082 patients for detection of the plausible treatment effect of levosimendan in sepsis. The Lan DeMets sequential monitoring boundary constructed by the optimal information size was not crossed, indicating that the cumulative evidence was not conclusive and reliable [Fig 4].

DISSCUSSION

The main finding of this study was that levosimendan could not reduce the mortality in severe sepsis and septic shock patients significantly. Furthermore, levosimendan could reduce serum lactate level more effectively, improve cardiac function. However, no change in norepinephrine dose but profound increase in fluid infusion, and no difference in LOS has been noted.

We noticed that, albeit improved cardiac function more fluid was infused after levosimendan use

for maintenance of the target MAP probably due to its vasodilatory effect, which could exacerbate pulmonary and peripheral edema and potentially impeding oxygen uptake and exchange. The use of levosimendan was also suggested to be accompanied with higher incidence of life-threatening arrhythmias like supraventricular tachyarrhythmia, which could bring hemodynamic instability and risks to the patients^[28].

The previous study by Zangrillo et al. enrolling a series of RCTs yielded a significantly reduced mortality in levosimendan group in septic shock^[15]. However, it should be concerned that, in our study, statistical significance was obscured after a large, multi-center RCT with a sample size of 514 patients by Gordon AC et al.^[28] were included.

We thought that there may be several seasons for this. The percentage of patients in the trial by Gordon et al. that underwent cardiac function assessment was rather low (30%), so Gordon and co-workers might have enrolled the patients with heterogenous cardiac function^[33]. Although the prevalence of septic cardiomyopathy is high (40-60%), but the discriminative enrollment could still obliviate the potential benefit of levosimendan, considering that there might be patients recruited who did not have cardiac dysfunction, and may not benefit from inotropic use as indicated by the SSC (2016) Guideline in which the increase of cardiac function to supranormal level is discouraged^[7].

We synthesized the studies with patients who had definite cardiac dysfunction, however the result revealed no statistical significance (OR 0.76, 95% CI 0.39-1.50, P = 0.43). We then ran a TSA and yielded an optimal sample size of 1719, suggesting more trials are needed focusing on the patients with cardiac dysfunction for the plausible effects of levosimendan in sepsis.

The patients enrolled in the trial by Gordon et al. might be relatively at low risk^[33, 34]. Although

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

the 28-day mortality in that trial was 31%, which was markedly high, however, according to previous studies, the mortality decreased from 61% to 47% after levosimendan use^[15]. It should be noted that the baseline mortality is very high (61% in control group), suggesting that the patients at "extremely" high risk may be most benefited from levosimendan use.

We also attempted to synthesized the studies dividing the studies with patients at high (\geq 50%) and low (< 50%) risks and found with OR 0.55, 95% 0.30-1.03 vs. OR 0.89, 95% 0.69-1.16, respectively, suggesting patients with high-risk were possibly more likely to benefit from levosimendan use, still, more trials are definitely needed.

Limitations

Our study had several limitations. The trials included in this meta-analysis were of limited sample size, 8 out of 10 studies included less than 50 patients^[21-27, 30], and were potentially high biased. Follow-up duration was not reported in one study^[24], only ICU mortality was reported in two studies^[22, 23], and the inconsistency in follow-up duration could potentially bring bias to the results. The dose regimen of levosimendan ranged from 0.05 to 0.2 µg/kg per min, which could cause different hemodynamic effects.

CONCLUSION

Although levosimendan could improve clinical outcomes including cardiac function and tissue perfusion compared with dobutamine or standard therapy, it also increases fluid infusion and has no significance on vasopressor requirements, still, it failed to bring significant benefits to mortality in sepsis. More RCTs are necessary for further elucidation of the effects of levosimendan in sepsis, particularly in those with cardiac dysfunctions.

LIST OF ABBREVIATIONS

1	
2	
3	
	APACHE Acute Physiology and Chronic Health Evaluation;
4	
5	
6	CI cardiac index;
7	
8	ICU intensive care unit;
9	ICO intensive care unit,
10	
11	iNOS inducible NO synthetase;
12	·····,
13	
	IQR inter-quartile range;
14	
15	
16	LOS length of ICU stay;
17	
18	LV left ventricle;
19	
20	
21	LVEF left ventricle ejection fraction;
22	
23	LVCWI 1-6
24	LVSWI left ventricular stroke work index;
25	
	MAP mean arterial pressure;
26	
27	
28	MD mean difference;
29	LVSWI left ventricular stroke work index; MAP mean arterial pressure; MD mean difference; NE norepinephrine; OR odds ratio; RCT randomized control trial;
30	NE norepinephrine;
31	NE norepinepinine,
32	
33	OR odds ratio;
34	
35	
36	RCT randomized control trial;
37	
	ROS reactive oxygen species;
38	Rob reactive oxygen species,
39	SD standard deviation;
40	SD standard deviation;
41	
42	SMD standard mean difference;
43	Sivid standard mean difference;
44	
45	TSA trial sequential analysis.
46	
47	
48	DECLARATIONS
49	
50	Ethics approval and consent to participate
51	Lines approval and consent to participate
52	
53	Not applicable.
54	Concept for publication
55	Consent for publication
56	
57	
58	

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Not applicable.

Availability of data and materials

The datasets used and/or analysed during the current study available from the corresponding

author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This work is partially supported by grants from the National Natural Science Foundations of

China (81501705).

Authors' contributions

WC carried out the analysis and interpretation of data and participated in drafting, editing and submitting the manuscript. The articles were reviewed by two reviewers (WC and JFX) independently in accordance with the inclusion criteria. Disagreements were resolved and by consensus and discussion including a third reviewer (JYX). The quality of the articles was assessed by WC and JFX independently, with disagreements resolved by consulting a third reviewer (JYX). YY was responsible for conception, design and coordination of the study, and revising the manuscript for important intellectual content. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

Fig 1 Flow diagram of search process and study selection

Fig 3 Sub-group analysis. (A) Levosimendan in patients with definite cardiac dysfunction vs. patients with heterogeneous cardiac function (OR 0.76, 95% CI 0.35-1.50, P = 0.43 vs. OR 0.75, 95% CI 0.48-1.19, P = 0.39); (B) Levosimendan vs. dobutamine (OR 0.65, 95% CI 0.39-1.10, P = 0.11) or standard therapy (OR 0.82, 95% CI 0.44-1.55, P = 0.54).

Fig 2 The effect of levosimendan on mortality in severe sepsis and septic patients.

Fig 4 Trial sequential analysis. The optimal information size of 2082 patients for detection of the plausible treatment effect of levosimendan in sepsis, and the Lan DeMets sequential monitoring boundary constructed by the optimal information size was not crossed

Supplementary Fig 1 Sub-group analysis. (A) Levosimendan in patients with mortality >=50% vs. morality < 50% (OR 0.55, 95% CI 0.30-1.03, P = 0.06 vs. OR 0.99 95% CI 0.74-1.32, P = 0.92); (B) Levosimendan in patients with age >= 65-year-old vs. age < 65-year-old (OR 0.84 95% CI 0.54-1.30, P = 0.44 vs. OR 0.67 95% CI 0.32-1.40, P = 0.49).

Supplementary Fig 2 Forest plots for secondary outcomes.

Supplementary Fig 3 Funnel plot for inspection of bias

Supplementary Fig 4 Sensitivity analysis with data-set analyzed in fixed and random-effects models

Supplementary Fig 5 Sensitivity analysis with single study omitted sequentially

Tab 1 Characteristics of the included trials. MAP mean artery pressure; LVEF left ventricular ejection fraction;

PAOP: pulmonary artery occlusion pressure; CI cardiac index; NR not reported; SOFA Sequential Organ Failure

Assessment; * A total of 256 patients were finally included for 28-day mortality analysis; ** Two patients in

control group failed to complete the study and were excluded.

Stu dy	Y e a r	Su bj ect s No	Levo sime ndan grou p	Co ntr ol gro up	Inclus ion criteri a	Cardiovascul ar criteria	Levosimendan therapy	Control therapy	Targ et MAP (mm Hg)	Foll ow- up (da y)	Primary outcome
Alh	2 0	42	21	21	Sever e	NR	0.05 to 2µg/kg per min, 24hr	Dobutami ne 5 to	≥65	IC	ScvO2 and serum lactate

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

ashe	0 9				sepsis/ septic			20µg/kg per min, 7		U	
mi	-				shock			days		stay	
JA											
[22]											
Fan	2						Dobutamine 0.5µg/kg	Dobutami			
g M	0 1	36	18	18	Septic shock	LVEF 45%	per min for 24hr; levosimendan 0.2µg/kg per min 24hr	ne 5µg/kg per min,	NR	28	Hemodynami s and cardiac function
[26]	4						subsequently	48hr			Tunction
Gor											
don	2 0	51	258	257	Septic	MAP 60 to	0.05 to 0.2µg/kg per	Standard	65 to	28	Daily SOFA
AC	1 6	5	250	*	shock	70mmHg	min, 24hr	therapy	70	20	score
[28]											
Me	2							Dobutami			
mis	2 0	30	15	15	Septic	MAP≤	0.1µg/kg per min,	ne 10µg/kg	>65	NR	Liver functio
D	1 2	50	13	15	shock	65mmHg	24hr	per min,	205	INK	Liver functio
[24]								24hr			
Men	2					MAP≥		Dobutami			Hemodynam s and
g J	0 1	38	19	19	Septic shock	65mmHg and	0.2μg/kg per min, 24hr	ne 5µg/kg per min,	≥65	28	myocardial
[27]	6					LVEF≤45%		24hr			injury biomarkers
Mor						MAP 70 to					
elli	2 0	20	15	13*	Septic	80mmHg,	0.2µg/kg per min,	Dobutami ne 5µg/kg	70 to	20	Hemodynam
A	0 5	28	15	*	shock	PAOP≥ 12mmHg and	24hr	per min, 24hr	80	30	s and cardiac function
[30]	5					LVEF<45%		2411			
Mor											
elli	2 0				Septic	MAP≥	0.2µg/kg per min,	Dobutami ne 5µg/kg	70 ±	IC	Systemic and microvascula
A	1	40	20	20	shock	65mmHg	24hr	per min,	5	U	hemodynami
[23]	0							24hr		stay	S
forr											
aco	2 0	• -			Septic	MAP≥	0.2µg/kg per min,	Standard	65 to		Mitochondria
A	1 4	26	13	13	shock	65mmHg	24hr	therapy	75	28	function
[25]	4										
Vait	2							Dobutami			
sis J	0 0	42	23	19	Sepsis	CI<2.2, LVEF<35%	0.1µg/kg per min, 24hr	ne 5 to 10µg/kg	>65	30	Mortality at 2
[21]	9				-	LVL1<33%	2 4 111	per min, 24hr			and 30 days
War	2										Mortality at
Wan g X [29]	0 1 7	24 0	120	120	Septic shock	MAP≥65mm Hg	0.1-0.2 μg/kg per min, 24 hours	Standard care	≥65	28	28 days, ICU discharge and hospital

Note: MAP: mean artery pressure; LVEF: left ventricular ejection fraction; PAOP: pulmonary artery occlusion pressure; CI: cardiac index; NR: not reported; SOFA: Sequential Organ Failure Assessment; * A total of 256 patients were finally included for 28-day mortality analysis; ** Two patients in control group failed to complete the study and were excluded.

Tab 2 Clinical outcomes after randomization. Subscript TRT stands for outcomes after treatment; Δ stands for

change range of outcomes (value after treatment subscribes value at baseline); CI cardiac index; LVSWI left

BMJ Open

ventricular stroke work index; LVEF left ventricular ejection fraction; NE Norepinephrine; LOS length of ICU stay;

* Standard mean difference (SMD) is used in this case due to large difference in means (MD 1048.74, 95% CI

303.21-1794.27).

		No. of	MD (95%	P for	P for	_
Outcomes	References	subject	CI)	overall	heterogeneit	$I^{2}(\%)$
		S	CI)	effect	У	
Lactate _{TRT}	[22], [23], [26],	656	-0.89 (-1.48,	0.003	< 0.00001	87
	[27], [28], [30]		-0.29)			
∆Lactate	[23], [26], [27],	614	-0.98 (-1.59,	0.002	0.03	62
	[28], [30]		-0.37)			
CI _{TRT}	[23], [26], [27],	277	0.39 (0.17,	0.0005	0.05	59
	[28], [30]		0.62)			
ΔCI	[21], [23], [26],	319	0.46 (0.28,	< 0.00001	0.01	65
	[27], [28], [30]		0.64)			
LVSWI _{TRT}	[26], [27], [30]	102	3.73 (0.49,	0.02	0.0009	86
			6.98)			
ΔLVSWI	[23], [26], [27],	142	5.00 [3.95,	< 0.00001	0.83	0
	[30]		6.06]			
LVEF _{TRT}	[26], [27], [30]	102	6.76 [3.53,	< 0.0001	0.75	0
			10.00]			
$\Delta LVEF$	[21], [26], [27],	144	4.98 [0.75,	0.02	0.001	81
	[30]		9.21]			
Norepineph	[23], [26], [27],	142	-0.08 [-0.21,	0.26	< 0.00001	95
rine $dose_{TRT}$	[30]		0.06]			
ΔNE dose	[23], [25], [27],	132	-0.04 [-0.12,	0.3	0.08	55
	[30]		0.04]			
Fluid	[23], [26], [28],	581	2.72 [0.75,	0.007	< 0.00001	97
infusion in	[30]		4.69]*			
24-hr						
LOS	[23], [24],	863	-1.36 [-3.87,	0.29	0.02	65
	[27-29]		1.14]			

Note: Subscript TRT stands for outcomes after treatment; Δ stands for change range of outcomes (value after treatment subscribes value at baseline); CI cardiac index; LVSWI left ventricular stroke work index; LVEF left ventricular ejection fraction; NE Norepinephrine; LOS length of ICU stay; * Standard mean difference (SMD) is used in this case due to large difference in means (MD 1048.74, 95% CI 303.21-1794.27).

Supplementary File 1 Full electronic search strategy for PubMed.

Supplementary File 2 Methods of the imputation of missing data.

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

References

- Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013. 39(2): 165-228.
- [2] Pang D, Aneja RK. Levosimendan for Septic Myocardial Dysfunction: Not Yet Ready for Prime Time. Crit Care Med. 2015. 43(11): 2522-3.
- [3] Sato R, Nasu M. A review of sepsis-induced cardiomyopathy. J Intensive Care. 2015. 3: 48.

1

2 3

4 5 6

7

8 9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24 25

26

27

28

29

30 31

32

33

34

35 36

37

38

39

40

41 42

43

44

45

46 47

48

49

50

51

52

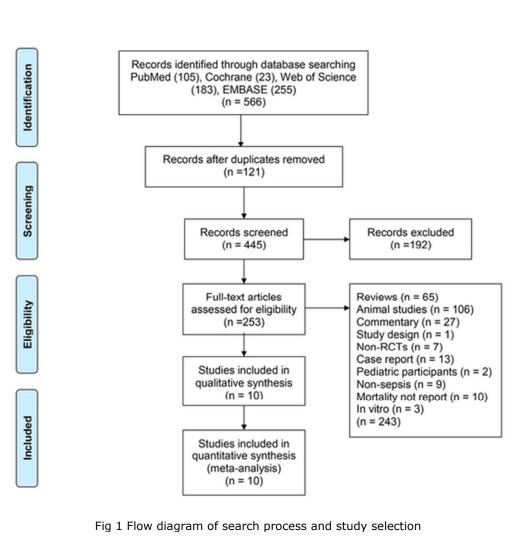
53

54

55

56 57

58 59


60

- [4] Aneman A, Vieillard-Baron A. Cardiac dysfunction in sepsis. Intensive Care Med. 2016. 42(12): 2073-2076.
- [5] Landesberg G, Gilon D, Meroz Y, et al. Diastolic dysfunction and mortality in severe sepsis and septic shock. Eur Heart J. 2012. 33(7): 895-903.
- [6] Gonzalez C, Begot E, Dalmay F, et al. Prognostic impact of left ventricular diastolic function in patients with septic shock. Ann Intensive Care. 2016. 6(1): 36.
- [7] Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017. 43(3): 304-377.
- [8] Annane D, Vignon P, Renault A, et al. Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomised trial. Lancet. 2007. 370(9588): 676-84.
- [9] Pollesello P, Papp Z, Papp JG. Calcium sensitizers: What have we learned over the last 25 years. Int J Cardiol. 2016. 203: 543-8.
- [10] Belletti A, Castro ML, Silvetti S, et al. The Effect of inotropes and vasopressors on mortality: a meta-analysis of randomized clinical trials. Br J Anaesth. 2015. 115(5): 656-75.
- [11] Pollesello P, Parissis J, Kivikko M, Harjola VP. Levosimendan meta-analyses: Is there a pattern in the effect on mortality. Int J Cardiol. 2016. 209: 77-83.
- [12] Barraud D, Faivre V, Damy T, et al. Levosimendan restores both systolic and diastolic cardiac performance in lipopolysaccharide-treated rabbits: comparison with dobutamine and milrinone. Crit Care Med. 2007. 35(5): 1376-82.
- [13] Wang Q, Yokoo H, Takashina M, et al. Anti-Inflammatory Profile of Levosimendan in Cecal Ligation-Induced Septic Mice and in Lipopolysaccharide-Stimulated Macrophages. Crit Care Med. 2015. 43(11): e508-20.
- [14] Sareila O, Korhonen R, Auvinen H, et al. Effects of levo- and dextrosimendan on NF-kappaB-mediated transcription, iNOS expression and NO production in response to inflammatory stimuli. Br J Pharmacol. 2008. 155(6): 884-95.
- [15] Zangrillo A, Putzu A, Monaco F, et al. Levosimendan reduces mortality in patients with severe sepsis and septic shock: A meta-analysis of randomized trials. J Crit Care. 2015. 30(5): 908-13.
- [16] Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009. 339: b2535.
- [17] Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009. 339: b2700.
- [18] Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011. 343: d5928.
- [19] Wiebe N, Vandermeer B, Platt RW, Klassen TP, Moher D, Barrowman NJ. A systematic review identifies a lack of standardization in methods for handling missing variance data. J Clin Epidemiol. 2006. 59(4):

BMJ Open

342-53.

- [20] Pogue JM, Yusuf S. Cumulating evidence from randomized trials: utilizing sequential monitoring boundaries for cumulative meta-analysis. Control Clin Trials. 1997. 18(6): 580-93; discussion 661-6.
- [21] Vaitsis J MH, Thomopoulos C MS, Stamatis P. Use of levosimendan in myocardial dysfunction due to sepsis. 2009; 13(Suppl 1): P165.
- [22] Alhashemi JA, Alotaibi QA, Abdullah GM, Shalabi SA. Levosimendan vs dobutamine in septic shock. J Crit Care. 2009. 24(3): e14-5.
- [23] Morelli A, Donati A, Ertmer C, et al. Levosimendan for resuscitating the microcirculation in patients with septic shock: a randomized controlled study. Critical Care. 2010. 14(6): R232.
- [24] Memis D, Inal MT, Sut N. The effects of levosimendan vs dobutamine added to dopamine on liver functions assessed with noninvasive liver function monitoring in patients with septic shock. J Crit Care. 2012. 27(3): 318.e1-6.
- [25] Torraco A, Carrozzo R, Piemonte F, et al. Effects of levosimendan on mitochondrial function in patients with septic shock: a randomized trial. Biochimie. 2014. 102: 166-73.
- [26] Fang M, Dong S. [Effects of levosimendan on hemodynamics and cardiac function in patients with septic shock]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2014. 26(10): 692-6.
- [27] Meng JB, Hu MH, Lai ZZ, et al. Levosimendan Versus Dobutamine in Myocardial Injury Patients with Septic Shock: A Randomized Controlled Trial. Med Sci Monit. 2016. 22: 1486-96.
- [28] Gordon AC, Perkins GD, Singer M, et al. Levosimendan for the Prevention of Acute Organ Dysfunction in Sepsis. N Engl J Med. 2016. 375(17): 1638-1648.
- [29] Wang X, Li S. Effect of small-dose levosimendan on mortality rates and organ functions in Chinese elderly patients with sepsis. Clin Interv Aging. 2017. 12: 917-921.
- [30] Morelli A, De Castro S., Teboul J-L, et al. Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression. Intensive Care Med. 2005. 31(5): 638-644.
- [31] Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am J Respir Crit Care Med. 2016. 193(3): 259-72.
- [32] Landoni G, Biondi-Zoccai G, Greco M, et al. Effects of levosimendan on mortality and hospitalization. A meta-analysis of randomized controlled studies. Crit Care Med. 2012. 40(2): 634-46.
- [33] Groesdonk HH, Sander M, Heringlake M. Levosimendan in Sepsis. N Engl J Med. 2017. 376(8): 798.
- [34] Landoni G, Belletti A, Putzu A, Zangrillo A. Prevention of organ dysfunction in septic shock: still looking for an effective treatment. J Thorac Dis. 2016. 8(12): E1715-E1718.

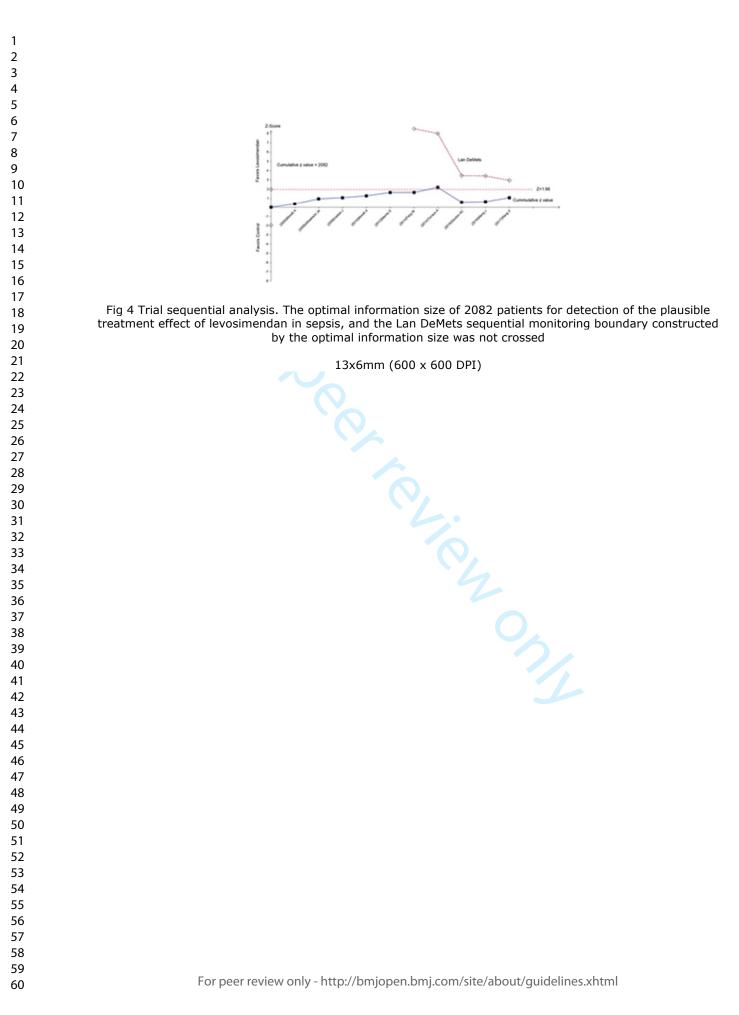
22x20mm (600 x 600 DPI)

	Levosime	ndan	Contr	lo		Odds Ratio	Odds Ratio	Risk of Bias
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Random, 95% Cl	M-H. Random, 95% Cl	ABCDEF
Alhashemi JA 2009	10	21	13	21	4.5%	0.56 [0.16, 1.91]		2 2 🔴 2 🖷 2
Fang M 2014	7	18	8	18	3.9%	0.80 [0.21, 3.00]		• ? ? ? • •
Gordon AC 2016	89	258	79	256	50.4%	1.18 [0.82, 1.71]		
Memis D 2012	2	15	5	15	2.0%	0.31 [0.05, 1.93]		22222
Meng J 2016	6	19	7	19	3.8%	0.79 [0.21, 3.03]		• ? • ? • •
Morelli A 2005	7	15	7	13	3.1%	0.75 [0.17, 3.33]		22220
Morelli A 2010	13	20	15	20	3.7%	0.62 [0.16, 2.43]		220200
Torraco A 2014	6	13	11	13	2.0%	0.16 [0.02, 1.00]		222200
Vaitsis J 2009	14	23	13	19	4.2%	0.72 [0.20, 2.58]		222200
Wang X 2017	33	120	39	120	22.4%	0.79 [0.45, 1.37]		• ? • ? • •
Total (95% CI)		522		514	100.0%	0.89 [0.69, 1.16]	+	
Total events	187		197					
Heterogeneity: Tau ² = Test for overall effect: Risk of bias legend.			= A (h =	0.52); I	- = 0%	0.1 Favours	0.2 0.5 1 2 5 1 [levosimendan] Favours [control]	0
(A) Random sequence	osceration	Inductio	n hine)					
(B) Allocation conceals								
(C) Blinding of particip				non hia	a)			
(D) Blinding of outcom								
(E) Incomplete outcom				·				
(F) Selective reporting			/					
(G) Other bias	frebound n							

Fig 2 The effect of levosimendan on mortality in severe sepsis and septic patients.

21x10mm (600 x 600 DPI)

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright


A

~							
	Levosime	ndan	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Random. 95% CI	M-H. Random, 95% Cl
2.2.2 Patients with Ca	rdiac Dysfu	inction					
Fang M 2014	7	18	8	18	3.9%	0.80 [0.21, 3.00]	
Meng J 2016	6	19	7	19	3.8%	0.79 [0.21, 3.03]	
Morelli A 2005	7	15	7	13	3.1%	0.75 [0.17, 3.33]	
Vaitsis J 2009	14	23	13	19	4.2%	0.72 [0.20, 2.58]	
Subtotal (95% CI)		75		69	15.0%	0.76 [0.39, 1.50]	
Total events	34		35				
Heterogeneity: Tau ² = (0.00; Chi ² =	0.02, df	= 3 (P = 1	1.00); 1	² = 0%		
Test for overall effect: 2	Z = 0.78 (P =	= 0.43)					
2.2.3 Patients with He	terogenous	a Cardia	c Functio	on			
Alhashemi JA 2009	10	21	13	21	4.5%	0.56 [0.16, 1.91]	
Gordon AC 2016	89	258	79	256	50.4%	1.18 [0.82, 1.71]	
Memis D 2012	2	15	5	15	2.0%	0.31 [0.05, 1.93]	· · · · · · · · · · · · · · · · · · ·
Morelli A 2010	13	20	15	20	3.7%	0.62 [0.16, 2.43]	
Torraco A 2014	6	13	11	13	2.0%	0.16 [0.02, 1.00]	·
Wang X 2017	33	120	39	120	22.4%	0.79 [0.45, 1.37]	
Subtotal (95% CI)		447		445	85.0%	0.75 [0.48, 1.19]	
Total events	153		162				
Heterogeneity: Tau ² = (0.11; Chi ² =	7.87, df	= 5 (P = (0.16); 1	² = 36%		
Test for overall effect: 2	Z = 1.20 (P =	= 0.23)					
Total (95% CI)		522		514	100.0%	0.89 [0.69, 1.16]	-
Total events	187		197				
Heterogeneity: Tau ² = 0	0.00; Chi ² =	8.13, df	= 9 (P = (0.52); 1	² = 0%		0.2 0.5 1 2 5
Test for overall effect: 2	Z = 0.86 (P =	= 0.39)					0.2 0.5 1 2 5 Favours [levosimendan] Favours [control]
		- 0.00	df = 1 (P)	= 0.98), $I^2 = 0\%$		ravours (control)

	Levosime	ndan	Dobutar	nine		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Random, 95% CI	M-H. Random, 95% CI
2.5.1 Compared with	Dobutamin	e					
Alhashemi JA 2009	10	21	13	21	4.5%	0.56 [0.16, 1.91]	
Fang M 2014	7	18	8	18	3.9%	0.80 [0.21, 3.00]	
Memis D 2012	2	15	5	15	2.0%	0.31 [0.05, 1.93]	
Meng J 2016	6	19	7	19	3.8%	0.79 [0.21, 3.03]	
Morelli A 2005	7	15	7	13	3.1%	0.75 [0.17, 3.33]	
Morelli A 2010	13	20	15	20	3.7%	0.62 [0.16, 2.43]	
Vaitsis J 2009	14	23	13	19	4.2%	0.72 [0.20, 2.58]	
Subtotal (95% CI)		131		125	25.2%	0.65 [0.39, 1.10]	
Total events	59		68				
Heterogeneity: Tau ² =	0.00; Chi ² =	0.93, df	= 6 (P = 0	.99); l ²	= 0%		
Test for overall effect:	Z = 1.62 (P =	= 0.11)					
2.5.2 Compared with	Standard T	herapy					
Gordon AC 2016	89	258	79	256	50.4%	1.18 [0.82, 1.71]	
Gordon AC 2016 Torraco A 2014	89 6	258 13	79 11	256 13	50.4% 2.0%	1.18 [0.82, 1.71] 0.16 [0.02, 1.00]	·
							·
Torraco A 2014	6	13	11	13	2.0%	0.16 [0.02, 1.00]	
Torraco A 2014 Wang X 2017	6	13 120	11	13 120	2.0% 22.4%	0.16 [0.02, 1.00] 0.79 [0.45, 1.37]	
Torraco A 2014 Wang X 2017 Subtotal (95% CI) Total events	6 33 128	13 120 391	11 39 129	13 120 389	2.0% 22.4% 74.8%	0.16 [0.02, 1.00] 0.79 [0.45, 1.37]	
Torraco A 2014 Wang X 2017 Subtotal (95% CI)	6 33 128 0.17; Chi ² =	13 120 391 5.32, df	11 39 129	13 120 389	2.0% 22.4% 74.8%	0.16 [0.02, 1.00] 0.79 [0.45, 1.37]	
Torraco A 2014 Wang X 2017 Subtotal (95% CI) Total events Heterogeneity: Tau ² =	6 33 128 0.17; Chi ² =	13 120 391 5.32, df	11 39 129	13 120 389 0.07); I ²	2.0% 22.4% 74.8%	0.16 [0.02, 1.00] 0.79 [0.45, 1.37]	
Torraco A 2014 Wang X 2017 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect:	6 33 128 0.17; Chi ² =	13 120 391 5.32, df = 0.54)	11 39 129	13 120 389 0.07); I ²	2.0% 22.4% 74.8%	0.16 [0.02, 1.00] 0.79 [0.45, 1.37] 0.82 [0.44, 1.55]	
Torraco A 2014 Wang X 2017 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI) Total events	6 33 128 0.17; Chi ² = Z = 0.61 (P 187	13 120 391 5.32, df = 0.54) 522	11 39 129 = 2 (P = 0 197	13 120 389 0.07); I ² 514	2.0% 22.4% 74.8% = 62% 100.0%	0.16 [0.02, 1.00] 0.79 [0.45, 1.37] 0.82 [0.44, 1.55]	
Torraco A 2014 Wang X 2017 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI)	6 33 128 0.17; Chi ² = Z = 0.61 (P 187 0.00; Chi ² =	13 120 391 5.32, df = 0.54) 522 8.13, df	11 39 129 = 2 (P = 0 197	13 120 389 0.07); I ² 514	2.0% 22.4% 74.8% = 62% 100.0%	0.16 [0.02, 1.00] 0.79 [0.45, 1.37] 0.82 [0.44, 1.55]	0.05 0.2 1 5 20 Favours [levosimendan] Favours [dobutamine]

Fig 3 Sub-group analysis. (A) Levosimendan in patients with definite cardiac dysfunction vs. patients with heterogeneous cardiac function (OR 0.76, 95% CI 0.35-1.50, P = 0.43 vs. OR 0.75, 95% CI 0.48-1.19, P = (0.39); (B) Levosimendan vs. dobutamine (OR 0.65, 95% CI 0.39-1.10, P = 0.11) or standard therapy (OR 0.82, 95% CI 0.44-1.55, P = 0.54).

30x36mm (600 x 600 DPI)

BMJ

5
9
ĕ
÷
ິດ
÷
Ĕ
р
S
he
ď
g
S,
5
\rightarrow
မ္တ
ž
ĭ
÷
ŏ
Φ
ぇ
8
1
7
2
19
ŵ
8
2
ĭ
ω
Ó
\leq
a
<u>c</u>
5
2
Ξ
œ
õ
≦
≓
ă
ade
aded
aded fr
aded fror
aded from
aded from ht.
aded from http.
aded from http://l
aded from http://br
aded from http://bmj
aded from http://bmjop
baded from http://bmjope
aded from http://bmjopen.
aded from http://bmjopen.br
Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj
aded from http://bmjopen.bmj.c
aded from http://bmjopen.bmj.cor
aded from http://bmjopen.bmj.com/
aded from http://bmjopen.bmj.com/ o
aded from http://bmjopen.bmj.com/ on
aded from http://bmjopen.bmj.com/ on A
aded from http://bmjopen.bmj.com/ on Apr.
aded from http://bmjopen.bmj.com/ on April ;
aded from http://bmjopen.bmj.com/ on April 23
aded from http://bmjopen.bmj.com/ on April 23, .
aded from http://bmjopen.bmj.com/ on April 23, 20
baded from http://bmjopen.bmj.com/ on April 23, 202
aded from http://bmjopen.bmj.com/ on April 23, 2024 .
aded from http://bmjopen.bmj.com/ on April 23, 2024 by
aded from http://bmjopen.bmj.com/ on April 23, 2024 by g
aded from http://bmjopen.bmj.com/ on April 23, 2024 by gu
aded from http://bmjopen.bmj.com/ on April 23, 2024 by gues
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest.
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. P
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Pro
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Prote
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protect
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected I
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by c
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by cop
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copy.
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyric
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyrigh
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

	Levosime	ndan	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events				Weight	M-H. Random, 95% Cl	
2.4.1 Mortality >= 50%							
Alhashemi JA 2009	10	21	13	21	4.5%	0.56 [0.16, 1.91]	
Morelli A 2005	7	15	7	13	3.1%	0.75 [0.17, 3.33]	
Morelli A 2010 Torraco A 2014	13	20 13	15 11	20 13	3.7%	0.62 [0.16, 2.43] 0.16 [0.02, 1.00]	
Vaitsis J 2009	14	23	13	19	4.2%	0.72 [0.20, 2.58]	
Subtotal (95% CI)		92		86	17.5%	0.55 [0.30, 1.03]	-
Total events	50		59				
Heterogeneity: Tau ² = Test for overall effect:	0.00; Chi ² = Z = 1.86 (P :	2.13, df = = 0.06)	: 4 (P = ().71); P	° = 0%		
2.4.2 Mortality < 50%							
Fang M 2014	7	18	8	18	3.9%	0.80 [0.21, 3.00]	
Gordon AC 2016 Memis D 2012	89 2	258 15	79 5	256 15	50.4% 2.0%	1.18 [0.82, 1.71] 0.31 [0.05, 1.93]	
Meng J 2016	6	19	7	19	3.8%	0.79 [0.21, 3.03]	
Wang X 2017	33	120	39	120	22.4%	0.79 [0.45, 1.37]	
Subtotal (95% CI)		430		428	82.5%	0.99 [0.74, 1.32]	•
Total events Heterogeneity: Tau ² = Test for overall effect:			138 = 4 (P = ().51); F	2 = 0%		
Total (95% CI)	105	522	105	514	100.0%	0.89 [0.69, 1.16]	•
Total events Heterogeneity: Tau ² =	187	9 13 df-	197	52). 5	8 - 0%		+ + + +
Test for overall effect:			v(r = (- 0 /0		0.02 0.1 1 10
Test for subaroup diffe			lf = 1 (P	= 0.10	. I ² = 63.0	%	Favours [experimental] Favours [control]
-							
В							
0	Levosime		Contr		14/-1-1-4	Odds Ratio	Odds Ratio
Study or Subgroup 2.3.1 Average Age >=	Events	Total	Events	Total	Weight	M-H. Random, 95% Cl	M-H. Random, 95% CI
Gordon AC 2016	89	258	79	256	52.8%	1.18 [0.82, 1.71]	
Morelli A 2010	13	20	15	20	3.8%	0.62 [0.16, 2.43]	
Torraco A 2014	6	13	11	13	2.1%	0.16 [0.02, 1.00]	· · · · · · · · · · · · · · · · · · ·
Vaitsis J 2009 Wang X 2017	14 33	23 120	13 39	19 120	4.4% 23.5%	0.72 [0.20, 2.58] 0.79 [0.45, 1.37]	
Subtotal (95% CI)	00	434	00	428	86.6%	0.84 [0.54, 1.30]	
Total events	155		157				
Heterogeneity: Tau ² = Test for overall effect:			= 4 (P = (0.20); F	² = 33%		
2.3.2 Average Age <	65yr						
Fang M 2014	7	18	8	18	4.1%	0.80 [0.21, 3.00]	
Memis D 2012	2	15	5	15	2.1%	0.31 [0.05, 1.93]	
Meng J 2016	6	19	7	19	4.0%	0.79 [0.21, 3.03]	
Morelli A 2005 Subtotal (95% CI)	7	15 67	7	13 65	3.2% 13.4%	0.75 [0.17, 3.33] 0.67 [0.32, 1.40]	
Total events	22		27				
Heterogeneity: Tau ² = Test for overall effect:			: 3 (P = 0).84); l	² = 0%		
Total (95% CI)	195	501		493	100.0%	0.91 [0.70, 1.19]	+
Total events Heterogeneity: Tau ² =	177 0.00: Chi ² =	7 55 df -	184 8 (P = (1 4 8 1 - 1	2 = 0%		+ + + +
Test for overall effect:			0 (r = (,.40 <u>)</u> , I	0.10		0.05 0.2 1 5
Test for subaroup diffe	rences: Chi ^a	= 0.26. d	lf = 1 (P	= 0.61). I ² = 0%		Favours [experimental] Favours [control]
Study	Year	Age† (years)				
Alhashemi JA [22]	2009	NR					
Fang M [26]	2014	61.4±7	.1 in leve	osimen	dan group	; 61.7±7.3 in dobutamine	group
Gordon AC [28]	2016	67 (58-	75) in le	vosime	ndan grou	up; 69 (58-77) in control g	group
Memis D [24]	2012					oup; 56.27±14.93 in dob	
	2012						
Meng J [27]						p; 50.2±13.6 in dobutam	
Morelli A [30]	2005					; 62.4±7.3 in dobutamine	
Morelli A [23]	2010	68 (55-	74) in le	vosime	ndan grou	up; 66 (54-78) in control g	group
	2014						
Torraco A [25]	2014	70 (58-	80) in le	vosime	ndan grou	up; 68 (57-79) in control g	group
Torraco A [25] Vaitsis J [21]	2014	70 (58- 66.1±7		vosime	ndan grou	ip; 68 (57-79) in control g	group
		66.1±7	.54			ip; 68 (57-79) in control g	

40x64mm (600 x 600 DPI)

 Wang X [29]
 2017
 70 (67-74) in levosimendan group; 69 (67-73) in control group

 † Age presented as mean ± SD or median (IQR)

- $\frac{22}{23}$ 1. The effect of levosimendan on lactate reduction. The lactate levels (mmol/L) after treatment were compared.

23										
24		Levo	simeno	lan	С	ontrol			Mean Difference	Mean Difference
25	Study or Subgroup	Mean			Mean			Weight		IV, Random, 95% Cl
26	Alhashemi JA 2009	2.1	0.92	21		1.37	21	16.0%	-1.40 [-2.11, -0.69]	_ -
27	Fang M 2014	3.4	1.1	18	5.2	1.2	18	15.5%	-1.80 [-2.55, -1.05]	
28	Gordon AC 2016	1.4	0.74	236		0.82	236	20.3%	-0.30 [-0.44, -0.16]	+
29	Meng J 2016	3.6	0.8	19	4.3	1	19	17.3%	-0.70 [-1.28, -0.12]	
30	Morelli A 2005	3.7	0.7	15	5.2	1	13	16.5%	-1.50 [-2.15, -0.85]	
31	Morelli A 2010	1.9	0.96	20	1.6	1.7	20	14.4%	0.30 [-0.56, 1.16]	
32										
33	Total (95% CI)			329				100.0%	-0.89 [-1.48, -0.29]	
34	Heterogeneity: Tau ² =				= 5 (P <	0.000	01); l² =	= 87%		-4 -2 0 2 4
35	Test for overall effect:	Z = 2.93	(P = 0.	.003)						Favours [levosimendan] Favours [control]
36										
37										
37 38										
39										
40										
41										
42										
43										
44										
45										
46										
47										
48										
49										
50										
51										
52										
53										
54										
55										
56										
57										
58										
59			_							/
60			For	beer re	eview	only -	http:/	/bmjope	en.bmj.com/site/abc	out/guidelines.xhtml

4
5
6

 $^{23}_{24}$ 2. The effect of levosimendan on lactate reduction. The lactate level (mmol/L) changes were compared.

24										
25		Exp	erimen	tal	C	ontrol			Mean Difference	Mean Difference
26	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI
27	Fang M 2014	-1.7	1.01	18	-0.1	1.06	18	25.0%	-1.60 [-2.28, -0.92]	
28	Gordon AC 2016		21.85	236		24.94	236	2.0%	-0.20 [-4.43, 4.03]	• • •
29	Meng J 2016	-1.5	1.06	19	-0.4	1.05	19	25.1%	-1.10 [-1.77, -0.43]	
30	Morelli A 2005	-1.2	1.04	15	0	1.05	13	22.8%	-1.20 [-1.98, -0.42]	
31	Morelli A 2010	-0.4	1.09	20	-0.3	1.07	20	25.2%	-0.10 [-0.77, 0.57]	
32	Total (95% Cl)			308			306	100.0%	-0.98 [-1.59, -0.37]	\bullet
33	Heterogeneity: Tau ² =	0.27; Cł	ni² = 10.	43, df =	= 4 (P =	0.03); F				
34	Test for overall effect:				,	,,				-2 -1 0 1 2 Favours [Levosimendan] Favours [Control]
35										
36										
37										
38										
39 40										
41										
42										
43										
44										
45										
46										
47										
48										
49										
50										
51										
52										
53										
54										
55										
56										
57										
58										
59			_			,		4		
60			For	peer r	eview	only -	http:/	/bmjope	en.bmj.com/site/abo	out/guidelines.xhtml

16				
17				
18				
19				
20				
21				
22				
23	3. The effect of levosimendan on ca	ardiac index (C	I). The CIs (L/min/m ²) after treatment	nent were compared.
24				
25	levosimendan	Control	Mean Difference	Mean Difference

27										
25		levos	imend	lan	Co	ontrol			Mean Difference	Mean Difference
26-	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
27	Fang M 2014	4.6	0.7	18	3.6	0.7	18	14.8%	1.00 [0.54, 1.46]	
28	Gordon AC 2016	3.5	1.4	69	3.3	1	66	16.9%	0.20 [-0.21, 0.61]	
29	Meng J 2016	3.5	0.3	19	3.1	0.4	19	28.0%	0.40 [0.18, 0.62]	
30	Morelli A 2005	4.5	0.2	15	4.2	0.2	13	33.4%	0.30 [0.15, 0.45]	
31	Morelli A 2010	4.1	1.19	20	4.1	1.26	20	7.0%	0.00 [-0.76, 0.76]	
32	Total (95% CI)			141			126	100.0%	0.39 [0.17, 0.62]	
	Heterogeneity: Tau ² =	0.02.04	i2 – 0 7		4 (D = (0.39 [0.17, 0.02]	
33	Test for overall effect:				4 (P – (J.05),	1 097	0		-1 -0.5 0 0.5 1
34	rest for overall effect.	2 - 3.47	(F = 0	.0005)						Favours [control] Favours [levosimendan]
35										
36										
37										
38										
39										
40										
41										
42										
43										
44										
45										
46										
40										
48										
49										
50										
51										
52										
53										
54										
55										
56										
57										
58										
59										
60			For	oeer re	eview (only -	http:/	/bmjop	en.bmj.com/site/abo	out/guidelines.xhtml
00						-	-		-	

3
4
5
6
7
8
9
10
11

 $^{22}_{23}$ 4. The effect of levosimendan on cardiac index (CI). The CI (L/min/m²) changes after treatment were compared.

24										
		Levo	simend	lan	с	ontrol			Mean Difference	Mean Difference
25	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
26	Fang M 2014	1.4	0.66	18	0.2	0.66	18	11.6%	1.20 [0.77, 1.63]	→
27	Gordon AC 2016	0.6	11.78	69	0.1	9.59	66	0.2%	0.50 [-3.12, 4.12] 🕇	······································
28	Meng J 2016	0.5	0.26	19	0.2	0.36	19	24.4%	0.30 [0.10, 0.50]	
29	Morelli A 2005	0.4	0.2	15		0.26	13	26.3%	0.40 [0.23, 0.57]	
30	Morelli A 2010	0.5	1.12	20		1.26	20	5.0%	0.30 [-0.44, 1.04]	
31	Vaitsis J 2009	1.79	0.16	23	1.4	0.12	19	32.4%	0.39 [0.31, 0.47]	-
32				404			455	400.00/	0.40.00.00.0.041	
33	Total (95% CI) Heterogeneity: Tau² =			164		0.04		100.0%	0.46 [0.28, 0.64]	
34	Test for overall effect: 2					0.01);	12 = 65	%		-1 -0.5 0 0.5 1
35	rest for overall effect.	2 - 5.03	(P < 0.0	00001)						Favours [control] Favours [levosimendan]
36										
37										
38										
39										
40										
40 41										
42										
43										
44										
45										
46										
47										
48										
49										
50										
51										
52										
53										
54										
55										
56										
57										
58										
59										
60			For p	beer re	eview o	only -	http:/	/bmjope	en.bmj.com/site/abou	ıt/guidelines.xhtml

22
23 5. The effect of levosimendan on left ventricular ejection fraction (LVEF). The LVEF (%) after treatment were compared.

25										
26		Levos	imond	lan	C	ontrol			Mean Difference	Mean Difference
20	Study or Subgroup	Mean			Mean			Weight	IV, Random, 95% CI	IV, Random, 95% Cl
27 - 28	Fang M 2014	46.3	6.8	18	38.3	8.5	18	-	8.00 [2.97, 13.03]	
	Meng J 2016	45.6	7.6	19	39.1	8.5	19	39.8%	6.50 [1.37, 11.63]	
29	Morelli A 2005	45.4	8.4	15	40.8		13	18.8%	4.60 [-2.87, 12.07]	+
30										
31	Total (95% CI)			52				100.0%	6.76 [3.53, 10.00]	
32	Heterogeneity: Tau ² =				2 (P = 0).75); I	² = 0%		-	-50 -25 0 25 50
33	Test for overall effect: 2	Z = 4.10 ((P < 0.0	0001)						
34										
35										
36										
37										
38										
39										
40										
41										
42										
43										
44										
45										
46										
47										
48										
49										
50										
51										
52										
53										
54										
55										
56										
57										
58										
59			Form		viou		http:/	/bmion	n hmi com/site/sha	ut/auidalinas.vhtml
60			FULP	veer re	eview (лпу -	nup:/	лопторе	en.bmj.com/site/abo	ut/guidelifies.xfitffi

4
5
6
7

 $^{23}_{24}$ 6. The effect of levosimendan on left ventricular ejection fraction (LVEF). The LVEF (%) changes were compared

24										
25		Levo	simend	lan	c	ontrol			Mean Difference	Mean Difference
26	Study or Subgroup				Mean		Total	Weight		IV, Random, 95% Cl
27	Fang M 2014	9.2	6.01	18	1.5	7.62	18	24.4%	7.70 [3.22, 12.18]	
28	Meng J 2016	9.4	6.71	19	1.9	7.93	19	23.8%	7.50 [2.83, 12.17]	
29	Morelli A 2005	8.3	7.37	15	3.5	10.25	13	18.2%	4.80 [-1.90, 11.50]	+
30	Vaitsis J 2009	4.8	0.2	23	3.5	0.7	19	33.5%	1.30 [0.97, 1.63]	•
31										
32	Total (95% CI)			75				100.0%	4.98 [0.75, 9.21]	
33	Heterogeneity: Tau ² =				f = 3 (P	= 0.001); l² = 8	1%		-20 -10 0 10 20
34	Test for overall effect:	Z = 2.31	(P = 0.	02)						Favours [control] Favours [levosimendan]
35										
36										
37										
38										
39										
40										
40 41										
41										
43										
44										
45										
46										
47										
48										
49										
50										
51										
52										
53										
54										
55										
56										
57										
58										
59			_							
60			Forp	beer r	eview	only -	http://	'bmjope	n.bmj.com/site/abou	t/guidelines.xhtml

²³ ²⁴ 7. The effect of levosimendan on left ventricular stroke work index (LVSWI). The LVSWIs (g^*m/m^2) after treatment were ²⁵

25	compared									
26		Levos				ontro			Mean Difference	Mean Difference
27 -	Study or Subgroup	Mean						Weight		IV, Random, 95% Cl
28	Fang M 2014	33.7	2.4	18			18	38.9%	5.50 [4.26, 6.74]	
29	Meng J 2016	36.9	2.7	19	39.1		19	25.3%	-2.20 [-6.21, 1.81]	
30	Morelli A 2005	33.9	3.7	15	27.9	1	13	35.9%	6.00 [4.05, 7.95]	
31	Total (95% CI)			52			50	100.0%	3.73 [0.49, 6.98]	◆
32	Heterogeneity: Tau ² =				= 2 (P =	0.00	09); l² :	= 86%	-	-50 -25 0 25 50
33	Test for overall effect: 2	Z = 2.25 ((P = 0.	.02)						Favours [control] Favours [levosimendan]
34										
35										
36										
37										
38										
39										
40										
41										
42										
43										
44										
45										
46										
47										
48										
49										
50										
51										
52										
53										
54										
55										
56										
57										
58										
59										
60			For p	beer re	eview o	only	- http:	//bmjop	en.bmj.com/site/abc	out/guidelines.xhtml
00						-	-		-	

4	
5	
6	
7	
8	
9	
1	0
1	1
1	2
1	3
1	4

8. The effect of levosimendan on left ventricular stroke work index (LVSWI). The LVSWI (g*m/m2) changes were compared

24										
25		Levo	simend	an	с	ontrol			Mean Difference	Mean Difference
26	Study or Subgroup	Mean						Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
27	Fang M 2014	4.6	2.82	18		1.37	18	53.2%	5.20 [3.75, 6.65]	
28	Meng J 2016	5.4	2.38	19		7.93	19	8.1%	3.50 [-0.22, 7.22]	
29	Morelli A 2005	4.3	3.34	15	-0.6	1.25	13	33.6%	4.90 [3.08, 6.72]	
30	Morelli A 2010	8	7.52	20	2	7.52	20	5.1%	6.00 [1.34, 10.66]	
31										
32	Total (95% CI)			72				100.0%	5.00 [3.95, 6.06]	
33	Heterogeneity: Tau ² =				3 (P = ().83);	$l^2 = 0\%$			-10 -5 0 5 10
34	Test for overall effect:	Z = 9.28	(P < 0.0	JUUU1)						Favours [control] Favours [levosimendan]
35										
36										
37										
38										
39										
40										
41										
42										
43										
44										
45										
46										
47										
48										
49										
50										
51										
52										
53										
53 54										
55										
55 56										
50 57										
58										
59			For p	eer re	view	only -	http:/	/bmione	en.bmj.com/site/abo	ut/auidelines.xhtml
60			ivip				····p·/	, Sinjopi		al galacines Andri

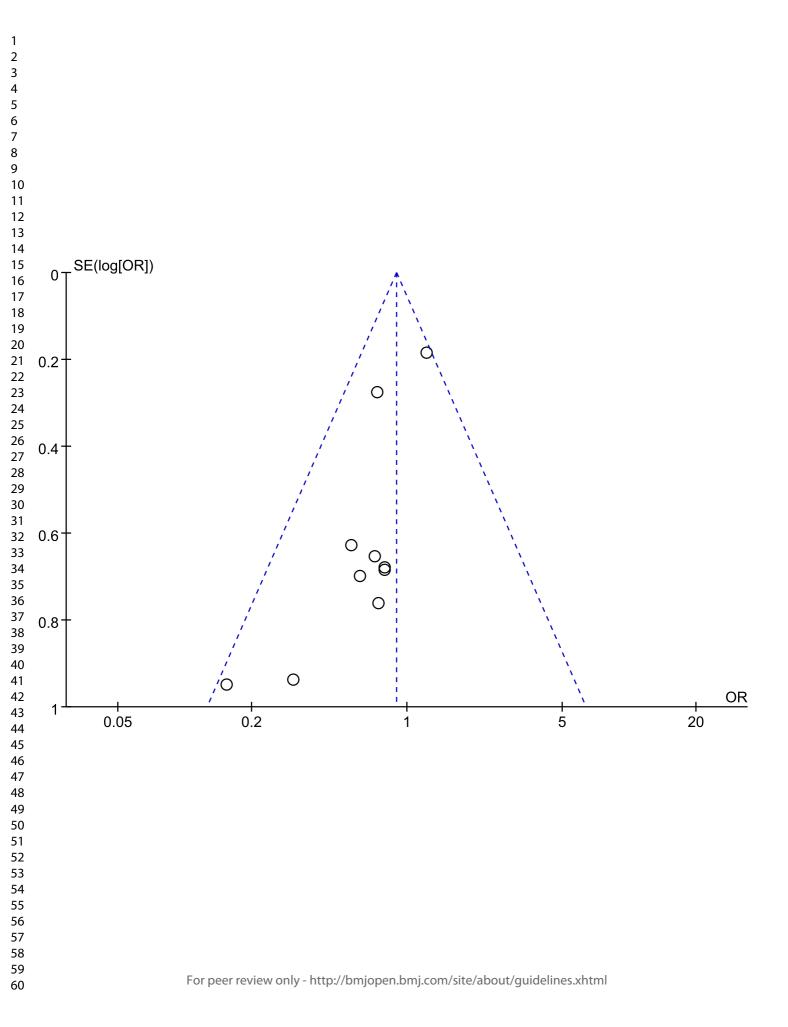
 $^{23}_{24}$ 9. The effect of levosimendan on fluid infusion. The standard mean difference of fluid infsuion were compared.

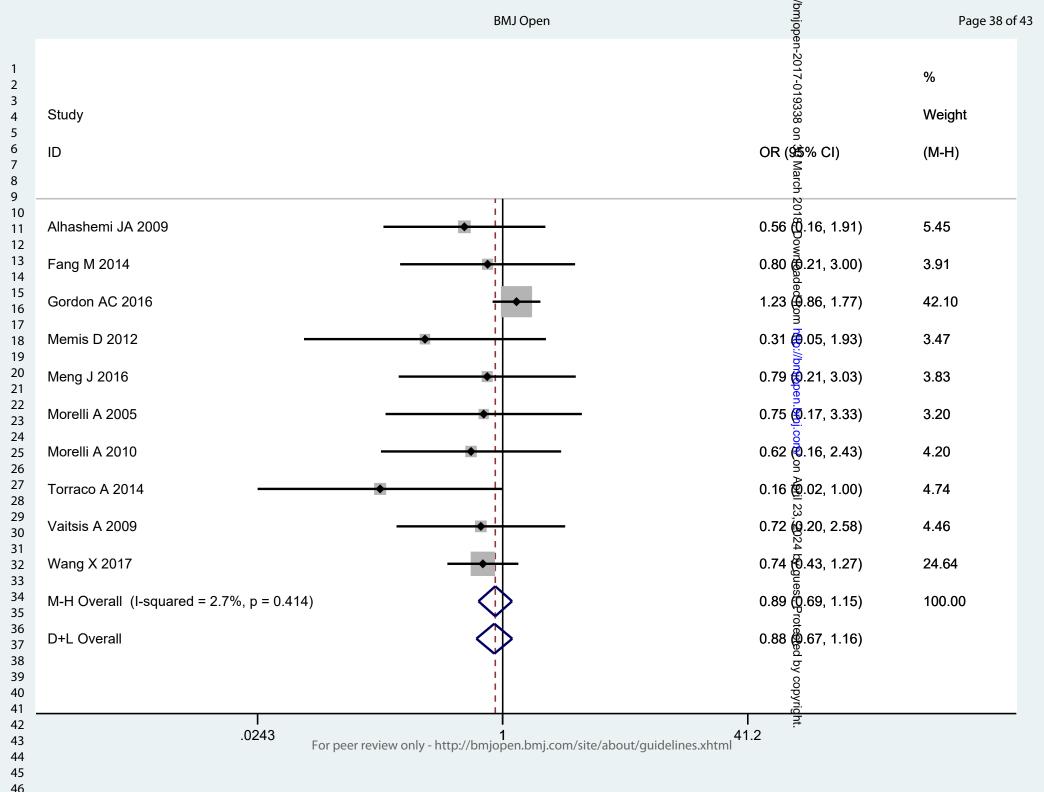
25										
26		Levo	simend	an	с	ontrol			Std. Mean Difference	Std. Mean Difference
	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
27	Fang M 2014	5,746	420	18	4,156.7	215	18	24.3%	4.66 [3.34, 5.97]	
28	Gordon AC 2016	1,847	1,664	239	1,718	1,010	238	27.2%	0.09 [-0.09, 0.27]	
29	Morelli A 2005	5,907	330	15	4,311	136	13	22.0%	5.98 [4.13, 7.82]	_ +
30	Morelli A 2010	5,700	1,000	20	4,850	777.78	20	26.5%	0.93 [0.27, 1.59]	
31	T () (050(O))							400.00/	0 70 70 75 / 001	
32	Total (95% CI)	0.70.01		292	0 (D) 0	00004)		100.0%	2.72 [0.75, 4.69]	
33	Heterogeneity: Tau ² = Test for overall effect:				3 (P < 0.	.00001);	12 = 979	/o		-4 -2 0 2 4
34	rest for overall effect.	2 - 2.71	(= - 0.0	507)						Favours [levosimendan] Favours [control]
35										
36										
37										
38										
30 39										
40										
41										
42										
43										
44										
45										
46										
47										
48										
49										
50										
51										
52										
53										
54										
55										
56										
57										
58										
59			For	peer	review	only - h	ttp://	bmiope	n.bmj.com/site/abou	t/quidelines.xhtml
60			1.01	PCCI		only 1	···P·//	Sinjopei		o goro en restartanti

3	
4	
5	
6	

²²₂₃ 10. The effect of levosimendan on norepinephrine dose. The norepinephrine doses (μ g/kg/min) after treatment were compared.

25										
25								Mean Difference	Mean Difference	
	Study or Subgroup	Mean						Weight		IV, Random, 95% Cl
27	Fang M 2014	0.33	0.05	18	0.33		18	30.8%	0.00 [-0.04, 0.04]	Ī
28	Meng J 2016	0.36	0.11	19	0.37		19	29.4%	-0.01 [-0.07, 0.05]	_ 1
29	Morelli A 2005	0.02		15	0.23		13	30.4%	-0.21 [-0.25, -0.17]	•
30	Morelli A 2010	0.3	0.59	20	0.4	0.59	20	9.4%	-0.10 [-0.47, 0.27]	
31				70			70	400.00/	0.001.0.04.0.001	
32	Total (95% CI)		:2 - FF	72		0 000		100.0%	-0.08 [-0.21, 0.06]	
33	Test for overall effect: 2		Chi ² = 55.77, df = 3 (P < 0.00001); l ² = 9 12 (P = 0.26)							-1 -0.5 0 0.5 1
34	rest for overall effect.	2 - 1.12	(P - 0	.20)						Favours [levosimendan] Favours [control]
35										
36										
37										
38										
39										
40										
41										
42										
42										
43 44										
44 45										
45 46										
40 47										
47 48										
40 49										
50										
51										
52										
53										
54										
55										
56										
57										
58										
59			_							/
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml								


20
21
22
23 11. The effect of levosimendan on norepinephrine dose. The norepinephrine dose (μg/kg/min) changes were compared.


24													
25		l evo	simenda	an	C	ontrol			Mean Difference	Mean Difference			
26	Study or Subgroup	Mean			Mean		Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl			
27	Meng J 2016	-0.06	0.12	19		0.1	19	39.8%	-0.03 [-0.10, 0.04]				
28	Morelli A 2005		0.066	15	0	0.056	13	48.2%	0.00 [-0.05, 0.05]	†			
29	Morelli A 2010	-0.1	0.56	20	0	0.51	20	5.4%	-0.10 [-0.43, 0.23]				
30	Torraco A 2014	-0.15	0.37	13	0.23	0.4	13	6.6%	-0.38 [-0.68, -0.08]				
31	Total (95% CI)			67			65	100.0%	-0.04 [-0.12, 0.04]	•			
32	Heterogeneity: Tau ² =	0.00: Ch	i ² = 6.68		3 (P = 0	.08): l²			•••••[•••• <u>-</u> , ••••·]				
33	Test for overall effect: $Z = 1.03$ (P = 0.30) (P = 0.08), P =												
34													
35													
36													
37													
38													
39 40													
40 41													
42													
43													
44													
45													
46													
47													
48													
49													
50													
51													
52													
53													
54													
55													
56													
57													
58													
59			Forr	eer r	view	only - I	http://	hmione	n hmi com/site/abo	uut/auidelines.xhtml			
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml												

5	5
6	5
7	7

23 12. The effect of levosimendan on length of ICU stay. The length of ICU stay (day) were compared.
 24

24											
25		Levo	simend	dan	c	ontrol			Mean Difference	Mean Difference	
26_	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl	
27	Gordon AC 2016	7.3	8.59	258	8.3	7.11	257	37.9%	-1.00 [-2.36, 0.36]	•	
28	Memis D 2012		11.05	15	10.2	5.38	15	11.8%	5.40 [-0.82, 11.62]		
29	Meng J 2016	12.6	10.1	19	13.3	10.5	19	10.9%	-0.70 [-7.25, 5.85]		
30	Morelli A 2010	14	5.93	20		28.15	20		-13.00 [-25.61, -0.39]		
31	Wang X 2017	17	6.67	120	20	6.67	120	35.8%	-3.00 [-4.69, -1.31]	-	
32	Total (95% CI)			432				100.0%	-1.36 [-3.87, 1.14]	◆	
33	Heterogeneity: Tau ² = 3.83; Chi ² = 11.46, df = 4 (P = 0.02); l ² = 65% -20 -10 0 10 20										
34	Test for overall effect:	Z = 1.07	(P = 0.	.29)						Favours [levosimendan] Favours [control]	
35											
36											
37											
38											
39											
40 41											
41											
43											
44											
45											
46											
47											
48											
49 50											
50 51											
52											
53											
54											
55											
56											
57											
58											
59											
60			For	peer r	eview	only -	http://	/bmjope	en.bmj.com/site/abo	out/guidelines.xhtml	

37

38

39

40 41

2						
3						
4			ites, given named stud			
5		Lower CI Limit	○ Estimate	Upper (
6	Alhashemi JA 2009		·····O			
7	Eang M 2014					
8	Fang M 2014		0			
9 10	Gordon AC 2016					
10						
12	Memis D 2012		+			
13	Mong 12016					
14	Meng J 2016	· · · · · · · · · · · · · · · · · · ·				
15	Morelli A 2005		·····			
16						
17	Morelli A 2010					
18	Torraco A 2014			\frown		
19	1011400 / 2014		1	0		
20 21	Vaitsis A 2009					
21						
23	Wang X 2017	······	G			
24	0	.45 0.	67 0.88	3	1.16	1.24
25						
26						
27	Study omit	ted	Estimate	[95% Con	f. Interval]	
28	Alhashemi	JA 2009	0.874	0.646	1.182	
29	Fang M 201	14	0.827	0.597	1.145	
30	Gordon AC		0.653	0.452	0.943	
31 32	Memis D 20		0.921	0.710	1.195	
33						
34	Meng J 201		0.827	0.598	1.145	
35	Morelli A 20)05	0.831	0.602	1.146	
36	Morelli A 20)10	0.850	0.621	1.164	
27						

Torraco A 2014

Vaitsis A 2009

Wang X 2017

Combined

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

0.933

0.836

0.876

0.881

0.719

0.605

0.618

0.671

1.211

1.155

1.240

1.157

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

(((((levosimendan) OR simendan) OR Simdax) OR dextrosimendan)) AND ((((sepsis) OR septicemia) OR severe sepsis) OR septic shock)

tor peer teriew only

Methods of imputation of missing data

1. In studies outcomes are presented as median (IQR):

The distribution of outcome is assumed to be normal. Mean is substituted by median, and SD is calculated by the following formula:

$$SD = \frac{IQ_{up} - IQ_{down}}{1.35}$$

2. In studies when baseline and final outcomes are told and presented as $\underline{\text{mean}\pm\text{SD}}$ (mean_B±SD_B and mean_F±SD_F), and the changes are unknown. The mean (mean_C) and SD (SD_C) of the changes are calculated by the following formulas:

$$mean_{C} = mean_{F} - mean_{B}$$

$$SD_c = \sqrt{SD_B^2 + SD_F^2 - 2 \times R \times SD_B \times SD_F}$$

Within which, R is called correlation coefficient and is regarded as 0.4 or 0.5 during the calculation, and more values of R (0.2 and 0.8) is used during the sensitivity analysis.

Abbreviations: IQR inter-quartile range, SD standard deviation

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Pg. 1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	Pg. 2-3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	Pg. 4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	Pg. 4-5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	-
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	Pg. 5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	Pg. 5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Pg. 5
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Pg. 5-6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	Pg. 6
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	Pg. 6
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	Pg. 6
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	Pg. 6
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	Pg. 7

Page 42 of 43

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

Page 43 of 43

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	Pg. 7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	Pg. 7
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Pg. 7
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Pg. 7-8
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Pg. 8
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Pg. 8
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	Pg. 8-9
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Pg. 9-10
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	Pg. 10
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	Pg. 10-11
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	Pg. 11-12
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	Pg. 12
FUNDING	·		
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	Pg. 13

41 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. 42 doi:10.1371/journal.pmed1000097 For more information, visit: www.prisma-statement.org.

Page 2 of 2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

BMJ Open

The effect of levosimendan on mortality in severe sepsis and septic shock: a meta-analysis of randomized trials

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-019338.R2
Article Type:	Research
Date Submitted by the Author:	27-Jan-2018
Complete List of Authors:	Chang, Wei; Southeast University Zhongda Hospital, Department of Critical Care Medicine Xie, Jianfeng; School of Medicine, Southeast University, Department of Critical Care Medicine Xu, Jing-Yuan; School of Medicine, Southeast University, Department of Critical Care Medicine Yang, Yi; School of Medicine, Southeast University, Department of Critical Care Medicine
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Intensive care, Cardiovascular medicine, Infectious diseases
Keywords:	sepsis, septic shock, septic cardiomyopathy, levosimendan, dobutamine

Title: The effect of levosimendan on mortality in severe sepsis and septic shock: a meta-analysis of randomized trials Authors: Wei Chang¹, Jian-Feng Xie², Jing-Yuan Xu³, Yi Yang⁴ 1 First author, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing 210009, P. R. China, ewei 0181@126.com 2 Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing 210009, P. R. China, xie820405@126.com 3 Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing 210009, P. R. China, xujingyuanmail@163.com 4 Corresponding author, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing 210009, P. R. China, yiyiyang2004@163.com

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

ABSTRACT

Objective We aim to synthesize the up-to-date randomized trials to investigate the effects of levosimendan on mortality and clinical outcomes in severe sepsis and septic shock.

Methods A collection of databases including PubMed, EMBASE, Cochrane Central register and Web of Science were searched updated to August, 2017. Randomized trials were included when pertaining the use of levosimendan in severe sepsis or septic shock compared with any category of inotropes, or as an adjunct to standard therapy with mortality reported. The primary outcome was the mortality, and the secondary outcomes were clinical performances including serum lactate, cardiac function, vasopressor requirement and fluid infusion.

Results A final of 10 studies with 1036 patients were included in this meta-analysis. The results revealed that levosimendan could not reduce mortality significantly in severe sepsis and septic shock (odds ratio 0.89, 95% CI 0.69-1.16, P = 0.39). Levosimendan use could reduce serum lactate more effectively, enhance cardiac contractibility with increased cardiac index and left ventricular ejection fraction. However, its use could also increase fluid infusion but not reduce norepinephrine dose. No significant benefit in mortality could be observed of levosimendan vs. dobutamine use, or in patients with proved cardiac dysfunction.

Conclusions Current evidence is not sufficient to support levosimendan as superior to dobutamine or as an optimal adjunct in severe sepsis and septic shock. More large-scale randomized trials are necessary for the validation of the levosimendan use in sepsis.

Key words sepsis; septic shock; levosimendan; dobutamine; septic cardiomyopathy

Strengths and Limitations of this Study

1. This article synthesized the up-to-date randomized trials for quantitative analysis of the effect of levosimendan on mortality in severe sepsis and septic shock.

2. Sub-group analyses were conducted to investigate the sub-population of patients who were

likely to benefit most from levosimendan use.

3. Heterogeneity and biases were appraised between each study, and the optimal sample size was

calculated.

4. However, the trials included were of limited sample size and quality, and potentially high

biased.

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

BACKGROUND

6]

Sepsis is still a great challenge to the public health and its mortality increases tremendously when severe sepsis or septic shock occurs^[1]. The incidence of cardiac dysfunction in severe sepsis and septic shock remains as high as 40%-60%^[2], resulted from infectious process, cytokine storm^[3], decreased myocardial perfusion and pulmonary injuries^[4], and is associated with poor outcomes^[5, 1].

Surviving Sepsis Campaign (SSC) International Guidelines (2016) recommended the usage of dobutamine infusion in patients with persistent hypo-perfusion despite adequate fluid loading and the use of vasopressor agents (weak recommendation, low quality of evidence)^[7]. However, its effect on mortality in sepsis is still under debate^[8], and its adverse effects including increased myocardial oxygen consumption and risks of dysrhythmia could not be neglected.

Levosimendan, a calcium sensitizer which could improve myocardial contractibility in the absence of increased oxygen consumption, is regarded as a promising adjunct in the treatment of both cardiac systolic and diastolic dysfunctions^[9] and has been demonstrated to have a beneficial effect on mortality in cardiac peri-operative patients and patients with advanced heart failure ^[10, 11]. Levosimendan was demonstrated as superior to dobutamine and milrinone in restoring cardiac function in septic animal models^[12]. It could also alleviate inflammatory response by

down-regulating NF- κ B-dependent transcription ^[13], inhibiting inducible NO synthetase (iNOS) promoter activity, and reducing NO expression *in vitro*^[14].

Several meta-analyses were conducted to investigate the effect of levosimendan on mortality in sepsis, which revealed a beneficial effect, however with limited sample size^[15]. In this study, we aim to perform an up-to-date meta-analysis to investigate the effect of levosimendan on mortality

in severe sepsis and septic shock.

METHODS

The manuscript was prepared according to the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) statement^[16, 17].

Eligibility Criteria

We aimed to include all the randomized control trials (RCT) studying levosimendan use versus any category of inotropes or as an adjunct to standard management in severe sepsis and septic shock. The articles would be included in our study if fulfilling the following criteria: (1) study population of severe sepsis or septic shock in adults, (2) randomized allocation of treatment, (3) comparison of levosimendan with any category of inotropic agents or placebo, with no restrictions on dose regimen or time limits of levosimendan infusion, (4) data on mortality reported; and exclusion criteria were as follows: (1) duplicates, (2) pediatric subjects, (3) animal experiments or *in vitro* studies, (4) no sepsis population and (5) lack of data on mortality.

Information Sources

Two investigators searched a collection of data-bases including PubMed, EMBASE, Cochrane Central register and Web of Science updated to August 1, 2017 separately with no language restrictions. When relevant systemic reviews or meta-analyses were found, we ran a backward snowballing to obtain further studies.

Search

Following key words were used as search terms: "levosimendan", "simendan", "Simdax", "dextrosimendan", "sepsis", "severe sepsis", "septicemia" and "septic shock". [Supplementary File

1]

Study Selection

Abstracts and titles of the articles were initially viewed separately by two investigators, if potentially pertinent, the complete articles were retrieved. Articles were assessed and selected separately by two investigators with disagreements solved by consensus.

Data Items

Information was extracted from each of the included trials on: (1) characteristics of the participants (including gender, age and diagnosis); (2) interventions (including the infusion duration and dose regimen of the levosimendan or other inotropes); (3) outcome measurements with primary outcome determined as the mortality (follow-up time was tailored at the approximate duration by the reviewers' consensus), and secondary outcomes as clinical outcomes including serum lactate level, cardiac function including cardiac index (CI), left ventricular ejection fraction (LVEF) and left ventricular stroke work index (LVSWI); fluid infusion and vasopressor requirement.

Assessment of Risk of Bias

Internal validity and risks of bias were evaluated by two investigators separately following Cochrane Collaboration Methods protocols^[18]. Risks of bias were assessed by scrutinizing the articles and rated as "Yes", "No" or "Unclear" according to the procedures taken in the articles.

Summary Measures

Dichotomous outcomes were measured as proportions and calculated by odds ratio (OR). Continuous outcomes were described as mean ± standard deviation (SD) and calculated by mean difference (MD) or standard mean difference (SMD). The end-point and change range were both compared if the continuous variables were measured at baseline and after treatment. Missing data

were imputed from other information whenever possible^[19][Supplementary File 2].

Statistical Analysis

The data retrieved from the relevant articles were computerized and analyzed by Review Manager 5.3 (The Nordic Cochrane Center, The Cochrane Collaboration, Copenhagen). We used Mantel-Haenszel statistic method for dichotomous variable (mortality) measurements and inverse variance for continuous variables (lactate level, CI, LVEF, LVSWI, fluid infusion and norepinephrine dose). Random-effects model was used for better accommodation of heterogeneity. Cochrane I^2 statistic was used for heterogeneity assessment between the studies, with a range of 0% to 30% representing no or mild heterogeneity, 30%-60% as moderate heterogeneity, whereas > 60% as high heterogeneity. Publication bias was tested by visual inspection of funnel plots. As for sensitivity analysis, the dataset was analyzed in both fixed and randomized-effects models and the favoring directions were inspected. Each study was removed sequentially and the remaining data-set re-analyzed to assess the robustness of the results. Trial sequential analysis (TSA) was performed to estimate the optimal sample size for the plausible effects of levosimendan in sepsis^[20]. Statistical significance was set at a 2-tailed 0.05 level as hypothesis establishment.

Sub-group Analysis

We pre-specified the sub-group analyses. Studies enrolling the patients with proved cardiac dysfunction vs. heterogeneous cardiac function were compared, and also the use of levosimendan vs. dobutamine and vs. standard therapy. We further attempted to separate the studies enrolling the patients with average age \geq 65-years vs. < 65-years and mortality \geq 50% vs. < 50% in the hope of finding the sub-population who would potentially benefit from the levosimendan use.

RESULTS

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Study Selection

A total of 566 abstracts were retrieved from the search strategy, with 121 duplicates excluded and 199 excluded due to no eligible abstracts. Complete manuscripts of 246 abstracts were retrieved for further assessment, within which 92 were reviews or commentaries, 106 were animal experiments, 3 in vitro studies, 7 non-RCTs, 9 non-septic patients, 2 pediatric patients, 3 with mortality not reported, 13 case reports and 1 study design. A final of 10 studies were included in this meta-analysis^[21-30], within which two were conference abstracts^[21, 22], and one was written in Chinese^[26] [Fig 1].

Study Characteristics

Within the 10 studies enrolling 1036 patients, no differences were present in age and APACHE II scores between the treatment and control group at the baseline. Patients diagnosed as septic shock or severe sepsis after adequate fluid resuscitation were included in the studies. Four studies set explicit criteria of cardiac dysfunctions during patients recruitment^[21, 26, 27, 30]. Norepinephrine was used as necessary to achieve the target MAP ranging from 65 to 80mmHg during levosimendan therapy depending on the study design. Seven studies used dobutamine (dose ranged from 5µg/kg per min to 20µg/kg per min) as a comparator^[21-24, 26, 27, 30] and three used levosimendan as an adjunct to standard therapy^[25, 28, 29]. Levosimendan was administered as continuous infusion (dose ranged from 0.05µg/kg per min to 2.0µg/kg per min) over 24 hours with no bolus. Parameters reflecting cellular metabolism, microcirculation, hemodynamics, cardiac function and target organ perfusion were measured in individual studies [Tab 1].

Syntheses of Results

The data on mortality were randomized and calculated from the ten studies, and the final result

BMJ Open

revealed no statistical difference (total events 187/522 vs. 197/514 in levosimendan and control group respectively, OR 0.89, 95% CI 0.69-1.16, P = 0.39), with no evidence of heterogeneity ($I^2 = 0\%$, P = 0.52) [Fig 2].

We conducted a series of sub-group analyses according to the patients' characteristics. No statistical significance could be observed in the studies enrolling patients with proved clinical cardiac dysfunction^[21, 26, 27, 30] (OR 0.76, 95% CI 0.39-1.50, P = 0.43) or those with heterogenous cardiac functions^[22-25, 28, 29] (OR 0.75, 95% CI 0.48-1.19, P = 0.23).

We compared the effect of levosimendan vs. dobutamine on mortality in sepsis and find no statistical difference in mortality between levosimendan and dobutamine group (OR 0.65, 95% CI 0.39-1.10, P = 0.11) ^[21-24, 26, 27, 30], neither of levosimendan in comparison with standard therapy^[25, 28, 29] (OR 0.82, 95% CI 0.44-1.55, P = 0.54) [Fig 3].

We attempted to divide the studies according to the patients' average age (< 65yr or $\ge 65yr$) and mortality (< 50% or \ge 50%), and found no statistical significance between each sub-group [Supplementary Fig 1].

We also extracted and compared the data of lactate reduction^[22, 23, 26, 28, 30], measurements reflecting cardiac function including CI^[23, 25-28, 30], LVEF^[21, 26, 27, 30] and LVSWI^[23, 26, 27, 30], fluid infusion^[23, 26, 28, 30] and norepinephrine dosage^[23, 25-28, 30]. The results revealed that lactate was more profoundly reduced, and cardiac function significantly improved (with increased CI, LVEF and LVSWI) in levosimendan group. Norepinephrine dose was reduced slightly, however total fluid infusion over 24 hours was tremendously increased in levosimendan group [Tab 2, Supplementary Fig 2].

Risk of Bias and Sensitivity Analyses

The funnel plot was drawn for testing the bias, and visual inspection of the funnel plot revealed potential asymmetry [Supplementary Fig 3].

The data-set was analyzed both in the fixed and random-effects model for sensitivity analysis, and the result revealed no shift of favouring directions [Supplementary Fig 4]. Each trial was removed and remaining dataset re-analyzed subsequently, and the result indicated that the statistical significance obscured only when the trial by Gordon AC *et al.*^[28], was put into analysis [Supplementary Fig 5].

Trial Sequential Analysis

The trial sequential analysis (TSA) was performed to determine the optimal information size. We estimated a 26% mortality based on the recent epidemiologic data of severe sepsis^[31], and an assumed an average of 20% relative risk reduction in reference to the effect of levosimendan on overall mortality reduction in hospitalized patients^[32] with 80% power and $\alpha = 0.05$ two-sided. The calculation indicated the optimal information size of 2082 patients for detection of the plausible treatment effect of levosimendan in sepsis. The Lan DeMets sequential monitoring boundary constructed by the optimal information size was not crossed, indicating that the cumulative evidence was not conclusive and reliable [Fig 4].

DISSCUSSION

The main finding of this study was that levosimendan could not significantly reduce the mortality in severe sepsis and septic shock. Levosimendan could reduce serum lactate level more effectively, improve cardiac function. However, no change in norepinephrine dose but profound increase in fluid infusion could be observed.

We noticed that, albeit cardiac function was improved after levosimendan use, more fluid was

infused for maintenance of the target MAP probably due to the vasodilatory effect of levosimendan, which could exacerbate pulmonary and peripheral edema and potentially impeding oxygen uptake and exchange. The use of levosimendan was also suggested to be accompanied with higher incidence of life-threatening arrhythmias like supraventricular tachyarrhythmia, which could cause hemodynamic instability and bring risks to the patients^[28].

The previous study by Zangrillo *et al.* enrolling a series of RCTs yielded a significantly reduced mortality in levosimendan group in septic shock^[15]. However, it should be noted that, in our study, statistical significance obscured after a large, multi-center RCT with a sample size of 514 patients by Gordon AC *et al.*^[28] were included.

We thought that there may be several reasons for this. The percentage of patients in the trial by Gordon *et al.* that underwent cardiac function assessment was rather low (30%), so Gordon and co-workers might have enrolled the patients with heterogenous cardiac functions^[33]. Although the prevalence of septic cardiomyopathy is high (40-60%), the discriminative enrollment could still mask the potential benefit of levosimendan, considering that there might be patients recruited who did not have cardiac dysfunction, and may not benefit from inotropic use as indicated by the SSC (2016) Guidelines in which the increase of cardiac function to supranormal level is discouraged^[7]. We attempted to synthesize the studies with patients who had proved cardiac dysfunction, however the result revealed no statistical significance (OR 0.76, 95% CI 0.39-1.50, P = 0.43). We then performed a TSA and yielded an optimal sample size of 1719, suggesting that more trials focusing on the patients with cardiac dysfunction are probably needed, for the determination of the plausible effects of levosimendan in sepsis.

The patients enrolled in the trial by Gordon et al. might be relatively at low risk (with the 28-day

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

mortality of 31%).^[33, 34] In the study by Zangrillo *et al*, the mortality decreased from 61% to 47% after levosimendan use^[15], and in that study, the baseline mortality is very high (61% in control group), suggesting that the patients at "extremely" high risk may be most benefited from levosimendan use.

We also attempted to synthesize the studies dividing the studies with patients at high (\geq 50%) or low (< 50%) risks and found the OR of 0.55, 95% CI 0.30-1.03 and OR 0.99, 95% CI 0.74-1.32, respectively. Although no statistical significance could be observed, we found the group of studies with high-risk patients were more likely to benefit from levosimendan use. Still, more trials are definitely needed.

Limitations

Our study had several limitations. The randomized trials included in this meta-analysis were of limited sample size, 8 out of 10 studies included less than 50 patients^[21-27, 30], and were potentially high biased. Follow-up duration was not reported in one study^[24]; only ICU mortality was reported in two studies^[22, 23], and the inconsistency in follow-up duration could potentially bring bias to the results. Also, the dose regimen of levosimendan varied from 0.05 to 0.2 μ g/kg per min, which could cause different hemodynamic effects to the patients.

CONCLUSION

Although levosimendan could improve clinical outcomes including cardiac function and tissue perfusion compared with dobutamine or standard therapy, it also increased fluid infusion but did not reduce vasopressor requirements. Still, it failed to bring significant benefit to mortality in sepsis. More RCTs are necessary for further elucidation of the effects of levosimendan in sepsis, particularly in those with cardiac dysfunctions.

1	
2	
3	
4	LIST OF ABBREVIATIONS
5	
6	APACHE Acute Physiology and Chronic Health Evaluation;
7	
8	CL condice index:
9	CI cardiac index;
10	
11	HR heart rate;
12	
13	ICU intensive care unit;
14	ico intensive care unit,
15	
16	iNOS inducible NO synthetase;
17	
18	IQR inter-quartile range;
19	i git inter quartite range,
20	
21	LV left ventricle;
22	
23	LVEF left ventricle ejection fraction;
24	
25	
26	LVSWI left ventricular stroke work index;
27	
28	MAP mean arterial pressure;
29	MAP mean arterial pressure; MD mean difference; NE norepinephrine; OR odds ratio; BCT randomized control trial:
30	
31	MD mean difference;
32	
33	NE norepinephrine;
34	
35	OR odds ratio;
36	ok odds fallo,
37	
38	
39	ROS reactive oxygen species;
40	ROS reactive oxygen species;
41	
42	
43	SD standard deviation;
44	
45	SSC Surviving Sepsis Campaign;
46	
47	SMD standard mean difference:
48	SMD standard mean difference;
49	
50	TSA trial sequential analysis.
51	
52	DECLARATIONS
53	
54	
55	Ethics approval and consent to participate
56	
57	13
58	

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analysed during the current study available from the corresponding

author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This work is partially supported by grants from the National Natural Science Foundations of China (81501705).

Authors' contributions

WC carried out the analysis and interpretation of data and participated in drafting, editing and submitting the manuscript. The articles were reviewed by two reviewers (WC and JFX) independently in accordance with the inclusion criteria. Disagreements were resolved and by consensus and discussion including a third reviewer (JYX). The quality of the articles was assessed by WC and JFX independently, with disagreements resolved by consulting a third reviewer (JYX). YY was responsible for conception, design and coordination of the study, and revising the manuscript for important intellectual content. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

Fig 1 Flow diagram of search process and study selection

Fig 2 The effect of levosimendan on mortality in severe sepsis and septic patients.

Fig 3 Sub-group analysis. (A) Levosimendan in patients with proved cardiac dysfunction vs. patients with heterogeneous cardiac function (OR 0.76, 95% CI 0.39-1.50, P = 0.43 vs. OR 0.75, 95% CI 0.48-1.19, P = 0.23); (B) Levosimendan vs. dobutamine (OR 0.65, 95% CI 0.39-1.10, P = 0.11) or standard therapy (OR 0.82, 95% CI 0.44-1.55, P = 0.54).

Fig 4 Trial sequential analysis. The optimal information size of 2082 patients for detection of the plausible treatment effect of levosimendan in sepsis, and the Lan DeMets sequential monitoring boundary constructed by the optimal information size was not crossed

Supplementary Fig 1 Sub-group analysis. (A) Levosimendan in patients with mortality >=50% vs. morality < 50% (OR 0.55, 95% CI 0.30-1.03, P = 0.06 vs. OR 0.99 95% CI 0.74-1.32, P = 0.92); (B) Levosimendan in patients with age >= 65-year-old vs. age < 65-year-old (OR 0.84 95% CI 0.54-1.30, P = 0.44 vs. OR 0.67 95% CI

0.32-1.40, P = 0.49).

Supplementary Fig 2 Forest plots for secondary outcomes.

Supplementary Fig 3 Funnel plot for inspection of bias

Supplementary Fig 4 Sensitivity analysis with data-set analyzed in fixed and random-effects models

Supplementary Fig 5 Sensitivity analysis with single study omitted sequentially

Tab 1 Characteristic	s of the included trials.	

Stu dy	Y e a r	S u bj ec ts N o	Lev osi men dan gro up	Co nt rol gr ou p	Inclu sion crite ria	Cardiovasc ular criteria	Levosimendan therapy	Control therapy	Tar get MA P (m mH g)	Fol lo w- up (da y)	Primary outcome
Alh	2 0	42	21	21	Seve re	NR	0.05 to 2µg/kg per min, 24hr	Dobuta mine 5	≥ 65	IC	ScvO2 and serum
											15

Page 16 of 42

BMJ Open

36 51 5 30 38	18 258 15 19	18 25 7* 15	tic shoc k Septi c shoc k Septi c shoc k Septi c shoc k Septi c shoc k	LVEF≤ 45% MAP 60 to 70mmHg MAP≤ 65mmHg	Dobutamine 0.5µg/kg per min for 24hr; levosimendan 0.2µg/kg per min 24hr subsequently 0.05 to 0.2µg/kg per min, 24hr 0.1µg/kg per min, 24hr	20μg/kg per min, 7 days Dobuta mine 5μg/kg per min, 48hr Standar d therapy Dobuta mine 10μg/kg per min, 24hr	NR 65 to 70 >65	sta y 28 28 NR	Hemodyn mics and cardiac function Daily SOFA sco Liver function Hemodyn
36 51 5 30	258 15	25 7* 15	Septi c shoc k Septi c shoc k Septi c shoc k	45% MAP 60 to 70mmHg MAP≤ 65mmHg 65mmHg	 0.5µg/kg per min for 24hr; levosimendan 0.2µg/kg per min 24hr subsequently 0.05 to 0.2µg/kg per min, 24hr 0.1µg/kg per min, 24hr 	mine 5µg/kg per min, 48hr Standar d therapy Dobuta mine 10µg/kg per min, 24hr Dobuta	65 to 70	28 28	mics and cardiac function Daily SOFA sco Liver function Hemodyn
36 51 5 30	258 15	25 7* 15	c shoc k Septi c shoc k Septi c shoc k	45% MAP 60 to 70mmHg MAP≤ 65mmHg 65mmHg	 0.5µg/kg per min for 24hr; levosimendan 0.2µg/kg per min 24hr subsequently 0.05 to 0.2µg/kg per min, 24hr 0.1µg/kg per min, 24hr 	mine 5µg/kg per min, 48hr Standar d therapy Dobuta mine 10µg/kg per min, 24hr Dobuta	65 to 70	28	mics and cardiac function Daily SOFA sco Liver function Hemodyn
51 5 30	15	7*	c shoc k Septi c shoc k Septi c	70mmHg MAP≤ 65mmHg MAP≥ 65mmHg	per min, 24hr 0.1µg/kg per min, 24hr	d therapy Dobuta mine 10μg/kg per min, 24hr Dobuta	to 70		SOFA sco Liver function Hemodyn
30			c shoc k Septi c	65mmHg MAP≥ 65mmHg	24hr	mine 10µg/kg per min, 24hr Dobuta	>65	NR	function
	19	19	c	65mmHg	0 2ug/kg ngg min				
			k	and LVEF ≪45%	0.2µg/kg per min, 24hr	5µg/kg per min, 24hr	≥ 65	28	mics and myocardi injury biomarke
28	15	13 **	Septi c shoc k	MAP 70 to 80mmHg, PAOP≥ 12mmHg and LVEF<45 %	0.2μg/kg per min, 24hr	Dobuta mine 5µg/kg per min, 24hr	70 to 80	30	Hemodyr mics and cardiac function
40	20	20	Septi c shoc k	MAP≥ 65mmHg	0.2µg/kg per min, 24hr	Dobuta mine 5µg/kg per min, 24hr	70 ± 5	IC U sta y	Systemic and microvas ar hemodyn ics
26	13	13	Septi c shoc k	MAP≥ 65mmHg	0.2μg/kg per min, 24hr	Standar d therapy	65 to 75	28	Mitochor ial function
42	23	19	Sepsi s	CI<2.2, LVEF<35 %	0.1µg/kg per min, 24hr	Dobuta mine 5 to 10µg/kg per min, 24hr	>65	30	Mortality 7 and 30 days
	26	26 13	26 13 13	$40 20 20 c \\ shoc \\ k \\ 26 13 13 c \\ shoc \\ k \\ 42 23 19 Sepsi \\ 42 23 19 Sepsi \\ c \\ shoc \\ k \\ c \\ shoc \\ k \\ c \\ shoc \\ c \\ shoc \\ k \\ c \\ shoc \\ k \\ c \\ shoc \\ c \\ shoc \\ k \\ c \\ shoc \\ s$	40 20 20 c $MAP \ge 65mmHg$ 26 13 13 c $MAP \ge 65mmHg$ 26 13 13 c $MAP \ge 65mmHg$ 26 13 13 c $MAP \ge 65mmHg$ 27 c $MAP \ge 65mmHg$ 28 c	40 20 20 c MAP \geq 0.2µg/kg per min, 40 20 20 c MAP \geq 0.2µg/kg per min, 24hr 26 13 13 c MAP \geq 0.2µg/kg per min, shoc 65mmHg 24hr 42 23 19 Sepsi CI<2.2, LVEF<35 0.1µg/kg per min, 24hr	402020 $\stackrel{\text{Septi}}{c}$ k $\stackrel{\text{MAP} \ge}{65\text{mmHg}}$ $0.2\mu g/kg \text{ per min,} 24hr$ $\stackrel{\text{mine}}{5\mu g/kg}$ $per min, 24hr$ 261313 $\stackrel{\text{Septi}}{c}$ $shoc\stackrel{\text{MAP} \ge}{65\text{mmHg}}0.2\mu g/kg \text{ per min,} 24hr\stackrel{\text{Standar}}{d}d261313\stackrel{\text{Septi}}{c}k\stackrel{\text{MAP} \ge}{65\text{mmHg}}0.2\mu g/kg \text{ per min,} 24hr\stackrel{\text{Standar}}{d}d261313\stackrel{\text{Septi}}{s}k\stackrel{\text{CI} < 2.2,}{c \text{ VEF} < 35}0.1\mu g/kg \text{ per min,} 24hr\stackrel{\text{Standar}}{d}\frac{10\mu g/kg \text{ per min,} 24hr$	40 20 20 $\stackrel{\text{Septi}}{k}$ $\stackrel{\text{MAP} \ge}{65 \text{mmHg}}$ $\stackrel{0.2 \mu \text{g/kg per min,}}{24 \text{hr}}$ $\stackrel{\text{mine}}{\underset{\text{spg/kg per min,}}{5}}$ $\stackrel{\text{mine}}{5}$ $\stackrel{70 \pm}{\underset{\text{spg/kg per min,}}{70}}$ $\stackrel{10 \pm}{5}$ 26 13 13 $\stackrel{\text{Septi}}{\underset{\text{shoc}}{13}}$ $\stackrel{\text{MAP} \ge}{65 \text{mmHg}}$ $\stackrel{0.2 \mu \text{g/kg per min,}}{24 \text{hr}}$ $\stackrel{\text{Standar}}{\underset{\text{shoc}}{3}}$ $\stackrel{65}{65 \text{to therapy}}$ $\stackrel{65}{75}$ 42 23 19 $\stackrel{\text{Sepsi}}{\underset{\text{s}}{\text{spsi}}}$ $\stackrel{\text{CI<2.2,}}{\underset{\text{VEF<35}}{10}$ $\stackrel{0.1 \mu \text{g/kg per min,}}{24 \text{hr}}$ $\stackrel{\text{Dobuta mine 5}}{\underset{\text{shoc}}{10 \mu \text{g/kg per min,}}}$ $\stackrel{\text{Sepsi}}{\underset{\text{shoc}}{10 \mu \text{g/kg per min,}}$ $\stackrel{\text{Sepsi}}{\underset{\text{shoc}}{10 \mu \text{g/kg per min,}}}$ $\stackrel{\text{Sepsi}}{\underset{\text{shoc}}{10 \mu \text{g/kg per min,}}$ $\stackrel{\text{Sepsi}}{\underset{\text{shoc}}{\underset{\text{shoc}}{10 \mu \text{g/kg per min,}}}$ $\stackrel{\text{Shoc}}{\underset{\text{shoc}}{10 \mu \text{g/kg per min,}}$ $\stackrel{\text{Shoc}}{\underset{\text{shoc}}{10 \mu \text{g/kg per min,}}$ $\stackrel{\text{Shoc}}{\underset{\text{shoc}}{$	$40 20 20 20 \begin{cases} \text{Septi} \\ c \\ \text{shoc} \\ k \end{cases} MAP \geq \\ 65 \text{mmHg} 24 \text{hr} \qquad \begin{cases} 0.2 \mu g/\text{kg per min}, \\ 24 \text{hr} \\ per \text{min}, \\ 24 \text{hr} \\ per h$

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

BMJ Open

]											
Wa ng X [29]	2 0 1 7	24 0	120	12 0	Septi c shoc k	MAP≥65m mHg	0.1-0.2 µg/kg per min, 24 hours	Standar d care	≥65	28	Mortality at 28 days, ICU discharge and hospital discharge

Note: MAP: mean artery pressure; LVEF: left ventricular ejection fraction; PAOP: pulmonary artery occlusion pressure; CI: cardiac index; NR: not reported; SOFA: Sequential Organ Failure Assessment; * A total of 256 patients were finally included for 28-day mortality analysis; ** Two patients in control group failed to complete the study and were excluded.

Tab 2 Clinical outcomes after randomization.

Outcomes	References	No. of subjects	MD (95% CI)	<i>P</i> for overall effect	<i>P</i> for heterogeneit y	<i>I</i> ² (%)
Lactate _{TRT}	[22], [23], [26],	656	-0.89 (-1.48,	0.003	< 0.00001	87
	[27], [28], [30]		-0.29)			
ΔLactate	[23], [26], [27],	614	-0.80 (-1.41,	0.009	0.0002	82
	[28], [30]		-0.20)			
CI _{TRT}	[23], [26], [27],	277	0.39 (0.17,	0.0005	0.05	59
	[28], [30]		0.62)			
ΔCI	[21], [23], [26],	319	0.46 (0.30,	< 0.00001	0.01	66
	[27], [28], [30]		0.63)			
LVSWI _{TRT}	[26], [27], [30]	102	3.73 (0.49,	0.02	0.0009	86
			6.98)			
ΔLVSWI	[23], [26], [27],	142	5.00 [3.95,	< 0.00001	0.83	0
	[30]		6.06]			
LVEF _{TRT}	[26], [27], [30]	102	6.76 [3.53,	< 0.0001	0.75	0
			10.00]			
$\Delta LVEF$	[21], [26], [27],	144	4.98 [0.75,	0.02	0.001	81
	[30]		9.21]			
Norepinephrine	[23], [26], [27],	547	-0.04 [-0.16,	0.58	< 0.00001	96
dose _{TRT}	[28], [30]		0.09]			
ΔNE dose	[23], [25], [27],	537	-0.06 [-0.13,	0.08	0.006	72
	[28], [30]		0.01]			
Fluid infusion	[23], [26], [28],	581	2.72 [0.75,	0.007	< 0.00001	97
in 24-hr	[30]		4.69]*			

Note: Subscript TRT stands for outcomes after treatment; Δ stands for change range of outcomes (value after treatment subscribes value at baseline); CI cardiac index; LVSWI left ventricular stroke work index; LVEF left ventricular ejection fraction; NE Norepinephrine; * Standard mean difference (SMD) is used in this case due to large difference in means (MD 1048.74, 95% CI 303.21-1794.27).

Supplementary File 1 Full electronic search strategy for PubMed.

Supplementary File 2 Methods of the imputation of missing data.

REFERENCES

- Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013. 39(2): 165-228.
- [2] Pang D, Aneja RK. Levosimendan for Septic Myocardial Dysfunction: Not Yet Ready for Prime Time. Crit Care Med. 2015. 43(11): 2522-3.
- [3] Sato R, Nasu M. A review of sepsis-induced cardiomyopathy. J Intensive Care. 2015. 3: 48.

1

2 3

4

5

6

7

8 9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24 25

26

27

28

29

30 31

32

33

34

35 36

37

38

39

40

41 42

43

44

45

46 47

48

49

50

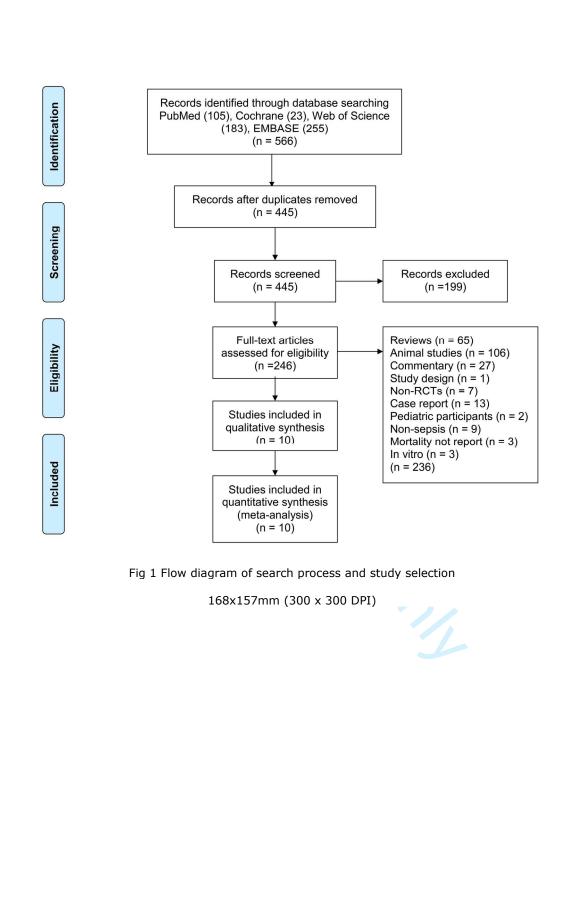
51

52 53

54

55

56 57


58 59

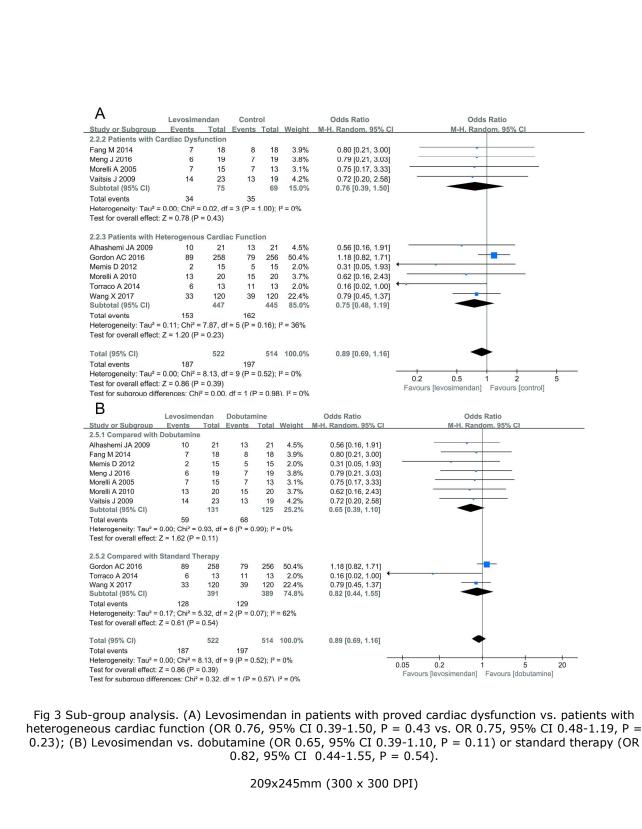
- [4] Aneman A, Vieillard-Baron A. Cardiac dysfunction in sepsis. Intensive Care Med. 2016. 42(12): 2073-2076.
- [5] Landesberg G, Gilon D, Meroz Y, et al. Diastolic dysfunction and mortality in severe sepsis and septic shock. Eur Heart J. 2012. 33(7): 895-903.
- [6] Gonzalez C, Begot E, Dalmay F, et al. Prognostic impact of left ventricular diastolic function in patients with septic shock. Ann Intensive Care. 2016. 6(1): 36.
- [7] Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017. 43(3): 304-377.
- [8] Annane D, Vignon P, Renault A, et al. Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomised trial. Lancet. 2007. 370(9588): 676-84.
- [9] Pollesello P, Papp Z, Papp JG. Calcium sensitizers: What have we learned over the last 25 years. Int J Cardiol. 2016. 203: 543-8.
- [10] Belletti A, Castro ML, Silvetti S, et al. The Effect of inotropes and vasopressors on mortality: a meta-analysis of randomized clinical trials. Br J Anaesth. 2015. 115(5): 656-75.
- [11] Pollesello P, Parissis J, Kivikko M, Harjola VP. Levosimendan meta-analyses: Is there a pattern in the effect on mortality. Int J Cardiol. 2016. 209: 77-83.
- [12] Barraud D, Faivre V, Damy T, et al. Levosimendan restores both systolic and diastolic cardiac performance in lipopolysaccharide-treated rabbits: comparison with dobutamine and milrinone. Crit Care Med. 2007. 35(5): 1376-82.
- [13] Wang Q, Yokoo H, Takashina M, et al. Anti-Inflammatory Profile of Levosimendan in Cecal Ligation-Induced Septic Mice and in Lipopolysaccharide-Stimulated Macrophages. Crit Care Med. 2015. 43(11): e508-20.
- [14] Sareila O, Korhonen R, Auvinen H, et al. Effects of levo- and dextrosimendan on NF-kappaB-mediated transcription, iNOS expression and NO production in response to inflammatory stimuli. Br J Pharmacol. 2008. 155(6): 884-95.
- [15] Zangrillo A, Putzu A, Monaco F, et al. Levosimendan reduces mortality in patients with severe sepsis and septic shock: A meta-analysis of randomized trials. J Crit Care. 2015. 30(5): 908-13.
- [16] Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009. 339: b2535.
- [17] Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009. 339: b2700.
- [18] Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011. 343: d5928.
- [19] Wiebe N, Vandermeer B, Platt RW, Klassen TP, Moher D, Barrowman NJ. A systematic review identifies a lack of standardization in methods for handling missing variance data. J Clin Epidemiol. 2006. 59(4): 342-53.
- [20] Pogue JM, Yusuf S. Cumulating evidence from randomized trials: utilizing sequential monitoring boundaries for cumulative meta-analysis. Control Clin Trials. 1997. 18(6): 580-93; discussion 661-6.

BMJ Open

[21]	Vaitsis J, Michalopoulou H, Thomopoulos C, et al. Use of levosimendan in myocardial dysfunction due to
	sepsis. Critical Care 2009, 13(Suppl 1): P165.

- [22] Alhashemi JA, Alotaibi QA, Abdullah GM, Shalabi SA. Levosimendan vs dobutamine in septic shock. J Crit Care. 2009. 24(3): e14-5.
- [23] Morelli A, Donati A, Ertmer C, et al. Levosimendan for resuscitating the microcirculation in patients with septic shock: a randomized controlled study. Crit Care. 2010. 14(6): R232.
- [24] Memis D, Inal MT, Sut N. The effects of levosimendan vs dobutamine added to dopamine on liver functions assessed with noninvasive liver function monitoring in patients with septic shock. J Crit Care. 2012. 27(3): 318.e1-6.
- [25] Torraco A, Carrozzo R, Piemonte F, et al. Effects of levosimendan on mitochondrial function in patients with septic shock: a randomized trial. Biochimie. 2014. 102: 166-73.
- [26] Fang M, Dong S. [Effects of levosimendan on hemodynamics and cardiac function in patients with septic shock]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2014. 26(10): 692-6.
- [27] Meng JB, Hu MH, Lai ZZ, et al. Levosimendan Versus Dobutamine in Myocardial Injury Patients with Septic Shock: A Randomized Controlled Trial. Med Sci Monit. 2016. 22: 1486-96.
- [28] Gordon AC, Perkins GD, Singer M, et al. Levosimendan for the Prevention of Acute Organ Dysfunction in Sepsis. N Engl J Med. 2016. 375(17): 1638-1648.
- [29] Wang X, Li S. Effect of small-dose levosimendan on mortality rates and organ functions in Chinese elderly patients with sepsis. Clin Interv Aging. 2017. 12: 917-921.
- [30] Morelli A, De Castro S., Teboul J-L, et al. Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression. Intensive Care MedicineIntensive Care Med.. 2005. 31(5): 638-644.
- [31] Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am J Respir Crit Care Med. 2016. 193(3): 259-72.
- [32] Landoni G, Biondi-Zoccai G, Greco M, et al. Effects of levosimendan on mortality and hospitalization. A meta-analysis of randomized controlled studies. Crit Care Med. 2012. 40(2): 634-46.
- [33] Groesdonk HH, Sander M, Heringlake M. Levosimendan in Sepsis. N Engl J Med. 2017. 376(8): 798.
- [34] Landoni G, Belletti A, Putzu A, Zangrillo A. Prevention of organ dysfunction in septic shock: still looking for an effective treatment. J Thorac Dis. 2016. 8(12): E1715-E1718.

	Levosime	ndan	Contr	ol		Odds Ratio	Odds Ratio Risk of Bias
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	M-H. Random, 95% CI A B C D E F
Alhashemi JA 2009	10	21	13	21	4.5%	0.56 [0.16, 1.91]	· · · · · · · · · · · · · · · · · · ·
Fang M 2014	7	18	8	18	3.9%	0.80 [0.21, 3.00]	· · · · · · · · · · · · · · · · · · ·
Gordon AC 2016	89	258	79	256	50.4%	1.18 [0.82, 1.71]	
Memis D 2012	2	15	5	15	2.0%	0.31 [0.05, 1.93]	· · · · · · · · · · · · · · · · · · ·
Meng J 2016	6	19	7	19	3.8%	0.79 [0.21, 3.03]	· · · · · · · · · · · · · · · · · · ·
Morelli A 2005	7	15	7	13	3.1%	0.75 [0.17, 3.33]	· · · · · · · · · · · · · · · · · · ·
Morelli A 2010	13	20	15	20	3.7%	0.62 [0.16, 2.43]	· · · · · · · · · · · · · · · · · · ·
Torraco A 2014	6	13	11	13	2.0%	0.16 [0.02, 1.00]	· · · · · · · · · · · · · · · · · · ·
Vaitsis J 2009	14	23	13	19	4.2%	0.72 [0.20, 2.58]	
Wang X 2017	33	120	39	120	22.4%	0.79 [0.45, 1.37]	●?●?●€
Total (95% CI)		522		514	100.0%	0.89 [0.69, 1.16]	•
Total events	187		197				
Heterogeneity: Tau ² =	0.00: Chi ² =	8.13. df	= 9 (P =	0.52): F	$^{2} = 0\%$		
Test for overall effect:	Z = 0.86 (P	= 0.39)				Fa	0.1 0.2 0.5 1 2 5 10
						Fa	vours [levosimendan] Favours [control]
Risk of bias legend							
(A) Random sequence	generation	(selectio	n bias)				
(B) Allocation concealr							
(C) Blinding of participa	ante and nor	, aannal (norformo	noo hio	c)		


(E) Incomplete outcome data (attrition bias)

(F) Selective reporting (reporting bias)

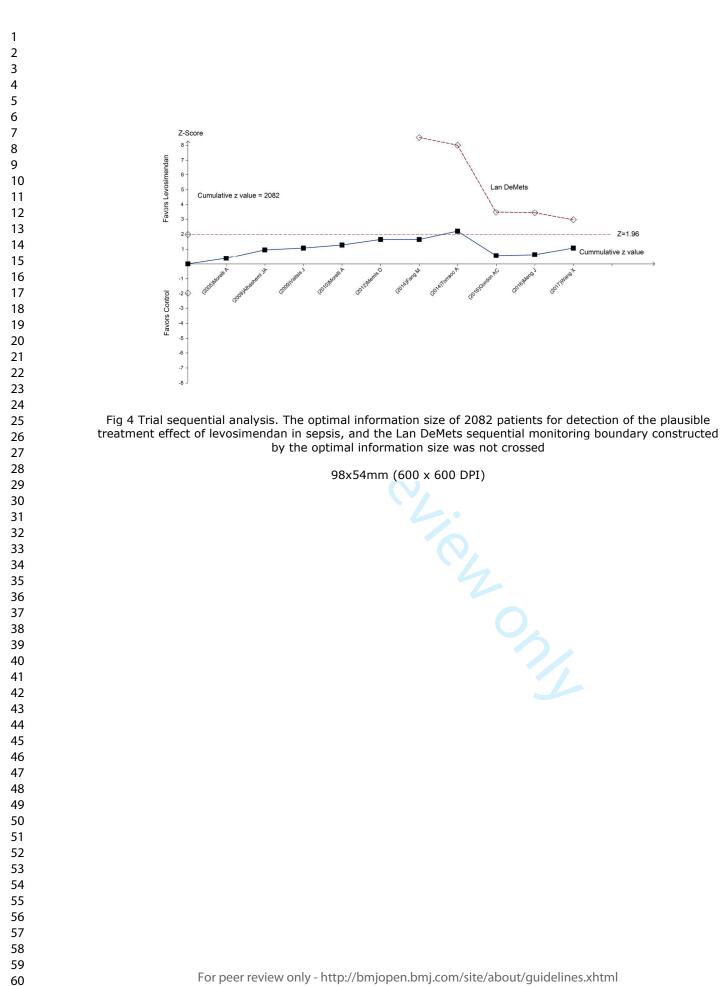

(G) Other bias

Fig 2 The effect of levosimendan on mortality in severe sepsis and septic patients.

87x42mm (600 x 600 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ

5
9
ĕ
÷
ິດ
÷
Ĕ
р
S
he
ď
g
S,
5
\rightarrow
မ္တ
ž
ĭ
÷
ŏ
Φ
ぇ
8
1
7
2
19
ŵ
8
2
ĭ
ω
Ó
\leq
a
<u>c</u>
5
2
Ξ
œ
õ
≦
≓
ă
ade
aded
aded fr
aded fror
aded from
aded from ht.
aded from http.
aded from http://l
aded from http://br
aded from http://bmj
aded from http://bmjop
baded from http://bmjope
aded from http://bmjopen.
aded from http://bmjopen.br
J Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj
aded from http://bmjopen.bmj.c
aded from http://bmjopen.bmj.cor
aded from http://bmjopen.bmj.com/
aded from http://bmjopen.bmj.com/ o
aded from http://bmjopen.bmj.com/ on
aded from http://bmjopen.bmj.com/ on A
aded from http://bmjopen.bmj.com/ on Apr.
aded from http://bmjopen.bmj.com/ on April ;
aded from http://bmjopen.bmj.com/ on April 23
aded from http://bmjopen.bmj.com/ on April 23, .
aded from http://bmjopen.bmj.com/ on April 23, 20
baded from http://bmjopen.bmj.com/ on April 23, 202
aded from http://bmjopen.bmj.com/ on April 23, 2024 .
aded from http://bmjopen.bmj.com/ on April 23, 2024 by
aded from http://bmjopen.bmj.com/ on April 23, 2024 by g
aded from http://bmjopen.bmj.com/ on April 23, 2024 by gu
aded from http://bmjopen.bmj.com/ on April 23, 2024 by gues
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest.
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. P
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Pro
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Prote
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protect
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected I
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by c
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by cop
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copy.
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyric
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyrigh
aded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

Study or Subaroup	Levosime		Contro								
	Events				Woight	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% Cl				
2.4.1 Mortality >= 50%		Total	LVents	Total	weight	Mert, Randolli, 33 /8 Ci	with, Kalidolit, 35% Cl				
Alhashemi JA 2009	10	21	13	21	4.5%	0.56 [0.16, 1.91]					
Morelli A 2005	7	15	7	13	3.1%	0.75 [0.17, 3.33]					
Morelli A 2010 Torraco A 2014	13 6	20 13	15 11	20 13	3.7% 2.0%	0.62 [0.16, 2.43] 0.16 [0.02, 1.00]					
Vaitsis J 2009	14	23	13	13	4.2%	0.72 [0.20, 2.58]					
Subtotal (95% CI)		92		86	17.5%	0.55 [0.30, 1.03]	-				
Total events	50	0.40	59	741.1	- 00/						
Heterogeneity: Tau ² = 0 Test for overall effect: 2			4 (P = ().71); P	-= 0%						
2.4.2 Mortality < 50%											
Fang M 2014	7	18	8	18	3.9%	0.80 [0.21, 3.00]					
Gordon AC 2016 Memis D 2012	89 2	258 15	79 5	256 15	50.4% 2.0%	1.18 [0.82, 1.71] 0.31 [0.05, 1.93]					
Meng J 2016	6	19	7	19	3.8%	0.79 [0.21, 3.03]					
Wang X 2017	33	120	39	120	22.4%	0.79 [0.45, 1.37]					
Subtotal (95% CI)	107	430	100	428	82.5%	0.99 [0.74, 1.32]	T				
Total events Heterogeneity: Tau ² = 0 Test for overall effect: 2			138 4 (P = ().51); F	* = 0%						
Total (95% CI)		522		514	100.0%	0.89 [0.69, 1.16]	•				
Total events	187		197								
Heterogeneity: Tau ² = 0 Test for overall effect: Z			9 (P = (0.52); F	* = 0%		0.02 0.1 1 10				
Test for subaroup differ			f = 1 (P	= 0.10	. I² = 63.0	%	Favours [experimental] Favours [control]				
В											
01.1	Levosime		Contr		18/-1-1-6	Odds Ratio	Odds Ratio				
Study or Subgroup 2.3.1 Average Age >=	Events	Total	Events	Total	Weight	M-H. Random, 95% Cl	I M-H. Random. 95% CI				
Gordon AC 2016	89	258	79	256	52.8%	1.18 [0.82, 1.71]					
Morelli A 2010	13	20	15	20	3.8%	0.62 [0.16, 2.43]					
Torraco A 2014	6 14	13 23	11 13	13 19	2.1% 4.4%	0.16 [0.02, 1.00]	· · · · · · · · · · · · · · · · · · ·				
Vaitsis J 2009 Wang X 2017	33	120	39	120	23.5%	0.72 [0.20, 2.58] 0.79 [0.45, 1.37]					
Subtotal (95% CI)		434		428	86.6%	0.84 [0.54, 1.30]	-				
Total events Heterogeneity: Tau ² = 0 Test for overall effect: 2			157 4 (P = (0.20); l ^a	* = 33%						
2.3.2 Average Age < 6	5vr										
Fang M 2014	7	18	8	18	4.1%	0.80 [0.21, 3.00]					
Memis D 2012	2	15	5	15	2.1%	0.31 [0.05, 1.93]					
Meng J 2016	6	19	7	19	4.0%	0.79 [0.21, 3.03]					
Morelli A 2005 Subtotal (95% CI)	7	15 67	7	13 65	3.2% 13.4%	0.75 [0.17, 3.33] 0.67 [0.32, 1.40]					
Total events Heterogeneity: Tau ² = 0	22 0.00: Chi ² =		27 3 (P = (0.07 [0.02, 1.40]					
Test for overall effect: Z			-,-								
Total (95% CI)		501		493	100.0%	0.91 [0.70, 1.19]	•				
Total events	177	7 55 46 -	184	101.1	- 0%						
Heterogeneity: Tau ² = 0 Test for overall effect: 2			0 (F = (,.40), I	- 0%		0.05 0.2 1 5				
Test for subaroup differ			f = 1 (P	= 0.61	. I² = 0%		Favours [experimental] Favours [control]				
Study	Year	Age† (y	(ears)								
Alhashemi JA [22]	2009	NR									
Fang M [26]	2014	61.4±7	.1 in leve	osimen	dan group	; 61.7±7.3 in dobutamine	e group				
Gordon AC [28]	2016	67 (58-	75) in le	vosime	ndan grou	p; 69 (58-77) in control g	group				
Memis D [24]	2012					oup; 56.27±14.93 in dob					
	2012					p; 50.2±13.6 in dobutam					
Meng J [27]											
Morelli A [30]	2005		61.5 ± 7.0 in levosimendan group; 62.4 ± 7.3 in dobutamine group								
Morelli A [23]	2010				-	p; 66 (54-78) in control g					
Torraco A [25]	2014	70 (58-	80) in le	vosime	ndan grou	p; 68 (57-79) in control g	group				
Vaitsis J [21]	2009	66.1±7	.54								

 Wang X [29]
 2017
 70 (67-74) in levosimendan group; 69 (67-73) in control group

 † Age presented as mean ± SD or median (IQR)

40x64mm (600 x 600 DPI)

 $^{22}_{23}$ 1. The effect of levosimendan on lactate reduction. The lactate levels (mmol/L) after treatment were compared.

24										
		Levo	simend	dan	C	ontrol			Mean Difference	Mean Difference
25	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
26	Alhashemi JA 2009	2.1	0.92	21	3.5	1.37	21	16.0%	-1.40 [-2.11, -0.69]	_ _
27	Fang M 2014	3.4	1.1	18	5.2	1.2	18	15.5%	-1.80 [-2.55, -1.05]	
28	Gordon AC 2016	1.4	0.74	236		0.82	236	20.3%	-0.30 [-0.44, -0.16]	•
29	Meng J 2016	3.6	0.8	19	4.3	1	19	17.3%	-0.70 [-1.28, -0.12]	
30	Morelli A 2005	3.7	0.7	15	5.2	1	13	16.5%	-1.50 [-2.15, -0.85]	
31	Morelli A 2010	1.9	0.96	20	1.6	1.7	20	14.4%	0.30 [-0.56, 1.16]	
32				200			207	400.00/	0.00.04.40.0.001	
33	Total (95% CI) Heterogeneity: Tau² =		:2 - 07	329	- F (D -	0 000		100.0%	-0.89 [-1.48, -0.29]	
34	Test for overall effect: 2				= 5 (P <	0.000	(01); I* =	= 87%		-4 -2 0 2 4
35	rest for overall effect.	2 - 2.93	(F - 0	.003)						Favours [levosimendan] Favours [control]
36										
37										
38										
39										
39 40										
41										
42										
43										
44										
45										
46										
47										
48										
49										
50										
51										
52										
53										
54										
55										
56										
57										
58										
59										
			For	peer re	eview	onlv -	http:/	/bmiope	en.bmj.com/site/abo	out/quidelines.xhtml
60									,,,,,,,	

4
5
6

 $^{22}_{23}$ 2. The effect of levosimendan on lactate reduction. The lactate level (mmol/L) changes were compared.

24										
25		Expe	erimen	tal	C	Control			Mean Difference	Mean Difference
26	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
27	Fang M 2014		1.01	18	-0.1	1.06	18	19.3%	-1.60 [-2.28, -0.92]	
28	Gordon AC 2016		1.34	236		1.742	236	24.1%	-0.20 [-0.48, 0.08]	-8-
29	Meng J 2016		1.06	19	-0.4	1.05	19	19.4%	-1.10 [-1.77, -0.43]	
30	Morelli A 2005		1.04	15	0	1.05	13	17.9%	-1.20 [-1.98, -0.42]	
31	Morelli A 2010	-0.4	1.09	20	-0.3	1.07	20	19.4%	-0.10 [-0.77, 0.57]	
32	Total (95% CI)			308				100.0%	-0.80 [-1.41, -0.20]	•
33	Heterogeneity: Tau ² =				= 4 (P =	= 0.0002	2); ² = 8	32%		-2 -1 0 1 2
34	Test for overall effect:	Z = 2.60	(P = 0	.009)						Favours [Levosimendan] Favours [Control]
35										
36										
37 38										
30 39										
40										
41										
42										
43										
44										
45										
46 47										
48										
49										
50										
51										
52										
53										
54										
55										
55 56										
57										
58										
59			For	noor	roviow	only	http:/	/hmion	en hmi com/sito/ah	out/guidelines.xhtml
60			101	heel	eview	only -	nup./	/onjop	en.omj.com/site/ab	out/guidennes.kittiin

²²₂₃ 3. The effect of levosimendan on cardiac index (CI). The CIs (L/min/m2) after treatment were compared.

24										
25		levos	imend	an	Co	ontrol			Mean Difference	Mean Difference
26 -	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
27	Fang M 2014	4.6	0.7	18	3.6	0.7	18	14.8%	1.00 [0.54, 1.46]	
28	Gordon AC 2016	3.5	1.4	69	3.3	1	66	16.9%	0.20 [-0.21, 0.61]	
29	Meng J 2016	3.5	0.3	19	3.1	0.4	19	28.0%	0.40 [0.18, 0.62]	_
30	Morelli A 2005	4.5	0.2	15	4.2	0.2	13	33.4%	0.30 [0.15, 0.45]	
30 31	Morelli A 2010	4.1	1.19	20	4.1	1.26	20	7.0%	0.00 [-0.76, 0.76]	
32	Total (95% CI)			141			136	100.0%	0.39 [0.17, 0.62]	•
33	Heterogeneity: Tau ² =	0.03; Ch	i² = 9.7	1, df =	4 (P = 0	0.05);	² = 59%	6		
34	Test for overall effect:				·					-1 -0.5 0 0.5 1 Favours [control] Favours [levosimendan]
35										
36										
37 38										
39										
40										
41										
42										
43										
44										
45										
46										
47										
48										
49										
50										
51										
52										
53 54										
54 55										
56										
57										
58										
58 59										
59 60			For p	beer re	eview o	only -	http:/	/bmjop	en.bmj.com/site/abo	ut/guidelines.xhtml
00			1			/	1 .	, r	,	5

4
5
6
-

 $^{22}_{23}$ 4. The effect of levosimendan on cardiac index (CI). The CI (L/min/m2) changes after treatment were compared.

24										
25			simend			ontrol			Mean Difference	Mean Difference
26	Study or Subgroup	Mean			Mean			Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
27	Fang M 2014	1.4	0.66	18		0.66	18	10.1%	1.20 [0.77, 1.63]	
28	Gordon AC 2016	0.6	1.31	69		1.11	66	10.8%	0.50 [0.09, 0.91]	
	Meng J 2016	0.5	0.26	19		0.36	19	21.8%	0.30 [0.10, 0.50]	
29	Morelli A 2005	0.4	0.2	15		0.26	13	23.6%	0.40 [0.23, 0.57]	
30	Morelli A 2010 Vaitsis J 2009	0.5 1.79	1.12 0.16	20 23		1.26 0.12	20 19	4.4% 29.4%	0.30 [-0.44, 1.04] 0.39 [0.31, 0.47]	-
31	Valisis J 2009	1.79	0.16	23	1.4	0.12	19	29.4%	0.39 [0.31, 0.47]	_
32	Total (95% CI)			164			155	100.0%	0.46 [0.30, 0.63]	•
33	Heterogeneity: Tau ² =	0 02 [.] Ch	i² = 14		= 5 (P =	0.01).				
34	Test for overall effect: 2					0.0.7,		,,,		-1 -0.5 0 0.5 1
35			(Favours [control] Favours [levosimendan]
36										
37										
38										
39										
40										
41										
42										
43										
44										
45										
46										
40 47										
47										
40 49										
49 50										
51										
52										
53										
54										
55										
56										
57										
58										
59			_					4	1 1 1 1 1 1	
60			Forp	beer re	eview	only -	http:/	/bmjope	en.bmj.com/site/abou	t/guidelines.xhtml

5. The effect of levosimendan on left ventricular ejection fraction (LVEF). The LVEF (%) after treatment were compared
 compared

27	
25	

25					~				N 5:4	N 517
26			simenda			ontrol			Mean Difference	Mean Difference
27 -	Study or Subgroup	Mean			Mean			Weight		IV, Random, 95% Cl
28	Fang M 2014	46.3	6.8	18	38.3	8.5	18	41.4%	8.00 [2.97, 13.03]	
29	Meng J 2016	45.6	7.6	19	39.1	8.5	19	39.8%	6.50 [1.37, 11.63]	
30	Morelli A 2005	45.4	8.4	15	40.8	11.3	13	18.8%	4.60 [-2.87, 12.07]	
31	Total (95% CI)			52				100.0%	6.76 [3.53, 10.00]	
32	Heterogeneity: Tau ² =				2 (P = 0	0.75); I	² = 0%		_	-50 -25 0 25 50
33	Test for overall effect:	Z = 4.10 ((P < 0.0)001)						Favours [control] Favours [levosimendan]
34										
35										
36										
37										
38										
39										
40										
41										
42										
43										
44										
45										
46										
47										
48										
49										
50										
51										
52										
53										
54										
55										
56										
57										
58										
59										
60			For p	eer re	eview c	only -	http:/	/bmjope	en.bmj.com/site/abou	ut/guidelines.xhtml
00										

4	
5	
6	

 $^{22}_{23}$ 6. The effect of levosimendan on left ventricular ejection fraction (LVEF). The LVEF (%) changes were compared

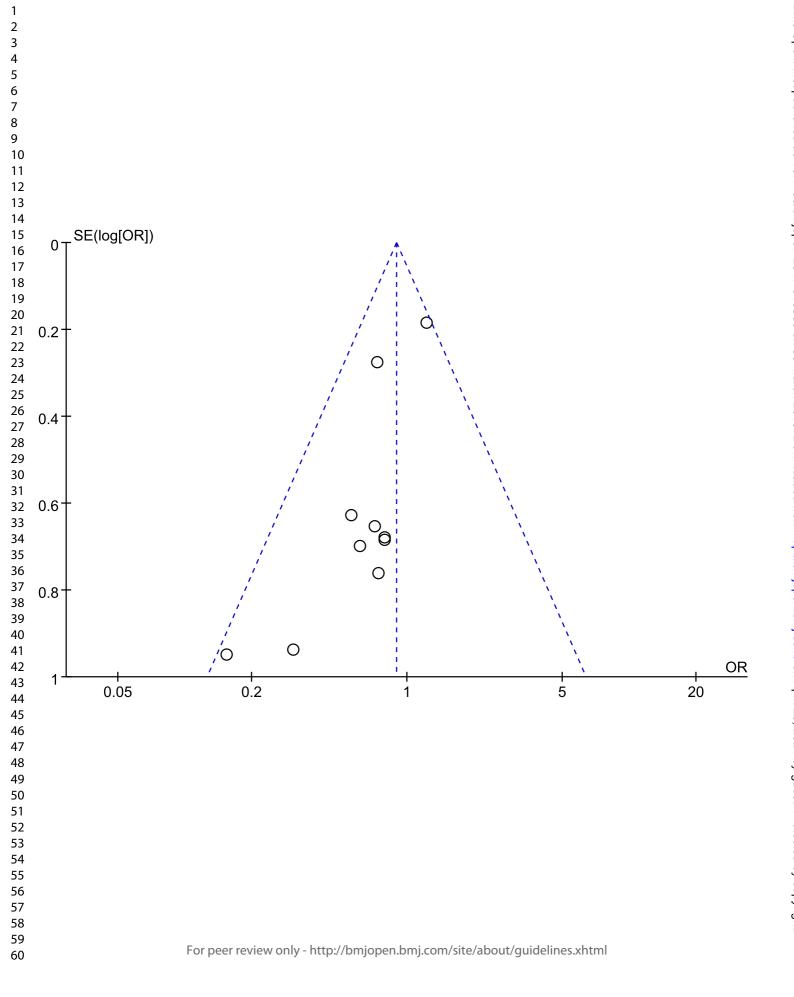
25										
26			simeno			ontrol			Mean Difference	Mean Difference
27	Study or Subgroup	Mean			Mean			Weight	IV, Random, 95% CI	IV, Random, 95% Cl
	Fang M 2014	9.2		18	1.5	7.62	18	24.4%	7.70 [3.22, 12.18]	
28	Meng J 2016	9.4	6.71	19	1.9	7.93	19	23.8%	7.50 [2.83, 12.17]	
29	Morelli A 2005	8.3	7.37	15		10.25	13	18.2%	4.80 [-1.90, 11.50]	
30	Vaitsis J 2009	4.8	0.2	23	3.5	0.7	19	33.5%	1.30 [0.97, 1.63]	
31	Total (95% CI)			75			60	100.0%	4.98 [0.75, 9.21]	
32	Heterogeneity: $Tau^2 =$	10.00.0			0 (D -	- 0.001			4.96 [0.75, 9.21]	
33	Test for overall effect:				- 3 (P -	- 0.001), I [_] – o	170		-20 -10 0 10 20
34		2 - 2.31	(F = 0.	.02)						Favours [control] Favours [levosimendan]
35										
36										
37										
38										
39										
40										
40 41										
41										
42 43										
43 44										
44 45										
45 46										
47										
48										
49										
50										
51										
52										
53										
55 54										
55										
56										
57										
58										
59			For		oviour	anlu	http://	/bmiores	n.bmj.com/site/abo	ut/quidalinas yhtml
60			FUI	peerr	eview	Jilly -	nttp://	omjope	m.pmj.com/site/abol	ut/guideimes.xntmi

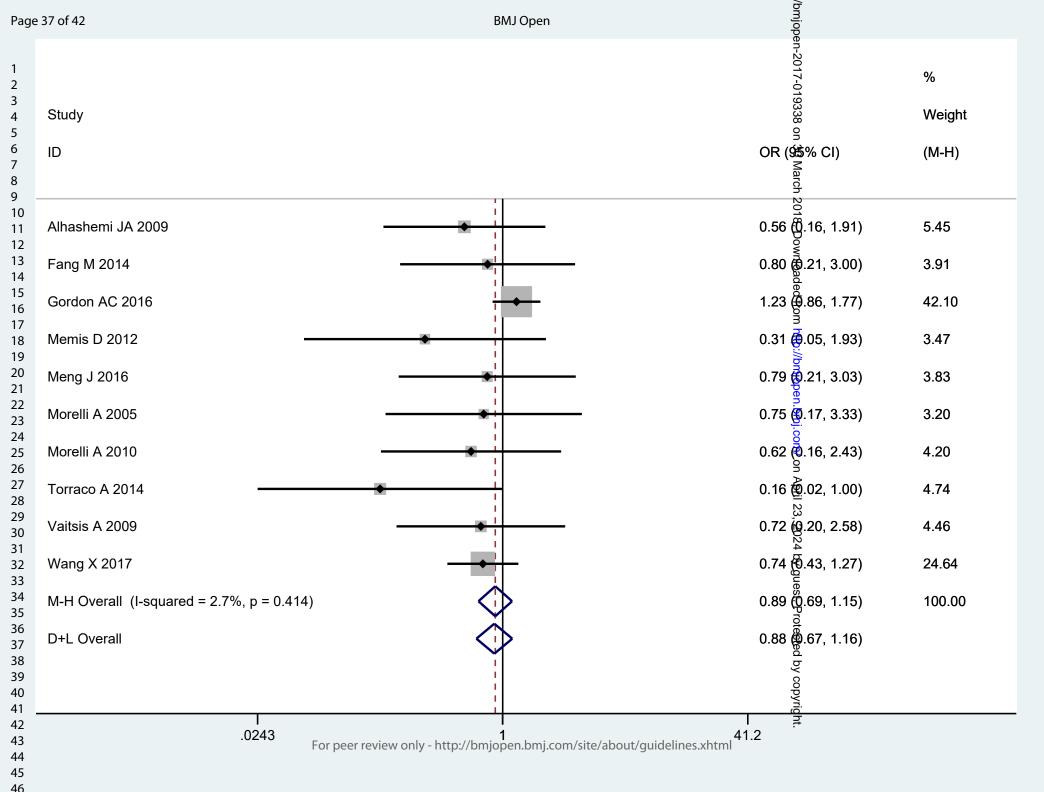
	7. The effect of le treatment were co Study or Subgroup	ompared Levosimend		ontrol		e work index (LVS Mean Difference IV. Random, 95% CI	SWI). The LVSWIs (g*m/m2) after Mean Difference IV. Random. 95% Cl
27-28	Fang M 2014	33.7 2.4	18 28.2	1.2 18	38.9%	5.50 [4.26, 6.74]	
29	Meng J 2016 Morelli A 2005	36.9 2.7 33.9 3.7	19 39.1 15 27.9			-2.20 [-6.21, 1.81] 6.00 [4.05, 7.95]	
$\begin{array}{c} 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 9\\ 60\\ \end{array}$	Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3	6.65; Chi ² = 13. Z = 2.25 (P = 0.	52 94, df = 2 (P = 02)	50 : 0.0009); I ²	100.0% = 86%	3.73 [0.49, 6.98]	but/guidelines.xhtml

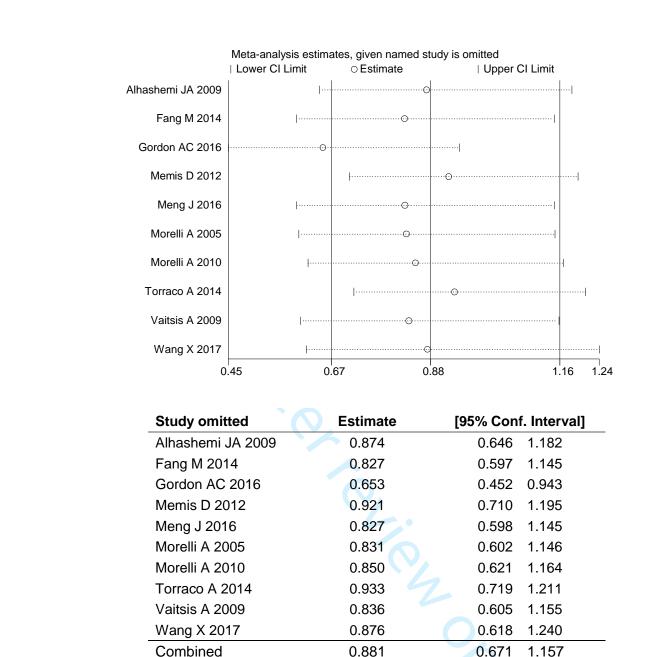
22 8. The effect of levosimendan on left ventricular stroke work index (LVSWI). The LVSWI (g*m/m2) changes
 23 were compared
 24

27										
25		Levo	simenc	lan	С	ontrol			Mean Difference	Mean Difference
26	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
27	Fang M 2014	4.6	2.82	18	-0.6	1.37	18	53.2%	5.20 [3.75, 6.65]	
28	Meng J 2016	5.4	2.38	19	1.9	7.93	19	8.1%	3.50 [-0.22, 7.22]	
29	Morelli A 2005	4.3	3.34	15		1.25	13	33.6%	4.90 [3.08, 6.72]	_ _ _
30	Morelli A 2010	8	7.52	20	2	7.52	20	5.1%	6.00 [1.34, 10.66]	
31										
32	Total (95% CI)			72				100.0%	5.00 [3.95, 6.06]	
33	Heterogeneity: Tau ² =).83);	$ ^2 = 0\%$			-10 -5 0 5 10
34	Test for overall effect:	Z = 9.28	(P < 0.	00001)					Favours [control] Favours [levosimendan]
35										
36										
37										
38										
39										
40										
41										
42										
43										
44										
45										
46										
47										
48										
49										
50										
51										
52										
53										
54										
55										
56										
57										
58										
59										
60			Forp	beer re	eview (only -	http:/	/bmjope	en.bmj.com/site/abc	ut/guidelines.xhtml
00										

 $^{23}_{24}$ 9. The effect of levosimendan on fluid infusion. The standard mean difference of fluid infsuion were compared.


25										
26	Study or Subgroup	Levo Mean	simenc	lan <u>Total</u>	C Mean	ontrol	Total	Weight	Std. Mean Difference IV, Random, 95% Cl	Std. Mean Difference IV, Random, 95% Cl
27	Fang M 2014	5,746	420		4,156.7	215	101 <u>8</u>	24.3%	4.66 [3.34, 5.97]	
28	Gordon AC 2016	1,847		239	1,718	1,010	238	27.2%	0.09 [-0.09, 0.27]	+
29	Morelli A 2005	5,907	330	15	4,311	136	13	22.0%	5.98 [4.13, 7.82]	
30	Morelli A 2010	5,700	1,000	20	4,850	777.78	20	26.5%	0.93 [0.27, 1.59]	
31										
32	Total (95% CI) Heterogeneity: Tau ² =	2 70. 04	.2 - 07	292	2 (D < 0	00004)		100.0%	2.72 [0.75, 4.69]	
33	Test for overall effect:				3 (P < 0.	00001);	1- = 97%	/0		-4 -2 0 2 4
34		2 2.71	(1 0.	001)						Favours [levosimendan] Favours [control]
35										
36										
37										
38										
39										
40										
41										
42										
43										
44										
45										
46										
47										
48										
49										
50										
51										
52										
53										
54										
55										
56										
57										
58										
59			_							
60			For	peer	review	only - h	ttp://	bmjope	n.bmj.com/site/abou	ut/guidelines.xhtml


²² 10. The effect of levosimendan on norepinephrine dose. The norepinephrine doses (μ g/kg/min) after treatment ²³ were compared.


24										
25		Levo	simend	dan	С	ontrol			Mean Difference	Mean Difference
26.	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
27	Fang M 2014	0.33	0.05	18	0.33	0.06	18	23.4%	0.00 [-0.04, 0.04]	<u>†</u>
28	Gordon AC 2016		0.237	210		0.193	195	23.2%	0.10 [0.06, 0.14]	
29	Meng J 2016	0.36	0.11	19	0.37	0.09	19	22.4%	-0.01 [-0.07, 0.05]	- 1
30	Morelli A 2005	0.02	0.06	15	0.23	0.06	13	23.1%	-0.21 [-0.25, -0.17]	
31	Morelli A 2010	0.3	0.59	20	0.4	0.59	20	7.8%	-0.10 [-0.47, 0.27]	-
32	Total (95% CI)			282			265	100.0%	-0.04 [-0.16, 0.09]	•
33	Heterogeneity: Tau ² =	0.02; Cł	ni² = 102	2.51, df	= 4 (P <	< 0.000	01); l² =	96%	•	-1 -0.5 0 0.5 1
34	Test for overall effect: 2	Z = 0.56	(P = 0.	58)						Favours [levosimendan] Favours [control]
35										
36										
37										
38										
39										
40										
41										
42										
43										
44										
45										
46										
47										
48										
49										
50										
51										
52										
53										
54										
55										
56										
57										
58										
59			For		oviou	oply	http://	hmiona	n hmi com/site/sha	ut/quidolinos yhtml
60			FUL	peerr	eview	only -	nttp://	unjope	m.pmj.com/site/abo	ut/guidelines.xhtml

²² 11. The effect of levosimendan on norepinephrine dose. The norepinephrine dose (μ g/kg/min) changes were ²³ compared.

24	1									
25		Levo	simend	lan	c	ontrol			Mean Difference	Mean Difference
26.	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
27	Gordon AC 2016	-0.01	0.26	210		0.204	195	32.0%	-0.10 [-0.15, -0.05]	*
28	Meng J 2016	-0.06	0.12	19	-0.03	0.1	19	27.0%	-0.03 [-0.10, 0.04]	
29	Morelli A 2005		0.066	15	0	0.056	13	32.0%	0.00 [-0.05, 0.05]	T
30	Morelli A 2010	-0.1	0.56	20	0	0.51	20	4.1%	-0.10 [-0.43, 0.23]	
31	Torraco A 2014	-0.15	0.37	13	0.23	0.4	13	5.0%	-0.38 [-0.68, -0.08]	
32	Total (95% CI)			277			260	100.0%	-0.06 [-0.13, 0.01]	•
33	Heterogeneity: Tau ² =				= 4 (P =	0.006);	l² = 72	%		-1 -0.5 0 0.5 1
34	Test for overall effect:	Z = 1.74	(P = 0.	08)						Favours [levosimendan] Favours [control]
35										
36										
37										
38										
39										
40										
41										
42										
43										
44										
45										
46 47										
47 48										
49										
50										
51										
52										
53										
54										
55										
56										
57										
58										
59										
60			For	peer r	eview	only -	http://	/bmjope	n.bmj.com/site/abc	out/guidelines.xhtml
00			-				-	- /	-	

(((((levosimendan) OR simendan) OR Simdax) OR dextrosimendan)) AND ((((sepsis) OR septicemia) OR severe sepsis) OR septic shock)

For peer teriew only

Methods of imputation of missing data

1. In studies outcomes are presented as median (IQR):

The distribution of outcome is assumed to be normal. Mean is substituted by median, and SD is calculated by the following formula:

$$SD = \frac{IQ_{up} - IQ_{down}}{1.35}$$

2. In studies when baseline and final outcomes are told and presented as $\underline{\text{mean}\pm\text{SD}}$ (mean_B±SD_B and mean_F±SD_F), and the changes are unknown. The mean (mean_C) and SD (SD_C) of the changes are calculated by the following formulas:

$$mean_{C} = mean_{F} - mean_{B}$$

$$SD_c = \sqrt{SD_B^2 + SD_F^2 - 2 \times R \times SD_B \times SD_F}$$

Within which, R is called correlation coefficient and is regarded as 0.4 or 0.5 during the calculation, and more values of R (0.2 and 0.8) is used during the sensitivity analysis.

Abbreviations: IQR inter-quartile range, SD standard deviation

Page 41 of 42

47

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Pg. 1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	Pg. 2-3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	Pg. 4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	Pg. 4-5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	-
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	Pg. 5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	Pg. 5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Pg. 5
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Pg. 5-6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	Pg. 6
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	Pg. 6
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	Pg. 6
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	Pg. 6
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	Pg. 7

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

PRISMA 2009 Checklist

Page 1 of 2

Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	Pg. 7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	Pg. 7
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Pg. 7
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Pg. 7-8
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Pg. 8
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Pg. 8
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	Pg. 8-9
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Pg. 9-10
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	Pg. 10
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	Pg. 10-11
imitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	Pg. 11-12
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	Pg. 12
UNDING	<u> </u>		
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	Pg. 13

41 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. 42 doi:10.1371/journal.pmed1000097 For more information, visit: www.prisma-statement.org.

Page 2 of 2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019338 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.