Patient navigators facilitating access to primary care: a scoping review

Annette Peart,1 Virginia Lewis,2 Ted Brown,3 Grant Russell1

ABSTRACT
Objective Patient navigators are a promising mechanism to link patients with primary care. While navigators have been used in population health promotion and prevention programmes, their impact on access to primary care is not clear. The aim of this scoping review was to examine the use of patient navigators to facilitate access to primary care and how they were defined and described, their components and the extent to which they were patient centred.

Setting and participants We used the Arksey and O’Malley scoping review method. Searches were conducted in MEDLINE, Embase, ProQuest Medical, other key databases and grey literature for studies reported in English from January 2000 to April 2016. We defined a patient navigator as a person or process creating a connection or link between a person needing primary care and a primary care provider. Our target population was people without a regular source of, affiliation or connection with primary care. Studies were included if they reported on participants who were connected to primary care by patient navigation and attended or made an appointment with a primary care provider. Data analysis involved descriptive numerical summaries and content analysis.

Results Twenty studies were included in the final scoping review. Most studies referred to ‘patient navigator’ or ‘navigation’ as the mechanism of connection to primary care. As such, we grouped the components according to Freeman’s nine-principle framework of patient navigation. Seventeen studies included elements of patient-centred care: informed and involved patient, receptive and responsive health professionals and a coordinated, supportive healthcare environment.

Conclusions Patient navigators may assist to connect people requiring primary care to appropriate providers and extend the concept of patient-centred care across different healthcare settings. Navigation requires further study to determine impact and cost-effectiveness and explore the experience of patients and their families.

INTRODUCTION
Primary care is the first level of access to healthcare, delivered in the community most often by family physicians or general medical practitioners. However, not all people access primary care that best meets their healthcare needs, where and when they need it. Some people, such as those living in poverty, with a long-term disability, from a culturally and linguistically diverse background or located in rural and remote areas, have difficulty accessing primary care services and resources.1–4

Access to healthcare is the opportunity to reach and obtain appropriate healthcare in situations of perceived need.5 Access to primary care is important to reduce healthcare disparities, mortality, morbidity, hospitalisation rates and healthcare costs.6–9 Recent reforms to primary care have focused on trialling new processes and models of care to improve access.10 These include integrated care models, after-hours telephone consultations, walk-in centres and nurse-led initiatives. However, disparities in care remain for many, such as people having low literacy and numeracy, cognitive deficits, being a member of a marginalised group or not understanding the need for primary care.11

A new approach to improve access to primary care is patient navigation, a process where a person (navigator) engages with a patient to determine barriers to care and provides information to improve access to components of the health system, not just primary care.12 A patient navigator has been described as a type of ‘broker’ who uses a biopsychosocial approach to provide a range of instrumental and relational functions and processes13 14 to support patients to access primary care and directly identify providers willing to treat vulnerable people requiring
Patient navigator tasks can include educating patients about early symptoms of cancer (in preventive care) or facilitating and coordinating appointments with providers to improve access to a regular primary care provider. Originating in the 1990s, Freeman developed patient navigation as a strategy to reduce barriers to breast cancer care in Harlem, New York. Since then, patient navigators have been used for the screening of various cancers and through the cancer care continuum, with mixed success. In primary care, navigators may have a role in improving access and coordination of care, especially for vulnerable populations whose access to care may be compromised by a range of geographic, demographic, socioeconomic or cultural characteristics.

Patient-centred care is a core element of high-quality primary care, facilitates access to appropriate care, and has been identified as one of six areas of focus for improving healthcare systems. In primary care, patient-centred care consists of interactions and relationships between providers and patients to share information, explore values and preferences, facilitate access to appropriate care, and address healthcare disparities. While numerous frameworks of patient-centred care have been described, Epstein’s succinct model of patient-centred care comprising an informed and involved patient, receptive and responsive health professionals and a coordinated, supportive healthcare environment, sits well within the context of patient navigation and its extension beyond the patient–clinician relationship to the setting in which care is delivered.

While navigators have been used in population health promotion and prevention programs, there has been recent interest in their use in facilitating access to primary care for vulnerable people without a regular primary care provider. Understanding the components of these programmes can assist those interested in designing or implementing similar programmes. Therefore, we performed a scoping review of the use of patient navigation to facilitate access to primary care. Given its importance and relevance to navigation, we included an additional focus on the extent to which identified patient navigation interventions were patient centred.

METHODS

We chose the scoping review method to map the extent, range and nature of published research on the use of patient navigation to further understand how it links people to primary care. When compared with systematic reviews, scoping reviews address broader topics and are less reliant on detailed research questions or quality assessments. The work was structured around the five stages of the Arksey and O’Malley framework: (1) identify the research question, (2) identify relevant studies, (3) study selection, (4) chart the data and (5) collate, summarise and report the results. The review was also informed by Levac et al’s refinements to Arksey and O’Malley’s framework.

Stage 1: identify the research question

Patient navigation has been defined as a ‘process, by which an individual, a patient navigator, guides patients in overcoming barriers to healthcare services access to facilitate timely access to care’. We expanded this definition to include a patient navigator as a person or process creating a connection or link between a person needing primary care and a primary care provider.

Our target population was people without a regular source of or affiliation or connection with primary care. The outcome of interest was the person needing care attended an appointment or made contact with the referred primary care provider. These definitions helped us to clarify the focus of the review, confirm the inclusion criteria adopted and establish parameters for the search strategy. This review did not focus on the impact or effectiveness of patient navigation programmes in this context. We asked three questions to guide the scoping review:

1. How have patient navigators been defined and described in connecting people who are unattached to primary care to a primary care provider for regular care?
2. What are the components of these patient navigation programmes?
3. To what extent has patient centredness been incorporated into the design, implementation and analysis of patient navigation programmes?

Stage 2: identify relevant studies

We identified relevant studies through a search of electronic databases, grey literature and reference lists of key articles sourced (online supplementary file 1).

A three-step search strategy was used. First, we undertook an initial limited search of MEDLINE, Embase and Cumulative Index to Nursing and Allied Health Literature (CINAHL) using terms and variants of ‘navigator’, ‘broker’, ‘link worker’ and ‘community health worker’. We analysed the text in the titles and abstracts of retrieved studies and index terms used to refine key terms. The terms most common were related to navigation, linkage and access to care. We completed a second search of the same databases and extended the search to include related medical and social science databases and grey literature using the key terms and variants (table 1) identified by the initial search strategy (online supplementary file 2).

Finally, we checked the reference lists of all identified studies (and their citations) for additional studies.

Stage 3: study selection

Inclusion criteria were applied as a basis for which studies were considered relevant to the review questions. Studies were included if they:

- were published in English from January 2000 to May 2016. The start date of 2000 reflects the increasing interest in patient-centred care in the last two decades. Reforms of primary care commenced around this...
Table 1 Key search terms

<table>
<thead>
<tr>
<th>Concept, programme or intervention</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigator/navigation</td>
<td>Community health</td>
</tr>
<tr>
<td>Patient navigator/navigaton</td>
<td>Family practice/practitioner</td>
</tr>
<tr>
<td>Peer navigator/navigaton</td>
<td>General practice/practitioner</td>
</tr>
<tr>
<td>Broker</td>
<td>Primary care</td>
</tr>
<tr>
<td>Health broker</td>
<td>Primary healthcare</td>
</tr>
<tr>
<td>Health services broker</td>
<td></td>
</tr>
<tr>
<td>Community health worker</td>
<td></td>
</tr>
<tr>
<td>Community navigator/navigation</td>
<td></td>
</tr>
<tr>
<td>Lay health worker</td>
<td></td>
</tr>
<tr>
<td>Linkage to care</td>
<td></td>
</tr>
</tbody>
</table>

Stage 4: chart the data

Data extracted were entered into a template developed in Microsoft Excel specifically for this review. Information on authors, year of publication, study location and context, aims or purpose of the research, study type or design, population and sample size, methodology, conceptual model, intervention type and duration, measures used and key findings were recorded on this form. We also extracted data relevant to the research questions: definitions and descriptions of navigators, components of navigator programmes and elements of patient-centred care. Charting the data was an iterative process\(^36\) that we updated as studies revealed useful data categories. Studies were reviewed a number of times to ensure all relevant data was captured.

Stage 5: collate, summarise and report the results

We collated the data using a Microsoft Excel spreadsheet. Excerpts of text were coded deductively by AP to identify concepts and themes related to the research questions. GR checked the coding scheme and the themes raised.

RESULTS

Our initial search terms generated 6355 records from electronic databases and grey literature (figure 1). We removed 664 duplicates, leaving 5691 records to be screened. Of these, 5613 records were excluded based on the title and/or abstract review, as they were not relevant to the question, did not meet inclusion criteria or originated in non-OECD countries. Of the remaining 78 records, full-text review excluded 44 where participants were not linked to primary care and 16 where participants already had a primary care provider or did not indicate a need for primary care. We searched references and citations of the remaining 18 records, adding two additional studies. This resulted in 20 selected for inclusion in the scoping review. The selection process is shown in the flow chart (figure 1).

Of the 20 included studies, three reported on the same randomised controlled trial at different phases\(^{39–41}\). These three studies were counted as unique studies as each reported on different elements of the same trial: preliminary findings, qualitative analysis of interviews and longitudinal findings.

Eleven studies were descriptions or evaluations of programmes, eight were intervention studies and one was a retrospective study. Thirteen were programmes based in emergency departments, six were community-based programmes and one was delivered in an inpatient setting. All studies were conducted in the USA. Table 2 outlines characteristics of the included studies.

Patient navigators: definition and descriptions

One study defined patient navigation as a ‘process, by which an individual, a Patient Navigator, guides patients in overcoming barriers to health care services access to facilitate timely access to care’\(^{37}\). The studies provided either a description of a navigator (person) or, for three of the studies, navigation process\(^{42–44}\). Descriptions varied in detail and often consisted of the type of person recruited as a navigator, the tasks they performed and the training provided (table 2).

Patient navigation programme components

All of the studies outlined components of their programmes; four provided detailed descriptions\(^{39–41,45}\). We grouped programme components according to Freeman’s consensus-based nine-principle framework of patient navigation, originally developed in response to the expansion of patient navigation as a community-based intervention\(^{16,46,47}\). These principles have been widely used in patient navigation programmes. Each of these principles is outlined below with examples
Principle 1: patient-centred healthcare service delivery model
Seventeen of the studies outlined aspects of patient-centred care. This will be discussed further in the section addressing research question three.

Principle 2: integration of a fragmented healthcare system
This principle relates to a patient experiencing a seamless, timely flow through the continuum of care. We grouped another principle (principle 8: connect disconnected healthcare systems) here with principle 2, as the two are similar concepts, and this has been done previously. All studies in our scoping review reported on these principles grouped together. Two examples of integration in our scoping review were assisting patients to understand the entire health system, and linking the emergency department with a primary care provider, as well as to community dental, mental health, substance abuse and other social services.

Principle 3: elimination of barriers
This principle is most effectively carried out through relationships with patients. While removing barriers to accessing primary care appears implicit in a navigator programme, not all studies provided detail of what the barriers were and how they were addressed. One exception of note is the Step on It! intervention at JFK International Airport, which focused on the barriers taxi drivers faced. This intervention went to the airport holding lot, assisted drivers to locate providers with flexible hours, culturally and linguistically appropriate models of care and at low-cost. Another study described a programme that helped adults with sickle cell disease find primary care. The barriers addressed included patients not understanding why they needed a primary care provider when they already had a specialist, low literacy, difficulty filling out forms and forgetting appointments. These navigators used motivational interviewing to identify further barriers and help patients set priorities beyond accessing primary care.

Principle 4: clear scope of practice
Three studies provided detail about the role and responsibilities of the navigator. The most detailed of these was a randomised clinical trial by Kangovi et al, providing a website link (http://chw.upenn.edu) containing protocols for recruitment, training and standardised work practices for navigators, organisational directors and managers.
Table 2: Characteristics of included studies

<table>
<thead>
<tr>
<th>Authors</th>
<th>Context</th>
<th>Study type</th>
<th>Population and sampling</th>
<th>Primary outcome</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bishop<sup>49</sup></td>
<td>Private, non-profit, community homeless shelter</td>
<td>Description of Charlottesville Health Access initiative to enhance access to care</td>
<td>Homeless and near-homeless people, without a healthcare provider, attending health fair at shelter or soup kitchen (no sample reported)</td>
<td>People connected to permanent healthcare provider</td>
<td>Volunteer navigator (student or community member) completed a training course, engaged person by building relationships, assessed needs, guided to providers, translated confusing information, coordinated follow-up and empowered people to understand health system and self-care.</td>
</tr>
<tr>
<td>Chan et al<sup>42</sup></td>
<td>ED in low-income, urban area served by three community clinics</td>
<td>Non-randomised, non-blinded interventional trial to improve primary care access for underserved patients</td>
<td>Patients with no primary care provider assessed by ED physician to benefit from clinic follow-up (n=326)</td>
<td>Patients follow-up at community clinic within 14 days</td>
<td>Internet-based secure referral system between ED medical record and clinic appointment systems. System accessed clinic availability and allowed ED physicians to give patients follow-up appointments at clinics.</td>
</tr>
<tr>
<td>Doran et al<sup>57</sup></td>
<td>Urban, public, safety-net hospital ED with primary care clinic in same building complex</td>
<td>Quasiexperimental trial to navigate willing patients from ED to clinic</td>
<td>Adults with no primary care provider, presenting with low-acuity problems, assigned to intervention or usual care based on where care expected to result in least delay (n=965)</td>
<td>Patients follow-up at primary care clinic within 1 year</td>
<td>Trained patient navigator escorted patients from ED waiting room to clinic. Patients assigned physician who addressed current problems, established care plan and gave card with name and clinic telephone number.</td>
</tr>
<tr>
<td>Elliott et al<sup>43</sup></td>
<td>Urban ED, serving high proportion of vulnerable patients</td>
<td>Retrospective study using full electronic medical record abstraction, randomly sampled</td>
<td>Patients with no primary care provider, discharged and referred to transitional care clinic (n=660)</td>
<td>Patient completed follow-up visit in transitional care clinic as scheduled</td>
<td>Transitional care clinic staff worked with patients to determine preferences and locate convenient, appropriate provider and made new appointment with chosen provider.</td>
</tr>
<tr>
<td>Gany et al<sup>61</sup></td>
<td>Unused parking lot adjacent to JFK International Airport’s taxi holding lot</td>
<td>Description of Step On It! workplace intervention to increase healthcare access</td>
<td>Convenience sample of taxi drivers waiting in airport holding lot (n=466)</td>
<td>Driver completed follow-up visit with linked provider within 6 months</td>
<td>Healthcare access and case management to link drivers to providers, including referrals to low-cost (or free) culturally appropriate clinics or hospitals.</td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Authors</th>
<th>Context</th>
<th>Study type</th>
<th>Population and sampling</th>
<th>Primary outcome</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Griswold et al.</td>
<td>Urban Comprehensive Psychiatric Emergency Program (psychiatric assessment and management, targeted therapeutic approaches, links to community mental health services) as usual care</td>
<td>Randomised controlled trial comparing linkage with primary care with usual care after psychiatric emergency visit</td>
<td>Adults presenting with psychiatric disorder, with no primary care provider or have not seen one within 6 months (n=101–175)</td>
<td>Patients connected to and visited primary care within 3 and 12 months</td>
<td>Care navigator trained in interviewing and case management provided information about low-cost care, facilitated access and reinforced patient education; information to providers about patient’s history, follow-up, peer connections to access community and social services.</td>
</tr>
<tr>
<td>Horwitz et al.</td>
<td>Level 1 urban trauma centre</td>
<td>Randomised study of intensive case management intervention to improve primary care use</td>
<td>Uninsured adults presenting to ED, excluding substance abuse or mental health issues only (n=230)</td>
<td>Patients visited one of four participating primary care clinics within 2 months</td>
<td>Health Promotion Advocates in ED assisted patients to choose provider, gave brochure, faxed information to case worker at selected clinic. Clinic case worker contacted patient to make appointment.</td>
</tr>
<tr>
<td>Kahn et al.</td>
<td>Medicaid managed care organisation for people with mental health and/or substance abuse diagnoses</td>
<td>Evaluation to assess effectiveness of case management in linking new members with primary care providers</td>
<td>New members with behavioural health diagnosis and no primary care provider completing mailed survey, referred to case management (n=368)</td>
<td>Member visited primary care provider within 12 months</td>
<td>Telephone case managers made at least three contact attempts to ensure linkage to provider.</td>
</tr>
<tr>
<td>Kangovi et al.</td>
<td>Two urban, academically affiliated hospitals</td>
<td>Two-armed, single-blind, randomised clinical trial to improve primary care follow-up postdischarge</td>
<td>Newly admitted low-income, uninsured or Medicaid adult inpatients randomly numbered, approached until three per day enrolled (n=446)</td>
<td>Patient completed follow-up visit with primary care provider within 14 days</td>
<td>Community health workers (trained lay people of similar backgrounds to patients, selected for personality traits patients identified as important) set goals, supported goal achievement, connected to provider.</td>
</tr>
<tr>
<td>Kim et al.</td>
<td>Five hospital EDs in an affluent area with large and poor immigrant population</td>
<td>Analysis of Emergency Department-Primary Care Connect initiative to link patients to four local primary care clinics</td>
<td>Merged data set (hospital discharge, clinic and navigator referral data) of low-income or uninsured patients with no primary care provider (n=10761)</td>
<td>Patients completed two or more visits to same clinic across 33-month period</td>
<td>Patient navigators of various backgrounds (most unlicenced, selected for communication skills) based in clinics (three sites) or hospitals (two sites) spoke face to face or telephoned patients referred by ED providers.</td>
</tr>
</tbody>
</table>

Table 2 Continued
<table>
<thead>
<tr>
<th>Authors</th>
<th>Context</th>
<th>Study type</th>
<th>Population and sampling</th>
<th>Primary outcome</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marr et al</td>
<td>Urban ED with high rates of potentially avoidable hospitalisations and lack of community-based care</td>
<td>Evaluation of programme to connect patients with community-based, primary care providers</td>
<td>Patients with no primary care provider approached by navigator (n=7185)</td>
<td>Patients completed three or more visits to same clinic across 18-month period</td>
<td>Patient navigator (advocate) recruited from community, trained in ED, visited patients waiting for medical care or before discharge, offered referral within 18-clinic system.</td>
</tr>
<tr>
<td>Overholser et al</td>
<td>Specialist outpatient clinics of urban tertiary teaching hospital</td>
<td>Description of patient navigation programme to overcome barriers to finding primary care</td>
<td>Adults with sickle cell disease with no primary care provider or not seen regularly by provider, referred by specialist physicians (n=21)</td>
<td>Patients attended initial visit with new primary care provider</td>
<td>Patient navigators of various backgrounds trained in navigation proactively sought local providers and established network through outreach, made appointments with patients, sent reminders and educated on importance of primary care.</td>
</tr>
<tr>
<td>Treadwell et al</td>
<td>African-American community centre</td>
<td>Evaluation of Save Our Sons group health education and intervention model to reduce incidence of diabetes and obesity, improve regular access to care and build community networks</td>
<td>African-American men at risk for or diagnosed with diabetes and/or in poor health related to obesity and/or other health concerns; recruited at community event (n=42)</td>
<td>Participants connected to medical home</td>
<td>Six-week community-based, culturally responsive, gender-specific health prevention programme delivered by community health workers, and trusted community members provided links between health system and community.</td>
</tr>
<tr>
<td>Wang et al</td>
<td>Community health centre providing comprehensive services to ethnically diverse population with low incomes or uninsured</td>
<td>Evaluation of patient navigation programme to optimise healthcare utilisation</td>
<td>Patients with diabetes and/or hypertension not seen by provider in last 6 months (n=215)</td>
<td>Patient visited primary care provider and/or chronic disease nurse within 6 months</td>
<td>Patient navigator trained in chronic illness education, motivational interviewing and appointment scheduling. Telephoned patients, built rapport, educated patients, made appointment with provider, assessed need for specialist referrals, identified barriers to access and assisted to overcome barriers.</td>
</tr>
<tr>
<td>Wexler et al</td>
<td>ED within urban academic medical centre and affiliated primary care practices</td>
<td>Randomised controlled trial comparing health information technology intervention to improve access to primary care, with usual care</td>
<td>Medicaid enrollees who did not have usual source of care, ED physician confirmed visit non-urgent, completed baseline survey, randomly assigned (n=148)</td>
<td>Patients attend primary care provider office after discharge at 3, 6 and 12 months</td>
<td>ED electronic medical record to make appointment at clinic based on patient location and preference. Patient given appointment reminder card and directions to clinic. Electronic message to clinic with information about patient and appointment.</td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Authors</th>
<th>Context</th>
<th>Study type</th>
<th>Population and sampling</th>
<th>Primary outcome</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency department navigators connect</td>
<td>EDs of eight-hospital system</td>
<td>News article on use of ED navigators to redirect patients with non-emergency issues to most appropriate care setting</td>
<td>Health plan members with non-urgent problems (no sample reported)</td>
<td>Patient scheduled to be seen by another provider</td>
<td>Navigator with customer service background assigned members to provider and made appointments.</td>
</tr>
<tr>
<td>patients to better venues of care</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Navigator reduces readmissions, inappropriate</td>
<td>Urban ED</td>
<td>News article on community health outreach worker helping patients find a primary care provider</td>
<td>Patients with non-urgent problems who are uninsured and do not have a primary care provider, insured but do not have a provider or have a provider but cannot access him or her (n=1500)</td>
<td>Self-pay patients find medical home; other patients identify primary care provider and set up follow-up appointment</td>
<td>Community health outreach coordinator/navigator of varying cultures representing patients served. Met patient in ED, coordinated appointments and set patients up in medical homes.</td>
</tr>
<tr>
<td>ED navigators help patients find a PCP</td>
<td>Urban ED</td>
<td>News article on a pilot project to reduce 30-day readmissions and number of self-pay patients who visit ED for non-emergent care</td>
<td>Patients without insurance and primary care provider admitted to hospital through ED and/or not admitted (no sample reported)</td>
<td>Patients directed to primary care provider and set up in medical home</td>
<td>Navigator worked with patients to discuss discharge and help facilitate follow-up appointments.</td>
</tr>
</tbody>
</table>

ED, emergency department; PCP, primary care provider.
Kangovi et al \(^45\) created a community health worker model and tested its effect on posthospital outcomes among general medical inpatients. This was based on qualitative participatory action research and had detailed protocols including standardised work practices in three stages: goal setting, goal support and connection with primary care. A substantial component was to build relationships with patients to help set goals for recovery, develop an individualised action plan and liaise between the patient and inpatient care team. The worker provided tailored support based on the patient goals. Patients were connected to primary care and coached to make and attend appointments independently. Provider resources included a discharge summary and the patient’s action plan taken to the appointment.

Principle 5: cost-effective
None of the studies evaluated the cost-effectiveness of their programme.

Principle 6: defined level of skill
Nine studies provided information on the skill level required of the navigators.\(^39\) \(^45\) \(^49\) \(^50\) \(^52\)-\(^55\) This ranged from volunteers with inhouse training, staff with customer service backgrounds, to college-accredited navigators. They were trained on topics such as navigation processes, disease-specific content such as diabetes education or motivational interviewing. Similarly, seven studies presented strategies intentionally used to inform the development of resources to support the navigation intervention, including a needs assessment,\(^49\) \(^56\) software development,\(^42\) community-based participatory action research,\(^45\) \(^51\) \(^54\) and provider collaboration to develop and test navigation mechanisms.\(^50\)

Principle 7: defined beginning and end
Eleven studies outlined definite points at which navigation began and ended.\(^37\) \(^42\)-\(^45\) \(^50\) \(^51\) \(^56\)-\(^59\) Entry usually involved meeting a patient (eg, in the emergency department or on a hospital ward) to schedule an appointment. End points of the interventions included ‘patient has an appointment made’ or ‘patient sees provider’.

Principle 8: connect disconnected healthcare systems
This principle was combined with a similar principle (principle 2: integration of a fragmented healthcare system) for the purposes of this review.

Principle 9: coordinated system
This principle relates to having an assigned coordinator to oversee all aspects of the intervention.\(^56\) This was evident in two studies: where navigators served as executive officers on a governing board\(^49\) and were supervised by a social worker as well as having weekly team meetings.\(^45\)

Patient navigation: patient centredness
Our third question for this review was, ‘To what extent has patient-centredness been incorporated into the design, implementation and analysis of patient navigation programs?’ We focused on the three factors on which patient-centred care depends: informed and involved patient, receptive and responsive health professionals and a coordinated, supportive healthcare environment.\(^11\) Seventeen studies included at least one of the three factors. Table 3 indicates the number of studies and some examples of approaches to patient-centred care for each of the three factors. The columns of the table indicate whether patient centredness was included in the design, implementation or analysis phase of patient navigation programmes.

The Kangovi et al \(^45\) study had an explicit patient-centred focus. The intervention prioritised relationship building with patients through goal setting and development of action plans, liaising with inpatient staff to ensure the patient’s goals were at the forefront and giving the action plan to a provider the patient chose based on needs and preferences.

Similarly, in the three studies reporting the same randomised controlled trial, Griswold et al \(^40\)-\(^41\) used a care navigator to connect patients with a history of psychiatric crisis to primary care. The navigator built relationships by meeting with patients routinely while admitted and also at primary care appointments and maintaining regular contact via phone or in person. The navigator would take the patient to the appointment and reinforce any education provided. Patients were informed of low-cost clinics, and further assistance was provided through coordinating follow-up and connecting patients to peer and social services. Provider resources included information to clinics on discharge diagnosis, medications and mental health treatment site referral.

Other studies included the three factors yet did not explicitly state patient centredness as a driver.

DISCUSSION
Our scoping review identified 20 studies that used patient navigation to facilitate access, and connect vulnerable patients without regular primary care, to a primary care provider. All except three studies used a person to connect the patient to a provider; the remaining three used a navigation process. Most programmes described components that could be included in a framework of patient navigation, and 17 of the 20 studies included factors inherent to patient-centred care in their design, implementation or analysis.

The level of detail in descriptions of the studies varied; this variation has been reported elsewhere.\(^60\) In the studies included in this review, different terms were used for the same role: patient or care navigator, advocate, case manager or community health worker, for example. This presents challenges in clearly characterising navigators and understanding what they do. Similarly, while there is no generally accepted definition of patient navigation, there is a call for descriptions of the tasks navigators do and the networks of contacts they use to support their
actions.60 Valaitis et al28 described the specific activities undertaken by patient navigators: facilitating access to health-related programmes, promoting and facilitating continuity of care, identifying and removing barriers to care and effective and efficient use of the health system. Our findings add to these activities: a key feature of patient navigation to facilitate access to primary care is a relationship-based approach, informing and involving patients in connecting them to care.

The studies in this scoping review included elements that seemed to match the components of Freeman’s patient navigation framework. This indicates the framework may be generalisable to the tasks of connecting vulnerable people without a primary care provider to regular care. An evaluation of these principles used in 10 self-identified breast cancer navigation programmes using observation of patient navigator activities found the programmes were consistent with individual-level principles (eg, eliminating barriers, patient-centred care and integration of care); however, programme-level principles (eg, skill level, scope of practice and coordinated system) were not consistent across the programmes. We did not examine this level of detail for our scoping review, however, can see a role for this type of observation-based study to further contribute to this field.48 Generally, programmes adhered to published criteria for patient-centred care.11 Although not overtly stated as an aim, almost all studies incorporated at least one of the three patient-centred care factors: an informed and

Table 3 Examples of patient centredness

<table>
<thead>
<tr>
<th>Patient-centred care factor</th>
<th>Design phase examples</th>
<th>Implementation phase examples</th>
<th>Analysis phase examples</th>
<th>Total studies*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients informed and involved in their care</td>
<td>Two studies: user-friendly and culturally sensitive health materials; bilingual, bicultural community members</td>
<td>17 studies: provided information to patient on difference between emergency and primary care; identified barriers to access and help to overcome barriers</td>
<td>No studies</td>
<td>19</td>
</tr>
<tr>
<td>Receptive and responsive health professionals</td>
<td>Three studies: clinics added capacity for walk-in appointments, navigator visited clinics to provide information and establish working relationship</td>
<td>Six studies: after connection, navigator worked with provider to schedule other visits as per care plan; assisted with patient education and follow-up</td>
<td>Two studies: providers wanted to continue in programme; information to providers more complete and accessible than previously</td>
<td>11</td>
</tr>
<tr>
<td>Coordinated, supportive healthcare environment</td>
<td>Four studies: collaborative organisation linked emergency department with 18 clinics; each hospital adopted unique provider arrangement and approach</td>
<td>One study: emergency physicians encouraged to establish relationships with clinics</td>
<td>One study: community mobilised around population health issues through increased local media attention</td>
<td>6</td>
</tr>
</tbody>
</table>

*Some studies included more than one instance of the patient-centred factor in more than one phase of the intervention.
of our included studies originated in the USA, which we acknowledge would impact on generalisability. These limitations highlight the need for consistent documentation of processes to improve access to care and the outcomes measured.

We did not look for or report on the effectiveness of the interventions or programmes in our included studies. While we are unable to report on the impact, we consider our approach to looking at descriptions and uses of patient navigation in this specific context of connection to primary care, with a focus on patient-centred care, is consistent with the current focus on patient-reported outcome measures and acknowledging the patient experience of care.

This paper contributes to the discussion of access to primary care by considering patient navigation to connect vulnerable populations to providers in three ways. First, we aligned components of the patient navigation studies reviewed to an existing generic navigation framework. This framework appears to be appropriate for considering navigators facilitating access for people without a primary care provider to regular care. Second, a relational approach acts as the backdrop to connecting vulnerable people to care, based on principles of patient-centred care. Finally, in the absence of a consistent definition of patient navigation in facilitating access to primary care, we have added to an existing description of patient navigation activities, which will assist clinicians and researchers to design and implement similar programmes.

Implications for practice
The studies included in the review used navigators in a range of settings, from emergency departments, inpatient wards, outpatient services and in the community. Most of these studies demonstrate established principles of patient navigation and use a patient-centred approach, particularly when using a navigator (person) rather than a process, such as an electronic system. For providers and organisations wanting to link vulnerable people to primary care in a patient-centred way, navigators may assist in this process.

Future research
Analysis of cost effectiveness, while not a focus of this review, was nevertheless absent in the cited studies. As the concept of navigator continues to show promise, further research is required to measure impact and give direction to settings interested in using this intervention. For example, the link between patient navigation principles and outcomes of interest require further exploration.

CONCLUSION
Patient navigators may be used across healthcare settings to improve access to primary care. Navigators are inherently patient-centred due to their relational approach and ability to connect people to primary care. Interventions to improve access to primary care require further study to determine their impact and cost-effectiveness.

Acknowledgements We wish to acknowledge the peer reviewers of the original version of this paper who provided valued and insightful suggestions to improve the structure, flow and clarity of this paper.

Contributors AP involved in writing protocol, searches, screening, extraction, drafting of results and writing of manuscripts. VL and TB involved in content expert input (methodology) and editing manuscripts. GR oversaw the project, assisted with screening, content expert input, drafting of results and editing of manuscripts.

Funding This work was supported by the Professor Leon Pitterman AM PhD scholarship, Southern Academic Primary Care Research Group, Monash university.

Competing interests None declared.

Patient consent Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement Further details on studies included in this scoping review can be retrieved by contacting the corresponding author at annette.pearl@monash.edu.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

REFERENCES

55. ED navigators connect patients to better venues of care. ED Manage 2011;23:53–6.

