

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Body composition and physical activity as mediators in the relationship between socio-economic status and blood pressure in young South African women: A structural equation model analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-023404
Article Type:	Research
Date Submitted by the Author:	10-Apr-2018
Complete List of Authors:	Munthali, Richard; University of the Witwatersrand, MRC/Wits Developmental Pathways for Health Research Unit Manyema, Mercy; Wits University, Epidemiology and Biostatistics Said-Mohamed, Rihlat; University of the Witwatersrand, MRC/Wits Developmental Pathways for Health Kagura, Juliana; University of Witwatersrand, Paediatrics and Child health Tollman, Stephen; University of the Witwatersrand, Kahn, Kathleen; University of the Witwatersrand, Gómez-Olivé, F. Xavier; University of the Witwatersrand, Medical Research Council/Wits Rural Health and Health Transitions Unit (Agincourt), School of Public Health, Faculty of Health Sciences Micklesfield, Lisa; University of the Witwatersrand, MRC/Wits Developmental Pathways for Health Research Unit Dunger, David; University of Cambridge, Paediatrics Norris, Shane; University of Witwatersrand, Paediatrics and Child Health
Keywords:	Hypertension < CARDIOLOGY, Obesity, Socioeconomic status, Physical activity, Structural equation model, Body mass index
	·

Body composition and physical activity as mediators in the relationship between socio-economic status and blood pressure in young South African women: A structural equation model analysis

Richard J Munthali¹, Mercy Manyema^{1, 2}, Rihlat Said-Mohamed¹, Juliana Kagura¹, Stephen Tollman^{3,4,5}, Kathleen Kahn^{3, 4,5}, F. Xavier Gómez-Olivé³, Lisa K. Micklesfield¹, David Dunger^{6,1}, Shane A. Norris¹

Affiliations:

¹MRC/WITS Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Rd, Parktown 2193, Johannesburg, South Africa

²DST-NRF Centre of Excellence in Human Development, University of the Witwatersrand, Johannesburg, South Africa

³MRC/Wits Rural Public Health and Health Transitions Research Unit, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa

⁴ INDEPTH Network, Accra, Ghana

⁵Umeå Centre for Global Health Research, Sweden.

⁶Department of Paediatrics, MRL Wellcome Trust-MRC Institute of Metabolic Science, NIHR Cambridge Comprehensive Biomedical Research Centre, University of Cambridge, Box 116, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK

Conflict of interest: The views expressed in the submitted article are our own and not an official position of the affiliated institutions or funder. Authors have no financial relationships relevant to this article to disclose.

Corresponding Author: Dr. Richard J. Munthali

MRC/Wits Developmental Pathways for Health Research Unit

University of the Witwatersrand

Johannesburg

Tel: +27119331122

Email: munthali@aims.ac.za

Authors' emails:

Richard Junganiko Munthali: munthali@aims.ac.za

Mercy Manyema: mercy.manyema@gmail.com

Rihlat Said-Mohamed: rihlat.saidmohamed@wits.ac.za

Juliana Kagura: julianakagura@gmail.com

Stephen Tollman: stephen.tollman@wits.ac.za

Kathleen Kahn: kathleen.kahn@wits.ac.za

F. Xavier Gómez-Olivé: F.Gomez-OliveCasas@wits.ac.za

Lisa K. Micklesfield: lisa.micklesfield@wits.ac.za

David Dunger: dbd25@cam.ac.uk

Shane A Norris: shane.norris@wits.ac.za

OPPL CLICZ ONL

Abstract

Objectives Varying hypertension prevalence across different socio-economic strata within a population has been well reported. However the causal factors and pathways across different settings are less clear, especially in sub-Saharan Africa. Therefore, this study aimed to compare blood pressure levels, and investigate the extent to which socioeconomic status (SES) is associated with blood pressure, in rural and urban South Africa women.

Setting Rural and urban South Africa.

Design Cross-section.

Participants Cross-sectional data on SES, total moderate-vigorous physical activity (PA), anthropometric and blood pressure data were collected on rural (n=509) and urban (n=510) young black women (18-23 years age). Pregnant and mentally or physically disabled women were excluded from the study.

Results The prevalence of combined overweight and obesity (46.5% versus 38.8%) and elevated blood pressure (27.0% versus 9.3%) were higher in urban than rural women respectively. Results from the structural equation modelling showed significant direct positive effects of BMI and SBP in rural, urban and combined datasets. Negative direct effects of SES on SBP and positive total effects of SES on SBP were observed in the rural and combined datasets respectively. In rural young women, SES had direct positive effects on BMI and was negatively associated with MVPA in urban and combined analyses. Body mass index mediated the positive total effects association between SES and SBP in combined analyses (β ; 95%CI, 0.46; 0.15 to 0.76).

Conclusions Though South Africa is undergoing nutritional and epidemiological transitions; the prevalence of elevated BP still varies between rural and urban young women. The association between socioeconomic status and SBP varies considerably in economically diverse populations with BMI being the most significant mediator. There is need to tailor prevention strategies to take account optimizing BMI when designing strategies to reduce future risk of hypertension in young women.

Keywords Blood pressure, Body mass index, Hypertension, Obesity, Urban, Rural, Socioeconomic status, Structural equation model, Physical activity

Strengths

- 1. The use of structural modelling allowed us to explore direct and indirect (mediation) effects of social economic status, physical activities and body mass index on elevated blood pressure from representative sample of rural and urban population of South African young women.
- 2. Although the urban and rural cohorts were from two different studies, the same research unit conducted both studies and, therefore, the methodology was harmonized between the two sites, thereby allowing for accurate comparison.

Limitations

- 1. Other unmeasured data, such as undernutrition in infancy, and dietary patterns were not included in the current analyses. We are currently working on research to address this limitation.
- 2. The low reliability of self-report data on physical activity could introduce bias. Thus, there is need for more precise, objective measures of physical activity to strengthen the results of our analysis.
- 3. There is need to do comparison on longitudinal data, especially as the socioeconomic environment is changing rapidly due to rural-urban labor migration and other factors would be helpful to examine these associations over time.

Introduction

High blood pressure (hypertension) is a leading risk factor contributing to the global disease burden, accounting for 7% of global disability-adjusted life years (DALYs) and contributing to the 34.5 million non-communicable disease (NCD) related deaths in 2010 [1, 2]. A recent global meta-analysis, involving 19.1 million individuals, reported that on average there has been a decrease in blood pressure globally, but the low- to middle-income countries (LMICs) have seen an increase in hypertension [3]. The prevalence of high blood pressure in LMICs is estimated at 30% [4, 5] and it is the most significant risk factor for cardiovascular disease, most notably stroke [6]. In 2000, hypertension was estimated to have caused 9% of all deaths and over 390 000 DALYs in South Africa. Further, hypertension contributed to 50% of all strokes and 42% of ischaemic heart disease (IHD), signifying a substantial public health burden [7]. A systematic review of sub-Saharan African (SSA) data shows prevalence rates of hypertension of up to 41% with higher prevalence rates noted in urban compared to rural populations [8, 9]. A recent study in men and women aged 40 to 60 years of age in six sites across four SSA countries, including South Africa, showed the same trend with South African urban and rural cohorts having the highest prevalence (41.6 to 54.1%) [10].

Low and middle-income countries are experiencing both epidemiological and nutritional transitions with urban populations further along the transition as demonstrated by the higher prevalence of obesity and NCDs [4, 5, 8, 10-15]. Some evidence has shown that there are differences in the levels of blood pressure between rural and urban settings [8], while other studies have found no significant differences [16]. According to Glass and McAtee, internal biological systems are sculpted by an interaction between genes and prolonged exposure to particular external environments, a principle they call embodiment [17]. Thus the differences in built and social environments between rural and urban settings may explain the differences in disease prevalence. A Ghanaian study showed that both systolic and diastolic blood pressure were significantly lower in rural participants compared to urban participants [18]. However, a similar study in adolescents found that blood pressure levels were only lower in rural boys, with no difference in the girls [19]. Pediatric and adolescent hypertension have been reported to track into adulthood in a South African urban population [20]. Results on elevated blood pressure from studies in rural South African children have reported prevalence rates varying from 1.0% to 25.4% [21-24]. The factors explaining these differences have not been fully studied in LMICs.

Socioeconomic factors such as education, household income and household assets have been associated with blood pressure levels [25-27]. In a US cohort of young adults, a higher household income remained associated with lower systolic blood pressure (SBP) even after controlling for all potential covariates including age, sex and bio-behavioral factors [28]. Similarly, in a French sample of 30-79 year olds, SBP independently increased and was inversely associated with both individual education and residential neighborhood education [29]. Studies in African countries have also found varying associations between SES and blood pressure patterns, with both positive and negative associations reported [8, 30, 31]. Some studies have speculated that the association between SES and body mass index (BMI), physical activity levels, diet, smoking, alcohol intake and malnutrition may influence blood pressure

BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

patterns [18, 28, 31, 32]. Physical activity has been inversely associated with blood pressure and BMI directly associated with BP in more advanced economies, but inconsistent associations have been reported in LMICs [25, 33-37].

There is a need to examine blood pressure and its determinants in young South African adults given the high rates of overweight and obesity and hypertension observed in this age group [20, 38]. Recent South African reports also indicate that the highest pregnancy rates occur in the age range of 20-24 years, with 26.2% of births reported, followed closely by the 25-29 year age group (25.7%) [39], and therefore targeting young adult women would also reduce adverse health outcomes in their children. To better target policies or programmes in future to address hypertension and obesity in the different settings, it is important to examine more closely rural-urban differences in hypertension due to differences in the epidemiology of obesity, SES divergence in the South African context [23, 26, 30, 40-43]. Therefore, this study aims to compare blood pressure between rural and urban young adult South African women, and to determine whether there is an association between SES and blood pressure and whether it is mediated physical activity and BMI.

Methods

Study sample and site

The rural Agincourt site, 2016 potential the female participants between the ages of 18 and 23 years were in the existing Agincourt Health and Socio-demographic Surveillance System database [44]. Only 996 were located during the data collection period and were invited to participate, of these 509 female participants were recruited after giving consent to participate. The urban sample consisted of 510 young women between the ages of 21 and 24 years who were randomly selected from the sample of 720 females who were part of the Birth-to-Twenty plus (BT20+) Young Adult Survey [45, 46]. Young women (n=51) who were pregnant at the time of the study were excluded. Measurements and questionnaires were completed by trained research assistants and nurses, and were standardised between both sites, to eliminate biases. The study protocols were approved by the Human Research Ethics Committee of the University of the Witwatersrand (Clearance certificates M120138 for the Ntshembo-Hope Cross Sectional Survey in Agincourt and M111182 for the BT20+ survey). A written consent to participate was provided by participants and mentally or physically disabled women were excluded from the study.

Blood pressure

Blood pressure (mm Hg) was the outcome variable and it was measured using an Omron 6 automated machine (Kyoto, Japan). A five minute seated rest was observed before taking the blood pressure measurements. Participants' seated blood pressure was measured three times on the right side, with a 2 min interval between each measurement. The mean for the second and third readings was recorded for the current analysis.

According to the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure [47], five categories of blood pressure have been established for adults 18 years

of age and older as shown in Table 1. These cut-offs were utilized in the current study. Prehypertension and hypertension were combined to create a new variable called elevated BP.

Table 1: Blood pressure classification [47]

Classification	Systolic	Diastolic	
	Blood Pressu	re	Blood Pressure
Low	<90	or	< 60
Normal	<120	and	<80
Prehypertension	120-139	or	80-90
High: Stage 1 Hypertension	140-159	or	90-99
High: Stage 2 hypertension	≥160	or	≥100

Systolic Blood Pressure was used in structural equation models (SEM) as it is more relevant in adults, and a good predictor of adverse health outcomes later in life [48], such as CVDs.

Anthropometry

At both sites, participants' height and weight were measured by trained research assistants using standard techniques [49, 50]. Weight was measured in light clothing and barefoot to the nearest 0.1 kg using a digital scale (Tanita model TBF-410; Arlinghton Heights; USA). Height was measured barefoot to the nearest 0.1 cm using a stadiometer (Holtain, Crymych, UK). Waist circumference was measured with a non-stretchable fibreglass tape at the level of the umbilicus. Body mass index (BMI) was calculated as weight/height² (kg/m²).

Socio-economic status (SES)

Physical assets owned in the participants' household were used as a proxy for socio-economic status index [51]. It was generated by summing the number of assets owned in the household from the following: television, car, washing machine, fridge, phone, radio, microwave, cell phone, DVD/Video, DSTV (cable channel), computer, internet, medical aid. Previous studies in this population have shown that the sum of physical assets (household assets) is closely related to the household per capital expenditure and household income [51-53]. The household SES is regarded as a good measure of accumulated household wealth so it is a more reflective wealth index than income of a household's wealth over time.

Physical activity

The Global Physical Activity Questionnaire (GPAQ), developed for global physical activity surveillance, was completed via interview to obtain self-reported physical activity [54]. Total moderate-vigorous intensity physical activity (MVPA) in minutes per week (mins/wk) was calculated by adding occupation, travel-related and leisure time moderate and vigorous intensity physical activity. Sitting time (mins/wk) was used as a proxy for sedentary time.

Statistical analyses

Analysis of variance and student's t test, and Chi-squared tests and Wilcoxon rank sum test for non-parametric variables, were conducted to compare study characteristics between urban and rural young women. Structural equation modeling (SEM), with missing data option, was used to test and estimate the direct and indirect associations between variables, most especially the mediation roles of physical activity (MVPA) or sedentary time (sitting), and body composition (BMI and waist circumference), in the association between SES and blood pressure (systolic blood pressure).

Direct, indirect and total effects were computed and recorded, and the proportion of the total effect mediated was calculated. To evaluate the best fitting model for our data, we calculated different goodness of fit indices including Chi-squared test, Root mean squared error of approximation (RMSEA), Comparative fit index (CFI), Tucker-Lewis index (TLI) and Standardized root mean squared residual (SRMR) [55]. Though the Chi-squared test has been popularly used as a goodness of fit index, it has been reported to be biased and not reliable as the only goodness of fit index. It is also highly sensitive to sample size [56, 57], and often inflated with non-normal data such as physical activity data and we therefore employed the Hu and Bentler's Two-Index Presentation Strategy (1999) combination rule, with cut off values depending on the fitness index, to determine the best model fit [55, 58].

If the direct and indirect effects had opposite signs (negative or positive effects) the proportion mediated was assessed using the absolute values for all indirect and direct effects [59]. All the analyses were conducted using STATA (version 13.0; STATA Corp., College Station, TX, USA).

Results

Study characteristics

Descriptive statistics for the non-pregnant study participants (urban, n=492; rural, n=476) are presented in Table 2. There was no difference in BMI or waist circumference between the urban and rural participants, but the prevalence of overweight and obesity was significantly higher in the urban (46.5%) compared to the rural young women (38.8%). Household SES was significantly higher in the urban compared to the rural group. Self reported physical activity (total MVPA) was significantly higher in the rural than urban women (p<0.001), and the urban women spent significantly more time sitting than their rural counterparts (p<0.001). Systolic and diastolic BP were significantly higher in the urban group, as was the prevalence of elevated BP (27.0 vs. 9.3%).

Structural equation models for BMI and waist circumference

Results from the SEMs for SES associations with SBP via MVPA and BMI are presented in Tables 3a, 3b and 3c for urban, rural and combined analyses respectively, and also shown in Figures 1, 2, 3. No significant direct or indirect effects via (MVPA or BMI) of SES on SBP were observed in either the urban or rural women, but there were significant direct effects of SES on MVPA. Results showed that individuals with a higher SES index were less likely to be physically active in pooled data and urban women. In rural women, a one-unit increase in total household assets was associated with a decrease of 0.65 mmHg (-1.19 to -0.10) in SBP and an increase of 0.27 kg/m² in BMI (0.1 to 0.53) (**Tables 3a, 3b and Figures 1, 2**). The SEM for the combined sample showed a significant indirect effect of household SES on SBP via BMI, with 50% of the total effect being mediated by BMI (**Table 3c and Figure 3**). Direct positive effects of BMI on SBP were observed in both settings and the pooled sample with a 1 kg/m² increase in BMI being associated with an increase of 0.37 mmHg (0.21 to 0.53) and 0.33 (0.12 to 0.54) mmHg SBP in urban and rural young women, respectively. Similar results were observed when including waist circumference as the body composition indicator (data not shown).

Discussion

A rising prevalence of hypertension has been reported in South Africa, with Peer et al. reporting a higher prevalence in 2008 (35.6%) compared to 1990 (21.6%) in men and women aged 25-74 years in an urban black community in Cape Town, South Africa [40]. We have shown in young adult women from urban and rural South Africa, an overall elevated BP prevalence of 18.4% (27.0% in urban and 9.3% in rural). We have also shown a direct effect of BMI on SBP in the urban and rural women separately, as well as when pooled, thereby providing further evidence of an association between overall adiposity and blood pressure. The total effects of SES on SBP were the same in both settings.

Prevalence data on elevated BP and hypertension from other countries in sub-Saharan Africa have shown conflicting results when comparing urban and rural communities. In Malawi, a higher prevalence of hypertension in urban compared to rural communities has been reported and attributed to differences in lifestyle as rural communities participate in subsistence based agricultural activities while the urban community has a more westernized lifestyle with higher salt intake and physical inactivity [9]. Similarly, data from Ghana have shown a higher mean SBP and DBP and a higher prevalence of hypertension in urban communities [18, 60]. In the PURE study in South Africa, Pisa and colleagues reported that both urban adult men and women had higher mean blood pressures in comparison to their rural peers though the overall CVD risk factors were equally prevalent in both settings [41]. In contrast, findings from Cameroon have reported a higher BP prevalence in rural compared to urban men and women older than 40 years old, while Kenyan studies have reported no significant differences [16, 61]. Results from six urban and rural sites in four sub-Saharan African countries – Kenya, South Africa, Ghana and Burkina Faso – have reported a prevalence of hypertension in women aged between 40 and 60 years ranging from 15.1% in rural Burkina Faso to 54.1% in urban South Africa [10]. It was also reported that in all three South African sites, both rural and urban, the

BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

prevalence of hypertension was higher than in the other three countries [10]. These findings show the complex health transitions occurring in SSA and the impact that this is having on cardio-metabolic disease risk.

Our study showed significant differences in SES between the urban and rural samples, as well a big variation in SES between these two settings. The social patterning of CVD risk factors, including hypertension, in SSA and LMICs has in part been attributed to differences in countries' socioeconomic development. Previous results from five countries, (two high income and three LMICs), reported that hypertension and other CVD risk factors were substantially associated with education and wealth status; individuals with less education and lower wealth generally showing higher prevalence of CVD risk factors [62]. The effect of SES in this study is most evident in the rural women for whom household SES was lower (compared to urban) and who may be transitioning faster (both nutritionally and economically) than the urban women. Though SES is positively associated with BMI in rural young women, it is negatively associated with SBP. There may be other factors, such as physical activity due to agricultural activities or dietary patterns, which were not recorded. In addition, the weight gain observed might not be due to fat mass but rather to muscle mass and bone mass, which has been reported to be associated with SBP before [63].

In Mexico, women in rural and upper SES categories were likely to have a higher SBP, while we have reported that a higher SES was associated with a decrease in SBP in rural communities. At population level, there is a need to consider different SES categories and monitor the effect of transitioning from one category to another on hypertension, since these categories may respond differently to an increase or a decrease in their SES. Kagura and colleagues tracked SES in South African children and reported that moving from the low SES in infancy to a higher SES in adolescence had a protective effect on SBP level in young adulthood [26]. Our results have shown that this could be more pronounced in rural areas.

We observed a positive association between SES and BMI in the rural sample and the same direction of effects was observed in the urban (though not significant), which is in line with results reported in many LMICs including South Africa, but in contrast with those reported in higher income populations [33, 34, 62]. A systematic review of studies between 1989 to 2007 reported that SES was positively associated with obesity in the middle transitioning economies such as South Africa and Jamaica [64]. We have shown that both in the rural and urban participants (not significant), a higher SES resulted in reduced SBP, while the pooled (combined) analysis showed a positive total effect association between SES and SBP. This could be due to the introduction of more variation in SES when data from both sites are combined; with many individuals with low SES in the rural area, the associations became skewed towards the low SES individuals. This may suggest that different transitional levels of SES have different effects of SES on SBP are the same in both rural and urban hence the differences in prevalence cannot be explained by the setting or SES alone. In urban and rural settings of four countries (Kenya, Namibia, Nigeria and Tanzania), the prevalence of age standardized hypertension was similarly high and ranging from 19.3 % to 38.0 % [11]. Cois and colleagues reported that a higher SES was associated with lower SBP in a nationally representative sample of South African women [25] using SEM models. Physical exercise, alcohol use, smoking and resting heart rate and BMI

BMJ Open

were reported to be the mediators of the indirect of the association between SES and SBP in men but not in women, suggesting that other factors may play a major role in women [25]. Similarly, our results show that neither PA nor BMI mediate the association between SES and SBP in urban and rural settings, suggesting that other factors may explain the association. Among those, dietary patterns and stress have been reported to be independently associated with SBP [65, 66].

The significant direct associations between BMI and SBP or hypertension are in line with other findings in South Africa and within the SSA region [11, 33, 40, 42, 67, 68]. This link was consistent in rural, urban and combined data sets, indicating the importance of BMI in the aetiology of blood pressure. Munthali et al reported that the link between obesity and hypertension could be observed as early as five years of age. Children with early onset of obesity were at higher risk of developing hypertension in late adolescence [38].

In this study, using SEM models to explore the mediation role of BMI and PA helped quantify potential contributions of these variables to the effect of SES on SBP. The results show that PA was not a significant mediator in the association between SES and BP in the urban or the rural samples. SES was negatively associated with MVPA in urban and pooled samples, indicating that as individuals transition from low to higher SES, they reduce their physical activity level. We speculate that these differences in the association between SES and SBP in both our rural and urban results and in those from high-income countries are due to differences in levels of nutritional and epidemiological transition in these regions [69, 70]. Those with low SES in high-income countries are likely to consume cheaper, more energy dense foods, participate in less leisure time physical activity and be more sedentary [71, 72] In LMICs, agricultural activities remain a part of everyday life and a day-to-day activity in rural living, while those with higher SES in the same settings rapidly adopt the westernized life style with less PA, fewer agricultural activities and home grown food. However, this speculation is not supported by the data on PA in this study despite the rural participants having a higher PA. Our understanding of the Agincourt rural economy is that agriculture is quite a minor aspect though very useful to augment the household income.

The limitations of this study are that other unmeasured data, such as undernutrition in infancy, which is a known risk factor for high blood pressure later in life [73], and dietary patterns were not included in the current analyses. We are currently working on research to address this limitation. We can also not rule out the role of genetics. Secondly, the low reliability of self-report data on physical activity could introduce bias. Thus, there is need for more precise, objective measures of physical activity to strengthen the results of our analysis. Lastly, longitudinal data, especially as the socioeconomic environment is changing rapidly due to rural-urban labor migration and other factors would be helpful to examine these associations over time.

Conclusions

Though the prevalence of overweight or obesity is relatively higher in both rural and urban than those reported in other SSA countries, women in the urban setting were at more risk for elevated blood pressure than their rural counterparts. The link between socioeconomic status and SBP varies in a more economically diverse population, as

seen with the combined rural and urban dataset, with BMI being the most likely mediator. There is need to consider optimizing BMI as a key intervention strategy in young adults in part to combat hypertension.

Funding

Norris is supported by the UK MRC DfID African Research Leader Scheme and by the DST-NRF Centre of Excellence in Human Development at the University of the Witwatersrand, Johannesburg. Birth to Twenty data collection was supported by the Wellcome Trust under Grant [092097/Z/10/Z]. The MRC/Wits- Agincourt Unit is supported by the South African Medical Research Council, and the Wellcome Trust under Grants [058893/Z/99/A, 069683/Z/02/Z, 085477/Z/08/Z, 085477/B/08/Z]. Opinions expressed and conclusions arrived at, are those of the authors and are not to be attributed to the CoE in Human Development.

Conflict of interest

Authors have no conflicts of interest to disclose.

Consent for publication

Not applicable

Availability of data and material

The datasets used and/or analysed during the current study are available from the Developmental Pathways for Health Research Unit data management department by contacting Prof. Shane A Norris on reasonable request

Competing interest

The authors declare that they have no competing interests

Authors' contributions

RJM and SAN conceptualized the manuscript. RJM analyzed the data. RJM MM RSM JK ST KK FXG LKM DD SAN interpreted the data. RJM wrote the manuscript and all authors were involved in editing and approving the final manuscript.

Acknowledgements

We wish to thank the Bt20+ and Agincourt participants for taking part in the study and the Bt20+ and Agincourt team for their relentless support throughout the study.

Ethics Approval and Consent to Participate

Prior to the study, the study protocols were approved by the Human Research Ethics Committee of the University of the Witwatersrand (Clearance certificates M120138 for the Ntshembo-Hope Cross Sectional Survey in Agincourt and M111182 for the BT20+ survey). Independent written informed consent to participate was obtained from participants.

Ref	oro.	no	06

- Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M, Anderson HR, Andrews KG et al: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet 2012, 380(9859):2224-2260.
- Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY: Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet 2013, 380(9859):2095-2128.
- Ezzati M, Geleijnse J: Worldwide trends in blood pressure from 1975 to 2015. The Lancet 2017, 389(10064):37-55.
- Sarki AM, Nduka CU, Stranges S, Kandala N-B, Uthman OA: Prevalence of Hypertension in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis. Medicine 2015, 94(50):e1959.
- Chow CK, Teo KK, Rangarajan S, Islam S, Gupta R, Avezum A, Bahonar A, Chifamba J, Dagenais G, Diaz R: Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. Jama 2013, 310(9):959-968.
- Kearney PM, Whelton M, Revnolds K, Muntner P, Whelton PK, He J: Global burden of hypertension: analysis of worldwide data. The lancet 2005, 365(9455):217-223.
 - Norman R, Gaziano T, Laubscher R, Steyn K, Bradshaw D, Collaboration SACRA: Estimating the burden of disease attributable to high blood pressure in South Africa in 2000. South African Medical Journal 2007, 97(8):692-698.
 - Addo J, Smeeth L, Leon DA: Hypertension in Sub-Saharan Africa a systematic review. Hypertension 2007, 50(6):1012-1018.
 - Simmons D, Barbour G, Congleton J, Levy J, Meacher P, Saul H, Sowerby T: Blood pressure and salt intake in Malawi: an urban rural study. Journal of epidemiology and community health 1986, 40(2):188-192.
 - Gómez-Olivé FX, Ali SA, Made F, Kyobutungi C, Nonterah E, Micklesfield L, Alberts M, Boua R, Hazelhurst S, Debpuur C: Stark Regional and Sex Differences in the Prevalence and Awareness of Hypertension: An H3Africa AWI-Gen Study Across 6 Sites in Sub-Saharan Africa. Global Heart 2017.
 - Hendriks ME, Wit FW, Roos MT, Brewster LM, Akande TM, de Beer IH, Mfinanga SG, Kahwa AM, Gatongi P, Van Rooy G: Hypertension in sub-Saharan Africa: cross-sectional surveys in four rural and urban communities. PloS one 2012, 7(3):e32638.
 - Lemogoum D, Seedat YK, Mabadeje AF, Mendis S, Bovet P, Onwubere B: International Forum for Hypertension control and prevention in Africa. Recommendations for prevention, diagnosis and

	management of hypertension and cardiovascular risk factors in sub-Saharan Africa. J Hypertens
	2003, 21 .
13.	Schutte A, Botha S, Fourie C, Gafane-Matemane L, Kruger R, Lammertyn L, Malan L, Mels C, Schutte R,
	Smith W: Recent advances in understanding hypertension development in sub-Saharan Africa.
	Journal of Human Hypertension 2017.
14.	Thorogood M, Connor MD, Lewando Hundt G, Tollman SM: Understanding and managing
	hypertension in an African sub-district: A multidisciplinary approach1. Scandinavian Journal of
	<i>Public Health</i> 2007, 35 (69 suppl):52-59.
15.	Yusufali A, Khatib R, Islam S, AlHabib K, Kelishadi R, Rangarajan S, Yusuf S: LBOS 03-01
	PREVALENCE, AWARENESS, TREATMENT, AND CONTROL OF HYPERTENSION IN THE
	MIDDLE EAST: RESULTS FROM THE PROSPECTIVE URBAN RURAL EPIDEMIOLOGY
	(PURE) STUDY. J Hypertens 2016, 34 Suppl 1:e551.
16.	Poulter N, Khaw K, Hopwood B, Mugambi M, Peart W, Rose G, Sever P: Blood pressure and its
	correlates in an African tribe in urban and rural environments. Journal of epidemiology and
	community health 1984, 38 (3):181-185.
17.	Glass TA, McAtee MJ: Behavioral science at the crossroads in public health: extending horizons,
	envisioning the future. Social science & medicine 2006, 62(7):1650-1671.
18.	Agyemang C: Rural and urban differences in blood pressure and hypertension in Ghana, West
	Africa. Public Health 2006, 120.
19.	Agyemang C, Redekop WK, Owusu-Dabo E, Bruijnzeels MA: Blood pressure patterns in rural, semi-
	urban and urban children in the Ashanti region on Ghana, West Africa. BMC Public Health 2005, 5.
20.	Kagura J, Adair LS, Musa MG, Pettifor JM, Norris SA: Blood pressure tracking in urban black South
	African children: birth to twenty cohort. BMC pediatrics 2015, 15(1):1.
21.	Goon D, Amusa L, Mhlongo D, Khoza L, Any-Anwu F: Elevated blood pressure among Rural South
	African Children in Thohoyandou, South Africa. Iran J Pub Health 2013, 42.
22.	Kemp C, Pienaar AE, Schutte AE: The prevalence of hypertension and the relationship with body
	composition in Grade 1 learners in the North West Province of South Africa. South African Journal of
	<i>Sports Medicine</i> 2011, 23 (4).
23.	Monyeki K, Kemper H, Makgae P: The association of fat patterning with blood pressure in rural South
	African children: the Ellisras Longitudinal Growth and Health Study. International journal of
	epidemiology 2006, 35 (1):114-120.
24.	Schutte A, Van Rooyen J, Huisman H, Kruger H, Malan N, De Ridder J: Dietary risk markers that
	contribute to the aetiology of hypertension in black South African children: the THUSA BANA
	study. Journal of human hypertension 2003, 17(1):29-35.
25.	Cois A, Ehrlich R: Analysing the socioeconomic determinants of hypertension in South Africa: a
	structural equation modelling approach. BMC public health 2014, 14(1):414.

BMJ Open

		BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

26.	Kagura J, Adair LS, Pisa PT, Griffiths PL, Pettifor JM, Norris SA: Association of socioeconomic status
	change between infancy and adolescence, and blood pressure, in South African young adults: Birth
7	to Twenty Cohort. BMJ open 2016, 6(3):e008805.
7.	Wilson DK, Kliewer W, Plybon L, Sica DA: Socioeconomic status and blood pressure reactivity in
	healthy black adolescents. Hypertension 2000, 35 (1):496-500.
	Brummett BH, Babyak MA, Siegler IC, Shanahan M, Harris KM, Elder GH, Williams RB: Systolic Blood
	Pressure, Socioeconomic Status, and Biobehavioral Risk Factors in a Nationally Representative US
	Young Adult Sample. Hypertension 2011, 58(2):161-166.
•	Chaix B, Bean K, Leal C, Thomas F, Havard S, Evans D, Jégo B, Pannier B: Individual/Neighborhood
	Social Factors and Blood Pressure in the RECORD Cohort Study. Which Risk Factors Explain the
0.	Associations? 2010, 55 (3):769-775.
•	Griffiths PL, Sheppard ZA, Johnson W, Cameron N, Pettifor JM, Norris SA: Associations between
	household and neighbourhood socioeconomic status and systolic blood pressure among urban South
•	African adolescents. Journal of biosocial science 2012, 44 (04):433-458.
	Longo-Mbenza B, Luila EL, M'Buyamba-Kabangu J: Nutritional status, socio-economic status, heart
	rate, and blood pressure in African school children and adolescents. International journal of
	cardiology 2007, 121 (2):171-177.
•	Aounallah-Skhiri H, El Ati J, Traissac P, Romdhane HB, Eymard-Duvernay S, Delpeuch F, Achour N,
	Maire B: Blood pressure and associated factors in a North African adolescent population. A national
	cross-sectional study in Tunisia. BMC Public Health 2012, 12(1):1.
•	Afrifa-Anane E, Agyemang C, Codjoe SNA, Ogedegbe G, Aikins Ad-G: The association of physical
	activity, body mass index and the blood pressure levels among urban poor youth in Accra, Ghana.
	<i>BMC public health</i> 2015, 15 (1):269. Anane AE, Agyemang C, Codjoe SNA, Ogedegbe G, Aikins A: The association of physical activity ,
•	
	Body mass index and blood pressure among urban poor youth in Accra, Ghana. BMC Public Health
	2015, 15.
5.	Hu G, Barengo NC, Tuomilehto J, Lakka TA, Nissinen A, Jousilahti P: Relationship of physical activity and body mass index to the risk of hypertension: a prospective study in Finland. <i>Hypertension</i> 2004,
	43 (1):25-30.
5.	Juraschek SP, Blaha MJ, Whelton SP, Blumenthal R, Jones SR, Keteyian SJ, Schairer J, Brawner CA, Al-
	Mallah MH: Physical fitness and hypertension in a population at risk for cardiovascular disease: the
	Henry Ford Exercise Testing (FIT) Project. Journal of the American Heart Association 2014,
	3 (6):e001268.
7.	Väistö J, Eloranta A-M, Viitasalo A, Tompuri T, Lintu N, Karjalainen P, Lampinen E-K, Ågren J,
	Laaksonen DE, Lakka H-M: Physical activity and sedentary behaviour in relation to cardiometabolic
	risk in children: cross-sectional findings from the Physical Activity and Nutrition in Children
	(PANIC) Study. International Journal of Behavioral Nutrition and Physical Activity 2014, 11(1):55.

38.	Munthali RJ, Kagura J, Lombard Z, Norris SA: Childhood adiposity trajectories are associated with late
	adolescent blood pressure: birth to twenty cohort. BMC Public Health 2016, 16(1):1-10.
39.	STATSSA: Mortality and causes of death in South Africa, 2015: Findings from death notification. In.
	Pretoria: Statistics South Africa; 2017 1-140.
0.	Peer N, Steyn K, Lombard C, Gwebushe N, Levitt N: A high burden of hypertension in the urban black
	population of Cape Town: The Cardiovascular Risk in Black South Africans (CRIBSA) Study. PLoS
	<i>One</i> 2013, 8 (11):e78567.
41.	Pisa P, Behanan R, Vorster H, Kruger A: Social drift of cardiovascular disease risk factors in Africans
	from the North West Province of South Africa: the PURE study: cardiovascular topics.
	Cardiovascular journal of Africa 2012, 23(7):371-388.
12.	Steyn K, Fourie J, Lombard C, Katzenellenbogen J, Bourne L, Jooste P: Hypertension in the black
	community of the Cape Peninsula, South Africa. East African medical journal 1996, 73(11):758-763.
3.	Tibazarwa K, Ntyintyane L, Sliwa K, Gerntholtz T, Carrington M, Wilkinson D, Stewart S: A time bomb
	of cardiovascular risk factors in South Africa: results from the Heart of Soweto Study "Heart
	Awareness Days". International journal of cardiology 2009, 132(2):233-239.
14.	Kahn K, Collinson MA, Gómez-Olivé FX, Mokoena O, Twine R, Mee P, Afolabi SA, Clark BD, Kabudula
	CW, Khosa A: Profile: Agincourt health and socio-demographic surveillance system. International
	journal of epidemiology 2012, 41 (4):988-1001.
45.	Pradeilles R, Rousham EK, Norris SA, Griffiths PL: Urban South African adolescents' perceptions of
	their neighborhood socio-economic environments: the Birth to Twenty plus cohort study. Children
	<i>Youth and Environments</i> 2014, 24 (3):173-200.
6.	Richter L, Norris S, Pettifor J, Yach D, Cameron N: Cohort profile: Mandela's children: the 1990 Birth
	to Twenty study in South Africa. International journal of epidemiology 2007, 36(3):504-511.
7.	Chobanian AV: Joint National Committee on Prevention, Detection, Evaluation, and Treatment of
	High Blood Pressure. National Heart, Lung, and Blood Institute; National High Blood Pressure
	Education Program Coordinating Committee: Seventh report of the Joint National Committee on
	Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003,
	42 :1206-1252.
48.	Strandberg TE, Pitkala K: What is the most important component of blood pressure: systolic, diastolic
	or pulse pressure? Current opinion in nephrology and hypertension 2003, 12(3):293-297.
19.	Cameron N: The measurement of human growth: Taylor & Francis; 1984.
50.	Lohman TG, Roche AF, Martorell R: Anthropometric standardization reference manual: Human
	kinetics books; 1988.
51.	Houweling TA, Kunst AE, Mackenbach JP: Measuring health inequality among children in developing
	countries: does the choice of the indicator of economic status matter? International journal for equity
	<i>in health</i> 2003, 2 (1):8.

Page 17 of 29

60

BMJ Open

1 2		
3	52.	Feeley AB, Musenge E, Pettifor JM, Norris SA: Investigation into longitudinal dietary behaviours and
4		household socio-economic indicators and their association with BMI Z-score and fat mass in South
5 6		African adolescents: the Birth to Twenty (Bt20) cohort. Public health nutrition 2013, 16(04):693-703.
7	53.	Jones LL, Griffiths PL, Adair LS, Norris SA, Richter LM, Cameron N: A comparison of the socio-
8	55.	· · · · · · · · · · · · · · · · · · ·
9 10		economic determinants of growth retardation in South African and Filipino infants. Public health
11		<i>nutrition</i> 2008, 11 (12):1220-1228.
12	54.	Bull FC, Maslin TS, Armstrong T: Global physical activity questionnaire (GPAQ): nine country
13 14		reliability and validity study. Journal of Physical Activity and health 2009, 6(6):790-804.
15	55.	Hu Lt, Bentler PM: Cutoff criteria for fit indexes in covariance structure analysis: Conventional
16		criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal 1999, 6(1):1-
17 18		55.
19	56.	Schermelleh-Engel K, Moosbrugger H, Müller H: Evaluating the fit of structural equation models:
20		Tests of significance and descriptive goodness-of-fit measures. Methods of psychological research
21 22		online 2003, 8 (2):23-74.
23	57.	Vandenberg RJ: Introduction: Statistical and Methodological Myths and Urban Legends: Where,
24		Pray Tell, Did They Get This Idea? In.: Sage Publications Sage CA: Thousand Oaks, CA; 2006.
25 26	58.	Fan X, Sivo SA: Sensitivity of fit indexes to misspecified structural or measurement model
27	56.	
28		components: Rationale of two-index strategy revisited. <i>Structural Equation Modeling</i> 2005, 12 (3):343-
29 30		367.
31	59.	Alwin DF, Hauser RM: The decomposition of effects in path analysis. American sociological review
32		1975:37-47.
33 34	60.	Kerry SM, Emmett L, Micah FB, Martin-Peprah R, Antwi S, Phillips RO, Plange-Rhule J, Eastwood JB,
35		Cappuccio FP: Rural and semi-urban differences in salt intake, and its dietary sources, in Ashanti,
36		West Africa. Ethnicity & disease 2005, 15(1):33-39.
37 38	61.	Lissock CNAA, Sobngwi E, Ngassam E, Ngoa LSE: Rural and urban differences in metabolic profiles
39		in a Cameroonian population. Pan African Medical Journal 2011, 10.
40	62.	Stringhini S, Forrester TE, Plange-Rhule J, Lambert EV, Viswanathan B, Riesen W, Korte W, Levitt N,
41 42		Tong L, Dugas LR: The social patterning of risk factors for noncommunicable diseases in five
43		countries: evidence from the modeling the epidemiologic transition study (METS). BMC Public
44		
45 46	(2)	<i>Health</i> 2016, 16 (1):956.
47	63.	de Hoog ML, van Eijsden M, Stronks K, Gemke RJ, Vrijkotte TG: Association between body size and
48		blood pressure in children from different ethnic origins . <i>Cardiovascular diabetology</i> 2012, 11 (1):136.
49 50	64.	Dinsa G, Goryakin Y, Fumagalli E, Suhrcke M: Obesity and socioeconomic status in developing
51		countries: a systematic review. Obesity reviews 2012, 13(11):1067-1079.
52	65.	Masala G, Bendinelli B, Versari D, Saieva C, Ceroti M, Santagiuliana F, Caini S, Salvini S, Sera F, Taddei
53 54		S: Anthropometric and dietary determinants of blood pressure in over 7000 Mediterranean women:
54 55		
56		
57 58		
58 59		17

the European Prospective Investigation into Cancer and Nutrition-Florence cohort. *Journal of hypertension* 2008, **26**(11):2112-2120.

- 66. Wilson BL, Albright GL, Steiner SS, Andreassi JL: Cardiodynamic response to psychological and cold pressor stress: further evidence for stimulus response specificity and directional fractionation.
 Biofeedback and Self-regulation 1991, 16(1):45-53.
- 67. Goon D, Amusa L, Mhlongo D, Khoza L, Any-Anwu F: Elevated blood pressure among rural South
 African children in Thohoyandou, South Africa. Iranian journal of public health 2013, 42(5):489.
- Moselakgomo VK, Toriola AL, Shaw BS, Goon DT, Akinyemi O: Body mass index, overweight, and blood pressure among adolescent schoolchildren in Limpopo province, South Africa. *Revista Paulista de Pediatria* 2012, 30(4):562-569.
- 69. Lynch JW, Smith GD, Kaplan GA, House JS: Income inequality and mortality: importance to health of individual income, psychosocial environment, or material conditions. *BMJ: British Medical Journal* 2000, **320**(7243):1200.
- 70. Ploubidis GB, Mathenge W, De Stavola B, Grundy E, Foster A, Kuper H: Socioeconomic position and later life prevalence of hypertension, diabetes and visual impairment in Nakuru, Kenya. International journal of public health 2013, 58(1):133-141.
- 71. Drewnowski A: The cost of US foods as related to their nutritive value. *The American journal of clinical nutrition* 2010, **92**(5):1181-1188.
- 72. Popkin BM: The nutrition transition and obesity in the developing world. *The Journal of nutrition* 2001, **131**(3):871S-873S.
- 73. Sawaya AL, Sesso R, Florencio TM, Fernandes MT, Martins PA: Association between chronic undernutrition and hypertension. *Maternal & child nutrition* 2005, 1(3):155-163.

Table 2: Descriptive characteristics

	T 1		TT 1	1		1
	Total	n	Urban	n	Rural	p value
Age (years)	22.04 (1.24)	492	22.77 (0.49)	476	21.28 (1.31)	0.001
Weight (kg)	64.62 (14.82)	492	64.67 (15.6)	473	64.55 (14.03)	0.90
Height (m)	1.61 (0.007)	492	1.60 (0.07)	475	1.61 (0.07)	0.001
BMI (kg/m ²)	25.05 (5.59)	492	25.32 (5.91)	473	24.78 (5.24)	0.13
BMI classification (%)						0.015
Underweight (<18.4 kg/m ²)	5.98		7.10		4.82	
Normal weight (18.5-24.9 kg/m ²)	51.34		46.45		56.39	
Overweight (25-29.9 kg/m ²)	26.19		29.21		23.06	
Obese (>=30 kg/m ²)	16.49		17.24		15.72	
Waist circumference (cm)	80.60 (12.08)	493	80.18 (12.63)	477	81.03 (11.47)	0.26
Household SES index (sum of assets)	7.24 (2.70)	493	8.83 (2.37)	476	5.59 (1.91)	0.0000
Total MVPA (min/week)*	870(280-1810)	492	420(160-900)	385	1680(970-2580)	< 0.001
Sitting time (mins/day)*	300 (240-480)	492	360 (240-480)	385	300 (180-360)	< 0.001
Systolic blood pressure	106.68 (11.64)	492	110.30 (11.4)	471	102.89 (10.7)	0.000
Diastolic blood pressure	70.23 (9.00)	492	72.78 (8.3)	471	67.57 (9.0)	0.000
BP classification (%)						0.000
Low BP	12.46		5.49		19.75	
Normal BP	69.16		67.48		70.91	
Prehypertension	16.20		23.58		8.49	
Hypertensive	2.18		3.46		0.85	
Elevated BP (%)	18.38		27.04		9.34	0.000

Data presented as mean (SD) otherwise stated

* Median(IQR)

Table 3a: Structural equation model for SES, MVPA and BMI on SBP in urban women

Effect of:	Outcome:	Direct effects(95% CI)	Indirect effects(95% CI)	Total effects(95% CI)	Proportion of total effect
N=489					mediated
Household	SBP	-0.34 (-0.75; 0.07)		-0.29 (-0.70; 0.12)	0.13 ^a
assets	via BMI		0.05 (-0.05; 0.14)		
	BMI	0.13 (-0.09; 0.35)		0.11 (-0.11; 0.33)	0.1 ^a
	via MVPA		-0.014 (-0.05; 0.013)		
	MVPA	-41.71 (-73.48; -9.94)**		-41.71 (-73.48; -9.94)**	
MVPA	SBP	-0.0002 (-0.001; 0.001)		-0.0000 (-0.0012; 0.0011)	0.3 ^a
	via BMI		0.0001 (-0.0001; 0.0004)		
BMI	SBP	0.37 (0.21; 0.53)***		0.37 (0.21; 0.53)***	

Adjusted for age; * P<0.05; ** P< 0.01; ***P< 0.001; SBP; systolic blood pressure, MVPA; moderate to vigorous intensity physical activity, BMI; body mass

index, SES; social economic status, ^a Assessed using the absolute values for both indirect and direct effects

Urban Fit Indices: LR test of model vs. saturated: chi2(4) = 0.97, Prob > chi2 = 0.91; RMSEA = 0.00; CFI= 1.00 Comparative fit index;

TLI= 1.12 Tucker-Lewis index; **SRMR=0.011:** Standardized root mean squared residual, CD= 0.017 Coefficient of determination.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

BMJ Open

 Table 3b:
 Structural equation model for SES, MVPA and BMI on SBP in rural women

Effect of:	Outcome:	Direct effects(95% CI)	Indirect effects(95% CI)	Total effects(95% CI)	Proportion of total effect
N=378					mediated
Household	SBP	-0.65 (-1.19; -0.096)*		-0.56 (-1.12; -0.02)*	0.11 ^a
assets	via BMI		0.08 (-0.04; 0.19)		
	BMI	0.27 (0.01; 0.53)*		0.26 (-0.005; 0.53)*	0.04
	via MVPA		-0.01 (-0.04; 0.01)		
	MVPA	-29.51 (-87.81; 28.78)		-29.51 (-87.81; 28.78)	
MVPA	SBP	0.0004 (0005729 .0013)		0.0005 (-0.0005; 0.0015)	0.2
	via BMI		0.0001 (-0.0000; 0.0003)		
BMI	SBP	0.33 (0.12; 0.54)**		0.33 (0.12; 0.54)**	

Adjusted for age; * P<0.05; ** P< 0.01; ***P< 0.001; SBP; systolic blood pressure, MVPA; moderate to vigorous physical activity, BMI; body mass index, SES; social economic status, ^a Assessed using the absolute values for both indirect and direct effects

Rural Fit Indices: LR test of model vs. saturated: chi2(4) = 10.51, Prob > chi2 = 0.03; RMSEA = 0.066; CFI= 0.72 Comparative fit index; TLI= 0.37 Tucker-Lewis index; SRMR= 0.04 : Standardized root mean squared residual, CD= 0.03 Coefficient of determination.

BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

Table 3c: Structural equation model for SES, MVPA and BMI on SBP in the pooled sample of urban and rural women

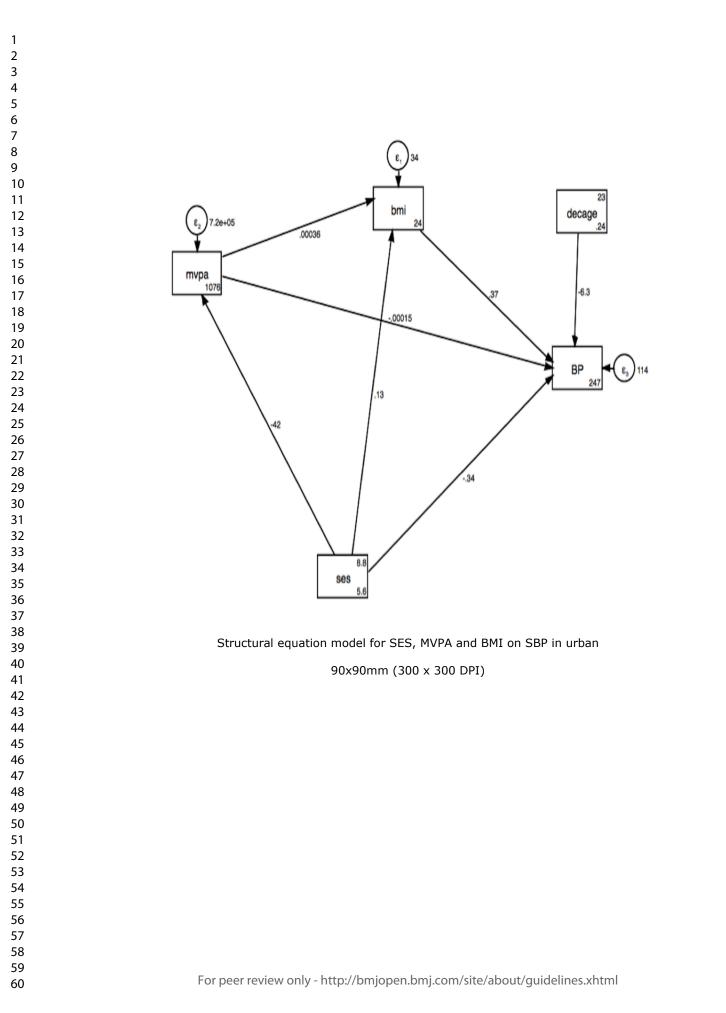
Effect of:	Outcome:	Direct effects(95% CI)	Indirect effects(95% CI)	Total effects(95% CI)	Proportion of total effect
N=867					mediated
Household	SBP	0.23 (-0.08; 0.54)		0.46 (0.15; 0.76)**	0.5
assets	via BMI		0.23 (0.10; 0.35)***		
	BMI	0.20 (0.05; 0.34)**		0.15 (0.01; 0.29)*	0.25 ^a
	via MVPA		-0.05 (100; 0.003)		
	MVPA	-144.83 (-170.55; -119.12)***		-144.83 (-170.55; -119.12)***	
MVPA	SBP	-0.001 (-0.002; -0.0005)**		-0.001 (-0.002; -0.0003)**	0.1 ^a
	via BMI		0.0001 (-0.0000; 0.0002)		
BMI	SBP	0.35 (0.21; 0.49)***		0.35 (0.21; 0.49)***	

Adjusted for age; * P<0.05; ** P< 0.01; ***P< 0.001; SBP; systolic blood pressure, MVPA; moderate to vigorous intensity physical activity, BMI; body mass index, SES; social economic status, ^a Assessed using the absolute values for both indirect and direct effects

Pooled Fit Indices: LR test of model vs. saturated: chi2(4) = 24.829, Prob > chi2 = 0.000; RMSEA = 0.077; CFI= 0.89 Comparative fit index; TLI= 0.75 Tucker-Lewis index; **SRMR=0.033:** Standardized root mean squared residual, CD=0.137 Coefficient of determination.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.


Figure legends

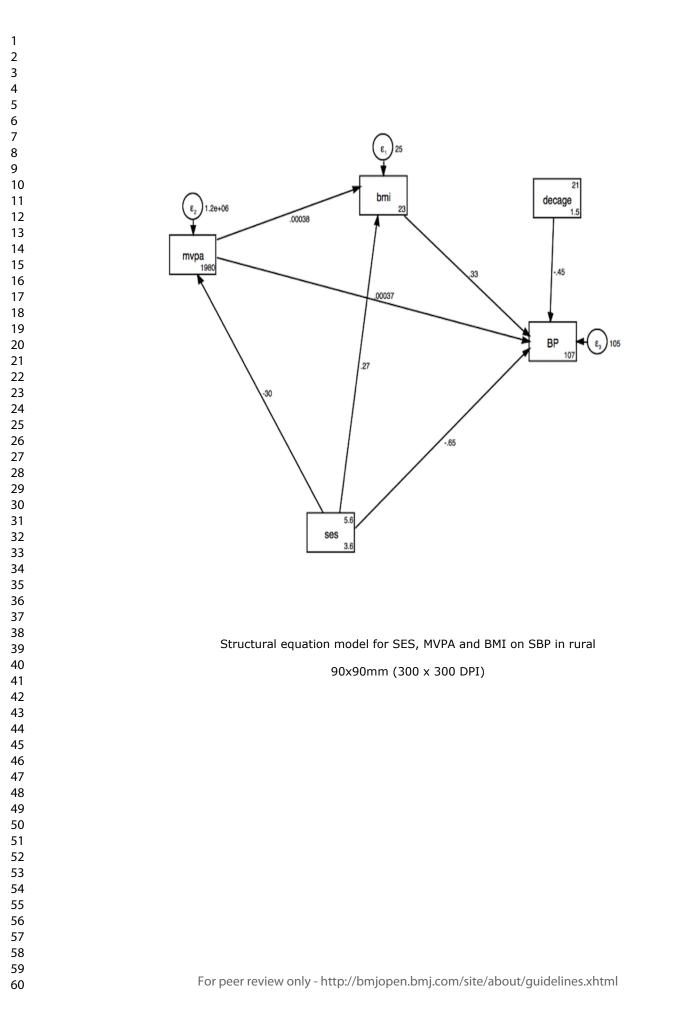
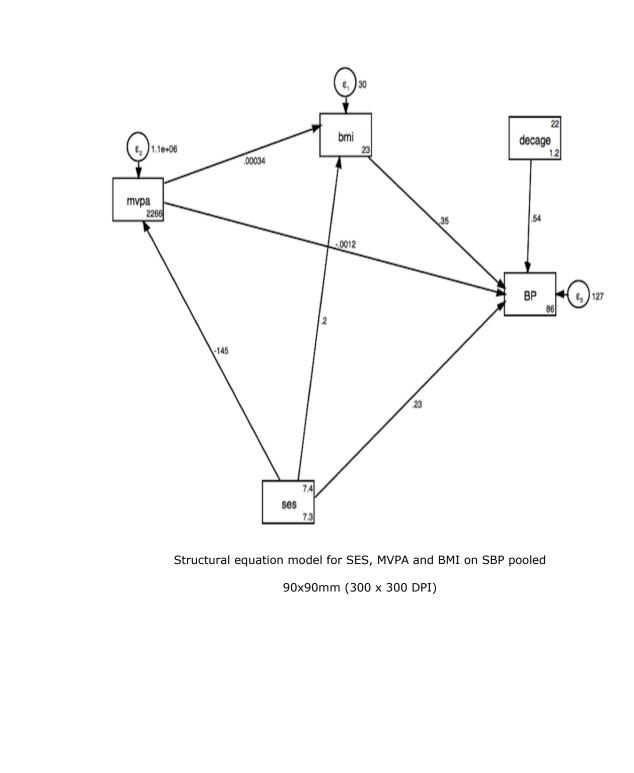

. I BMI on SBP in urban . A and BMI on SBP pooled Figure 1: Structural equation model for SES, MVPA and BMI on SBP in urban

Figure 2: Structural equation model for SES, MVPA and BMI on SBP in rural


Figure 3: Structural equation model for SES, MVPA and BMI on SBP pooled

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstrac
		MS Page 4 Par 2
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found MS Page 4
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
		MS Pages 5-6
Objectives	3	State specific objectives, including any prespecified hypotheses
-		MS Page 6 Par 2
Methods		
Study design	4	Present key elements of study design early in the paper
		Methods: MS Page 6 Par 3
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
		exposure, follow-up, and data collection
		Methods: MS Page 6 Par 3
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of
		selection of participants. Describe methods of follow-up N/A
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of
		case ascertainment and control selection. Give the rationale for the choice of cases
		and controls N/A
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of
		selection of participants Methods: MS Page 6 Par 3
		(b) Cohort study—For matched studies, give matching criteria and number of
		exposed and unexposed N/A
		<i>Case-control study</i> —For matched studies, give matching criteria and the number of
		controls per case N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
variables	/	modifiers. Give diagnostic criteria, if applicable Methods: MS Page 6 Par 4 – Pag
		8 Par 1
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
	0	
measurement		assessment (measurement). Describe comparability of assessment methods if there is more than one group Methods: MS Page 6 Page 6 Page 8 Page 1
Bias	9	more than one group Methods: MS Page 6 Par 4 – Page 8 Par 1
Study size	10	Describe any efforts to address potential sources of bias Methods: MS Page 6 Par Explain how the study size was arrived at Methods: MS Page 6 Par 3
Quantitative variables		· · · · · · · · · · · · · · · · · · ·
Qualititative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why Methods: MS Page 8 Par 2
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
Statistical methods	12	
		Statistical analyses: MS Page 8 Par 2 and 3
		 (b) Describe any methods used to examine subgroups and interactions N/A (c) Explain how missing data were addressed Statistical analyses: MS Page 8 Par
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed
		Case-control study—If applicable, explain how matching of cases and controls was

		BMJ Open
1 2 3 4 5 6 7	Continued on next page	addressed N/A Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy N/A (<u>e</u>) Describe any sensitivity analyses N/A
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44		
46 47 48 49 50 51		

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed Results: Page 8 Par 5 – Page 9 Par 1
		(b) Give reasons for non-participation at each stage N/A
		(c) Consider use of a flow diagram N/A
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information
data		on exposures and potential confounders Page 8 Par 5 – Page 9 Par 1
		(b) Indicate number of participants with missing data for each variable of interest Results :
		Page 8 Par 5
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount) N/A
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time N/A
		<i>Case-control study</i> —Report numbers in each exposure category, or summary measures of exposure N/A
		<i>Cross-sectional study</i> —Report numbers of outcome events or summary measures Results :
		Page 8 Par 5
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and
		why they were included Results: Page 9 Par 1
		(b) Report category boundaries when continuous variables were categorized N/A
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningfu
		time period N/A
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity
		analyses N/A
Discussion		
Key results	18	Summarise key results with reference to study objectives Discussion: Page 9 Par 2
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.
		Discuss both direction and magnitude of any potential bias Discussion: Page 11 Par 4
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicit
		of analyses, results from similar studies, and other relevant evidence Page 9 Par 3 - Page 11
		Par 3
Generalisability	21	Discuss the generalisability (external validity) of the study results Discussion: Page 9 Par 3 -
		Page 11
Other informatio	n	
	22	Give the source of funding and the role of the funders for the present study and, if applicable,
Funding		

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

Body composition and physical activity as mediators in the relationship between socio-economic status and blood pressure in young South African women: A structural equation model analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-023404.R1
Article Type:	Research
Date Submitted by the Author:	12-Jul-2018
Complete List of Authors:	Munthali, Richard; University of the Witwatersrand, MRC/Wits Developmental Pathways for Health Research Unit Manyema, Mercy; Wits University, Epidemiology and Biostatistics Said-Mohamed, Rihlat; University of the Witwatersrand, MRC/Wits Developmental Pathways for Health Kagura, Juliana; University of Witwatersrand, Paediatrics and Child health Tollman, Stephen; University of the Witwatersrand, Kahn, Kathleen; University of the Witwatersrand, Gómez-Olivé, F. Xavier; University of the Witwatersrand, Gómez-Olivé, F. Xavier; University of the Witwatersrand, Medical Research Council/Wits Rural Health and Health Transitions Unit (Agincourt), School of Public Health, Faculty of Health Sciences Micklesfield, Lisa; University of the Witwatersrand, MRC/Wits Developmental Pathways for Health Research Unit Dunger, David; University of Cambridge, Paediatrics Norris, Shane; University of Witwatersrand, Paediatrics and Child Health
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health, Epidemiology
Keywords:	Hypertension < CARDIOLOGY, Obesity, Socioeconomic status, Physical activity, Structural equation model, Body mass index

SCHOLARONE[™] Manuscripts

1				
2				
3 4	1			
5	2		hysical activity as mediators in the relationship between socio-economic status and	
6	3	blood pressure in young	South African women: A structural equation model analysis	
7	4			
8	5			
9	6	Richard J Munthali ¹ , Mero	y Manyema ^{1, 2} , Rihlat Said-Mohamed ¹ , Juliana Kagura ¹ , Stephen Tollman ^{3,4,5} , Kathleen	
10 11	7	Kahn ^{3, 4,5} , F. Xavier Góme	z-Olivé ³ , Lisa K. Micklesfield ¹ , David Dunger ^{6,1} , Shane A. Norris ¹	
12	8			
13				
14	9	Affiliations:		
15	10	-	ntal Pathways for Health Research Unit, Department of Paediatrics, School of Clinical	
16	11		Ith Sciences, University of the Witwatersrand, 7 York Rd, Parktown 2193, Johannesburg,	
17 18	12	South Africa		
19	13	² DST-NRF Centre of Exc	cellence in Human Development, University of the Witwatersrand, Johannesburg, South	
20	14	Africa	enere in Human Development, emversity et the Witwaterstand, vonaimeseuig, south	
21	11	/ milea		
22	15	³ MRC/Wits Rural Public	Health and Health Transitions Research Unit, School of Public Health, Faculty of Health	
23	16		e Witwatersrand, Johannesburg, South Africa	
24	17	Sciences, Oniversity of th	e witwaterstand, solutinesourg, boutin Arried	
25	18	⁴ INDEPTH Network, Ac		
26		INDEPTH Network, Act	cra, Gnana	
27	19			
28	20	³ Umea Centre for Global	Health Research, Sweden.	
29	21			
30	22	-	ics, MRL Wellcome Trust-MRC Institute of Metabolic Science, NIHR Cambridge	
31	23	Comprehensive Biomedical Research Centre, University of Cambridge, Box 116, Addenbrooke's Hospital, Hills		
32	24	Road, Cambridge CB2 0Q	Q, UK	
33	25			
34	26			
35	27	Conflict of interest: The	views expressed in the submitted article are our own and not an official position of the	
36	28		nder. Authors have no financial relationships relevant to this article to disclose.	
37	29	annuce institutions of fu	nder. Additions nuve no finalierar relationships relevant to tins article to discusse.	
38	2)			
39	20			
40	30	Corresponding Author:	Dr. Richard J. Munthali	
41				
42 43	31		MRC/Wits Developmental Pathways for Health Research Unit	
44 45	32		University of the Witwatersrand	
45 46				
47	33		Johannesburg	
48 49	34	Tel:	+27119331122	
50	01	101.	2,11,001122	
51	35	Email:	munthali@aims.ac.za	
52	55	L/111411.	manenan wanno.ao.za	
53	36			
54	37			
55	38			
56	39			
57				
58				
59		_		
60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

BMJ Open

2	
3	40
4 5	41 42
6	
7	43
8 9	44
9 10	45
11	46
12	47
13 14	48
15	49
16	50
17 18	51
19	52
20	
21 22	53
22	54
24	55
25 26	56
20	57
28	58
29 30	59
30 31	60
32	61 62
33	63
34 35	64
36	65 66
37	67
38 39	68 69
40	
41	70 71 72 73
42	72 72
43 44	74
45	75
46	76 77
47 48	75 76 77 78 79
49	79
50	80 81
51 52	82
53	83
54	84 85
55 56	86
50 57	
58	
59	
60	

1

Authors' emails:

Richard Junganiko Munthali: munthali@aims.ac.za Mercy Manyema: mercy.manyema@gmail.com

Juliana Kagura: julianakagura@gmail.com Stephen Tollman: stephen.tollman@wits.ac.za Kathleen Kahn: kathleen.kahn@wits.ac.za

David Dunger: dbd25@cam.ac.uk

Shane A Norris: shane.norris@wits.ac.za

Rihlat Said-Mohamed: rihlat.saidmohamed@wits.ac.za

F. Xavier Gómez-Olivé: F.Gomez-OliveCasas@wits.ac.za

Lisa K. Micklesfield: lisa.micklesfield@wits.ac.za

1 2		
3 4	87 88	Abstract
5 6	89	Objectives Varying hypertension prevalence across different socio-economic strata within a population has been
7	90	well reported. However the causal factors and pathways across different settings are less clear, especially in sub-
8	91	Saharan Africa. Therefore, this study aimed to compare blood pressure (BP) levels, and investigate the extent to
9 10 11 12 13	92	which socioeconomic status (SES) is associated with blood pressure, in rural and urban South Africa women.
	93	
	94	Setting Rural and urban South Africa.
14	95	
15 16	96	Design Cross-sectional.
17 18 19 20 21 22 23 24	97	
	98	Participants Cross-sectional data on SES, total moderate-vigorous physical activity (MVPA), anthropometric and
	99	blood pressure were collected on rural (n=509) and urban (n=510) young black women (18-23 years age). Pregnant
	100	and mentally or physically disabled women were excluded from the study.
	101	
	102	Results The prevalence of combined overweight and obesity (46.5% versus 38.8%) and elevated BP (27.0% versus
25 26	103	9.3%) were higher in urban than rural women respectively. Results from the structural equation modelling showed
27	104	significant direct positive effects of body mass index (BMI) on systolic BP (SBP) in rural, urban and pooled
28 29	105	datasets. Negative direct effects of SES on SBP and positive total effects of SES on SBP were observed in the rural
30 31 32 33 34	106	and pooled datasets respectively. In rural young women, SES had direct positive effects on BMI and was negatively
	107	associated with MVPA in urban and pooled analyses. BMI mediated the positive total effects association between
	108	SES and SBP in pooled analyses (ß; 95%CI, 0.46; 0.15 to 0.76).
	109	
35 36	110	Conclusions Though South Africa is undergoing nutritional and epidemiological transitions; the prevalence of
37	111	elevated BP still varies between rural and urban young women. The association between SES and SBP varies
38 39	112	considerably in economically diverse populations with BMI being the most significant mediator. There is a need to
40	113	tailor prevention strategies to take into account optimizing BMI when designing strategies to reduce future risk of
41 42	114	hypertension in young women.
43 44 45 46 47 48 49 50	115	
	116	Keywords Blood pressure, Body mass index, Hypertension, Obesity, Urban, Rural, Socioeconomic status,
	117	Structural equation model, Physical activity
	118	
	119	
	120	
51 52	121 122	
53 54	123	
55	124 125	
56 57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml 3

1 2		
2 3	100	
4	126 127	
5	127	
6	120	
7	130	
8		
9	131	
10		
11 12		Strengths
13		
14		1. The use of structural equation modelling allowed us to explore direct and indirect (mediation)
15		effects of social economic status, physical activity and body mass index on elevated blood
16		pressure from a representative sample of rural and urban populations of South African young
17		women.
18		2. Although the urban and rural cohorts were from two different studies, the same research unit
19		conducted both studies and, therefore, the data collection and management process were
20		consistent between the two sites, thereby allowing for accurate comparison.
21 22		
22		Limitations
24		1. Other unmeasured data, such as undernutrition in infancy, and dietary patterns were not included
25		in the current analyses.
26		2. The low reliability of self-report data on physical activity could introduce bias. Thus, there is
27		need for more accurate, objective measures of physical activity to strengthen the results of our
28		analysis.
29		3. There is a need to do comparison on longitudinal data, especially as the socioeconomic
30 31		environment is changing rapidly due to rural-urban labor migration and other factors would be
32		helpful to examine these associations over time.
33		
34	132	
35		
36	133	
37	134	
38 39	135	
39 40		
40 41	136	
42	137	
43	138	
44	139	
45		
46	140	
47 48	141	
40 49	142	
50	143	
51		
52	144	
53	145	
54	146	
55	147	
56 57	14/	
57 58		
50 59		Λ

Introduction High blood pressure (BP) or hypertension is a leading risk factor accounting for 7% of global disability-adjusted life years (DALYs) and contributing to the 34.5 million non-communicable disease (NCD) related deaths in 2010 [1, 2]. A recent global meta-analysis, involving 19.1 million individuals, reported that on average there has been a decrease in BP globally, but low- to middle-income countries (LMICs) have seen an increase in hypertension [3]. The prevalence of high BP in LMICs is estimated at 30% [4, 5] and it is the most significant risk factor for cardiovascular disease, most notably stroke [6]. In 2000, hypertension was estimated to have caused 9% of all deaths and over 390 000 DALYs in South Africa. Further, hypertension contributed to 50% of all strokes and 42% of ischaemic heart disease (IHD), signifying a substantial public health burden [7]. A systematic review of sub-Saharan African (SSA) data shows prevalence rates of hypertension of up to 41% with higher prevalence rates noted in urban compared to rural populations [8, 9]. A study in men and women aged 40 to 60 years of age in six sites across four SSA countries, including South Africa, showed the same trend with South African urban and rural cohorts having the highest prevalence of hypertension (41.6 to 54.1%) [10]. LMICs are experiencing both epidemiological and nutritional transitions with urban populations further along the transition as demonstrated by the higher prevalence of obesity and NCDs [4, 5, 8, 10-15]. Some evidence has shown that there are differences in the levels of BP between rural and urban settings [8], while other studies have found no significant differences [16]. According to Glass and McAtee, internal biological systems are sculpted by an interaction between genes and prolonged exposure to particular external environments, a principle they call embodiment [17]. Thus the differences in built and social environments between rural and urban settings may explain the differences in disease prevalence. A Ghanaian study showed that both systolic blood pressure (SBP) and diastolic blood pressure (DBP) were significantly lower in rural participants compared to urban participants [18]. However, a similar study in adolescents found that BP levels were only lower in rural boys, with no difference in the girls [19]. Pediatric and adolescent hypertension have been reported to track into adulthood in a South African urban population [20]. Results on elevated BP from studies in rural South African children have reported prevalence rates varying from 1.0% to 25.4% [21-24]. The factors explaining these differences have not been fully studied in LMICs. Socioeconomic factors such as education, household income and household assets have been associated with BP levels [25-27]. In a US cohort of young adults, a higher household income remained associated with lower SBP even after controlling for all potential covariates including age, sex and bio-behavioral factors [28]. Similarly, in a French sample of 30-79 year olds, SBP independently increased and was inversely associated with both individual education and residential neighborhood education [29]. Studies in African countries have also found varying associations between socioeconomic status (SES) and BP patterns, with both positive and negative associations reported [8, 30, 31]. Some studies have speculated that the association between SES and body mass index (BMI), physical activity levels, diet, smoking, alcohol intake and malnutrition may influence BP patterns [18, 28, 31, 32].

Physical activity has been inversely associated with blood pressure and BMI directly associated with BP in more advanced economies, but inconsistent associations have been reported in LMICs [25, 33-37].

There is a need to examine BP and its determinants in young South African adults given the high rates of overweight and obesity and hypertension observed in this age group [20, 38]. Recent South African reports also indicate that the highest pregnancy rates occur in the age range of 20-24 years, with 26.2% of births reported, followed closely by the 25-29 year age group (25.7%) [39], and therefore targeting young adult women would also reduce adverse health outcomes in their children. It is important to closely examine rural-urban differences in hypertension due to differences in the epidemiology of obesity and SES divergence in the South African context, in order to better suit interventions to the different settings [23, 26, 30, 40-43]. Therefore, this study aims to compare BP levels between rural and urban young adult South African women, and to determine whether there is an association between SES and BP, and whether it is mediated by physical activity and BMI.

Methods

Study sample and site

The rural Agincourt site, 2016 potential the female participants between the ages of 18 and 23 years were in the existing Agincourt Health and Socio-demographic Surveillance System database [44]. Only 996 were located during the data collection period and were invited to participate and of these, 509 female participants were recruited. The urban sample consisted of 510 young women between the ages of 22 and 23 years who were randomly selected from the sample of 720 females who were part of the Birth-to-Twenty plus (BT20+) Young Adult Survey [45, 46]. Young women (n=51; 33 in rural and 18 in urban) who were pregnant at the time of the study were excluded, see the study design flow chart in Figure 1. Measurements and questionnaires were completed by trained research assistants and nurses, and were standardised between both sites, to eliminate biases. The study protocols were approved by the Human Research Ethics Committee of the University of the Witwatersrand (Clearance certificates M120138 for the Ntshembo-Hope Cross Sectional Survey in Agincourt and M111182 for the BT20+ survey). Written consent to participate was provided by participants, and mentally or physically disabled women were excluded from the study.

- **Patient and Public Involvement**

Blood pressure

Blood pressure (mm Hg) was the outcome variable and it was measured using an Omron 6 automated machine (Kyoto, Japan). A five minute seated rest was observed before taking the BP measurements. Participants' seated BP was measured three times on the right side, with a 2-minute interval between each measurement. The mean for the

No patients private or public were involved in this study, as it was a community population based.

BMJ Open

19					
20	According to the Seventh Report of	the Joint National	Committee on Prev	vention, Detection, Evaluat	ion, and
21 22	Treatment of High Blood Pressure [-	•
22 23	older as shown in Table 1. These cu combined to create a new variable c		i în the current stud	y. Prenypertension and ny	pertension
24					
25	Table 1: Blood pressure classific	ation [47]			
	Classification	Systolic		Diastolic	226
	olassification				227
		Blood Pressu	Ire	Blood Pressure	228
	Low	<90	or	< 60	229
	Normal	<120	and	<80	230
	Prehypertension	120-139	or	80-90	231
	High: Stage 1 Hypertension	140-159	or	90-99	232
	High: Stage 2 hypertension	≥160	or	≥100	233
					234
35	SBP was used in structural equation	models (SEM) as	it is more relevant	in adults, and a good predic	ctor of adve
36	health outcomes later in life [48], su	ich as CVDs.			
37	Anthropometry				
38	At both sites, participants' height ar	nd weight were mea	asured by trained re	search assistants using star	ndard techn
39	[49, 50] . Weight was measured in l				
40	model TBF-410; Arlinghton Height				C
41	stadiometer (Holtain, Crymych, UK				eglass tape
42	the level of the umbilicus. BMI was	calculated as weig	ht/height ² (kg/m ²)		
43					
44					
45	Socio-economic status (SES)				

BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

246 Physical assets owned in the participants' household were used as a proxy for SES index [51]. It was generated by

summing the number of assets owned in the household from the following: television, car, washing machine, fridge,

248 phone, radio, microwave, cell phone, DVD/Video, DSTV (cable channel), computer, internet, medical aid. Previous

studies in this population have shown that the sum of physical assets (household assets) is closely related to the

- 250 household per capital expenditure and household income [51-53]. The household SES is regarded as a good measure
- of accumulated household wealth so it is a more reflective wealth index than income of a household's wealth overtime.

253 Physical activity

The Global Physical Activity Questionnaire (GPAQ), developed for global physical activity surveillance, was
completed via interview to obtain self-reported physical activity [54]. Total MVPA in minutes per week (mins/wk)
was calculated by adding occupation, travel-related and leisure time moderate and vigorous intensity physical
activity. Sitting time (mins/wk) was used as a proxy for sedentary time.

3 258 Statistical analyses

Analysis of variance and student's t test, and Chi-squared tests and Wilcoxon rank sum test for non-parametric
variables, were conducted to compare study characteristics between urban and rural young women. Structural
equation modeling (SEM), with missing data option, was used to test and estimate the direct and indirect
associations between variables, most especially the mediation roles of physical activity (MVPA) or sedentary time
(sitting), and body composition (BMI and WC), in the association between SES and SBP. SEMs allow us to assess
the mediation effects of multiple mediators [55]. SEM decomposed SES-BP associations into two parts, direct
(unmediated) and indirect (mediated through MVPA/sitting and BMI/WC).

Direct, indirect and total effects were computed and recorded, and the proportion of the total effect mediated was calculated. To evaluate the best fitting model for our data, we calculated different goodness of fit indices including Chi-squared test, Root mean squared error of approximation (RMSEA), Comparative fit index (CFI), Tucker-Lewis index (TLI) and Standardized root mean squared residual (SRMR) [56]. Though the Chi-squared test has been popularly used as a goodness of fit index, it has been reported to be biased and not reliable as the only goodness of fit index. It is also highly sensitive to sample size [57, 58], and often inflated with non-normal data such as physical activity data and we therefore employed the Hu and Bentler's Two-Index Presentation Strategy (1999) combination rule, with cut off values depending on the fitness index, to determine the best model fit [56, 59]. We estimated the coefficients (B) with 95% confidence intervals (95% CI) for the direct, indirect and total effects and also calculated the proportion of association mediated by indirect effects. If the direct and indirect effects had opposite signs (negative or positive effects) the proportion mediated was assessed using the absolute values for all indirect and direct effects [60].

All the analyses were conducted using STATA (version 13.0; STATA Corp., College Station, TX, USA). We
confirmed SEM results by running the SEM with the Satorra–Bentler and Huber-White (Robust) Sandwich

Page 9 of 30

BMJ Open

Estimator options [61] in STATA (version 15.1; STATA Corp., College Station, TX, USA). These options relax the normality assumption hence are robust to non-normal data, which would be the case for mypa and SES in the current study. A P-value < 0.05 was considered statistically significant. Results **Study characteristics** Descriptive statistics for the non-pregnant study participants (urban, n=492; rural, n=476) are presented in Table 2. There was no difference in BMI or waist circumference between the urban and rural participants, but the prevalence of overweight and obesity was significantly higher in the urban (46.5%) compared to the rural young women (38.8%). Household SES was significantly higher in the urban compared to the rural group. Self-reported MVPA was significantly higher in the rural than urban women (p < 0.001), and the urban women spent significantly more time sitting than their rural counterparts (p < 0.001). Systolic and diastolic BP were significantly higher in the urban group, as was the prevalence of elevated BP (27.0 vs. 9.3%). Structural equation models for body mass index and Waist circumference Results from the SEMs for SES associations with SBP via MVPA and BMI are presented in Tables 3a, 3b and 3c for urban, rural and pooled analyses respectively, and also shown in Figures 1, 2, 3. No significant direct or indirect effects via (MVPA or BMI) of SES on SBP were observed in either the urban or rural women, but there were significant direct effects of SES on MVPA. Results showed that individuals with a higher SES index were less likely to be physically active in pooled data and urban women. In rural women, a one-unit increase in total household assets was associated with a decrease of 0.65 mmHg (95% CI: -1.19 to -0.10) in SBP and an increase of 0.27 kg/m² in BMI (95% CI: 0.1 to 0.53) (Tables 3a, 3b and Figures 2, 3). The SEM for the pooled sample showed a significant indirect effect of household SES on SBP via BMI, with 50% of the total effect being mediated by BMI (Table 3c and Figure 4). Direct positive effects of BMI on SBP were observed in both settings and the pooled sample with a 1 kg/m² increase in BMI being associated with an increase of 0.37 mmHg (95% CI: 0.21 to 0.53) and 0.33 (95% CI: 0.12 to 0.54) mmHg SBP in urban and rural young women, respectively. Similar results were observed when including waist circumference as the body composition indicator (data not shown). Discussion For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

A rising prevalence of hypertension has been reported in South Africa. Peer and colleagues reported a higher prevalence in 2008 (35.6%) compared to 1990 (21.6%) in men and women aged 25-74 years in an urban black

community in Cape Town, South Africa [40]. We have shown in young adult women from urban and rural South

Africa, an overall elevated BP prevalence of 18.4 % (27.0 % in urban and 9.3 % in rural). We have also shown a

direct effect of BMI on SBP in the urban and rural women separately, as well as when pooled, thereby providing

further evidence of an association between overall adiposity and blood pressure. The total effects of SES on SBP

were the same in both settings.

Prevalence data on elevated BP and hypertension from other countries in SSA have shown conflicting results when comparing urban and rural communities. In Malawi, a higher prevalence of hypertension in urban compared to rural communities has been reported and attributed to differences in lifestyle as rural communities participate in subsistence based agricultural activities while the urban community has a more westernized lifestyle with higher salt intake and lower physical inactivity [9]. Similarly, data from Ghana have shown a higher mean SBP and DBP and a higher prevalence of hypertension in urban communities [18, 62]. In the PURE study in South Africa, Pisa and colleagues reported that both urban adult men and women had higher mean blood pressures in comparison to their rural peers though the overall CVD risk factors were equally prevalent in both settings [41]. In contrast, findings from Cameroon have reported a higher BP prevalence in rural compared to urban men and women older than 40 years old, while Kenyan studies have reported no significant differences [16, 63]. Results from six urban and rural sites in four SSA countries - Kenya, South Africa, Ghana and Burkina Faso - have reported a prevalence of hypertension in women aged between 40 and 60 years ranging from 15.1% in rural Burkina Faso to 54.1% in urban South Africa [10]. It was also reported that in all three South African sites, both rural and urban, the prevalence of hypertension was higher than in the other three countries [10]. These findings show the complex health transitions occurring in SSA and the impact that this is having on cardio-metabolic disease risk.

Our study showed significant differences in SES between the urban and rural samples, as well a big variation in SES within these two settings. The social patterning of CVD risk factors, including hypertension, in SSA and LMICs has in part been attributed to differences in countries' socioeconomic development. Previous results from five countries, (two high income and three LMICs), reported that hypertension and other CVD risk factors were substantially associated with education and wealth status; individuals with less education and lower wealth generally showing higher prevalence of CVD risk factors [64]. The effect of SES in this study is most evident in the rural women for whom household SES was lower (compared to urban) and who may be transitioning faster (both nutritionally and economically) than the urban young women. Though SES is positively associated with BMI in rural young women, it is negatively associated with SBP. There may be other factors, such as physical activity due to agricultural activities or dietary patterns, which were not recorded. In addition, the weight gain observed might not be due to fat mass, which has been reported to be positively associated with SBP before [65], but rather to muscle mass and bone mass.

In Mexico, women in rural and upper SES categories were likely to have a higher SBP, while we have reported that a higher SES was associated with a decrease in SBP in rural communities. At a population level, there is a need to

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 11 of 30

BMJ Open

consider different SES categories and monitor the effects of transitioning from one SES category to another on hypertension, since these categories may respond differently to an increase or a decrease in their SES. Kagura and colleagues tracked SES in South African children and reported that moving from the low SES in infancy to a higher SES in adolescence had a protective effect on SBP level in young adulthood [26]. Our results have shown that this could be more pronounced in rural areas. We observed a positive association between SES and BMI in the rural sample and the same direction of effects was observed in the urban, though not significant. This is in line with results reported in many LMICs including South Africa, but in contrast with those reported in higher income populations [33, 34, 64]. A systematic review of studies between 1989 to 2007 reported that SES was positively associated with obesity in the middle transitioning economies such as South Africa and Jamaica [66]. We have shown that both in the rural and urban participants (not significant), a higher SES resulted in reduced SBP, while the pooled analysis showed a positive total effect association between SES and SBP. This could be due to the introduction of more variation in SES when data from both sites are pooled; with many individuals with low SES in the rural area, the associations became skewed towards the low SES individuals. This may suggest that different transitional levels of SES have different effects on hypertension risk depending on the environment (either urban or rural). Though not significant, the total effects of SES on SBP are the same in both rural and urban hence the differences in prevalence cannot be explained by the setting or SES alone. In urban and rural settings of four countries (Kenya, Namibia, Nigeria and Tanzania), the prevalence of age standardized hypertension was similarly high and ranging from 19.3 % to 38.0 % [11]. Cois and colleagues reported that a higher SES was associated with lower SBP in a nationally representative sample of South African women [25] using SEM models. Alcohol use, PA, smoking and resting heart rate and BMI were reported to be the mediators of the indirect of the association between SES and SBP in men but not in women, suggesting that other factors may play a major role in women [25]. Similarly, our results show that neither PA nor BMI mediate the association between SES and SBP in urban and rural settings, suggesting that other factors may explain the

association. Among those, dietary patterns and stress have been reported to be independently associated with SBP[67, 68].

The significant direct associations between BMI and SBP are in line with other findings in South Africa and within the SSA region [11, 33, 40, 42, 69, 70]. This link was consistent in rural, urban and pooled data sets, indicating the importance of BMI in the aetiology of high BP. Munthali and colleagues reported that the link between obesity and hypertension could be observed as early as five years of age. Children with early onset of obesity were at higher risk of developing hypertension in late adolescence [38].

In this study, using SEM models to explore the mediation role of BMI and PA helped quantify potential contributions of these variables to the effect of SES on SBP. The results show that PA was not a significant mediator in the association between SES and BP in the urban or the rural samples. SES was negatively associated with MVPA in urban and pooled samples, indicating that as individuals transition from low to higher SES, they reduce their physical activity level. We speculate that these differences in the association between SES and SBP in both our rural and urban results and in those from high-income countries are due to differences in levels of nutritional and

epidemiological transition in these regions [71, 72]. Those with low SES in high-income countries are likely to consume cheaper, more energy dense foods, participate in less leisure time PA and be more sedentary [73, 74] In LMICs, agricultural activities remain a part of everyday life and a day-to-day activity in rural living, while those with higher SES in the same settings rapidly adopt the westernized life style with less PA, fewer agricultural activities and home grown food. However, this speculation is not supported by the data on PA in this study despite the rural participants having a higher PA. Our understanding of the Agincourt rural economy is that agriculture is quite a minor aspect though very useful to augment the household income.

The limitations of this study are that other unmeasured data, such as undernutrition in infancy, which is a known risk factor for high BP later in life [75], and dietary patterns were not included in the current analyses. We are currently working on research to address this limitation. We can also not rule out the role of genetics. Secondly, the low reliability of self-report data on PA could introduce bias. Thus, there is need for more precise, objective measures of physical activity to strengthen the results of our analysis. Lastly, longitudinal data, especially as the socioeconomic environment is changing rapidly due to rural-urban labor migration and other factors would be helpful to examine these associations over time. The cross-sectional design lacks a temporal component between the factors analyzed. Thus, it is difficult to say anything certain about the direction of the associations, hence the need for the longitudinal data.

399 Conclusions

Though the prevalence of overweight or obesity is relatively higher in both rural and urban than those reported in other SSA countries, women in the urban setting were at more risk for elevated blood pressure than their rural counterparts. The link between SES and SBP varies in a more economically diverse population, as seen with the pooled rural and urban dataset, with BMI being the most likely mediator. There is need to consider optimizing BMI as a key intervention strategy in young adults in part to combat hypertension. Our findings should be replicated with prospective data.

42 406

407 Funding

Norris is supported by the UK MRC DfID African Research Leader Scheme and by the DST-NRF Centre of Excellence in Human Development at the University of the Witwatersrand, Johannesburg. Birth to Twenty data collection was supported by the Wellcome Trust under Grant [092097/Z/10/Z]. The MRC/Wits- Agincourt Unit is supported by the South African Medical Research Council, and the Wellcome Trust under Grants [058893/Z/99/A, 069683/Z/02/Z, 085477/Z/08/Z, 085477/B/08/Z]. Opinions expressed and conclusions arrived at, are those of the authors and are not to be attributed to the CoE in Human Development.

55 414 Conflict of interest

415 Authors have no conflicts of interest to disclose. 416 Consent for publication 417 Not applicable 418 Data Sharing 419 The datasets used and/or analysed during the current study are available from the Developmental Pathways 420 for Health Research Unit data management department by contacting Prof. Shane A Norris on reasonable request 421 Competing interest 422 The authors declare that they have no competing interests 423 Authors' contributions 424 RIM and SAN conceptualized the manuscript. RJM analyzed the data. RJM MM RSM JK ST KK FXG LKM DD 425 SAN interpreted the data. RJM wrote the manuscript and all authors were involved in editing and approving the final 426 manuscript. 427 Acknowledgements 428 We wish to thank the B20+ and Agineourt participants for taking part in the study and the Bt20+ and Agineourt 428 We wish to thank the B20- and Agineourt participants for taking part in the study and the Bt20+ and Agineourt 429 Thries Approval and Consent to Participate 430 Fhries Approval and Consent to Participate 431 Ethies Approval and Consent to Participate 432 Att <	1 2		
916 Consent for publication 917 Not applicable 918 Data Sharing 919 The datasets used and/or analysed during the current study are available from the Developmental Pathways 107 for Health Research Unit data management department by contacting Prof. Shane A Norris on reasonable request 112 Competing interest 113 for Health Research Unit data management department by contacting Prof. Shane A Norris on reasonable request 114 Competing interest 115 Authors' contributions 116 Authors' contributions 117 Acknowledgements 118 RJM and SAN conceptualized the manuscript. RJM analyzed the data. RJM MM RSM JK ST KK FXG LKM DD 116 Acknowledgements 117 Acknowledgements 118 We wish to thank the Bt20+ and Agincourt participants for taking part in the study and the Bt20+ and Agincourt 117 team for their relentless support throughout the study. 118 Ethics Approval and Consent to Participate 119 Prior to the study, the study protocols were approved by the Human Research Ethics Committee of the University of 119 the Witwaterstand (Clearance certificates M120138 for the Ntshembo-Hope Cross Sectional Survey in Agincourt <td>3</td> <td>415</td> <td>Authors have no conflicts of interest to disclose.</td>	3	415	Authors have no conflicts of interest to disclose.
6 417 Not applicable 7 418 Data Sharing 9 419 The datasets used and/or analysed during the current study are available from the Developmental Pathways 11 420 for Health Research Unit data management department by contacting Prof. Shane A Norris on reasonable request 12 421 Competing interest 13 422 The authors declare that they have no competing interests 14 424 RJM and SAN conceptualized the manuscript. RJM analyzed the data. RJM MM RSM JK ST KK FXG LKM DD 14 542 SAN interpreted the data. RJM wrote the manuscript and all authors were involved in editing and approving the final 18 424 RAM and SAN conceptualized the manuscript and all authors were involved in editing and approving the final 18 425 SAN interpreted the data. RJM wrote the manuscript and all authors were involved in editing and approving the final 19 426 manuscript. 20 427 Acknowledgements 21 428 We wish to thank the B120+ and Aginecourt participants for taking part in the study and the B120+ and Aginecourt 24 429 team for their relemIess support throughout the study. 24 431 Ethies Approval and Consent to Part		416	Consent for publication
9 118 Data Sharing 9 119 The datasets used and/or analysed during the current study are available from the Developmental Pathways 11 110 The datasets used and/or analysed during the current study are available from the Developmental Pathways 12 114 Competing interest 12 114 Competing interest 12 114 Competing interest 12 114 Authors' contributions 13 422 The authors declare that they have no competing interests 14 421 Competing interest 13 422 The authors' contributions 14 Faile and SAN conceptualized the manuscript. RJM analyzed the data. RJM MM RSM JK ST KK FXG LKM DD 142 RJM and SAN conceptualized the manuscript and all authors were involved in editing and approving the final 142 manuscript. 142 Acknowledgements 142 We wish to thank the B120+ and Agincourt participants for taking part in the study and the Bt20+ and Agincourt 143 Ethics Approval and Consent to Participate 144 Prior to the study, the study protocols were approved by the Human Research Ethics Committee of the University of 143 Hat		417	Not applicable
9 419 The datasets used and/or analysed during the current study are available from the Developmental Pathways 10 420 for Health Research Unit data management department by contacting Prof. Shane A Norris on reasonable request 12 12 Competing interest 13 422 The authors declare that they have no competing interests 14 12 Authors' contributions 16 424 RJM and SAN conceptualized the manuscript. RJM analyzed the data. RJM MM RSM JK ST KK FXG LKM DD 17 425 SAN interpreted the data. RJM wrote the manuscript and all authors were involved in editing and approving the final 19 426 manuscript. 14 427 14 Ve wish to thank the B20+ and Agineourt participants for taking part in the study and the B120+ and Agineourt 14 team for their relentless support throughout the study. 143 Ethics Approval and Consent to Participate 1440 Prior to the study, the study protocols were approved by the Human Research Ethics Committee of the University of 143 the Witwatersrand (Clearance certificates M120138 for the Ntshembo-Hope Cross Sectional Survey in Agineourt 143 and M111182 for the BT20+ survey). Independent written informed consent to participate was obtained from 14		418	Data Sharing
11 7-20 Information Research Outri dual management department by contacting Prof. State A Points on reasonable request 12 421 Competing interest 14 423 Authors' contributions 16 424 RIM and SAN conceptualized the manuscript. RJM analyzed the data. RJM MM RSM JK ST KK FXG LKM DD 17 425 SAN interpreted the data. RJM wrote the manuscript and all authors were involved in editing and approving the final 18 426 manuscript. 14 Acknowledgements 14 427 14 Ke wish to thank the Bt20+ and Aginecourt participants for taking part in the study and the Bt20+ and Aginecourt 14 team for their releatless support throughout the study. 14 428 14 Frice Approval and Consent to Participate 15 Prior to the study, the study protocols were approved by the Human Research Ethics Committee of the University of 14 433 143 441 143 441 1441 441 143 441 1442 441 1443 441 1444 441 1444 442 <td></td> <td>419</td> <td>The datasets used and/or analysed during the current study are available from the Developmental Pathways</td>		419	The datasets used and/or analysed during the current study are available from the Developmental Pathways
12 421 Competing interest 13 422 The authors declare that they have no competing interests 14 423 Authors' contributions 15 424 RIM and SAN conceptualized the manuscript. RIM analyzed the data. RIM MM RSM JK ST KK FXG LKM DD 16 424 RIM and SAN conceptualized the manuscript and all authors were involved in editing and approving the final 17 425 SAN interpreted the data. RIM wrote the manuscript and all authors were involved in editing and approving the final 18 426 manuscript. 20 427 Acknowledgements 21 428 We wish to thank the Bt20+ and Agincourt participants for taking part in the study and the Bt20+ and Agincourt 24 429 team for their releatless support throughout the study. 25 430 Ethies Approval and Consent to Participate 7 742 Prior to the study, the study protocols were approved by the Human Research Ethics Committee of the University of 7 431 the Witwaterstand (Clearance certificates M120138 for the Nishembo-Hope Cross Sectional Survey in Agincourt 8 433 participants. 36 438 437 433 436 <		420	for Health Research Unit data management department by contacting Prof. Shane A Norris on reasonable request
112 Inclusion occurrbutions 15 423 Authors' courrbutions 15 424 RJM and SAN conceptualized the manuscript. RJM analyzed the data. RJM MM RSM JK ST KK FXG LKM DD 16 424 RJM and SAN conceptualized the manuscript. RJM analyzed the data. RJM MM RSM JK ST KK FXG LKM DD 17 425 SAN interpreted the data. RJM wrote the manuscript and all authors were involved in editing and approving the final 18 426 manuscript. 142 Acknowledgements 142 We wish to thank the B120+ and Agincourt participants for taking part in the study and the B120+ and Agincourt 142 team for their relentless support throughout the study. 143 Ethics Approval and Consent to Participate 144 Prior to the study, the study protocols were approved by the Human Research Ethics Committee of the University of 143 the Witwatersrand (Clearance certificates M120138 for the Ntshembo-Hope Cross Sectional Survey in Agincourt 144 and M111182 for the BT20+ survey). Independent written informed consent to participate was obtained from 144 440 145 442 146 442 147 443 148 444 144 444		421	Competing interest
423 Authors' contributions 6 424 RJM and SAN conceptualized the manuscript. RJM analyzed the data. RJM MM RSM JK ST KK FXG LKM DD 7 425 SAN interpreted the data. RJM wrote the manuscript and all authors were involved in editing and approving the final 7 426 manuscript. 7 Acknowledgements 7 427 Acknowledgements 7 428 We wish to thank the Bt20+ and Agincourt participants for taking part in the study and the Bt20+ and Agincourt 7 429 team for their relentless support throughout the study. 7 430 6 431 7 432 7 434 433 the study, the study protocols were approved by the Human Research Ethics Committee of the University of 7 432 433 the Witwatersrand (Clearance certificates M120138 for the Ntshembo-Hope Cross Sectional Survey in Agincourt 34 436 434 and M111182 for the BT20+ survey). Independent written informed consent to participate was obtained from 9 436 441 441 442 441 443 442 444		422	The authors declare that they have no competing interests
16 424 RJM and SAN conceptualized the manuscript. RJM analyzed the data. RJM MM RSM JK ST KK FXG LKM DD 17 425 SAN interpreted the data. RJM wrote the manuscript and all authors were involved in editing and approving the final 19 426 manuscript. 20 427 Acknowledgements 21 428 We wish to thank the Bt20+ and Agincourt participants for taking part in the study and the Bt20+ and Agincourt 24 429 team for their relentless support throughout the study. 24 430 Ethics Approval and Consent to Participate 27 Acknowledgements Prior to the study, the study protocols were approved by the Human Research Ethics Committee of the University of 430 the Witwatersrand (Clearance certificates M120138 for the Ntshembo-Hope Cross Sectional Survey in Agincourt 30 433 434 and M111182 for the BT20+ survey). Independent written informed consent to participate was obtained from 31 436 437 440 441 441 45 442 441 441 45 442 441 441 45 442 441 442		423	Authors' contributions
18 425 SAN interpreted the data. RIM wrote the manuscript and all authors were involved in editing and approving the linal 19 426 manuscript. 21 427 Acknowledgements 22 428 We wish to thank the Bt20+ and Agineourt participants for taking part in the study and the Bt20+ and Agineourt 24 429 team for their relentless support throughout the study. 24 430 24 Ethics Approval and Consent to Participate 27 Prior to the study, the study protocols were approved by the Human Research Ethics Committee of the University of 243 the Witwatersrand (Clearance certificates M120138 for the Ntshembo-Hope Cross Sectional Survey in Agincourt 29 434 436 437 343 participants. 344 437 35 438 449 441 441 441 442 441 443 441 444 441 445 442 446 441 447 443 448 441 449 444 441 <td>16</td> <td>424</td> <td>RJM and SAN conceptualized the manuscript. RJM analyzed the data. RJM MM RSM JK ST KK FXG LKM DD</td>	16	424	RJM and SAN conceptualized the manuscript. RJM analyzed the data. RJM MM RSM JK ST KK FXG LKM DD
19 426 manuscript. 20 427 Acknowledgements 21 428 We wish to thank the Bt20+ and Agineourt participants for taking part in the study and the Bt20+ and Agineourt 23 429 team for their relentless support throughout the study. 24 430 Ethics Approval and Consent to Participate 27 432 Prior to the study, the study protocols were approved by the Human Research Ethics Committee of the University of 434 and M111182 for the BT20+ survey). Independent written informed consent to participate was obtained from 31 436 437 participants. 33 436 438 439 439 and M111182 for the BT20+ survey). Independent written informed consent to participate was obtained from 34 436 437 438 438 439 440 440 441 440 442 441 443 442 444 443 45 442 45 443 46 444 47 443 444 </td <td></td> <td>425</td> <td>SAN interpreted the data. RJM wrote the manuscript and all authors were involved in editing and approving the final</td>		425	SAN interpreted the data. RJM wrote the manuscript and all authors were involved in editing and approving the final
1 427 Acknowledgements 22 428 We wish to thank the Bi20+ and Agincourt participants for taking part in the study and the Bi20+ and Agincourt 4 429 team for their relentless support throughout the study. 4 430 431 Ethics Approval and Consent to Participate 7 97 432 Prior to the study, the study protocols were approved by the Human Research Ethics Committee of the University of 433 the Witwatersrand (Clearance certificates M120138 for the Ntshembo-Hope Cross Sectional Survey in Agincourt and M111182 for the BT20+ survey). Independent written informed consent to participate was obtained from participants. 33 436 437 438 439 440 441 440 441 442 443 441 444 442 443 444 444 445 446 447 448 445 445 445		426	manuscript.
22 428 We wish to thank the Bt20+ and Agincourt participants for taking part in the study and the Bt20+ and Agincourt 23 429 team for their relentless support throughout the study. 24 430 25 430 26 431 27 Prior to the study, the study protocols were approved by the Human Research Ethics Committee of the University of 28 433 the Witwatersrand (Clearance certificates M120138 for the Ntshembo-Hope Cross Sectional Survey in Agincourt 29 434 and M111182 for the BT20+ survey). Independent written informed consent to participate was obtained from 31 436 437 and M111182 for the BT20+ survey). Independent written informed consent to participate was obtained from 33 436 441 441 45 432 440 440 441 441 45 442 443 441 444 441 45 442 441 441 45 442 443 441 444 444 445 445 446		427	Acknowledgements
125 team for other references support introgram in stary. 25 430 6 431 243 Prior to the study, the study protocols were approved by the Human Research Ethics Committee of the University of 28 433 434 the Witwatersrand (Clearance certificates M120138 for the Ntshembo-Hope Cross Sectional Survey in Agincourt 30 434 435 participants. 336 436 343 436 344 437 35 438 434 437 36 438 439 440 440 441 441 441 442 441 443 441 444 444 444 444 445 442 446 444 447 443 448 444 444 444 445 445 55 445		428	We wish to thank the Bt20+ and Agincourt participants for taking part in the study and the Bt20+ and Agincourt
25 430 26 431 27 432 28 433 433 the Study, the study protocols were approved by the Human Research Ethics Committee of the University of 28 433 433 the Witwatersrand (Clearance certificates M120138 for the Ntshembo-Hope Cross Sectional Survey in Agincourt 29 434 435 and M111182 for the BT20+ survey). Independent written informed consent to participate was obtained from 29 436 436 437 437 438 438 439 440 440 41 441 45 442 46 443 47 443 48 442 49 444 44 442 45 442 46 444 47 443 48 444 444 445 55 54		429	team for their relentless support throughout the study.
 432 Prior to the study, the study protocols were approved by the Human Research Ethics Committee of the University of 433 the Witwatersrand (Clearance certificates M120138 for the Ntshembo-Hope Cross Sectional Survey in Agincourt 434 and M111182 for the BT20+ survey). Independent written informed consent to participate was obtained from participants. 436 437 438 439 440 440 441 442 441 442 441 442 443 442 444 444 444 445 442 445 445 			
 433 the Witwatersrand (Clearance certificates M120138 for the Ntshembo-Hope Cross Sectional Survey in Agincourt and M111182 for the BT20+ survey). Independent written informed consent to participate was obtained from participants. 436 4437 443 439 440 440 441 441 442 443 443 444 444 443 444 444 444 445 442 445 445 			
29 434 and M111182 for the BT20+ survey). Independent written informed consent to participate was obtained from 31 435 participants. 33 436 34 437 35 438 40 440 41 440 42 441 45 442 46 443 47 443 48 444 444 444 445 442 466 443 444 443 445 444 446 443 447 443 448 444 51 445 55 445			
30 435 participants. 33 436 34 437 35 438 36 438 37 440 44 441 45 442 46 441 47 443 48 444 49 444 51 445 55 445	29		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32	100	Para a separation of the second se
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35		
38 439 39 440 41 440 42 441 43 442 44 442 45 442 46 443 47 443 48 444 50 444 51 445 52 445 53 53 54 55		438	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		439	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		440	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		441	
45 442 46 443 47 443 48 444 50 444 51 445 52 445 53 54 55 55			
47 443 48 444 49 444 50 445 51 445 52 54 55 55	45	442	
48 49 444 50 51 52 445 53 54 55		112	
50 51 52 53 54 55	48	445	
51 52 53 54 55		444	
52 53 54 55		445	
54 55		445	
56 57			
58	58		
591360For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml 13

1 2			
3	446	Refer	ences
4			
5	447	1.	Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M,
6	448		Anderson HR, Andrews KG <i>et al</i> : A comparative risk assessment of burden of disease
7	449		and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–
8	450		2010: a systematic analysis for the Global Burden of Disease Study 2010 . <i>The Lancet</i>
9 10	451	2	2012, 380 (9859):2224-2260.
10	452	2.	Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T,
12	453 454		Aggarwal R, Ahn SY: Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease
13	454 455		Study 2010 . The Lancet 2013, 380 (9859):2095-2128.
14	455 456	3.	Ezzati M, Geleijnse J: Worldwide trends in blood pressure from 1975 to 2015. The
15	457	5.	Lancet 2017, 389 (10064):37-55.
16	458	4.	Sarki AM, Nduka CU, Stranges S, Kandala N-B, Uthman OA: Prevalence of Hypertension in
17	459	1.	Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis. Medicine
18	460		2015, 94 (50):e1959.
19 20	461	5.	Chow CK, Teo KK, Rangarajan S, Islam S, Gupta R, Avezum A, Bahonar A, Chifamba J,
20	462	01	Dagenais G, Diaz R: Prevalence, awareness, treatment, and control of hypertension in
22	463		rural and urban communities in high-, middle-, and low-income countries. Jama 2013,
23	464		310 (9):959-968.
24	465	6.	Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J: Global burden of
25	466	-	hypertension: analysis of worldwide data. The lancet 2005, 365(9455):217-223.
26	467	7.	Norman R, Gaziano T, Laubscher R, Steyn K, Bradshaw D, Collaboration SACRA: Estimating
27	468		the burden of disease attributable to high blood pressure in South Africa in 2000.
28	469		South African Medical Journal 2007, 97(8):692-698.
29	470	8.	Addo J, Smeeth L, Leon DA: Hypertension in Sub-Saharan Africa a systematic review.
30 31	471		Hypertension 2007, 50 (6):1012-1018.
32	472	9.	Simmons D, Barbour G, Congleton J, Levy J, Meacher P, Saul H, Sowerby T: Blood pressure
33	473		and salt intake in Malawi: an urban rural study. Journal of epidemiology and community
34	474		health 1986, 40 (2):188-192.
35	475	10.	Gómez-Olivé FX, Ali SA, Made F, Kyobutungi C, Nonterah E, Micklesfield L, Alberts M, Boua R,
36	476		Hazelhurst S, Debpuur C: Stark Regional and Sex Differences in the Prevalence and
37	477		Awareness of Hypertension: An H3Africa AWI-Gen Study Across 6 Sites in Sub-
38	478		Saharan Africa. Global Heart 2017.
39	479	11.	Hendriks ME, Wit FW, Roos MT, Brewster LM, Akande TM, de Beer IH, Mfinanga SG, Kahwa
40	480		AM, Gatongi P, Van Rooy G: Hypertension in sub-Saharan Africa: cross-sectional
41 42	481		surveys in four rural and urban communities. <i>PloS one</i> 2012, 7(3):e32638.
43	482	12.	Lemogoum D, Seedat YK, Mabadeje AF, Mendis S, Bovet P, Onwubere B: International
44	483		Forum for Hypertension control and prevention in Africa. Recommendations for
45	484		prevention, diagnosis and management of hypertension and cardiovascular risk
46	485	4.0	factors in sub-Saharan Africa. J Hypertens 2003, 21.
47	486	13.	Schutte A, Botha S, Fourie C, Gafane-Matemane L, Kruger R, Lammertyn L, Malan L, Mels C,
48	487		Schutte R, Smith W: Recent advances in understanding hypertension development in
49	488	11	sub-Saharan Africa. Journal of Human Hypertension 2017.
50	489 400	14.	Thorogood M, Connor MD, Lewando Hundt G, Tollman SM: Understanding and managing
51 52	490 401		hypertension in an African sub-district: A multidisciplinary approach1 . Scandinavian
52 53	491 492	15.	<i>Journal of Public Health</i> 2007, 35 (69 suppl):52-59. Yusufali A, Khatib R, Islam S, AlHabib K, Kelishadi R, Rangarajan S, Yusuf S: LBOS 03-01
54	492 493	15.	PREVALENCE, AWARENESS, TREATMENT, AND CONTROL OF HYPERTENSION IN THE
55	493		r Revalence, Awareness, TREATMENT, AND CONTROL OF ITTERTENSION IN THE
56			
57			
58			
59			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60			i or peer review only - nitp.//binjopen.binj.com/site/about/guidelines.xntini

B
ے o
)pen:
first
lqnd
lishe
d as
oublished as 10.1136/bmjo
136/t
omjop
oen-2
2018.
0234
404 c
on 19
Dec
emb
er 20
mjopen-2018-023404 on 19 December 2018. Dc
Down
BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://br
ed fro
from http://br
tp://t
j mjop
ben.b
mj.co
om/ c
on Ap
oril 23, 2024 by g
3, 202
24 by
/ gue:
st. Pr
roteci
ted b
y cop
yrigl
ht.

1			
2			
3	494		MIDDLE EAST: RESULTS FROM THE PROSPECTIVE URBAN RURAL EPIDEMIOLOGY
4	495		(PURE) STUDY. J Hypertens 2016, 34 Suppl 1 :e551.
5	496	16.	Poulter N, Khaw K, Hopwood B, Mugambi M, Peart W, Rose G, Sever P: Blood pressure and
6	497	10.	its correlates in an African tribe in urban and rural environments. <i>Journal of</i>
7	498		epidemiology and community health 1984, 38 (3):181-185.
8	499	17.	Glass TA, McAtee MJ: Behavioral science at the crossroads in public health: extending
9	500	17.	horizons, envisioning the future. Social science & medicine 2006, 62(7):1650-1671.
10	500	18.	Agyemang C: Rural and urban differences in blood pressure and hypertension in
11	502	10.	Ghana, West Africa. Public Health 2006, 120 .
12 13	502	19.	Agyemang C, Redekop WK, Owusu-Dabo E, Bruijnzeels MA: Blood pressure patterns in
13 14	503 504	19.	rural, semi-urban and urban children in the Ashanti region on Ghana, West Africa.
14	504 505		
16		20	BMC Public Health 2005, 5 .
17	506	20.	Kagura J, Adair LS, Musa MG, Pettifor JM, Norris SA: Blood pressure tracking in urban
18	507	21	black South African children: birth to twenty cohort. BMC pediatrics 2015, 15(1):1.
19	508	21.	Goon D, Amusa L, Mhlongo D, Khoza L, Any-Anwu F: Elevated blood pressure among
20	509	22	Rural South African Children in Thohoyandou, South Africa . <i>Iran J Pub Health</i> 2013, 42 .
21	510	22.	Kemp C, Pienaar AE, Schutte AE: The prevalence of hypertension and the relationship
22	511		with body composition in Grade 1 learners in the North West Province of South
23	512	22	Africa. South African Journal of Sports Medicine 2011, 23(4).
24	513	23.	Monyeki K, Kemper H, Makgae P: The association of fat patterning with blood pressure
25	514		in rural South African children: the Ellisras Longitudinal Growth and Health Study.
26	515		International journal of epidemiology 2006, 35 (1):114-120.
27	516	24.	Schutte A, Van Rooyen J, Huisman H, Kruger H, Malan N, De Ridder J: Dietary risk markers
28	517		that contribute to the aetiology of hypertension in black South African children: the
29	518		THUSA BANA study . Journal of human hypertension 2003, 17 (1):29-35.
30 31	519	25.	Cois A, Ehrlich R: Analysing the socioeconomic determinants of hypertension in South
31	520		Africa: a structural equation modelling approach. BMC public health 2014, 14(1):414.
33	521	26.	Kagura J, Adair LS, Pisa PT, Griffiths PL, Pettifor JM, Norris SA: Association of
34	522		socioeconomic status change between infancy and adolescence, and blood pressure,
35	523		in South African young adults: Birth to Twenty Cohort. BMJ open 2016, 6(3):e008805.
36	524	27.	Wilson DK, Kliewer W, Plybon L, Sica DA: Socioeconomic status and blood pressure
37	525		reactivity in healthy black adolescents. <i>Hypertension</i> 2000, 35 (1):496-500.
38	526	28.	Brummett BH, Babyak MA, Siegler IC, Shanahan M, Harris KM, Elder GH, Williams RB:
39	527		Systolic Blood Pressure, Socioeconomic Status, and Biobehavioral Risk Factors in a
40	528		Nationally Representative US Young Adult Sample. Hypertension 2011, 58(2):161-166.
41	529	29.	Chaix B, Bean K, Leal C, Thomas F, Havard S, Evans D, Jégo B, Pannier B:
42	530		Individual/Neighborhood Social Factors and Blood Pressure in the RECORD Cohort
43	531		Study . Which Risk Factors Explain the Associations? 2010, 55 (3):769-775.
44	532	30.	Griffiths PL, Sheppard ZA, Johnson W, Cameron N, Pettifor JM, Norris SA: Associations
45	533		between household and neighbourhood socioeconomic status and systolic blood
46	534		pressure among urban South African adolescents. Journal of biosocial science 2012,
47	535		44 (04):433-458.
48 49	536	31.	Longo-Mbenza B, Luila EL, M'Buyamba-Kabangu J: Nutritional status, socio-economic
49 50	537		status, heart rate, and blood pressure in African school children and adolescents.
50 51	538		International journal of cardiology 2007, 121 (2):171-177.
52	539	32.	Aounallah-Skhiri H, El Ati J, Traissac P, Romdhane HB, Eymard-Duvernay S, Delpeuch F,
53	540		Achour N, Maire B: Blood pressure and associated factors in a North African adolescent
54	541		population. A national cross-sectional study in Tunisia. BMC Public Health 2012,
55	542		12 (1):1.
56			
57			
58			
59			15
60			For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

1			
2			
3	543	33.	Afrifa–Anane E, Agyemang C, Codjoe SNA, Ogedegbe G, Aikins Ad-G: The association of
4	544		physical activity, body mass index and the blood pressure levels among urban poor
5 6	545		youth in Accra, Ghana. BMC public health 2015, 15(1):269.
7	546	34.	Anane AE, Agyemang C, Codjoe SNA, Ogedegbe G, Aikins A: The association of physical
8	547		activity, Body mass index and blood pressure among urban poor youth in Accra,
9	548		Ghana. BMC Public Health 2015, 15.
10	549	35.	Hu G, Barengo NC, Tuomilehto J, Lakka TA, Nissinen A, Jousilahti P: Relationship of
11	550		physical activity and body mass index to the risk of hypertension: a prospective study
12	551		in Finland. Hypertension 2004, 43(1):25-30.
13	552	36.	Juraschek SP, Blaha MJ, Whelton SP, Blumenthal R, Jones SR, Keteyian SJ, Schairer J, Brawner
14	553		CA, Al-Mallah MH: Physical fitness and hypertension in a population at risk for
15	554		cardiovascular disease: the Henry Ford Exercise Testing (FIT) Project. Journal of the
16	555		American Heart Association 2014, 3 (6):e001268.
17	556	37.	Väistö J, Eloranta A-M, Viitasalo A, Tompuri T, Lintu N, Karjalainen P, Lampinen E-K, Ågren J,
18 19	557		Laaksonen DE, Lakka H-M: Physical activity and sedentary behaviour in relation to
20	558		cardiometabolic risk in children: cross-sectional findings from the Physical Activity
20	559		and Nutrition in Children (PANIC) Study. International Journal of Behavioral Nutrition
22	560		and Physical Activity 2014, 11 (1):55.
23	561	38.	Munthali RJ, Kagura J, Lombard Z, Norris SA: Childhood adiposity trajectories are
24	562		associated with late adolescent blood pressure: birth to twenty cohort. BMC Public
25	563		Health 2016, 16 (1):1-10.
26	564	39.	STATSSA: Mortality and causes of death in South Africa, 2015: Findings from death
27	565		notification. In. Pretoria: Statistics South Africa; 2017 1–140
28	566	40.	Peer N, Steyn K, Lombard C, Gwebushe N, Levitt N: A high burden of hypertension in the
29	567		urban black population of Cape Town: The Cardiovascular Risk in Black South
30	568		Africans (CRIBSA) Study. PLoS One 2013, 8(11):e78567.
31 22	569	41.	Pisa P, Behanan R, Vorster H, Kruger A: Social drift of cardiovascular disease risk factors
32 33	570		in Africans from the North West Province of South Africa: the PURE study:
34	571		cardiovascular topics. Cardiovascular journal of Africa 2012, 23(7):371-388.
35	572	42.	Steyn K, Fourie J, Lombard C, Katzenellenbogen J, Bourne L, Jooste P: Hypertension in the
36	573		black community of the Cape Peninsula, South Africa. East African medical journal 1996,
37	574	40	73 (11):758-763.
38	575	43.	Tibazarwa K, Ntyintyane L, Sliwa K, Gerntholtz T, Carrington M, Wilkinson D, Stewart S: A
39	576		time bomb of cardiovascular risk factors in South Africa: results from the Heart of
40	577		Soweto Study "Heart Awareness Days" . International journal of cardiology 2009,
41	578		132 (2):233-239.
42 43	579 590	44.	Kahn K, Collinson MA, Gómez-Olivé FX, Mokoena O, Twine R, Mee P, Afolabi SA, Clark BD, Kabudula CW, Khosa A: Profile: Agincourt health and socio-demographic surveillance
45 44	580		
44 45	581 582	45.	system . <i>International journal of epidemiology</i> 2012, 41 (4):988-1001. Pradeilles R, Rousham EK, Norris SA, Griffiths PL: Urban South African adolescents'
46	562 583	45.	
47	565 584		perceptions of their neighborhood socio-economic environments: the Birth to Twenty plus cohort study. Children Youth and Environments 2014, 24(3):173-200.
48	585	46.	Richter L, Norris S, Pettifor J, Yach D, Cameron N: Cohort profile: Mandela's children: the
49	585 586	40.	1990 Birth to Twenty study in South Africa . International journal of epidemiology 2007,
50	560 587		36(3):504-511.
51	588	47.	Chobanian AV: Joint National Committee on Prevention, Detection, Evaluation, and
52	589	т /.	Treatment of High Blood Pressure. National Heart, Lung, and Blood Institute; National
53	569 590		High Blood Pressure Education Program Coordinating Committee: Seventh report of
54 55	590 591		the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of
55 56	592		High Blood Pressure . Hypertension 2003, 42 :1206-1252.
50 57	592		ingi bioou i i cosui c . hypertension 2005, 42 .1200-1252.
58			
50			

59

59

1			
2			
3	593	48.	Strandberg TE, Pitkala K: What is the most important component of blood pressure:
4 5	594		systolic, diastolic or pulse pressure? Current opinion in nephrology and hypertension
6	595		2003, 12 (3):293-297.
7	596	49.	Cameron N: The measurement of human growth: Taylor & Francis; 1984.
8	597	50.	Lohman TG, Roche AF, Martorell R: Anthropometric standardization reference manual:
9	598		Human kinetics books; 1988.
10	599	51.	Houweling TA, Kunst AE, Mackenbach JP: Measuring health inequality among children
11	600		in developing countries: does the choice of the indicator of economic status matter?
12	601		International journal for equity in health 2003, $2(1)$:8.
13	602	52.	Feeley AB, Musenge E, Pettifor JM, Norris SA: Investigation into longitudinal dietary
14	603		behaviours and household socio-economic indicators and their association with BMI
15 16	604		Z-score and fat mass in South African adolescents: the Birth to Twenty (Bt20) cohort.
16 17	605		Public health nutrition 2013, 16 (04):693-703.
17	606	53.	Jones LL, Griffiths PL, Adair LS, Norris SA, Richter LM, Cameron N: A comparison of the
19	607		socio-economic determinants of growth retardation in South African and Filipino
20	608	_ .	infants. Public health nutrition 2008, 11 (12):1220-1228.
21	609	54.	Bull FC, Maslin TS, Armstrong T: Global physical activity questionnaire (GPAQ): nine
22	610		country reliability and validity study. Journal of Physical Activity and health 2009,
23	611		6 (6):790-804.
24	612	55.	VanderWeele TJ: Mediation analysis: a practitioner's guide. Annual review of public
25	613		health 2016, 37 :17-32.
26	614	56.	Hu Lt, Bentler PM: Cutoff criteria for fit indexes in covariance structure analysis:
27	615		Conventional criteria versus new alternatives. Structural equation modeling: a
28	616		multidisciplinary journal 1999, 6 (1):1-55.
29	617	57.	Schermelleh-Engel K, Moosbrugger H, Müller H: Evaluating the fit of structural equation
30	618		models: Tests of significance and descriptive goodness-of-fit measures. Methods of
31	619		psychological research online 2003, 8 (2):23-74.
32 33	620	58.	Vandenberg RJ: Introduction: Statistical and Methodological Myths and Urban
33 34	621		Legends: Where, Pray Tell, Did They Get This Idea? In.: Sage Publications Sage CA:
35	622		Thousand Oaks, CA; 2006.
36	623	59.	Fan X, Sivo SA: Sensitivity of fit indexes to misspecified structural or measurement
37	624		model components: Rationale of two-index strategy revisited. Structural Equation
38	625		Modeling 2005, 12 (3):343-367.
39	626	60.	Alwin DF, Hauser RM: The decomposition of effects in path analysis. American
40	627		sociological review 1975:37-47.
41	628	61.	Williams R, Allison PD, Moral-Benito E: Xtdpdml: Linear dynamic panel-data estimation
42	629		using maximum likelihood and structural equation modeling. In.; 2016.
43	630	62.	Kerry SM, Emmett L, Micah FB, Martin-Peprah R, Antwi S, Phillips RO, Plange-Rhule J,
44	631		Eastwood JB, Cappuccio FP: Rural and semi-urban differences in salt intake, and its
45	632		dietary sources, in Ashanti, West Africa. Ethnicity & disease 2005, 15(1):33-39.
46	633	63.	Lissock CNAA, Sobngwi E, Ngassam E, Ngoa LSE: Rural and urban differences in
47	634		metabolic profiles in a Cameroonian population. Pan African Medical Journal 2011, 10.
48 49	635	64.	Stringhini S, Forrester TE, Plange-Rhule J, Lambert EV, Viswanathan B, Riesen W, Korte W,
49 50	636		Levitt N, Tong L, Dugas LR: The social patterning of risk factors for noncommunicable
51	637		diseases in five countries: evidence from the modeling the epidemiologic transition
52	638		study (METS) . BMC Public Health 2016, 16 (1):956.
53	639	65.	de Hoog ML, van Eijsden M, Stronks K, Gemke RJ, Vrijkotte TG: Association between body
54	640		size and blood pressure in children from different ethnic origins. Cardiovascular
55	641		diabetology 2012, 11 (1):136.
56			
57			
58			
FO			

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

Dinsa G, Goryakin Y, Fumagalli E, Suhrcke M: Obesity and socioeconomic status in	
leveloping countries: a systematic review. <i>Obesity reviews</i> 2012, 13 (11):1067-1079.	
Masala G, Bendinelli B, Versari D, Saieva C, Ceroti M, Santagiuliana F, Caini S, Salvini S, Sera	
, Taddei S: Anthropometric and dietary determinants of blood pressure in over 7000 Iediterranean women: the European Prospective Investigation into Cancer and	
utrition-Florence cohort. Journal of hypertension 2008, 26 (11):2112-2120.	
Vilson BL, Albright GL, Steiner SS, Andreassi JL: Cardiodynamic response to	
sychological and cold pressor stress: further evidence for stimulus response	
pecificity and directional fractionation. Biofeedback and Self-regulation 1991, 16 (1):45-	
3.	
oon D, Amusa L, Mhlongo D, Khoza L, Any-Anwu F: Elevated blood pressure among	
ural South African children in Thohoyandou, South Africa. Iranian journal of public	
ealth 2013, 42 (5):489.	
loselakgomo VK, Toriola AL, Shaw BS, Goon DT, Akinyemi O: Body mass index,	
verweight, and blood pressure among adolescent schoolchildren in Limpopo	
rovince, South Africa. Revista Paulista de Pediatria 2012, 30(4):562-569.	
ynch JW, Smith GD, Kaplan GA, House JS: Income inequality and mortality: importance	
health of individual income, psychosocial environment, or material conditions.	
<i>MJ: British Medical Journal</i> 2000, 320 (7243):1200. Joubidis GB, Mathenge W, De Stavola B, Grundy E, Foster A, Kuper H: Socioeconomic	
osition and later life prevalence of hypertension, diabetes and visual impairment in	
akuru, Kenya. International journal of public health 2013, 58 (1):133-141.	
rewnowski A: The cost of US foods as related to their nutritive value . <i>The American</i>	
urnal of clinical nutrition 2010, 92 (5):1181-1188.	
opkin BM: The nutrition transition and obesity in the developing world. The Journal of	
utrition 2001, 131 (3):871S-873S.	
awaya AL, Sesso R, Florencio TM, Fernandes MT, Martins PA: Association between	
hronic undernutrition and hypertension . <i>Maternal & child nutrition</i> 2005, 1 (3):155-	
63.	
18	

Table 2: Descriptive characteristics	
--------------------------------------	--

	Total	n	Urban	n	Rural	p value
Age (years)	22.04 (1.24)	492	22.77 (0.49)	476	21.28 (1.31)	0.001
Weight (kg)	64.62 (14.82)	492	64.67 (15.6)	473	64.55 (14.03)	0.90
Height (m)	1.61 (0.007)	492	1.60 (0.07)	475	1.61 (0.07)	0.001
BMI (kg/m ²)	25.05 (5.59)	492	25.32 (5.91)	476	24.78 (5.24)	0.13
BMI classification (%)		492		476		0.015
Underweight (<18.4 kg/m ²)	5.98		7.10		4.82	
Normal weight (18.5-24.9 kg/m ²)	51.34		46.45		56.39	
Overweight (25-29.9 kg/m ²)	26.19		29.21		23.06	
Obese (>= 30 kg/m^2)	16.49		17.24		15.72	
Waist circumference (cm)	80.60 (12.08)	492	80.18 (12.63)	476	81.03 (11.47)	0.26
Central obesity, WC \ge 80 cm , %	43.81	492	45.70	476	44.74	0.55
Household SES index (sum of assets)	7.24 (2.70)	492	8.83 (2.37)	476	5.59 (1.91)	< 0.00
Total MVPA (min/week)*	870(280-1810)	492	420(160-900)	385	1680(970-2580)	< 0.00
Sitting time (mins/day)*	300 (240-480)	492	360 (240-480)	385	300 (180-360)	< 0.00
Systolic blood pressure	106.68 (11.64)	492	110.30 (11.4)	471	102.89 (10.7)	< 0.00
Diastolic blood pressure	70.23 (9.00)	492	72.78 (8.3)	471	67.57 (9.0)	< 0.00
BP classification (%)		492	0	471		< 0.00
Low BP	12.46		5.49		19.75	
Normal BP	69.16		67.48		70.91	
Prehypertension	16.20		23.58		8.49	
Hypertensive	2.18		3.46		0.85	
Elevated BP (%)	18.38		27.04		9.34	< 0.00
Highest Education attained (%)		480		371		< 0.00
Primary school	1.18		0		2.70	
Secondary school	60.75		48.33		76.81	
Tertiary education	38.07		51.67		20.49	

Table 3a: Structural equation model for SES, MVPA and BMI on SBP in urban women

Effect of:	Outcome:	Direct effects(95% CI)	Indirect effects(95% CI)	Total effects(95% CI)	Proportion of total effect
N=489					mediated
Household	SBP	-0.34 (-0.75; 0.07)		-0.29 (-0.70; 0.12)	0.13 ^a
assets	via BMI		0.05 (-0.05; 0.14)		
	BMI	0.13 (-0.09; 0.35)		0.11 (-0.11; 0.33)	0.1 ^a
	via MVPA		-0.014 (-0.05; 0.013)		
	MVPA	-41.71 (-73.48; -9.94)**		-41.71 (-73.48; -9.94)**	
MVPA	SBP	-0.0002 (-0.001; 0.001)		-0.0000 (-0.0012; 0.0011)	0.3 ^a
	via BMI		0.0001 (-0.0001; 0.0004)		
BMI	SBP	0.37 (0.21; 0.53)***		0.37 (0.21; 0.53)***	

Adjusted for age; * P<0.05; ** P< 0.01; ***P< 0.001; SBP; systolic blood pressure, MVPA; moderate to vigorous intensity physical activity, BMI; body mass

index, SES; social economic status, ^a Assessed using the absolute values for both indirect and direct effects

Urban Fit Indices: LR test of model vs. saturated: chi2(4) = 0.97, Prob > chi2 = 0.91; RMSEA = 0.00; CFI= 1.00 Comparative fit index;

TLI= 1.12 Tucker-Lewis index; **SRMR=0.011:** Standardized root mean squared residual, CD= 0.017 Coefficient of determination.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

 Table 3b:
 Structural equation model for SES, MVPA and BMI on SBP in rural women

Effect of:	Outcome:	Direct effects(95% CI)	Indirect effects(95% CI)	Total effects(95% CI)	Proportion of total effect
N=378					mediated
Household	SBP	-0.65 (-1.19; -0.096)*		-0.56 (-1.12; -0.02)*	0.11 ^a
assets	via BMI		0.08 (-0.04; 0.19)		
	BMI	0.27 (0.01; 0.53)*		0.26 (-0.005; 0.53)*	0.04
	via MVPA		-0.01 (-0.04; 0.01)		
	MVPA	-29.51 (-87.81; 28.78)		-29.51 (-87.81; 28.78)	
MVPA	SBP	0.0004 (0005729 .0013)		0.0005 (-0.0005; 0.0015)	0.2
	via BMI		0.0001 (-0.0000; 0.0003)		
BMI	SBP	0.33 (0.12; 0.54)**		0.33 (0.12; 0.54)**	

Adjusted for age; * P<0.05; ** P< 0.01; ***P< 0.001; SBP; systolic blood pressure, MVPA; moderate to vigorous physical activity, BMI; body mass index, SES; social economic status, ^a Assessed using the absolute values for both indirect and direct effects

Rural Fit Indices: LR test of model vs. saturated: chi2(4) = 10.51, Prob > chi2 = 0.03; RMSEA = 0.066; CFI= 0.72 Comparative fit index; TLI= 0.37 Tucker-Lewis index; SRMR= 0.04 : Standardized root mean squared residual, CD= 0.03 Coefficient of determination.

Table 3c: Structural equation model for SES, MVPA and BMI on SBP in the pooled sample of urban and rural women

Effect of:	Outcome:	Direct effects(95% CI)	Indirect effects(95% CI)	Total effects(95% CI)	Proportion of total effect
N=867					mediated
Household	SBP	0.23 (-0.08; 0.54)		0.46 (0.15; 0.76)**	0.5
assets	via BMI		0.23 (0.10; 0.35)***		
	BMI	0.20 (0.05; 0.34)**		0.15 (0.01; 0.29)*	0.25 ^a
	via MVPA		-0.05 (100; 0.003)		
	MVPA	-144.83 (-170.55; -119.12)***		-144.83 (-170.55; -119.12)***	
MVPA	SBP	-0.001 (-0.002; -0.0005)**		-0.001 (-0.002; -0.0003)**	0.1 ^a
	via BMI		0.0001 (-0.0000; 0.0002)		
BMI	SBP	0.35 (0.21; 0.49)***		0.35 (0.21; 0.49)***	

Adjusted for age; * P<0.05; ** P< 0.01; ***P< 0.001; SBP; systolic blood pressure, MVPA; moderate to vigorous intensity physical activity, BMI; body mass index, SES; social economic status, ^a Assessed using the absolute values for both indirect and direct effects

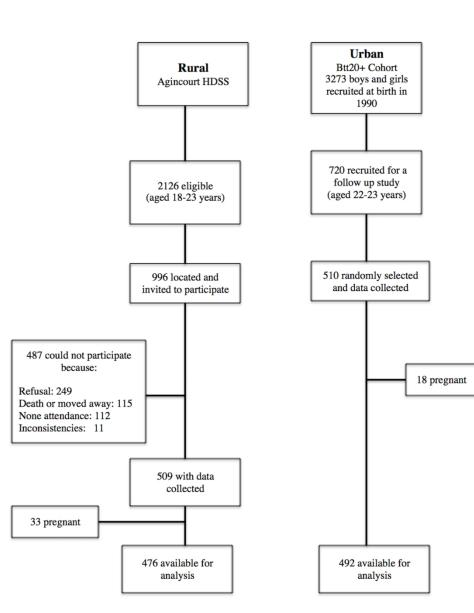
Pooled Fit Indices: LR test of model vs. saturated: chi2(4) = 24.829, Prob > chi2 = 0.000; RMSEA = 0.077; CFI= 0.89 Comparative fit index; TLI= 0.75 Tucker-Lewis index; **SRMR=0.033:** Standardized root mean squared residual, CD=0.137 Coefficient of determination.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Figure legends

Figure 1: Selection of study participants in rural and urban


. and BMI on SBP in rural . vPA and BMI on SBP pooled Figure 2: Structural equation model for SES, MVPA and BMI on SBP in urban

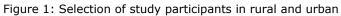
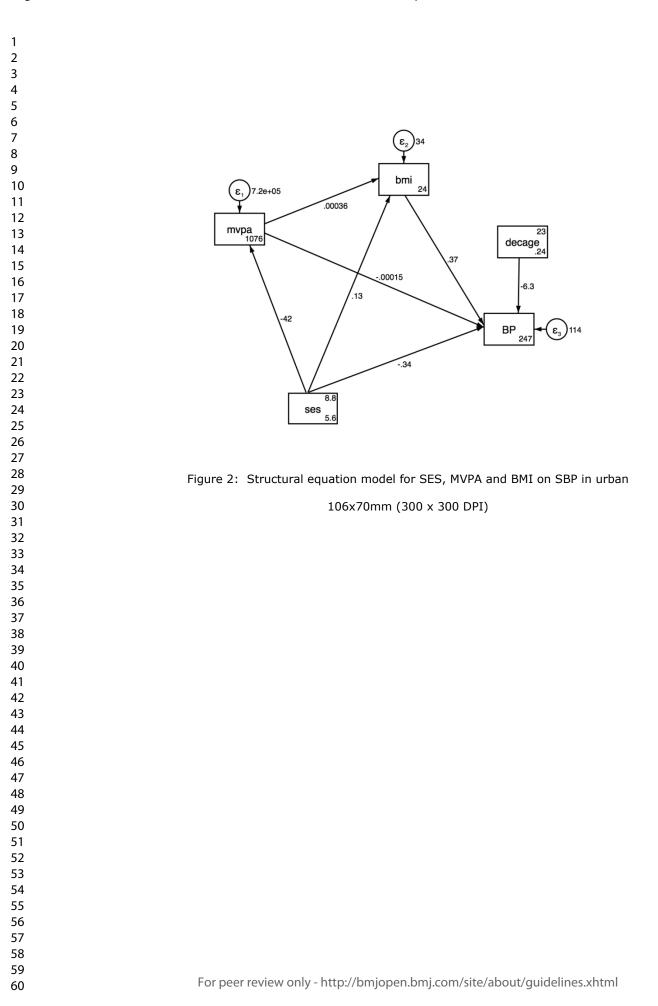
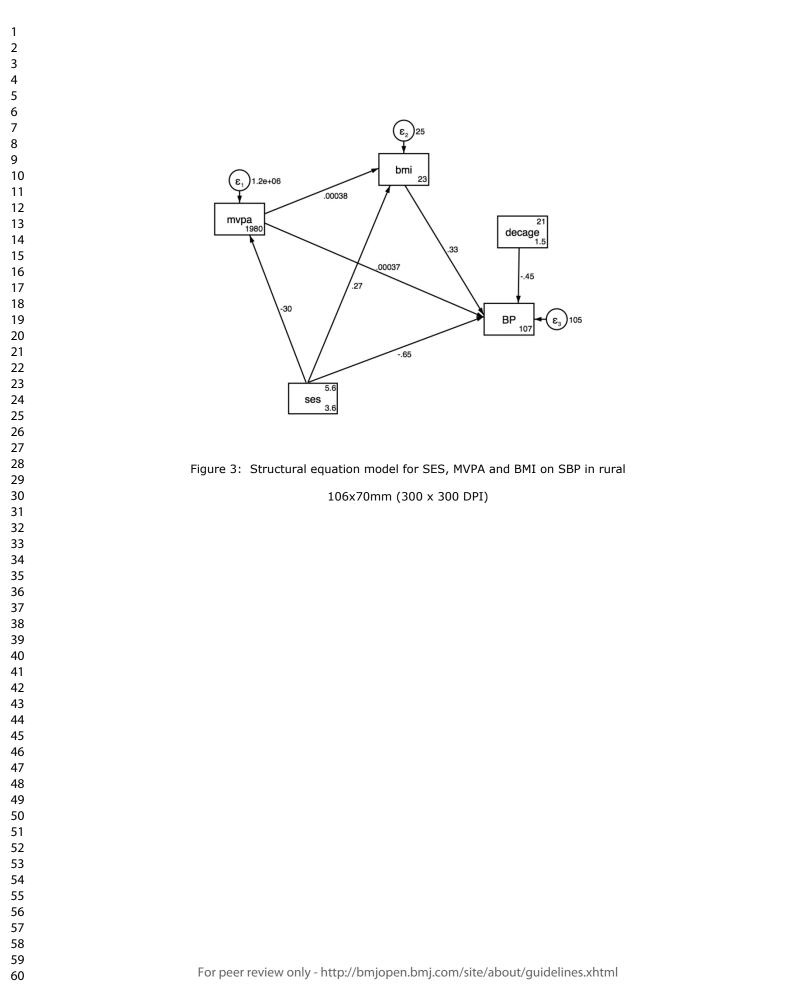
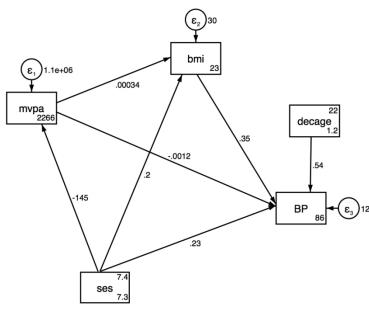
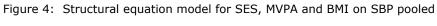

Figure 3: Structural equation model for SES, MVPA and BMI on SBP in rural

Figure 4: Structural equation model for SES, MVPA and BMI on SBP pooled


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml






144x167mm (300 x 300 DPI)

	BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.
	0.1136/bmjopen-20
(E ₃)127	18-023404 on 19 December 2
on SBP pooled	2018. Downloaded from h
	1ttp://bmjopen.bmj.com/ o
	n April 23, 2024 by guest.
	Protected by copyrigh
delines.xhtml	÷

106x70mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

BMJ Open

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract
		MS Page 4 Par 2
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found MS Page 4
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
		MS Pages 5-6
Objectives	3	State specific objectives, including any prespecified hypotheses
		MS Page 6 Par 2
Methods		
Study design	4	Present key elements of study design early in the paper
		Methods: MS Page 6 Par 3
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
		exposure, follow-up, and data collection
		Methods: MS Page 6 Par 3
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of
		selection of participants. Describe methods of follow-up N/A
		Case-control study—Give the eligibility criteria, and the sources and methods of
		case ascertainment and control selection. Give the rationale for the choice of cases
		and controls N/A
		Cross-sectional study-Give the eligibility criteria, and the sources and methods of
		selection of participants Methods: MS Page 6 Par 3
		(b) Cohort study—For matched studies, give matching criteria and number of
		exposed and unexposed N/A
		Case-control study-For matched studies, give matching criteria and the number of
		controls per case N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable Methods: MS Page 6 Par 4 - Pag
		8 Par 1
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there i
		more than one group Methods: MS Page 6 Par 4 – Page 8 Par 1
Bias	9	Describe any efforts to address potential sources of bias Methods: MS Page 6 Par
Study size	10	Explain how the study size was arrived at Methods: MS Page 6 Par 3
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why Methods: MS Page 8 Par 2
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		Statistical analyses: MS Page 8 Par 2 and 3
		 (b) Describe any methods used to examine subgroups and interactions N/A (c) Explain how missing data were addressed Statistical analyses: MS Page 8 Par
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was
		cuse control study in upprovide, explain now indefining of cuses and controls was

1 2 3 4 5 6 7 8	Continued on next page	addressed N/A Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy N/A (<u>e</u>) Describe any sensitivity analyses N/A
9 10 11 12 13 14 15 16 17		
18 19 20 21 22 23 24 25 26		
20 27 28 29 30 31 32 33 34 35		
36 37 38 39 40 41 42 43 44		
45 46 47 48 49 50 51 52 53 54 55		
56 57 58 59 60	For peer re	view only - http://bmjoper <mark>?</mark> bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

1 2
2
4 5
6
7
8 9
9 10
11
12
13
14 15 16 17 18 19
15
16
17
18
20
 19 20 21 22 23 24 25 26 27 28 29 30 31 32
22
23
24
25
26
27
28
29 30
31
32
33
34 35 36 37 38
35
36
37
38 39
39 40
40
42
43
44
45
46
47 48
40 49
50
51
52
53
54
55
56 57
57 58
58 59
60

1

Results		
Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially eligible,
		examined for eligibility, confirmed eligible, included in the study, completing follow-up, and
		analysed Results: Page 8 Par 5 – Page 9 Par 1
		(b) Give reasons for non-participation at each stage N/A
		(c) Consider use of a flow diagram N/A
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and informatio
data		on exposures and potential confounders Page 8 Par 5 - Page 9 Par 1
		(b) Indicate number of participants with missing data for each variable of interest Results:
		Page 8 Par 5
		(c) Cohort study—Summarise follow-up time (eg, average and total amount) N/A
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time N/A
		Case-control study-Report numbers in each exposure category, or summary measures of
		exposure N/A
		Cross-sectional study—Report numbers of outcome events or summary measures Results:
		Page 8 Par 5
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and
		why they were included Results: Page 9 Par 1
		(b) Report category boundaries when continuous variables were categorized N/A
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningfu
		time period N/A
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity
		analyses N/A
Discussion		
Key results	18	Summarise key results with reference to study objectives Discussion: Page 9 Par 2
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.
		Discuss both direction and magnitude of any potential bias Discussion: Page 11 Par 4
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicit
		of analyses, results from similar studies, and other relevant evidence Page 9 Par 3 - Page 11
		Par 3
Generalisability	21	Discuss the generalisability (external validity) of the study results Discussion: Page 9 Par 3 -
		Page 11
Other information	on	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable,
		for the original study on which the present article is based Funding: Page 12 Par 1
*Civa informatio	n sena	rately for cases and controls in case-control studies and, if applicable, for exposed and

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

Body composition and physical activity as mediators in the relationship between socio-economic status and blood pressure in young South African women: A structural equation model analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-023404.R2
Article Type:	Research
Date Submitted by the Author:	08-Nov-2018
Complete List of Authors:	Munthali, Richard; University of the Witwatersrand, MRC/Wits Developmental Pathways for Health Research Unit Manyema, Mercy; Wits University, Epidemiology and Biostatistics Said-Mohamed, Rihlat; University of the Witwatersrand, MRC/Wits Developmental Pathways for Health Kagura, Juliana; University of Witwatersrand, Paediatrics and Child health Tollman, Stephen; University of the Witwatersrand, Kahn, Kathleen; University of the Witwatersrand, Gómez-Olivé, F. Xavier; University of the Witwatersrand, Medical Research Council/Wits Rural Health and Health Transitions Unit (Agincourt), School of Public Health, Faculty of Health Sciences Micklesfield, Lisa; University of the Witwatersrand, MRC/Wits Developmental Pathways for Health Research Unit Dunger, David; University of Cambridge, Paediatrics Norris, Shane; University of Witwatersrand, Paediatrics and Child Health
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health, Epidemiology
Keywords:	Hypertension < CARDIOLOGY, Obesity, Socioeconomic status, Physical activity, Structural equation model, Body mass index

SCHOLARONE[™] Manuscripts

1		
2 3	1	
4		Deducer and the set of the second stars in the relationship between second
5 6	2	Body composition and physical activity as mediators in the relationship between socio-
7	3	economic status and blood pressure in young South African women: A structural equation
8 9	4	model analysis
10	5	
11 12	6	
13 14	7	Richard J Munthali ¹ , Mercy Manyema ^{1, 2} , Rihlat Said-Mohamed ¹ , Juliana Kagura ¹ , Stephen
14 15 16	8	Tollman ^{3,4,5} , Kathleen Kahn ^{3, 4,5} , F. Xavier Gómez-Olivé ³ , Lisa K. Micklesfield ¹ , David Dunger ^{6,1} ,
17 18 10	9	Shane A. Norris ¹
19 20 21	10	
22	11	Affiliations:
23 24	12	¹ MRC/WITS Developmental Pathways for Health Research Unit, Department of Paediatrics,
25	13	School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York
26 27 28	14	Rd, Parktown 2193, Johannesburg, South Africa
29 30	15	² DST-NRF Centre of Excellence in Human Development, University of the Witwatersrand,
31 32	16	Johannesburg, South Africa
33 34	17	³ MRC/Wits Rural Public Health and Health Transitions Research Unit, School of Public Health,
35 36	18	Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
37	19	
38 39	20	⁴ INDEPTH Network, Accra, Ghana
40	21	
41 42	22	⁵ Umeå Centre for Global Health Research, Sweden.
43	23	
44 45	24	⁶ Department of Paediatrics, MRL Wellcome Trust-MRC Institute of Metabolic Science, NIHR
46	25	Cambridge Comprehensive Biomedical Research Centre, University of Cambridge, Box 116,
47 48	26	Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
49 50	27	
50 51	28	
52 53	29	Conflict of interest: The views expressed in the submitted article are our own and not an
54 55	30	official position of the affiliated institutions or funder. Authors have no financial relationships
55 56 57 58	31	relevant to this article to disclose.
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3	32	
4	52	
5 6 7	33	Corresponding Author: Dr. Richard J. Munthali
8 9 10	34	MRC/Wits Developmental Pathways for Health Research Unit
11 12 13	35	University of the Witwatersrand
14 15 16	36	Johannesburg
17 18	37	Tel: +27119331122
19 20	38	Email: munthali@aims.ac.za
21	50	
22 23	39	
24	40	
25	41	
26 27	42	
28	43	Authors' emails:
29 30	44	
31 32	45	Richard Junganiko Munthali: munthali@aims.ac.za
33	46	Mercy Manyema: mercy.manyema@gmail.com
34 35 36	47	Rihlat Said-Mohamed: rihlat.saidmohamed@wits.ac.za
37 38	48	Juliana Kagura: julianakagura@gmail.com
39 40 41	49	Stephen Tollman: stephen.tollman@wits.ac.za Kathleen Kahn: kathleen.kahn@wits.ac.za
42	50	Kathleen Kahn: kathleen.kahn@wits.ac.za
43 44 45	51	F. Xavier Gómez-Olivé: F.Gomez-OliveCasas@wits.ac.za
46	52	Lisa K. Micklesfield: lisa.micklesfield@wits.ac.za
47 48 49	53	David Dunger: dbd25@cam.ac.uk
50 51	54	Shane A Norris: shane.norris@wits.ac.za
52 53	55	
54 55 56 57	56	
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1				
2 3	57			
2 3 4 5 6	58			
7	59			
7 8 9 10				
	60			
11 12	61			
13 14	62			
15	63			
16 17	64			
18	65			
19 20	66			
21	67			
22 23	68			
24 25	69			
25 26 27	70 71			
27 28	72			
29	73			
30 31	74			
32	75			
33 34	76			
35	77			
36 37	78			
38	79			
39 40	80 81			
41 42	82			
43	83			
44 45	84			
46	85			
47 48	86			
49	87			
50 51	88			
52 53	89 00	A hates at		
54	90 91	Abstract		
55 56	71			
57				
58 59				3
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	э

BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Objectives Varying hypertension prevalence across different socio-economic strata within a population has been well reported. However the causal factors and pathways across different settings are less clear, especially in sub-Saharan Africa. Therefore, this study aimed to compare blood pressure (BP) levels, and investigate the extent to which socioeconomic status (SES) is associated with blood pressure, in rural and urban South Africa women.

Setting Rural and urban South Africa.

Design Cross-sectional.

> Participants Cross-sectional data on SES, total moderate-vigorous physical activity (MVPA), anthropometric and blood pressure were collected on rural (n=509) and urban (n=510) young black women (18-23 years age). Pregnant and mentally or physically disabled women were excluded from the study.

Results The prevalence of combined overweight and obesity (46.5% versus 38.8%) and elevated BP (27.0% versus 9.3%) were higher in urban than rural women respectively. Results from the structural equation modelling showed significant direct positive effects of body mass index (BMI) on systolic BP (SBP) in rural, urban and pooled datasets. Negative direct effects of SES on SBP and positive total effects of SES on SBP were observed in the rural and pooled datasets respectively. In rural young women, SES had direct positive effects on BMI and was negatively associated with MVPA in urban and pooled analyses. BMI mediated the positive total effects association between SES and SBP in pooled analyses (ß; 95%Cl, 0.46; 0.15 to 0.76).

Conclusions Though South Africa is undergoing nutritional and epidemiological transitions; the prevalence of elevated BP still varies between rural and urban young women. The association

1 2		
2 3 4	118	between SES and SBP varies considerably in economically diverse populations with BMI being
5 6	119	the most significant mediator. There is a need to tailor prevention strategies to take into
7 8	120	account optimizing BMI when designing strategies to reduce future risk of hypertension in
9 10	121	young women.
11 12 12	122	
13 14 15	123	Keywords Blood pressure, Body mass index, Hypertension, Obesity, Urban, Rural,
16	124	Socioeconomic status, Structural equation model, Physical activity
17 18 19	125	Socioeconomic status, Structural equation model, Physical activity
20 21	126	
22 23	127	
24 25	128	
26	129	
27 28	130	
29	131	
30 31	132	
32	133	
33	134	
34 35	135	
36	136	
37	137	
38 39	157	
40		
41		
42 43		
44		
45		
46 47		
48		
49		
50 51		
52		
53		
54 55		
56		
57 59		
58 59		5
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Strengths

- The use of structural equation modelling allowed us to explore direct and indirect (mediation) effects of social economic status, physical activity and body mass index on elevated blood pressure from a representative sample of rural and urban populations of South African young women.
- Although the urban and rural cohorts were from two different studies, the same research unit conducted both studies and, therefore, the data collection and management process were consistent between the two sites, thereby allowing for accurate comparison.

Limitations

- 1. Other unmeasured data, such as undernutrition in infancy, and dietary patterns were not included in the current analyses.
- 2. The low reliability of self-report data on physical activity could introduce bias. Thus, there is need for more accurate, objective measures of physical activity

Introduction

54.1%) [10].

High blood pressure (BP) or hypertension is a leading risk factor accounting for 7% of global

disability-adjusted life years (DALYs) and contributing to the 34.5 million non-communicable

disease (NCD) related deaths in 2010 [1, 2]. A recent global meta-analysis, involving 19.1

million individuals, reported that on average there has been a decrease in BP globally, but low-

to middle-income countries (LMICs) have seen an increase in hypertension [3]. The prevalence

of high BP in LMICs is estimated at 30% [4, 5] and it is the most significant risk factor for

cardiovascular disease, most notably stroke [6]. In 2000, hypertension was estimated to have

caused 9% of all deaths and over 390 000 DALYs in South Africa. Further, hypertension

contributed to 50% of all strokes and 42% of ischaemic heart disease (IHD), signifying a

substantial public health burden [7]. A systematic review of sub-Saharan African (SSA) data

shows prevalence rates of hypertension of up to 41% with higher prevalence rates noted in

urban compared to rural populations [8, 9]. A study in men and women aged 40 to 60 years of

age in six sites across four SSA countries, including South Africa, showed the same trend with

South African urban and rural cohorts having the highest prevalence of hypertension (41.6 to

LMICs are experiencing both epidemiological and nutritional transitions with urban populations

further along the transition as demonstrated by the higher prevalence of obesity and NCDs [4,

5, 8, 10-15]. Some evidence has shown that there are differences in the levels of BP between

rural and urban settings [8], while other studies have found no significant differences [16].

1	
2 3 4	151
5 6	152
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
30 31	164
32 33	165
34 35	166
36 37	167
38 39	168
40 41	169
42 43	170
44 45	171
46 47 48	172
48 49 50	173
50 51 52	174
53 54	175
55 56	176
57 58 59 60	2.0

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

According to Glass and McAtee, internal biological systems are sculpted by an interaction between genes and prolonged exposure to particular external environments, a principle they call embodiment [17]. Thus the differences in built and social environments between rural and urban settings may explain the differences in disease prevalence. A Ghanaian study showed that both systolic blood pressure (SBP) and diastolic blood pressure (DBP) were significantly lower in rural participants compared to urban participants [18]. However, a similar study in adolescents found that BP levels were only lower in rural boys, with no difference in the girls [19]. Pediatric and adolescent hypertension have been reported to track into adulthood in a South African urban population [20]. Results on elevated BP from studies in rural South African children have reported prevalence rates varying from 1.0% to 25.4% [21-24]. The factors explaining these differences have not been fully studied in LMICs. Socioeconomic factors such as education, household income and household assets have been associated with BP levels [25-27]. In a US cohort of young adults, a higher household income remained associated with lower SBP even after controlling for all potential covariates including age, sex and bio-behavioral factors [28]. Similarly, in a French sample of 30-79 year olds, SBP independently increased and was inversely associated with both individual education and residential neighborhood education [29]. Studies in African countries have also found varying associations between socioeconomic status (SES) and BP patterns, with both positive and negative associations reported [8, 30, 31]. Some studies have speculated that the association between SES and body mass index (BMI), physical activity levels, diet, smoking, alcohol intake and malnutrition may influence BP patterns [18, 28, 31, 32]. Physical activity has been inversely associated with blood pressure and BMI directly associated with BP in more advanced economies, but inconsistent associations have been reported in LMICs [25, 33-37].

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

There is a need to examine BP and its determinants in young South African adults given the high rates of overweight and obesity, and hypertension observed in this age group [20, 38]. Recent South African reports also indicate that the highest pregnancy rates occur in the age range of 20-24 years, with 26.2% of births reported, followed closely by the 25-29 year age group (25.7%) [39], and therefore targeting young adult women would also reduce adverse health outcomes in their children. It is important to closely examine rural-urban differences in hypertension due to differences in the epidemiology of obesity and SES divergence in the South African context, in order to better suit interventions to the different settings [23, 26, 30, 40-43]. Therefore, this study aims to compare BP levels between rural and urban young adult South African women, and to determine whether there is an association between SES and BP, and whether it is mediated by physical activity and BMI.

214 Methods

215 Study sample and site

The rural Agincourt site, 2016 potential female participants between the ages of 18 and 23 years were in the existing Agincourt Health and Socio-demographic Surveillance System database [44]. Only 996 were located during the data collection period and were invited to participate and of these, 509 female participants were recruited. The urban sample consisted of 510 young women between the ages of 22 and 23 years who were randomly selected from the sample of 720 females who were part of the Birth-to-Twenty plus (BT20+) Young Adult Survey [45, 46]. Young women (n=51; 33 in rural and 18 in urban) who were pregnant at the time of the study were excluded, see the study design flow chart in Figure 1. Measurements and questionnaires were completed by trained research assistants and nurses, and were standardised between both sites, to eliminate biases. The study protocols were approved by the

íelie

BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Human Research Ethics Committee of the University of the Witwatersrand (Clearance certificates M120138 for the Ntshembo-Hope Cross Sectional Survey in Agincourt and M111182 for the BT20+ survey). Written consent to participate was provided by participants, and mentally or physically disabled women were excluded from the study.

Patient and Public Involvement

No patients private or public were involved in this study, as it was a community

population based.

Blood pressure

Blood pressure (mm Hg) was the outcome variable and it was measured using an Omron 6 automated machine (Kyoto, Japan). A five minute seated rest was observed before taking the BP measurements. Participants' seated BP was measured three times on the right side, with a 2-minute interval between each measurement. The mean for the second and third readings was recorded for the current analysis. We had various cuff sizes and the appropriate size was used to accommodate differences in arm circumference.

According to the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure [47], five categories of BP have been established for adults 18 years of age and older as shown in Table 1. These cut-offs were utilized in the current study. Prehypertension and hypertension were combined to create a new variable called elevated BP.

 Table 1: Blood pressure classification [47]

	Classification	Systolic		Diastolic	
		Blood Pressu	ure	Blood Pressure	
	Low	<90	or	< 60	
	Normal	<120	and	<80	
	Prehypertension	120-139	or	80-90	
	High: Stage 1 Hypertension	140-159	or	90-99	
	High: Stage 2 hypertension	≥160	or	≥100	
	0	4			
247					
248					
249					
250					
251					
251 252					
252					
252 253					
252 253					
252 253 254				more relevant in adults, and a	
252 253 254 255		equation models	(SEM) as it is	more relevant in adults, and a	
252 253 254 255 256	SBP was used in structural e	equation models	(SEM) as it is	more relevant in adults, and a	
252 253 254 255 256 257	SBP was used in structural e good predictor of adverse hea Anthropometry	equation models alth outcomes la	(SEM) as it is ater in life [48],	more relevant in adults, and a	
252 253 254 255 256 257 258	SBP was used in structural e good predictor of adverse hea Anthropometry At both sites, participants' hea	equation models alth outcomes la ight and weight	(SEM) as it is ater in life [48], were measure	more relevant in adults, and a such as CVDs.	the

BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

nearest 0.1 kg using a digital scale (Tanita model TBF-410; Arlinghton Heights; USA). Height was measured barefoot to the nearest 0.1 cm using a stadiometer (Holtain, Crymych, UK). Waist circumference was measured with a non-stretchable fibreglass tape at the level of the umbilicus. BMI was calculated as weight/height² (kg/m²).

265 Socio-economic status (SES)

Physical assets owned in the participants' household were used as a proxy for SES index [51]. It was generated by summing the number of assets owned in the household from the following: television, car, washing machine, fridge, phone, radio, microwave, cell phone, DVD/Video, DSTV (cable channel), computer, internet, medical aid. Previous studies in this population have shown that the sum of physical assets (household assets) is closely related to the household per capital expenditure and household income [51-53]. The household SES is regarded as a good measure of accumulated household wealth so it is a more reflective wealth index than income of a household's wealth over time.

274 Physical activity

The Global Physical Activity Questionnaire (GPAQ), developed for global physical activity surveillance, was completed via interview to obtain self-reported physical activity [54]. Total MVPA in minutes per week (mins/wk) was calculated by adding occupation, travel-related and leisure time moderate and vigorous intensity physical activity. Sitting time (mins/wk) was used as a proxy for sedentary time.

280 Statistical analyses

Analysis of variance and student's t test, and Chi-squared tests and Wilcoxon rank sum test for non-parametric variables, were conducted to compare study characteristics between urban and rural young women. Structural equation modeling (SEM), was used to test and estimate the Page 13 of 44

BMJ Open

direct and indirect associations between variables, most especially the mediation roles of physical activity (MVPA) or sedentary time (sitting), and body composition (BMI and WC), in the association between SES and SBP. SEMs allow us to assess the mediation effects of multiple mediators [55]. SEM decomposed SES-BP associations into two parts, direct (unmediated) and indirect (mediated through MVPA/sitting and BMI/WC).

Direct, indirect and total effects were computed and recorded, and the proportion of the total effect mediated was calculated. To evaluate the best fitting model for our data, we calculated different goodness of fit indices including Chi-squared test, Root mean squared error of approximation (RMSEA), Comparative fit index (CFI), Tucker-Lewis index (TLI) and Standardized root mean squared residual (SRMR) [56]. Though the Chi-squared test has been popularly used as a goodness of fit index, it has been reported to be biased and not reliable as the only goodness of fit index. It is also highly sensitive to sample size [57, 58], and often inflated with non-normal data such as physical activity data and we therefore employed the Hu and Bentler's Two-Index Presentation Strategy (1999) combination rule, with cut off values depending on the fitness index, to determine the best model fit [56, 59]. We estimated the coefficients (B) with 95% confidence intervals (95% CI) for the direct, indirect and total effects and also calculated the proportion of association mediated by indirect effects. If the direct and indirect effects had opposite signs (negative or positive effects) the proportion mediated was assessed using the absolute values for all indirect and direct effects [60].

303 All the analyses were conducted using STATA (version 13.0; STATA Corp., College Station,

304 TX, USA). We confirmed SEM results by running the SEM with the Satorra-Bentler and Huber-305 White (Robust) Sandwich Estimator options [61] in STATA (version 15.1; STATA Corp.,

College Station, TX, USA). These options relax the normality assumption hence are robust to non-normal data, which would be the case for mvpa and SES in the current study. A P-value < 0.05 was considered statistically significant.

BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

BMJ Open

Results

Study characteristics Descriptive statistics for the non-pregnant study participants (urban, n=492; rural, n=476) are presented in Table 2. There was no difference in BMI or waist circumference between the urban and rural participants, but the prevalence of overweight and obesity was significantly higher in the urban (46.5%) compared to the rural young women (38.8%). Household SES was significantly higher in the urban compared to the rural group. Self-reported MVPA was significantly higher in the rural than urban women (p<0.001), and the urban women spent significantly more time sitting than their rural counterparts (p<0.001). Systolic and diastolic BP were significantly higher in the urban group, as was the prevalence of elevated BP (27.0 vs. 9.3%). Structural equation models for body mass index and waist circumference Results from the SEMs for SES associations with SBP via MVPA and BMI are presented in Tables 3a, 3b and 3c for urban, rural and pooled analyses respectively, and also shown in Figures 1, 2, 3. No significant direct or indirect effects via (MVPA or BMI) of SES on SBP

were observed in the urban women, but there were significant direct effects of SES on MVPA. Results showed that individuals with a higher SES index were less likely to be physically active in pooled data and urban women. In rural women, a one-unit increase in total household assets was associated with a decrease of 0.65 mmHg (95% CI: -1.19 to -0.10) in SBP and an increase of 0.27 kg/m² in BMI (95% CI: 0.1 to 0.53) (**Tables 3a, 3b and Figures 2, 3**). The

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

SEM for the pooled sample showed a significant indirect effect of household SES on SBP via BMI, with 50% of the total effect being mediated by BMI (Table 3c and Figure 4). Direct positive effects of BMI on SBP were observed in both settings and the pooled sample with a 1 kg/m² increase in BMI being associated with an increase of 0.37 mmHg (95% CI: 0.21 to 0.53) and 0.33 (95% CI: 0.12 to 0.54) mmHg SBP in urban and rural young women, respectively. Similar results were observed when including waist circumference as the body composition indicator as shown in the SEM path diagrams with estimates in Figure S1 (supplementary data). The results from the SEMs with the Satorra-Bentler adjustment option, accounting for non-normality of the exposure, are shown in Figure S2 (supplementary data).

341 Discussion

A rising prevalence of hypertension has been reported in South Africa. Peer and colleagues reported a higher prevalence in 2008 (35.6%) compared to 1990 (21.6%) in men and women aged 25-74 years in an urban black community in Cape Town, South Africa [40]. We have shown in young adult women from urban and rural South Africa, an overall elevated BP prevalence of 18.4 % (27.0 % in urban and 9.3 % in rural). We have also shown a direct effect of BMI on SBP in the urban and rural women separately, as well as when pooled, thereby providing further evidence of an association between overall adiposity and blood pressure. The total effects of SES on SBP were the same in both settings.

Prevalence data on elevated BP and hypertension from other countries in SSA have shown conflicting results when comparing urban and rural communities. In Malawi, a higher prevalence of hypertension in urban compared to rural communities has been reported and attributed to differences in lifestyle as rural communities participate in subsistence based agricultural activities while the urban community has a more westernized lifestyle with higher salt intake and lower physical inactivity [9]. Similarly, data from Ghana have shown a higher mean SBP BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

and DBP and a higher prevalence of hypertension in urban communities [18, 62]. In the PURE study in South Africa, Pisa and colleagues reported that both urban adult men and women had higher mean blood pressures in comparison to their rural peers though the overall CVD risk factors were equally prevalent in both settings [41]. In contrast, findings from Cameroon have reported a higher BP prevalence in rural compared to urban men and women older than 40 years old, while Kenyan studies have reported no significant differences [16, 63]. Results from six urban and rural sites in four SSA countries - Kenya, South Africa, Ghana and Burkina Faso - have reported a prevalence of hypertension in women aged between 40 and 60 vears ranging from 15.1% in rural Burkina Faso to 54.1% in urban South Africa [10]. It was also reported that in all three South African sites, both rural and urban, the prevalence of hypertension was higher than in the other three countries [10]. These findings show the complex health transitions occurring in SSA and the impact that this is having on cardio-metabolic disease risk.

Our study showed significant differences in SES between the urban and rural samples, as well a big variation in SES within these two settings. The social patterning of CVD risk factors, including hypertension, in SSA and LMICs has in part been attributed to differences in countries' socioeconomic development. Previous results from five countries, (two high income and three LMICs), reported that hypertension and other CVD risk factors were substantially associated with education and wealth status; individuals with less education and lower wealth generally showing higher prevalence of CVD risk factors [64]. The effect of SES in this study is most evident in the rural women for whom household SES was lower (compared to urban) and who may be transitioning faster (both nutritionally and economically) than the urban young women. Though SES is positively associated with BMI in rural young women, it is negatively associated with SBP. There may be other factors, such as physical activity due to agricultural activities or dietary patterns, which were not recorded. In addition, the weight gain observed

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

381 might not be due to fat mass, which has been reported to be positively associated with SBP
382 before [65], but rather to muscle mass and bone mass.

In Mexico, women in rural and upper SES categories were likely to have a higher SBP, while we have reported that a higher SES was associated with a decrease in SBP in rural communities. At a population level, there is a need to consider different SES categories and monitor the effects of transitioning from one SES category to another on hypertension, since these categories may respond differently to an increase or a decrease in their SES. Kagura and colleagues tracked SES in South African children and reported that moving from the low SES in infancy to a higher SES in adolescence had a protective effect on SBP level in young adulthood [26]. Our results have shown that this could be more pronounced in rural areas.

We observed a positive association between SES and BMI in the rural sample and the same direction of effects was observed in the urban, though not significant. This is in line with results reported in many LMICs including South Africa, but in contrast with those reported in higher income populations [33, 34, 64]. A systematic review of studies between 1989 to 2007 reported that SES was positively associated with obesity in the middle transitioning economies such as South Africa and Jamaica [66]. We have shown that both in the rural and urban participants (not significant), a higher SES resulted in reduced SBP, while the pooled analysis showed a positive total effect association between SES and SBP. This could be due to the introduction of more variation in SES when data from both sites are pooled; with many individuals with low SES in the rural area, the associations became skewed towards the low SES individuals. This may suggest that different transitional levels of SES have different effects on hypertension risk depending on the environment (either urban or rural). Though not significant, the total effects of SES on SBP are the same in both rural and urban hence the differences in prevalence cannot be explained by the setting or SES alone. In urban and rural settings of four countries (Kenya, Namibia, Nigeria and Tanzania), the prevalence of age

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

standardized hypertension was similarly high and ranging from 19.3 % to 38.0 % [11]. Cois and colleagues reported that a higher SES was associated with lower SBP in a nationally representative sample of South African women [25] using SEM models. Alcohol use, PA, smoking and resting heart rate and BMI were reported to be the mediators of the indirect of the association between SES and SBP in men but not in women, suggesting that other factors may play a major role in women [25]. Similarly, our results show that neither PA nor BMI mediate the association between SES and SBP in urban and rural settings in isolation, suggesting that other factors may explain the association. Among those, dietary patterns and stress have been reported to be independently associated with SBP [67, 68]. The significant direct associations between BMI and SBP are in line with other findings in South Africa and within the SSA region [11, 33, 40, 42, 69, 70]. This link was consistent in rural, urban and pooled data sets, indicating the importance of BMI in the aetiology of high BP. Munthali and colleagues reported that the link between obesity and hypertension could be observed as early as five years of age. Children with early onset of obesity were at higher risk of developing hypertension in late adolescence [38]. In this study, using SEM models to explore the mediation role of BMI and PA helped quantify potential contributions of these variables to the effect of SES on SBP. The results show that PA was not a significant mediator in the association between SES and BP in the urban or the rural samples. SES was negatively associated with MVPA in urban and pooled samples, indicating that as individuals transition from low to higher SES, they reduce their physical activity level. We speculate that these differences in the association between SES and SBP in both our rural and urban results, and in those from high-income countries are due to differences in levels of nutritional and epidemiological transition in these regions [71, 72]. Those with low SES in high-income countries are likely to consume cheaper, more energy dense foods, participate in less leisure time PA and be more sedentary [73, 74]. In LMICs,

agricultural activities remain a part of everyday life and a day-to-day activity in rural living, while those with higher SES in the same settings rapidly adopt the westernized life style with less PA, fewer agricultural activities and home grown food. However, this speculation is not supported by the data on PA in this study despite the rural participants having a higher PA. Our understanding of the Agincourt rural economy is that agriculture is guite a minor aspect though very useful to augment the household income.

The limitations of this study are that other unmeasured data, such as undernutrition in infancy, which is a known risk factor for high BP later in life [75], and dietary patterns were not included in the current analyses. We are currently working on research to address this limitation. We can also not rule out the role of genetics. Secondly, the low reliability of self-report data on PA could introduce bias. Thus, there is need for more precise, objective measures of physical activity to strengthen the results of our analysis. Lastly, longitudinal data, especially as the socioeconomic environment is changing rapidly due to rural-urban labor migration and other factors would be helpful to examine these associations over time. The cross-sectional design lacks a temporal component between the factors analyzed. Thus, it is difficult to say anything certain about the direction of the associations, hence the need for the longitudinal data.

Conclusions

Though the prevalence of overweight or obesity is relatively higher in both rural and urban than those reported in other SSA countries, women in the urban setting were at more risk for elevated blood pressure than their rural counterparts. The link between SES and SBP varies in a more economically diverse population, as seen with the pooled rural and urban dataset, with BMI being the most likely mediator. There is need to consider optimizing BMI as a key

BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

BMJ Open

intervention strategy in young adults in part to combat hypertension. Our findings should bereplicated with prospective data.

458 Funding

Norris is supported by the UK MRC DfID African Research Leader Scheme and by the DST-NRF Centre of Excellence in Human Development at the University of the Witwatersrand, Johannesburg. Birth to Twenty data collection was supported by the Wellcome Trust under Grant [092097/Z/10/Z]. The MRC/Wits- Agincourt Unit is supported by the South African Medical Research Council, and the Wellcome Trust under Grants [058893/Z/99/A, 069683/Z/02/Z, 085477/Z/08/Z, 085477/B/08/Z]. Opinions expressed and conclusions arrived at, are those of the authors and are not to be attributed to the CoE in Human Development.

9 466 **Conflict of interest**

467 Authors have no conflicts of interest to disclose.

- ³ 468 **Consent for publication**
- ⁵ 469 Not applicable
- 470 Data Sharing

471 The datasets used and/or analysed during the current study are available from the 472 Developmental Pathways

- 473 for Health Research Unit data management department by contacting Prof. Shane A Norris on
- 46 474 reasonable request
- 48 475 **Competing interest**
- 50 476 The authors declare that they have no competing interests

2 477 Authors' contributions

1		
2 3 4	478	RJM and SAN conceptualized the manuscript. RJM analyzed the data. RJM MM RSM JK ST
5 6	479	KK FXG LKM DD SAN interpreted the data. RJM wrote the manuscript and all authors were
7 8	480	involved in editing and approving the final manuscript.
9 10	481	Acknowledgements
11 12 13	482	We wish to thank the Bt20+ and Agincourt participants for taking part in the study and the
13 14 15	483	Bt20+ and Agincourt
16 17	484	team for their relentless support throughout the study.
18	485	
19	486	Ethics Approval and Consent to Participate
20	487	
21 22	407	Prior to the study, the study protocols were approved by the Human Research Ethics
23 24	488	Committee of the University of the Witwatersrand (Clearance certificates M120138 for the
25 26	489	Ntshembo-Hope Cross Sectional Survey in Agincourt and M111182 for the BT20+ survey).
27 28	490	Independent written informed consent to participate was obtained from participants.
29	404	
30 31	491	
32	492	
33 34	493	
35	175	
36	40.4	
37 38	494	
30 39		
40	495	
41		
42 43	496	
44		
45	497	
46 47	177	
48	400	
49	498	
50 51		
52	499	
53		
54	500	
55 56		
57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml 21
60		

1			
2 3			
5 4	501		
5			
6	502		
7	502		
8			
9	503		
10			
11 12			
12	504		
14			
15	505		
16	505		
17			
18	506	Refer	ences
19 20	505	1	
20 21	507	1.	Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M,
21	508		Anderson HR, Andrews KG <i>et al</i> : A comparative risk assessment of burden of disease
23	509		and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–
24	510		2010: a systematic analysis for the Global Burden of Disease Study 2010 . <i>The Lancet</i>
25	511	2	2012, 380 (9859):2224-2260.
26	512	2.	Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T,
27	513		Aggarwal R, Ahn SY: Global and regional mortality from 235 causes of death for 20 age
28	514		groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease
29	515	2	Study 2010 . The Lancet 2013, 380 (9859):2095-2128.
30	516	3.	Ezzati M, Geleijnse J: Worldwide trends in blood pressure from 1975 to 2015. <i>The</i>
31	517	4	Lancet 2017, 389 (10064):37-55.
32	518	4.	Sarki AM, Nduka CU, Stranges S, Kandala N-B, Uthman OA: Prevalence of Hypertension in
33 34	519 520		Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis. <i>Medicine</i>
34 35	520	F	2015, 94 (50):e1959.
36	521 522	5.	Chow CK, Teo KK, Rangarajan S, Islam S, Gupta R, Avezum A, Bahonar A, Chifamba J, Dagenais G, Diaz R: Prevalence, awareness, treatment, and control of hypertension in
37	522 523		rural and urban communities in high-, middle-, and low-income countries. Jama 2013,
38	525 524		310 (9):959-968.
39	524 525	6.	Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J: Global burden of
40	525 526	0.	hypertension: analysis of worldwide data. The lancet 2005, 365 (9455):217-223.
41	520 527	7.	Norman R, Gaziano T, Laubscher R, Steyn K, Bradshaw D, Collaboration SACRA: Estimating
42	528	7.	the burden of disease attributable to high blood pressure in South Africa in 2000.
43	520		South African Medical Journal 2007, 97 (8):692-698.
44 45	530	8.	Addo J, Smeeth L, Leon DA: Hypertension in Sub-Saharan Africa a systematic review.
45 46	531	0.	Hypertension 2007, 50 (6):1012-1018.
46 47	532	9.	Simmons D, Barbour G, Congleton J, Levy J, Meacher P, Saul H, Sowerby T: Blood pressure
48	533	γ.	and salt intake in Malawi: an urban rural study. Journal of epidemiology and community
49	534		health 1986, 40 (2):188-192.
50	535	10.	Gómez-Olivé FX, Ali SA, Made F, Kyobutungi C, Nonterah E, Micklesfield L, Alberts M, Boua R,
51	536	101	Hazelhurst S, Debpuur C: Stark Regional and Sex Differences in the Prevalence and
52	537		Awareness of Hypertension: An H3Africa AWI-Gen Study Across 6 Sites in Sub-
53	538		Saharan Africa. Global Heart 2017.
54			
55			
56			
57 58			
58 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml 22

	Π
	Ĩ
	2
	\cap
	ŏ
	Φ
	Ë.
	Š
	0
	č
	<u>D</u>
	<u>0</u>
	Ĕ
	ŏ
	മ
	S
	2
	-
	ω
	୍
	ਰੂ
	⊒.
	<u>o</u>
	0
	۳,
	'n
	õ
	ublished as 10.1136/bmiopen-2018-023404 on 19 Decembe
	ĩ
	2
	ũ
	4
	4
	<u> </u>
	ĭ
	-
	9
	σ
	õ
	8
	ĭ
	5
	ŏ
	8
	-
	œ
	σ
	õ
	≦
	≓
	<u> </u>
	lload
	loaded
	loaded f
	loaded fro
	loaded from
	loaded from h
	loaded from htt
	loaded from http.
-	nloaded from http://
	loaded from http://br
	loaded from http://bmi
	hloaded from http://bmioi
-	BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjope
	loaded from http://bmiopen
	loaded from http://bmiopen.b
	loaded from http://bmiopen.br
	loaded from http://bmiopen.bmi.
	Noaded from http://bmiopen.bmi.cc
	Noaded from http://bmiopen.bmi.com
	loaded from http://bmiopen.bmi.com/
	hloaded from http://bmiopen.bmi.com/ or
	hloaded from http://bmiopen.bmi.com/ on .
	Iloaded from http://bmiopen.bmi.com/ on At
	hloaded from http://bmiopen.bmi.com/ on Apr
	hloaded from http://bmiopen.bmi.com/ on April .
	hloaded from http://bmiopen.bmi.com/ on April 23
	loaded from http://bmiopen.bmi.com/ on April 23.
	Iloaded from http://bmiopen.bmi.com/ on April 23, 2
	hloaded from http://bmiopen.bmi.com/ on April 23, 202
	loaded from http://bmiopen.bmi.com/ on April 23, 2024
	loaded from http://bmiopen.bmi.com/ on April 23, 2024 b
	loaded from http://bmiopen.bmi.com/ on April 23, 2024 by
	loaded from http://bmiopen.bmi.com/ on April 23, 2024 by au
-	loaded from http://bmiopen.bmi.com/ on April 23, 2024 by que
-	loaded from http://bmiopen.bmi.com/ on April 23, 2024 by quest
	n.bmi.com/ on April 23, 2024 by quest.
-	loaded from http://bmiopen.bmi.com/ on April 23, 2024 by quest. Pr
-	n.bmi.com/ on April 23, 2024 by quest.
-	n.bmi.com/ on April 23, 2024 by quest.
	n.bmi.com/ on April 23, 2024 by quest.
	n.bmi.com/ on April 23, 2024 by quest.
	n.bmi.com/ on April 23, 2024 by quest.
-	n.bmi.com/ on April 23, 2024 by quest.
	n.bmi.com/ on April 23, 2024 by quest.
	n.bmi.com/ on April 23, 2024 by quest.
	n.bmi.com/ on April 23, 2024 by quest.
	n.bmi.com/ on April 23, 2024 by quest.
	n.bmi.com/ on April 23, 2024 by quest.
	n.bmi.com/ on April 23, 2024 by quest.

1			
1 2			
3	F 20	11	Handrika ME, Wit EW, Doog MT, Drowston I.M. Alrendo TM, do Door III, Minenzo CC, Kohwa
4	539 540	11.	Hendriks ME, Wit FW, Roos MT, Brewster LM, Akande TM, de Beer IH, Mfinanga SG, Kahwa
5			AM, Gatongi P, Van Rooy G: Hypertension in sub-Saharan Africa: cross-sectional
6	541	10	surveys in four rural and urban communities. <i>PloS one</i> 2012, 7 (3):e32638.
7	542	12.	Lemogoum D, Seedat YK, Mabadeje AF, Mendis S, Bovet P, Onwubere B: International
8	543		Forum for Hypertension control and prevention in Africa. Recommendations for
9	544		prevention, diagnosis and management of hypertension and cardiovascular risk
10	545	10	factors in sub-Saharan Africa. J Hypertens 2003, 21 .
11	546	13.	Schutte A, Botha S, Fourie C, Gafane-Matemane L, Kruger R, Lammertyn L, Malan L, Mels C,
12	547		Schutte R, Smith W: Recent advances in understanding hypertension development in
13	548		sub-Saharan Africa. Journal of Human Hypertension 2017.
14 15	549	14.	Thorogood M, Connor MD, Lewando Hundt G, Tollman SM: Understanding and managing
15 16	550		hypertension in an African sub-district: A multidisciplinary approach1. Scandinavian
10	551		Journal of Public Health 2007, 35 (69 suppl):52-59.
18	552	15.	Yusufali A, Khatib R, Islam S, AlHabib K, Kelishadi R, Rangarajan S, Yusuf S: LBOS 03-01
19	553		PREVALENCE, AWARENESS, TREATMENT, AND CONTROL OF HYPERTENSION IN THE
20	554		MIDDLE EAST: RESULTS FROM THE PROSPECTIVE URBAN RURAL EPIDEMIOLOGY
21	555		(PURE) STUDY. J Hypertens 2016, 34 Suppl 1:e551.
22	556	16.	Poulter N, Khaw K, Hopwood B, Mugambi M, Peart W, Rose G, Sever P: Blood pressure and
23	557		its correlates in an African tribe in urban and rural environments. Journal of
24	558		epidemiology and community health 1984, 38 (3):181-185.
25	559	17.	Glass TA, McAtee MJ: Behavioral science at the crossroads in public health: extending
26	560		horizons, envisioning the future. Social science & medicine 2006, 62(7):1650-1671.
27	561	18.	Agyemang C: Rural and urban differences in blood pressure and hypertension in
28	562		Ghana, West Africa. Public Health 2006, 120 .
29	563	19.	Agyemang C, Redekop WK, Owusu-Dabo E, Bruijnzeels MA: Blood pressure patterns in
30	564		rural, semi-urban and urban children in the Ashanti region on Ghana, West Africa.
31	565		BMC Public Health 2005, 5 .
32	566	20.	Kagura J, Adair LS, Musa MG, Pettifor JM, Norris SA: Blood pressure tracking in urban
33	567		black South African children: birth to twenty cohort. BMC pediatrics 2015, 15(1):1.
34 35	568	21.	Goon D, Amusa L, Mhlongo D, Khoza L, Any-Anwu F: Elevated blood pressure among
35 36	569		Rural South African Children in Thohoyandou, South Africa. Iran J Pub Health 2013, 42.
30	570	22.	Kemp C, Pienaar AE, Schutte AE: The prevalence of hypertension and the relationship
38	571		with body composition in Grade 1 learners in the North West Province of South
39	572		Africa. South African Journal of Sports Medicine 2011, 23(4).
40	573	23.	Monyeki K, Kemper H, Makgae P: The association of fat patterning with blood pressure
41	574		in rural South African children: the Ellisras Longitudinal Growth and Health Study.
42	575		International journal of epidemiology 2006, 35 (1):114-120.
43	576	24.	Schutte A, Van Rooyen J, Huisman H, Kruger H, Malan N, De Ridder J: Dietary risk markers
44	577		that contribute to the aetiology of hypertension in black South African children: the
45	578		THUSA BANA study . Journal of human hypertension 2003, 17 (1):29-35.
46	579	25.	Cois A, Ehrlich R: Analysing the socioeconomic determinants of hypertension in South
47	580		Africa: a structural equation modelling approach. BMC public health 2014, 14(1):414.
48	581	26.	Kagura J, Adair LS, Pisa PT, Griffiths PL, Pettifor JM, Norris SA: Association of
49	582		socioeconomic status change between infancy and adolescence, and blood pressure,
50	583		in South African young adults: Birth to Twenty Cohort. BMJ open 2016, 6(3):e008805.
51	584	27.	Wilson DK, Kliewer W, Plybon L, Sica DA: Socioeconomic status and blood pressure
52	585		reactivity in healthy black adolescents. Hypertension 2000, 35 (1):496-500.
53 54	586	28.	Brummett BH, Babyak MA, Siegler IC, Shanahan M, Harris KM, Elder GH, Williams RB:
54 55	587	20.	Systolic Blood Pressure, Socioeconomic Status, and Biobehavioral Risk Factors in a
55 56	588		Nationally Representative US Young Adult Sample . <i>Hypertension</i> 2011, 58 (2):161-166.
50 57	500		Nationany Representative 05 roung Autit Sample. Hypertension 2011, 50(2).101-100.
58			
59			
60			For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

1			
2 3		•	
4	589	29.	Chaix B, Bean K, Leal C, Thomas F, Havard S, Evans D, Jégo B, Pannier B:
5	590 591		Individual/Neighborhood Social Factors and Blood Pressure in the RECORD Cohort Study . Which Risk Factors Explain the Associations? 2010, 55 (3):769-775.
6	591 592	30.	Griffiths PL, Sheppard ZA, Johnson W, Cameron N, Pettifor JM, Norris SA: Associations
7	592 593	50.	between household and neighbourhood socioeconomic status and systolic blood
8	593 594		pressure among urban South African adolescents. Journal of biosocial science 2012,
9	595		44 (04):433-458.
10	596	31.	Longo-Mbenza B, Luila EL, M'Buyamba-Kabangu J: Nutritional status, socio-economic
11 12	597	51.	status, heart rate, and blood pressure in African school children and adolescents.
13	598		International journal of cardiology 2007, 121 (2):171-177.
14	599	32.	Aounallah-Skhiri H, El Ati J, Traissac P, Romdhane HB, Eymard-Duvernay S, Delpeuch F,
15	600	021	Achour N, Maire B: Blood pressure and associated factors in a North African adolescent
16	601		population. A national cross-sectional study in Tunisia. BMC Public Health 2012,
17	602		12 (1):1.
18	603	33.	Afrifa–Anane E, Agyemang C, Codjoe SNA, Ogedegbe G, Aikins Ad-G: The association of
19	604		physical activity, body mass index and the blood pressure levels among urban poor
20 21	605		youth in Accra, Ghana. BMC public health 2015, 15(1):269.
21	606	34.	Anane AE, Agyemang C, Codjoe SNA, Ogedegbe G, Aikins A: The association of physical
22	607		activity, Body mass index and blood pressure among urban poor youth in Accra,
24	608		Ghana. BMC Public Health 2015, 15.
25	609	35.	Hu G, Barengo NC, Tuomilehto J, Lakka TA, Nissinen A, Jousilahti P: Relationship of
26	610		physical activity and body mass index to the risk of hypertension: a prospective study
27	611		in Finland. Hypertension 2004, 43 (1):25-30.
28	612	36.	Juraschek SP, Blaha MJ, Whelton SP, Blumenthal R, Jones SR, Keteyian SJ, Schairer J, Brawner
29	613		CA, Al-Mallah MH: Physical fitness and hypertension in a population at risk for
30 31	614		cardiovascular disease: the Henry Ford Exercise Testing (FIT) Project. Journal of the
32	615	07	American Heart Association 2014, 3 (6):e001268.
33	616	37.	Väistö J, Eloranta A-M, Viitasalo A, Tompuri T, Lintu N, Karjalainen P, Lampinen E-K, Ågren J,
34	617		Laaksonen DE, Lakka H-M: Physical activity and sedentary behaviour in relation to
35	618 619		cardiometabolic risk in children: cross-sectional findings from the Physical Activity and Nutrition in Children (PANIC) Study. International Journal of Behavioral Nutrition
36	620		and Physical Activity 2014, 11 (1):55.
37	620 621	38.	Munthali RJ, Kagura J, Lombard Z, Norris SA: Childhood adiposity trajectories are
38	622	50.	associated with late adolescent blood pressure: birth to twenty cohort. BMC Public
39 40	623		<i>Health</i> 2016, 16 (1):1-10.
40 41	624	39.	STATSSA: Mortality and causes of death in South Africa, 2015: Findings from death
42	625	071	notification . In. Pretoria: Statistics South Africa; 2017 1–140.
43	626	40.	Peer N, Steyn K, Lombard C, Gwebushe N, Levitt N: A high burden of hypertension in the
44	627		urban black population of Cape Town: The Cardiovascular Risk in Black South
45	628		Africans (CRIBSA) Study. PLoS One 2013, 8(11):e78567.
46	629	41.	Pisa P, Behanan R, Vorster H, Kruger A: Social drift of cardiovascular disease risk factors
47	630		in Africans from the North West Province of South Africa: the PURE study:
48 49	631		cardiovascular topics. Cardiovascular journal of Africa 2012, 23(7):371-388.
49 50	632	42.	Steyn K, Fourie J, Lombard C, Katzenellenbogen J, Bourne L, Jooste P: Hypertension in the
51	633		black community of the Cape Peninsula, South Africa. East African medical journal 1996,
52	634		73 (11):758-763.
53	635	43.	Tibazarwa K, Ntyintyane L, Sliwa K, Gerntholtz T, Carrington M, Wilkinson D, Stewart S: A
54	636		time bomb of cardiovascular risk factors in South Africa: results from the Heart of
55	637		Soweto Study "Heart Awareness Days" . International journal of cardiology 2009,
56	638		132 (2):233-239.
57 58			
58 59			24
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

60

BMJ Open

1			
2			
3	639	44.	Kahn K, Collinson MA, Gómez-Olivé FX, Mokoena O, Twine R, Mee P, Afolabi SA, Clark BD,
4 5	640		Kabudula CW, Khosa A: Profile: Agincourt health and socio-demographic surveillance
5 6	641		system . International journal of epidemiology 2012, 41 (4):988-1001.
7	642	45.	Pradeilles R, Rousham EK, Norris SA, Griffiths PL: Urban South African adolescents'
8	643		perceptions of their neighborhood socio-economic environments: the Birth to
9	644		Twenty plus cohort study . Children Youth and Environments 2014, 24 (3):173-200.
10	645	46.	Richter L, Norris S, Pettifor J, Yach D, Cameron N: Cohort profile: Mandela's children: the
11	646		1990 Birth to Twenty study in South Africa . International journal of epidemiology 2007,
12	647		36 (3):504-511.
13	648	47.	Chobanian AV: Joint National Committee on Prevention, Detection, Evaluation, and
14	649		Treatment of High Blood Pressure. National Heart, Lung, and Blood Institute; National
15	650		High Blood Pressure Education Program Coordinating Committee: Seventh report of
16 17	651		the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of
17	652	10	High Blood Pressure. Hypertension 2003, 42:1206-1252.
19	653	48.	Strandberg TE, Pitkala K: What is the most important component of blood pressure:
20	654		systolic, diastolic or pulse pressure? Current opinion in nephrology and hypertension
21	655	10	2003, 12 (3):293-297.
22	656	49.	Cameron N: The measurement of human growth : Taylor & Francis; 1984.
23	657	50.	Lohman TG, Roche AF, Martorell R: Anthropometric standardization reference manual :
24	658	F 1	Human kinetics books; 1988.
25	659	51.	Houweling TA, Kunst AE, Mackenbach JP: Measuring health inequality among children
26	660		in developing countries: does the choice of the indicator of economic status matter?
27	661	50	International journal for equity in health 2003, $2(1)$:8.
28	662	52.	Feeley AB, Musenge E, Pettifor JM, Norris SA: Investigation into longitudinal dietary
29 30	663		behaviours and household socio-economic indicators and their association with BMI
31	664		Z-score and fat mass in South African adolescents: the Birth to Twenty (Bt20) cohort.
32	665 666	53.	Public health nutrition 2013, 16 (04):693-703.
33	667	55.	Jones LL, Griffiths PL, Adair LS, Norris SA, Richter LM, Cameron N: A comparison of the socio-economic determinants of growth retardation in South African and Filipino
34	668		infants. Public health nutrition 2008, 11 (12):1220-1228.
35	669	54.	Bull FC, Maslin TS, Armstrong T: Global physical activity questionnaire (GPAQ): nine
36	670	54.	country reliability and validity study. Journal of Physical Activity and health 2009,
37	671		6 (6):790-804.
38	672	55.	VanderWeele TJ: Mediation analysis: a practitioner's guide . Annual review of public
39	673	55.	health 2016, 37 :17-32.
40 41	674	56.	Hu Lt, Bentler PM: Cutoff criteria for fit indexes in covariance structure analysis:
41	675	50.	Conventional criteria versus new alternatives . Structural equation modeling: a
43	676		multidisciplinary journal 1999, 6 (1):1-55.
44	677	57.	Schermelleh-Engel K, Moosbrugger H, Müller H: Evaluating the fit of structural equation
45	678	57.	models: Tests of significance and descriptive goodness-of-fit measures. <i>Methods of</i>
46	679		psychological research online 2003, 8(2):23-74.
47	680	58.	Vandenberg RJ: Introduction: Statistical and Methodological Myths and Urban
48	681	50.	Legends: Where, Pray Tell, Did They Get This Idea? In.: Sage Publications Sage CA:
49	682		Thousand Oaks, CA; 2006.
50	683	59.	Fan X, Sivo SA: Sensitivity of fit indexes to misspecified structural or measurement
51	684	57.	model components: Rationale of two-index strategy revisited. Structural Equation
52	685		Modeling 2005, 12 (3):343-367.
53	686	60.	Alwin DF, Hauser RM: The decomposition of effects in path analysis . American
54 55	687	50.	sociological review 1975:37-47.
55 56	007		5001010g104170710W 1775.57-T7.
50 57			
58			
50			

2			
3	688	61.	Williams R, Allison PD, Moral-Benito E: Xtdpdml: Linear dynamic panel-data estimation
4	689	01.	using maximum likelihood and structural equation modeling. In.; 2016.
5	690	62.	Kerry SM, Emmett L, Micah FB, Martin-Peprah R, Antwi S, Phillips RO, Plange-Rhule J,
6	691	02.	Eastwood JB, Cappuccio FP: Rural and semi-urban differences in salt intake, and its
7	692		dietary sources, in Ashanti, West Africa. Ethnicity & disease 2005, 15 (1):33-39.
8	693	63.	Lissock CNAA, Sobngwi E, Ngassam E, Ngoa LSE: Rural and urban differences in
9	694	05.	metabolic profiles in a Cameroonian population. Pan African Medical Journal 2011, 10 .
10	695	64.	Stringhini S, Forrester TE, Plange-Rhule J, Lambert EV, Viswanathan B, Riesen W, Korte W,
11 12	696	04.	Levitt N, Tong L, Dugas LR: The social patterning of risk factors for noncommunicable
12	697		diseases in five countries: evidence from the modeling the epidemiologic transition
14	698		study (METS). BMC Public Health 2016, 16 (1):956.
15	699 699	65.	de Hoog ML, van Eijsden M, Stronks K, Gemke RJ, Vrijkotte TG: Association between body
16	700	05.	size and blood pressure in children from different ethnic origins. Cardiovascular
17	700		-
18	701	66.	diabetology 2012, 11 (1):136.
19		00.	Dinsa G, Goryakin Y, Fumagalli E, Suhrcke M: Obesity and socioeconomic status in
20	703	(7	developing countries: a systematic review. Obesity reviews 2012, 13 (11):1067-1079.
21	704 705	67.	Masala G, Bendinelli B, Versari D, Saieva C, Ceroti M, Santagiuliana F, Caini S, Salvini S, Sera
22	705		F, Taddei S: Anthropometric and dietary determinants of blood pressure in over 7000
23	706		Mediterranean women: the European Prospective Investigation into Cancer and
24	707	(0)	Nutrition-Florence cohort. Journal of hypertension 2008, 26 (11):2112-2120.
25	708	68.	Wilson BL, Albright GL, Steiner SS, Andreassi JL: Cardiodynamic response to
26	709		psychological and cold pressor stress: further evidence for stimulus response
27	710		specificity and directional fractionation . <i>Biofeedback and Self-regulation</i> 1991, 16 (1):45-
28	711		53.
29	712	69.	Goon D, Amusa L, Mhlongo D, Khoza L, Any-Anwu F: Elevated blood pressure among
30 21	713		rural South African children in Thohoyandou, South Africa. Iranian journal of public
31 32	714		health 2013, 42 (5):489.
33	715	70.	Moselakgomo VK, Toriola AL, Shaw BS, Goon DT, Akinyemi O: Body mass index,
34	716		overweight, and blood pressure among adolescent schoolchildren in Limpopo
35	717		province, South Africa. Revista Paulista de Pediatria 2012, 30(4):562-569.
36	718	71.	Lynch JW, Smith GD, Kaplan GA, House JS: Income inequality and mortality: importance
37	719		to health of individual income, psychosocial environment, or material conditions.
38	720		BMJ: British Medical Journal 2000, 320 (7243):1200.
39	721	72.	Ploubidis GB, Mathenge W, De Stavola B, Grundy E, Foster A, Kuper H: Socioeconomic
40	722		position and later life prevalence of hypertension, diabetes and visual impairment in
41	723		Nakuru, Kenya. International journal of public health 2013, 58(1):133-141.
42	724	73.	Drewnowski A: The cost of US foods as related to their nutritive value. The American
43	725		journal of clinical nutrition 2010, 92 (5):1181-1188.
44	726	74.	Popkin BM: The nutrition transition and obesity in the developing world. The Journal of
45	727		nutrition 2001, 131 (3):871S-873S.
46	728	75.	Sawaya AL, Sesso R, Florencio TM, Fernandes MT, Martins PA: Association between
47 48	729		chronic undernutrition and hypertension. <i>Maternal & child nutrition</i> 2005, 1(3):155-
40 49	730		163.
50	504		
51	731		
52	500		
53	732		
54			
55	733		
56	155		
57			
58			
59			Easterna in the latter (/hanisan and hanisan (site (shout (midaling and tas))
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
4	734	
5 6	735	
7 8	736	
1 2 3 4 5 6 7 8 9 10	737	
11	/3/	
12 13		
14 15		
16 17		
18 19		
20		
21 22		
23 24		
25 26		
27 28		
29 30		
31 32		
33		
33 34 35		
36 37		
38 39		
40 41		
42 43		
44		
45 46		
47 48		
49 50		
51 52		
53		
54 55		
56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table	2:	Descriptive	characteristics
-------	----	-------------	-----------------

Table 2: Descriptive characte	ristics					
	Total	n	Urban	n	Rural	p value
Age (years)	22.04 (1.24)	492	22.77 (0.49)	476	21.28 (1.31)	0.001
Weight (kg)	64.62 (14.82)	492	64.67 (15.6)	473	64.55 (14.03)	0.90
Height (m)	1.61 (0.007)	492	1.60 (0.07)	475	1.61 (0.07)	0.001
BMI (kg/m ²)	25.05 (5.59)	492	25.32 (5.91)	476	24.78 (5.24)	0.13
BMI classification (%)		492		476		0.015
Underweight (<18.4 kg/m ²)	5.98		7.10		4.82	
Normal weight (18.5-24.9 kg/m²)	51.34		46.45		56.39	
Overweight (25-29.9 kg/m²)	26.19		29.21		23.06	
Obese (>=30 kg/m ²)	16.49		17.24		15.72	
Waist circumference (cm)	80.60 (12.08)	492	80.18 (12.63)	476	81.03 (11.47)	0.26
Central obesity, WC \ge 80 cm , %	43.81	492	45.70	476	44.74	0.55
Household SES index (sum of	7.24 (2.70)	492	8.83 (2.37)	476	5.59 (1.91)	<0.001
assets)			6			
Total MVPA (min/week)*	870(280-1810)	492	420(160-900)	385	1680(970- 2580)	<0.001
Sitting time (mins/day)*	300 (240-480)	492	360 (240- 480)	385	300 (180- 360)	<0.001
Systolic blood pressure	106.68 (11.64)	492	110.30 (11.4)	471	102.89 (10.7)	<0.001
Diastolic blood pressure	70.23 (9.00)	492	72.78 (8.3)	471	67.57 (9.0)	<0.001
BP classification (%)		492		471		<0.001
Low BP	12.46		5.49		19.75	
Normal BP	69.16		67.48		70.91	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

					1	
Prehypertension	16.20		23.58		8.49	
Hypertensive	2.18		3.46		0.85	
Elevated BP (%)	18.38		27.04		9.34	< 0.001
Highest Education attained (%)		480		371		<0.001
Primary school	1.18		0		2.70	
Secondary school	60.75		48.33		76.81	
Tertiary education	38.07		51.67		20.49	
	D) otherwise stated					

Page 30 of 44

36/bmjopen-2018-023404

Table 3a: Structural equation model for SES, MVPA and BMI on SBP in urban women

Effect of:	Outcome:	Direct effects(95% CI)	Indirect effects(95%	Total effects(95% Ch	Proportion of total effect
N=489			CI)	Decem	mediated
Household	SBP	-0.34 (-0.75; 0.07)		-0.29 (-0.70; 0.12) [©]	0.13 ª
assets	via BMI	\sim	0.05 (-0.05; 0.14)	0.11 (-0.11; 0.33)	
	ВМІ	0.13 (-0.09; 0.35)		0.11 (-0.11; 0.33)	0.1 ª
	via MVPA	No.	-0.014 (-0.05; 0.013)	aded fr	
	MVPA	-41.71 (-73.48; -9.94)**	4	-41.71 (-73.48; -9.94	
MVPA	SBP	-0.0002 (-0.001; 0.001)	0	-0.0000 (-0.0012; 0.0011)	0.3 ª
	via BMI		0.0001 (-0.0001;	open.	
			0.0004)	0.37 (0.21; 0.53)*** g	
BMI	SBP	0.37 (0.21; 0.53)***		0.37 (0.21; 0.53)*** g	
				April 23, 2024 b	·
Adjusted for	age; * P<0.05; **	P< 0.01; ***P< 0.001; SBP;	systolic blood pressure, N	MVPA; moderate to vigorous	intensity physical
activity, BMI	; body mass index,	SES; social economic status,	^a Assessed using the al	bsolute values for both indire	ect and direct
effects				tected	
Urban Fit Ir	ndices: LR test of n	nodel vs. saturated: chi2(4) =	0.97, Prob > chi2 = 0.91	; RMSEA = 0.00; CFI= 1.	.00 Comparative
				Yri.	

Page 31 of 44	BMJ Open	36/bmjc
Page 31 of 44	BM Open fit index; TLI= 1.12 Tucker-Lewis index; SRMR=0.011: Standardized root mean squared residual, CD= 0.017 Coeffici Cocococococococococococococococococococ	36/bmjopen-2018-0234045n 19 December 2018. Downloaded from http://b
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

Table 3b: Structural equation model for SES, I	MVPA and BMI on SBP in rural women
--	------------------------------------

			BMJ Open	36/bmjopen-2018-023404	Page 32 c
	-	model for SES, MVPA and BM	1		
Effect of:	Outcome:	Direct effects(95% CI)	Indirect effects(95%	Total effects(95% C	Proportion of total effect
N= 378			CI)	Dece	mediated
Household	SBP	-0.65 (-1.19; -0.096)*		-0.56 (-1.12; -0.02)* e	0.11 ª
assets	via BMI		0.08 (-0.04; 0.19)	2018. D	
	BMI	0.27 (0.01; 0.53)*		0.26 (-0.005; 0.53)*	0.04
		DR	-0.01 (-0.04; 0.01)	0.26 (-0.005; 0.53)* hoaded from	
	via MVPA	6			
	MVPA	-29.51 (-87.81; 28.78)	0	-29.51 (-87.81; 28.78	
MVPA	SBP	0.0004 (0005729 .0013)		0.0005 (-0.0005; 0.0915)	0.2
	via BMI		0.0001 (-0.0000;	bmj.com/ on	
			0.0003)	n n	
BMI	SBP	0.33 (0.12; 0.54)**		0.33 (0.12; 0.54)∗∗ [⊅]	

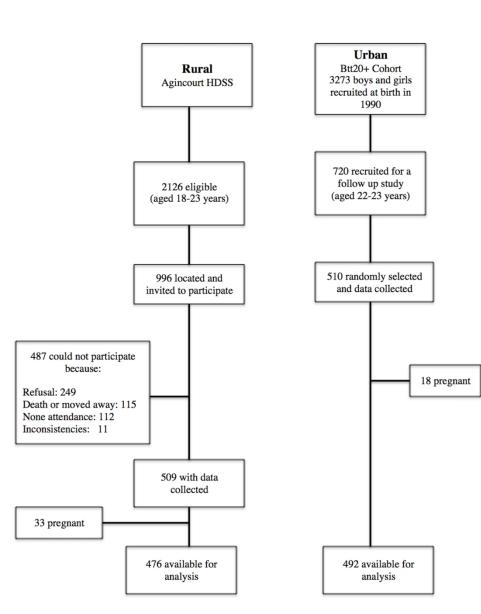
Adjusted for age; * P<0.05; ** P< 0.01; ***P< 0.001; SBP; systolic blood pressure, MVPA; moderate to vigorous physical activity,

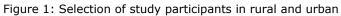
BMI; body mass index, SES; social economic status, ^a Assessed using the absolute values for both indirect effects

Page 33 of 44	BMJ Open		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	BMJ Open Rural Fit Indices: LR test of model vs. saturated: chi2 (4) = 10.51, Prob > chi2 = 0.03; RMSEA = 0.066; index; TLI= 0.37 Tucker-Lewis index; SRMR= 0.04: Standardized root mean squared residual, CD= 0.03 Coefficient of the compared of the com		
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	33	}

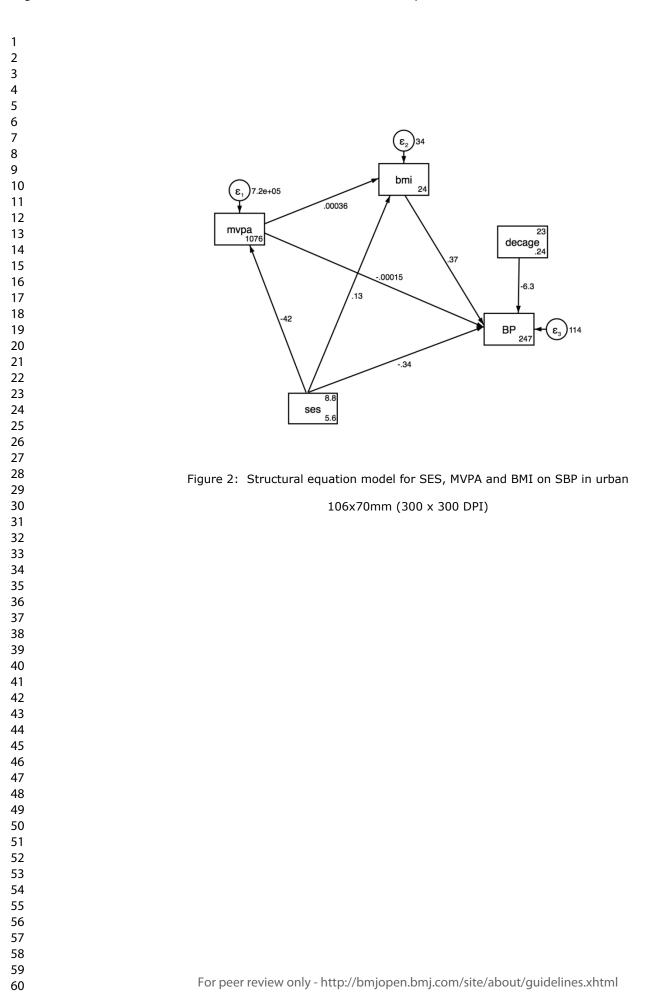
	BMJ Open	36/bmj
		open-2
Table 3c: Structural equation model for SES, MVPA and BMI	on SBP in the pooled sample of urban a	and maral women

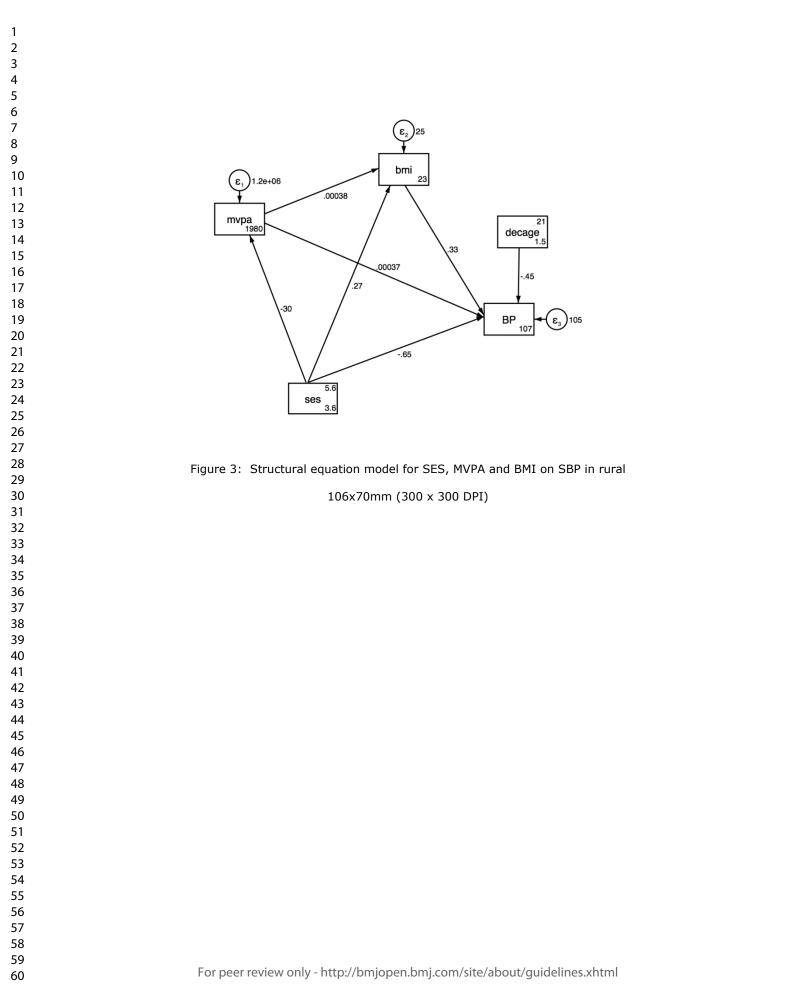
Effect of:	Outcome:	Direct effects(95% CI)	Indirect effects(95%	Total effects(95% C	Proportion of total effec
N=867			CI)	Decer	mediated
Household	SBP	0.23 (-0.08; 0.54)		0.46 (0.15; 0.76)** e	0.5
assets	via BMI		0.23 (0.10; 0.35)***	018. D	
	BMI	0.20 (0.05; 0.34)**		0.15 (0.01; 0.29)*	0.25 ª
		DR	-0.05 (100; 0.003)	aded f	
	via MVPA	104			
	MVPA	-144.83 (-170.55; -	0.	-144.83 (-170.55; -	
		119.12)***	· ···	-144.83 (-170.55; -) 119.12)***	
MVPA	SBP	-0.001 (-0.002; -0.0005)**		-0.001 (-0.002; -0.000	0.1 ª
	via BMI		0.0001 (-0.0000;	Om/ on	
			0.0002)	April 2	
BMI	SBP	0.35 (0.21; 0.49)***		0.35 (0.21; 0.49)*** 8	

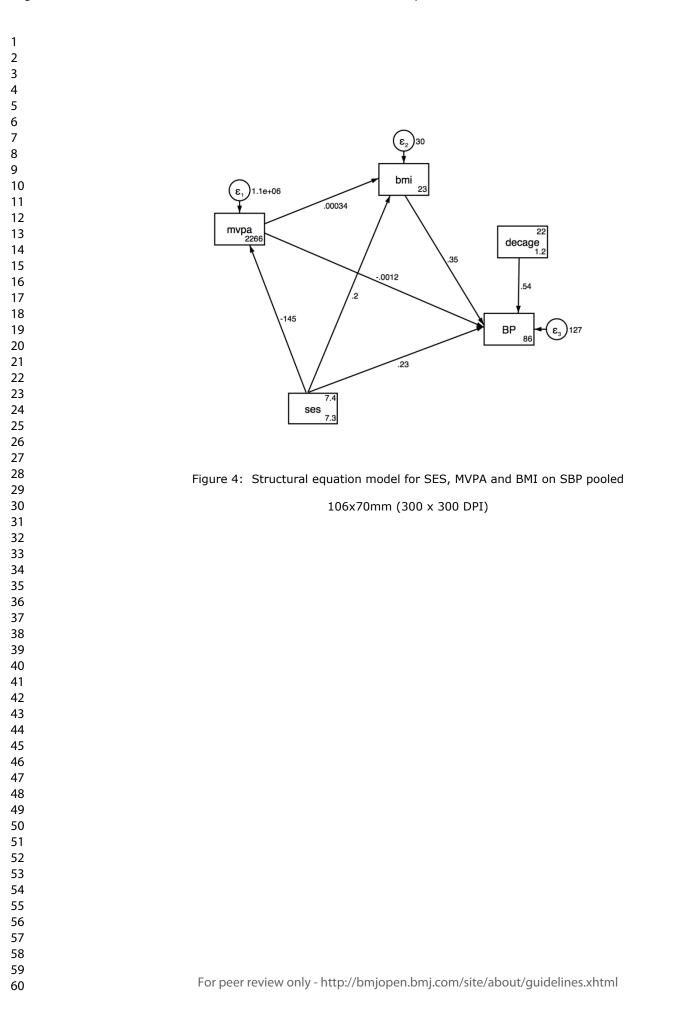

Adjusted for age; * P<0.05; ** P< 0.01; ***P< 0.001; SBP; systolic blood pressure, MVPA; moderate to vigorous intensity physical


activity, BMI; body mass index, SES; social economic status, a Assessed using the absolute values for botk indirect and direct ed by copyright.

effects


Page 35 of 44	BMJ Open	36/bmjoj
1 2 3 4 5 6	Pooled Fit Indices: LR test of model vs. saturated: chi2 (4) = 24.829, Prob > chi2 = 0.000; RMSEA = 0.	
7 8	Comparative fit index; TLI= 0.75 Tucker-Lewis index; SRMR=0.033: Standardized root mean squared residu	ag, CD=0.137 Coefficient
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	Comparative fit index; TLI= 0.75 Tucker-Lewis index; SRMR=0.033: Standardized root mean squared residue of determination. Figure legends Figure 1: Selection of study participants in rural and urban Figure 2: Structural equation model for SES, MVPA and BMI on SBP in urban Figure 3: Structural equation model for SES, MVPA and BMI on SBP in rural	scember 2018. Downloaded from http://bmjopen.bmj.c
27 28 29	Figure legends	om/ on A
30 31 32	Figure 1: Selection of study participants in rural and urban	pril 23, 21
32 33 34 35	Figure 2: Structural equation model for SES, MVPA and BMI on SBP in urban	024 by gr
36 37	Figure 3: Structural equation model for SES, MVPA and BMI on SBP in rural	Jest. Pro
38 39 40 41 42 43	Figure 4: Structural equation model for SES, MVPA and BMI on SBP pooled	by guest. Protected by copyright.
43 44 45	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	<u>ق الم</u>





144x167mm (300 x 300 DPI)

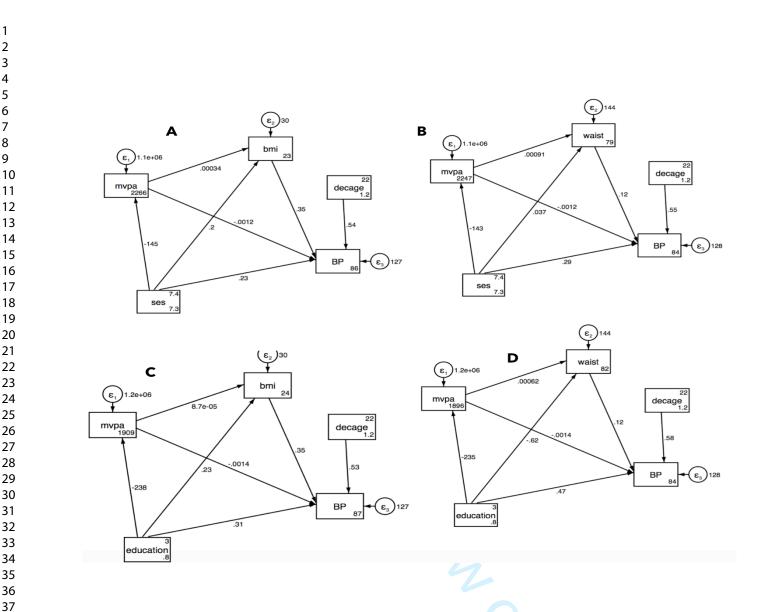


Figure SI; A: Structural equation model for **SES**, MVPA and **BMI** on SBP pooled; B: Structural equation model for **SES**, MVPA and **WC** on SBP pooled; C: Structural equation model for **education**, MVPA and **BMI** on SBP pooled; D: Structural equation model for **education**, MVPA and **WC** on SBP pooled.

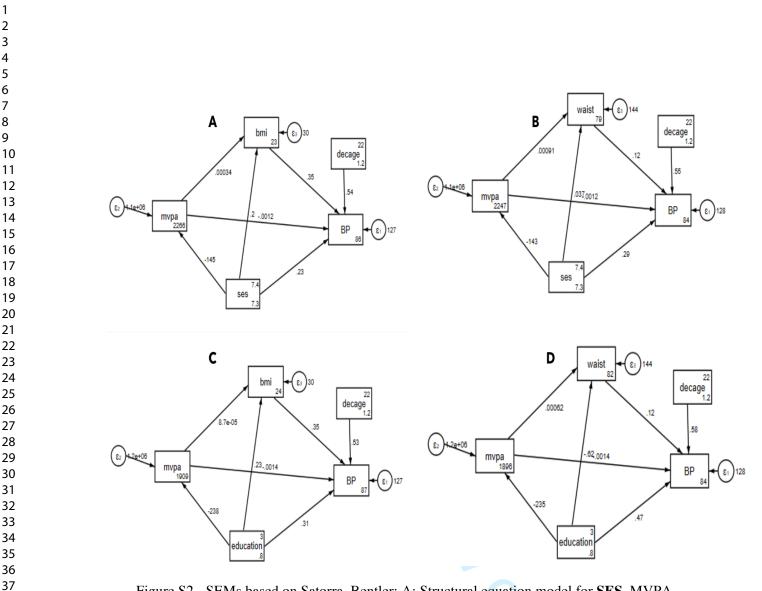


Figure S2 - SEMs based on Satorra–Bentler; A: Structural equation model for **SES**, MVPA and **BMI** on SBP pooled; B: Structural equation model for **SES**, MVPA and **WC** on SBP pooled; C: Structural equation model for **education**, MVPA and **BMI** on SBP pooled; D: Structural equation model for **education**, MVPA and **WC** on SBP pooled; D:

BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

BMJ Open

STROBE Statement—checklist of items that should be included in reports of observational studies

No	Recommendation
1	(a) Indicate the study's design with a commonly used term in the title or the abstract
	MS Page 4 Par 2
	(b) Provide in the abstract an informative and balanced summary of what was done
	and what was found MS Page 4
2	Explain the scientific background and rationale for the investigation being reported
	MS Pages 5-6
3	State specific objectives, including any prespecified hypotheses
	MS Page 6 Par 2
4	Present key elements of study design early in the paper
	Methods: MS Page 6 Par 3
5	Describe the setting, locations, and relevant dates, including periods of recruitment,
	exposure, follow-up, and data collection
	Methods: MS Page 6 Par 3
6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of
	selection of participants. Describe methods of follow-up N/A
	Case-control study—Give the eligibility criteria, and the sources and methods of
	case ascertainment and control selection. Give the rationale for the choice of cases
	and controls N/A
	Cross-sectional study-Give the eligibility criteria, and the sources and methods of
	selection of participants Methods: MS Page 6 Par 3
	(b) Cohort study—For matched studies, give matching criteria and number of
	exposed and unexposed N/A
	Case-control study-For matched studies, give matching criteria and the number of
	controls per case N/A
7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
	modifiers. Give diagnostic criteria, if applicable Methods: MS Page 6 Par 4 - Pag
	8 Par 1
8*	For each variable of interest, give sources of data and details of methods of
	assessment (measurement). Describe comparability of assessment methods if there is
	more than one group Methods: MS Page 6 Par 4 – Page 8 Par 1
9	Describe any efforts to address potential sources of bias Methods: MS Page 6 Par
10	Explain how the study size was arrived at Methods: MS Page 6 Par 3
11	Explain how quantitative variables were handled in the analyses. If applicable,
	describe which groupings were chosen and why Methods: MS Page 8 Par 2
12	(a) Describe all statistical methods, including those used to control for confounding
	Statistical analyses: MS Page 8 Par 2 and 3
	 (b) Describe any methods used to examine subgroups and interactions N/A (c) Explain how missing data were addressed Statistical analyses: MS Page 8 Par
	(d) Cohort study—If applicable, explain how loss to follow-up was addressed
	<i>Case-control study</i> —If applicable, explain how matching of cases and controls was
	3 4 5 6 7 7 8* <u>9</u> 10 11

For peer review only - http://bmjopen!bmj.com/site/about/guidelines.xhtml

1 2 3 4		addressed N/A Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy N/A
5 6		(\underline{e}) Describe any sensitivity analyses N/A
7 8	Continued on next page	
9		
10 11		
12 13		
14 15		
16		
17 18		
19 20		
21 22		
23		
24 25		
26 27		
28 29		
30		
31 32		
33 34		
35 36		
37		
38 39		
40 41		
42 43		
44		
45 46		
47 48		
49 50		
51		
52 53		
54 55		
56 57		
58		
59 60	For peer revie	ew only - http://bmjopen <mark>?</mark> bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-023404 on 19 December 2018. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

1 2
2
3 4
5
6
6 7 8 9
8
9
10
11
12
13
14
14 15 16 17
16
17
18 19
20
20
27
23
24
25
26
 19 20 21 22 23 24 25 26 27 28 29 30 31
28
29
30
32
33
34 35
35
36
37 38
30 39
40
41
42
43
44
45
46
47
48
49
50
51
52
53 54
74
55 56
56 57
57 58
50 59
60
55

1

Results		
Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially eligible,
		examined for eligibility, confirmed eligible, included in the study, completing follow-up, and
		analysed Results: Page 8 Par 5 – Page 9 Par 1
		(b) Give reasons for non-participation at each stage N/A
		(c) Consider use of a flow diagram N/A
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information
data		on exposures and potential confounders Page 8 Par 5 - Page 9 Par 1
		(b) Indicate number of participants with missing data for each variable of interest Results:
		Page 8 Par 5
		(c) Cohort study—Summarise follow-up time (eg, average and total amount) N/A
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time N/A
		Case-control study-Report numbers in each exposure category, or summary measures of
		exposure N/A
		Cross-sectional study—Report numbers of outcome events or summary measures Results:
		Page 8 Par 5
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and
		why they were included Results: Page 9 Par 1
		(b) Report category boundaries when continuous variables were categorized N/A
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful
		time period N/A
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity
		analyses N/A
Discussion		
Key results	18	Summarise key results with reference to study objectives Discussion: Page 9 Par 2
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.
		Discuss both direction and magnitude of any potential bias Discussion: Page 11 Par 4
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity
		of analyses, results from similar studies, and other relevant evidence Page 9 Par 3 - Page 11
		Par 3
Generalisability	21	Discuss the generalisability (external validity) of the study results Discussion: Page 9 Par 3 -
		Page 11
Other informati	on	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable,
		for the original study on which the present article is based Funding: Page 12 Par 1
		rately for cases and controls in case-control studies and, if applicable, for exposed and

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.