

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Can mid-regional pro-adrenomedullin (MR-proADM) increase the prognostic accuracy of NEWS in predicting deterioration in patients admitted to hospital with mild to moderately severe illness? A prospective single-centre observational study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-020337
Article Type:	Research
Date Submitted by the Author:	30-Oct-2017
Complete List of Authors:	Graziadio, Sara; Newcastle Upon Tyne Hospitals NHS Foundation Trust, NIHR Diagnostic Evidence Co-operative Price, David; Newcastle Upon Tyne Hospitals NHS Foundation Trust, NIHR Diagnostic Evidence Co-operative O'Leary, Rachel; Newcastle University, NIHR Diagnostic Evidence Co- operative Stocken, Deborah; Newcastle University, Newcastle Clinical Trial Unit, Institute of Health and Society, Power, Michael; Newcastle Upon Tyne Hospitals NHS Foundation Trust, NIHR Diagnostic Evidence Co-operative; Newcastle University, NIHR Diagnostic Evidence Co-operative; Newcastle University, NIHR Diagnostic Evidence Co-operative Allen, A; Newcastle University, NIHR Diagnostic Evidence Co-operative Simpson, A John; Newcastle University Institute of Cellular Medicine, Institute of Cellular Medicine, Medical School
Primary Subject Heading :	Diagnostics
Secondary Subject Heading:	Evidence based practice
Keywords:	INTERNAL MEDICINE, ACCIDENT & EMERGENCY MEDICINE, Adult intensive & critical care < INTENSIVE & CRITICAL CARE

SCHOLARONE[™] Manuscripts

1 2		Prognostic accuracy of MR-proADM in emergency departments
2 3 4	1	Title: Can mid-regional pro-adrenomedullin (MR-proADM) increase the prognostic
5	2	accuracy of NEWS in predicting deterioration in patients admitted to hospital with mild
6 7	3	to moderately severe illness? A prospective single-centre observational study.
8	4	
9 10	4	
11	5	Authors: Sara Graziadio ¹ , D. Ashley Price ² , Rachel A. O'Leary ¹ , Deborah D. Stocken ³ ,
12 13	6	Michael Power ¹ , A. Joy Allen ¹ , A. John Simpson ¹
14 15	7	¹ National Institute for Health Research (NIHR) Diagnostic Evidence Cooperative (DEC)
16 17	8	Newcastle, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
18 19	9	² Department of Infectious Diseases, Newcastle upon Tyne Hospitals NHS Foundation
20 21	10	Trust, Newcastle upon Tyne, NE1 4LP, UK
22	11	³ Newcastle Clinical Trials Unit, Newcastle University, 1-4 Claremont Terrace, Newcastle
23 24	12	upon Tyne, NE2 4AE, UK
25 26 27	13	
27 28	14	Corresponding author: Dr Sara Graziadio, NIHR Diagnostic Evidence Co-operative
29 30	15	Newcastle, M2.081 William Leech Building, Medical School, Newcastle University,
31 32	16	Newcastle upon Tyne, NE2 4HH, U.K. <u>sara.graziadio@ncl.ac.uk</u>
33 34	17	
35 36	18	Word counts
37 38	19	Abstract: 282
39 40	20	Abstract: 282 Paper: 3104
41 42		
43		
44 45		
46		
47		
48 49		
50		
51 52		
53		
54		
55		

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

21 Abstract

- **Objective** To assess the accuracy of a statistical model based on admission NEWS score
- and MR-proADM blood level in predicting deterioration in mild to moderately ill people.
- **Design** Prospective observational study
- **Setting** The Medical Admissions Suite of the Royal Victoria Infirmary, Newcastle.
- **Participants** 300 adults with NEWS score between 2 and 5 on admission. Exclusion
- 27 criteria included receiving palliative care, or admitted for social reasons or self-
- 28 harming. Patients were enrolled between September and December 2015, and
- 29 followed-up for 30 days after discharge.

30 Outcome measure The primary outcome measure was the proportion of patients who,
31 within 72 hours, had an *Acuity Increase*, defined as any combination of: an increase of at

- 32 least 3 in the NEWS score; transferred to a higher-dependency bed or monitored area;
- 33 and, for those discharged from hospital, re-admission for medical reasons; or death.
- **Results** NEWS predicted *Acuity Increase* poorly: the area under the curve (AUC) was
- 35 0.55 (95% CI 0.48, 0.62) with univariate analysis. NEWS and MR-proADM together
- 36 predicted *Acuity Increase* more accurately, increasing AUC to 0.61 (95% CI 0.54, 0.69).
- 37 When the presence of chronic obstructive pulmonary disease or heart failure and
- 38 interaction with MR-proADM were added to the model, the predictive accuracy further
- 39 increased the AUC to 0.69 (95% CI 0.63, 0.76).
- **Conclusions** MR-proADM improves the accuracy of prediction by NEWS of
 - 41 deterioration in patients admitted to hospital with a mild to moderately severe acute
 - 42 illness. As a growing number of NHS hospitals are implementing the NEWS score on
 - 43 their clinical information systems, further research should assess the practicalities and
 - 44 utility of developing a decision aid based on admission NEWS score, MR-proADM level,
 - 45 and possibly other clinical data and other biomarkers that could further improve46 prediction accuracy.
 - 47 Keywords
 - 48 Biochemistry, diagnosis, health services research

Prognostic accuracy of MR-proADM in emergency departments

Strengths and limitations of this study

- This is the first study to use rigorous statistical methods to assess the value added by MR-proADM to the admission NEWS score for predicting clinically important deterioration in mild to moderately ill patients
- Prediction accuracy might have been greater had more severely ill patients been included, but these people are already known to be severely ill.
- This was an observational study, and thus could not directly assess the utility ate p. of more accurate prediction of deterioration

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Page 3 of 23 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Prognostic accuracy of MR-proADM in emergency departments

Introduction

The National Early Warning Score (NEWS) is recommended for assessing severity of illness in patients presenting in primary or secondary NHS care and for surveillance of patients in hospital ¹². Six physiological parameters (which can be measured at the bedside) are scored: respiratory rate, oxygen saturation, temperature, systolic blood pressure, pulse rate, and level of consciousness. The scores are aggregated, and, if the patient requires oxygen, the total is increased. NEWS predicts death, cardiac arrest, and unplanned intensive care unit (ICU) admission within 24 hours ³⁻⁵. However, NEWS does not identify all patients who turn out to be seriously ill ⁶⁻⁸, and there are also patients whose NEWS score is usually elevated and who do not require the level of observation that the NEWS tool would suggest. For example, people with chronic obstructive pulmonary disease (COPD) or chronic heart failure (HF) have higher baseline NEWS scores than those without these comorbidities. The useful predictive accuracy of NEWS for patients presenting to the Emergency Department (ED) has been confirmed in a wide range of severity of illness ^{9 10}, as has its reduced accuracy in people with COPD ¹¹. But, no previous studies of the predictive accuracy of NEWS in the ED/Medical Admissions Unit (MAU) have focussed on patients admitted with mild to moderately severe illness. Since a clinically important proportion of these patients do deteriorate unexpectedly, improved risk stratification would be useful. Mid-regional pro-adrenomedullin (MR-proADM) is one of several promising biomarkers for severe illness and deterioration ¹²⁻¹⁶. MR-proADM is a precursor of adrenomedullin (ADM), a member of the calcitonin peptide family. ADM is widely expressed and has roles in vasodilation, immune modulation, and metabolic regulation. It is up-regulated in severe infections, inflammation, vasodilation, stimulation of diuresis, increased cardiac output, and stroke ¹⁷⁻¹⁹. ADM has a short half-life, but MR-proADM is more stable and directly reflects ADM concentrations in blood. Both ADM and MR-proADM levels are strongly associated with risk of mortality, regardless of aetiology ²⁰⁻²⁶. In people presenting with acute chest pain, MR-proADM has been reported to improve the Global Registry of Acute Coronary Events risk classification by 41% ²⁷. As with the NEWS score, people with COPD or chronic heart failure have higher baseline levels of MR-proADM.

Page 5 of 33

60

BMJ Open

1		Prognostic accuracy of MR-proADM in emergency departments
2 3	82	The aim of this study was to assess whether the MR-proADM level used alongside the
4 5	83	NEWS score would improve prediction of deterioration over NEWS score alone in
6	84	patients admitted to the MAU with mild to moderately severe illness.
7 8		
9	85	Methods
10 11		
12	86	Study participants and study design
13 14	87	This was a prospective observational cohort study. Patients were enrolled between
15 16	88	September and December 2015 at the Royal Victoria Infirmary, Newcastle, and
17		
18 19	89	followed-up for 30 days after discharge. If the patient died within the 30 days of follow
20	90	up, this and cause of death were recorded. Adults admitted to the MAU were recruited
21 22	91	for the study between 9am and 4pm on weekdays.
23	92	Sample size was determined as a pragmatic recruitment target for a three-month
24 25	93	observational study. A recent unpublished audit conducted in the MAU at the Royal
26 27	94	Victoria Infirmary found a deterioration rate of 20%. With 300 patients and complete
28	95	data collection, 60 events would be anticipated. With this number of events, a
29 30	96	multivariable prediction model could reliably include up to six independent predictors:
31 32	97	models with fewer than ten events per predictor tend to be over-fitted ²⁸ .
33	98	Patients were considered eligible for inclusion in the study if their NEWS score on
34 35	99	admission was at least 2 and not greater than 5, and all NEWS parameters were
36 37	100	recorded. Patients were excluded from the study if they were receiving palliative care,
38	101	were admitted for social reasons only, or were self-harming, or overdosing with drugs
39 40	101	or other substances.
41		
42 43	103	All participants provided written informed consent, and the study was approved by the
44 45	104	Newcastle & North Tyneside Research Ethics Committee (15/NE/0120).
45 46	105	Recorded data
47 48		
49	106	Demographic and admission data included: gender, year of birth, reason for admissions,
50 51	107	diagnosis on discharge, and the presence of comorbidities in which baseline MR-
52	108	proADM levels are chronically raised: COPD with hypoxia (PaO ₂ <10 kPa) ⁷ ; HF ²⁹ ; acute
53 54	109	brain injury ⁶ ; acute coronary syndrome ²⁷ ; acute venous thromboembolism ²¹ ; high
55	110	International Normalized Ratio (INR>2); acute kidney injury; electrolyte disturbances
56 57		
58 59		
~ ~		

BMJ Open Prognostic accuracy of MR-proADM in emergency departments $(Na^+ < 130 \text{ or } > 150 \text{ mmol/L}; K^+ < 3.0 \text{ or } > 5.5 \text{ mmol/L}); hyperglycaemia in type 1$ diabetes (random glucose >10 mmol/L). The NEWS score was assessed at baseline and over the next 72 hours, and the scores and assessment times recorded. The 7 clinical parameters used to determine the NEWS score were recorded for the baseline assessment only. Blood samples were taken at hospital admission for assessment of MR-proADM, C-Reactive Protein (CRP) and white blood count (WBC). Laboratory tests Plasma was obtained from blood samples (collected in ethylenediaminetetraacetic acid, EDTA) that were no longer clinically required. Plasma was stored in aliquots at -80° C MR-proADM was assayed in the on-site Blood Sciences Laboratory using the BRAHMS Kryptor system according to the manufacturer's instructions. Blood samples were analysed in batches by personnel blinded with regard to the condition and NEWS score of the patient. Nurses who assessed the NEWS score and healthcare professionals managing patients in the MAU were blinded to MR-proADM results. **Outcomes of interest** Outcome 1: Acuity Increase (i.e. deterioration). A patient was classified as having an Acuity Increase if one or more of the following occurred within 72 hours from admission: 1. transfer to a higher level of care (ICU or high dependency unit) 2. readmission to hospital for reasons related to the initial admission 3. death for reasons related to the initial admission 4. NEWS score increased by at least two compared to the admission score **Outcome 2:** Deterioration Event. For most of the observed Acuity Increase cases the reason for classification was an increase in the NEWS score (Table 1). Because an increase in NEWS score reflects both measurement variation and physiological variation, additional exploratory analyses were carried out to assess the performance of MR-proADM in predicting deterioration. Deterioration Events were classified as the occurrence of one or more of the following:

Page 7 of 33

BMJ Open

1		Prognostic accuracy of MR-proADM in emergency departments
2 3	141	1. transfer to higher level of care within 72 hours from admission;
4 5	142	2. death for related reason to admission within 30 days;
6	143	3. re-admission to hospital (for the same reason as the previous admission) within
7 8	144	30 days from first admission.
9 10	145	Classification based on this definition is unlikely to be subject to clinically important
11 12	146	measurement variation. This analysis, therefore, should optimise the accuracy of
13 14	147	prediction accuracy for events which are both clinically and economically important.
15 16	148	Outcome 3: Length of Stay. Length of Stay was defined as the duration (in days) from
17	149	admission to discharge or death.
18 19 20	150	Statistical analysis
21 22	151	All data analyses were performed using the R language version 3.2.0 30 , with the support
23 24	152	of RStudio, version 0.99.896 (RStudio, Inc). The following R packages were used:
25	153	ggplot2, pROC, psych, PredictABEL, Hmisc. For the ROC curve analyses, data were
26 27	154	exported to SPSS version 22 (SPSS, Inc., Chicago IL) and analyses were re-run for quality
28 29	155	assurance of results.
30 31	156	Logistic regression models were compared for their accuracy in predicting
32	157	deterioration outcome measures as pre-specified in the analysis plan. Analyses are
33 34	158	presented as unadjusted parameter estimates of risk (odds ratio (OR), with confidence
35 36	159	intervals) and estimates adjusted for identified clinical confounding factors. The aims of
37	160	the multivariable analyses were twofold: first, estimate th <mark>e</mark> eff <mark>e</mark> ct size and significance
38 39	161	adjusted for other identified influential predictors and interactions; second, to
40 41	162	investigate whether the addition of other predictors improved the goodness of fit and
42	163	accuracy of prediction.
43 44 45	164	Only complete cases were analysed since missingness was minimal (see Table 1).
46	165	For each outcome of deterioration, logistic regression models were compared for the
47 48 49	166	following sets of predictor variables:
50	167	<i>Predictor set a.</i> Comparator (base case): NEWS score on admission
51 52	168	Predictor set b. Primary analysis: NEWS score, MR-proADM
53	169	<i>Predictor set c.</i> Secondary analyses: NEWS score and MR-proADM always
54 55	170	included. Age, gender, CRP, WBC, presence of COPD or HF,
56 57 58		
58 59		

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open

CMD

60

1		Prognostic accuracy of MR-proADM in emergency departments
2 3	171	presence of other comorbidities, and interactions between
4 5	172	predictors when appropriate.
6		
7 8	173	Predictors (and the underlying assumption of linearity of their relationship with the
9	174	outcome of interest) were initially investigated through univariate analyses based on
10 11	175	simple log and quadratic functions. We have assessed interactions through visual data
12	176	exploration. Transformations were applied if they improved the goodness of fit as
13 14	177	assessed by the Akaike information criterion (AIC), and were retained in the
15	178	multivariable setting. Subsequently, for the multivariate regression the set of predictors
16 17	179	was reduced through backward elimination, again based on changes in AIC.
18 19	180	Secondary outcome of Length of Stay followed a similar analysis plan using multiple
20 21	181	regressions based on a transformed outcome to address non-normality. To evaluate
22	182	whether MR-proADM was a predictor of the length of stay in the hospital, linear
23 24	183	regression was used since the outcome variable (<i>Length of Stay</i>) is a continuous
25	184	variable. Variables were log-transformed if not normally distributed. Normality was
26 27	185	assessed by visualizing the data. The regression model included <i>Length of Stay</i> as
28 29	186	outcome variable, and NEWS and MR-proADM as predictors. More details of the
30 31	187	methods used are reported in the Supplemental Data.
32	188	Predictive accuracy of the models was assessed with the area under the ROC curve
33 34	189	(AUC) and is presented for all models with 95% confidence intervals (CI). To assess the
35 36	190	value added by including the MR-proADM level with the NEWS score in predicting
37	191	deterioration, continuous net reclassification improvement (NRI) and integrated
38 39	192	discrimination improvement (IDI) were calculated ^{31 32} .
40 41	102	
41	193	Internal validation of models was performed through bootstrapping with 10,000
43 44	194	resamples.
45 46	195	Results
40 47		
48 49	196	Study enrolment
50	405	
51 52	197	The process of recruitment and enrolment of patients for the study is shown in Figure 1.
53	198	The study recruited 300 patients, and the 292 were included in the analysis. Five
54	199	patients were excluded because the blood samples for MR-proADM were taken more

Page 9 of	33	BMJ Open
1		Prognostic accuracy of MR-proADM in emergency departments
2 3	200	than 12 hours from baseline NEWS assessment; 3 patients were excluded from the
4 5	201	primary outcome due to missing follow up NEWS scores.
6 7 8	202	Patient characteristics
9	203	Patient demographics and mean biomarker levels for each covariate are reported in
10 11	204	Table 1. The cohort was evenly divided in gender and had a mean age of 63 years and
12 13	205	mean NEWS on admission of 3, with the majority of patients having NEWS score of 2.
14 15	206	COPD or HF were present in 28%, and 25% had other comorbidities.
16 17	207	
18		
19 20		
21 22		
23 24		
25 26		
27 28		
29		COPD or HF were present in 28%, and 25% had other comorbidities.
30 31		
32 33		
34 35		
36 37		
38		
39 40		
41 42		
43 44		
45 46		
47		
48 49		
50 51		
52 53		
54 55		
56		
57 58		
59 60		Page 9 of 23 or peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Prognostic accuracy of MR-proADM in emergency departments

Table 1. Characteristics of the study population, classified by Outcome 1 (*Acuity Increase*), Outcome 2 (*Deterioration Event*) and All

209 patients. Data are presented as number (no) and percentages (%) for counts, or mean and (standard deviation, SD) for continuous

210 normally distributed data, or [25th; 50th; 75th percentile] for continuous non-normally distributed data.

	Outcome 1: Ac	uity Increase	Outcome 2: Deter	rioration Event	All patients
	Present (e = 84)	Absent	Present (e2 = 32)	Absent	(n = 292)
Age (mean years, SD)	65 (17)	62 (21)	63 (14)	63 (20)	63 (20)
Gender (no. females, %)	41 (49%)	107 (51%)	15 (47%)	133 (51%)	148 (51%)
NEWS = 2 (no., %)	34 (40%)	82 (40%)	12 (38%)	104 (40%)	116 (40%)
NEWS = 3 (no., %)	26 (31%)	59 (28%)	9 (28%)	76 (29%)	85 (29%)
NEWS = 4 (no., %)	11 (13%)	43 (21%)	4 (13%)	50 (19%)	54 (18%)
NEWS = 5 (no., %)	13 (15%)	24 (12%)	7 (22%)	30 (12%)	37 (13%)
MR-proADM (mean nmol/l, SD)	1.50 (1.4) [0.72, 1.12, 1.79]	1.19 (0.9) [0.68, 0.93, 1.28]	1.89 (2.0) [0.93, 1.13, 1.95]	1.20 (0.9) [0.68, 0.93, 1.39]	1.28 (1.1) [0.68, 0.97, 1.48]
CRP (mg/l)	59 (79) [5, 22, 80]	42 (70) [4, 13, 41]	61 (90) [7, 23, 67]	45 (71) [4, 16, 51]	47 (73) [4, 17, 54]
WBC (x10 ⁹ /l)	12 (5) [9, 10, 14]	11 (5) [8, 10, 14]	12 (4) [9, 12, 15]	11 (5) [8, 10, 14]	11 (5) [8, 10, 14]
COPD/HF (no, %)*	33 (39%)	46 (22%)	12 (38%)	67 (26%)	79 (28%)
Other comorbidities (no., %)	17 (20%)	55 (26%)	15 (47%)	57 (22%)	72 (25%)
Length of stay (hrs)	168 (196) [63, 110, 194]	137 (176) [26, 68, 176]	173 (172) [59, 106, 259]	143 (172) [33, 72, 176]	146 (182) [35, 77, 182]
Length of stay in MAU (hrs)	31 (19) [17, 25, 43]	24 (16) [13, 21, 30]	27 (17) [18, 23, 35]	26 (17) [15, 22, 31]	26 (17) [15, 22, 31]
Monitored beds (no, %)	31 (37%)	58 (27%)	11 (34%)	78 (30%)	89 (30%)

Page 10 of 23

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

Page	11	of	33
------	----	----	----

	Outcome 1: Acuity IncreaseOutcome 2: Deterioration EventAll patientsPresent (e = 84)Absentp(p = 292)						
		Present (e = 84)	Absent	Present (e2 = 32)	Absent	(n = 292)	
Det	terioration time (hrs)	15 (13) [5, 9, 21]	N/A	170 (226) [19, 33, 301]	N/A		
* fo	* for COPD: e = number with <i>Acuity Increase</i> = 82; e2 = number with <i>Deterioration Event</i> = 29; n = total number of patients = 282						
		[5, 9, 21] ity Increase = 82; e2 = number v					

Prognostic accuracy of MR-proADM in emergency departments

Table 2. Criteria met by patients classified with an *Acuity Event* or *Deterioration Event*.

Criterion for deterioration	Acuity Increase (e = 84)	Deterioration Event (e2 = 32)
NEWS (no, %)	81 (96.4%)	N/A
ICU transfer (no, %)	1 (1.2%)	4 (12.5%)
Death (no, %)	0 (0%)	6 (18.8%)
Readmission (no, %)	2 (2.4%)	22 (68.7%)

The study population was homogenous across *Acuity Increase* and No *Acuity Increase*outcomes in terms of gender, age, and NEWS on admission. Patients who experienced *Acuity Increase* had higher MR-proADM and CRP levels at admission, and longer length
of stay in the hospital and in the MAU.

- The prevalence of *Acuity Increase* was 29% (somewhat higher than the anticipated
 20%). The prevalence of *Deterioration Events* was 11%. The numbers of events
 provided sufficient statistical power to assess statistical significance for the primary
 outcome, *Acuity Increase*, but not for the secondary outcome, *Deterioration Event*, and
- 223 those results should be regarded as exploratory.

224 Accuracy of MR-proADM for predicting Acuity Increase

In the univariate analyses (Table 3) of predictors of *Acuity Increase*, the variables were transformed in a preliminary analysis assessing for non-linear relationships with the outcome variable. The final analysis used untransformed variables for all predictors except Age, for which a quadratic transformation, Age^2 , was used. Potentially useful predictors of Acuity Increase were MR-proADM (OR = 1.27, 95% CI 1.02, 1.62; p =0.037), Age² (OR = 1.00, 95% CI 0.99, 1.00; p = 0.023) and the presence of COPD or HF (OR = 2.25, 95% CI1.30, 3.91; p = 0.004). The prediction accuracy of CRP and WBC did not reach the threshold of significance (p = 0.88 and p = 0.090).

BMJ Open

- **Table 3.** Univariate regression analyses for predicting the three outcomes of interest:
 - Acuity Increase, *Deterioration Event*, and *Length of Stay*. The analyses for the NEWS
 - 236 score as a predictor are shown in Table 4.

	Beta	CI	Odds Ratio (CI)	p-value
Acuity Increase: univari	ate logistic 1	regressions (n = 292, e	e = 84)	
MR-proADM	0.24	-0.02, 0.48	1.27 (1.02, 1.62)	0.037
CRP	0.003	-0.0005, 0.0063	1.00 (1.00, 1.01)	0.088
WBC	0.04	-0.008, 0.094	1.05 (1.00, 1.10)	0.09
Gender	0.14	-0.38, 0.65	1.15 (0.69, 1.92)	0.684
Age	0.1	0.019, 0.1925	1.11 (1.02, 1.21)	0.023
Age ²	-0.0008	-0.0016, -0.0001	1.00 (0.99, 1.00)	
Other Comorbidities	-0.32	-0.96, 0.28	0.72 (0.38, 1.32)	0.267
COPD/HF*	0.81	0.26, 1.36	2.25 (1.30, 3.91)	0.004
Deterioration Event: un	ivariate logi	stic regressions (n = 2	292, e2 = 32)	
MR-proADM	0.37	0.11, 0.64	1.44 (1.12, 1.90)	0.006
CRP	0.003	-0.002, 0.01	1.00 (1.00, 1.01)	0.255
WBC	0.02	-0.05, 0.09	1.02 (0.95, 1.10)	0.506
Gender	0.17	-0.57, 0.92	1.19 (0.57, 2.50)	0.648
Age	0.21	0.06, 0.40	1.23 (1.06, 1.49)	0.013
Age ²	-0.002	-0.003, -0.001	1.00 (1.00, 1.00)	
Other Comorbidities	1.14	0.38, 1.90	3.14 (1.47, 6.69)	0.003
COPD/HF*	0.67	-0.14, 1.46	1.96 (0.87, 4.29)	0.095
Length of stay: simple li	near regress	sions (n = 292, e = 84,	e2 = 32)	
MR-proADM	0.7	0.49, 0.92	N/A	< 0.0001
CRP	0.05	-0.05, 0.15	N/A	0.368
WBC	-0.06	-0.38, 0.27	N/A	0.73
Gender	0.08	-0.04, 0.20	N/A	0.18
Age	0.007	0.004, 0.010	N/A	< 0.0001
Other Comorbidities	0.18	0.05, 0.32	N/A	0.009
COPD/HF*	0.07	-0.07, 0.21	N/A	0.318

Key: n = total number of cases; e = number of *Acuity Increases*; e₂ = number of *Deterioration Events*; CI = 95% confidence interval * n = 282, e = 82, e2 = 29

Prognostic accuracy of MR-proADM in emergency departments

- **Table 4.** Multivariable regression analyses for the outcomes of interest: Acuity Increase,
- 239 Deterioration Event, Length of Stay (Outcomes 1, 2, and 3 respectively) with NEWS
- 240 comparator group. Predictor set *a.* includes only the NEWS score as a predictor;
 - 241 Predictor set *b.* includes MR-proADM and NEWS scores; Predictor set *c.* includes MR-
- 242 proADM, NEWS scores, and other significant predictors and interactions.

		Beta	CI	Odds Ratio (CI)	p-value
Acuity Increase:	multivariate logistic	: regressi	ons		
Predictor set a	NEWS 3	0.06	-0.55, 0.67	1.06 (0.57, 1.95)	0.416
n = 292 e = 84	NEWS 4	-0.48	-1.29, 0.27	0.62 (0.27, 1.31)	
$e^{2} = 32$	NEWS 5	0.27	-0.54, 1.04	1.31 (0.58, 2.84)	
Predictor set b	NEWS 3	0.03	-0.59, 0.65	1.03 (0.56, 1.91)	0.247
n = 292 e = 84	NEWS 4	-0.53	-1.35, 0.23	0.59 (0.26, 1.26)	
e2 = 32	NEWS 5	0.18	-0.63, 0.97	1.20 (0.53, 2.64)	
	MR-proADM	0.24	0.02, 0.49	1.28 (1.02, 1.63)	0.039
Predictor set c	NEWS 3	-0.11	-0.76, 0.54	0.90 (0.47, 1.71)	0.221
n = 282 e = 82	NEWS 4	-0.89	-1.77, -0.08	0.41 (0.17, 0.93)	
e2 = 29	NEWS 5	0.09	-0.77, 0.91	1.09 (0.46, 2.50)	
	MR-proADM	0.41	0.13, 0.76	1.51 (1.14, 2.14)	0.01
	COPD/HF	1.81	0.80, 2.85	6.08 (2.23, 17.35)	0.001
	MR- proADM*COPD/HF	-0.71	-1.40, -0.10	0.49 (0.25, 0.91)	0.03
Deterioration Ev	<i>ent</i> : multivariate log	gistic reg	ressions		
Predictor set a	NEWS 3	0.03	-0.92, 0.94	1.03 (0.40, 2.55)	0.512
n = 292 e = 84	NEWS 4	-0.37	-1.68, 0.74	0.69 (0.19, 2.10)	
$e^{2} = 32$	NEWS 5	0.7	-0.36, 1.70	2.02 (0.70, 5.50)	
Predictor set b	NEWS 3	-0.01	-0.97, 0.92	0.99 (0.38, 2.51)	0.564
n = 292 e = 84	NEWS 4	-0.43	-1.76, 0.70	0.65 (0.17, 2.02)	
e = 84 e2 = 32	NEWS 5	0.6	-0.49, 1.62	1.81 (0.61, 5.05)	
	MR-proADM	0.36	0.10, 0.64	1.43 (1.11, 1.89)	0.007
Predictor set c	NEWS 3	0.16	-0.83, 1.12	1.17 (0.44, 3.07)	0.389
n = 282 e = 82	NEWS 4	-0.49	-1.86, 0.69	0.62 (0.16, 2.00)	
$e^2 = 29$	NEWS 5	0.69	-0.44, 1.76	1.99 (0.64, 5.81)	
	MR-proADM	0.32	0.02, 0.64	1.37 (1.02, 1.89)	0.044

		Beta	CI	Odde Patio (CD	p-value
				Odds Ratio (CI)	-
	Other comorbidities	0.94	0.10, 1.77	2.56 (1.10, 5.85)	0.026
	Age	0.21	0.06, 0.41	1.23 (1.06, 1.50)	0.011
	Age ²	-0.002	-0.003, - 0.001	1.00 (1.00, 1.00)	
Length of stay: m	ultiple linear regree	ssions			
Predictor set a	NEWS 3	-0.07	-0.21, 0.08	N/A	0.052
n = 292 e = 84	NEWS 4	0.07	-0.10, 0.24	N/A	
$e^2 = 32$	NEWS 5	0.21	0.01, 0.40	N/A	
Predictor set b	NEWS 3	-0.1	-0.24, 0.04	N/A	0.033
n = 292 e = 84	NEWS 4	0.05	-0.11, 0.21	N/A	
e2 = 32	NEWS 5	0.14	-0.04, 0.32	N/A	
	MR-proADM	0.69	0.48, 0.91	N/A	< 0.0001
Predictor set c	NEWS 3	-0.12	-0.25, 0.02	N/A	0.031
n = 282 e = 82	NEWS 4	0.04	-0.11, 0.20	N/A	
e = 82 e2 = 29	NEWS 5	0.14	-0.04, 0.32	N/A	
	MR-proADM	0.55	0.31, 0.80	N/A	< 0.0001
	Age	0.004	0, 0.007	N/A	0.027

Prognostic accuracy of MR-proADM in emergency departments

244	The predictive accuracy for Acuity Increase of NEWS on its own was limited (AUC 0.55,
245	95% CI 0.48, 0.62), but when MR-proADM was included as an additional predictor, the
246	accuracy of the model increased substantially (AUC 0.61, 95% CI 0.54, 0.69; OR = 1.28,
247	95% CI 1.02, 1.63; p = 0.007) (Tables 4 and 5, Figure 2A), and was statistically
248	significant (p = 0.033 for likelihood ratio, Table 5). When including MR-proADM with
249	NEWS, the reclassification of patients was also significant, especially in the NRI score
250	(NRI = 0.3, SE 0.1, p = 0.007; IDI = 0.017, Table 4).
251	The prediction accuracy of MR-proADM and the additional value it provides to the
252	NEWS score was confirmed for Deterioration Events and Length of Stay (Figure 2C,
253	Tables 4 and 5).
254	

Table 5. Model comparisons. Outcomes 1, 2, and 3 refer to Acuity Increase, *Deterioration Event*, and *Length of Stay* respectively. The

256 predictors are: *Set a* NEWS score alone; *Set b* NEWS score and MR-proADM; *Set c* NEWS score, MR-proADM, and other significant

257 predictors and interactions detailed in Table 3.

	AIC	Deviance	AUC (CI) or R² for linear regression	LR, (df) p-value	NRI (se), p- value	IDI (se), p-value
Acuity Increase: logistic regre	essions	5				
Outcome 1 - predictor set <i>a</i> .	348	356	0.55 (0.48, 0.62)			
Outcome 1 - predictor set <i>b</i> .	343	353	0.61 (0.54, 0.69)	5 (1), 0.033	0.3 (0.1), 0.007	0.017 (0.009), 0.058
Outcome 1 - predictor set <i>c</i> .	317	331	0.69 (0.63, 0.76)	14 (2), 0.001*	0.4 (0.1), 0.0004*	0.05 (0.01),0.0009*
Deterioration Event: logistic	regress	sions				
Outcome 2 - predictor set <i>a</i> .	199	207	0.57 (0.47, 0.68)			
Outcome 2 - predictor set b.	192	202	0.65 (0.54, 0.76)	7 (1), 0.007	0.4 (0.2), 0.003	0.04 (0.02), 0.10
Outcome 2 - predictor set <i>c.</i>	177	193	0.73 (0.63, 0.84)	15 (3), 0.0019*	0.5 (0.2), 0.012*	0.06 (0.02), 0.0004*
Length of Stay: linear regress	ions (l	LR)				
Outcome 3 - predictor set a.	77	-381	0.03			
Outcome 3 - predictor set b.	68	-417	0.14	9 (1), <0.001		
Outcome 3 - predictor set <i>c.</i>	67	-420	0.16	1 (1), 0.026		
Note : AIC = Akaike information criterion; AUC = area under the receiver operating characteristic curve; CI = 95% confidence interval; LR = likelihood ratio; df = degrees of freedom; NRI = net reclassification index; se = standard error; IDI = integrated discrimination improvement. * Comparison is between predictor set b. and c. Since there was a mismatch between the cases for predictor set a. and b. (10 missing values in COPD/HF), in the model with predictors set b. the 10 cases missing in predictor set c. were dropped to allow the comparison.						

Page 16 of 23

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

Page 17 of 33

BMJ Open

1		Prognostic accuracy of MR-proADM in emergency departments
2 3	258	Effect on prediction accuracy when clinical information is added to
4 5	259	the set of predictors
6 7	260	Ten additional patients with incomplete data were excluded from this analysis.
8 9	261	Multivariable modelling evaluated the predictive accuracy of MR-proADM when
10 11	262	adjusted for the clinical factors in predictive set <i>c</i> : age, gender, CRP, WBC, presence of
12 13	263	COPD or HF, presence of other comorbidities,
14 15	264	For Acuity Increase, COPD or HF comorbidity status and its interaction with MR-proADM
16	265	level significantly improved the predictive accuracy of the model: AUC increased from
17 18	266	0.61 (95% CI 0.54, 0.69) to 0.69 (95% CI 0.63, 0.76). The increased risk of <i>Acuity</i>
19 20	267	Increase with a unit increase in MR-proADM was 0.41 (95% CI 0.13, 0.76) with OR of
21	268	1.51 (95% CI1.14, 2.14; p = 0.010). The net reclassification index was significant (NRI =
22 23	269	0.4 (SE 0.1, p = 0.0004).
24 25	270	For Deterioration Events, the presence of other comorbidities (excluding COPD and HF)
26 27	271	and <i>Age</i> ² increased the prediction accuracy of MR-proADM, (Table 4 and 5). The
28 29	272	prediction accuracy of <i>Length of Stay</i> (Outcome 3) of MR-proADM is also increased
30 31	273	including <i>Age</i> in the model (Table 4 and 5).
32 33	274	Because the means and standard errors of the coefficients estimated in the non-
34	275	parametric bootstrapping analysis were all within $10 extsf{-}20\%$ of the values evaluated by
35 36	276	the models, the models' beta coefficients were not adjusted.
37 38 39	277	Potential confounding effects
40	278	Shorter term outcomes: NEWS and MR-proADM had lower accuracy in predicting
41 42	279	Acuity Increase within 24 and 12 hours from admission than in predicting Acuity
43 44	280	Increase within 72 hours (Supplementary material, Tables 1 and 2).
45 46	281	Interval between admission NEWS scoring and blood collection: Because ward
47	282	processes did not allow the times of scoring NEWS and collecting blood to be specified
48 49	283	for research, we assessed for a confounding effect from variation in the timings, but
50 51	284	found no evidence for it (Supplementary material, Table 3).
52		
53 54		
55		

58 59 60

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

Prognostic accuracy of MR-proADM in emergency departments

Discussion

Accu

Accuracy of prediction of deterioration by MR-proADM

This study shows that MR-proADM may be a clinically useful biomarker for predicting deterioration (i.e. Acuity Increase) within 72 hours from admission to hospital in patients with an admission NEWS score of 2 to 5. This contrasts with the performance of the NEWS score, assessed on admission, which did not predict deterioration within 72 hours, as might have been expected from previous evaluations ^{3-5 33}. This discrepancy with previous studies might be explained by differences in selection criteria for patients. Previous research included all patients admitted to ED, but our study selected patients with NEWS between 2 and 5, because a tool to predict deterioration would be most useful in this group.

296 For most of the observed *Acuity Increase* events, the reason for classification was an

- 297 increase in the NEWS score. Because an increase in NEWS score reflects both
- 298 measurement variation and physiological variation, additional exploratory analyses
- 299 were carried out to assess the performance of MR-proADM with an operational
- 300 definition of deterioration, *Deterioration Event*, designed to minimize measurement
- 301 variation. NEWS on its own had low predictive accuracy for *Deterioration Events*.
- 302 However, MR-proADM level, and NEWS score together predicted *Deterioration Events*
- 303 with an AUC of 0.65. Adding baseline patient characteristics (that were statistically
- 304 selected) further increased the accuracy of the model (AUC = 0.73).

Comorbidities and interactions with MR-proADM levels

306 MR-proADM levels in people with COPD and/or heart failure are chronically raised and
307 are not predictive of deterioration. However, in other people whose MR-proADM levels
308 are not chronically raised, high levels are predictive of *Acuity Increase* (Supplementary
309 material, Figure 1). Including these comorbidities and their interaction with MR310 proADM level increased the predictive accuracy of the logistic regression model.

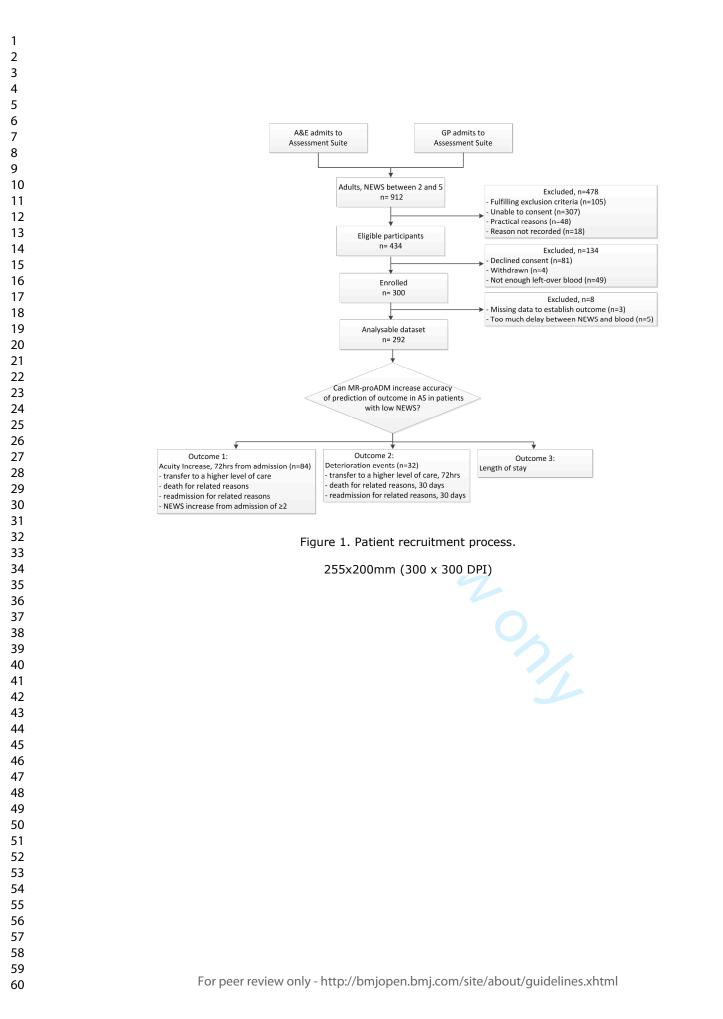
311 Limitations

This study included only patients who were admitted with a NEWS score between 2 and
5. The predictive accuracy of the MR-proADM would perhaps have been greater if more
extreme cases had been included. However, patients with NEWS scores more than 5 are

	Prognostic accuracy of MR-proADM in emergency departments
315	known to be severely ill and to require close monitoring and/or management at higher
316	levels of care.
317	Interpretations and implications
318	The significant increase in predictive accuracy of the models when basic clinical
319	information is added to the models suggests that value could be added to the NEWS
320	score by using a clinical decision aid (CDA) that would have the NEWS score, MR-
321	proADM level, age, and the presence of comorbidities as its inputs, and as its outputs, a
322	risk score and advice on management decisions about the level of care and intensity of
323	monitoring.
324	Future research and development
325	As a growing number of NHS hospitals are implementing the NEWS score on their
326	clinical information systems, it should be practical to develop a decision aid based on
327	admission NEWS score, MR-proADM level, and possibly other clinical data. Other
328	biomarkers may further improve prediction accuracy for deterioration, for example:
329	lactate ³ ; peroxiredoxin-4 (Prx4) and copeptin ^{22 34 35} ; and soluble urokinase
330	plasminogen activator receptor (suPAR) ³⁶ . Developing CDAs with multiple biomarkers
331	should increase the accuracy of prediction in ED and MAU where patients have many
332	different conditions. The feasibility, cost-effectiveness, and acceptability of such a
333	decision aid needs to be evaluated in further research.
334	A rapid point of care test could facilitate the assessment process and reduce delays in
335	arranging optimal levels of care and intensity of monitoring.
336	Footnotes
337	Contributors: JS, AJS, MP, and DS devised the study; RO, SG, and AJA managed the
338	project; SG, and AJA performed the statistical analyses with advice from DS; all authors
339	contributed to the final manuscript.
340	Acknowledgements: The authors would like to thank the patients who accepted to be
341	part of the study, and the team of research nurses for the data collection: Laura Shewan,
342	Louise Taylor, Janine Gradwell, Karen Martin, Katherine Cullen, Gerry Jones, Graham
343	Soulsby, Carmen Scott, and Helen Reed.

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

	Prognostic accuracy of MR-proADM in emergency departments
344	The Diagnostic Evidence Co-operative (DEC) Newcastle is funded by the National
345	Institute for Health Research (NIHR).
346	Funding: The study was funded by B·R·A·H·M·S GmbH
347	Competing interests: None declared.
348	Ethics and governance approvals: The study was approved by the Newcastle & North
349	Tyneside Research Ethics Committee (15/NE/0120), and by the R&D Committee of the
350	Newcastle upon Tyne Hospitals NHS foundation Trust (reference number 7495).
351	Provenance and peer review Not commissioned; externally peer reviewed.
352	Data sharing statement No additional data are available
353	References
354	References
355 356	 Royal College of Physicians of London. National early warning score (NEWS): standardising the assessment of acute-illness severity in the NHS—report of a working party. London, 2012.
357 358	 McGinley A, Pearse RM. A national early warning score for acutely ill patients. BMJ : British Medical Journal 2012;345 doi: 10.1136/bmj.e5310
359 360 361 362	3. Jo S, Yoon J, Lee JB, et al. Predictive value of the National Early Warning Score–Lactate for mortality and the need for critical care among general emergency department patients. <i>Journal of Critical Care</i> 2016;36:60-68. doi: 10.1016/j.jcrc.2016.06.016 [published Online First: 20/06/29]
363 364 365 366	4. Smith GB, Prytherch DR, Meredith P, et al. The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death. <i>Resuscitation</i> 2013;84(4):465-70. doi: 10.1016/j.resuscitation.2012.12.016 [published Online First: 2013/01/04]
367 368 369 370	 Smith ME, Chiovaro JC, O'Neil M, et al. Early warning system scores for clinical deterioration in hospitalized patients: a systematic review. <i>Annals of the American Thoracic Society</i> 2014;11(9):1454-65. doi: 10.1513/AnnalsATS.201403-102OC. [published Online First: 2014/10/09]
371 372	6. Teasdale GM. National early warning score (NEWS) is not suitable for all patients. <i>BMJ : British Medical Journal</i> 2012;345 doi: 10.1136/bmj.e5875
373 374 375 376	 Eccles SR, Subbe C, Hancock D, et al. CREWS: Improving specificity whilst maintaining sensitivity of the National Early Warning Score in patients with chronic hypoxaemia. <i>Resuscitation</i> 2014;85(1):109-11. doi: 10.1016/j.resuscitation.2013.08.277 [published Online First: 20/09/2013]
377 378 379	 Badriyah T, Briggs JS, Meredith P, et al. Decision-tree early warning score (DTEWS) validates the design of the National Early Warning Score (NEWS). <i>Resuscitation</i> 2014;85(3):418-23. doi: 10.1016/j.resuscitation.2013.12.011 [published Online First: 2013/12/19]
	Page 20 of 23 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


BMJ Open

380	 Abbott TE, Vaid N, Ip D, et al. A single-centre observational cohort study of admission National
381	Early Warning Score (NEWS). <i>Resuscitation</i> 2015;92:89-93. doi:
382	10.1016/j.resuscitation.2015.04.020 [published Online First: 2015/05/03]
383	 Corfield AR, Lees F, Zealley I, et al. Utility of a single early warning score in patients with sepsis in
384	the emergency department. <i>Emergency medicine journal : EMJ</i> 2014;31(6):482-7. doi:
385	10.1136/emermed-2012-202186 [published Online First: 2013/03/09]
386	11. Bilben B, Grandal L, Søvik S. National Early Warning Score (NEWS) as an emergency department
387	predictor of disease severity and 90-day survival in the acutely dyspneic patient – a
388	prospective observational study. Scandinavian Journal of Trauma, Resuscitation and
388	Emergency Medicine 2016;24:80. doi: 10.1186/s13049-016-0273-9.
890	12. Valenzuela-Sanchez F, Valenzuela-Mendez B, Rodriguez-Gutierrez JF, et al. New role of
891	biomarkers: mid-regional pro-adrenomedullin, the biomarker of organ failure. Annals of
892	translational medicine 2016;4(17):329. doi: 10.21037/atm.2016.08.65 [published Online
893	First: 2016/10/08]
394	 Stokes NR, Dietz BW, Liang JJ. Cardiopulmonary laboratory biomarkers in the evaluation of acute
395	dyspnea. Open access emergency medicine : OAEM 2016;8:35-45. doi:
396	10.2147/OAEM.S71446 [published Online First: 2016/06/17]
397	14. Sinning C, Zengin E, Zeller T, et al. Candidate biomarkers in heart failure with reduced and
398	preserved ejection fraction. <i>Biomarkers : biochemical indicators of exposure, response, and</i>
399	<i>susceptibility to chemicals</i> 2015;20(4):258-65. doi: 10.3109/1354750x.2015.1068856
399	[published Online First: 2015/08/21]
401	15. Kutz A, Hausfater P, Amin D, et al. The TRIAGE-ProADM Score for an Early Risk Stratification of
402	Medical Patients in the Emergency Department - Development Based on a Multi-National,
403	Prospective, Observational Study. <i>PloS one</i> 2016;11(12) doi: 10.1371/journal.pone.0168076
404	[published Online First: 2016/12/23]
405	16. Albrich WC, Dusemund F, Ruegger K, et al. Enhancement of CURB65 score with
406	proadrenomedullin (CURB65-A) for outcome prediction in lower respiratory tract infections:
407	derivation of a clinical algorithm. <i>BMC infectious diseases</i> 2011;11:112. doi: 10.1186/1471-
408	2334-11-112 [published Online First: 2011/05/05]
409	17. Lopez J, Martinez A. Cell and molecular biology of the multifunctional peptide, adrenomedullin.
410	International review of cytology 2002;221:1-92. [published Online First: 2002/11/29]
11 12 13 14	18. Serrano-Ponz M, Rodrigo-Gasque C, Siles E, et al. Temporal profiles of blood pressure, circulating nitric oxide, and adrenomedullin as predictors of clinical outcome in acute ischemic stroke patients. <i>Molecular medicine reports</i> 2016;13(5):3724-34. doi: 10.3892/mmr.2016.5001 [published Online First: 2016/03/18]
+15	 Zudaire E, Portal-Nunez S, Cuttitta F. The central role of adrenomedullin in host defense. Journal
+16	of leukocyte biology 2006;80(2):237-44. doi: 10.1189/jlb.0206123 [published Online First:
+17	2006/06/12]
418	20. Zuur-Telgen MC, Brusse-Keizer MG, Vandervalk PD, et al. Stable state MR-proadrenomedullin
419	level is a strong predictor for mortality in COPD patients. <i>Chest</i> 2013 doi: 10.1378/chest.13-
420	1063 [published Online First: 2013/10/01]
21 22 23 24	 Pedowska-Wloszek J, Kostrubiec M, Kurnicka K, et al. Midregional proadrenomedullin (MR-proADM) in the risk stratification of patients with acute pulmonary embolism. <i>Thrombosis research</i> 2013;132(5):506-10. doi: 10.1016/j.thromres.2013.08.008 [published Online First: 2013/08/19]

1		Prognostic accuracy of MR-proADM in emergency departments
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	425 426 427 428 429	22. Nickel CH, Messmer AS, Geigy N, et al. Stress markers predict mortality in patients with nonspecific complaints presenting to the emergency department and may be a useful risk stratification tool to support disposition planning. Academic emergency medicine : official journal of the Society for Academic Emergency Medicine 2013;20(7):670-9. doi: 10.1111/acem.12172 [published Online First: 2013/07/19]
	430 431 432 433	23. Landman GW, van Dijk PR, Drion I, et al. Midregional fragment of proadrenomedullin, new-onset albuminuria, and cardiovascular and all-cause mortality in patients with type 2 diabetes (ZODIAC-30). <i>Diabetes care</i> 2014;37(3):839-45. doi: 10.2337/dc13-1852 [published Online First: 2013/10/29]
	434 435 436 437	24. Funke-Kaiser A, Mann K, Colquhoun D, et al. Midregional proadrenomedullin and its change predicts recurrent major coronary events and heart failure in stable coronary heart disease patients: the LIPID study. <i>International journal of cardiology</i> 2014;172(2):411-8. doi: 10.1016/j.ijcard.2014.01.064 [published Online First: 2014/01/24]
17 18 19 20	438 439 440	25. Gaggin HK, Januzzi JL, Jr. Biomarkers and diagnostics in heart failure. <i>Biochimica et biophysica acta</i> 2013;1832(12):2442-50. doi: 10.1016/j.bbadis.2012.12.014 [published Online First: 2013/01/09]
21 22 23 24 25	441 442 443 444	26. Vigue B, Leblanc PE, Moati F, et al. Mid-regional pro-adrenomedullin (MR-proADM), a marker of positive fluid balance in critically ill patients: results of the ENVOL study. <i>Critical care (London, England)</i> 2016;20(1):363. doi: 10.1186/s13054-016-1540-x [published Online First: 2016/11/09]
26 27 28 29	445 446 447	27. Tzikas S, Keller T, Ojeda FM, et al. MR-proANP and MR-proADM for risk stratification of patients with acute chest pain. <i>Heart (British Cardiac Society)</i> 2013;99(6):388-95. doi: 10.1136/heartjnl-2012-302956 [published Online First: 2012/12/04]
30 31 32	448 449 450	28. Peduzzi P, Concato J, Kemper E, et al. A simulation study of the number of events per variable in logistic regression analysis. <i>Journal of clinical epidemiology</i> 1996;49(12):1373-9. [published Online First: 1996/12/01]
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 	451 452 453 454 455	29. Travaglino F, Russo V, De Berardinis B, et al. Thirty and ninety days mortality predictive value of admission and in-hospital procalcitonin and mid-regional pro-adrenomedullin testing in patients with dyspnea. Results from the VERyfing DYspnea trial. <i>The American journal of emergency medicine</i> 2014;32(4):334-41. doi: 10.1016/j.ajem.2013.12.045 [published Online First: 2014/01/03]
	456 457	30. R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria. R Foundation for Statistical Computing, 2011.
	458 459 460 461	31. Pencina MJ, D'Agostino RB, Sr., D'Agostino RB, Jr., et al. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. <i>Statistics in</i> <i>medicine</i> 2008;27(2):157-72; discussion 207-12. doi: 10.1002/sim.2929 [published Online First: 2007/06/15]
	462 463 464 465	 Steyerberg EW, Vedder MM, Leening MJ, et al. Graphical assessment of incremental value of novel markers in prediction models: From statistical to decision analytical perspectives. <i>Biometrical journal Biometrische Zeitschrift</i> 2015;57(4):556-70. doi: 10.1002/bimj.201300260 [published Online First: 2014/07/18]
	466 467 468	33. Alam N, Vegting IL, Houben E, et al. Exploring the performance of the National Early Warning Score (NEWS) in a European emergency department. <i>Resuscitation</i> 2015;90:111-5. doi: 10.1016/j.resuscitation.2015.02.011 [published Online First: 2015/03/06]
	469 470	34. Nickel CH, Ruedinger J, Misch F, et al. Copeptin and peroxiredoxin-4 independently predict mortality in patients with nonspecific complaints presenting to the emergency department.
58 59 60		Page 22 of 23 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		Prognostic accuracy of MR-proADM in emergency departments
2 3 4 5	471 472 473	Academic emergency medicine : official journal of the Society for Academic Emergency Medicine 2011;18(8):851-9. doi: 10.1111/j.1553-2712.2011.01126.x [published Online First: 2011/08/17]
6 7 8 9	474 475 476	 Iversen K, Gotze JP, Dalsgaard M, et al. Risk stratification in emergency patients by copeptin. BMC medicine 2014;12:80. doi: 10.1186/1741-7015-12-80 [published Online First: 2014/05/16]
10 11 12 13	477 478 479 480	36. Rasmussen LJ, Ladelund S, Haupt TH, et al. Soluble urokinase plasminogen activator receptor (suPAR) in acute care: a strong marker of disease presence and severity, readmission and mortality. A retrospective cohort study. <i>Emergency medicine journal : EMJ</i> 2016 doi: 10.1136/emermed-2015-205444 [published Online First: 2016/09/02]
14 15 16	481	
17 18 19	482	Figure legends
20 21	483	Figure 1. Patient recruitment process.
22 23	484	Figure 2. Panel A. Predictive accuracy for Acuity Increase; predictor set a: NEWS;
24 25	485	predictors set <i>b</i> : NEWS, MR-proADM; predictor set c: NEWS, MR-proADM, COPD/HF,
26	486	interaction between MR-proADM and COPD/HF. Panel B. Comparisons as for panel A
27 28	487	but for predicting a <i>Deterioration Event</i> ; predictor set <i>c</i> : NEWS score, MR-proADM level,
29	488	Age ² , other comorbidities. Panel C. Length of Stay predicted by MR-proADM level.
30 31		
32		
33 34		
35		
36 37		
38		
39 40		
40		
42 43		
43 44		
45		
46 47		
48		
49 50		
50 51		
52		
53 54		
55		
56		
57 58		
58 59		Page 22 of 22
60		Page 23 of 23 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

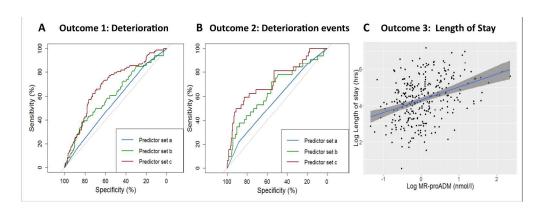


Figure 2. Panel A. Predictive accuracy for Acuity Increase; predictor set a: NEWS; predictors set b: NEWS, MR-proADM; predictor set c: NEWS, MR-proADM, COPD/HF, interaction between MR-proADM and COPD/HF. Panel B. Comparisons as for panel A but for predicting a Deterioration Event; predictor set c: NEWS score, MR-proADM level, Age2, other comorbidities. Panel C. Length of Stay predicted by MR-proADM level.

u. 1x107mm (

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Supplementary material for Graziadio et al, 2017

Supplementary material for *Can mid-regional pro-adrenomedullin (MR-proADM) increase the prognostic accuracy of NEWS in predicting deterioration in patients admitted to hospital with mild to moderately severe illness? A prospective single-centre observational study.* Graziadio et al, 2017

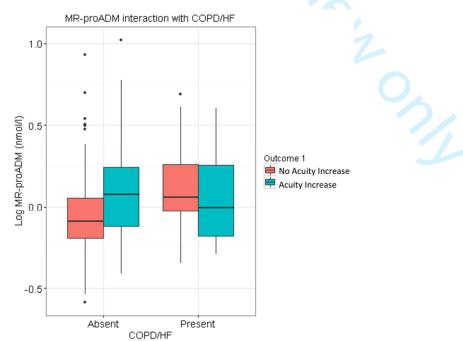
BMJ Open

Table of Contents

Supplementary material for Graziadio et al, 2017

Additional information on Methods

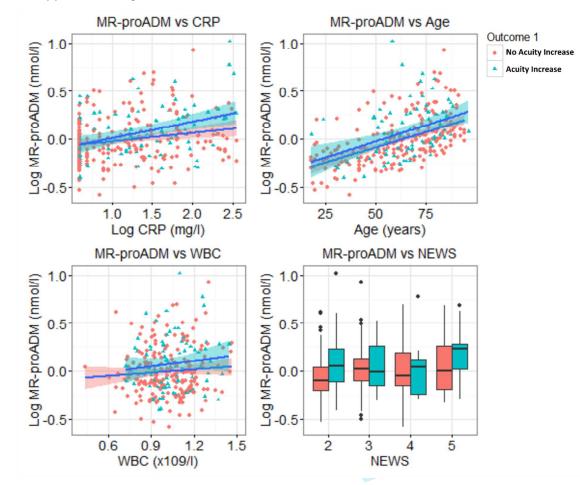
Visual data exploration and interaction between MR-proADM and COPD/HF


After formatting the datasets, all variables were graphed (bar-charts for categorical variables, and scatterplots/histograms for continuous variables) and visually checked for outliers and distributions that seemed potentially erroneous.

If outliers were identified, the cause(s) were investigated to understand whether they were due to human error or they were genuine data. Outliers were kept in the primary analysis. In a secondary sensitivity analysis, outliers were removed and the same analyses repeated to assess the impact on the results. If the coefficients of the predictors changed substantially, both models would be described. There was one genuine outliner patient with a very high level of MR-proADM compared to the population mean, but its exclusion made no difference to the results, and the subject was included in the final analysis.

The influence of potentially important factors on the ability of the MR-proADM to predict deterioration was explored graphically.

A significant interaction between MR-proADM and the presence of COPD/HF was discovered, and therefore included in the logistic regression (Outcome 1, predictor set c). The plot is shown in Supplementary Figure 1. This interaction showed that the MR-proADM level was increased in patients who deteriorated, but only if they did not have COPD or HF.


There was no suggestion that age; comorbidities: COPH and HF; other comorbidities; CRP; or WBC would improve the accuracy of prediction.

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Correlations among biomarkers were also investigated through plotting to evaluate multicollinearity and added value of MR-proADM versus other biomarkers. Plots are shown in Supplemental Figure 2.

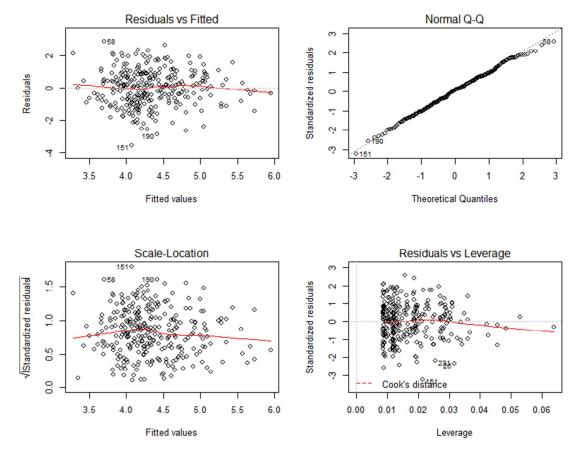
Supplemental Figure 2. Associations between MR-proADM and CRP, age, WBC, and NEWS.

Analytical data exploration

Univariate logistic regressions were used to investigate whether the relationship between outcome variables (i.e. deterioration measures) and the input variables (NEWS and MRproADM, age, comorbidities, gender, CRP, and WBC) were linear. If they were not linear, log transformation and squared transformation were applied. If the transformation substantially lowered the AIC, then the transformed variable was used in statistical analyses.

For categorical variables with multiple ordinal levels (i.e. NEWS score), the univariate analysis informed if it was appropriate to include the variable in the model as a continuous or categorical factor. If the coefficients in the univariate models increased linearly, then a linear relationship with the outcome could be assumed, and the variable was included in the model as continuous, otherwise the variable was treated as a categorical factor.

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

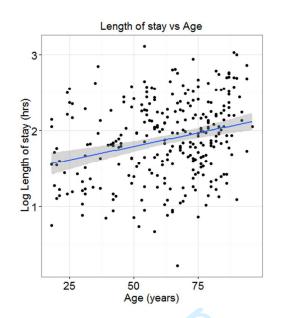

BMJ Open

Supplementary material for Graziadio et al, 2017

Univariate analyses were also used to identify the variables that affected the outcome significantly. The variables that showed a probable relationship with the outcome variable (p<0.1) were included in the full model logistic regression.

Additional information on Results

Diagnostic plots for length of stay analysis



Supplemental Figure 3. Diagnostic plots for linear regression evaluating the prediction accuracy of MR-proADM for *Length of Stay*.

The diagnostics of the model showed no multicollinearity in the data since all the correlation coefficients among the independent variables were smaller than 0.5. No autocorrelation was found in the data, thus residuals are independent from each other: the Durbin-Watson test estimated d = 2.02 (p = 0.56). Evidence for homoscedasticity was provided graphically by the randomly scattered points and almost horizontal fitted lines in Supplemental Figure 3, (Residuals vs fitted plot). Analysis of Cook's distance showed that there were no influential points (d <4/51, Supplementary Figure 3).

In Supplemental Figure 4 the relationship between Length of Stay and Age is shown.

Supplementary material for Graziadio et al, 2017

Analyses of shorter term outcomes

The analyses found that NEWS and MR-proADM had much lower accuracy in predicting *Acuity Increase* at 24 and 12 hours from admission than in predicting *Acuity Increase* at 72 hours as apparent in Supplemental Tables 1 and 2.

Supplemental Table 1. Logistic regression for NEWS and MR-proADM predicting *Acuity Increase* within 24 hours. AIC = 326; AUC = 0.59.

Covariate	Beta	CI	Odds ratio(CI)	P-value
Intercept	-1.42	-1.70, -0.64	0.42 (0.27, 0.64)	NA
NEWS 3	-0.006	-0.64, 0.71	1.04 (0.53, 2.04)	0.985
NEWS 4	-0.37	-1.58, 0.20	0.52 (0.21, 1.22)	0.368
NEWS 5	0.21	-0.66, 1.01	1.25 (0.52, 2.91)	0.6244
MR-proADM	0.22	-0.06, 0.44	1.20 (0.95, 1.55)	0.0547

Supplementary material for Graziadio et al, 2017

Supplemental Table 2. Logistic regression for NEWS and MR-proADM predicting *Acuity Increase* within 12 hours. AIC = 266; AUC = 0.57.

Covariate	Beta	CI	Odds ratio(CI)	P-value
Intercept	-1.83	-2.47, -1.24	0.16 (0.08, 0.29)	NA
NEWS 3	0.29	-0.46, 1.04	1.34 (0.63, 2.85)	0.442
NEWS 4	-0.15	-1.57, 0.76	0.86 (0.31, 2.14)	0.756
NEWS 5	0.29	-0.74, 1.23	1.33 (0.48, 3.42)	0.564
MR-proADM	0.06	-0.24, 0.31	1.06 (0.79, 1.36)	0.656

Analyses of time-lag effect between news assessment and blood collection for assessment of MR-proADM levels

Given the practicalities involved, it was not possible to stipulate the timings of taking the NEWS on admission and collecting the blood sample for MR-proADM testing. It was expected that difference in times would normally be less than 6 hours, but in 44 subjects the time difference was more than 6 hours.

To investigate the impact of time differences being greater than expected, another analysis was carried out excluding subjects for whom the difference was more than 6 hours (time-lag compliant dataset). The hypothesis was that, if the time difference was an important parameter for the predictive accuracy of MR-proADM level, model coefficients would be greater and confidence intervals narrower for the compliant model. This was not the case; results were similar in the full dataset with 292 subjects and in the compliant dataset with 248 subjects (Supplemental Table 3).

Supplemental Table 3. Logistic regression for NEWS and MR-proADM predicting *Acuity Increase* for the time-lag compliant dataset. AIC = 295; AUC = 0.60.

Covariate	Beta	CI	Odds ratio(CI)	P-value
Intercept	-1.15	-1.70, -0.64	0.42 (0.27, 0.64)	NA
NEWS 3	-0.04	-0.64, 0.71	1.04 (0.53, 2.04)	0.909
NEWS 4	-0.65	-1.58, 0.20	0.52 (0.21, 1.22)	0.152
NEWS 5	0.22	-0.66, 1.01	1.25 (0.52, 2.91)	0.613
MR-proADM	0.19	-0.06, 0.44	1.20 (0.95, 1.55)	0.135

TRIPOD Checklist: Prediction M pment

Item

1

2

3a

3b

4a

4b

5a

5b

5c

6a

6b

7a

7b

8

9

10a

10b

10d

11

13a

13h

14a

14b

15a

15b

16

18

19b

20

21

Section/Topic

Title

Abstract

Introduction

Background

Methods

and objectives

Source of data

Participants

Outcome

Predictors

Sample size

Missing data

Statistical

analysis

methods

Results

Model

Model

Model

Discussion

Limitations

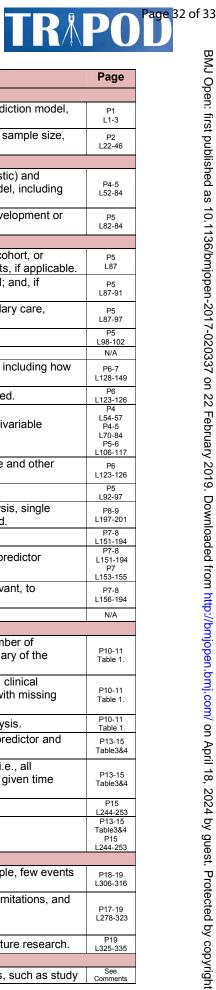
Interpretation

Implications

Other information

Supplementary

Risk groups


Participants

development

specification

performance

Title and abstract

Page

P1

L1-3

P2 L22-46

P4-5

L52-84

P5

L82-84

P5

187

P5 L87-91

P5

187-97

P5

L98-102

N/A

P6-7 L128-149

P6

L123-126 L54-57 P4-5

L70-84

P5-6 L106-117

P6

L123-126

P5

L92-97

P8-9 L197-201

P7-8 L151-194

P7-8

L151-194

P7 L153-155

P7-8

L156-194

N/A

P10-11 Table 1.

P10-11

Table 1

P10-11

Table

P13-15

Table3&4

P13-15

Table3&4

P15

L244-253 P13-15

Table3&4

P15 L244-253

P18-19 L306-316

P17-19

L278-323 P19

L325-335

See Comme

ction Model Development
Checklist Item
Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.
Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.
Explain the medical context (including whether diagnostic or prognostic) and
rationale for developing or validating the multivariable prediction model, including references to existing models.
Specify the objectives, including whether the study describes the development or validation of the model or both.
Describe the study design as source of data (s.g. and spins divid, school or
Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable. Specify the key study dates, including start of accrual; end of accrual; and, if
applicable, end of follow-up.
Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.
Describe eligibility criteria for participants.
Give details of treatments received, if relevant. Clearly define the outcome that is predicted by the prediction model, including how and when assessed.
Report any actions to blind assessment of the outcome to be predicted.
Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.
Report any actions to blind assessment of predictors for the outcome and other predictors.
Explain how the study size was arrived at.
Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.
Describe how predictors were handled in the analyses.
Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.
Specify all measures used to assess model performance and, if relevant, to compare multiple models.
Provide details on how risk groups were created, if done.
Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow up time. A diagram may be helpful
follow-up time. A diagram may be helpful. Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing
data for predictors and outcome.
Specify the number of participants and outcome events in each analysis. If done, report the unadjusted association between each candidate predictor and outcome.
Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).
Explain how to the use the prediction model.
Report performance measures (with CIs) for the prediction model.
Discuss any limitations of the study (such as nonrepresentative sample, few events
per predictor, missing data). Give an overall interpretation of the results, considering objectives, limitations, and
results from similar studies, and other relevant evidence.
Discuss the potential clinical use of the model and implications for future research.
Provide information about the availability of supplementary resources, such as study
Trende information about the availability of supprementary resources, such as study

1
2
_
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
20
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

TRIPOD Checklist: Prediction Model Development

information		protocol, Web calculator, and data sets.	
Funding	22	Give the source of funding and the role of the funders for the present study.	P20 L346

Comments:

1. Item 21: Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.

Supplementary material - with additional information on methods and results - is attached as separate document. Study protocol and data sets will be available in due course, new project website currently under construction.

to occure wong

BMJ Open

Can mid-regional pro-adrenomedullin (MR-proADM) increase the prognostic accuracy of NEWS in predicting deterioration in patients admitted to hospital with mild to moderately severe illness? A prospective single-centre observational study.

Journal:	BMJ Open	
Manuscript ID	bmjopen-2017-020337.R1	
Article Type:	Research	
Date Submitted by the Author:	31-May-2018	
Complete List of Authors:	Graziadio, Sara; Newcastle University, NIHR Newcastle In Vitro Diagnostics Co-operative ; Newcastle Upon Tyne Hospitals NHS Foundation Trust, NIHR Newcastle In Vitro Diagnostics Co-operative Price, David; Newcastle Upon Tyne Hospitals NHS Foundation Trust, Department of Infectious Diseases O'Leary, Rachel; Newcastle University, NIHR Newcastle In Vitro Diagnostics Co-operative Stocken, Deborah; University of Leeds, Leeds Institute of Clinical Trials Research Power, Michael; Newcastle Upon Tyne Hospitals NHS Foundation Trust, NIHR Newcastle In Vitro Diagnostics Co-operative Allen, A; Newcastle University, NIHR Newcastle In Vitro Diagnostics Co- operative Simpson, A John; Newcastle University Institute of Cellular Medicine, Institute of Cellular Medicine, Medical School; Newcastle Upon Tyne Hospitals NHS Foundation Trust, NIHR Newcastle In Vitro Diagnostics Co- operative	
Primary Subject Heading :	Diagnostics	
Secondary Subject Heading:	Evidence based practice	
Keywords:	INTERNAL MEDICINE, ACCIDENT & EMERGENCY MEDICINE, Adult intensive & critical care < INTENSIVE & CRITICAL CARE	

SCHOLARONE[™] Manuscripts

BMJ Open

1 2		Prognostic accuracy of MR-proADM in emergency departments
3	1	Title: Can mid-regional pro-adrenomedullin (MR-proADM) increase the prognostic
4 5	2	accuracy of NEWS in predicting deterioration in patients admitted to hospital with mild
6	3	to moderately severe illness? A prospective single-centre observational study.
7 8	5	to moderately severe infess. A prospective single centre observational study.
9	4	
10 11	5	Authors: Sara Graziadio ¹ , D. Ashley Price ² , Rachel A. O'Leary ¹ , Deborah D. Stocken ³ ,
12 13	6	Michael Power ¹ , A. Joy Allen ¹ , A. John Simpson ¹
14 15	7	¹ National Institute for Health Research (NIHR) Newcastle In Vitro Diagnostics
16	8	Cooperatives, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon
17 18 10	9	Tyne, NE1 4LP, UK
19 20	10	² Department of Infectious Diseases, Newcastle upon Tyne Hospitals NHS Foundation
21 22	11	Trust, Newcastle upon Tyne, NE1 4LP, UK
23	12	3 Londo Institute of Clinical Trials Descende University of Londo Londo LS2 OFT UK
24 25	12	³ Leeds Institute of Clinical Trials Research [,] University of Leeds, Leeds, LS2 9JT, UK
26 27	13	
28 29	14	Corresponding author: Dr Sara Graziadio, Newcastle University, NIHR Newcastle In
30	15	Vitro Diagnostics Co-operative , Newcastle Upon Tyne, UK. <u>Sara.Graziadio@ncl.ac.uk</u> .
31 32	16	
33 34	17	Word counts
35	17	
36 37	18	Abstract: 276
38 39	19	Paper (including tables, figures, legends, and references): 5950
40		
41 42		
43		
44 45		
45 46		
47		
48 49		
49 50		
51		
52		
53 54		
55		
56		
57 58		
59		Page 1 of 23

Prognostic accuracy of MR-proADM in emergency departments

20 Abstract

- **Objective** To assess the accuracy of NEWS score and MR-proADM blood level in
- 22 predicting deterioration in mild to moderately ill people.
- **Design** Prospective observational study
- **Setting** The Medical Admissions Suite of the Royal Victoria Infirmary, Newcastle.
- **Participants** 300 adults with NEWS score between 2 and 5 on admission. Exclusion
- 26 criteria included receiving palliative care, or admitted for social reasons or self-
- 27 harming. Patients were enrolled between September and December 2015, and
- 28 followed-up for 30 days after discharge.

Outcome measure The primary outcome measure was the proportion of patients who, within 72 hours, had an *Acuity Increase*, defined as any combination of: an increase of at least 2 in the NEWS score; transferred to a higher-dependency bed or monitored area;

- 32 and, for those discharged from hospital, re-admission for medical reasons; or death.
- **Results** NEWS predicted *Acuity Increase* poorly: the area under the curve (AUC) was
- 34 0.55 (95% CI 0.48, 0.62) with univariate analysis. NEWS and MR-proADM together
- 35 predicted *Acuity Increase* more accurately, increasing AUC to 0.61 (95% CI 0.54, 0.69).
- 36 When the confounding effects of presence of chronic obstructive pulmonary disease or
- 37 heart failure and interaction with MR-proADM were included, the prognostic accuracy
 - 38 further increased the AUC to 0.69 (95% CI 0.63, 0.76).
 - **Conclusions** MR-proADM improves the accuracy of prediction by NEWS of
 - 40 deterioration in patients admitted to hospital with a mild to moderately severe acute
 - 41 illness. As a growing number of NHS hospitals are implementing the NEWS score on
 - 42 their clinical information systems, further research should assess the practicalities and
 - 43 utility of developing a decision aid based on admission NEWS score, MR-proADM level,
 - 44 and possibly other clinical data and other biomarkers that could further improve45 prognostic accuracy.
 - 46 Keywords
 - 47 Biochemistry, diagnosis, health services research

Prognostic accuracy of MR-proADM in emergency departments Strengths and limitations of this study This is the first study to use rigorous statistical methods to assess the value • added by MR-proADM to the admission NEWS score for predicting clinically important deterioration in mild to moderately ill patients Prognostic accuracy might have been greater had more severely ill patients • been included, but the aim of this study was to predict deterioration in less severely ill patients who could benefit from closer observation. This was an observational study, and thus could not directly assess the utility • of more accurate prediction of deterioration Initial evidence for MR-proADM appears promising and requires further AL. ty • validation for clinical utility

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Prognostic accuracy of MR-proADM in emergency departments

50 Introduction

The National Early Warning Score (NEWS) is recommended for assessing severity of illness in patients presenting in primary or secondary NHS care and for surveillance of patients in hospital ¹². Six physiological parameters (which can be measured at the bedside) are scored: respiratory rate, oxygen saturation, temperature, systolic blood pressure, pulse rate, and level of consciousness. The scores are aggregated, and, if the patient requires oxygen, the total is increased. NEWS predicts death, cardiac arrest, and unplanned intensive care unit (ICU) admission within 24 hours ³⁻⁵. However, NEWS does not identify all patients who turn out to be seriously ill ⁶⁻⁸, and there are also patients whose NEWS score is usually elevated and who do not require the level of observation that the NEWS tool would suggest. For example, people with chronic obstructive pulmonary disease (COPD) or chronic heart failure (HF) have higher baseline NEWS scores than those without these comorbidities. The prognostic accuracy of NEWS for patients presenting to the Emergency Department (ED) has been confirmed in a wide range of severity of illness ^{9 10}, as has its reduced accuracy in people with COPD ¹¹. But, no previous studies of the prognostic accuracy of NEWS in the ED/Medical Admissions Unit (MAU) have focussed on patients admitted with mild to moderately severe illness. Since a clinically important proportion of these patients do deteriorate unexpectedly, improved risk stratification would be useful. Mid-regional pro-adrenomedullin (MR-proADM) is one of several promising biomarkers for severe illness and deterioration ¹²⁻¹⁶. MR-proADM is a precursor of adrenomedullin (ADM), a member of the calcitonin peptide family. ADM is widely expressed and has roles in vasodilation, immune modulation, and metabolic regulation. It is up-regulated in severe infections, inflammation, vasodilation, stimulation of diuresis, increased cardiac output, and stroke ¹⁷⁻¹⁹. ADM has a short half-life, but MR-proADM is more stable and directly reflects ADM concentrations in blood. Both ADM and MR-proADM levels are strongly associated with risk of mortality, regardless of aetiology ²⁰⁻²⁶. In people presenting with acute chest pain, MR-proADM has been reported to improve the Global Registry of Acute Coronary Events risk classification by 41% ²⁷. As with the NEWS score, people with COPD or chronic heart failure have higher baseline levels of MR-proADM.

BMJ Open

1		Prognostic accuracy of MR-proADM in emergency departments
2 3	81	The aim of this study was to assess whether the MR-proADM level used alongside the
4	82	NEWS score would improve prediction of deterioration over NEWS score alone in
5 6	83	patients admitted to the MAU with mild to moderately severe illness.
7 8		
9	84	Methods
10 11		
12	85	Patient and Public Involvement
13 14	86	Patients and the public were not specifically involved in the planning and execution of
15 16	87	
17		this study. However, the NIHR now requires that the research it supports includes
18 19	88	active involvement and engagement with patients and the public.
20	89	Study participants and study design
21 22	90	This was a prospective observational cohort study. Patients were enrolled between
23		
24 25	91	September and December 2015 at the Royal Victoria Infirmary, Newcastle, and
26	92	followed-up for 30 days after discharge. If the patient died within the 30 days of follow
27 28	93	up, this and cause of death were recorded. Adults admitted to the MAU were recruited
29	94	for the study between 9am and 4pm on weekdays.
30 31	95	Sample size was determined as a pragmatic recruitment target for a three-month
32 33	96	observational study. A recent unpublished audit conducted in the MAU at the Royal
34	97	Victoria Infirmary found a deterioration rate of 20%. With 300 patients and complete
35 36	98	data collection, 60 events would be anticipated. With this number of events, a
37 38	99	multivariable prediction model could include up to six independent predictors. This is
38 39	100	based on a widely accepted rule of thumb that models with fewer than ten events per
40 41	101	predictor tend to be over-fitted ²⁸ . However, recent research suggests that the "ten
42	102	events per variable" rule of thumb may be optimistic ²⁹ . Because the aim of this study
43 44	103	was to assess if further research would be indicated, even if the rule of thumb is
45 46	104	optimistic, 60 is considered an acceptable number of events.
47		
48 49	105	Patients were considered eligible for inclusion in the study if their NEWS score on
50	106	admission was at least 2 and not greater than 5, and all NEWS parameters were
51 52	107	recorded. Patients were excluded from the study if they were receiving palliative care,
53	108	were admitted for social reasons only, or were self-harming, or overdosing with drugs
54 55	109	or other substances.
56		
57 58		

ш	
BM,	
5	
ð	
n:	
fr	
st	
Du	
blig	
she	
ď	
as	
10	
13	
0/b	
<u>ă</u>	
ę	
en	
-2	
27	
first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded	
20	
ω ω	
2	
ă	
22	
Т	
ğ	
ua	
2	
20	
19	
Ŏ	
n	
oa	
de	
đ	
õ	
n T	
ed from http:/	
p://b	
Ĕ	
joj.	
ĕ	
d.F	
Э.	
8	
Ĕ	
Q	
Ā	
pr.	
_	
<u>°</u>	
20	
24	
à	
ĝ,	
ue:	
st.	
Pro	
ote	
čţ	
ed	
ð	
R	
уру	
ric	
ŗť	

1		Prognostic accuracy of MR-proADM in emergency departments
2 3	110	All participants provided written informed consent, and the study was approved by the
4 5	111	Newcastle & North Tyneside Research Ethics Committee (15/NE/0120).
6 7 8	112	Recorded data
9 10	113	Demographic and admission data included: gender, year of birth, reason for admissions,
10	114	diagnosis on discharge, and the presence of comorbidities in which baseline MR-
12 13	115	proADM levels are chronically raised: COPD with hypoxia (PaO ₂ <10 kPa) 7 ; HF 30 ; acute
14	116	brain injury ⁶ ; acute coronary syndrome ²⁷ ; acute venous thromboembolism ²¹ ; high
15 16	117	International Normalized Ratio (INR>2); acute kidney injury; electrolyte disturbances
17 18	118	(Na ⁺ <130 or >150 mmol/L; K ⁺ <3.0 or >5.5 mmol/L); hyperglycaemia in type 1
19 20	119	diabetes (random glucose >10 mmol/L).
21	120	The NEWS score was assessed at on admission and over the next 72 hours, and the
22 23	121	scores and assessment times recorded. The 7 clinical parameters used to determine the
24 25	122	NEWS score were recorded for the baseline (admission) assessment only. Baseline
26	123	NEWS scores were used to determine eligibility for this study. Subsequent NEWS scores
27 28	124	were used in the analyses to identify deterioration.
29 30	125	Blood samples were taken at hospital admission for assessment of MR-proADM, C-
31 32	126	Reactive Protein (CRP) and white blood count (WBC).
33 34	127	Laboratory tests
35 36	128	Plasma was obtained from blood samples (collected in ethylenediaminetetraacetic acid,
37 38	129	EDTA) that were no longer clinically required. Plasma was stored in aliquots at –80° C.
39 40	130	MR-proADM was assayed in the on-site Blood Sciences Laboratory using the B R A H M S
41 42	131	Kryptor system according to the manufacturer's instructions.
43 44	132	Blood samples were analysed in batches by personnel blinded with regard to the
45	133	condition and NEWS score of the patient. Nurses who assessed the NEWS score and
46 47	134	healthcare professionals managing patients in the MAU were blinded to MR-proADM
48 49	135	results.
50 51 52	136	Outcome measures
52 53	137	Outcome measure 1: Acuity Increase. A patient was classified as having an Acuity
54 55	138	<i>Increase</i> if one or more of the following occurred within 72 hours from admission:

Page 7 of 35

BMJ Open

1		Prognostic accuracy of MR-proADM in emergency departments
2 3	139	1. transfer to a higher level of care (ICU or high dependency unit)
4 5	140	2. readmission to hospital for reasons related to the initial admission
6	141	3. death for reasons related to the initial admission
7 8	142	4. NEWS score increased by at least two compared to the admission score
9 10	143	Outcome measure 2: Deterioration Event. For most of the observed Acuity Increase
11 12	144	cases the reason for classification was an increase in the NEWS score (Table 1). An
13 14	145	increase in NEWS score reflects both measurement variation and physiological
15	146	variation, so additional exploratory analyses were carried out to assess the performance
16 17	147	of MR-proADM in predicting deterioration. Deterioration Events were classified as the
18 19	148	occurrence of one or more of the following:
20 21	149	1. transfer to higher level of care within 72 hours from admission;
22	150	2. death (for reasons related to the admission) within 30 days;
23 24	151	3. re-admission to hospital (for the same reason as the previous admission) within
25 26	152	30 days from first admission.
27 28	153	Classification based on this definition is unlikely to be subject to clinically important
29	154	measurement variation. This analysis, therefore, should optimise the prognostic
30 31	155	accuracy for events which are both clinically and economically important.
32 33	156	Outcome measure 3: Length of Stay. Length of Stay was defined as the duration (in
34 35	157	days) from admission to discharge or death.
36 37 38	158	Statistical analysis
39	159	All data analyses were performed using the R language version 3.2.0 ³¹ , with the support
40 41	160	of RStudio, version 0.99.896 (RStudio, Inc). The following R packages were used:
42 43	161	ggplot2, pROC, psych, PredictABEL, Hmisc, rms.
44 45	162	Logistic regression models were compared for their accuracy in predicting
46	163	deterioration outcome measures as pre-specified in an analysis plan. Analyses are
47 48	164	presented as unadjusted parameter estimates of risk (odds ratio (OR), with confidence
49 50	165	intervals (CI)) and estimates adjusted for identified clinical confounding factors. The
51	166	aims of the multivariable analyses were twofold: first, to estimate the effect size and
52 53	167	significance adjusted for other identified influential predictors and interactions; second,
54	168	to investigate whether the addition of other predictors improved the goodness of fit and
55 56	169	accuracy of prediction.
57 58 59		

Page 7 of 23 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		Prognostic accuracy of MR-proADM in emergency departments
2 3	170	Only complete cases were analysed since missingness was minimal: 10 records without
4 5	171	data on co-morbidities (details in footnote in Table 1).
6 7	172	For each measure of deterioration (Acuity Increase, Deterioration Event, and Length of
8 9	173	Stay), logistic regression models were compared for the following sets of predictor
10	174	variables:
11 12	175	Predictor set a. Comparator (base case): NEWS score on admission
13 14	176	Predictor set b. Primary analysis: NEWS score, MR-proADM
15 16	177	Predictor set c. A Secondary analyses: NEWS score and MR-proADM always
17	178	included. Age, gender, CRP, WBC, presence of COPD or HF,
18 19	179	presence of other comorbidities, and interactions between
20 21	180	predictors when appropriate.
22 23	181	Predictors (and the underlying assumption of linearity of their relationship with the
24	182	outcome of interest) were initially investigated through univariate analyses based on
25 26	183	simple log and quadratic functions. Transformations were applied if they improved the
27 28	184	goodness of fit as assessed by the Akaike information criterion (AIC), and were retained
29	185	in the multivariable setting. NEWS was treated as an ordinal variable. We have assessed
30 31	186	interactions through visual data exploration and acknowledge this is underpowered.
32 33	187	Subsequently, for the multivariable regression the set of predictors was assessed for
34 35	188	independence through backward elimination, based on changes in AIC.
36 37	189	Secondary outcome of Length of Stay followed a similar analysis plan using multiple
38	190	linear regressions based on a transformed outcome to address non-normality.
39 40	191	Dependent and exploratory variables were log-transformed if not normally distributed.
41	192	Normality was assessed by visualizing the data. More details of the methods used are
42 43	193	reported in the Supplemental Data.
44 45	194	Goodness of fit of logistic regression models was assessed with the C-statistic (which is
46 47	195	the area under the ROC curve and a measure of discrimination) and is presented with
48 49	196	95% confidence intervals (CI). To assess the value added by including the MR-proADM
50	197	level with the NEWS score in predicting deterioration, continuous net reclassification
51 52	198	improvement (NRI) and integrated discrimination improvement (IDI) were calculated ³²
53	199	33.
54 55		
56 57		
58		

1		Prognostic accuracy of MR-proADM in emergency departments
2 3	200	For internal validation of the statistical models the C-statistic was evaluated after
4 5	201	correcting for optimistic predictions through bootstrapping with 10,000 resamples.
6		
7 8	202	Results
9		
10 11	203	Study enrolment
12 13	204	The process of recruitment and enrolment of patients for the study is shown in Figure 1.
14	205	The study recruited 300 patients, and 292 were included in the analysis. Five patients
15 16	206	were excluded because the blood samples for MR-proADM were taken more than 12
17 18	207	hours from baseline NEWS assessment; 3 patients were excluded from the primary
19	208	outcome due to missing follow up NEWS scores.
20 21		
22 23	209	Patient characteristics
24	210	Patient demographics and mean biomarker levels for each covariate are reported in
25 26	211	Table 1. The cohort was evenly divided in gender and had a mean age of 63 years and
27	212	mean NEWS on admission of 3, with the majority of patients having NEWS score of 2.
28 29	213	COPD or HF were present in 28%, and 25% had other comorbidities.
30 31	214	
32		
33 34		
35 36		
37		
38 39		
40		
41 42		
43 44		
45		
46 47		
48 49		
50		
51 52		
53		
54 55		
56 57		
58		
59 60		Page 9 of 23. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Prognostic accuracy of MR-proADM in emergency departments

Table 1. Characteristics of the study population, classified by Outcome 1 (*Acuity Increase*), Outcome 2 (*Deterioration Event*) and All

216 patients. Data are presented as number (no) and percentages (%) for counts, or mean and (standard deviation, SD) for continuous

normally distributed data, or [25th; 50th; 75th percentile] for continuous non-normally distributed data.

	Outcome 1: Acuity Increase		Outcome 2: Deter	Outcome 2: Deterioration Event		
	Present (e = 84)	Absent	Present (e2 = 32)	Absent	(n = 292)	
Age (mean years, SD)	65 (17)	62 (21)	63 (14)	63 (20)	63 (20)	
Gender (no. females, %)	41 (49%)	107 (51%)	15 (47%)	133 (51%)	148 (51%)	
NEWS = 2 (no., %)	34 (40%)	82 (40%)	12 (38%)	104 (40%)	116 (40%)	
NEWS = 3 (no., %)	26 (31%)	59 (28%)	9 (28%)	76 (29%)	85 (29%)	
NEWS = 4 (no., %)	11 (13%)	43 (21%)	4 (13%)	50 (19%)	54 (18%)	
NEWS = 5 (no., %)	13 (15%)	24 (12%)	7 (22%)	30 (12%)	37 (13%)	
MR-proADM (mean nmol/l, SD)	1.50 (1.4) [0.72, 1.12, 1.79]	1.19 (0.9) [0.68, 0.93, 1.28]	1.89 (2.0) [0.93, 1.13, 1.95]	1.20 (0.9) [0.68, 0.93, 1.39]	1.28 (1.1) [0.68, 0.97, 1.48]	
CRP (mg/l)	59 (79) [5, 22, 80]	42 (70) [4, 13, 41]	61 (90) [7, 23, 67]	45 (71) [4, 16, 51]	47 (73) [4, 17, 54]	
WBC (x10 ⁹ /l)	12 (5) [9, 10, 14]	11 (5) [8, 10, 14]	12 (4) [9, 12, 15]	11 (5) [8, 10, 14]	11 (5) [8, 10, 14]	
COPD/HF (no, %)*	33 (39%)	46 (22%)	12 (38%)	67 (26%)	79 (28%)	
Other comorbidities (no., %)	17 (20%)	55 (26%)	15 (47%)	57 (22%)	72 (25%)	
<i>Length of Stay</i> (hrs)	168 (196) [63, 110, 194]	137 (176) [26, 68, 176]	173 (172) [59, 106, 259]	143 (172) [33, 72, 176]	146 (182) [35, 77, 182]	
Length of Stay in MAU (hrs)	31 (19) [17, 25, 43]	24 (16) [13, 21, 30]	27 (17) [18, 23, 35]	26 (17) [15, 22, 31]	26 (17) [15, 22, 31]	
Monitored beds (no, %)	31 (37%)	58 (27%)	11 (34%)	78 (30%)	89 (30%)	

Page 10 of 23

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

Page	11	of	35
------	----	----	----

	Outcome 1: Acuity In	ncrease	Outcome 2: Deteriora	tion Event	All patients		
	Present (e = 84)	Absent	Present (e2 = 32)	Absent	(n = 292)		
Deterioration time (hrs)	15 (13) [5, 9, 21]	N/A	170 (226) [19, 33, 301]	N/A			
* for COPD: e = number with A	<i>cuity Increase</i> = 82; e2 = number v	with Deterioration	<i>n Event = 29;</i> n = total numbe	er of patients = 282			
Deterior addit tille (iffs) [5,9,21] N/A [19,33,301] N/A * for COPD: e = number with Acuity Increase = 82; e2 = number with Deterioration Event = 29; n = total number of patients = 282 3							
Page 11 of 23							

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open

Dragmastics	a a sur a f N	AR-proADM in	am ang an ar d	mantmanta
Prognostic a	iccuracy of N	ик-огоарм ш	emergency de	enartments
		P		- p

Table 2. Criteria met by patients classified with an *Acuity Increase* or *Deterioration*

221 Event.

Criterion for deterioration	Acuity Increase (e = 84)	Deterioration Event (e2 = 32)
NEWS (no, %)	81 (96.4%)	N/A
ICU transfer (no, %)	1 (1.2%)	4 (12.5%)
Death (no, %)	0 (0%)	6 (18.8%)
Readmission (no, %)	2 (2.4%)	22 (68.7%)

223 The study population was homogenous across *Acuity Increase* and No *Acuity Increase*

224 outcomes in terms of gender, age, and NEWS on admission. Table 2 shows the

225 frequencies of criteria determining *Acuity Increase* and *Deterioration Event*. Notably,

around 95% of *Acuity Increases* were the result of an increase in NEWS score, while

227 readmission was the reason for around 70% of *Deterioration Events*.

Patients who experienced *Acuity Increase* had higher MR-proADM and CRP levels at
admission, and longer *Length of Stay* in the hospital and in the MAU.

230 The prevalence of *Acuity Increase* was 29% (somewhat higher than the anticipated

231 20%). The prevalence of *Deterioration Events* was 11%. The numbers of events

232 provided sufficient statistical power to assess statistical significance for the primary

233 outcome, *Acuity Increase*, but not for the secondary outcome, *Deterioration Event*.

234 Accuracy of MR-proADM for predicting Acuity Increase

- 235 Potentially useful predictors with univariate analysis of *Acuity Increase* were MR-
 - 236 proADM (OR = 1.27, 95% CI 1.02, 1.62; p = 0.037), Age² (OR = 1.00, 95% CI 0.99, 1.00; p
- 237 = 0.023) and the presence of COPD or HF (OR = 2.25, 95% CI1.30, 3.91; p = 0.004;
- 238 Supplementary Figure s1). The prognostic accuracy of CRP, WBC and NEWS did not
- reach the threshold of significance (p = 0.88, p = 0.090, Table 3, and p=0.416, Table 4,
 respectively).

BMJ Open

- **Table 3.** Univariate regression analyses for predicting the three outcomes of interest:
 - 243 Acuity Increase, Deterioration Event, and Length of Stay. Analyses for the NEWS score as
 - a predictor are shown in Table 4.

	Beta	CI	Odds Ratio (CI)	p-value			
Acuity Increase: univariate logistic regressions (n = 292, e = 84)							
MR-proADM	0.24	-0.02, 0.48	1.27 (1.02, 1.62)	0.037			
CRP	0.003	-0.0005, 0.0063	1.00 (1.00, 1.01)	0.088			
WBC	0.04	-0.008, 0.094	1.05 (1.00, 1.10)	0.09			
Gender	0.14	-0.38, 0.65	1.15 (0.69, 1.92)	0.684			
Age	0.1	0.019, 0.1925	1.11 (1.02, 1.21)	0.023			
Age ²	-0.0008	-0.0016, -0.0001	1.00 (0.99, 1.00)				
Other Comorbidities	-0.32	-0.96, 0.28	0.72 (0.38, 1.32)	0.267			
COPD/HF*	0.81	0.26, 1.36	2.25 (1.30, 3.91)	0.004			
Deterioration Event: un	ivariate logis	tic regressions (n = 2	92, e2 = 32)				
MR-proADM	0.37	0.11, 0.64	1.44 (1.12, 1.90)	0.006			
CRP	0.003	-0.002, 0.01	1.00 (1.00, 1.01)	0.255			
WBC	0.02	-0.05, 0.09	1.02 (0.95, 1.10)	0.506			
Gender	0.17	-0.57, 0.92	1.19 (0.57, 2.50)	0.648			
Age	0.21	0.06, 0.40	1.23 (1.06, 1.49)	0.013			
Age ²	-0.002	-0.003, -0.001	1.00 (1.00, 1.00)				
Other Comorbidities	1.14	0.38, 1.90	3.14 (1.47, 6.69)	0.003			
COPD/HF*	0.67	-0.14, 1.46	1.96 (0.87, 4.29)	0.095			
Length of Stay: simple	inear regress	sions (n = 292, e = 84,	e2 = 32)				
MR-proADM	0.7	0.49, 0.92	N/A	< 0.0001			
CRP	0.05	-0.05, 0.15	N/A	0.368			
WBC	-0.06	-0.38, 0.27	N/A	0.73			
Gender	0.08	-0.04, 0.20	N/A	0.18			
Age	0.007	0.004, 0.010	N/A	< 0.0001			
Other Comorbidities	0.18	0.05, 0.32	N/A	0.009			
COPD/HF*	0.07	-0.07, 0.21	N/A	0.318			

Key: n = total number of cases; e = number of *Acuity Increases*; e_2 = number of *Deterioration Events*; CI = 95% confidence interval * n = 282, e = 82, e2 = 29

Prognostic accuracy of MR-proADM in emergency departments

- **Table 4.** Multivariable regression analyses for the outcomes of interest: *Acuity Increase*,
- *Deterioration Event, Length of Stay* (Outcomes 1, 2, and 3 respectively) with NEWS
- 248 comparator group. Predictor set *a*. includes only the NEWS score as a predictor;
 - 249 Predictor set *b.* includes MR-proADM and NEWS scores; Predictor set *c.* includes MR-
- 250 proADM, NEWS scores, and other significant predictors and interactions.

		Beta	CI	Odds Ratio (CI)	p-value				
Acuity Increase: multivariate logistic regressions									
Predictor set a	NEWS 3	0.06	-0.55, 0.67	1.06 (0.57, 1.95)	0.416				
n = 292 e = 84	NEWS 4	-0.48	-1.29, 0.27	0.62 (0.27, 1.31)					
$e^{2} = 32$	NEWS 5	0.27	-0.54, 1.04	1.31 (0.58, 2.84)					
Predictor set b	NEWS 3	0.03	-0.59, 0.65	1.03 (0.56, 1.91)	0.247				
n = 292 e = 84	NEWS 4	-0.53	-1.35, 0.23	0.59 (0.26, 1.26)					
$e^2 = 32$	NEWS 5	0.18	-0.63, 0.97	1.20 (0.53, 2.64)					
	MR-proADM	0.24	0.02, 0.49	1.28 (1.02, 1.63)	0.039				
Predictor set c	NEWS 3	-0.11	-0.76, 0.54	0.90 (0.47, 1.71)	0.221				
n = 282 e = 82	NEWS 4	-0.89	-1.77, -0.08	0.41 (0.17, 0.93)					
e2 = 29	NEWS 5	0.09	-0.77, 0.91	1.09 (0.46, 2.50)					
	MR-proADM	0.41	0.13, 0.76	1.51 (1.14, 2.14)	0.01				
	COPD/HF	1.81	0.80, 2.85	6.08 (2.23, 17.35)	0.001				
	MR- proADM*COPD/HF	-0.71	-1.40, -0.10	0.49 (0.25, 0.91)	0.03				
Deterioration Ev	<i>ent</i> : multivariate log	gistic reg	ressions						
Predictor set a	NEWS 3	0.03	-0.92, 0.94	1.03 (0.40, 2.55)	0.512				
n = 292 e = 84	NEWS 4	-0.37	-1.68, 0.74	0.69 (0.19, 2.10)					
$e^{2} = 32$	NEWS 5	0.7	-0.36, 1.70	2.02 (0.70, 5.50)					
Predictor set b	NEWS 3	-0.01	-0.97, 0.92	0.99 (0.38, 2.51)	0.564				
n = 292	NEWS 4	-0.43	-1.76, 0.70	0.65 (0.17, 2.02)					
e = 84 e2 = 32	NEWS 5	0.6	-0.49, 1.62	1.81 (0.61, 5.05)					
	MR-proADM	0.36	0.10, 0.64	1.43 (1.11, 1.89)	0.007				
Predictor set c	NEWS 3	0.16	-0.83, 1.12	1.17 (0.44, 3.07)	0.389				
n = 282 e = 82	NEWS 4	-0.49	-1.86, 0.69	0.62 (0.16, 2.00)					
e2 = 29	NEWS 5	0.69	-0.44, 1.76	1.99 (0.64, 5.81)					
	MR-proADM	0.32	0.02, 0.64	1.37 (1.02, 1.89)	0.044				

		Beta	CI	Odds Ratio (CI)	p-value
	Other comorbidities	0.94	0.10, 1.77	2.56 (1.10, 5.85)	0.026
	Age	0.21	0.06, 0.41	1.23 (1.06, 1.50)	0.011
	Age ²	-0.002	-0.003, - 0.001	1.00 (1.00, 1.00)	
Length of Stay: n	nultiple linear regre	ssions			
Predictor set a	NEWS 3	-0.07	-0.21, 0.08	N/A	0.052
n = 292 e = 84	NEWS 4	0.07	-0.10, 0.24	N/A	
$e^{2} = 32$	NEWS 5	0.21	0.01, 0.40	N/A	
Predictor set b	NEWS 3	-0.1	-0.24, 0.04	N/A	0.033
n = 292 e = 84	NEWS 4	0.05	-0.11, 0.21	N/A	
$e^2 = 32$	NEWS 5	0.14	-0.04, 0.32	N/A	
	MR-proADM	0.69	0.48, 0.91	N/A	< 0.0001
Predictor set c	NEWS 3	-0.12	-0.25, 0.02	N/A	0.031
n = 282 e = 82	NEWS 4	0.04	-0.11, 0.20	N/A	
$e^2 = 62$ $e^2 = 29$	NEWS 5	0.14	-0.04, 0.32	N/A	
	MR-proADM	0.55	0.31, 0.80	N/A	< 0.0001
	Age	0.004	0, 0.007	N/A	0.027

Prognostic accuracy of MR-proADM in emergency departments

The prognostic accuracy for Acuity Increase of NEWS on its own was not significant and limited (AUC 0.55, 95% CI 0.48, 0.62), but when MR-proADM was included as an additional predictor, the accuracy of the model increased (AUC 0.61, 95% CI 0.54, 0.69; OR = 1.28, 95% CI 1.02, 1.63; p = 0.007) (Tables 4 and 5, Figure 2 panel A), and was statistically significant (p = 0.033 for likelihood ratio, Table 5). When including MR-proADM with NEWS, the reclassification of patients was also significant, especially for the NRI (NRI = 0.3, SE 0.1, p = 0.007; IDI = 0.017, Table 4). The prognostic accuracy of MR-proADM and the additional value it provides to the NEWS score was confirmed for *Deterioration Events* and *Length of Stay* (Tables 4 and 5, and Figure 2 panels B and C).

Table 5. Model comparisons. Outcomes 1, 2, and 3 refer to *Acuity Increase, Deterioration Event*, and *Length of Stay* respectively. The

264 predictors are: *Set a* NEWS score alone; *Set b* NEWS score and MR-proADM; *Set c* NEWS score, MR-proADM, and other significant

265 predictors and interactions detailed in Table 3.

	AIC	Deviance	AUC (CI) or R² for linear regression	LR, (df) p-value	NRI (se), p- value	IDI (se), p-value
Acuity Increase: logistic regre	essions	3				
Outcome 1 - predictor set <i>a</i> .	348	356	0.55 (0.48, 0.62)			
Outcome 1 - predictor set b.	343	353	0.61 (0.54, 0.69)	5 (1), 0.033	0.3 (0.1), 0.007	0.017 (0.009), 0.058
Outcome 1 - predictor set <i>c</i> .	317	331	0.69 (0.63, 0.76)	14 (2), 0.001*	0.4 (0.1), 0.0004*	0.05 (0.01),0.0009*
Deterioration Event: logistic	regress	sions				
Outcome 2 - predictor set <i>a</i> .	199	207	0.57 (0.47, 0.68)			
Outcome 2 - predictor set <i>b</i> .	192	202	0.65 (0.54, 0.76)	7 (1), 0.007	0.4 (0.2), 0.003	0.04 (0.02), 0.10
Outcome 2 - predictor set <i>c</i> .	177	193	0.73 (0.63, 0.84)	15 (3), 0.0019*	0.5 (0.2), 0.012*	0.06 (0.02), 0.0004*
Length of Stay: linear regress	ions (l	LR)				
Outcome 3 - predictor set <i>a</i> .	77	-381	0.03			
Outcome 3 - predictor set <i>b</i> .	68	-417	0.14	9 (1), <0.001		
Outcome 3 - predictor set <i>c</i> .	67	-420	0.16	1 (1), 0.026		
Note : AIC = Akaike information criterion; AUC = area under the receiver operating characteristic curve; CI = 95% confidence interval; LR = likelihood ratio; df = degrees of freedom; NRI = net reclassification index; se = standard error; IDI = integrated discrimination improvement. * Comparison is between predictor set b. and c. Since there was a mismatch between the cases for predictor set a. and b. (10 missing values in COPD/HF), in the model with predictors set b. the 10 cases missing in predictor set c. were dropped to allow the comparison.						

Page 16 of 23

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

Page 17 of 35

BMJ Open

1		Prognostic accuracy of MR-proADM in emergency departments
2 3	266	Effect on prognostic accuracy when clinical information is added to
4 5 6	267	the set of predictors
7 8	268	Secondary multivariable modelling evaluated the prognostic accuracy of MR-proADM
9	269	when adjusted for the clinical factors in predictive set <i>c</i> : age, gender, CRP, WBC,
10 11	270	presence of COPD or HF, presence of other comorbidities,
12 13	271	For Acuity Increase, COPD or HF comorbidity status and its interaction with MR-proADM
14	272	level significantly improved the prognostic accuracy of the model: AUC increased from
15 16	273	0.61 (95% CI 0.54, 0.69) to 0.69 (95% CI 0.63, 0.76), likelihood ratio from 4 to 14, and
17 18	274	net reclassification index from 0.3 to 0.4 (Table 5).
19 20	275	For <i>Deterioration Events</i> , the presence of other comorbidities (excluding COPD and HF)
21 22	276	and Age^2 increased the prognostic accuracy of MR-proADM, (Table 4 and 5). The
23	277	prognostic accuracy of <i>Length of Stay</i> (Outcome 3) of MR-proADM is also increased by
24 25 26	278	including <i>Age</i> in the model (Table 4 and 5, Supplementary Figure s2).
27 28	279	Potential confounding effects
29	280	Shorter term outcomes: NEWS and MR-proADM were less accurate in predicting
30 31	281	Acuity Increase within 24 and 12 hours from admission than in predicting Acuity
32 33	282	Increase within 72 hours (Supplementary Tables s1 and s2).
34 35	283	Interval between admission NEWS scoring and blood collection: Because ward
36 37	284	processes did not allow the times of scoring NEWS and collecting blood to be specified
38	285	for research, we assessed for a confounding effect from variation in the timings, but
39 40	286	found no evidence for it (Supplementary Table s3).
41 42	287	Correlations among biomarkers. Diagnostic plots, shown in Supplementary Figures
43 44	288	s2 and s3, show no multicollinearity in the data, no autocorrelation, no
45	289	heteroscedasticity, and no data points that stood out in terms of their influence on
46 47	290	results.
48 49	291	
50 51 52	292	Sensitivity and specificity
53	293	As overall measures of accuracy, sensitivity and specificity were calculated (where
54 55	294	appropriate) for each model using Youden's index. The results are shown in
56 57	_ / 1	
58 59 60		Page 17 of 23 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Prognostic accuracy of MR-proADM in emergency departments

295 Supplementary Table s4. In practice, the trade-off between sensitivity and specificity

- 296 would depend on the type of clinical decision to be made on the result (i.e. "rule-in" or
- 297 "rule out") and this would differ from the approach in Youden's Index, which gives equal
- 298 weight to false positive and false negative results.

299 Internal Validation

300 C-statistic values after correcting for optimistic predictions were: for *Acuity Increase:*

301 predictor set *a*, C-stat=0.53; predictor set b, C-stat=0.59; predictor set *c*, C-stat=0.66. For

Deterioration Events: predictor set a, C-stat=0.52; predictor set b, C-stat=0.61, predictor set c,

303 C-stat=0.68. For *Length of Stay:* predictor set a, R²=0.003; predictor set b, R²=0.12; predictor set
304 c, R²=0.13.

Discussion

306 Accuracy of prediction of deterioration by MR-proADM

This study shows that MR-proADM may be a clinically useful biomarker for predicting deterioration (i.e. Acuity Increase) within 72 hours from admission to hospital in patients with an admission NEWS score of 2 to 5. This contrasts with the performance of the NEWS score, assessed on admission, which did not predict deterioration within 72 hours, as might have been expected from previous evaluations ^{3-5 34}. This discrepancy with previous studies might be explained by differences in selection criteria for patients. Previous research included all patients admitted to ED, but our study selected patients with NEWS between 2 and 5, because a tool to predict deterioration would be most useful in this group.

For most of the observed Acuity Increase events, the reason for classification was an increase in the NEWS score. Because an increase in NEWS score reflects both measurement variation and physiological variation, additional exploratory analyses were carried out to assess the performance of MR-proADM with an operational definition of deterioration, *Deterioration Event*, designed to minimize measurement variation. NEWS on its own had low prognostic accuracy for *Deterioration Events*. However, MR-proADM level, and NEWS score together predicted *Deterioration Events* with an AUC of 0.65. Considering baseline patient characteristics further increased the

Page 19 of 35

60

BMJ Open

1		Prognostic accuracy of MR-proADM in emergency departments
2 3 4	325	Comorbidities and interactions with MR-proADM levels
5	326	MR-proADM levels in people with COPD and/or heart failure are chronically raised and
6 7	327	are not predictive of deterioration. However, in other people whose MR-proADM levels
8 9	328	are not chronically raised, high levels are predictive of Acuity Increase (Supplementary
10	329	Figure s1). Including these comorbidities and their interaction with MR-proADM level
11 12	330	increased the prognostic accuracy of the logistic regression model.
13 14 15	331	Limitations
16 17	332	This study included only patients who were admitted with a NEWS score between 2 and
18	333	5. The prognostic accuracy of the MR-proADM would perhaps have been greater if more
19 20	334	extreme cases had been included. However, patients with NEWS scores more than 5 are
21 22	335	already known to be severely ill and to require close monitoring and/or management at
23	336	higher levels of care.
24 25	337	Internal validation found that the uncorrected C-statistics are optimistic, which implies
26 27	338	that external validation in an independent study would be useful. However, after
28 29	339	correction for optimistic predictions, the study's conclusions remain unchanged.
30 31	340	Interpretations and implications
32 33	341	The significance of MR-proADM in the prognostic models implies that it could provide
34 35	342	additional prognostic information over and above NEWS score.
36 37	343	Secondary analyses suggest that a potentially useful clinical decision aid could be based
38 39	344	on NEWS score, MR-proADM level, and clinical features.
40 41 42	345	Future research and development
43	346	As a growing number of NHS hospitals are implementing the NEWS score on their
44 45	347	clinical information systems, it should be practical to develop a decision aid based on
46 47	348	admission NEWS score, MR-proADM level, and clinical features. Other biomarkers may
48	349	further improve prognostic accuracy for deterioration, for example: lactate ³ ;
49 50	350	peroxiredoxin-4 (Prx4) and copeptin ^{22 35 36} ; and soluble urokinase plasminogen
51 52	351	activator receptor (suPAR) ³⁷ . The feasibility, cost-effectiveness, and acceptability of
53	352	such decision aids needs to be evaluated in further research.
54 55		
56 57		
58		
59		Dage 10 of 22

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

1		Prognostic accuracy of MR-proADM in emergency departments
2 3	353	A rapid point of care test for MR-proADM could facilitate the assessment process and
4 5 6	354	reduce delays in arranging optimal levels of care and intensity of monitoring.
7 8	355	Footnotes
9 10	356	Contributors: AJS, DAP, MP, and DS devised the study; RO, SG, and AJA managed the
11 12	357	project; SG performed the statistical analyses with advice from DS; all authors
13 14	358	contributed to the final manuscript.
15 16	359	Acknowledgements: The authors would like to thank the patients who accepted to be
17	360	part of the study, and the team of research nurses for the data collection: Laura Shewan,
18 19	361	Louise Taylor, Janine Gradwell, Karen Martin, Katherine Cullen, Gerry Jones, Graham
20 21	362	Soulsby, Carmen Scott, and Helen Reed. We also thank the reviewers for their helpful
22 23	363	suggestions and comments.
24 25	364	The NIHR Newcastle In Vitro Diagnostics Co-operative is funded by the NIHR.
26 27	365	Funding: The study was funded by B·R·A·H·M·S GmbH
28 29	366	Competing interests: None declared.
30 31	367	Ethics and governance approvals: The study was approved by the Newcastle & North
32	368	Tyneside Research Ethics Committee (15/NE/0120), and by the R&D Committee of the
33 34 35	369	Newcastle upon Tyne Hospitals NHS foundation Trust (reference number 7495).
36 37	370	Provenance and peer review Not commissioned; externally peer reviewed.
38 39	371	Data sharing statement No additional data are available
40 41	372	References
41 42 43	373	
44	374	1. Royal College of Physicians of London. National early warning score (NEWS): standardising the
45 46	375	assessment of acute-illness severity in the NHS—report of a working party London, 2012.
47 48	376 377	 McGinley A, Pearse RM. A national early warning score for acutely ill patients. BMJ : British Medical Journal 2012;345.
49 50 51 52	378 379 380	3. Jo S, Yoon J, Lee JB, et al. Predictive value of the National Early Warning Score–Lactate for mortality and the need for critical care among general emergency department patients. Journal of Critical Care 2016; 36 :60-68.
53 54 55 56 57	381 382 383	4. Smith GB, Prytherch DR, Meredith P, et al. The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death. Resuscitation 2013;84(4):465-70.
58 59 60		Page 20 of 23 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		Prognostic accuracy of MR-proADM in emergency departments
3 4 5	384 385 386	 Smith ME, Chiovaro JC, O'Neil M, et al. Early warning system scores for clinical deterioration in hospitalized patients: a systematic review. Annals of the American Thoracic Society 2014;11(9):1454-65.
6 7 8	387 388	6. Teasdale GM. National early warning score (NEWS) is not suitable for all patients. BMJ : British Medical Journal 2012; 345 .
9 10 11 12	389 390 391	 Eccles SR, Subbe C, Hancock D, et al. CREWS: Improving specificity whilst maintaining sensitivity of the National Early Warning Score in patients with chronic hypoxaemia. Resuscitation 2014;85(1):109-11.
12 13 14	392 393	8. Badriyah T, Briggs JS, Meredith P, et al. Decision-tree early warning score (DTEWS) validates the design of the National Early Warning Score (NEWS). Resuscitation 2014; 85 (3):418-23.
15 16 17	394 395	9. Abbott TE, Vaid N, Ip D, et al. A single-centre observational cohort study of admission National Early Warning Score (NEWS). Resuscitation 2015; 92 :89-93.
18 19	396 397	10. Corfield AR, Lees F, Zealley I, et al. Utility of a single early warning score in patients with sepsis in the emergency department. Emergency medicine journal : EMJ 2014; 31 (6):482-7.
20 21 22 23 24	398 399 400 401	11. Bilben B, Grandal L, Søvik S. National Early Warning Score (NEWS) as an emergency department predictor of disease severity and 90-day survival in the acutely dyspneic patient – a prospective observational study. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 2016; 24 :80.
25 26 27 28	402 403 404	12. Valenzuela-Sanchez F, Valenzuela-Mendez B, Rodriguez-Gutierrez JF, et al. New role of biomarkers: mid-regional pro-adrenomedullin, the biomarker of organ failure. Annals of translational medicine 2016;4(17):329.
29 30	405 406	13. Stokes NR, Dietz BW, Liang JJ. Cardiopulmonary laboratory biomarkers in the evaluation of acute dyspnea. Open access emergency medicine : OAEM 2016; 8 :35-45.
31 32 33 34	407 408 409	14. Sinning C, Zengin E, Zeller T, et al. Candidate biomarkers in heart failure with reduced and preserved ejection fraction. Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals 2015; 20 (4):258-65.
35 36 37	410 411 412	15. Kutz A, Hausfater P, Amin D, et al. The TRIAGE-ProADM Score for an Early Risk Stratification of Medical Patients in the Emergency Department - Development Based on a Multi-National, Prospective, Observational Study. PloS one 2016;11(12).
38 39 40 41	413 414 415	16. Albrich WC, Dusemund F, Ruegger K, et al. Enhancement of CURB65 score with proadrenomedullin (CURB65-A) for outcome prediction in lower respiratory tract infections: derivation of a clinical algorithm. BMC infectious diseases 2011;11:112.
42 43 44	416 417	17. Lopez J, Martinez A. Cell and molecular biology of the multifunctional peptide, adrenomedullin. International review of cytology 2002; 221 :1-92.
45 46 47	418 419 420	18. Serrano-Ponz M, Rodrigo-Gasque C, Siles E, et al. Temporal profiles of blood pressure, circulating nitric oxide, and adrenomedullin as predictors of clinical outcome in acute ischemic stroke patients. Molecular medicine reports 2016; 13 (5):3724-34.
48 49 50	421 422	19. Zudaire E, Portal-Nunez S, Cuttitta F. The central role of adrenomedullin in host defense. Journal of leukocyte biology 2006; 80 (2):237-44.
51 52	423 424	20. Zuur-Telgen MC, Brusse-Keizer MG, Vandervalk PD, et al. Stable state MR-proadrenomedullin level is a strong predictor for mortality in COPD patients. Chest 2013.
53 54 55 56	425 426 427	21. Pedowska-Wloszek J, Kostrubiec M, Kurnicka K, et al. Midregional proadrenomedullin (MR- proADM) in the risk stratification of patients with acute pulmonary embolism. Thrombosis research 2013; 132 (5):506-10.
57 58 59 60		Page 21 of 23 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		Prognostic accuracy of MR-proADM in emergency departments
2 3 4 5 6	428 429 430 431	22. Nickel CH, Messmer AS, Geigy N, et al. Stress markers predict mortality in patients with nonspecific complaints presenting to the emergency department and may be a useful risk stratification tool to support disposition planning. Academic emergency medicine : official journal of the Society for Academic Emergency Medicine 2013; 20 (7):670-9.
7 8 9 10	432 433 434	23. Landman GW, van Dijk PR, Drion I, et al. Midregional fragment of proadrenomedullin, new-onset albuminuria, and cardiovascular and all-cause mortality in patients with type 2 diabetes (ZODIAC-30). Diabetes care 2014; 37 (3):839-45.
11 12 13 14	435 436 437	24. Funke-Kaiser A, Mann K, Colquhoun D, et al. Midregional proadrenomedullin and its change predicts recurrent major coronary events and heart failure in stable coronary heart disease patients: the LIPID study. International journal of cardiology 2014; 172 (2):411-8.
14 15 16	438 439	 Gaggin HK, Januzzi JL, Jr. Biomarkers and diagnostics in heart failure. Biochimica et biophysica acta 2013;1832(12):2442-50.
17 18 19 20	440 441 442	26. Vigue B, Leblanc PE, Moati F, et al. Mid-regional pro-adrenomedullin (MR-proADM), a marker of positive fluid balance in critically ill patients: results of the ENVOL study. Critical care (London, England) 2016;20(1):363.
21 22	443 444	27. Tzikas S, Keller T, Ojeda FM, et al. MR-proANP and MR-proADM for risk stratification of patients with acute chest pain. Heart (British Cardiac Society) 2013; 99 (6):388-95.
23 24 25	445 446	28. Peduzzi P, Concato J, Kemper E, et al. A simulation study of the number of events per variable in logistic regression analysis. Journal of clinical epidemiology 1996; 49 (12):1373-9.
26 27 28 29 30 31 32 33	447 448 449	29. van Smeden M, de Groot JAH, Moons KGM, et al. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis. BMC Medical Research Methodology 2016; 16 (1):163.
	450 451 452 453	30. Travaglino F, Russo V, De Berardinis B, et al. Thirty and ninety days mortality predictive value of admission and in-hospital procalcitonin and mid-regional pro-adrenomedullin testing in patients with dyspnea. Results from the VERyfing DYspnea trial. The American journal of emergency medicine 2014; 32 (4):334-41.
34 35 36	454 455	31. R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria.: R Foundation for Statistical Computing, 2011.
37 38 39	456 457 458	32. Pencina MJ, D'Agostino RB, Sr., D'Agostino RB, Jr., et al. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Statistics in medicine 2008; 27 (2):157-72; discussion 207-12.
40 41 42 43	459 460 461	33. Steyerberg EW, Vedder MM, Leening MJ, et al. Graphical assessment of incremental value of novel markers in prediction models: From statistical to decision analytical perspectives. Biometrical journal Biometrische Zeitschrift 2015; 57 (4):556-70.
44 45	462 463	34. Alam N, Vegting IL, Houben E, et al. Exploring the performance of the National Early Warning Score (NEWS) in a European emergency department. Resuscitation 2015; 90 :111-5.
46 47 48 49 50 51 52 53	464 465 466 467	35. Nickel CH, Ruedinger J, Misch F, et al. Copeptin and peroxiredoxin-4 independently predict mortality in patients with nonspecific complaints presenting to the emergency department. Academic emergency medicine : official journal of the Society for Academic Emergency Medicine 2011; 18 (8):851-9.
	468 469	36. Iversen K, Gotze JP, Dalsgaard M, et al. Risk stratification in emergency patients by copeptin. BMC medicine 2014; 12 :80.
54 55 56 57	470 471 472	37. Rasmussen LJ, Ladelund S, Haupt TH, et al. Soluble urokinase plasminogen activator receptor (suPAR) in acute care: a strong marker of disease presence and severity, readmission and mortality. A retrospective cohort study. Emergency medicine journal : EMJ 2016.
58 59 60		Page 22 of 23 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open

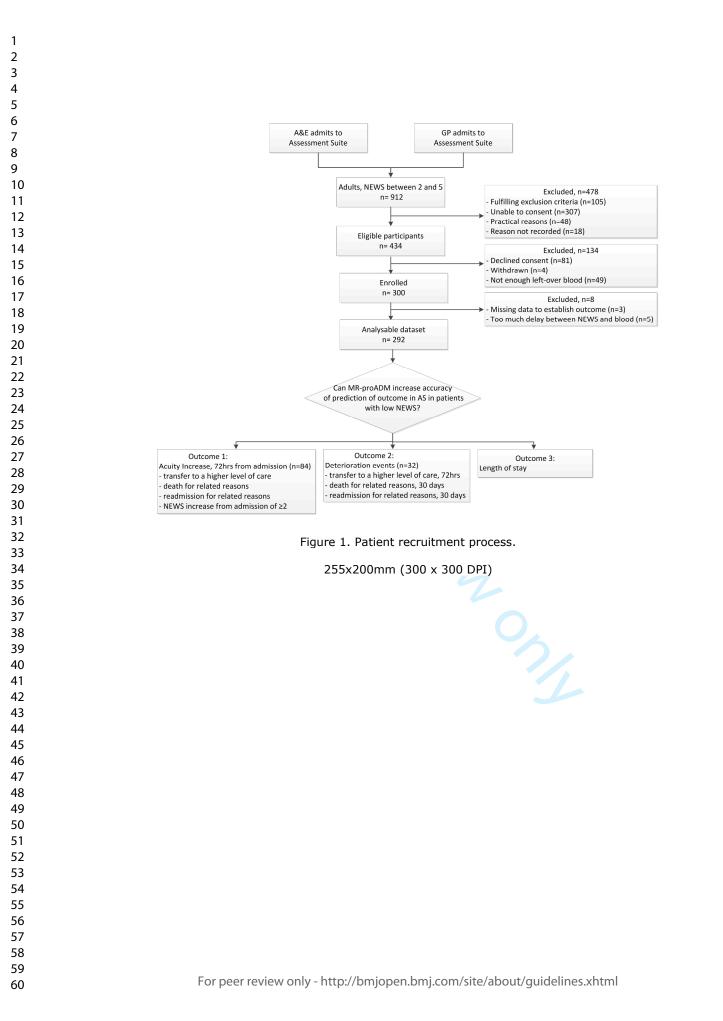

Prognostic accuracy of MR-proADM in emergency departments

Figure legends

Figure 1. Patient recruitment process.

- **Figure 2. Panel A.** Prognostic accuracy for *Acuity Increase*; predictor set *a*: NEWS;
 - predictors set *b*: NEWS, MR-proADM; predictor set c: NEWS, MR-proADM, COPD/HF,
- up fo. M; predic. M and COPD/HI ation Event; predictor. . Panel C. Length of Stay pro interaction between MR-proADM and COPD/HF. Panel B. Comparisons as for panel A
- but for predicting a *Deterioration Event*; predictor set *c*: NEWS score, MR-proADM level,
- Age², other comorbidities. Panel C. Length of Stay predicted by MR-proADM level.

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

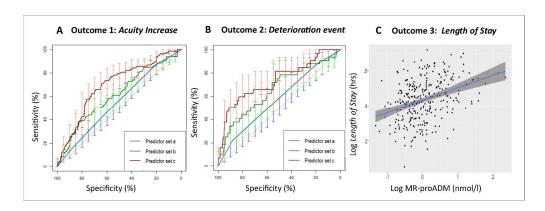


Figure 2. Panel A. Prognostic accuracy for Acuity Increase; predictor set a: NEWS; predictors set b: NEWS, MR-proADM; predictor set c: NEWS, MR-proADM, COPD/HF, interaction between MR-proADM and COPD/HF. Panel B. Comparisons as for panel A but for predicting a Deterioration Event; predictor set c: NEWS score, MR-proADM level, Age2, other comorbidities. Panel C. Length of Stay predicted by MR-proADM level.

Link text : Figure 2

320x118mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Supplementary information for Graziadio et al, 2018

Supplementary information for *Can mid-regional pro-adrenomedullin (MR-proADM) increase* the prognostic accuracy of NEWS in predicting deterioration in patients admitted to hospital with mild to moderately severe illness? A prospective single-centre observational study. Graziadio et al, 2018

Table of Contents

Additional information on Methods	2
NEWS as a predictor of deterioration in patients with mild to moderately severe illness	2
Operational definitions of deterioration	2
Predictors of deterioration for statistical modelling	3
Analytical data exploration	3
Visual data exploration and interaction between MR-proADM and COPD/HF	3
Interaction between MR-proADM and COPD/HF	3
Relationship between Length of Stay and Age	4
Checking for multicollinearity and autocorrelation	5
Diagnostic plots for length of stay analysis	6
Analyses of shorter term outcomes	6
Analyses of time-lag effect between news assessment and blood collection for assessment of	
MR-proADM levels	
Estimation of sensitivities and specificities	8

Additional information on Methods

NEWS as a predictor of deterioration in patients with mild to moderately severe illness

Operational definitions of deterioration

In the original validation of NEWS, about 2% of the population had the combined outcome of cardiac arrest, unanticipated ICU admission, or death — each within 24 hours [Smith 2013]. Furthermore, the proportions for each of the three individual outcomes and the composite outcomes increased monotonically through the range of NEWS scores.

Thus, as designed in its development, a NEWS score between 2 and 5 defines a population at low risk of cardiac arrest within 24 hours, death within 24 hours, or ICU admission within 24 hours.

However, a clinically important proportion of patients admitted to A&E or Medical Admissions Unit with mild to moderately severe illness (NEWS scores between 2 and 5) do deteriorate, and the NEWS score is, by design, not able to identify these patients.

The improvement challenge is to identify biomarkers that will increase the discrimination of low NEWS scores. And the methodological challenge was to develop convenient and effective operational definitions of deterioration from mild/moderately severe.

As NEWS is used to monitor changes in severity of illness, we decided to base our primary operational definition of deterioration on an increase of at least 2 in the NEWS score.

Acuity Increase. The primary outcome was the proportion of patients who, within 72 hours, had any combination of:

- an increase of at least 2 in the NEWS score
- transfer to a higher-dependency bed or monitored area
- death
- for those discharged from hospital, re-admission for medical reasons.

We labelled this measure Acuity Increase.

Because there was concern about variations in NEWS scoring and about using NEWS to predict a change in NEWS (which it is designed not to do in this study's population), we defined two other measures of deterioration, one direct, and the other indirect:

Deterioration Event: the occurrence of one or more of the following:

- transfer to higher level of care within 72 hours from admission;
- death (for reasons related to admission) within 30 days;
- re-admission to hospital (for the same reason as the previous admission) within 30 days from first admission

Length of Stay: the duration in days from admission to discharge or death

Supplementary information for Graziadio et al, 2018

Predictors of deterioration for statistical modelling

In the analyses, we included NEWS as a possible predictor of deterioration. As expected, NEWS scores consistently do not predict deterioration, for all three of our operational definitions.

In line with the original validation of NEWS, we included NEWS as an ordinal variable [Smith 2013].

Analytical data exploration

Univariate logistic regressions were used to investigate whether the relationship between outcome variables (i.e. deterioration measures) and the input variables (NEWS and MR-proADM, age, comorbidities, gender, CRP, and WBC) were linear. If they were not linear, log transformation and squared transformation were applied. If the transformation substantially lowered the AIC, then the transformed variable was used in statistical analyses.

For categorical variables with multiple ordinal levels (i.e. NEWS score), the univariate analysis informed if it was appropriate to include the variable in the model as a continuous or categorical factor. If the coefficients in the univariate models increased linearly, then a linear relationship with the outcome could be assumed, and the variable was included in the model as continuous, otherwise the variable was treated as a categorical factor.

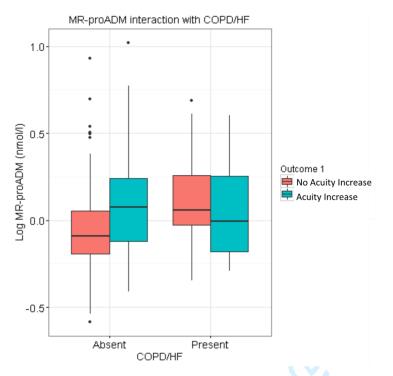
Univariate analyses were also used to identify the variables that affected the outcome significantly. Variables with a probable relationship with the outcome variable (p<0.1) were included in the full model logistic regression.

Visual data exploration and interaction between MR-proADM and COPD/HF

After formatting the datasets, all variables were graphed (bar-charts for categorical variables, and scatterplots/histograms for continuous variables) and visually checked for outliers and distributions that seemed potentially erroneous.

If outliers were identified, the cause(s) were investigated to understand whether they were due to human error or they were genuine data. Outliers were kept in the primary analysis. In a secondary sensitivity analysis, outliers were removed and the same analyses repeated to assess the impact on the results. If the coefficients of the predictors changed substantially, both models would be described. There was one genuine outliner patient with a very high level of MR-proADM compared to the population mean, but its exclusion made no meaningful difference to the results, and the subject was included in the final analysis.

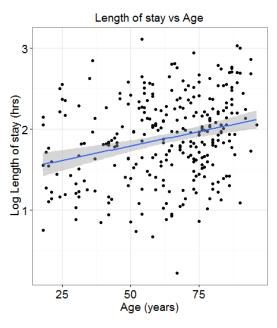
The influence of potentially important factors (such as comorbidities) on the ability of the MRproADM to predict deterioration was explored graphically.


Interaction between MR-proADM and COPD/HF

A significant interaction between MR-proADM and the presence of COPD/HF was discovered, and therefore included in the logistic regression (Outcome 1, predictor set c). The plot is

Supplementary information for Graziadio et al, 2018

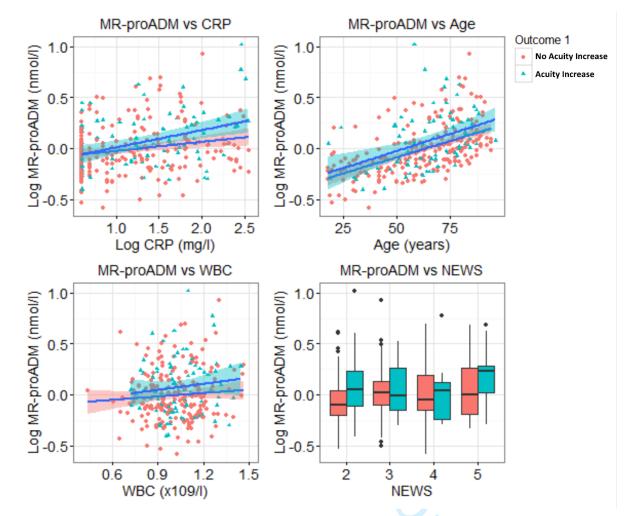
shown in **Supplementary Figure s1**. This interaction showed that the MR-proADM level was increased in patients who deteriorated, but only if they did not have COPD or HF.


There was no suggestion that age; comorbidities: COPH and HF; other comorbidities; CRP; or WBC would improve the accuracy of prediction.

Interaction between MR-proADM and COPD/HF.

Relationship between Length of Stay and Age

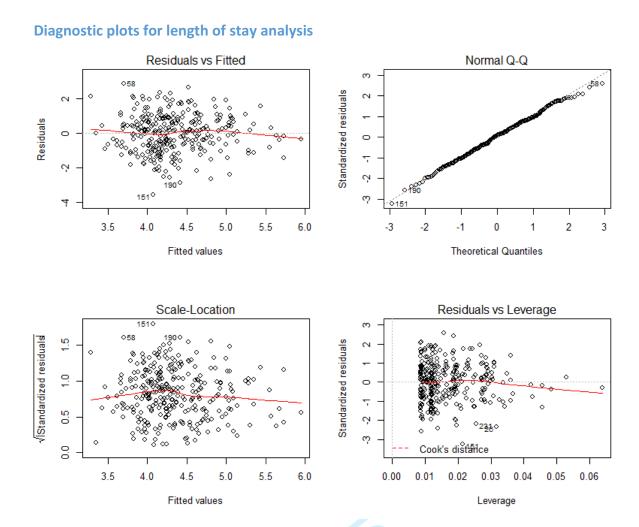
In Supplementary Figure s1 the relationship between Length of Stay and Age is shown.



Supplementary Figure s1. Relationship between Length of Stay and Age.

Supplementary information for Graziadio et al, 2018

Checking for multicollinearity and autocorrelation


Correlations among biomarkers were also investigated through plotting to evaluate multicollinearity and added value of MR-proADM versus other biomarkers. Plots are shown in Supplementary Figure s2.

Supplementary Figure s2. Associations between MR-proADM and CRP, age, WBC, and NEWS.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary information for Graziadio et al, 2018

Supplementary Figure s3. Diagnostic plots for linear regression evaluating the prediction accuracy of MR-proADM for *Length of Stay*.

The diagnostics of the model showed no multicollinearity in the data since all the correlation coefficients among the independent variables were smaller than 0.5. No autocorrelation was found in the data, thus residuals are independent from each other: the Durbin-Watson test estimated d = 2.02 (p = 0.56). Evidence for homoscedasticity was provided graphically by the randomly scattered points and almost horizontal fitted lines in **Supplementary Figure s3**, (Residuals vs fitted plot). Analysis of Cook's distance showed that there were no influential points (d <4/51, **Supplementary Figure s3**).

Analyses of shorter term outcomes

The analyses found that NEWS and MR-proADM had much lower accuracy in predicting *Acuity Increase* at 24 and 12 hours from admission than in predicting *Acuity Increase* at 72 hours as apparent in **Supplementary Table s1**.

Supplementary information for Graziadio et al, 2018

Supplementary Table s1. Logistic regression for NEWS and MR-proADM predicting *Acuity Increase* within 24 hours. AIC = 326; AUC = 0.59.

Covariate	Beta	CI	Odds ratio(CI)	P-value
Intercept	-1.42	—1.70, —0.64	0.42 (0.27, 0.64)	NA
NEWS 3	-0.006	-0.64, 0.71	1.04 (0.53, 2.04)	0.985
NEWS 4	-0.37	-1.58, 0.20	0.52 (0.21, 1.22)	0.368
NEWS 5	0.21	-0.66, 1.01	1.25 (0.52, 2.91)	0.6244
MR-proADM	0.22	-0.06, 0.44	1.20 (0.95, 1.55)	0.0547

Supplementary Table s2. Logistic regression for NEWS and MR-proADM predicting *Acuity Increase* within 12 hours. AIC = 266; AUC = 0.57.

Covariate	Beta	CI	Odds ratio(CI)	P-value
Intercept	-1.83	-2.47, -1.24	0.16 (0.08, 0.29)	NA
NEWS 3	0.29	-0.46, 1.04	1.34 (0.63, 2.85)	0.442
NEWS 4	-0.15	-1.57, 0.76	0.86 (0.31, 2.14)	0.756
NEWS 5	0.29	-0.74, 1.23	1.33 (0.48, 3.42)	0.564
MR-proADM	0.06	-0.24, 0.31	1.06 (0.79, 1.36)	0.656

Analyses of time-lag effect between news assessment and blood collection for assessment of MR-proADM levels

Given the practicalities involved, it was not possible to stipulate the timings of taking the NEWS on admission and collecting the blood sample for MR-proADM testing. It was expected that difference in times would normally be less than 6 hours, but in 44 subjects the time difference was more than 6 hours.

To investigate the impact of time differences being greater than expected, another analysis was carried out excluding subjects for whom the difference was more than 6 hours (time-lag compliant dataset). The hypothesis was that, if the time difference was an important parameter for the predictive accuracy of MR-proADM level, model coefficients would be greater and confidence intervals narrower for the compliant model. This was not the case; results were similar in the full dataset with 292 subjects and in the compliant dataset with 248 subjects (Supplementary Table s3).

Supplementary information for Graziadio et al, 2018

Supplementary Table s3. Logistic regression for NEWS and MR-proADM predicting *Acuity Increase* for the time-lag compliant dataset. AIC = 295; AUC = 0.60.

Covariate	Beta	CI	Odds ratio(CI)	P-value
Intercept	-1.15	-1.70 <i>,</i> -0.64	0.42 (0.27, 0.64)	NA
NEWS 3	-0.04	-0.64, 0.71	1.04 (0.53, 2.04)	0.909
NEWS 4	-0.65	-1.58, 0.20	0.52 (0.21, 1.22)	0.152
NEWS 5	0.22	-0.66, 1.01	1.25 (0.52, 2.91)	0.613
MR-proADM	0.19	-0.06, 0.44	1.20 (0.95 <i>,</i> 1.55)	0.135

Estimation of sensitivities and specificities

For completeness we estimated the sensitivity and specificity for each model in the article (Supplementary Table s4). We used the Youden's index to estimate the cut-off. In the next phase of the MR-proADM evaluation, the cut-off will be re-estimated through a decision analysis informed by the role of the test in the pathway.

Supplementary Table s4. Sensitivity and specificity of the logistic regression models. Predictor set a. was excluded from the table since the AUROC was too low to calculate meaningful diagnostic accuracy data.

Models	Sensitivity	Specificity		
Acuity Increase				
Predictor set b.	0.38 (0.29, 0.49)	0.83 (0.78, 0.88)		
Predictor set c.	0.66 (0.55, 0.76)	0.69 (0.63, 0.76)		
Deterioration Event				
Predictor set b.	0.72 (0.56, 0.88)	0.56 (0.50, 0.62)		
Predictor set c.	0.59 (0.44, 0.75)	0.83 (0.78, 0.87)		

TR/POD^{Page}^{34 of 35}

TRIPOD Checklist: Prediction Model Development

Section/Topic	Item	Checklist Item	Pag
Title and abstract			
Title	1	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.	P1 L1-3
Abstract	2	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	P2 L22-4
Introduction	1		1
Background	3a	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.	P4-5 L52-8
and objectives	3b	Specify the objectives, including whether the study describes the development or	P5
Mathada	00	validation of the model or both.	L82-8
Methods		Describe the study design or source of data (e.g., randomized trial, cohort, or	
Source of data	4a 4b	registry data), separately for the development and validation data sets, if applicable. Specify the key study dates, including start of accrual; end of accrual; and, if	P5 L87 P5 L87-9
	5a	applicable, end of follow-up. Specify key elements of the study setting (e.g., primary care, secondary care,	P5 L87-9
Participants	Eh	general population) including number and location of centres. Describe eligibility criteria for participants.	P5
	5b		L98-1
	5c	Give details of treatments received, if relevant. Clearly define the outcome that is predicted by the prediction model, including how	N/A
Outcome	6a	and when assessed.	P6-1 L128-1 P6
	6b	Report any actions to blind assessment of the outcome to be predicted.	L123-
Predictors	7a	Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.	P4 L54-{ P4-{ L70-{ P5-(L106-
	7b	Report any actions to blind assessment of predictors for the outcome and other predictors.	P6 L123-1
Sample size	8	Explain how the study size was arrived at.	P5 L92-9
Missing data	9	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.	P8-9 L197-2
	10a	Describe how predictors were handled in the analyses.	P7-8 L151-1
Statistical analysis	10b	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.	P7-8 L151- P7 L153-
methods	10d	Specify all measures used to assess model performance and, if relevant, to compare multiple models.	P7-8 L156-1
Risk groups	11	Provide details on how risk groups were created, if done.	N/A
Results			
Participants	13a	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	P10- ⁻ Table
	13b	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.	P10- Table
Model development	14a	Specify the number of participants and outcome events in each analysis.	P10- Table
	14b	If done, report the unadjusted association between each candidate predictor and outcome.	P13- Table
Model specification	15a	Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).	P13- Table
	15b	Explain how to the use the prediction model.	P1: L244-
Model performance	16	Report performance measures (with CIs) for the prediction model.	P13- Table3 P15
Discussion			L244-2
Limitations	18	Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).	P18- L306-3
Interpretation	19b	Give an overall interpretation of the results, considering objectives, limitations, and results from similar studies, and other relevant evidence.	P17- L278-
Implications	20	Discuss the potential clinical use of the model and implications for future research.	P19 L325-3
Other information			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

TRIPOD Checklist: Prediction Model Development

information		protocol, Web calculator, and data sets.	
Funding	22	Give the source of funding and the role of the funders for the present study.	P20 L346

Comments:

1. Item 21: Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.

Supplementary material - with additional information on methods and results - is attached as separate document. Study protocol and data sets will be available in due course, new project website currently under construction.

to been terien only

BMJ Open

Can mid-regional pro-adrenomedullin (MR-proADM) increase the prognostic accuracy of NEWS in predicting deterioration in patients admitted to hospital with mild to moderately severe illness? A prospective single-centre observational study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-020337.R2
Article Type:	Research
Date Submitted by the Author:	16-Aug-2018
Complete List of Authors:	Graziadio, Sara; Newcastle University, Institute of Cellular Medicine; Newcastle Upon Tyne Hospitals NHS Foundation Trust, NIHR Newcastle In Vitro Diagnostics Co-operative Price, David; Newcastle Upon Tyne Hospitals NHS Foundation Trust, Department of Infectious Diseases; Newcastle Upon Tyne Hospitals NHS Foundation Trust, NIHR Newcastle In Vitro Diagnostics Co-operative O'Leary, Rachel; Newcastle Upon Tyne Hospitals NHS Foundation Trust, NIHR Newcastle In Vitro Diagnostics Co-operative; Newcastle University, Institute of Cellular Medicine Stocken, Deborah; University of Leeds, Leeds Institute of Clinical Trials Research; Newcastle University, Institute of Health and Society Power, Michael; Newcastle Upon Tyne Hospitals NHS Foundation Trust, NIHR Newcastle In Vitro Diagnostics Co-operative; Newcastle University , Institute of Cellular Medicine Allen, A; Newcastle University, Institute of Cellular Medicine; Newcastle Upon Tyne Hospitals NHS Foundation Trust, NIHR Newcastle University, Institute of Cellular Medicine Allen, A; Newcastle University, Institute of Cellular Medicine; Newcastle Upon Tyne Hospitals NHS Foundation Trust, NIHR Newcastle In Vitro Diagnostics Co-operative Simpson, A John; Newcastle University, Institute of Cellular Medicine; Newcastle Upon Tyne Hospitals NHS Foundation Trust, NIHR Newcastle In Vitro Diagnostics Co-operative
Primary Subject Heading :	Diagnostics
Secondary Subject Heading:	Evidence based practice, Emergency medicine
Keywords:	INTERNAL MEDICINE, ACCIDENT & EMERGENCY MEDICINE, Adult intensive & critical care < INTENSIVE & CRITICAL CARE

1 2		Prognostic accuracy of MR-proADM in emergency departments
3	1	Title: Can mid-regional pro-adrenomedullin (MR-proADM) increase the prognostic
4 5	2	accuracy of NEWS in predicting deterioration in patients admitted to hospital with mild
6 7	3	to moderately severe illness? A prospective single-centre observational study.
8 9	4	
10 11	5	Authors: Sara Graziadio ^{1, 2} , D. Ashley Price ^{1, 3} , Rachel A. O'Leary ^{1, 2} , Deborah D.
12 13	6	Stocken ^{4, 5} , Michael Power ^{1, 2} , A. Joy Allen ^{1, 2} , A. John Simpson ^{1, 2}
14 15	7	¹ NIHR Newcastle In Vitro Diagnostics Cooperative, Newcastle upon Tyne Hospitals NHS
16 17	8	Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
18 19	9	² Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH,
20 21	10	UK
22	11	³ Department of Infectious Diseases, Newcastle upon Tyne Hospitals NHS Foundation
23 24	12	Trust, Newcastle upon Tyne, NE1 4LP, UK
25 26 27	13	⁴ Leeds Institute of Clinical Trials Research [,] University of Leeds, Leeds, LS2 9JT, UK
28 29	14	⁵ Institute of Health and Society, Newcastle University, Newcastle upon Tyne, NE2 4HH,
30	15	UK
31 32 33	16	
34	17	Corresponding author: Dr Sara Graziadio, NIHR Newcastle In Vitro Diagnostics
35 36	18	Cooperative, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon
37 38	19	Tyne, NE1 4LP, UK. <u>Sara.Graziadio@ncl.ac.uk</u> .
39 40	20	
41 42	21	Word counts
43 44	22	Abstract: 275
45 46	23	Paper (including tables, figures, legends, and references): 6150
47 48		
49		
50 51		
52		
53		
54		
55 56		
50 57		
58		
59		Page 1 of 22 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Prognostic accuracy of MR-proADM in emergency departments

24 Abstract

- Objective To assess the value added to the NEWS score by MR-proADM blood level in
 predicting deterioration in mild to moderately ill people.
- **Design** Prospective observational study
- **Setting** The Medical Admissions Suite of the Royal Victoria Infirmary, Newcastle.
- **Participants** 300 adults with NEWS score between 2 and 5 on admission. Exclusion
- 30 criteria included receiving palliative care, or admitted for social reasons or self-
- 31 harming. Patients were enrolled between September and December 2015, and
- 32 followed-up for 30 days after discharge.
- **Outcome measure** The primary outcome measure was the proportion of patients who,
- 34 within 72 hours, had an *Acuity Increase*, defined as any combination of: an increase of at
- 35 least 2 in the NEWS score; transfer to a higher-dependency bed or monitored area;
- 36 death; or for those discharged from hospital, re-admission for medical reasons.
- **Results** NEWS and MR-proADM together predicted *Acuity Increase* more accurately
 - 38 than NEWS alone, increasing the AUC to 0.61 (95% CI 0.54, 0.69) from 0.55 (95% CI
- 39 0.48, 0.62). When the confounding effects of presence of chronic obstructive pulmonary
- 40 disease or heart failure and interaction with MR-proADM were included, the prognostic
- 41 accuracy further increased the AUC to 0.69 (95% CI 0.63, 0.76).
- 42 Conclusions MR-proADM is potentially a clinically useful biomarker for deterioration
 43 in patients admitted to hospital with a mild to moderately severe acute illness, i.e. with
 44 NEWS score between 2 and 5. As a growing number of NHS hospitals are routinely
 45 recording the NEWS score on their clinical information systems, further research should
 46 assess the practicality and utility of developing a decision aid based on admission NEWS
 47 score, MR-proADM level, and possibly other clinical data and other biomarkers that
 - 48 could further improve prognostic accuracy.
 - 49 Keywords
 - 50 Biochemistry, diagnosis, health services research

•

•

•

•

This is the first study to use rigorous statistical methods to assess the value

added by MR-proADM to the admission NEWS score for predicting clinically

Overall prognostic accuracy might have been greater had more severely ill

in less severely ill patients who could benefit from closer observation.

patients been included, but the aim of this study was to predict deterioration

This was an observational study, and thus could not directly assess the utility

arther va.

Initial evidence for MR-proADM as a biomarker for deterioration appears

Prognostic accuracy of MR-proADM in emergency departments

important deterioration in mild to moderately ill patients.

promising, but requires further validation for clinical utility.

of more accurate prediction of deterioration.

Page 3 of 22 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Prognostic accuracy of MR-proADM in emergency departments

53 Introduction

The National Early Warning Score (NEWS) is recommended for assessing severity of illness in patients presenting in primary or secondary NHS care and for surveillance of patients in hospital ¹². Six physiological parameters (which can be measured at the bedside) are scored: respiratory rate, oxygen saturation, temperature, systolic blood pressure, pulse rate, and level of consciousness. The scores are aggregated, and, if the patient requires oxygen, the total is increased. NEWS predicts death, cardiac arrest, and unplanned intensive care unit (ICU) admission within 24 hours ³⁻⁵. However, NEWS does not identify all patients who turn out to be seriously ill ⁶⁻⁸, and there are also patients whose NEWS score is usually elevated and who do not require the level of observation that the NEWS tool would suggest. For example, people with chronic obstructive pulmonary disease (COPD) or chronic heart failure (HF) have higher baseline NEWS scores than those without these comorbidities. The prognostic accuracy of NEWS for patients presenting to the Emergency Department (ED) has been confirmed in a wide range of severity of illness ^{9 10}, as has its reduced accuracy in people with COPD ¹¹. But, no previous studies of the prognostic accuracy of NEWS in the ED/Medical Admissions Unit (MAU) have focussed on patients admitted with mild to moderately severe illness. Since a clinically important proportion of these patients do deteriorate unexpectedly, improved risk stratification would be useful. Mid-regional pro-adrenomedullin (MR-proADM) is one of several promising biomarkers for severe illness and deterioration ¹²⁻¹⁶. MR-proADM is a precursor of adrenomedullin (ADM), a member of the calcitonin peptide family. ADM is widely expressed and has roles in vasodilation, immune modulation, and metabolic regulation. It is up-regulated in severe infections, inflammation, vasodilation, stimulation of diuresis, increased cardiac output, and stroke ¹⁷⁻¹⁹. ADM has a short half-life, but MR-proADM is more stable and directly reflects ADM concentrations in blood. Both ADM and MR-proADM levels are strongly associated with risk of mortality, regardless of aetiology ²⁰⁻²⁶. In people presenting with acute chest pain, MR-proADM has been reported to improve the Global Registry of Acute Coronary Events risk classification by 41% ²⁷. As with the NEWS score, people with COPD or chronic heart failure have higher baseline levels of MR-proADM.

Page 4 of 22 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		Prognostic accuracy of MR-proADM in emergency departments
2 3	84	The aim of this study was to assess whether the MR-proADM level used alongside the
4	85	NEWS score would improve prediction of deterioration over NEWS score alone in
5 6	86	patients admitted to the MAU with mild to moderately severe illness.
7 8	00	
9	87	Methods
10 11		
12	88	Patient and Public Involvement
13 14	00	Deticute and the multiplication action of figure load in the planning and an ention of
15	89	Patients and the public were not specifically involved in the planning and execution of
16 17	90	this study. However, the NIHR now requires that the research it supports includes
18 10	91	active involvement and engagement with patients and the public.
19 20	92	Study participants and study design
21 22	02	This was a progrative sharestional schort study. Detients wars appelled between
23	93	This was a prospective observational cohort study. Patients were enrolled between
24 25	94	September and December 2015 at the Royal Victoria Infirmary, Newcastle, and
26	95	followed-up for 30 days after discharge. If the patient died within the 30 days of follow
27 28	96	up, this and the cause of death were recorded. Adults admitted to the MAU were
29	97	recruited for the study between 9 am and 4 pm on weekdays.
30 31	98	Sample size was based on a pragmatic recruitment target for a three-month
32 33	99	observational study. A recent unpublished audit conducted in the MAU at the Royal
34	100	Victoria Infirmary found a deterioration rate of 20%. With 300 patients and complete
35 36	101	data collection, 60 events would be anticipated. With this number of events, a
37 38	102	multivariable prediction model could include up to six independent predictors. This is
39	103	based on a widely accepted rule of thumb that models with fewer than ten events per
40 41	104	predictor tend to be over-fitted ²⁸ . However, recent research suggests that the "ten
42 43	105	events per variable" rule of thumb may be optimistic ²⁹ . Because the aim of this study
44	106	was to assess if further research would be indicated, 60 is considered an acceptable
45 46	107	number of events, even if the rule of thumb is optimistic.
47 48	108	Patients were considered eligible for inclusion in the study if their NEWS score on
49 50	109	admission was at least 2 and not greater than 5, and all NEWS parameters were
51	110	recorded. Patients were excluded from the study if they were receiving palliative care,
52 53	111	were admitted for social reasons only, or were self-harming, or overdosing with drugs
54	112	or other substances.
55 56		
57 58		

ш	
BM,	
5	
ð	
n:	
fr	
st	
Du	
blig	
she	
ď	
as	
10	
13	
0/b	
<u>ă</u>	
ę	
en	
-2	
27	
first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded	
20	
ω ω	
2	
ă	
22	
Т	
ğ	
ua	
2	
20	
19	
Ŏ	
n	
oa	
de	
đ	
õ	
n T	
ed from http:/	
p://b	
Ĕ	
joj.	
ĕ	
d.F	
Э.	
8	
Ĕ	
Q	
Ā	
pr.	
_	
<u>°</u>	
20	
24	
à	
ĝ,	
ue:	
st.	
Pro	
ote	
čţ	
ed	
ð	
R	
yqç	
ric	
ŗť	

1		Prognostic accuracy of MR-proADM in emergency departments
2 3	113	All participants provided written informed consent, and the study was approved by the
4 5	114	Newcastle & North Tyneside Research Ethics Committee (15/NE/0120).
6 7 8	115	Recorded data
9	116	Demographic and admission data included: gender, year of birth, reason for admissions,
10 11	117	diagnosis on discharge, and the presence of comorbidities in which baseline MR-
12 13	118	proADM levels are chronically raised: COPD with hypoxia (PaO ₂ <10 kPa) 7 ; HF 30 ; acute
14	119	brain injury ⁶ ; acute coronary syndrome ²⁷ ; acute venous thromboembolism ²¹ ; high
15 16	120	International Normalized Ratio (INR>2); acute kidney injury; electrolyte disturbances
17 18	121	(Na+ <130 or >150 mmol/L; K+ <3.0 or >5.5 mmol/L); hyperglycaemia in type 1
19	122	diabetes (random glucose >10 mmol/L).
20 21	123	The NEWS score was assessed at on admission and over the next 72 hours, and the
22 23	124	scores and assessment times recorded. The 7 clinical parameters used to determine the
24 25	125	NEWS score were recorded for the baseline (admission) assessment only. Baseline
26	126	NEWS scores were used to determine eligibility for this study. Subsequent NEWS scores
27 28	127	were used in the analyses to identify deterioration.
29 30	128	Blood samples were taken at hospital admission for assessment of MR-proADM, C-
31 32	129	Reactive Protein (CRP) and white blood count (WBC).
33 34 35	130	Laboratory tests
36	131	Plasma was obtained from blood samples (collected in ethylenediaminetetraacetic acid,
37 38	132	EDTA) that were no longer clinically required. Plasma was stored in aliquots at –80° C.
39 40	133	MR-proADM was assayed in the on-site Blood Sciences Laboratory using the B R A H M S
41 42	134	Kryptor system according to the manufacturer's instructions.
43 44	135	Blood samples were analysed in batches by personnel blinded with regard to the
45	136	condition and NEWS score of the patient. Nurses who assessed the NEWS score and
46 47	137	healthcare professionals managing patients in the MAU were blinded to MR-proADM
48 49	138	results.
50 51 52	139	Outcome measures
53	140	Outcome measure 1: Acuity Increase. A patient was classified as having an Acuity
54 55 56	141	<i>Increase</i> if one or more of the following occurred within 72 hours from admission:

Page 7 of 34

59

60

1		Prognostic accuracy of MR-proADM in emergency departments
2 3	142	1. transfer to a higher level of care (ICU or high dependency unit)
4 5	143	2. readmission to hospital for reasons related to the initial admission
6	144	3. death for reasons related to the initial admission
7 8	145	4. NEWS score increased by at least two compared to the admission score
9 10	146	Outcome measure 2: Deterioration Event. For most of the observed Acuity Increase
11 12	147	cases the reason for classification was an increase in the NEWS score (Table 1). An
13 14	148	increase in NEWS score reflects both measurement variation and physiological
15	149	variation, so additional exploratory analyses were carried out to assess the performance
16 17	150	of MR-proADM in predicting deterioration. Deterioration Events were classified as the
18 19	151	occurrence of one or more of the following:
20	152	1. transfer to higher level of care within 72 hours from admission;
21 22	153	2. death (for reasons related to the admission) within 30 days;
23 24	154	3. re-admission to hospital (for the same reason as the previous admission) within
25 26	155	30 days from first admission.
27 28	156	Classification based on this definition is unlikely to be subject to clinically important
29	157	measurement variation. This analysis, therefore, should optimise the prognostic
30 31	158	accuracy for events which are both clinically and economically important.
32 33	159	Outcome measure 3: Length of Stay. Length of Stay was defined as the duration (in
34 35	160	days) from admission to discharge or death.
36 37	161	Statistical analysis
38 39	162	All data analyses were performed using the R language, version 3.2.0 ³¹ , with the
40 41	163	support of RStudio, version 0.99.896 (RStudio, Inc). The following R packages were
42 43	164	used: ggplot2, pROC, psych, PredictABEL, Hmisc, rms.
44 45	165	Logistic regression models were compared for their accuracy in predicting
46	166	deterioration outcome measures as pre-specified in an analysis plan. Analyses are
47 48	167	presented as unadjusted parameter estimates of risk (odds ratio (OR), with confidence
49 50	168	intervals (CI)) and estimates adjusted for identified clinical confounding factors. The
51	169	aims of the multivariable analyses were twofold: first, to estimate the effect size and
52 53	170	significance adjusted for other identified influential predictors and interactions; second,
54 55	171	to investigate whether the addition of other predictors improved the goodness of fit and
56	172	accuracy of prediction.
57 58 50		

1		Prognostic accuracy of MR-proADM in emergency departments
2	173	Only complete cases were analysed since missingness was minimal: 10 records without
3 4	173	data on co-morbidities (details in footnote in Table 1).
5 6		
7 8	175	For each measure of deterioration (Acuity Increase, Deterioration Event, and Length of
9	176	<i>Stay</i>), logistic regression models were compared for the following sets of predictor
10 11	177	variables:
12 13	178	<i>Predictor set a.</i> Comparator (base case): NEWS score on admission
14	179	<i>Predictor set b.</i> Primary analysis: NEWS score, MR-proADM
15 16	180	<i>Predictor set c.</i> Secondary analyses: NEWS score and MR-proADM always
17	181	included. Age, gender, CRP, WBC, presence of COPD or HF,
18 19	182	presence of other comorbidities, and interactions between
20 21	183	predictors when appropriate.
22 23	184	Predictors (and the underlying assumption of linearity of their relationship with the
24	185	outcome of interest) were initially investigated through univariate analyses based on
25 26	186	simple log and quadratic functions. Transformations were applied if they improved the
27 28	187	goodness of fit as assessed by the Akaike information criterion (AIC), and were retained
29	188	in the multivariable setting. NEWS was treated as an ordinal variable. We assessed
30 31	189	interactions through visual data exploration without significance testing as the study
32 33	190	was not powered for this. For the multivariable regression models, the set of predictors
34 35	191	was assessed for independence through backward elimination, based on changes in AIC.
36	192	The analysis plan for the secondary outcome of <i>Length of Stay</i> was similar: using
37 38	193	multiple linear regressions based on transformed outcomes to address non-normality.
39 40	194	Dependent and exploratory variables were log-transformed if not normally distributed.
41	195	Normality was assessed by visualizing the data. More details on the methods used are
42 43	196	reported in the online Supplemental Material.
44 45	197	Goodness of fit of logistic regression models was assessed with the C-statistic (which is
46 47	198	the area under the ROC curve, and is used as a measure of discrimination) presented
48	199	with 95% confidence intervals (CI). To assess the value added by including the MR-
49 50	200	proADM level with the NEWS score in predicting deterioration, continuous net
51 52	201	reclassification improvement (NRI) and integrated discrimination improvement (IDI)
53	202	were calculated ^{32 33} .
54 55		
56 57		
58		

Page 8 of 22 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		Prognostic accuracy of MR-proADM in emergency departments
2 3	203	For internal validation of the statistical models the C-statistic was evaluated after
4 5	204	correcting for optimistic predictions through bootstrapping with 10,000 resamples.
6		
7 8	205	Results
9		
10 11	206	Study enrolment
12	207	The process of recruitment and enrolment of patients for the study is shown in Figure 1.
13 14	207	The study recruited 300 patients, and 292 were included in the analysis. Five patients
15 16		
16 17	209	were excluded because the blood samples for MR-proADM were taken more than 12
18 19	210	hours from baseline NEWS assessment; 3 patients were excluded from the primary
20	211	outcome due to missing follow up NEWS scores.
21 22	212	Patient characteristics
23	040	
24 25	213	Patient demographics and mean biomarker levels for each covariate are reported in
26	214	Table 1. The cohort was evenly divided in gender and had a mean age of 63 years and
27 28	215	mean NEWS on admission of 3, with the majority of patients having NEWS score of 2.
29	216	COPD or HF were present in 28%, and 25% had other comorbidities.
30 31	217	
32		
33 34		
35		
36 37		
38		
39 40		
41		
42 43		
44		
45 46		
47 48		
48 49		
50 51		
52		
53 54		
55		
56 57		
58		
59 60		Page 9 of 22 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Prognostic accuracy of MR-proADM in emergency departments

Table 1. Characteristics of the study population, classified by Outcome 1 (*Acuity Increase*), Outcome 2 (*Deterioration Event*) and All

219 patients. Data are presented as number (no) and percentages (%) for counts, or mean and (standard deviation, SD) for continuous

normally distributed data, or [25th; 50th; 75th percentile] for continuous non-normally distributed data.

	Outcome 1: Acuity Increase		Outcome 2: Deter	rioration Event	All patients
	Present (e = 84)	Absent	Present (e2 = 32)	Absent	(n = 292)
Age (mean years, SD)	65 (17)	62 (21)	63 (14)	63 (20)	63 (20)
Gender (no. females, %)	41 (49%)	107 (51%)	15 (47%)	133 (51%)	148 (51%)
NEWS = 2 (no., %)	34 (40%)	82 (40%)	12 (38%)	104 (40%)	116 (40%)
NEWS = 3 (no., %)	26 (31%)	59 (28%)	9 (28%)	76 (29%)	85 (29%)
NEWS = 4 (no., %)	11 (13%)	43 (21%)	4 (13%)	50 (19%)	54 (18%)
NEWS = 5 (no., %)	13 (15%)	24 (12%)	7 (22%)	30 (12%)	37 (13%)
MR-proADM (mean nmol/l, SD)	1.50 (1.4) [0.72, 1.12, 1.79]	1.19 (0.9) [0.68, 0.93, 1.28]	1.89 (2.0) [0.93, 1.13, 1.95]	1.20 (0.9) [0.68, 0.93, 1.39]	1.28 (1.1) [0.68, 0.97, 1.48]
CRP (mg/l)	59 (79) [5, 22, 80]	42 (70) [4, 13, 41]	61 (90) [7, 23, 67]	45 (71) [4, 16, 51]	47 (73) [4, 17, 54]
WBC (x10 ⁹ /l)	12 (5) [9, 10, 14]	11 (5) [8, 10, 14]	12 (4) [9, 12, 15]	11 (5) [8, 10, 14]	11 (5) [8, 10, 14]
COPD/HF (no, %)*	33 (39%)	46 (22%)	12 (38%)	67 (26%)	79 (28%)
Other comorbidities (no., %)	17 (20%)	55 (26%)	15 (47%)	57 (22%)	72 (25%)
Length of Stay (hrs)	168 (196) [63, 110, 194]	137 (176) [26, 68, 176]	173 (172) [59, 106, 259]	143 (172) [33, 72, 176]	146 (182) [35, 77, 182]
Length of Stay in MAU (hrs)	31 (19) [17, 25, 43]	24 (16) [13, 21, 30]	27 (17) [18, 23, 35]	26 (17) [15, 22, 31]	26 (17) [15, 22, 31]
Monitored beds (no, %)	31 (37%)	58 (27%)	11 (34%)	78 (30%)	89 (30%)

Page 10 of 22

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

Page	11	of	34
------	----	----	----

		Outcome 1: Acuity In		Outcome 2: Deteriora	tion Event	All patients			
		Present (e = 84)	Absent	Present (e2 = 32)	Absent	(n = 292)			
Deterioration ti	me (hrs)	15 (13) [5, 9, 21]	N/A	170 (226) [19, 33, 301]	N/A				
* for COPD: e = i	* for COPD: e = number with <i>Acuity Increase</i> = 82; e2 = number with <i>Deterioration Event</i> = 29; n = total number of patients = 282								
Page 11 of 22		15 (13) [5, 9, 21] y Increase = 82; e2 = number w							

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open

Dragmastica	nound on of MD muc	ADM in emergend	donoutro onto
Prognostic ac	CULTACY OF MIR-DIC)ADW IN emergen(v departments.
	<i>foundey</i> of the pro		j aopai monto

Table 2. Criteria met by patients classified with an Acuity Increase or Deterioration

Event.

Criterion for deterioration	Acuity Increase (e = 84)	Deterioration Event (e2 = 32)
NEWS (no, %)	81 (96.4%)	N/A
ICU transfer (no, %)	1 (1.2%)	4 (12.5%)
Death (no, %)	0 (0%)	6 (18.8%)
Readmission (no, %)	2 (2.4%)	22 (68.7%)

The study population was homogenous across Acuity Increase and No Acuity Increase

outcomes in terms of gender, age, and NEWS on admission. Table 2 shows the

frequencies of criteria determining Acuity Increase and Deterioration Event. Notably,

around 95% of Acuity Increases were the result of an increase in NEWS score, while

readmission was the reason for around 70% of Deterioration Events.

- Patients who experienced Acuity Increase had higher MR-proADM and CRP levels at
- admission, and longer *Length of Stay* in the hospital and in the MAU.
- The prevalence of *Acuity Increase* was 29% (somewhat higher than the anticipated
- 20%). The prevalence of *Deterioration Events* was 11%. The numbers of events
- provided sufficient statistical power to assess statistical significance for the primary
- outcome, Acuity Increase, but not for the secondary outcome, Deterioration Event.

Accuracy of MR-proADM for predicting Acuity Increase

- Potentially useful predictors with univariate analysis of Acuity Increase were MR-
 - proADM (OR = 1.27, 95% CI 1.02, 1.62; p = 0.037), Age² (OR = 1.00, 95% CI 0.99, 1.00; p
- = 0.023) and the presence of COPD or HF (OR = 2.25, 95% CI1.30, 3.91; p = 0.004;
- Supplementary Figure s1). The prognostic accuracy of CRP, WBC and NEWS did not
- reach the threshold of significance (p = 0.88, p = 0.090, Table 3, and p=0.416, Table 4, respectively).

BMJ Open

Prognostic accuracy of MR-proADM in emergency departments

- **Table 3.** Univariate regression analyses for predicting the three outcomes of interest:
 - 246 Acuity Increase, Deterioration Event, and Length of Stay. The p-values are for the
 - 247 statistical significance of the corresponding covariate in the related model. Analyses for
 - 248 the NEWS score as a predictor are shown in Table 4.

	Beta	CI	Odds Ratio (CI)	p-value				
<i>Acuity Increase</i> : univariate logistic regressions (n = 292, e = 84)								
MR-proADM	0.24	-0.02, 0.48	1.27 (1.02, 1.62)	0.037				
CRP	0.003	-0.0005, 0.0063	1.00 (1.00, 1.01)	0.088				
WBC	0.04	-0.008, 0.094	1.05 (1.00, 1.10)	0.09				
Gender	0.14	-0.38, 0.65	1.15 (0.69, 1.92)	0.684				
Age	0.1	0.019, 0.1925	1.11 (1.02, 1.21)	0.023				
Age ²	-0.0008	-0.0016, -0.0001	1.00 (0.99, 1.00)					
Other Comorbidities	-0.32	-0.96, 0.28	0.72 (0.38, 1.32)	0.267				
COPD/HF*	0.81	0.26, 1.36	2.25 (1.30, 3.91)	0.004				
Deterioration Event: un	nivariate logis	tic regressions (n = 2	92, e2 = 32)					
MR-proADM	0.37	0.11, 0.64	1.44 (1.12, 1.90)	0.00				
CRP	0.003	-0.002, 0.01	1.00 (1.00, 1.01)	0.25				
WBC	0.02	-0.05, 0.09	1.02 (0.95, 1.10)	0.50				
Gender	0.17	-0.57, 0.92	1.19 (0.57, 2.50)	0.64				
Age	0.21	0.06, 0.40	1.23 (1.06, 1.49)	0.013				
Age ²	-0.002	-0.003, -0.001	1.00 (1.00, 1.00)					
Other Comorbidities	1.14	0.38, 1.90	3.14 (1.47, 6.69)	0.003				
COPD/HF*	0.67	-0.14, 1.46	1.96 (0.87, 4.29)	0.09				
Length of Stay: simple	linear regress	sions (n = 292, e = 84,	e2 = 32)					
MR-proADM	0.7	0.49, 0.92	N/A	< 0.000				
CRP	0.05	-0.05, 0.15	N/A	0.36				
WBC	-0.06	-0.38, 0.27	N/A	0.73				
Gender	0.08	-0.04, 0.20	N/A	0.18				
Age	0.007	0.004, 0.010	N/A	<0.000				
Other Comorbidities	0.18	0.05, 0.32	N/A	0.00				
COPD/HF*	0.07	-0.07, 0.21	N/A	0.31				

* n = 282, e = 82, e2 = 29

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open

Prognostic accuracy of MR-proADM in emergency departments

Table 4. Multivariable regression analyses for the outcomes of interest: *Acuity Increase*,

Deterioration Event, Length of Stay (Outcomes 1, 2, and 3 respectively) with NEWS

252 comparator group. Predictor set *a.* includes only the NEWS score as a predictor;

253 Predictor set *b.* includes MR-proADM and NEWS scores; Predictor set *c.* includes MR-

254 proADM, NEWS scores, and other significant predictors and interactions. . The p-values

are for the statistical significance of the corresponding covariate in the related model.

		Beta	CI	Odds Ratio (CI)	p-value				
Acuity Increase: multivariate logistic regressions									
Predictor set a	NEWS 3	0.06	-0.55, 0.67	1.06 (0.57, 1.95)	0.416				
n = 292 e = 84	NEWS 4	-0.48	-1.29, 0.27	0.62 (0.27, 1.31)					
e = 84 $e^2 = 32$	NEWS 5	0.27	-0.54, 1.04	1.31 (0.58, 2.84)					
Predictor set b	NEWS 3	0.03	-0.59, 0.65	1.03 (0.56, 1.91)	0.247				
n = 292 e = 84	NEWS 4	-0.53	-1.35, 0.23	0.59 (0.26, 1.26)					
e2 = 32	NEWS 5	0.18	-0.63, 0.97	1.20 (0.53, 2.64)					
	MR-proADM	0.24	0.02, 0.49	1.28 (1.02, 1.63)	0.039				
Predictor set c	NEWS 3	-0.11	-0.76, 0.54	0.90 (0.47, 1.71)	0.221				
n = 282 e = 82	NEWS 4	-0.89	-1.77, -0.08	0.41 (0.17, 0.93)					
e2 = 29	NEWS 5	0.09	-0.77, 0.91	1.09 (0.46, 2.50)					
	MR-proADM	0.41	0.13, 0.76	1.51 (1.14, 2.14)	0.01				
	COPD/HF	1.81	0.80, 2.85	6.08 (2.23, 17.35)	0.001				
	MR- proADM*COPD/HF	-0.71	-1.40, -0.10	0.49 (0.25, 0.91)	0.03				
Deterioration Ev	<i>ent</i> : multivariate log	gistic reg	ressions						
Predictor set a	NEWS 3	0.03	-0.92, 0.94	1.03 (0.40, 2.55)	0.512				
n = 292 e = 84	NEWS 4	-0.37	-1.68, 0.74	0.69 (0.19, 2.10)					
e = 04 e2 = 32	NEWS 5	0.7	-0.36, 1.70	2.02 (0.70, 5.50)					
Predictor set b	NEWS 3	-0.01	-0.97, 0.92	0.99 (0.38, 2.51)	0.564				
n = 292 e = 84	NEWS 4	-0.43	-1.76, 0.70	0.65 (0.17, 2.02)					
$e^{2} = 32$	NEWS 5	0.6	-0.49, 1.62	1.81 (0.61, 5.05)					
	MR-proADM	0.36	0.10, 0.64	1.43 (1.11, 1.89)	0.007				

		Beta	CI	Odds Ratio (CI)	p-value
Predictor set c	NEWS 3	0.16	-0.83, 1.12	1.17 (0.44, 3.07)	0.389
n = 282 e = 82	NEWS 4	-0.49	-1.86, 0.69	0.62 (0.16, 2.00)	
e2 = 29	NEWS 5	0.69	-0.44, 1.76	1.99 (0.64, 5.81)	
	MR-proADM	0.32	0.02, 0.64	1.37 (1.02, 1.89)	0.044
	Other comorbidities	0.94	0.10, 1.77	2.56 (1.10, 5.85)	0.026
	Age	0.21	0.06, 0.41	1.23 (1.06, 1.50)	0.011
	Age ²	-0.002	-0.003, - 0.001	1.00 (1.00, 1.00)	
Length of Stay: m	ultiple linear regre	ssions			
Predictor set a	NEWS 3	-0.07	-0.21, 0.08	N/A	0.052
n = 292 e = 84	NEWS 4	0.07	-0.10, 0.24	N/A	
$e^{2} = 32$	NEWS 5	0.21	0.01, 0.40	N/A	
Predictor set b	NEWS 3	-0.1	-0.24, 0.04	N/A	0.033
n = 292 e = 84	NEWS 4	0.05	-0.11, 0.21	N/A	
$e^2 = 32$	NEWS 5	0.14	-0.04, 0.32	N/A	
	MR-proADM	0.69	0.48, 0.91	N/A	<0.0001
Predictor set c	NEWS 3	-0.12	-0.25, 0.02	N/A	0.031
n = 282 e = 82	NEWS 4	0.04	-0.11, 0.20	N/A	
e = 82 e2 = 29	NEWS 5	0.14	-0.04, 0.32	N/A	
	MR-proADM	0.55	0.31, 0.80	N/A	< 0.0001
	Age	0.004	0, 0.007	N/A	0.027

Prognostic accuracy of MR-proADM in emergency departments

The prognostic accuracy for *Acuity Increase* of NEWS on its own was limited and not
significant (AUC 0.55, 95% CI 0.48, 0.62), but when MR-proADM was included as an
additional predictor, the accuracy of the model increased (AUC 0.61, 95% CI 0.54, 0.69;
OR = 1.28, 95% CI 1.02, 1.63; p = 0.039) (Tables 4 and 5, Figure 2 panel A). When
including MR-proADM with NEWS, the reclassification of patients was also significant,
especially for the NRI (NRI = 0.3, SE 0.1, p = 0.007; IDI = 0.017, Table 4).

263 The prognostic accuracy of MR-proADM and the additional value it provides to the
264 NEWS score was confirmed for *Deterioration Events* and *Length of Stay* (Tables 4 and 5,

265 and Figure 2 panels B and C).

Prognostic accuracy of MR-proADM in emergency departments

- For MR-proADM alone, the AUCs were for: *Acuity Increase* 0.58 (0.51-0.66), and
- *Deterioration Event* 0.64 (0.54-0.74). For *Length of Stay* the R squared was 0.12.

- **Table 5.** Model comparisons. Outcomes 1, 2, and 3 refer to *Acuity Increase, Deterioration*
- *Event*, and *Length of Stay* respectively. The predictors are: *Set a* NEWS score alone; *Set b*
- 271 NEWS score and MR-proADM; *Set c* NEWS score, MR-proADM, and other significant
- 272 predictors and interactions detailed in Table 3.

	AIC	Deviance	AUC (CI) or R ² for linear regression	NRI (se), p- value	IDI (se), p-value
Outcome 1 - predictor set <i>a</i> .	348	356	0.55 (0.48, 0.62)		
Outcome 1 - predictor set <i>b</i> .	343	353	0.61 (0.54, 0.69)	0.3 (0.1), 0.007	0.017 (0.009), 0.058
Outcome 1 - predictor set <i>c</i> .	317	331	0.69 (0.63, 0.76)	0.4 (0.1), 0.0004*	0.05 (0.01),0.0009*
Outcome 2 - predictor set <i>a</i> .	199	207	0.57 (0.47, 0.68)		
Outcome 2 - predictor set <i>b</i> .	192	202	0.65 (0.54, 0.76)	0.4 (0.2), 0.003	0.04 (0.02), 0.10
Outcome 2 - predictor set <i>c</i> .	177	193	0.73 (0.63, 0.84)	0.5 (0.2), 0.012*	0.06 (0.02), 0.0004*
Outcome 3 - predictor set <i>a</i> .	77	-381	0.03		
Outcome 3 - predictor set <i>b</i> .	68	-417	0.14		
Outcome 3 - predictor set <i>c</i> .	67	-420	0.16		

274 Effect on prognostic accuracy when clinical information is added to

- 275 the set of predictors
- 276 Secondary multivariable modelling evaluated the prognostic accuracy of MR-proADM
- 277 when adjusted for the clinical factors in predictive set *c*: age, gender, CRP, WBC,
- 278 presence of COPD or HF, presence of other comorbidities,
- 279 For Acuity Increase, COPD or HF comorbidity status and its interaction with MR-proADM
 - 280 level improved the prognostic accuracy of the model: AUC increased from 0.61 (95% CI
- 281 0.54, 0.69) to 0.69 (95% CI 0.63, 0.76), and net reclassification index from 0.3 to 0.4
- 52 282 (Table 5).
 - 283 For *Deterioration Events*, the presence of other comorbidities (excluding COPD and HF)
 - and *Age*² increased the prognostic accuracy of MR-proADM, (Table 4 and 5). The

Page 17 of 34

BMJ Open

1		Prognostic accuracy of MR-proADM in emergency departments
2 3	285	prognostic accuracy of Length of Stay (Outcome 3) of MR-proADM is also increased by
4 5	286	including <i>Age</i> in the model (Table 4 and 5, Supplementary Figure s2).
6 7 8	287	Potential confounding effects
9	288	Shorter term outcomes: NEWS and MR-proADM were less accurate in predicting
10 11	289	Acuity Increase within 24 and 12 hours from admission than in predicting Acuity
12 13	290	Increase within 72 hours (Supplementary Tables s1 and s2).
14 15	291	Interval between admission NEWS scoring and blood collection: Because ward
16	292	processes did not allow the times of scoring NEWS and collecting blood to be specified
17 18	293	for research, we assessed for a confounding effect from variation in the timings, but
19 20	294	found no evidence for it (Supplementary Table s3).
21 22	295	Correlations among biomarkers. Diagnostic plots, shown in Supplementary Figures
23 24	296	s2 and s3, show no multicollinearity in the data, no autocorrelation, no
25	297	heteroscedasticity, and no data points that stood out in terms of their influence on
26 27	298	results.
28 29 30	299	Sensitivity and specificity
31	300	As overall measures of accuracy, sensitivity and specificity were calculated (where
32 33	301	appropriate) for each model using Youden's index. The results are shown in
34 35	302	Supplementary Table s4. In practice, the trade-off between sensitivity and specificity
36	303	would depend on the type of clinical decision to be made on the result (i.e. "rule-in" or
37 38	304	"rule out") and this would differ from the approach in Youden's Index, which gives equal
39 40	305	weight to false positive and false negative results.
41 42 43	306	Internal Validation
44	307	C-statistic values after correcting for optimistic predictions (i.e. bootstrapped average of
45 46	308	the AUC for each model) were: for <i>Acuity Increase:</i> predictor set <i>a</i> , C-stat=0.53; predictor
47	309	set <i>b</i> , C-stat=0.59; predictor set <i>c</i> , C-stat=0.66. For <i>Deterioration Events:</i> predictor set <i>a</i> , C-
48 49	310	stat=0.52; predictor set <i>b</i> , C-stat=0.61, predictor set <i>c</i> , C-stat=0.68. For <i>Length of Stay:</i> predictor
50 51	311	set <i>a</i> , $R^2=0.003$; predictor set <i>b</i> , $R^2=0.12$; predictor set <i>c</i> , $R^2=0.13$. AUCs decreased slightly with
51 52	312	the bootstrapped averages, but the differences between the AUCs for Predictor sets a , b , and c
53 54	313	were constant. These results are an internal validation, and further validation on an external
55	314	dataset is required.
56 57		

Prognostic accuracy of MR-proADM in emergency departments

Discussion

316 Accuracy of prediction of deterioration by MR-proADM

This study shows that MR-proADM may be a clinically useful biomarker for predicting deterioration (i.e. *Acuity Increase*) within 72 hours from admission to hospital in mild to moderately ill patients with admission NEWS score between 2 to 5. By design, NEWS scores in this range imply a low risk of deterioration, and our data are consistent with this. Previous evaluations of the NEWS score assessed on admission have found that it predicts deterioration ^{3-5 34}, which may seem inconsistent. But these studies included all patients admitted to ED, whatever their NEWS score.

324 For most of the observed *Acuity Increase* events, the reason for classification was an

- 325 increase in the NEWS score. Because an increase in NEWS score reflects both
- 326 measurement variation and physiological variation, additional exploratory analyses
- 327 were carried out to assess the performance of MR-proADM, using an operational
- 328 definition of deterioration, *Deterioration Event*, designed to minimize measurement
- 329 variation. NEWS on its own had low prognostic accuracy for *Deterioration Events*.
- 330 However, MR-proADM level, and NEWS score together predicted *Deterioration Events*
- 331 with an AUC of 0.65. Considering baseline patient characteristics further increased the
- accuracy of the model (AUC = 0.73).

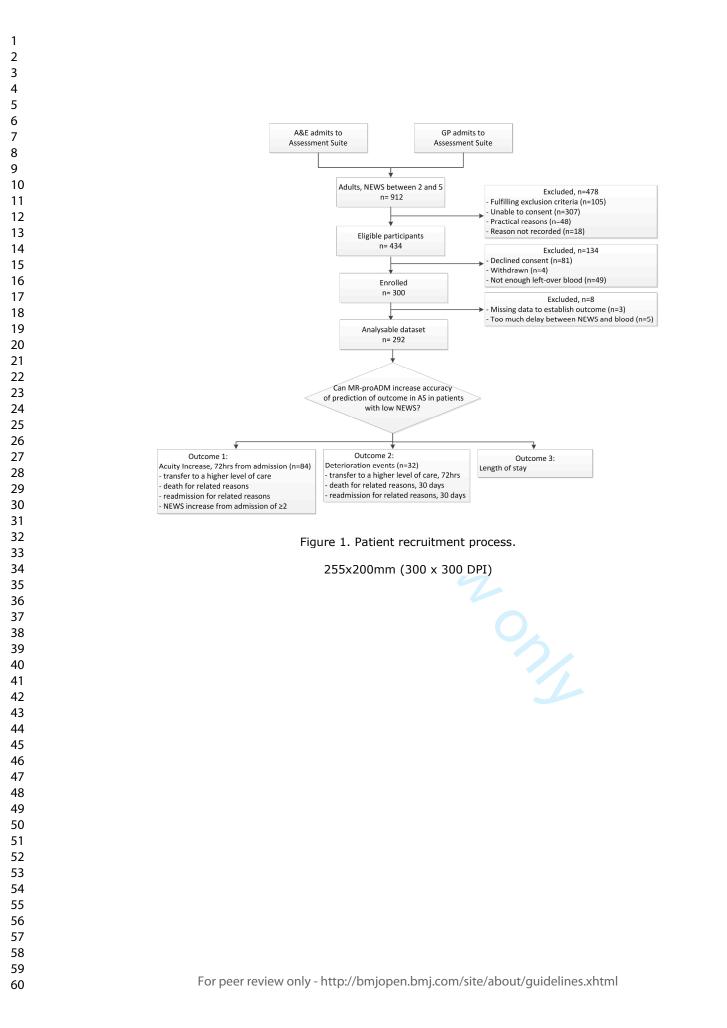
35 36 333 Comorbidities and interactions with MR-proADM levels 37

MR-proADM levels in people with COPD and/or heart failure are chronically raised and
are not predictive of deterioration. However, in other people whose MR-proADM levels
are not chronically raised, high levels are predictive of *Acuity Increase* (Supplementary
Figure s1). Including these comorbidities and their interaction with MR-proADM level
increased the prognostic accuracy of the logistic regression model.

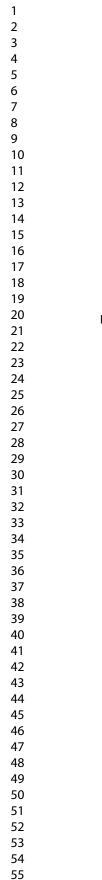
339 Limitations

This study included only patients who were admitted with a NEWS score between 2 and 5. The prognostic accuracy of the MR-proADM would perhaps have been greater if more extreme cases had been included. However, patients with NEWS scores more than 5 are already known to be severely ill and to require close monitoring and/or management at higher levels of care. Page 19 of 34

60


	Prognostic accuracy of MR-proADM in emergency departments
345	Internal validation found that the uncorrected C-statistics are optimistic, which implies
346	that external validation in an independent study would be useful. However, after
347	correction for optimistic predictions, the study's conclusions remain unchanged.
348	Interpretations and implications
349	The contributions of MR-proADM to the accuracy of the prognostic models suggests that
350	it could provide additional prognostic information over and above NEWS score.
351	Secondary analyses suggest that a potentially useful clinical decision aid could be based
352	on the NEWS score, MR-proADM level, and clinical features.
353	Future research and development
354	As a growing number of NHS hospitals are implementing the NEWS score on their
355	clinical information systems, it should be practical to develop a decision aid based on
356	admission NEWS score, MR-proADM level, and clinical features. Other biomarkers may
357	further improve prognostic accuracy for deterioration, for example: lactate ³ ;
358	peroxiredoxin-4 (Prx4) and copeptin ^{22 35 36} ; and soluble urokinase plasminogen
359	activator receptor (suPAR) ³⁷ . The feasibility, cost-effectiveness, and acceptability of
360	such decision aids needs to be evaluated in further research.
361	A rapid point of care test for MR-proADM could facilitate the assessment process and
362	reduce delays in arranging optimal levels of care and intensity of monitoring. Future
363	research could identify the threshold MR-proADM level corresponding to the optimal
364	combination of sensitivity and specificity for a binary test (e.g. "present" or "absent") for
365	deterioration.
366	deterioration. Footnotes
367	Contributors: AJS, DAP, MP, and DS devised the study; RO, SG, and AJA managed the
368	project; SG performed the statistical analyses with advice from DS; all authors
369	contributed to the final manuscript.
370	Acknowledgements: The authors would like to thank the patients who accepted to be
371	part of the study, and the team of research nurses for the data collection: Laura Shewan,
372	Louise Taylor, Janine Gradwell, Karen Martin, Katherine Cullen, Gerry Jones, Graham
373	Soulsby, Carmen Scott, and Helen Reed. We also thank the reviewers for their helpful
	 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372

1		Prognostic accuracy of MR-proADM in emergency departments
2 3	374	suggestions and comments. The views expressed are those of the authors and not
4 5	375	necessarily those of B·R·A·H·M·S GmbH, the NHS, the NIHR, or the Department of
6 7	376	Health.
8 9	377	Funding: The study was funded by B·R·A·H·M·S GmbH. The NIHR funds the NIHR
10	378	Newcastle In Vitro Diagnostics Co-operative.
11 12 13	379	Competing interests: None declared.
14 15	380	Ethics and governance approvals: The study was approved by the Newcastle & North
16	381	Tyneside Research Ethics Committee (15/NE/0120), and by the R&D Committee of the
17 18	382	Newcastle upon Tyne Hospitals NHS foundation Trust (reference number 7495).
19 20	383	Provenance and peer review Not commissioned; externally peer reviewed.
21 22	384	Data sharing statement No additional data are available.
23 24	385	References
25 26	386	
27 28 29 30 31 32	387 388	1. Royal College of Physicians of London. National early warning score (NEWS): standardising the assessment of acute-illness severity in the NHS—report of a working party London, 2012.
	389 390	 McGinley A, Pearse RM. A national early warning score for acutely ill patients. BMJ : British Medical Journal 2012;345.
33 34 35	391 392 393	3. Jo S, Yoon J, Lee JB, et al. Predictive value of the National Early Warning Score–Lactate for mortality and the need for critical care among general emergency department patients. Journal of Critical Care 2016; 36 :60-68.
36 37 38 39	394 395 396	4. Smith GB, Prytherch DR, Meredith P, et al. The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death. Resuscitation 2013;84(4):465-70.
40 41 42 43	397 398 399	 Smith ME, Chiovaro JC, O'Neil M, et al. Early warning system scores for clinical deterioration in hospitalized patients: a systematic review. Annals of the American Thoracic Society 2014;11(9):1454-65.
44 45	400 401	6. Teasdale GM. National early warning score (NEWS) is not suitable for all patients. BMJ : British Medical Journal 2012; 345 .
46 47 48 49 50 51 52 53 54	402 403 404	 Eccles SR, Subbe C, Hancock D, et al. CREWS: Improving specificity whilst maintaining sensitivity of the National Early Warning Score in patients with chronic hypoxaemia. Resuscitation 2014;85(1):109-11.
	405 406	8. Badriyah T, Briggs JS, Meredith P, et al. Decision-tree early warning score (DTEWS) validates the design of the National Early Warning Score (NEWS). Resuscitation 2014; 85 (3):418-23.
	407 408	9. Abbott TE, Vaid N, Ip D, et al. A single-centre observational cohort study of admission National Early Warning Score (NEWS). Resuscitation 2015; 92 :89-93.
55 56 57	409 410	10. Corfield AR, Lees F, Zealley I, et al. Utility of a single early warning score in patients with sepsis in the emergency department. Emergency medicine journal : EMJ 2014; 31 (6):482-7.
58 59 60		Page 20 of 22 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


1		Prognostic accuracy of MR-proADM in emergency departments
2 3 4 5 6	411 412 413 414	11. Bilben B, Grandal L, Søvik S. National Early Warning Score (NEWS) as an emergency department predictor of disease severity and 90-day survival in the acutely dyspneic patient – a prospective observational study. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 2016; 24 :80.
7 8 9 10	415 416 417	12. Valenzuela-Sanchez F, Valenzuela-Mendez B, Rodriguez-Gutierrez JF, et al. New role of biomarkers: mid-regional pro-adrenomedullin, the biomarker of organ failure. Annals of translational medicine 2016;4(17):329.
11 12	418 419	 Stokes NR, Dietz BW, Liang JJ. Cardiopulmonary laboratory biomarkers in the evaluation of acute dyspnea. Open access emergency medicine : OAEM 2016;8:35-45.
13 14 15 16	420 421 422	14. Sinning C, Zengin E, Zeller T, et al. Candidate biomarkers in heart failure with reduced and preserved ejection fraction. Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals 2015; 20 (4):258-65.
17 18 19 20	423 424 425	15. Kutz A, Hausfater P, Amin D, et al. The TRIAGE-ProADM Score for an Early Risk Stratification of Medical Patients in the Emergency Department - Development Based on a Multi-National, Prospective, Observational Study. PloS one 2016; 11 (12).
21 22 23	426 427 428	16. Albrich WC, Dusemund F, Ruegger K, et al. Enhancement of CURB65 score with proadrenomedullin (CURB65-A) for outcome prediction in lower respiratory tract infections: derivation of a clinical algorithm. BMC infectious diseases 2011;11:112.
24 25 26	429 430	 Lopez J, Martinez A. Cell and molecular biology of the multifunctional peptide, adrenomedullin. International review of cytology 2002;221:1-92.
27 28 29	431 432 433	18. Serrano-Ponz M, Rodrigo-Gasque C, Siles E, et al. Temporal profiles of blood pressure, circulating nitric oxide, and adrenomedullin as predictors of clinical outcome in acute ischemic stroke patients. Molecular medicine reports 2016; 13 (5):3724-34.
30 31 32	434 435	19. Zudaire E, Portal-Nunez S, Cuttitta F. The central role of adrenomedullin in host defense. Journal of leukocyte biology 2006; 80 (2):237-44.
33 34 35	436 437	20. Zuur-Telgen MC, Brusse-Keizer MG, Vandervalk PD, et al. Stable state MR-proadrenomedullin level is a strong predictor for mortality in COPD patients. Chest 2013.
36 37 38	438 439 440	21. Pedowska-Wloszek J, Kostrubiec M, Kurnicka K, et al. Midregional proadrenomedullin (MR-proADM) in the risk stratification of patients with acute pulmonary embolism. Thrombosis research 2013; 132 (5):506-10.
39 40 41 42 43	441 442 443 444	22. Nickel CH, Messmer AS, Geigy N, et al. Stress markers predict mortality in patients with nonspecific complaints presenting to the emergency department and may be a useful risk stratification tool to support disposition planning. Academic emergency medicine : official journal of the Society for Academic Emergency Medicine 2013; 20 (7):670-9.
44 45 46 47	445 446 447	23. Landman GW, van Dijk PR, Drion I, et al. Midregional fragment of proadrenomedullin, new-onset albuminuria, and cardiovascular and all-cause mortality in patients with type 2 diabetes (ZODIAC-30). Diabetes care 2014; 37 (3):839-45.
48 49 50	448 449 450	24. Funke-Kaiser A, Mann K, Colquhoun D, et al. Midregional proadrenomedullin and its change predicts recurrent major coronary events and heart failure in stable coronary heart disease patients: the LIPID study. International journal of cardiology 2014; 172 (2):411-8.
51 52 53 54 55 56 57	451 452	 Gaggin HK, Januzzi JL, Jr. Biomarkers and diagnostics in heart failure. Biochimica et biophysica acta 2013;1832(12):2442-50.
	453 454 455	26. Vigue B, Leblanc PE, Moati F, et al. Mid-regional pro-adrenomedullin (MR-proADM), a marker of positive fluid balance in critically ill patients: results of the ENVOL study. Critical care (London, England) 2016; 20 (1):363.
58 59 60		Page 21 of 22 review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

1		Prognostic accuracy of MR-proADM in emergency departments
2 3 4	456 457	27. Tzikas S, Keller T, Ojeda FM, et al. MR-proANP and MR-proADM for risk stratification of patients with acute chest pain. Heart (British Cardiac Society) 2013; 99 (6):388-95.
5 6 7	458 459	28. Peduzzi P, Concato J, Kemper E, et al. A simulation study of the number of events per variable in logistic regression analysis. Journal of clinical epidemiology 1996;49(12):1373-9.
8 9 10	460 461 462	29. van Smeden M, de Groot JAH, Moons KGM, et al. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis. BMC Medical Research Methodology 2016; 16 (1):163.
11 12 13 14 15	463 464 465 466	30. Travaglino F, Russo V, De Berardinis B, et al. Thirty and ninety days mortality predictive value of admission and in-hospital procalcitonin and mid-regional pro-adrenomedullin testing in patients with dyspnea. Results from the VERyfing DYspnea trial. The American journal of emergency medicine 2014; 32 (4):334-41.
16 17 18	467 468	31. R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria.: R Foundation for Statistical Computing, 2011.
19 20 21	469 470 471	32. Pencina MJ, D'Agostino RB, Sr., D'Agostino RB, Jr., et al. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Statistics in medicine 2008; 27 (2):157-72; discussion 207-12.
22 23 24 25	472 473 474	33. Steyerberg EW, Vedder MM, Leening MJ, et al. Graphical assessment of incremental value of novel markers in prediction models: From statistical to decision analytical perspectives. Biometrical journal Biometrische Zeitschrift 2015; 57 (4):556-70.
26 27	475 476	34. Alam N, Vegting IL, Houben E, et al. Exploring the performance of the National Early Warning Score (NEWS) in a European emergency department. Resuscitation 2015; 90 :111-5.
28 29 30 31 32	477 478 479 480	35. Nickel CH, Ruedinger J, Misch F, et al. Copeptin and peroxiredoxin-4 independently predict mortality in patients with nonspecific complaints presenting to the emergency department. Academic emergency medicine : official journal of the Society for Academic Emergency Medicine 2011; 18 (8):851-9.
33 34 35	481 482	36. Iversen K, Gotze JP, Dalsgaard M, et al. Risk stratification in emergency patients by copeptin. BMC medicine 2014;12:80.
36 37 38 39	483 484 485	37. Rasmussen LJ, Ladelund S, Haupt TH, et al. Soluble urokinase plasminogen activator receptor (suPAR) in acute care: a strong marker of disease presence and severity, readmission and mortality. A retrospective cohort study. Emergency medicine journal : EMJ 2016.
40	486	
41 42 43 44	487	Figure legends
45 46	488	Figure 1. Patient recruitment process.
47 48	489	Figure 2. Panel A. Prognostic accuracy for Acuity Increase; predictor set a: NEWS;
49	490	predictor set <i>b</i> : NEWS, MR-proADM; predictor set <i>c</i> : NEWS, MR-proADM, COPD/HF,
50 51	491	interaction between MR-proADM and COPD/HF. Panel B. Comparisons as for panel A
52 53	492	but for predicting a <i>Deterioration Event</i> ; predictor set <i>c:</i> NEWS score, MR-proADM level,
55 54 55 56	493	Age ² , other comorbidities. Panel C. <i>Length of Stay</i> predicted by MR-proADM level.

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

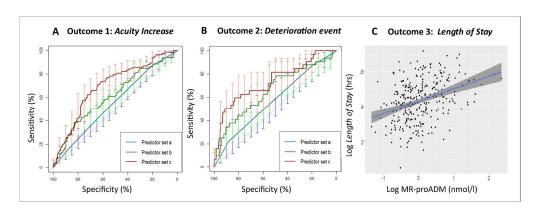


Figure 2. Panel A. Prognostic accuracy for Acuity Increase; predictor set a: NEWS; predictors set b: NEWS, MR-proADM; predictor set c: NEWS, MR-proADM, COPD/HF, interaction between MR-proADM and COPD/HF. Panel B. Comparisons as for panel A but for predicting a Deterioration Event; predictor set c: NEWS score, MR-proADM level, Age2, other comorbidities. Panel C. Length of Stay predicted by MR-proADM level.

Link text : Figure 2

320x118mm (300 x 300 DPI)

reziez onz

Supplementary information for Graziadio et al, 2018

Supplementary information for Can mid-regional pro-adrenomedullin (MR-proADM) increase the prognostic accuracy of NEWS in predicting deterioration in patients admitted to hospital with mild to moderately severe illness? A prospective single-centre observational study. Graziadio et al, 2018

Table of Contents

Additional information on Methods	2
NEWS as a predictor of deterioration in patients with mild to moderately severe illness	s2
Operational definitions of deterioration	2
Predictors of deterioration for statistical modelling	3
Analytical data exploration	3
Visual data exploration and interaction between MR-proADM and COPD/HF	3
Interaction between MR-proADM and COPD/HF	3
Relationship between Length of Stay and Age	
Checking for multicollinearity and autocorrelation	
Diagnostic plots for length of stay analysis	
Analyses of shorter term outcomes	
Analyses of time-lag effect between news assessment and blood collection for assessn	
MR-proADM levels	
MR-proADM levels Estimation of sensitivities and specificities for each model	

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Supplementary information for Graziadio et al, 2018

Additional information on Methods

NEWS as a predictor of deterioration in patients with mild to moderately severe illness

Operational definitions of deterioration

In the original validation of NEWS, about 2% of the population had the combined outcome of cardiac arrest, unanticipated ICU admission, or death — each within 24 hours [Smith 2013]. Furthermore, the proportions for each of the three individual outcomes and the composite outcomes increased monotonically through the range of NEWS scores.

Thus, as designed in its development, a NEWS score between 2 and 5 defines a population at low risk of cardiac arrest within 24 hours, death within 24 hours, or ICU admission within 24 hours.

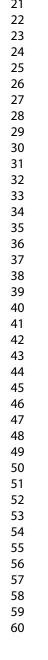
However, a clinically important proportion of patients admitted to A&E or Medical Admissions Unit with mild to moderately severe illness (NEWS scores between 2 and 5) do deteriorate, and the NEWS score is, by design, not able to identify these patients.

The improvement challenge is to identify biomarkers that will increase the discrimination of low NEWS scores. And the methodological challenge was to develop convenient and effective operational definitions of deterioration from mild/moderately severe.

As NEWS is used to monitor changes in severity of illness, we decided to base our primary operational definition of deterioration on an increase of at least 2 in the NEWS score.

Acuity Increase. The primary outcome was the proportion of patients who, within 72 hours, had any combination of:

- an increase of at least 2 in the NEWS score
- transfer to a higher-dependency bed or monitored area
- death
- for those discharged from hospital, re-admission for medical reasons.


We labelled this measure Acuity Increase.

Because there was concern about variations in NEWS scoring and about using NEWS to predict a change in NEWS (which it is designed not to do in this study's population), we defined two other measures of deterioration, one direct, and the other indirect:

Deterioration Event: the occurrence of one or more of the following:

- transfer to higher level of care within 72 hours from admission;
- death (for reasons related to admission) within 30 days;
- re-admission to hospital (for the same reason as the previous admission) within 30 • days from first admission

Length of Stay: the duration in days from admission to discharge or death

Supplementary information for Graziadio et al, 2018

Predictors of deterioration for statistical modelling

In the analyses, we included NEWS as a possible predictor of deterioration. As expected, NEWS scores consistently do not predict deterioration, for all three of our operational definitions.

In line with the original validation of NEWS, we included NEWS as an ordinal variable [Smith 2013].

Analytical data exploration

Univariate logistic regressions were used to investigate whether the relationship between outcome variables (i.e. deterioration measures) and the input variables (NEWS and MR-proADM, age, comorbidities, gender, CRP, and WBC) were linear. If they were not linear, log transformation and squared transformation were applied. If the transformation substantially lowered the AIC, then the transformed variable was used in statistical analyses.

For categorical variables with multiple ordinal levels (i.e. NEWS score), the univariate analysis informed if it was appropriate to include the variable in the model as a continuous or categorical factor. If the coefficients in the univariate models increased linearly, then a linear relationship with the outcome could be assumed, and the variable was included in the model as continuous, otherwise the variable was treated as a categorical factor.

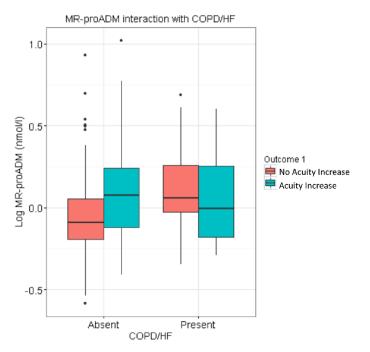
Univariate analyses were also used to identify the variables that affected the outcome significantly. Variables with a probable relationship with the outcome variable (p<0.1) were included in the full model logistic regression.

Visual data exploration and interaction between MR-proADM and COPD/HF

After formatting the datasets, all variables were graphed (bar-charts for categorical variables, and scatterplots/histograms for continuous variables) and visually checked for outliers and distributions that seemed potentially erroneous.

If outliers were identified, the cause(s) were investigated to understand whether they were due to human error or they were genuine data. Outliers were kept in the primary analysis. In a secondary sensitivity analysis, outliers were removed and the same analyses repeated to assess the impact on the results. If the coefficients of the predictors changed substantially, both models would be described. There was one genuine outliner patient with a very high level of MR-proADM compared to the population mean, but its exclusion made no meaningful difference to the results, and the subject was included in the final analysis.

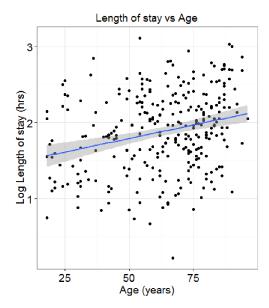
The influence of potentially important factors (such as comorbidities) on the ability of the MRproADM to predict deterioration was explored graphically.


Interaction between MR-proADM and COPD/HF

A significant interaction between MR-proADM and the presence of COPD/HF was discovered, and therefore included in the logistic regression (Outcome 1, predictor set c). The plot is

Supplementary information for Graziadio et al, 2018

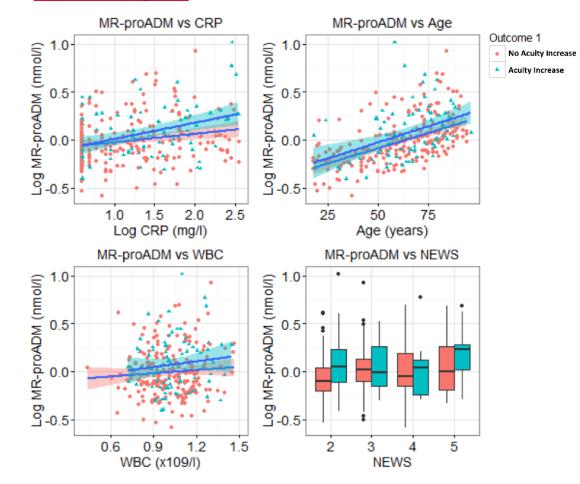
shown in <u>Supplementary Figure s1</u>. This interaction showed that the MR-proADM level was increased in patients who deteriorated, but only if they did not have COPD or HF.


There was no suggestion that age; comorbidities: COPH and HF; other comorbidities; CRP; or WBC would improve the accuracy of prediction.

Interaction between MR-proADM and COPD/HF.

Relationship between Length of Stay and Age

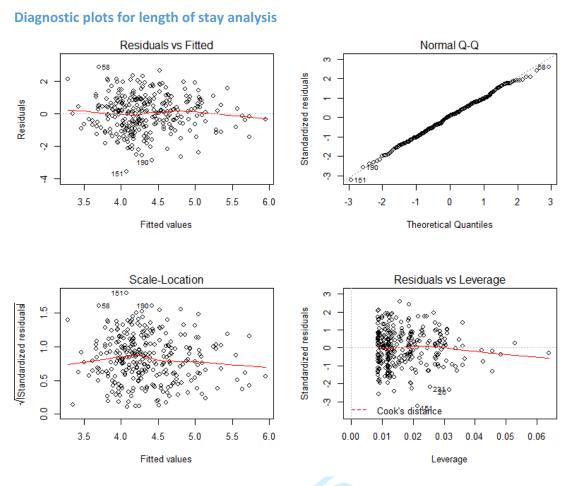
In **Supplementary Figure s1** the relationship between *Length of Stay* and *Age* is shown.


Supplementary Figure s1. Relationship between Length of Stay and Age.

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Supplementary information for Graziadio et al, 2018

Checking for multicollinearity and autocorrelation


Correlations among biomarkers were also investigated through plotting to evaluate multicollinearity and added value of MR-proADM versus other biomarkers. Plots are shown in <u>Supplementary Figure s2</u>.

Supplementary Figure s2. Associations between MR-proADM and CRP, age, WBC, and NEWS.

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Supplementary information for Graziadio et al, 2018

Supplementary Figure s3. Diagnostic plots for linear regression evaluating the prediction accuracy of MR-proADM for *Length of Stay*.

The diagnostics of the model showed no multicollinearity in the data since all the correlation coefficients among the independent variables were smaller than 0.5. No autocorrelation was found in the data, thus residuals are independent from each other: the Durbin-Watson test estimated d = 2.02 (p = 0.56). Evidence for homoscedasticity was provided graphically by the randomly scattered points and almost horizontal fitted lines in <u>Supplementary Figure s3</u>, (Residuals vs fitted plot). Analysis of Cook's distance showed that there were no influential points (d <4/51, <u>Supplementary Figure s3</u>).

Analyses of shorter term outcomes

The analyses found that NEWS and MR-proADM had much lower accuracy in predicting *Acuity Increase* at 24 and 12 hours from admission than in predicting *Acuity Increase* at 72 hours as apparent in **Supplementary Table s1**.

Supplementary information for Graziadio et al, 2018

Supplementary Table s1. Logistic regression for NEWS and MR-proADM predicting *Acuity Increase* within 24 hours. AIC = 326; AUC = 0.59.

Covariate	Beta	CI	Odds ratio(CI)	P-value
Intercept	-1.42	-1.70, -0.64	0.42 (0.27, 0.64)	NA
NEWS 3	-0.006	-0.64, 0.71	1.04 (0.53, 2.04)	0.985
NEWS 4	-0.37	-1.58, 0.20	0.52 (0.21, 1.22)	0.368
NEWS 5	0.21	-0.66, 1.01	1.25 (0.52, 2.91)	0.6244
MR-proADM	0.22	-0.06, 0.44	1.20 (0.95, 1.55)	0.0547

Supplementary Table s2. Logistic regression for NEWS and MR-proADM predicting *Acuity Increase* within 12 hours. AIC = 266; AUC = 0.57.

Covariate	Beta	CI	Odds ratio(CI)	P-value
Intercept	-1.83	-2.47, -1.24	0.16 (0.08, 0.29)	NA
NEWS 3	0.29	-0.46, 1.04	1.34 (0.63, 2.85)	0.442
NEWS 4	-0.15	-1.57, 0.76	0.86 (0.31, 2.14)	0.756
NEWS 5	0.29	-0.74, 1.23	1.33 (0.48, 3.42)	0.564
MR-proADM	0.06	-0.24, 0.31	1.06 (0.79, 1.36)	0.656

Analyses of time-lag effect between news assessment and blood collection for assessment of MR-proADM levels

Given the practicalities involved, it was not possible to stipulate the timings of taking the NEWS on admission and collecting the blood sample for MR-proADM testing. It was expected that difference in times would normally be less than 6 hours, but in 44 subjects the time difference was more than 6 hours.

To investigate the impact of time differences being greater than expected, another analysis was carried out excluding subjects for whom the difference was more than 6 hours (time-lag compliant dataset). The hypothesis was that, if the time difference was an important parameter for the predictive accuracy of MR-proADM level, model coefficients would be greater and confidence intervals narrower for the compliant model. This was not the case; results were similar in the full dataset with 292 subjects and in the compliant dataset with 248 subjects (Supplementary Table s3).

Supplementary information for Graziadio et al, 2018

Supplementary Table s3. Logistic regression for NEWS and MR-proADM predicting *Acuity Increase* for the time-lag compliant dataset. AIC = 295; AUC = 0.60.

Covariate	Beta	CI	Odds ratio(CI)	P-value
Intercept	-1.15	-1.70 <i>,</i> -0.64	0.42 (0.27, 0.64)	NA
NEWS 3	-0.04	-0.64, 0.71	1.04 (0.53, 2.04)	0.909
NEWS 4	-0.65	-1.58, 0.20	0.52 (0.21, 1.22)	0.152
NEWS 5	0.22	-0.66, 1.01	1.25 (0.52, 2.91)	0.613
MR-proADM	0.19	-0.06, 0.44	1.20 (0.95, 1.55)	0.135

Estimation of sensitivities and specificities for each model

For completeness we estimated the sensitivity and specificity for each model in the article (<u>Supplementary Table s4</u>). We used the Youden's index to estimate "optimal" cut-offs. In the next phase of the MR-proADM evaluation, the optimal cut-off will be re-estimated through a decision analysis informed by the role of the test in the pathway.

Supplementary Table s4. Sensitivity and specificity of the logistic regression models. Predictor set a. was excluded from the table since the AUROC was too low to calculate meaningful diagnostic accuracy data.

Models	Sensitivity	Specificity			
Acuity Increase					
Predictor set b .	0.38 (0.29, 0.49)	0.83 (0.78, 0.88)			
Predictor set c.	0.66 (0.55, 0.76)	0.69 (0.63, 0.76)			
Deterioration Event					
Predictor set b .	0.72 (0.56, 0.88)	0.56 (0.50, 0.62)			
Predictor set <i>c</i> .	0.59 (0.44, 0.75)	0.83 (0.78, 0.87)			

BMJ Open: first published as 10.1136/bmjopen-2017-020337 on 22 February 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

TRAPOD

TRIPOD Checklist: Prediction Model Development

Section/Topic	ltem	Checklist Item	
Title and abstract			
Title	1	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.	
Abstract	2	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	
Introduction			
Background	3a	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.	
and objectives	3b	Specify the objectives, including whether the study describes the development or validation of the model or both.	
Methods	1		
Source of data	4a	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable Specify the key study dates, including start of accrual; end of accrual; and, if	
	4b	applicable, end of follow-up.	
Participants	5a	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.	
i antoipanto	5b	Describe eligibility criteria for participants.	
Outcome	5c 6a	Give details of treatments received, if relevant. Clearly define the outcome that is predicted by the prediction model, including how and when assessed.	
Oucome	6b	Report any actions to blind assessment of the outcome to be predicted.	
Predictors	7a	Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.	
	7b	Report any actions to blind assessment of predictors for the outcome and other predictors.	
Sample size	8	Explain how the study size was arrived at.	
Missing data	9	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.	
	10a	Describe how predictors were handled in the analyses.	
Statistical analysis	10b	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.	
methods	10d	Specify all measures used to assess model performance and, if relevant, to compare multiple models.	
Risk groups	11	Provide details on how risk groups were created, if done.	
Results			
Dorticinanto	13a	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	
Participants	13b	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.	
Source of data Participants Outcome Predictors Sample size Missing data Statistical analysis methods Risk groups	14a	Specify the number of participants and outcome events in each analysis.	
	14b	If done, report the unadjusted association between each candidate predictor and outcome.	
	15a	Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).	
opeonoution	15b	Explain how to the use the prediction model.	
	16	Report performance measures (with CIs) for the prediction model.	
•			
Discussion			
Limitations	18	Discuss any limitations of the study (such as nonrepresentative sample, few event per predictor, missing data).	
Interpretation	19b	Give an overall interpretation of the results, considering objectives, limitations, and results from similar studies, and other relevant evidence.	
Implications	20	Discuss the potential clinical use of the model and implications for future research.	
Other information	1		
Supplementary	21	Provide information about the availability of supplementary resources, such as stud	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

TRIPOD Checklist: Prediction Model Development

information		protocol, Web calculator, and data sets.	
Funding	22	Give the source of funding and the role of the funders for the present study.	P20 L346

Comments:

1. Item 21: Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.

Supplementary material - with additional information on methods and results - is attached as separate document. Study protocol and data sets will be available in due course, new project website currently under construction.

to beet terien only