

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Asymptomatic malaria parasitaemia and seizure control in children with nodding syndrome; a cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-023624
Article Type:	Research
Date Submitted by the Author:	19-Apr-2018
Complete List of Authors:	Ogwang, Rodney; Makerere University College of Health Sciences, Paediatrics and Child Health; Centre for Tropical Neuroscience, Kitgum Site Anguzu, Ronald; Makerere University College of Health; Medical College of Wisconsin Akun, Pamela; Makerere University College of Health Sciences, Paediatrics and Child Health; Centre for Tropical Neuroscience, Kitgum Site Ningwa, Albert; Makerere University College of Health Sciences, Paediatrics and Child Health; Centre for Tropical Neuroscience, Kitgum Site Ningwa, Albert; Makerere University College of Health Sciences, Paediatrics and Child Health; Centre for Tropical Neuroscience, Kitgum Site Kayongo, Edward; Makerere University College of Health Sciences Marsh, Kevin; University of Oxford, Nuffield Department of Medicine Newton, Charles; KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research -Coast, Clinical Research; University of oxford, Department of Psychiatry Idro, Richard; Makerere University College of Health Sciences; Oxford University , Nuffield Department of Medicine
Keywords:	Nodding syndrome, Malaria, Seizure control, children, Epilepsy < NEUROLOGY
	·

SCHOLARONE[™] Manuscripts

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

BMJ open

1	Asymptomatic malaria parasitaemia and seizure control in
2	children with nodding syndrome; a cross sectional study
3	Authors
4	Rodney Ogwang ^{1, 2} , Ronald Anguzu ^{1,2} Pamela Akun ^{1,2} , Albert Ningwa ^{1, 2} , Edward
5	Kayongo ¹ , Kevin Marsh ³ , Charles R. Newton ^{4,5} , Richard Idro ^{1, 2, 3*}
6	Affiliations
7	¹ Makerere University College of Health Sciences, Kampala, Uganda;
8	² Centre for Tropical Neuroscience, Kampala, Uganda
9	³ Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
10	⁴ Kenya Medical Research Institute-Wellcome Trust Collaborative Programme, Kilifi, Kenya
11	⁵ Department of Psychiatry, University of Oxford, Oxford, UK;
12	Corresponding Author
13	Dr Richard Idro
14	Makerere University College of Health Sciences, P.O Box 7072, Kampala, Uganda
15	Email: <u>ridro1@gmail.com</u>
16	
17	
	1
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

18 Abstract

Objective

Plasmodium falciparum is epileptogenic and in malaria endemic areas, it is a leading cause of
acute symptomatic seizures. In these areas, asymptomatic infections are common, considered
benign and not treated. The effects of such infections on seizures in patients with epilepsy is
unknown. This study examined the relationship between *P.falciparum* infection and seizure
control in children with a complex epilepsy.

25 Design

This cross-sectional study was nested in an ongoing trial 'Doxycycline for the treatment of
nodding syndrome (NCT02850913)'. The hypothesis is that in patients with epilepsy,
asymptomatic *P.falciparum* increases the risk of seizures and impairs seizure control.

29 Setting and participants

30 Participants were Ugandan children with a complex epilepsy disorder – the nodding

31 syndrome, ages 8 years or older, receiving sodium valproate. All had standardized testing

32 including documentation of the number of seizures in the past month, a rapid malaria test and

33 if positive, the peripheral blood parasite density.

34 Outcomes

The primary outcome was the number of seizures in the past month (30 days).

Results

BMJ Open

BMJ open

3			
4			
5			
6			
7			
, 8			
9			
1	ი		
1	1		
1	2		
1	_		
	4		
1			
1	0 7		
1			
1			
1 2	9		
2	1		
2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3	1		
2	2		
2	5		
2	4		
2	5		
2	6		
2	7		
2	8		
2	9		
3	0		
3	1		
3	2		
3	3		
3	4		
3	5		
3	6		
3	/		
3	8		
3	9		
4	0		
4	1		
4	2		
4	3		
4	4		
4	5		
4	6		
4	7		
4			
4			
5			
5	1		
5	2		
5	3		
5	4		
5	5		
5	6		
5	7		
5			
5			
5 6			
J	J		

37	A total of 164/240 (68%) had malaria. Asymptomatic infections were seen in 160/240 (67%)
38	and symptomatic infections in 4/240 (2.7%). In participants without malaria, the median
39	[IQR] number of seizures in the previous 30 days was 2.0 [1.0-4.0] and it was 4.0 [2.0-7.5] in
40	participants with malaria, $p=0.017$. The number of seizures in asymptomatic malaria persons
41	was 3.0[IQR 2.0-7.3] and it was 6.0[IQR 4.0-10.0] in symptomatic individuals, $p=0.024$.
42	Additionally, in asymptomatic patients, a positive correlation was observed between the
43	parasite density and number of seizures, $r=0.33$, $p=0.002$.

44 Conclusion

In patients with nodding syndrome, both asymptomatic and symptomatic malaria are
associated with an increased risk of seizures and poorer seizure control. Similar effects
should be examined in other epilepsy disorders. Malaria prevention should be strengthened
for these patients and chemo-treatment and prevention studies considered.

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

49 Article Summary

50 Strengths and limitations

Nodding syndrome is a poorly understood epilepsy disorder not representative of other
 epilepsies. However, the disease offers the advantage of a uniform population of epilepsy
 patients, receiving the same antiepileptic drug, and a similar level of care in Uganda.

ícz

- This was a cross sectional study that cannot ascribe causality; prospective studies should
 be conducted to confirm the results.
- The study also relied on parental recall of the number of convulsive seizures in the past
- 57 month and could have suffered from the shortfalls of recall bias. Again, a prospective
- 58 determination of study outcomes will be more appropriate.

Page 4 of 28

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

BMJ open

59	Word count		
60	Abstract	-	297
61	Main text	-	2804
62	Key words -	Node	ling syndrome, children, seizure control and malaria

64 Introduction

Plasmodium falciparum is still a major public health problem in tropical countries and especially, in sub-Saharan Africa. Over 200 million cases are reported annually with several thousand deaths majorly among children younger than 5 years and in pregnant women[1]. P. falciparum presents with a spectrum of manifestations from asymptomatic infection, symptomatic but uncomplicated disease to severe or complicated malaria^[2]. Asymptomatic infections are common especially in highly endemic areas [3–7]. These symptomless infections are generally considered benign and thought to be useful in maintaining immunity against severe disease[8]. Evidence is however emerging demonstrating that asymptomatic infections possibly have negative health effects (reviewed in Chen et al 2016)[9] including cognitive impairment[10], anaemia[11,12], co-infection with invasive bacterial disease[13] and increased maternal and neonatal mortality[14] About 50% of children with acute severe falciparum malaria present with neurological involvement[15]. P. falciparum is known to be epileptogenic, and is a leading cause of acute seizures in children living in malaria endemic areas [16]. However, the effects of asymptomatic infections on the incidence and control of seizures in children with seizure disorders is unknown. This study examined the relationship between asymptomatic malarial

Page 5 of 28

BMJ Open

BMJ open

81	infections and seizure control in patients with epilepsy using nodding syndrome as a model.
82	The hypothesis is that: in patients with epilepsy, asymptomatic P. falciparum infections are
83	associated with; i) poorer seizure control; and that ii) seizure control is worse in patients with
84	higher parasitaemia.
85	Nodding syndrome (NS) is a poorly understood complex epilepsy disorder that affects
86	children and adolescents in some regions of Africa[17,18]. Northern Uganda, South Sudan
87	and southern Tanzania bear the greatest burden of this devastating disorder[19,20]. The
88	aetiology is unknown but cross reacting antibodies to Onchocerca volvulus have recently
89	been proposed to underlie the pathogenesis [18,21]. Symptoms develop in previously
90	normally developing children between the ages of 3-18 years[22,23]. Patients present with a
91	distinctive feature – clusters of head nodding – now defined as atonic seizures[21], with a
92	myoclonic element. The head nods present as repeated slow vertical head drops at a
93	frequency of 5-20/min most often, on presentation of food or in cold weather[24]. Over time,
94	the condition is complicated by multiple types of convulsive seizures (focal or multifocal,
95	atypical absence, myoclonic jerks and generalized tonic-clonic seizures), behaviour
96	difficulties and psychiatric disorders, cognitive decline, and in many severe cases, physical
97	deformities and severe disability[22]. In Uganda, patients initiated on a specific symptomatic
98	treatment intervention including the provision of sodium valproate as antiepileptic therapy
99	obtained a 75% reduction in the burden of seizures[25]. The current study examined the
100	relationship between asymptomatic <i>P.falciparum</i> infection and seizure control in nodding
101	syndrome.
102	

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

104 Methods

105 Study design

106	This was a cross-sectional study of the relationship between asymptomatic P. falciparum
107	malaria infections and seizure control in children with nodding syndrome. The study was
108	nested within an ongoing trial 'Doxycycline for the treatment of nodding syndrome
109	(NCT02850913)'. This trial is testing the hypothesis that nodding syndrome is an Onchocerca
110	volvulus induced epileptic encephalopathy with antibodies to the parasite or its symbiotic
111	bacteria, Wolbachia, cross reacting with and damaging host neuron proteins[18,26]. Trial
112	participants are randomized to either oral doxycycline 100mg daily for 6 weeks or matching
113	placebo.

114 Setting

The trial is being conducted in the nodding syndrome affected districts of Kitgum, Pader and Lamwo in Northern Uganda. This region is inhabited by the Acholi, a Luo speaking community that is recovering from a decade-old civil war, high levels of poverty and psycho-social problems. In 2016, the districts were served by 17 nodding syndrome treatment centres where patients received clinical care and treatment according to national guidelines[27]. The population prevalence of nodding syndrome in the affected age group in the region is 6.8 (95% CI 5.9-7.7) per 1,000[28]. The region is highly endemic to P. falciparum malaria and in 2015 and 2016 experienced a malaria epidemics.

123 Study population

124 The study recruited participants with a diagnosis of nodding syndrome per World Health

125 Organization criteria. All 240 were receiving sodium valproate (doses 12-35 mg/kg/day) as

BMJ Open

BMJ open

126	antiepileptic drug therapy plus nutritional, physical and psychological therapy[27] and had
127	been enrolled in the doxycycline for the treatment of nodding syndrome trial.
128	Procedures
129	Approvals
130	Ethical approval for the trial was granted by Makerere University School of Medicine
131	Research and Ethics Committee (SOMREC) and University of Oxford Tropical Research
132	Ethics Committee (OxTREC). Uganda National Council of Science and Technology
133	(UNCST) and the National Drug Authority in Uganda provided regulatory approvals.
134	Consent was obtained from each participant's carer and assent from the participants (except
135	for cases with severe cognitive impairment).
136	Screening, recruitment and clinical assessments
137	Most children with nodding syndrome in Uganda live within a few Kilometres of the 17-
138	nodding syndrome treatment centres in the country. Patient registers from the selected centres
139	were accessed to identify potential participants. All patients with nodding syndrome in the
140	specific locations were invited to the nearest follow-up centre or a central location in a village
141	by the study field staff. Patients were then screened for eligibility and eligible participants
142	consented. The inclusion criteria included participants with confirmed nodding syndrome as
143	defined by the WHO; age 8 years or older (to avoid doxycycline toxicity) and written consent
144	by the parent or guardian. Females with a positive urinary HCG (pregnancy) test, known
145	hypersensitivity to tetracycline, reported inability to swallow capsules, enrolled into another
146	trial and suspected high likelihood of non-compliance with the study drug and follow-up
147	schedule were excluded.

Page 8 of 28

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ open

As part of the requirements of the trial, all consenting participants and care givers were invited to and hospitalized in Kitgum General Hospital for about a week. During this period, all had detailed history, a full clinical and neurological assessment, an assessment of functioning using the Gross Motor Function Classification System and Modified Rankins Score, Cognitive function on psychometric testing and the Cogstate (a computerized cognitive test), Intellectual Disability using the Child and Adolescent Intellectual Disability Screening Questionnaire (CAIDS-Q), Quality of Life with the Quality of Life in Childhood Epilepsy Questionnaire and a diagnostic electroencephalogram (EEG) testing. The types of seizures were described and the burden reported as the number of seizures in the past month.

157 Laboratory Procedures

All participants had 10mls of venous blood drawn for a complete blood count, liver and renal function, and study specific tests. Malaria was tested using the *P. falciparum* malaria (HRP2) rapid diagnostic test (CareStart[™], 2016). Participants testing positive for malaria on the RDT had thick Giemsa-stained blood smear slides prepared to determine the parasite density. Each slide was examined by two observers, and any differences were reconciled by a third observer. The number of asexual malaria parasites observed was reported per 200 white blood cells (WBC) and the parasite density per microliter of blood estimated assuming 8000 WBC/ul of blood.

- **Definitions and study outcomes**
- a) Asymptomatic malaria was defined as *P. falciparum* parasitemia with no history of
 fever in the past week and axillary temperature <37.5 °C.
- b) Symptomatic malaria was defined as *P. falciparum* parasitemia with history of fever in the past week or axillary temperature $\ge 37.5^{\circ}$ C.

BMJ Open

BMJ open

~		
2 3	171	c) Seizure burden was defined as the number of seizures in the past 30 days as reported
4 5	172	by the caretaker.
6 7	173	d) Good seizure control was defined as No seizures in the past 30 days as reported by the
8	175	d) Good seizure control was defined as two seizures in the past 50 days as reported by the
9 10	174	caretaker.
11 12	175	e) Poor seizure control was defined as one or more seizures in the past 30days as
13 14	176	reported by the caretaker.
15		
16 17	177	In this report, only the relevant clinical and laboratory testing, obtained at the enrolment
18 19 20	178	screening before the interventions, is reported.
20 21 22	179	
23	180	Patient and public involvement
24 25	200	
26	181	The public was involved in developing the research questions of the overall study i.e.
27 28	182	understanding the aetiology and treatment of nodding syndrome but not with the design of
29 30 31	183	this sub-study. The main trial is however still ongoing and in addition to personal contact
32 33	184	with participant's families every six months, there are also community meetings every 3-6
34 35	185	months. The study results will be fed back to the community at these meetings and on during
36 37	186	the biannual Call in Local FM Radio broadcasts that the study conducts.
38		
39	187	
40 41		
42	400	
43 44	188	Data management and Statistical analyses
45		
46 47	189	Data was entered in a Microsoft Access Database using Epi info version 7.1.5.2. All patient
48 49	190	data was then exported and analysed with STATA version 12.0 (STATA CORP, Texas) and
50 51	191	Graph Pad Prism version 6.01 (GraphPad Software, Inc. California). Descriptive statistics
52 53	192	where used to explore the data and reported as proportions, percentages, means (SD) and
54 55	193	medians (IQR) as appropriate. Differences between the groups were tested by the Chi Square
56		
57 58		
20		Q

Page 10 of 28

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

BMJ open

194	test (proportions), the student's t test for normally distributed data and the Mann Whitney test
195	was used for skewed data. Participants were categorized into those with good seizure control
196	(no seizures in the past month) and those poor seizure control (one or more seizures in the
197	past month). A logistic regression model was used to assess the association between seizure
198	control and infection with plasmodium. Variables with a p value of 0.3 or less at bivariate
199	level were considered for multivariate analysis. Variables significantly associated with
200	infection by Plasmodium falciparum were further assessed for interaction with plasmodium
201	infection and seizure control. All variables that were not in the model because of a non-
202	significant p value were assessed for a confounding effect using a 10% difference between
203	the adjusted and unadjusted odds to show confounding. To examine if there is a direct
204	relationship between the malaria parasite density and seizure burden, Spearman's Rank
205	Correlation testing was performed between the peripheral blood parasite density (log 10
206	parasites/ul) and the number of seizures in the past month in patients with asymptomatic
207	malaria.
208	malaria.
209	
200	

BMJ Open

Results

211 General description

212	Between September 2016 and August 2017, a total of 240 patients with nodding syndrome
213	were recruited into the trial and were included in this study. Of these, 140/240 (58.3%) were
214	male. The mean age was 15.6 (SD 2.0) years. The mean dose of sodium valproate was 22.6
215	(SD 7.2) mg/kg/day. A total of 164/240 (68.3%) participants tested positive for falciparum
216	malaria, most of whom had asymptomatic infections (160/164 [97.6%]).

A total of 159/240 (66.3%) reported experiencing at least one convulsive seizure in the past year of whom 139 (57.9%) experienced at least one such seizure in the past 30 days. There were no significant differences in the doses (mg/kg/day) of sodium valproate across the groups. In patients without malaria, the median [IQR] number of seizures in the previous 30 days was 2.0 [1.0-4.0] and it was 4.0 [2.0-7.5] in patients with malaria, *p*=0.017, Mann-Whitney test, **Figure 1**. Among the four symptomatic malaria cases, the median [IQR] number of seizures in the past month was 6.0 [4.0-10.0]. However, because these were very

few, the group was excluded from all further analysis.

Among patients with asymptomatic malaria, the median [IQR] number of seizures

experienced in the past month was 3.0 (2.0-7.3). Generalized tonic-clonic and absence

seizures were the most common types of seizures described. Other seizure manifestations

228 were infrequent. Also, there were no differences in the manifestations of seizures in the three

groups, **Table 1**.

BMJ Open

BMJ open

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Relationship between other patient characteristics and seizure control in patients with nodding syndrome.

Participants were categorized into those with good seizure control (no seizures in the past 30 days) and poor seizure control (one or more seizures in the past 30 days). In addition to presences of malaria parasitaemia, sex (AOR 1.96 [95% CI 1.11-3.46], p value=0.03) and dose of antiepileptic drug (AOR 1.04 [95% CI 1.00 - 1.13], p value=0.04) were significantly associated with seizure control, **Table 2**. Furthermore, among children with asymptomatic malaria, a positive linear correlation was observed between the number of seizures in the past month and the peripheral blood parasite density r=0.33, (two tailed p value = 0.002). A linear regression analysis gave the equation: Y = 1.809X + 2.549. figure 1.

Discussion

This study investigated the relationship between malaria infection and seizure control in children with a complex epilepsy disorder, the nodding syndrome. The study found that patients with plasmodium falciparum malaria infection experienced a significantly higher number of seizures in the previous month compared to patients without malaria and, there was a direct correlation between the peripheral blood parasite load and the number of seizures. The study would suggest that in patients with seizure disorders on antiepileptic drug treatment, malaria parasitaemia, whether asymptomatic or symptomatic, may increase the risk of seizures and impair seizure control.

Plasmodium falciparum is epileptogenic[29]. In the malaria endemic regions of Africa,

falciparum malaria is a leading cause of acute seizures and convulsive status epilepticus. This

253 infection also contributes the largest fraction of seizure related hospitalizations in

children[16,29,30]. The seizures are not necessarily due to fever but are associated with

increasing parasitaemia possibly highlighting the pathological link between the presence of

BMJ Open

	256	the parasites in the brain and the development of acute seizures[29,31] since the brain is a
	257	preferential site for the sequestration of <i>P. falciparum</i> infected red cells. Already,
	258	asymptomatic malaria infections have been shown to affect cognition in healthy children [9]
)	259	but to the best of our knowledge, this is the first study to demonstrate a possible relationship
1 2	260	between asymptomatic infections and a higher burden of seizures in children with epilepsy.
2 3 4 5	261	The study would suggest that in children with epilepsy living in Africa, asymptomatic
5	262	malaria infections may not be truly benign but may be a risk factor impairing seizure control.
7 3	263	
)]	264	Apart from neurocysticercosis, the epileptogenic mechanisms of parasitic infections are not
2 3 4	265	well understood[32]. Plasmodium falciparum infection is characterized by sequestration of
4 5	266	the late stages of the intra-erythrocytic cycle, particularly in the brain. In the case of severe
5 5 7	267	malaria, acute seizures may potentially be induced through multiple pathways: i) indirectly
3	268	through biochemical mechanisms associated with hypoglycemia, hyponatremia, or
) 	269	acidosis[29,31]; ii) a direct effect of the parasites (or parasite toxin) sequestered in cerebral
<u>2</u> 3 4	270	vessels[29]; iii) an immunological mechanism since high titers of voltage gated cation
5	271	channel antibodies have been observed in some children[33]; iv) compromised perfusion of
7 3	272	the brain due to cerebral microvascular parasite sequestration and raised intracranial pressure
€)	273	inhibiting substrate delivery[29] and; v) down-regulation of GABA receptors therefore
1 2	274	decreasing the inhibitory effects on seizures[32]. It is possible that, in patients with low
3 4 5	275	seizure thresholds or a higher propensity to seizures such as children with epilepsy, even
5 5 7	276	asymptomatic malaria infections may, by any of the above or other mechanisms, induce
3	277	seizures and impair seizure control. Therefore, poor seizure control maybe an unrecognized
) 1	278	consequence of asymptomatic malaria infections in children with epilepsy in malaria endemic
2 3	279	regions.
4 5	280	
2 7 2		
		1 ')

Page 14 of 28

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

BMJ open

Patients with malaria on average experienced twice the number of seizures experienced by those without malaria. The higher burden of seizures will not only impact on the clinical and antiepileptic drug needs of the patients but also on physician time, healthcare costs, patient's productivity, learning and achievements and on Quality of Life. There are an estimated 10 million people with epilepsy in Africa[34]. The prevalence of asymptomatic parasitaemia in school age children in sub-Saharan Africa is 4-64% (reviewed in [35]). Assuming an average 10% prevalence, there may be over one million people with epilepsy in Africa who are at risk of the potential adverse effects of asymptomatic malaria of poorer seizure control. Should these findings be confirmed in other epilepsy disorders, it may be that patients with epilepsy in the malaria endemic areas of Africa should be considered a special and may benefit from enhanced malaria prevention. Already, children with sickle cell anaemia living in similar settings are considered one such special group and in addition to the barrier methods of malaria prevention, are offered malaria chemoprophylaxis[36]. Thus, this study should be repeated in patients with other forms of epilepsy and if confirmed, trials should be conducted to evaluate if children with epilepsy may also benefit from malaria chemo-treatment (of asymptomatic cases) and chemoprophylaxis against infection in addition to current barrier methods of malaria prevention.

The study had some limitations. First, nodding syndrome is a poorly understood complex epilepsy disorder that may not be representative of all other seizure disorders. However, the syndrome offers the advantage of a uniform population with all patients receiving the same antiepileptic drug and a similar level of care in Uganda[27]. Secondly, the study did not conduct more sensitive assays such as PCR to identify sub-patent malaria infections. Third is the possibility of recall bias in the determination of the number of seizures in the past month. However, we limited this bias by focusing on convulsive seizures that are less likely forgotten, limited to the past month, collecting the information using standardized tools, and

BMJ Open

BMJ open

1		
2 3	306	by clinicians trained and experienced in the care of patients with epilepsy. Lastly, this was a
4 5 6	307	cross sectional study with a limited sample size and so, a prospective study with a larger
7 8	308	sample size should be conducted to confirm the results.
9		
10 11 12	309	Conclusion
13 14 15	310	In conclusion, in patients with nodding syndrome, both asymptomatic and symptomatic
16 17	311	malaria infections are associated with an increased risk of seizures and poorer seizure control.
18 19	312	Similar effects should be examined in other epilepsy disorders. Malaria prevention should be
20 21	313	strengthened for these patients and chemoprevention studies considered.
22 23 24 25	314	References
26 27 28	315	References
29 30	316	1. World Health Organization. World Malaria Report 2015. World Malar. Rep. [Internet].
31 32	317	World Health Organization; 2015 [cited 2017 Aug 23];1–280. Available from:
33 34 35	318	http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/
36 37	319	2. Laishram DD, Sutton PL, Nanda N, Sharma VL, Sobti RC, Carlton JM, et al. The
38 39	320	complexities of malaria disease manifestations with a focus on asymptomatic malaria. Malar.
40 41	321	J. [Internet]. BioMed Central; 2012 [cited 2017 Aug 30];11:29. Available from:
42 43 44	322	http://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-11-29
45 46	323	3. Walldorf JA, Cohee LM, Coalson JE, Bauleni A, Nkanaunena K, Kapito-Tembo A, et al.
47 48	324	School-age children are a reservoir of malaria infection in Malawi. PLoS One [Internet].
49 50	325	Public Library of Science; 2015 [cited 2017 Aug 30];10:e0134061. Available from:
51 52 53	326	http://www.ncbi.nlm.nih.gov/pubmed/26207758
54 55 56	327	4. Starzengruber P, Fuehrer H-P, Ley B, Thriemer K, Swoboda P, Habler V, et al. High
57 58 59		15

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

BMJ open

328	prevalence of asymptomatic malaria in south-eastern Bangladesh. Malar. J. [Internet].
329	BioMed Central; 2014 [cited 2017 Aug 30];13:16. Available from:
330	http://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-13-16
331	5. Idris ZM, Chan CW, Kongere J, Gitaka J, Logedi J, Omar A, et al. High and
332	Heterogeneous Prevalence of Asymptomatic and Sub-microscopic Malaria Infections on
333	Islands in Lake Victoria, Kenya. Sci. Rep. [Internet]. Nature Publishing Group; 2016 [cited
334	2017 Aug 30];6:36958. Available from: http://www.nature.com/articles/srep36958
335	6. Chourasia MK, Raghavendra K, Bhatt RM, Swain DK, Meshram HM, Meshram JK, et al.
336	Additional burden of asymptomatic and sub-patent malaria infections during low
337	transmission season in forested tribal villages in Chhattisgarh, India. Malar. J. [Internet].
338	BioMed Central; 2017 [cited 2017 Aug 30];16:320. Available from:
339	http://malariajournal.biomedcentral.com/articles/10.1186/s12936-017-1968-8
340	7. Lindblade KA, Steinhardt L, Samuels A, Kachur SP, Slutsker L. The silent threat:
341	asymptomatic parasitemia and malaria transmission. Expert Rev. Anti. Infect. Ther.
342	[Internet]. 2013 [cited 2016 Nov 6];11:623–39. Available from:
343	http://www.tandfonline.com/doi/full/10.1586/eri.13.45
344	8. de Mendonça VR, Barral-Netto M. Immunoregulation in human malaria: The challenge of
345	understanding asymptomatic infection. Mem. Inst. Oswaldo Cruz. 2015;110:945-55.
346	9. Chen I, Clarke SE, Gosling R, Hamainza B, Killeen G, Magill A, et al. "Asymptomatic"
347	Malaria: A Chronic and Debilitating Infection That Should Be Treated. PLoS Med. [Internet].
348	Public Library of Science; 2016 [cited 2017 Aug 30];13:e1001942. Available from:
349	http://www.ncbi.nlm.nih.gov/pubmed/26783752
350	10. Nankabirwa J, Wandera B, Kiwanuka N, Staedke SG, Kamya MR, Brooker SJ.
351	Asymptomatic Plasmodium infection and cognition among primary schoolchildren in a high

BMJ Open

1		
2 3 4	352	malaria transmission setting in Uganda. Am. J. Trop. Med. Hyg. 2013;88:1102-8.
5 6	353	11. de Mast Q, Brouwers J, Syafruddin D, Bousema T, Baidjoe AY, de Groot PG, et al. Is
7 8	354	asymptomatic malaria really asymptomatic? Hematological, vascular and inflammatory
9 10	355	effects of asymptomatic malaria parasitemia. J. Infect. [Internet]. 2015 [cited 2017 Sep
11 12 13	356	23];71:587-96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26304688
14 15	357	12. Nega D, Dana D, Tefera T, Eshetu T. Prevalence and predictors of asymptomatic malaria
16 17	358	parasitemia among pregnant women in the rural surroundings of Arbaminch Town, South
18 19	359	Ethiopia. PLoS One [Internet]. 2015 [cited 2017 Sep 23];10:110. Available from:
20 21 22	360	http://www.ncbi.nlm.nih.gov/pubmed/25889703
23 24	361	13. Marsh K. Africa in transition: The case of malaria. Int. Health. 2016;8:155–6.
25 26 27	362	14. Khan WA, Galagan SR, Prue CS, Khyang J, Ahmed S, Ram M, et al. Asymptomatic
28 29	363	Plasmodium falciparum malaria in pregnant women in the Chittagong Hill Districts of
30 31	364	Bangladesh. PLoS One. 2014;9.
32 33 34	365	15. Idro R, Ndiritu M, Ogutu B, Mithwani S, Maitland K, Berkley J, et al. Burden, Features,
34 35 36	366	and Outcome of Neurological Involvement in Acute Falciparum Malaria in Kenyan Children.
37 38	367	Jama [Internet]. 2007 [cited 2017 Aug 30];297:2232. Available from:
39 40	368	http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.297.20.2232
41 42 43	369	16. Kariuki SM, Ikumi M, Ojal J, Sadarangani M, Idro R, Olotu A, et al. Acute seizures
43 44 45	370	attributable to falciparum malaria in an endemic area on the Kenyan coast. Brain [Internet].
46 47	371	Oxford University Press; 2011 [cited 2016 Nov 6];134:1519–28. Available from:
48 49	372	http://www.ncbi.nlm.nih.gov/pubmed/21482551
50 51 52	373	17. Feldmeier H, Komazawa O, Moji K. Nodding Syndrome in Uganda: Field Observations,
53 54	374	Challenges and Research Agenda. Trop. Med. Health [Internet]. 2014 [cited 2016 Jan
55 56	375	30];42:S109–14. Available from: http://jlc.jst.go.jp/DN/JST.JSTAGE/tmh/2014-
57 58		17
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

376	S15?lang=en&from=CrossRef&type=abstract
377	18. Idro R, Opar B, Wamala J, Abbo C, Onzivua S, Mwaka DA, et al. Is nodding syndrome
378	an Onchocerca volvulus-induced neuroinflammatory disorder? Uganda's story of research in
379	understanding the disease. Int. J. Infect. Dis. [Internet]. 2016 [cited 2016 Apr 1];45:112-7.
380	Available from: http://linkinghub.elsevier.com/retrieve/pii/S1201971216309882
381	19. Dowell SF, Sejvar JJ, Riek L, Vandemaele KAH, Lamunu M, Kuesel AC, et al. Nodding
382	syndrome. Emerg. Infect. Dis. [Internet]. 2013 [cited 2016 Jan 30];19:1374-84. Available
383	from: http://www.mendeley.com/catalog/nodding-syndrome/
384	20. Spencer PS, Vandemaele K, Richer M, Palmer VS, Chungong S, Anker M, et al. Nodding
385	syndrome in Mundri county, South Sudan: Environmental, nutritional and infectious factors.
386	Afr. Health Sci. 2013;13:183–204.
387	21. Johnson TP, Tyagi R, Lee PR, Lee M-H, Johnson KR, Kowalak J, et al. Nodding
388	syndrome may be an autoimmune reaction to the parasitic worm Onchocerca volvulus. Sci.
389	Transl. Med. [Internet]. 2017;9:eaaf6953. Available from:
390	http://stm.sciencemag.org/lookup/doi/10.1126/scitranslmed.aaf6953
391	22. Idro R, Opoka RO, Aanyu HT, Kakooza-Mwesige A, Piloya-Were T, Namusoke H, et al.
392	Nodding syndrome in Ugandan children—clinical features, brain imaging and complications:
393	a case series. BMJ Open [Internet]. 2013 [cited 2016 Jan 29];3:e002540. Available from:
394	http://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2012-002540
395	23. Winkler AS, Friedrich K, Meindl M, Kidunda A, Nassri A, Jilek-Aall L, et al. Clinical
396	characteristics of people with head nodding in southern Tanzania. Trop. Doct. [Internet].
397	2010;40:173-5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20555049
398	24. Tumwine JK, Vandemaele K, Chungong S, Richer M, Anker M, Ayana Y, et al. Clinical
399	and epidemiologic characteristics of nodding syndrome in mundri county, southern Sudan.

BMJ Open

1		
2 3	400	Afr. Health Sci. [Internet]. 2012 [cited 2016 Jan 30];12:242-8. Available from:
4 5	401	http://www.mendeley.com/catalog/clinical-epidemiologic-characteristics-nodding-syndrome-
6		
7 8	402	mundri-county-southern-sudan/
9 10 11	403	25. Idro R, Namusoke H, Abbo C, Mutamba BB, Kakooza-Mwesige A, Opoka RO, et al.
12 13	404	Patients with nodding syndrome in Uganda improve with symptomatic treatment: a cross-
14 15	405	sectional study. BMJ Open [Internet]. 2014;4:e006476. Available from:
16 17	406	http://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2014-006476
18 19 20	407	26. Doxycycline for the Treatment of Nodding Syndrome [Internet]. 2016 [cited 2017 Oct
21 22	408	16]. Available from:
23 24	409	https://clinicaltrials.gov/ct2/show/NCT02850913?term=nodding+disease&cond=Nodding+S
25 26	410	yndrome&cntry1=AF%3AUG&rank=2
27 28 29	411	27. Idro R, Musubire KA, Byamah Mutamba B, Namusoke H, Muron J, Abbo C, et al.
30 31	412	Proposed guidelines for the management of nodding syndrome. Afr. Health Sci. [Internet].
32 33	413	2013 [cited 2016 Jan 29];13:219–32. Available from:
34 35	414	http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3824512&tool=pmcentrez&rende
36 37 38	415	rtype=abstract
39 40	416	28. Iyengar PJ, Wamala J, Ratto J, Blanton C, Malimbo M, Lukwago L, et al. Prevalence of
41 42	417	nodding syndromeUganda, 2012-2013. MMWR. Morb. Mortal. Wkly. Rep. 2014;63:603-6.
43 44	418	29. Idro R, Ndiritu M, Ogutu B, Mithwani S, Maitland K, Berkley J, et al. Burden, Features,
45 46 47	419	and Outcome of Neurological Involvement in Acute Falciparum Malaria in Kenyan Children.
48 49	420	Jama [Internet]. 2007;297:2232. Available from:
50 51	421	http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.297.20.2232
52 53 54	422	30. Idro R, Gwer S, Kahindi M, Gatakaa H, Kazungu T, Ndiritu M, et al. The incidence,
55 56	423	aetiology and outcome of acute seizures in children admitted to a rural Kenyan district
57 58 59		19

BMJ Open

BMJ open

424	hospital. BMC Pediatr. [Internet]. 2008;8:5. Available from:
425	http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2270816&tool=pmcentrez&rende
426	rtype=abstract
427	31. Crawley J, Smith S, Kirkham F, Muthinji P, Waruiru C, Marsh K. Seizures and status
428	epilepticus in childhood cerebral malaria. QJM [Internet]. 1996;89:591-7. Available from:
429	http://qjmed.oxfordjournals.org/cgi/content/abstract/89/8/591%5Cnhttp://qjmed.oxfordjourna
430	ls.org.libproxy.ucl.ac.uk/content/89/8/591
431	32. Ba-diop A. Europe PMC Funders Group Epidemiology, causes, and treatment of
432	epilepsy in sub-Saharan Africa. 2017;13:1029–44.
433	33. Idro R, Jenkins NE, Newton CR. Pathogenesis, clinical features, and neurological
434	outcome of cerebral malaria. Lancet Neurol. [Internet]. 2005;4:827-40. Available from:
435	http://linkinghub.elsevier.com/retrieve/pii/S1474442205702477
436	34. Epilepsy in Africa Epilepsy Society [Internet]. [cited 2017 Oct 14]. Available from:
437	https://www.epilepsysociety.org.uk/epilepsy-africa#.WeHVBTtx200
438	35. Nankabirwa J, Brooker SJ, Clarke SE, Fernando D, Gitonga CW, Schellenberg D, et al.
439	Malaria in school-age children in Africa: An increasingly important challenge. Trop. Med.
440	Int. Heal. [Internet]. Wiley-Blackwell; 2014 [cited 2017 Oct 14];19:1294–309. Available
441	from: http://www.ncbi.nlm.nih.gov/pubmed/25145389
442	36. Oniyangi O, Omari AA. Malaria chemoprophylaxis in sickle cell disease. In: Oniyangi O,
443	editor. Cochrane Database Syst. Rev. [Internet]. Chichester, UK: John Wiley & Sons, Ltd;
444	2006 [cited 2017 Oct 16]. p. CD003489. Available from:
445	http://doi.wiley.com/10.1002/14651858.CD003489.pub2
446	
	20
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

447 Author contributions

RI and RO conceived and designed the study, carried out initial analyses and drafted the

449 manuscript. RA, PA and AN designed the tools, collected data and critically reviewed the

450 manuscript. KM and CN designed the study and critically reviewed the manuscript.

451 Funding

This study was jointly funded by the Medical Research Council (MRC) and the UK
Department for International Development (DFID) under the MRC/DFID Concordat
agreement through the African Research Leadership Scheme to Dr Richard Idro and Prof.
Kevin Marsh, grant number MR/M025489/1 and is also part of the EDCTP2 programme
supported by the European Union.

457 Acknowledgements

RO thanks the IBRO - ARC 2017 Paper Writing Workshop, held in Entebbe, Uganda, for
their mentorship. Gratitude goes to the Doxycycline for the Treatment of Nodding Syndrome
(DONS) trial implementation team; Nelson Odoch, Stephen Okiror, Innocent JJ Oryem and
Deborah Akol.

Competing interests

All the authors declare that they have no competing interests.

464 Data sharing statement

A data sharing plan for the trial is being developed to have the overall study data available onpublic websites.

Page 22 of 28

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Table 1: Summary of general characteristics in patients and without malaria

parastaemia

	Patients without malaria parasitaemia,	Patients with malaria parasitaemia,	P value
Mean (SD) Age, years	N= 76	N= 160	0.22 ^a
Sex, Male (%)	41 (54%)	94(58%)	0.48 ^b
Mean weight (SD), Kg	40.7(9.8)	41.9(8.9)	0.37 ^a
Mean (SD) axillary temp, °C	36.4(0.42)	36.5(0.4)	0.41 ^a
Parasite density (IQR), /ul	0 (0)	200 (20-460)	< 0.0001
Mean (SD) dose of Valproate acid,	24.1(8.2)	22.1(6.3)	0.06 ^a
(mg/kg/day)			
Median (IQR) number of clusters	3.0 [2.0-6.0]	4.0 [2.0-10.0]	0.38 ^c
of head nodding episodes in the			
last month (IQR)			
Ту	pe of seizures in the past	month	
Absence N (%)	12(15.7)	20(12.5)	0.62 ^b
Tonic N (%)	1(1.3)	0(0.0)	0.70 ^b
Clonic N (%)	1(1.3)	1(0.6)	1.00 ^b
Generalised tonic clonic N (%)	37(50)	73(45.6)	0.76 ^b
Myoclonic N (%)	1(1.3)	1(0.6)	0.54 ^b
Drop N (%)	2(2.6)	1(0.6)	0.24 ^b
470 ^a Un paired students t test			
471 ^b chi square			
472 ^c Mann Whitney test			

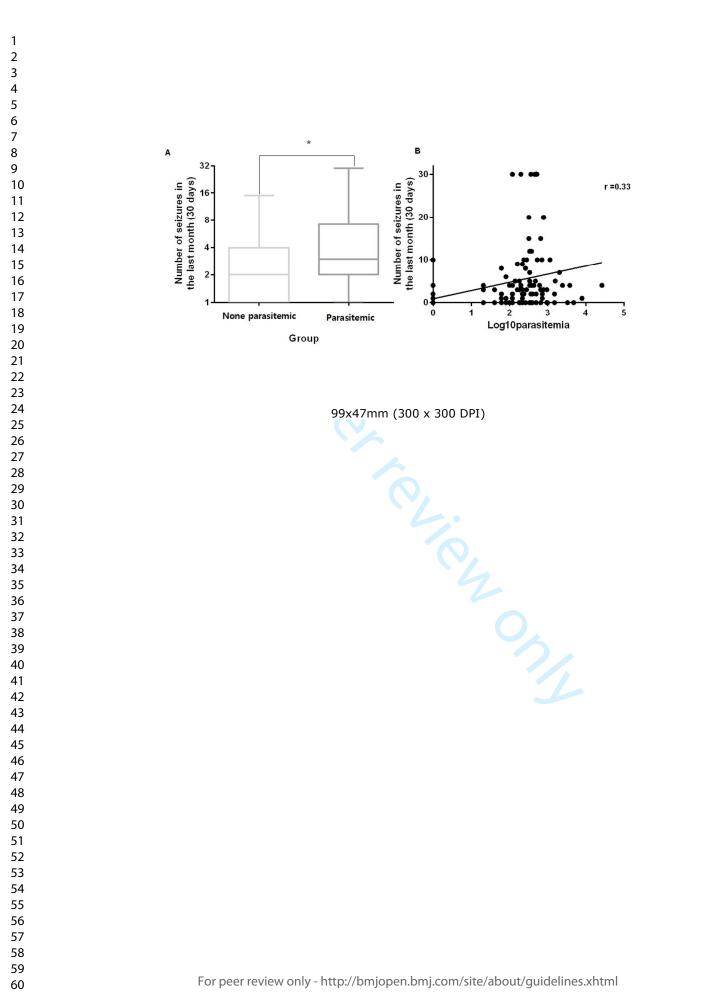
BMJ Open

BMJ open

5 473 7 474

Table 2: Factors associated with seizure control

		Seizure cont	rol	O.R (C.I)	P-Value	Adjusted odds	P Value
		Good	Poor	1			
Sex/ n (%)	Male	66(48.15)	71(51%)				
	Female	34(34.34)	65(65.6)	1.77(1.03-3.03)	0.04	1.96 (1.11-3.46)	0.0
Age Mean (S.D)		15.69(2.34)	15.73(1.66)	1.01(0.88-1.15)	0.88		
Body Temperature Mean (S.D)		36.46(0.47)	36.47(0.45)	0.98(0.55-1.71	0.94		
Dose Mean (S.D)		23.42(7.87)	21.55(5.88)	1.04(0.99-1.08)	0.05	1.04 (1.00 - 1.13)	0.0
Weight/ Mean (S.D)		42.08(9.35)	41.5(9.34)	0.99(0.966-1.02)	0.6		
Duration with disease/ Mean		8.44(2.68)	8.21(3.07)	1.02(093-1.12)	0.53		
(S.D)							
log10parasitemia / n (%)	0	66 (53.3)	57(46.3)				
	1 to 2.5	24 (38.71)	39(61.3)	1.80(0.93-3.36)	0.06	1.81(0.95-3.44)	0.0
	>2.5	10 (20.0)	40(80.0)	4.56(2.09-9.9)	< 0.01	5.11(2.33-11.35)	< 0.0


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Page 24 of 28

1		
2 3	475	
4	475	
5		
6 7	476	Figure 1: A) Graph of seizure burden among participants who are non-parasitaemic and
8 9	477	those who have asymptomatic parasitaemia. B) Graph showing the relationship between
10	478	seizure burden and log ₁₀ falciparum malaria parasite density among asymptomatic patients.
11 12		
12	479	
14		
15 16	480	Figure legend
17		
18 19	481	Figure 1 - compares the number (median) of convulsive seizures over the past month in
20 21	482	nodding syndrome patients with and without falciparum malaria parasitaemia (A) and the
22	483	relationship between the parasite density and the number of seizures (B).
23 24	405	relationship between the parasite density and the number of seizures (D).
24		
26		
27		
28		
29		
30 31		
32		
33		
34		
35		
36 37		
38		
39		
40		
41		
42 43		
43 44		
45		
46		
47		
48		
49 50		
51		
52		
53		
54		
55 56		
50 57		
58		24

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Reporting checklist for cross sectional study.

Based on the STROBE cross sectional guidelines.

Instructions to authors

 Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cross sectional reporting guidelines, and cite them as:

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

31 32 33			Reporting Item	Page Number
34 35 36 37	Title	#1a	Indicate the study's design with a commonly used term in the title or the abstract	1
38 39 40 41	Abstract	#1b	Provide in the abstract an informative and balanced summary of what was done and what was found	2-3
42 43 44 45	Background / rationale	#2	Explain the scientific background and rationale for the investigation being reported	5-6
46 47 48 49	Objectives	#3	State specific objectives, including any prespecified hypotheses	6
50 51	Study design	#4	Present key elements of study design early in the paper	6
52 53 54 55 56 57 58 59 60	Setting	#5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7-9
	Eligibility criteria	#6a For pe	Give the eligibility criteria, and the sources and methods of selection of participants.	7-8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		#7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	9-10	
	Data sources / measurement	#8	For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable.	7-10	
	Bias	#9	Describe any efforts to address potential sources of bias	8-10	•
16 17 18	Study size	#10	Explain how the study size was arrived at	6-7	
19 20 21 22 23	Quantitative variables	#11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	9-10	
24 25 26 27	Statistical methods	#12a	Describe all statistical methods, including those used to control for confounding	9-10	
28 29 30 31		#12b	Describe any methods used to examine subgroups and interactions	9-10	
32 33		#12c	Explain how missing data were addressed	N/A	
34 35 36 37		#12d	If applicable, describe analytical methods taking account of sampling strategy	N/A	
38 39		#12e	Describe any sensitivity analyses	N/A	
40 41 42 43 44 45 46 47	Participants	#13a	Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable.	11	
48 49		#13b	Give reasons for non-participation at each stage	N/A	
50 51 52		#13c	Consider use of a flow diagram	N/A	
52 53 54 55 56 57 58 59 60	Descriptive data	#14a For pe	Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable.	11	

Page 28 of 28

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

1 2 3		#14b	Indicate number of participants with missing data for each variable of interest	N/A				
4 5 6 7 8 9 10 11 12 13 14 15	Outcome data	#15	Report numbers of outcome events or summary measures. Give information separately for exposed and unexposed groups if applicable.	See note 1				
	Main results	#16a	Give unadjusted estimates and, if applicable, confounder- adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	11; 22- 24				
16 17 18 19		#16b	Report category boundaries when continuous variables were categorized	11				
20 21 22 23		#16c	If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A				
24 25 26 27	Other analyses	#17	Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses	11-12				
28 29	Key results	#18	Summarise key results with reference to study objectives	12-13				
30 31 32 33 34	Limitations	#19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	14				
35 36 37 38 39 40	Interpretation	#20	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	13-15				
41 42 43 44	Generalisability	#21	Discuss the generalisability (external validity) of the study results	15				
45 46 47 48 49	Funding	#22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	21				
50 51 52	Author notes							
53 54	1. 11-12; 22-24							
55 56	The STROBE chee	cklist is	distributed under the terms of the Creative Commons Attribution I	_icense				
57	CC-BY. This check	dist was	s completed on 15. April 2018 using <u>http://www.goodreports.org/</u> ,	a tool				
58 59	made by the <u>EQUATOR Network</u> in collaboration with <u>Penelope.ai</u> For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml							

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open

Asymptomatic malaria parasitaemia and seizure control in children with nodding syndrome; a cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-023624.R1
Article Type:	Research
Date Submitted by the Author:	26-Jun-2018
Complete List of Authors:	Ogwang, Rodney; Makerere University College of Health Sciences, Paediatrics and Child Health; Centre for Tropical Neuroscience, Kitgum Site Anguzu, Ronald; Makerere University College of Health; Medical College of Wisconsin Akun, Pamela; Makerere University College of Health Sciences, Paediatrics and Child Health; Centre for Tropical Neuroscience, Kitgum Site Ningwa, Albert; Makerere University College of Health Sciences, Paediatrics and Child Health; Centre for Tropical Neuroscience, Kitgum Site Kayongo, Edward; Makerere University College of Health Sciences, Paediatrics Marsh, Kevin; University of Oxford, Nuffield Department of Medicine Newton, Charles; KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research -Coast, Clinical Research; University of oxford, Department of Psychiatry Idro, Richard; Makerere University College of Health Sciences; Oxford University , Nuffield Department of Medicine
Primary Subject Heading :	Neurology
Secondary Subject Heading:	Infectious diseases, Global health, Paediatrics
Keywords:	Nodding syndrome, Malaria, Seizure control, children

SCHOLARONE[™] Manuscripts

BMJ Open

BMJ open

1	Asymptomatic malaria parasitaemia and seizure control in
2	children with nodding syndrome; a cross sectional study
3	Authors
4	Rodney Ogwang ^{1, 2} , Ronald Anguzu ^{1,2} Pamela Akun ^{1,2} , Albert Ningwa ^{1, 2} , Edward
5	Kayongo ¹ , Kevin Marsh ³ , Charles R. Newton ^{4,5} , Richard Idro ^{1, 2, 3*}
6	Affiliations
7	¹ Makerere University College of Health Sciences, Kampala, Uganda;
8	² Centre for Tropical Neuroscience, Kampala, Uganda
9	³ Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
10	⁴ Kenya Medical Research Institute-Wellcome Trust Collaborative Programme, Kilifi, Kenya
11	⁵ Department of Psychiatry, University of Oxford, Oxford, UK;
12	Corresponding Author
13	Dr Richard Idro
14	Makerere University College of Health Sciences, P.O Box 7072, Kampala, Uganda
15	Email: <u>ridro1@gmail.com</u>
16	
17	
	1
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Abstract

Objective

Plasmodium falciparum is epileptogenic and in malaria endemic areas, is a leading cause of acute seizures. In these areas, asymptomatic infections are common but considered benign and so, are not treated. The effects of such infections on seizures in patients with epilepsy is unknown. This study examined the relationship between *P. falciparum* infection and seizure control in children with a unique epilepsy type, the nodding syndrome.

Design

This cross-sectional study was nested in an ongoing trial 'Doxycycline for the treatment of nodding syndrome (NCT02850913)'. We hypothesised that, in patients with epilepsy, infection by *P.falciparum*, including asymptomatic infections, increases the risk of seizures JICN and impairs seizure control.

Setting and participants

Participants were Ugandan children with nodding syndrome, age ≥ 8 years, receiving sodium valproate. All had standardised testing including documentation of the number of seizures in the past month, a rapid malaria test and if positive, the peripheral blood parasite density.

Outcomes

The primary outcome was the number of seizures in the past month (30 days).

Results

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16	
17	
18 19 20	
19	
20	
21	
21 22 23 24	
23	
24	
25	
25	
26	
27	
27 28 29	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
54	
55	
56	
57	
58	
59	
60	

37	A total of 164/240 (68%) had malaria. Asymptomatic infections (without fever) were seen in
38	160/240 (67%) and symptomatic infections in 4/240 (2.7%). In participants without malaria,
39	the median [IQR] number of seizures in the past month was 2.0 [1.0-4.0] and it was 4.0 [2.0-
40	7.5] in participants with malaria, $p=0.017$. The number of seizures in asymptomatic persons
41	was 3.0[IQR 2.0-7.3] and 6.0[IQR 4.0-10.0] in symptomatic individuals, <i>p</i> =0.024.
42	Additionally, in asymptomatic patients, a positive correlation was observed between the
43	parasite density and number of seizures, $r=0.33$, $p=0.002$.
44	Conclusion
45	In patients with nodding syndrome, both asymptomatic and symptomatic malaria are
46	associated with an increased risk of seizures and poorer seizure control. Similar effects
47	should be examined in other epilepsy disorders. Malaria prevention should be strengthened
48	for these patients and chemo-treatment and prevention studies considered to improve seizure
49	control.
50	control. Article Summary

51 Strengths and limitations

Nodding syndrome is a poorly understood epilepsy disorder not representative of other
epilepsies. However, the disease offers the advantage of a uniform population of epilepsy
patients, receiving the same antiepileptic drug, and a similar level of care in Uganda.
This was a cross sectional study that cannot ascribe causality; prospective studies should
be conducted to confirm the results.

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

BMJ open

• The study also relied on parental recall of the number of convulsive seizures in the past

month and could have suffered from the shortfalls of recall bias. Again, a prospective

59 determination of study outcomes will be more appropriate.

60 Word count

Abstract

Main text

Tables

Figures

Key words - Nodding syndrome, children, seizure control and malaria

67 Introduction

Plasmodium falciparum is still a major public health problem in tropical countries and especially, in sub-Saharan Africa. Over 200 million cases are reported annually with several thousand deaths majorly among children younger than 5 years and in pregnant women[1]. P. *falciparum* presents with a spectrum of manifestations from asymptomatic infections (malaria parasitaemia without fever), symptomatic but uncomplicated disease to severe or complicated malaria[2]. Asymptomatic infections are common especially in highly endemic areas[3–7]. These symptomless malaria infections are generally considered benign and thought to be useful in maintaining immunity against severe disease[8]. Evidence is however emerging demonstrating that asymptomatic infections possibly have negative health effects (reviewed in Chen et al 2016)[9] including cognitive impairment[10], anaemia[11,12], co-infection with invasive bacterial disease[13] and increased maternal and neonatal mortality[14].

BMJ Open

BMJ open

1 2	
3	
4 5	
6	
7 8	
o 9	
10	
11 12	
13	
14 15	
16	
17 18	
19	
20 21	
22	
23	
24 25	
26	
27 28	
29	
30 31	
32	
33 34	
35	
36 37	
38	
39	
40 41	
42	
43 44	
45	
46 47	
48	
49 50	
51	
52 53	
54	
55 56	
56 57	
58	
59 60	

79	About 50% of children with acute severe falciparum malaria present with neurological
80	involvement[15]. P. falciparum is known to be epileptogenic, and is a leading cause of acute
81	seizures in children living in malaria endemic areas[16]. However, the effects of
82	asymptomatic infections on the incidence and control of seizures in children with seizure
83	disorders is unknown. This study examined the relationship between asymptomatic malarial
84	infections and seizure control in patients with epilepsy using nodding syndrome as a model.
85	The hypothesis is that: in patients with epilepsy, asymptomatic <i>P. falciparum</i> infections are
86	associated with; i) poorer seizure control; and that ii) seizure control is worse in patients with
87	higher parasitaemia.
88	Nodding syndrome (NS) is a poorly understood complex epilepsy disorder that affects
89	children and adolescents in some regions of Africa[17,18]. Northern Uganda, South Sudan
90	and southern Tanzania bear the greatest burden of this devastating disorder[19,20]. The
91	aetiology is unknown but cross reacting antibodies to Onchocerca volvulus have recently
92	been proposed to underlie the pathogenesis [18,21]. Symptoms develop in previously
93	normally developing children between the ages of 3-18 years[22,23]. Patients present with a
94	distinctive feature – clusters of head nodding – now defined as atonic seizures[21], with a
95	myoclonic element. The head nods present as repeated slow vertical head drops at a
96	frequency of 5-20/min most often, on presentation of food or in cold weather[24]. Over time,
97	the condition is complicated by multiple types of convulsive seizures (focal or multifocal,
98	atypical absence, myoclonic jerks and generalized tonic-clonic seizures), behaviour
99	difficulties and psychiatric disorders, cognitive decline, and in many severe cases, physical
100	deformities and severe disability[22]. In Uganda, patients initiated on a specific symptomatic
101	treatment intervention including the provision of sodium valproate as antiepileptic therapy
102	obtained a 75% reduction in the burden of seizures[25]. The current study examined the

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

BMJ open

relationship between asymptomatic *P.falciparum* infection and seizure control in nodding
syndrome.

105 Methods

106 Study design

This was a cross-sectional study of the relationship between asymptomatic *P. falciparum* malaria infections and seizure control in children with nodding syndrome. The study was nested within and all the participants are enrolled in an ongoing trial 'Doxycycline for the treatment of nodding syndrome (NCT02850913)'. This trial is testing the hypothesis that nodding syndrome is an Onchocerca volvulus induced epileptic encephalopathy with antibodies to the parasite or its symbiotic bacteria, Wolbachia, cross reacting with and damaging host neuron proteins [18,26]. Trial participants are randomised to either oral doxycycline 100mg daily for 6 weeks or matching placebo.

115 Setting

The trial is being conducted in the nodding syndrome affected districts of Kitgum, Pader and Lamwo in Northern Uganda. This region is inhabited by the Acholi, a Luo speaking community that is recovering from a decade-old civil war, with high levels of poverty and psycho-social problems. The districts are served by 17 nodding syndrome treatment centres where patients receive clinical care and treatment according to national guidelines[27]. The population prevalence of nodding syndrome in the affected age group in the region is 6.8 (95% CI 5.9-7.7) per 1,000[28]. The region is also highly endemic to P. falciparum malaria and in 2015 and 2016 experienced a malaria epidemic.

BMJ Open

BMJ open

125	The study recruited all the 240 participants who had been enrolled in the doxycycline for the
126	treatment of nodding syndrome trial. The diagnosis of nodding syndrome was made
127	according to World Organization Criteria. All were receiving sodium valproate (doses 12-35
128	mg/kg/day) as antiepileptic therapy plus nutritional, physical and psychological therapy.
129	Procedures
130	Approvals
131	Ethical approval for the trial was granted by Makerere University School of Medicine
132	Research and Ethics Committee (SOMREC) and University of Oxford Tropical Research
133	Ethics Committee (OxTREC). Uganda National Council for Science and Technology
134	(UNCST) and the National Drug Authority in Uganda provided regulatory approvals.
135	Consent was obtained from each participant's carer and assent from the participants (except
136	for cases with severe cognitive impairment).
137	Screening, recruitment and clinical assessments
138	Most children with nodding syndrome in Uganda live within a few Kilometres of the 17-
139	nodding syndrome treatment centres in the country. Patient registers from the selected centres
140	were accessed to identify potential participants. All patients with nodding syndrome in the
141	specific locations were invited to the nearest follow-up centre or a central location in a village
142	by the study field staff. Patients were then screened for eligibility and eligible participants
143	consented. The inclusion criteria included participants with confirmed nodding syndrome as
144	defined by the WHO; age 8 years or older (to avoid doxycycline toxicity) and written consent
145	by the parent or guardian. Females with a positive urinary HCG (pregnancy) test, known
146	hypersensitivity to tetracycline, reported inability to swallow capsules, enrolled into another

Page 8 of 29

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

BMJ open

trial and suspected high likelihood of non-compliance with the study drug and follow-upschedule were excluded.

As part of the requirements of the trial, all consenting participants and care givers were invited to and hospitalized in Kitgum General Hospital for about a week. During this period, they had detailed history, a full clinical and neurological assessment, an assessment of functioning using the Gross Motor Function Classification System and Modified Rankins Score, Cognitive function on psychometric testing and the Cogstate (a computerized cognitive test), Intellectual Disability using the Child and Adolescent Intellectual Disability Screening Ouestionnaire (CAIDS-O), Quality of Life with the Quality of Life in Childhood Epilepsy Questionnaire and a diagnostic electroencephalogram (EEG) testing. The types of seizures were described and the burden reported as the number of seizures in the past month.

158 Laboratory Procedures

All participants had 10mls of venous blood drawn for a complete blood count, liver and renal function, and study specific tests. Malaria was tested using the *P. falciparum* malaria (HRP2) rapid diagnostic test (CareStart[™], 2016). Participants testing positive for malaria on the RDT had thick Giemsa-stained blood smear slides prepared to determine the parasite density. Each slide was examined by two observers, and any differences were reconciled by a third observer. The number of asexual malaria parasites observed was reported per 200 white blood cells (WBC) and the parasite density per microliter of blood estimated assuming 8000 WBC/ul of blood. The laboratory technicians performing these tests were blind to the rest of the clinical information, including the burden of seizures in the past month, which was obtained earlier by the study clinical and nursing staff.

Definitions and study outcomes

BMJ Open

BMJ open

2		
2 3	170	a) Asymptomatic malaria was defined as <i>P. falciparum</i> parasitemia with no history of
4 5 6	171	fever in the past week and axillary temperature <37.5 °C.
6 7 8	172	b) Symptomatic malaria was defined as <i>P. falciparum</i> parasitemia with either history of
9 10	173	fever in the past week or axillary temperature $\geq 37.5^{\circ}$ C.
11 12	174	c) Seizure burden was defined as the number of seizures in the past 30 days as reported
13 14	175	by the caretaker.
15 16	176	d) Good seizure control was defined as No seizures in the past 30 days as reported by the
17 18	177	caretaker.
19 20	178	e) Poor seizure control was defined as one or more seizures in the past 30days as
21 22 23	179	reported by the caretaker.
23 24		
25		
26	180	In this report, only the relevant clinical and laboratory testing, obtained at the enrolment
27 28	181	screening before the interventions, is reported.
29 30	182	
31 32	183	Patient and public involvement
22		
33 34	184	The public was involved in developing the research questions of the overall study i.e.
34 35 36	184 185	The public was involved in developing the research questions of the overall study i.e. understanding the aetiology and treatment of nodding syndrome but not with the design of
34 35 36 37 38		understanding the aetiology and treatment of nodding syndrome but not with the design of
34 35 36 37	185 186	understanding the aetiology and treatment of nodding syndrome but not with the design of this sub-study. The main trial is ongoing and in addition to personal contact with participant's
34 35 36 37 38 39 40 41	185	understanding the aetiology and treatment of nodding syndrome but not with the design of
34 35 36 37 38 39 40 41 42 43	185 186	understanding the aetiology and treatment of nodding syndrome but not with the design of this sub-study. The main trial is ongoing and in addition to personal contact with participant's
34 35 36 37 38 39 40 41 42 43 44 45	185 186 187	understanding the aetiology and treatment of nodding syndrome but not with the design of this sub-study. The main trial is ongoing and in addition to personal contact with participant's families every six months, there are also community meetings every 3-6 months. The study
34 35 36 37 38 39 40 41 42 43 44 45 46 47	185 186 187 188	understanding the aetiology and treatment of nodding syndrome but not with the design of this sub-study. The main trial is ongoing and in addition to personal contact with participant's families every six months, there are also community meetings every 3-6 months. The study results will be fed back to the community at these meetings and during the biannual Local
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	185 186 187 188	understanding the aetiology and treatment of nodding syndrome but not with the design of this sub-study. The main trial is ongoing and in addition to personal contact with participant's families every six months, there are also community meetings every 3-6 months. The study results will be fed back to the community at these meetings and during the biannual Local
34 35 36 37 38 39 40 41 42 43 44 45 46 47	185 186 187 188 189	understanding the aetiology and treatment of nodding syndrome but not with the design of this sub-study. The main trial is ongoing and in addition to personal contact with participant's families every six months, there are also community meetings every 3-6 months. The study results will be fed back to the community at these meetings and during the biannual Local
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	185 186 187 188 189 190	understanding the aetiology and treatment of nodding syndrome but not with the design of this sub-study. The main trial is ongoing and in addition to personal contact with participant's families every six months, there are also community meetings every 3-6 months. The study results will be fed back to the community at these meetings and during the biannual Local FM Radio broadcasts that the study conducts.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	185 186 187 188 189	understanding the aetiology and treatment of nodding syndrome but not with the design of this sub-study. The main trial is ongoing and in addition to personal contact with participant's families every six months, there are also community meetings every 3-6 months. The study results will be fed back to the community at these meetings and during the biannual Local
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	185 186 187 188 189 190	understanding the aetiology and treatment of nodding syndrome but not with the design of this sub-study. The main trial is ongoing and in addition to personal contact with participant's families every six months, there are also community meetings every 3-6 months. The study results will be fed back to the community at these meetings and during the biannual Local FM Radio broadcasts that the study conducts.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	185 186 187 188 189 190	understanding the aetiology and treatment of nodding syndrome but not with the design of this sub-study. The main trial is ongoing and in addition to personal contact with participant's families every six months, there are also community meetings every 3-6 months. The study results will be fed back to the community at these meetings and during the biannual Local FM Radio broadcasts that the study conducts.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	185 186 187 188 189 190	understanding the aetiology and treatment of nodding syndrome but not with the design of this sub-study. The main trial is ongoing and in addition to personal contact with participant's families every six months, there are also community meetings every 3-6 months. The study results will be fed back to the community at these meetings and during the biannual Local FM Radio broadcasts that the study conducts.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	185 186 187 188 189 190	understanding the aetiology and treatment of nodding syndrome but not with the design of this sub-study. The main trial is ongoing and in addition to personal contact with participant's families every six months, there are also community meetings every 3-6 months. The study results will be fed back to the community at these meetings and during the biannual Local FM Radio broadcasts that the study conducts. Data management and Statistical analyses
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	185 186 187 188 189 190	understanding the aetiology and treatment of nodding syndrome but not with the design of this sub-study. The main trial is ongoing and in addition to personal contact with participant's families every six months, there are also community meetings every 3-6 months. The study results will be fed back to the community at these meetings and during the biannual Local FM Radio broadcasts that the study conducts.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	185 186 187 188 189 190	understanding the aetiology and treatment of nodding syndrome but not with the design of this sub-study. The main trial is ongoing and in addition to personal contact with participant's families every six months, there are also community meetings every 3-6 months. The study results will be fed back to the community at these meetings and during the biannual Local FM Radio broadcasts that the study conducts. Data management and Statistical analyses

Page 10 of 29

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

BMJ open

192	Data was entered in a Microsoft Access Database using Epi info version 7.1.5.2. All patient
193	data was then exported and analysed with STATA version 12.0 (STATA CORP, Texas) and
194	Graph Pad Prism version 6.01 (GraphPad Software, Inc. California). Descriptive statistics
195	where used to explore the data and this is reported as proportions, percentages, means (SD)
196	and medians (IQR) as appropriate. Differences between the groups were tested by the Chi
197	Square test (proportions), the student's t test for normally distributed data and the Mann
198	Whitney test was used for skewed data. Participants were categorized into those with good
199	seizure control (no seizures in the past month) and those poor seizure control (one or more
200	seizures in the past month). A logistic regression model was used to examine the relationship
201	between seizure control and infection with plasmodium. Variables with a p value of 0.3 or
202	less at bivariate level were considered for multivariate analysis. Variables significantly
203	associated with infection by Plasmodium falciparum were further assessed for interaction
204	with plasmodium infection and seizure control. All variables that were not in the model
205	because of a non-significant p value were assessed for a confounding effect using a 10%
206	difference between the adjusted and unadjusted odds to show confounding. To examine if
207	there is a direct relationship between the malaria parasite density and seizure burden,
208	Spearman's Rank Correlation testing was performed between the peripheral blood parasite
209	density (log 10 parasites/ul) and the number of seizures in the past month in patients with
210	asymptomatic malaria.
211	
212	

BMJ Open

Results

214 General description

215	Between September 2016 and August 2017, a total of 240 patients with nodding syndrome
216	were recruited into the trial. All were included in this study. Of these, 140/240 (58.3%) were
217	male. The mean age was 15.6 (SD 2.0) years. The mean dose of sodium valproate was 22.6
218	(SD 7.2) mg/kg/day. A total of 164/240 (68.3%) participants tested positive for falciparum
219	malaria, most of whom had asymptomatic infections (160/164 [97.6%]).

A total of 159/240 (66.3%) reported experiencing at least one convulsive seizure in the past

year of whom 139 (57.9%) experienced at least one such seizure in the past 30 days. In

patients without malaria, the median [IQR] number of seizures in the previous 30 days was

223 2.0 [1.0-4.0] and it was 4.0 [2.0-7.5] in patients with malaria, p=0.017, Mann-Whitney test,

Figure 1. There were no significant differences in the doses (mg/kg/day) of sodium valproate

across the groups. Among the four symptomatic malaria cases, the median [IQR] number of

seizures in the past month was 6.0 [4.0-10.0]. However, because these were very few, the

227 group was excluded from all further analysis.

Among patients with asymptomatic malaria, the median [IQR] number of seizures

experienced in the past month was 3.0 (2.0-7.3). Generalized tonic-clonic and absence

seizures were the most common types of seizures described. Other seizure manifestations

231 were infrequent. Also, there were no differences in the manifestations of seizures in the three

232 groups, **Table 1**.

BMJ Open

BMJ open

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Relationship between other patient characteristics and seizure control in patients with nodding syndrome.

Participants were categorized into those with good seizure control (no seizures in the past 30) days) and poor seizure control (one or more seizures in the past 30 days). In addition to presences of malaria parasitaemia, sex (AOR 1.96 [95% CI 1.11-3.46], p value=0.03) and dose of antiepileptic drug (AOR 1.04 [95% CI 1.00 - 1.13], p value=0.04) were significantly associated with seizure control, **Table 2**. Furthermore, among children with asymptomatic malaria, a positive linear correlation was observed between the number of seizures in the past month and the peripheral blood parasite density r=0.33, (two tailed p value = 0.002). A linear regression analysis gave the equation: Y = 1.809X + 2.549, figure 1.

Discussion

This study investigated the relationship between asymptomatic malaria infection and seizure control in children with a complex epilepsy disorder, the nodding syndrome. The study found that patients with plasmodium falciparum malaria infection experienced a significantly higher number of seizures in the previous month compared to patients without malaria and, there was a direct correlation between the peripheral blood parasite load and the number of seizures. The study would suggest that in patients with seizure disorders on antiepileptic drug treatment, malaria parasitaemia, whether asymptomatic or symptomatic, may increase the risk of seizures and impair seizure control.

The association between acute infections and an increase in seizures in children with epilepsy is a
well a recognised phenomenon. In the context of this study, *Plasmodium falciparum* is even
thought to be epileptogenic[29]: In the malaria endemic regions of Africa, falciparum
malaria is a leading cause of acute seizures and convulsive status epilepticus. This infection
also contributes the largest fraction of seizure related hospitalizations in children[16,29,30].
The seizures are not necessarily due to fever but are associated with increasing parasitaemia

Page 13 of 29

BMJ Open

BMJ open

260	possibly highlighting the pathological link between the presence of the parasites in the brain
261	and the development of acute seizures[29,31]. Already, asymptomatic malaria infections have
262	been shown to affect cognition in healthy children [9]. It was however not clear whether
263	asymptomatic malaria parasitaemia would be associated with an increased frequency or severity of
264	seizures. The finding of a dose-response effect of increasing seizures associated with higher parasite
265	load and with recognized fever, makes the association more compelling. To the best of our
266	knowledge, this is the first study to demonstrate a relationship between asymptomatic malaria
267	infections and a higher burden of seizures in children with epilepsy raising questions on the
268	meaning of "asymptomatic malaria". It may be that the symptoms of malaria do fall along a
	spectrum from mild to severe, with the fever reported by parents being an imperfect surrogate
270	for pathophysiological disruption. Our study would therefore suggest that in children with
	epilepsy living in Africa, "asymptomatic" malaria infections may not be truly benign but may
	be a risk factor impairing seizure control.
273	
274	Apart from neurocysticercosis, the epileptogenic mechanisms of parasitic infections are not
275	well understood[32]. Plasmodium falciparum infection is characterized by sequestration of
276	the late stages of the intra-erythrocytic cycle, particularly in the brain. In the case of severe
277	malaria, acute seizures may potentially be induced through multiple pathways: i) indirectly
278	through biochemical mechanisms associated with hypoglycemia, hyponatremia, or
279	acidosis[29,31]; ii) a direct effect of the parasites (or parasite toxin) sequestered in cerebral
280	vessels[29]; iii) an immunological mechanism since high titers of voltage gated cation
281	channel antibodies have been observed in some children[33]; iv) compromised perfusion of
282	the brain due to cerebral microvascular parasite sequestration and raised intracranial pressure
283	inhibiting substrate delivery[29] and; v) down-regulation of GABA receptors therefore
284	decreasing the inhibitory effects on seizures[32]. It is possible that, in patients with low
285	seizure thresholds or a higher propensity to seizures such as children with epilepsy, even
286	asymptomatic malaria infections may, by any of the above or other mechanisms, induce
287	seizures and impair seizure control. Therefore, poor seizure control maybe an unrecognized
	261 263 264 265 266 267 268 269 270 271 272 273 274 275 276 276 277 278 276 277 278 279 280 281 281 282 281 282 283

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

BMJ Open

BMJ open

consequence of asymptomatic malaria infections in children with epilepsy in malaria endemicregions.

> Patients with malaria on average experienced twice the number of seizures experienced by those without malaria. The higher burden of seizures will not only impact on the clinical and antiepileptic drug needs of the patients but also on physician time, healthcare costs, patient's productivity, learning and achievements and on Quality of Life. There are an estimated 10 million people with epilepsy in Africa[34]. The prevalence of asymptomatic parasitaemia in school age children in sub-Saharan Africa is 4-64% (reviewed in [35]). Assuming an average 10% prevalence, there may be over one million people with epilepsy in Africa who are at risk of the potential adverse effects of "asymptomatic" malaria associated poorer seizure control. Should these findings be confirmed with other epilepsy disorders, it may be that patients with epilepsy in the malaria endemic areas of Africa should be considered a special or vulnerable group and considered for enhanced malaria prevention. Already, children with sickle cell anaemia living in similar settings are considered one such special group and in addition to the barrier methods of malaria prevention such as bed nets, are offered enhanced malaria prevention through malaria chemoprophylaxis[36]. Thus, this study should be repeated in patients with other forms of epilepsy and if confirmed, trials should be conducted to evaluate if children with epilepsy may also benefit from malaria chemo-treatment (of asymptomatic cases) and chemoprophylaxis against infection in addition to current barrier methods of malaria prevention.

The study had some limitations. First, nodding syndrome is a poorly understood complex epilepsy disorder that may not be representative of all other seizure disorders. However, the syndrome offers the advantage of a uniform population with all patients receiving the same antiepileptic drug and a similar level of care in Uganda[27]. Secondly, the study did not

60

2 3	313	conduct more sensitive assays such as PCR to identify sub-patent malaria infections. Third is
4 5	314	the possibility of recall bias in the determination of the number of seizures in the past month.
6 7 8	315	However, we limited this bias by focusing on convulsive seizures that are less likely
9 10	316	forgotten, limited to the past month, collecting the information using standardized tools, and
11 12	317	by clinicians trained and experienced in the care of patients with epilepsy. Lastly, this was a
13 14	318	cross sectional study with a limited sample size and so, a prospective study with a larger
15 16	319	sample size should be conducted to confirm the results.
17 18 19 20 21	320	Conclusion
22 23	321	In conclusion, in patients with nodding syndrome, both asymptomatic and symptomatic
24 25	322	malaria infections are associated with an increased risk of seizures and poorer seizure control.
26 27	323	Similar effects should be examined in patients with other epilepsy disorders. Malaria
28 29 30	324	prevention should be strengthened for these patients and chemoprevention studies considered.
31		
32 33	325	
32 33 34 35 36	325 326	References
32 33 34 35 36 37 38		References 1. World Health Organization. World Malaria Report 2015. World Malar. Rep. [Internet].
32 33 34 35 36 37	326	References
32 33 34 35 36 37 38 39 40 41 42 43	326 327	References 1. World Health Organization. World Malaria Report 2015. World Malar. Rep. [Internet].
32 33 34 35 36 37 38 39 40 41 42 43 44 45	326 327 328	References1. World Health Organization. World Malaria Report 2015. World Malar. Rep. [Internet].World Health Organization; 2015 [cited 2017 Aug 23];1–280. Available from:
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	326 327 328 329	References 1. World Health Organization. World Malaria Report 2015. World Malar. Rep. [Internet]. World Health Organization; 2015 [cited 2017 Aug 23];1–280. Available from: http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	326 327 328 329 330	 References 1. World Health Organization. World Malaria Report 2015. World Malar. Rep. [Internet]. World Health Organization; 2015 [cited 2017 Aug 23];1–280. Available from: http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/ 2. Laishram DD, Sutton PL, Nanda N, Sharma VL, Sobti RC, Carlton JM, et al. The
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	326 327 328 329 330 331	 References 1. World Health Organization. World Malaria Report 2015. World Malar. Rep. [Internet]. World Health Organization; 2015 [cited 2017 Aug 23];1–280. Available from: http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/ 2. Laishram DD, Sutton PL, Nanda N, Sharma VL, Sobti RC, Carlton JM, et al. The complexities of malaria disease manifestations with a focus on asymptomatic malaria. Malar.
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	326 327 328 329 330 331 332	 References 1. World Health Organization. World Malaria Report 2015. World Malar. Rep. [Internet]. World Health Organization; 2015 [cited 2017 Aug 23];1–280. Available from: http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/ 2. Laishram DD, Sutton PL, Nanda N, Sharma VL, Sobti RC, Carlton JM, et al. The complexities of malaria disease manifestations with a focus on asymptomatic malaria. Malar. J. [Internet]. BioMed Central; 2012 [cited 2017 Aug 30];11:29. Available from:
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	326 327 328 329 330 331 332 333	 References 1. World Health Organization. World Malaria Report 2015. World Malar. Rep. [Internet]. World Health Organization; 2015 [cited 2017 Aug 23];1–280. Available from: http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/ 2. Laishram DD, Sutton PL, Nanda N, Sharma VL, Sobti RC, Carlton JM, et al. The complexities of malaria disease manifestations with a focus on asymptomatic malaria. Malar. J. [Internet]. BioMed Central; 2012 [cited 2017 Aug 30];11:29. Available from: http://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-11-29
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	326 327 328 329 330 331 332 333 334	 References 1. World Health Organization. World Malaria Report 2015. World Malar. Rep. [Internet]. World Health Organization; 2015 [cited 2017 Aug 23];1–280. Available from: http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/ 2. Laishram DD, Sutton PL, Nanda N, Sharma VL, Sobti RC, Carlton JM, et al. The complexities of malaria disease manifestations with a focus on asymptomatic malaria. Malar. J. [Internet]. BioMed Central; 2012 [cited 2017 Aug 30];11:29. Available from: http://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-11-29 3. Walldorf JA, Cohee LM, Coalson JE, Bauleni A, Nkanaunena K, Kapito-Tembo A, et al.

BMJ Open

BMJ open

336	Public Library of Science; 2015 [cited 2017 Aug 30];10:e0134061. Available from:
337	http://www.ncbi.nlm.nih.gov/pubmed/26207758
338	4. Starzengruber P, Fuehrer H-P, Ley B, Thriemer K, Swoboda P, Habler V, et al. High
339	prevalence of asymptomatic malaria in south-eastern Bangladesh. Malar. J. [Internet].
340	BioMed Central; 2014 [cited 2017 Aug 30];13:16. Available from:
341	http://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-13-16
342	5. Idris ZM, Chan CW, Kongere J, Gitaka J, Logedi J, Omar A, et al. High and
343	Heterogeneous Prevalence of Asymptomatic and Sub-microscopic Malaria Infections on
344	Islands in Lake Victoria, Kenya. Sci. Rep. [Internet]. Nature Publishing Group; 2016 [cited
345	2017 Aug 30];6:36958. Available from: http://www.nature.com/articles/srep36958
346	6. Chourasia MK, Raghavendra K, Bhatt RM, Swain DK, Meshram HM, Meshram JK, et al.
347	Additional burden of asymptomatic and sub-patent malaria infections during low
348	transmission season in forested tribal villages in Chhattisgarh, India. Malar. J. [Internet].
349	BioMed Central; 2017 [cited 2017 Aug 30];16:320. Available from:
350	http://malariajournal.biomedcentral.com/articles/10.1186/s12936-017-1968-8
351	7. Lindblade KA, Steinhardt L, Samuels A, Kachur SP, Slutsker L. The silent threat:
352	asymptomatic parasitemia and malaria transmission. Expert Rev. Anti. Infect. Ther.
353	[Internet]. 2013 [cited 2016 Nov 6];11:623–39. Available from:
354	http://www.tandfonline.com/doi/full/10.1586/eri.13.45
355	8. de Mendonça VR, Barral-Netto M. Immunoregulation in human malaria: The challenge of
356	understanding asymptomatic infection. Mem. Inst. Oswaldo Cruz. 2015;110:945-55.
357	9. Chen I, Clarke SE, Gosling R, Hamainza B, Killeen G, Magill A, et al. "Asymptomatic"
358	Malaria: A Chronic and Debilitating Infection That Should Be Treated. PLoS Med. [Internet].
359	Public Library of Science; 2016 [cited 2017 Aug 30];13:e1001942. Available from:
	16

60

BMJ Open

1		
2 3 4	360	http://www.ncbi.nlm.nih.gov/pubmed/26783752
5	361	10. Nankabirwa J, Wandera B, Kiwanuka N, Staedke SG, Kamya MR, Brooker SJ.
7 8	362	Asymptomatic Plasmodium infection and cognition among primary schoolchildren in a high
9 10 11	363	malaria transmission setting in Uganda. Am. J. Trop. Med. Hyg. 2013;88:1102-8.
12 13	364	11. de Mast Q, Brouwers J, Syafruddin D, Bousema T, Baidjoe AY, de Groot PG, et al. Is
14 15	365	asymptomatic malaria really asymptomatic? Hematological, vascular and inflammatory
16 17	366	effects of asymptomatic malaria parasitemia. J. Infect. [Internet]. 2015 [cited 2017 Sep
18 19 20	367	23];71:587–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26304688
20 21 22	368	12. Nega D, Dana D, Tefera T, Eshetu T. Prevalence and predictors of asymptomatic malaria
23 24	369	parasitemia among pregnant women in the rural surroundings of Arbaminch Town, South
25 26	370	Ethiopia. PLoS One [Internet]. 2015 [cited 2017 Sep 23];10:110. Available from:
27 28 29	371	http://www.ncbi.nlm.nih.gov/pubmed/25889703
30 31	372	13. Marsh K. Africa in transition: The case of malaria. Int. Health. 2016;8:155–6.
32 33	373	14. Khan WA, Galagan SR, Prue CS, Khyang J, Ahmed S, Ram M, et al. Asymptomatic
34 35 36	374	Plasmodium falciparum malaria in pregnant women in the Chittagong Hill Districts of
37 38	375	Bangladesh. PLoS One. 2014;9.
39 40	376	15. Idro R, Ndiritu M, Ogutu B, Mithwani S, Maitland K, Berkley J, et al. Burden, Features,
41 42 43	377	and Outcome of Neurological Involvement in Acute Falciparum Malaria in Kenyan Children.
43 44 45	378	Jama [Internet]. 2007 [cited 2017 Aug 30];297:2232. Available from:
46 47	379	http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.297.20.2232
48 49	380	16. Kariuki SM, Ikumi M, Ojal J, Sadarangani M, Idro R, Olotu A, et al. Acute seizures
50 51 52	381	attributable to falciparum malaria in an endemic area on the Kenyan coast. Brain [Internet].
53 54	382	Oxford University Press; 2011 [cited 2016 Nov 6];134:1519–28. Available from:
55 56	383	http://www.ncbi.nlm.nih.gov/pubmed/21482551
57 58		17
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

BMJ open

17. Feldmeier H, Komazawa O, Moji K. Nodding Syndrome in Uganda: Field Observations,

385	Challenges and Research Agenda. Trop. Med. Health [Internet]. 2014 [cited 2016 Jan
386	30];42:S109–14. Available from: http://jlc.jst.go.jp/DN/JST.JSTAGE/tmh/2014-
387	S15?lang=en&from=CrossRef&type=abstract
388	18. Idro R, Opar B, Wamala J, Abbo C, Onzivua S, Mwaka DA, et al. Is nodding syndrome
389	an Onchocerca volvulus-induced neuroinflammatory disorder? Uganda's story of research in
390	understanding the disease. Int. J. Infect. Dis. [Internet]. 2016 [cited 2016 Apr 1];45:112-7.
391	Available from: http://linkinghub.elsevier.com/retrieve/pii/S1201971216309882
392	19. Dowell SF, Sejvar JJ, Riek L, Vandemaele KAH, Lamunu M, Kuesel AC, et al. Nodding
393	syndrome. Emerg. Infect. Dis. [Internet]. 2013 [cited 2016 Jan 30];19:1374-84. Available
394	from: http://www.mendeley.com/catalog/nodding-syndrome/
395	20. Spencer PS, Vandemaele K, Richer M, Palmer VS, Chungong S, Anker M, et al. Nodding
396	syndrome in Mundri county, South Sudan: Environmental, nutritional and infectious factors.
397	Afr. Health Sci. 2013;13:183–204.
397 398	Afr. Health Sci. 2013;13:183–204. 21. Johnson TP, Tyagi R, Lee PR, Lee M-H, Johnson KR, Kowalak J, et al. Nodding
398	21. Johnson TP, Tyagi R, Lee PR, Lee M-H, Johnson KR, Kowalak J, et al. Nodding
398 399	21. Johnson TP, Tyagi R, Lee PR, Lee M-H, Johnson KR, Kowalak J, et al. Nodding syndrome may be an autoimmune reaction to the parasitic worm <i>Onchocerca volvulus</i> . Sci.
398 399 400	21. Johnson TP, Tyagi R, Lee PR, Lee M-H, Johnson KR, Kowalak J, et al. Nodding syndrome may be an autoimmune reaction to the parasitic worm <i>Onchocerca volvulus</i> . Sci. Transl. Med. [Internet]. 2017;9:eaaf6953. Available from:
398 399 400 401	21. Johnson TP, Tyagi R, Lee PR, Lee M-H, Johnson KR, Kowalak J, et al. Nodding syndrome may be an autoimmune reaction to the parasitic worm <i>Onchocerca volvulus</i> . Sci. Transl. Med. [Internet]. 2017;9:eaaf6953. Available from: http://stm.sciencemag.org/lookup/doi/10.1126/scitranslmed.aaf6953
398 399 400 401 402	 21. Johnson TP, Tyagi R, Lee PR, Lee M-H, Johnson KR, Kowalak J, et al. Nodding syndrome may be an autoimmune reaction to the parasitic worm <i>Onchocerca volvulus</i>. Sci. Transl. Med. [Internet]. 2017;9:eaaf6953. Available from: http://stm.sciencemag.org/lookup/doi/10.1126/scitranslmed.aaf6953 22. Idro R, Opoka RO, Aanyu HT, Kakooza-Mwesige A, Piloya-Were T, Namusoke H, et al.
 398 399 400 401 402 403 	 21. Johnson TP, Tyagi R, Lee PR, Lee M-H, Johnson KR, Kowalak J, et al. Nodding syndrome may be an autoimmune reaction to the parasitic worm <i>Onchocerca volvulus</i>. Sci. Transl. Med. [Internet]. 2017;9:eaaf6953. Available from: http://stm.sciencemag.org/lookup/doi/10.1126/scitranslmed.aaf6953 22. Idro R, Opoka RO, Aanyu HT, Kakooza-Mwesige A, Piloya-Were T, Namusoke H, et al. Nodding syndrome in Ugandan children—clinical features, brain imaging and complications:
 398 399 400 401 402 403 404 	 21. Johnson TP, Tyagi R, Lee PR, Lee M-H, Johnson KR, Kowalak J, et al. Nodding syndrome may be an autoimmune reaction to the parasitic worm <i>Onchocerca volvulus</i>. Sci. Transl. Med. [Internet]. 2017;9:eaaf6953. Available from: http://stm.sciencemag.org/lookup/doi/10.1126/scitranslmed.aaf6953 22. Idro R, Opoka RO, Aanyu HT, Kakooza-Mwesige A, Piloya-Were T, Namusoke H, et al. Nodding syndrome in Ugandan children—clinical features, brain imaging and complications: a case series. BMJ Open [Internet]. 2013 [cited 2016 Jan 29];3:e002540. Available from:
 398 399 400 401 402 403 404 405 	 21. Johnson TP, Tyagi R, Lee PR, Lee M-H, Johnson KR, Kowalak J, et al. Nodding syndrome may be an autoimmune reaction to the parasitic worm <i>Onchocerca volvulus</i>. Sci. Transl. Med. [Internet]. 2017;9:eaaf6953. Available from: http://stm.sciencemag.org/lookup/doi/10.1126/scitranslmed.aaf6953 22. Idro R, Opoka RO, Aanyu HT, Kakooza-Mwesige A, Piloya-Were T, Namusoke H, et al. Nodding syndrome in Ugandan children—clinical features, brain imaging and complications: a case series. BMJ Open [Internet]. 2013 [cited 2016 Jan 29];3:e002540. Available from: http://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2012-002540

1		
2 3 4	408	2010;40:173-5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20555049
5 6	409	24. Tumwine JK, Vandemaele K, Chungong S, Richer M, Anker M, Ayana Y, et al. Clinical
7 8	410	and epidemiologic characteristics of nodding syndrome in mundri county, southern Sudan.
9 10 11	411	Afr. Health Sci. [Internet]. 2012 [cited 2016 Jan 30];12:242-8. Available from:
12 13	412	http://www.mendeley.com/catalog/clinical-epidemiologic-characteristics-nodding-syndrome-
14 15	413	mundri-county-southern-sudan/
16 17	414	25. Idro R, Namusoke H, Abbo C, Mutamba BB, Kakooza-Mwesige A, Opoka RO, et al.
18 19 20	415	Patients with nodding syndrome in Uganda improve with symptomatic treatment: a cross-
21 22	416	sectional study. BMJ Open [Internet]. 2014;4:e006476. Available from:
23 24	417	http://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2014-006476
25 26	418	26. Doxycycline for the Treatment of Nodding Syndrome [Internet]. 2016 [cited 2017 Oct
27 28 29	419	16]. Available from:
30 31	420	https://clinicaltrials.gov/ct2/show/NCT02850913?term=nodding+disease&cond=Nodding+S
32 33	421	yndrome&cntry1=AF%3AUG&rank=2
34 35	422	27. Idro R, Musubire KA, Byamah Mutamba B, Namusoke H, Muron J, Abbo C, et al.
36 37 38	423	Proposed guidelines for the management of nodding syndrome. Afr. Health Sci. [Internet].
39 40	424	2013 [cited 2016 Jan 29];13:219–32. Available from:
41 42	425	http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3824512&tool=pmcentrez&rende
43 44 45	426	rtype=abstract
45 46 47	427	28. Iyengar PJ, Wamala J, Ratto J, Blanton C, Malimbo M, Lukwago L, et al. Prevalence of
48 49	428	nodding syndromeUganda, 2012-2013. MMWR. Morb. Mortal. Wkly. Rep. 2014;63:603-6.
50 51	429	29. Idro R, Ndiritu M, Ogutu B, Mithwani S, Maitland K, Berkley J, et al. Burden, Features,
52 53	430	and Outcome of Neurological Involvement in Acute Falciparum Malaria in Kenyan Children.
54 55 56	431	Jama [Internet]. 2007;297:2232. Available from:
57 58		19
59		13

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

BMJ open

http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.297.20.2232

433	30. Idro R, Gwer S, Kahindi M, Gatakaa H, Kazungu T, Ndiritu M, et al. The incidence,
	aetiology and outcome of acute seizures in children admitted to a rural Kenyan district
	hospital. BMC Pediatr. [Internet]. 2008;8:5. Available from:
	http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2270816&tool=pmcentrez&rende
437	rtype=abstract
438	31. Crawley J, Smith S, Kirkham F, Muthinji P, Waruiru C, Marsh K. Seizures and status
439	epilepticus in childhood cerebral malaria. QJM [Internet]. 1996;89:591-7. Available from:
440	http://qjmed.oxfordjournals.org/cgi/content/abstract/89/8/591%5Cnhttp://qjmed.oxfordjourna
441	ls.org.libproxy.ucl.ac.uk/content/89/8/591
442	32. Ba-diop A. Europe PMC Funders Group Epidemiology, causes, and treatment of
443	epilepsy in sub-Saharan Africa. 2017;13:1029–44.
444	33. Idro R, Jenkins NE, Newton CR. Pathogenesis, clinical features, and neurological
445	outcome of cerebral malaria. Lancet Neurol. [Internet]. 2005;4:827-40. Available from:
446	http://linkinghub.elsevier.com/retrieve/pii/S1474442205702477
447	34. Epilepsy in Africa Epilepsy Society [Internet]. [cited 2017 Oct 14]. Available from:
448	https://www.epilepsysociety.org.uk/epilepsy-africa#.WeHVBTtx200
449	35. Nankabirwa J, Brooker SJ, Clarke SE, Fernando D, Gitonga CW, Schellenberg D, et al.
450	Malaria in school-age children in Africa: An increasingly important challenge. Trop. Med.
451	Int. Heal. [Internet]. Wiley-Blackwell; 2014 [cited 2017 Oct 14];19:1294–309. Available
452	from: http://www.ncbi.nlm.nih.gov/pubmed/25145389
453	36. Oniyangi O, Omari AA. Malaria chemoprophylaxis in sickle cell disease. In: Oniyangi O,
454	editor. Cochrane Database Syst. Rev. [Internet]. Chichester, UK: John Wiley & Sons, Ltd;
455	2006 [cited 2017 Oct 16]. p. CD003489. Available from:
	20
	 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

Page 22 of 29

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

BMJ open

478 public websites.

479 Table 1: Summary of general characteristics of nodding syndrome patients with and

480 without malaria parastaemia

	Patients without malaria parasitaemia,	Patients with malaria parasitaemia,	P value
	N=76	N= 160	
Mean (SD) Age, years	15.8 (1.5)	15.5 (2.1)	0.22 ^a
Sex, Male (%)	41 (54%)	94(58%)	0.48 ^b
Mean weight (SD), Kg	40.7(9.8)	41.9(8.9)	0.37 ^a
Mean (SD) axillary temp, °C	36.4(0.42)	36.5(0.4)	0.41 ^a
Parasite density (IQR), /ul	0 (0)	200 (20-460)	< 0.0001
Mean (SD) dose of Valproate acid,	24.1(8.2)	22.1(6.3)	0.06 ^a
(mg/kg/day)	Ľ,	•	
Median (IQR) number of clusters	3.0 [2.0-6.0]	4.0 [2.0-10.0]	0.38 ^c
of head nodding episodes in the			
last month (IQR)			
Ту	pe of seizures in the past	month	
Absence N (%)	12(15.7)	20(12.5)	0.62 ^b
Tonic N (%)	1(1.3)	0(0.0)	0.70 ^b
Clonic N (%)	1(1.3)	1(0.6)	1.00 ^b
Generalised tonic clonic N (%)	37(50)	73(45.6)	0.76 ^b
M	1(1.3)	1(0.6)	0.54 ^b
Myoclonic N (%)			

BMJ open

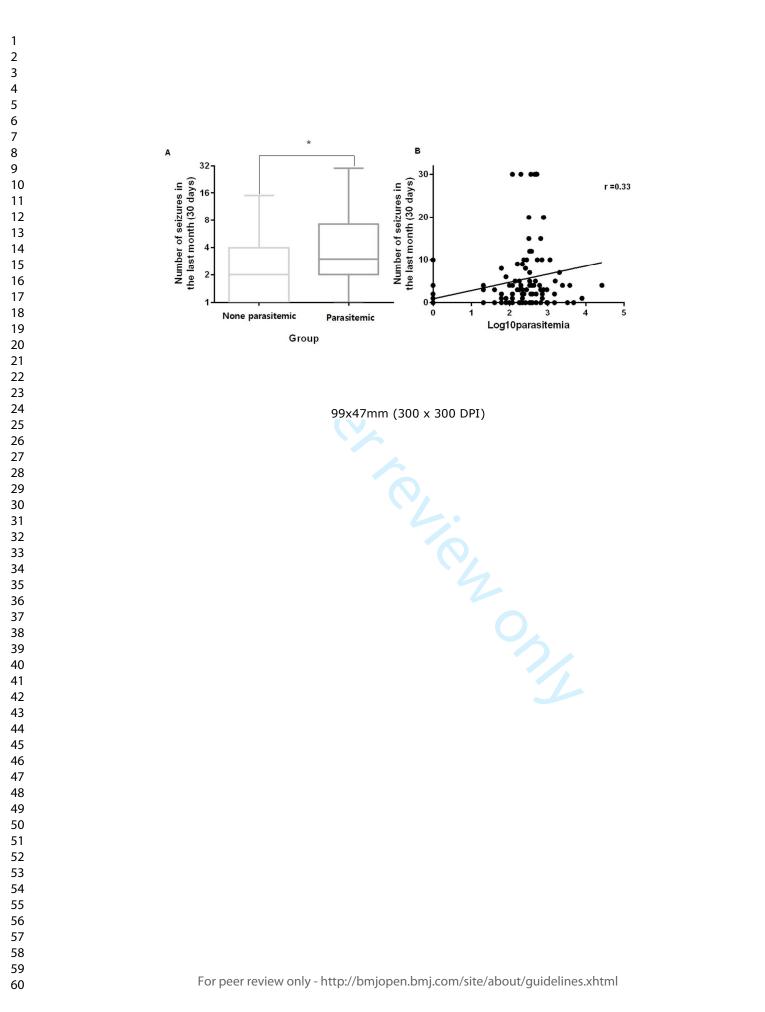
^b chi square

- ^c Mann Whitney test
- for peer terien ony

 BMJ open

484 Table 2: Factors associated with seizure control

		Seizure cont	rol	O.R (C.I)	P-Value	Adjusted odds	P Value
		Good	Poor	1			
Sex/ n (%)	Male	66(48.15)	71(51%)				
	Female	34(34.34)	65(65.6)	1.77(1.03-3.03)	0.04	1.96 (1.11-3.46)	0.02
Age Mean (S.D)		15.69(2.34)	15.73(1.66)	1.01(0.88-1.15)	0.88		
Body Temperature Mean (S.D)		36.46(0.47)	36.47(0.45)	0.98(0.55-1.71	0.94		
Dose Mean (S.D)		23.42(7.87)	21.55(5.88)	1.04(0.99-1.08)	0.05	1.04 (1.00 - 1.13)	0.04
Weight/ Mean (S.D)		42.08(9.35)	41.5(9.34)	0.99(0.966-1.02)	0.6		
Duration with disease/ Mean (S.D)		8.44(2.68)	8.21(3.07)	1.02(093-1.12)	0.53		
log10parasitemia / n (%)	0	66 (53.3)	57(46.3)				
	1 to 2.5	24 (38.71)	39(61.3)	1.80(0.93-3.36)	0.06	1.81(0.95-3.44)	0.07
	>2.5	10 (20.0)	40(80.0)	4.56(2.09-9.9)	< 0.01	5.11(2.33-11.35)	< 0.02


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-0018 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

1		
2		
3	486	
4		
5	407	
6	487	Figure 1: A) Graph of seizure burden among participants who are non-parasitaemic and
7		
8	488	those who have asymptomatic parasitaemia. B) Graph showing the relationship between
9		
10	489	seizure burden and log ₁₀ falciparum malaria parasite density among asymptomatic patients.
11		
12		
13	490	
14		
15		
16	491	Figure legend
17		
18	492	Figure 1 - compares the number (median) of convulsive seizures over the past month in
19		
20	493	nodding syndrome patients with and without falciparum malaria parasitaemia (A) and the
21		
22	494	relationship between the parasite density and the number of seizures (B).
23	494	relationship between the parasite density and the number of seizures (D).
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
43 44		
44 45		
45 46		
40 47		
48 40		
49 50		
50		
51		
52		
53		
54		
55		
56		
57		
58		25
59		

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Reporting checklist for cross sectional study.

Based on the STROBE cross sectional guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cross sectional reporting guidelines, and cite them as:

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

31				Page
32 33			Reporting Item	Number
34 35 36 37	Title	#1a	Indicate the study's design with a commonly used term in the title or the abstract	1
38 39 40 41	Abstract	#1b	Provide in the abstract an informative and balanced summary of what was done and what was found	2-3
42 43 44 45	Background / rationale	#2	Explain the scientific background and rationale for the investigation being reported	5-6
46 47 48 49	Objectives	#3	State specific objectives, including any prespecified hypotheses	6
50 51	Study design	#4	Present key elements of study design early in the paper	6
52 53 54 55	Setting	#5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7-9
56 57 58 59 60	Eligibility criteria	#6a For p	Give the eligibility criteria, and the sources and methods of selection of participants. eer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	7-8
00		p		

Page 28 of 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		#7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	9-10	BMJ Open: firs
	Data sources / measurement	#8	For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable.	7-10	Open: first published as 10.1136/bmjopen-2018-023624 on 18 October 2018.
	Bias	#9	Describe any efforts to address potential sources of bias	8-10	mjopen
16 17 18	Study size	#10	Explain how the study size was arrived at	6-7	1-2018-(
19 20 21 22 23	Quantitative variables	#11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	9-10	023624 on 18 O
24 25 26 27	Statistical methods	#12a	Describe all statistical methods, including those used to control for confounding	9-10	ctober 2018
28 29 30 31		#12b	Describe any methods used to examine subgroups and interactions	9-10	
32 33		#12c	Explain how missing data were addressed	N/A	led fror
34 35 36 37		#12d	If applicable, describe analytical methods taking account of sampling strategy	N/A	Downloaded from http://bmjo
38 39		#12e	Describe any sensitivity analyses	N/A	open.br
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	Participants	#13a	Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable.	11	open.bmj.com/ on April 20, 2024 by guest. Protected by copyright
		#13b	Give reasons for non-participation at each stage	N/A	by gue
		#13c	Consider use of a flow diagram	N/A	st. Prot
	Descriptive data	#14a For pe	Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable. er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	11	ected by copyright.

BMJ Open

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	#14b		Indicate number of participants with missing data for each variable of interest	N/A		
	Outcome data	#15	Report numbers of outcome events or summary measures. Give information separately for exposed and unexposed groups if applicable.	See note 1		
	Main results	#16a	Give unadjusted estimates and, if applicable, confounder- adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	11; 22- 24		
		#16b	Report category boundaries when continuous variables were categorized	11		
		#16c	If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A		
	Other analyses	#17	Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses	11-12		
28 29	Key results	#18	Summarise key results with reference to study objectives	12-13		
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	Limitations	#19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	14		
	Interpretation	#20	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	13-15		
	Generalisability	#21	Discuss the generalisability (external validity) of the study results	15		
	Funding	#22 Give the source of funding and the role of the funders for present study and, if applicable, for the original study on the present article is based		21		
	Author notes					
	1. 11-12; 22-24					
	The STROBE checklist is distributed under the terms of the Creative Commons Attribution License CC-BY. This checklist was completed on 15. April 2018 using <u>http://www.goodreports.org/</u> , a tool made by the <u>EQUATOR Network</u> in collaboration with <u>Penelope.ai</u> For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml					

OR Network in collaboration with <u>Penelope.ai</u> For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml