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Abstract
Objectives  This study aimed to build and test the models 
of machine learning (ML) to predict the mortality of 
hospitalised motorcycle riders.
Setting  The study was conducted in a level-1 trauma 
centre in southern Taiwan.
Participants  Motorcycle riders who were hospitalised 
between January 2009 and December 2015 were 
classified into a training set (n=6306) and test set (n=946). 
Using the demographic information, injury characteristics 
and laboratory data of patients, logistic regression (LR), 
support vector machine (SVM) and decision tree (DT) 
analyses were performed to determine the mortality of 
individual motorcycle riders, under different conditions, 
using all samples or reduced samples, as well as all 
variables or selected features in the algorithm.
Primary and secondary outcome measures  The 
predictive performance of the model was evaluated based 
on accuracy, sensitivity, specificity and geometric mean, 
and an analysis of the area under the receiver operating 
characteristic curves of the two different models was 
carried out.
Results  In the training set, both LR and SVM had a 
significantly higher area under the receiver operating 
characteristic curve (AUC) than DT. No significant 
difference was observed in the AUC of LR and SVM, 
regardless of whether all samples or reduced samples 
and whether all variables or selected features were used. 
In the test set, the performance of the SVM model for all 
samples with selected features was better than that of all 
other models, with an accuracy of 98.73%, sensitivity of 
86.96%, specificity of 99.02%, geometric mean of 92.79% 
and AUC of 0.9517, in mortality prediction.
Conclusion  ML can provide a feasible level of accuracy in 
predicting the mortality of motorcycle riders. Integration of 
the ML model, particularly the SVM algorithm in the trauma 
system, may help identify high-risk patients and, therefore, 
guide appropriate interventions by the clinical staff.

Background
Motorcycle use is popular in numerous cities 
because it is a less expensive and convenient 

means of transportation. However, despite 
the less travel time, motorcycle riders who 
are involved in road traffic accidents tend 
to have a significantly high morbidity and 
mortality rate. Compared with other riders 
of motor vehicles, motorcycle riders are eight 
times more likely to be injured per vehicle 
mile,1 and they are also 30 times more likely 
to die in a motor vehicle crash2 and 58 times 
more likely to be killed on a per-trip basis.3 
In Taiwan, motorcyclist fatalities account for 
nearly 60% of all driving fatalities,4 which are 
often associated with gender (men), advanced 
age, lack of helmet use, unlicensed status and 
driving under the influence of alcohol.5–9 In 
addition, head injury is the leading cause of 
mortality, followed by thoracic and abdom-
inal injuries.6–9 

Identifying patients who are at high risk 
is important for the integration of trauma 
management to maximise resources and 
improve quality of care.10 11 More robust and 
accurate individual predictions of mortality 
using better models might provide clinicians 
with more precise information about the 
likelihood of good or poor outcomes and 
improve individual trauma and mortality 

Strengths and limitations of this study

►► This study first used machine learning to predict the 
mortality risk of motorcycle riders.

►► The support vector machine model generally works 
like a black box and cannot identify the relationship 
between mortality and various explanatory variables.

►► The incomplete records of patients and exclusion 
of those who were declared dead in the trauma 
registry system could cause result bias.

►► The single-centre setting may limit the 
generalisability of the results.
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management.12 To identify the possibility of mortality, 
the Trauma and Injury Severity Score (TRISS) is 
frequently used, which was established in 1987, to esti-
mate the survival probability of an individual patient 
with trauma based on logistic regression (LR) analysis 
of variables, including age, anatomical variable (Injury 
Severity Score; ISS), physiological variable (Revised 
Trauma Score) and different coefficients for blunt 
and penetrating injuries. However, TRISS has limita-
tions and fails to determine an accurate classification 
in 15%–30% of patients with trauma.13 Even after the 
incorporation of other or revised predictors, such as 
blood pressure,14 comorbidities and separate categories 
for different age groups,15 into this model, the addition 
of more predictors to the basic TRISS model did not 
always result in higher performance.16–18 Although the 
revised TRISS derived from the USA National Trauma 
Database for trauma systems is inaccurate, particularly 
in the management of predominantly blunt injuries,19 
further development of the model based on advanced 
methodological quality, performance in the subsets of 
patient groups and practical application is required for 
the prediction of mortality.16

Currently, machine learning (ML) had been success-
fully applied in real-life settings in several fields of study, 
including automatic medical diagnostics and person-
alised healthcare.20–22 The application of supervised ML 
methods to aid diagnosis and prognosis in patients with 
trauma has been a topic of interest. ML is based on how 
the human brain approaches pattern recognition tasks, 
thus providing an artificial intelligence-based approach 
to solve classification problems and improving their effi-
ciency over time.23 The usefulness of ML is bolstered by 
the versatility of its techniques and utility for artificial 
intelligence, such as prediction, classification, planning, 
recognition and clustering.23 24 Different learning strat-
egies were previously compared using field-specific data-
sets, of which several had a significantly better predictive 
power than the more conventional alternatives.25 Exam-
ples of multivariate techniques for pattern recognition 
include but are not limited to LR, support vector machine 
(SVM), decision tree (DT) and artificial neural networks. 
LR is a widely used and accepted statistical analysis tool 
that predicts the probability of the occurrence of an 
event.26 It aims to build a functional relationship between 
two or more independent predictors and one dependent 
outcome variable, with the assumption that the response 
variables are linearly related to the coefficients of the 
predictor variables.26

SVM uses a training set of data with one or more 
features to determine an optimal boundary that separates 
a set of cases. The binary SVM classifier establishes a set of 
optimal hyperplanes in a high-dimensional space with the 
maximal margin of the two classes.27 When all training 
points cannot be separated by the hyperplane, a soft 
margin method is used to establish a hyperplane that can 
separate the training data points.28 29 Moreover, the SVM 
model can be used for the classification of problems.30–34

DT is a hierarchical model that is composed of deci-
sion rules based on the optimal feature cut-off values that 
recursively classify independent variables into different 
groups.35–37 It has been built to search for a set of deci-
sion rules that can predict an outcome from a set of input 
variables.33 35 36 Some models are used to construct DT 
models, including classification and regression trees 
(CART), iterative dichotomiser 3 (ID3), χ2 automatic 
interaction detector DTs and C4.5 and C5.0 DTs.26 28 CART 
analysis is a combined approach based on non-parametric 
and non-linear variables for recursive partitioning anal-
ysis. In addition, it is an innovative DT model in which 
several predictive variables are used in identifying high-
risk patients in various medical fields through progressive 
binary splits to develop prediction models and to enable 
better prediction and clinical decision-making.38–40

Thus, this study aimed to establish a model for the 
mortality prediction of motorcycle riders using ML algo-
rithms based on data from a population-based trauma 
registry in a level 1 trauma centre.

Methods
Ethics statement
Requirement for informed consent was waived according 
to the institutional review board regulations.

Data preparation
Detailed patient information was retrieved from the 
trauma registry system of our institution, a 2400-bed facility 
and level 1 regional trauma centre, between January 2009 
and December 2015. Only patients with trauma who 
sustained injuries from a motorcycle accident and were 
hospitalised for treatment were included in the study. 
Patient information included the following variables: 
age; sex; use of a helmet; comorbidities, such as coro-
nary artery disease (CAD), congestive heart failure, cere-
bral vascular accident, diabetes mellitus, end-stage renal 
disease and hypertension (HTN); vital signs, including 
temperature, systolic blood pressure, heart rate and respi-
ratory rate; ISS; Glasgow Coma Scale (GCS) score; Abbre-
viated Injury Scale (AIS) in the different regions of the 
body; number of injured body regions according to AIS 
(number of AIS locations); inhospital mortality and labo-
ratory values (white cell count, red blood cell and platelet 
count; haemoglobin (Hb), haematocrit (Hct), blood 
urine nitrogen (BUN), creatinine (Cr), alanine amino-
transferase (ALT), aspartate aminotransferase (AST), 
sodium (Na), potassium (K) and glucose level; and blood 
alcohol concentration) on emergency admission.

Patient samples were divided into a training sample, 
which was used for predictor discovery and supervised 
classification to generate a plausible model, and a test 
sample, which was used to test the performance of the 
model that was generated in the training sample. Patients 
with missing data were not included for further analysis. 
Those who registered within the 6-year period between 
January 2009 and December 2014 were included in the 
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training set, with a total of 6306 patients. The group was 
composed of 6161 survivors and 145 patients who died. 
In the test set, 946 patients were included, of which 923 
survived and 23 died, within the 1-year period between 
January 2015 and December 2015. The sample similarity 
was assessed based on Euclidean distance for the quan-
titative data to reduce the sample that was designed for 
data analysis.41 The sample reduction used the Euclidean 
distance of the dist function in the stats package in R (R 
Foundation for Statistical Computing, Vienna, Austria). 
During sample reduction, the data size can be reduced 
to speed up calculations in the analysis.42 However, 
considering the exploratory nature of this study, all 
samples (n=6306) and reduced samples (n=1510) in the 
training set of this study must be analysed during ML 
classification.

ML classifiers
The present study provides a performance comparison of 
the three different ML classifiers (LR, SVM and DT).

Logistic regression
The LR classifier used the glm function in the stats 
package in R V.3.3.3. Univariate LR analyses were initially 
performed to identify the significant predictor variables 
of the mortality risk. A stepwise LR analysis was carried out 
to control the effects of the confounding variables that 
help identify the independent risk factors of mortality. 
The selected independent risk factors obtained from LR 
were also used as selected features for the implementa-
tion of the SVM and DT to explain their importance in 
determining mortality risk.

Support vector machine
The SVM classifier used the ​tune.​svm and svm function in 
the e1071 package in R. In the training set, the SVM clas-
sifier was used for the prediction of mortality with regard 
to either all 32 variables or 12 selected features, as well 
as all samples and reduced samples in the training set. 
The mapping procedure was performed using the kernel 
function, which is a matrix of pairwise similarities between 
data points, such as a linear, polynomial or radial basis 
function (RBF).43 In the present study, the RBF kernel 
was used because it can control non-linear interactions 
between class labels and features.44 The two main param-
eters presented in the SVM with RBF kernel were the 
penalty parameter C and kernel hyperparameter γ. The 
penalty parameter C determined the trade-off between 
the fitting error minimisation and model complexity, 
whereas the hyperparameter γ defined the non-linear 
feature transformation on  to a higher dimensional 
space and controlled the trade-off between errors due 
to bias and variance in the model.45 The optimal oper-
ating point was estimated by differentiating the param-
eter C and γ using a grid search for each combination of 
feature selection and dimension reduction with a 10-fold 
cross-validation.44

Decision tree
DT by CART that was based on the Gini Impurity Index 
used the rpart function in the rpart package in R. The 
CART analysis searched for the split on the variable that 
would partition the data into two different groups: a group 
of mostly ‘0s’ (people who survived) and ‘1s’ (people who 
died).46 47 Using the best overall split, the CART model 
partitioned the data and assigned a predicted class to 
each subgroup. CART repeated this same process on 
each predictor in the model, thus identifying the best 
split by iteratively testing all possible splits and producing 
the most significant reduction in impurity.38–40 CART 
proceeded recursively in this manner until the specified 
stopping criteria were met, a specified number of nodes 
were created or a further reduction in node impurity was 
obtained.38–40

Performance evaluation
An analysis of the receiver operating characteristic (ROC) 
curve was carried out to assess and compare the perfor-
mance of the individual ML models. The predictive 
ability of the model was evaluated using confusion matrix 
and via an analysis of the area under the curve (AUC) 
between the two approaches of ML models.

Confusion matrix and geometric mean
The confusion matrix was used to calculate the accuracy, 
sensitivity and specificity of a given model with true-neg-
ative, true-positive, false-positive and false-negative 
values, and thus, it presents accuracy, which represents 
the overall proportion of correct classifications; sensi-
tivity, which refers to the proportion of true positives that 
were accurately identified (eg, percentage of people who 
were declared dead) and specificity, which refers to the 
proportion of true negatives that were accurately iden-
tified (eg, percentage of people who survived and were 
declared dead). In addition, because the geometric mean 
can provide a good trade-off between sensitivity and spec-
ificity in a manner that a better accuracy in both classes 
leads to a larger value, it was calculated in this study 
according to the methods used by Sanz et al.48

AUC analysis
To compare the performance of multiple ML classifiers 
in multiple training datasets, a non-parametric approach 
was used to analyse the areas under the correlated ROC 
curves using the roc and ​roc.​test functions in the pROC 
package in R. This non-parametric approach considers 
the correlated nature of the data that two or more empir-
ical curves are established based on tests performed on 
the same individual.49

All statistical analyses were performed using SPSS 
V.20.0 (IBM) and R V.3.3.3. For the categorical variables, 
the χ2 test was carried out to determine the significance 
of the association between the predictor and outcome 
variables. For the continuous variables, the Student’s 
t-test was conducted to analyse normally distributed data, 
whereas the Kolmogorov-Smirnov test or Mann-Whitney 
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U test was performed to compare non-normally distrib-
uted data. Results were presented as mean±SD. A P value 
<0.05 was considered statistically significant.

Results
Demographic information and injury characteristics of the 
patients
Patients with head and neck injury had a higher AIS 
score. However, patients with injury in the extremi-
ties had a lower AIS score compared with those who 
survived (table  1 and   online  supplementary figure 1). 
The patients  who sustained more body region injuries 
in the number of AIS locations tended to have a higher 
mortality risk than those who survived. In addition, 
women and those who did not wear helmets had a higher 
risk of mortality compared with those who survived 
(table  1 and  online supplementary figure 1). A statisti-
cally significant difference was observed between patients 
who died and those who survived in terms of age, ISS, 
GCS, temperature, platelet count, glucose, Hb, Hct, K, 
Cr, AST and ALT levels, as well as CAD incidence (table 2 
and  online supplementary figure 2). As the distribution 
patterns of Hb and Hct levels, as well as AST and ALT 
levels, are highly similar, only one of these two variables 
(ie, Hct and AST) was selected for further ML classifica-
tion to prevent the inclusion of duplicate parameters. 
Therefore, a total of 32 variables were used for imputa-
tion into ML classifiers rather than considering selected 
features that were obtained by using the independent risk 
factors identified by the LR given below.

Performance of ML classifiers in the training set
Logistic regression
LR considered 12 predictors (platelet count, glucose, 
BUN, Cr, AST, Na level, age, GCS, temperature, number 
of AIS locations, ISS and HTN) as independent risk 
factors for mortality in motorcycle riders for either all 
samples or reduced samples.

The predictive models were listed as
All samples (n=6306)

	

Yi = ln
(

Pi
1−Pi

)
= 4.71648 − 0.00846 × platelet

+0.01189 × glucose + 0.03459 × BUN + 0.10667 × Cr

+0.00195 × AST + 0.09513 × Na + 0.02533 × age

−0.39968 × GCS − 0.56396 × temperature

−0.93232 × number of AIS locations + 0.14098 × ISS

−0.95726 × HTN �

Reduced samples (n=1510)

	

Yi = ln
(

pi
1−pi

)
= 5.76780 − 0.00763 × platelet + 0.00953 × glucose

+0.03773 × BUN + 0.00152 × AST + 0.08630 × Na

+0.02014 × age − 0.34116 × GCS − 0.53370

× temperature − 0.91439 × number of AIS locations

+0.12191 × ISS − 1.00522 × HTN �

The LR had an accuracy of 98.64% (sensitivity of 
59.31% and specificity of 99.56%) and 94.44% (sensitivity 
of 60.00% and specificity of 98.10%) for all samples and 

reduced samples, respectively. The AUCs for all samples 
and reduced samples were 0.9528 and 0.9524, respec-
tively (figure 1).

Support vector machine
In the training set, the SVM classifier was performed 
for the prediction of mortality considering either all 32 
variables or the 12 selected features in all samples and 
reduced samples, respectively. With the use of the RBF 
kernel, the two parameters (C and γ) of the SVM model 
must be determined. The accuracy was highly robust to 
small changes in the hyperparameters. Thus, reasonable 
choices were obtained by a grid search of 2x where x is an 
integer between −8 and 4 for C and between −10 and −2 
for γ. The values with the highest 10-fold cross-validation 
accuracy were C=0.25 and γ=0.00390625. Under the input 
of all variables into the model, the SVM achieved an accu-
racy of 98.62% (sensitivity of 62.07% and specificity of 
99.48%) and 94.37% (sensitivity of 59.31% and specificity 
of 98.10%) for all samples and reduced samples, respec-
tively (table  3). The AUCs for all samples and reduced 
samples were 0.9534 and 0.9526, respectively (figure 1). 
With the use of the selected features in the model, the 
SVM had an accuracy of 98.62% (sensitivity of 64.14% and 
specificity of 99.43%) and 93.84% (sensitivity of 62.76% 
and specificity of 97.14%) (table 3), and AUC values of 
0.9517 and 0.9518 for all samples and reduced samples, 
respectively (figure 1).

Decision tree
As shown in figure 2, in the DT model, GCS was iden-
tified as the variable of the initial split with an optimal 
cut-off value of >3. Among the patients with a GCS higher 
than 3, glucose level was selected as the variable of the 
second split at a discrimination level of 180 mg/dL and 
177 mg/dL for all samples and reduced samples, respec-
tively. Glucose level below 180 mg/dL or 177 mg/dL for 
all samples and reduced samples, respectively, was the 
best predictor of mortality; the next best predictor was 
platelet count, with an optimal cut-off value of 201×103/
µL. For the node, in patients with a GCS not greater 
than 3, ISS below 24 and glucose level below 218 mg/
dL, these predictors were considered as significant vari-
ables for all samples and reduced samples along with 
a GCS  >8 and glucose level below 198 mg/dL, and the 
number of AIS locations ≥3 was considered as an addi-
tional predictor for the splitting of the reduced samples. 
With all the variables used in the model, the DT had an 
accuracy of 98.92% (sensitivity of 62.76% and specificity 
of 99.77%) and 95.83% (sensitivity of 68.97% and spec-
ificity of 98.68%) for all samples and reduced samples, 
respectively. The AUC values for all samples and reduced 
samples were 0.8872 and 0.9289, respectively. With the 
selected features used in the model, the DT had an accu-
racy of 98.92% (sensitivity of 64.14% and specificity of 
99.74%) and 95.83% (sensitivity of 70.34% and speci-
ficity of 98.53%) for all samples and reduced samples, 
respectively. The AUC values for all samples and reduced 
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Table 1  Demographics and injury characteristics of the patients regarding gender, helmet-wearing status, comorbidities, 
injury region and number of injury regions

Variables Total (N=7252) Survival (n=7084) Mortality (n=168) P value

Sex Female 4291 (59.2%) 4174 (58.9%) 117 (69.6%) 0.005

Male 2961 (40.8%) 2910 (41.1%) 51 (30.4%) 

Helmet No 1011 (13.9%) 929 (13.1%) 82 (48.8%) <0.001

Yes 6241 (86.1%) 6155 (86.9%) 86 (51.2%)

DM No 6562 (90.5%) 6414 (90.5%) 148 (88.1%) 0.286

Yes 690 (9.5%) 670 (9.5%) 20 (11.9%)

HTN No 5939 (81.9%) 5802 (81.9%) 137 (81.5%) 0.919

Yes 1313 (18.1%) 1282 (18.1%) 31 (18.5%)

CAD No 7120 (98.2%) 6960 (98.2%) 160 (95.2%) 0.011

Yes 132 (1.8%) 124 (1.8%) 8 (4.8%)

CHF No 7228 (99.7%) 7061 (99.7%) 167 (99.4%) 0.431

Yes 24 (0.3%) 23 (0.3%) 1 (0.6%)

CVA No 7168 (98.8%) 7002 (98.8%) 166 (98.8%) 0.722

Yes 84 (1.2%) 82 (1.2%) 2 (1.2%)

ESRD No 7250 (100%) 7082 (100%) 168 (100%) 1.000

Yes 2 (0.0%) 2 (0.0%) 0 (0.0%)

AIS (head/neck) 0 4642 (64%) 4627 (65.3%) 15 (8.9%) <0.001

1 665 (9.2%) 661 (9.3%) 4 (2.4%)

2 192 (2.6%) 189 (2.7%) 3 (1.8%)

3 713 (9.8%) 699 (9.9%) 14 (8.3%)

4 840 (11.6%) 795 (11.2%) 45 (26.8%)

5 189 (2.6%) 113 (1.6%) 76 (45.3%)

6 11 (0.2%) 0 (0%) 11 (6.5%)

AIS (face) 0 5472 (75.4%) 5347 (75.5%) 125 (74.4%) <0.001

1 574 (7.9%) 568 (8%) 6 (3.6%)

2 1173 (16.2%) 1141 (16.1%) 32 (19%)

3 33 (0.5%) 28 (0.4%) 5 (3%)

AIS (thorax) 0 6081 (83.9%) 5973 (84.3%) 108 (64.3%) <0.001

1 234 (3.2%) 229 (3.3%) 5 (3%)

2 260 (3.6%) 258 (3.6%) 2 (1.2%)

3 423 (5.8%) 404 (5.7%) 19 (11.3%)

4 245 (3.4%) 217 (3.1%) 28 (16.7%)

5 7 (0.1%) 3 (<0.1%) 4 (2.4%)

6 2 (<0.1%) 0 (0%) 2 (1.1%)

AIS (abdomen) 0 6654 (91.8%) 6516 (92%) 138 (82.1%) <0.001

1 57 (0.8%) 54 (0.8%) 3 (1.8%)

2 288 (4%) 277 (3.9%) 11 (6.5%)

3 170 (2.2%) 163 (2.3%) 7 (4.2%)

4 66 (0.9%) 58 (0.8%) 8 (4.8%)

5 17 (0.2%) 16 (0.2%) 1 (0.6%)

AIS (extremity) 0 2000 (27.6%) 1897 (26.8%) 103 (61.3%) <0.001

1 528 (7.3%) 524 (7.4%) 4 (2.4%)

2 2886 (39.8%) 2853 (40.3%) 33 (19.6%)

3 1822 (25.1%) 1800 (25.4%) 22 (13.1%)

4 12 (0.2%) 8 (0.1%) 4 (2.4%)

5 4 (0.1%) 2 (0.0%) 2 (1.2%)

Continued
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samples were 0.8872 and 0.9289, respectively (figure 1). 
In the condition wherein reduced samples but not all 
samples were used in the DT model, the number of AIS 
locations would be added in the split of the node, thus 
slightly increasing the sensitivity from 62.76% to 68.97% 
and from 64.14% to 70.34% with the input composed of 
all variables and selected variables, respectively. In addi-
tion, in the condition wherein selected features but not 
all variables were used in the DT model, the level of K 
was not used in the splitting of the node and substituted 

by the cut-off value of AST (≥104 IU/L), therefore 
slightly increasing the sensitivity from 62.76% to 64.14% 
and from 68.97% to 70.34% with input composed of all 
samples and reduced samples, respectively. The AUC 
values for all samples and reduced samples were 0.8875 
and 0.9292, respectively (figure 1).

Comparison of the results of AUC analysis
When the AUCs for LR, SVM and DT were used for the 
training set (table  4 and figure  1), both LR and SVM 

Variables Total (N=7252) Survival (n=7084) Mortality (n=168) P value

AIS (external) 0 6155 (84.9%) 6001 (84.7%) 154 (91.7%) 0.003

1 1072 (14.8%) 1059 (14.9%) 13 (7.7%)

2 25 (0.3%) 24 (0.3%) 1 (0.6%)

Number of AIS locations 1 3687 (50.8%) 3631 (51.3%) 56 (33.3%) <0.001

2 2255 (31.1%) 2205 (31.1%) 50 (29.8%)

3 982 (13.5%) 939 (13.3%) 43 (25.6%)

4 280 (3.9%) 265 (3.7%) 15 (8.9%)

5 43 (0.6%) 39 (0.6%) 4 (2.4%)

6 5 (0.1%) 5 (0.1%) 0 (0.0%)

AIS, Abbreviated Injury Scale; CAD, coronary artery disease; CHF, congestive heart failure; CVA, cerebral vascular accident; DM, diabetes 
mellitus; ESRD, end-stage renal disease; HTN, hypertension.

Table 1  Continued 

Table 2  Injury characteristics of the patients regarding laboratory data collected from the time point when arrival at the 
emergency department

Variables Total (N=7252) Survival (n=7084) Mortality (n=168) P value

Age (years) 38 (29) 37 (29) 47 (32) <0.001

HR (beats/min) 89 (23) 89 (23) 93 (43) <0.001

SBP (mm Hg) 137 (38) 137 (37) 143 (79) 0.374

RR (times/min) 19 (2) 19 (2) 19 (5) 0.660

Temperature (oC) 36.4 (0.8) 36.4 (0.8) 36.0 (0.5) <0.001

GCS 15 (5) 15 (3) 3 (3) <0.001

ISS 13 (12) 13 (13) 29 (11) <0.001

RBC (1012/L) 4.6 (0.8) 4.6 (0. 8) 4.3 (1.1) <0.001

WCC (109/L) 12.9 (7.7) 12.9 (7.7) 13.2 (8.7) <0.001

Hb (g/dL) 13.9 (2.5) 13.9 (2.5) 12.9 (3.5) <0.001

Hct (%) 40.9 (6.8) 41.1 (6.6) 38.6 (9.4) <0.001

Platelets (103/μL) 228 (79) 230 (79) 190 (78) <0.001

Glucose (mg/dL) 145 (27) 145 (23) 218 (60) <0.001

Na (mEq/L) 139 (3) 139 (3) 139 (4) 0.094

K (mEq/L) 3.5 (0.6) 3.5 (0.6) 3.4 (0.9) <0.001

BUN (mg/dL) 12 (6) 12 (5) 14 (8) <0.001

Cr (mg/dL) 0.8 (0.3) 0.8 (0.3) 1.0 (0.5) <0.001

AST (U/L) 47 (50) 45 (48) 65 (76) <0.001

ALT (U/L) 34 (35) 34 (33) 39 (55) <0.001

BAC (mg/dL) 4.9 (133.0) 4.9 (136.4) 4.9 (62.5) 0.698

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BAC, blood alcohol concentration; BUN, blood urea nitrogen; Cr, creatinine; 
GCS, Glasgow Coma Scale; Hb, haemoglobin; Hct, haematocrit; HR, heart rate; ISS, Injury Severity Score; K, potassium; Na, sodium;  
RBC, red blood cell; RR, respiratory rate; SBP, systolic blood pressure; WCC, white cell count.
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had a significantly higher AUC than DT, regardless of 
whether all samples or reduced samples and whether 
all variables or selected features were used. However, no 
significant difference was observed in the AUC of LR 
and SVM, regardless of whether all samples or reduced 
samples, as well as all variables or selected features, were 
used. In addition, the DT sample reduction had a signifi-
cantly higher AUC than that obtained using all samples. 
However, no significant difference was observed in the 
AUC of DT, regardless of whether all variables or selected 
features were used.

Performance of ML classifiers in test set
In test set, the LR model for all samples and reduced 
samples had an accuracy of 98.41%, with a sensitivity of 
73.91% and specificity of 99.02%, in predicting mortality 
(table  3). These four SVM models had an accuracy of 
more than 98% and a specificity of approximately 99% in 
predicting mortality. In contrast, the SVM model for all 
samples with selected features had the highest sensitivity 
(86.96%) and geometric mean (92.79%). These four 
DT models had an accuracy of approximately 98% and 
a specificity of approximately 99% but a sensitivity of less 
than 70%. Considering that most patients survived and 
had a significantly high accuracy and specificity index 
in predicting mortality, the comparison should there-
fore focus on the sensitivity and geometric mean of the 
different ML models. All LR and SVM models, but not 
the DT models, had an increased sensitivity in the test set. 

In addition, the SVM model for all samples with selected 
features had the highest sensitivity and geometric mean.

Discussion
LR is widely used in epidemiological studies for causal 
inference, and with the selection of built-in features, it 
does not necessarily use all the predictors. With a relatively 
limited number of variables, that is, variables less than 20, 
LR provides the estimates of the ORs of the risk factors.50 
However, its limitations became apparent when a complex 
dataset with a high number of relevant exposures and 
multiple interactions was analysed.51 With the use of several 
predictors, data that can specify all interactions may not 
be obtained.51 In addition, the DT with CART analysis was 
exploratory and was not based on a probabilistic method, 
which may lead to an overestimation of the importance of 
the risk factors or may cause other potential confounders 
to be missed, thus affecting each patient’s actual risk.52 In 
contrast to LR, which is significantly affected by outliers 
using a linear discriminant analysis method, the SVM 
boundary is only minimally affected by outliers that are 
difficult to separate, despite the complexity of data.53 In 
addition, the use of kernels in the SVM model is benefi-
cial for non-linear decision boundaries, thus allowing the 
classifier to solve more difficult classification problems than 
the linear analysis method.54 These three ML models (LR, 
SVM and DT) all had an accuracy and specificity of approx-
imately 98% and 99%, respectively, but a sensitivity less than 

Figure 1  ROC curves for LR, SVM and DT models in predicting mortality of motorcycle riders. AUC, area under the curve;   
DT, decision tree; LR, logistic regression; ROC, receiver operating characteristic; SVM, support vector machine.
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or approximately 70% in the training dataset. In this study, 
both LR and SVM had a significantly higher AUC than 
DT in the training set, regardless of whether all samples 
or reduced samples and whether all variables or selected 
features were used.

This study included the different variants of SVM, 
considering the sample size and feature selection, to show 
all possible improvements and conventional strategies, 
such as LR or DT. Although the sample reduction for SVM 
had been proposed to significantly improve the training 
speed of the SVM and save a lot of storage space,55 56 kernel 
use is a more efficient technique for the representation 
between samples. Thus, the computational complexity of 
SVM is not wholly governed by the number of samples 
but by the number of features, which is advantageous for 
the analysis in high-dimensional settings.54 In addition, 
feature selection in SVM may maximise the AUC.25 When 
aided by feature selection, the proposed SVM method 
identifies the most discriminating indexes for mortality 
prediction. Although both LR and SVM did not have a 

different AUC in the training procedure, the SVM model 
for all samples with selected features had a significantly 
higher sensitivity (86.96%) in predicting the mortality of 
motorcycle riders in the test set compared with the rest of 
the models. The higher sensitivity of SVM in the test set 
compared with that in the training set may be attributed 
to an improved quality of registered content and less 
missing data in our registered data after continuous 
quality assessment and years of working experience with 
the registers. Such increased sensitivity was also found in 
the LR model in the test set. With the addition of more 
data in the model, the SVM model may have an increased 
predictive power. In the present study, the feasibility of 
using SVM classification with feature selection can predict 
the mortality risk of motorcycle riders admitted in trauma 
care centres. However, the SVM model generally works 
like a black box, and it cannot identify the relationships 
between mortality and various explanatory variables. 
Therefore, this model cannot be directly used to validate 
our hypothesis on the increased sensitivity in the test set.

Table 3  Summary of mortality prediction performances regarding accuracy, sensitivity, specificity and geometric mean with 
LR, SVM and DT models in the training and test sets

All samples (n=6306) Reduced samples (n=1510)

All variables All variables

LR Train Accuracy 98.64 94.44

Sensitivity 59.31 60

Specificity 99.56 98.1

Geometric mean 76.84 76.72

Test Accuracy 98.41 98.41

Sensitivity 73.91 73.91

Specificity 99.02 99.02

Geometric mean 85.55 85.55

All variables Selected features All variables Selected features

SVM Train Accuracy 98.62 98.62 94.37 93.84

Sensitivity 62.07 64.14 59.31 62.76

Specificity 99.48 99.43 98.1 97.14

Geometric mean 78.58 79.86 76.28 78.08

Test Accuracy 98.41 98.73 98.41 98.31

Sensitivity 69.57 86.96 69.57 73.91

Specificity 99.13 99.02 99.13 98.92

Geometric mean 83.05 92.79 83.05 85.51

DT Train Accuracy 98.92 98.92 95.83 95.83

Sensitivity 62.76 64.14 68.97 70.34

Specificity 99.77 99.74 98.68 98.53

Geometric mean 79.13 79.98 82.50 83.25

Test Accuracy 98.31 98.52 97.67 97.89

Sensitivity 65.22 69.57 65.22 69.57

Specificity 99.13 99.24 98.48 98.59

Geometric mean 80.41 83.09 80.14 82.82

DT, decision tree; LR, logistic regression; SVM, support vector machine. 
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This study has several limitations. First, the patients who 
had incomplete records were excluded from the analysis. 
This could have caused result bias, and the results could 
have been different from the data acquired if the patients 
with incomplete records were included and the missing 
data on a variable were replaced by a value that is drawn 
from an estimate of the distribution of this variable.57–59 
Imputation can include patients who might have relevant 
features for analysis. However, these patients were excluded 
due to errors in data collection or recording.57–59 Second, 
the exclusion of patients who were declared dead (either 

on arriving at the hospital or at the accident area itself) 
and patients with injuries who were discharged against the 
advice of physicians in the emergency department may 
cause a potential bias. Third, important data regarding 
injury mechanism and circumstance, including motorcycle 
speed and type, helmet material and impact force during 
collision, were missing. In addition, the imputation of 
physiological and laboratory data collected from the time 
of arrival at the emergency department cannot reflect the 
dynamic changes in haemodynamic and metabolic vari-
ables of the patients with trauma when resuscitation is 

Figure 2  Illustration of DT model for mortality of motorcycle riders. The boxes denote the percentage of patients with 
discriminating variables from CART analysis. Those who were survival and fatal were indicated with green and red colours, 
respectively, in the boxes. CART, classification and regression trees; DT, decision tree. 

Table 4  Comparison of AUC between LR, SVM and DT models in the training set

LR SVM DT

AS RS (AS+AV) (AS+SF) (RS+AV) (RS+SF) (AS+AV) (AS+SF) (RS+AV) (RS+SF)

LR AS

RS 0.6575

SVM (AS+AV) 0.7481 0.6785

(AS+SF) 0.4121 0.7075 0.2473

(RS+AV) 0.9151 0.9161 0.6619 0.6652

(RS+SF) 0.3502 0.5965 0.4135 0.9939 0.5346

DT (AS+AV) 0.0001* 0.0001* 0.0001* 0.0002* 0.0002* 0.0002*

(AS+SF) 0.0001* 0.0002* 0.0001* 0.0002* 0.0002* 0.0002* 0.3578

(RS+AV) 0.0542 0.0618 0.0543 0.0713 0.0658 0.0703 0.0009* 0.0010*

(RS+SF) 0.0566 0.0643 0.0567 0.0743 0.0684 0.0731 0.0008* 0.0009* 0.3570

*P<0.05.
AS, all samples; AUC, area under the curve; AV, all variables; DT, decision tree; LR, Logistic regression; RS, reduced samples; SF, selected 
features; SVM, support vector machine.

 on A
pril 23, 2024 by guest. P

rotected by copyright.
http://bm

jopen.bm
j.com

/
B

M
J O

pen: first published as 10.1136/bm
jopen-2017-018252 on 5 January 2018. D

ow
nloaded from

 

http://bmjopen.bmj.com/


10 Kuo P-J, et al. BMJ Open 2018;8:e018252. doi:10.1136/bmjopen-2017-018252

Open Access�

possible. Furthermore, other DT-related methods, such as 
DT by C4.5,60 combined classifiers of LR and DT by C4.5,48 
and random forest,61 have extremely satisfying perfor-
mance in dealing with the classification problem. However, 
these techniques were not investigated in this study. Lastly, 
the study population was limited to a single urban trauma 
centre in southern Taiwan, which may not be representative 
of other populations.

Conclusion
ML can provide a feasible level of accuracy in predicting 
the mortality of motorcycle riders. However, there are 
significant theoretical and practical challenges to the 
translational implementation of this approach. The 
results of previous studies are extremely helpful and may 
help in establishing the first step towards the develop-
ment of a prediction model that can be integrated into 
the trauma care system to identify an individual motor-
cycle rider’s risk of mortality.
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