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AbstrAct
Introduction Many patients with stroke have moderate 
to severe long-term sensorimotor impairments, often 
including inability to execute movements of the affected 
arm or hand. Limited recovery from stroke may be partly 
caused by imbalanced interaction between the cerebral 
hemispheres, with reduced excitability of the ipsilesional 
motor cortex while excitability of the contralesional motor 
cortex is increased. Non-invasive brain stimulation with 
inhibitory repetitive transcranial magnetic stimulation 
(rTMS) of the contralesional hemisphere may aid in 
relieving a post-stroke interhemispheric excitability 
imbalance, which could improve functional recovery. There 
are encouraging effects of theta burst stimulation (TBS), a 
form of TMS, in patients with chronic stroke, but evidence 
on efficacy and long-term effects on arm function of 
contralesional TBS in patients with subacute hemiparetic 
stroke is lacking.
Methods and analysis In a randomised clinical trial, we 
will assign 60 patients with a first-ever ischaemic stroke 
in the previous 7–14 days and a persistent paresis of one 
arm to 10 sessions of real stimulation with TBS of the 
contralesional primary motor cortex or to sham stimulation 
over a period of 2 weeks. Both types of stimulation will be 
followed by upper limb training. A subset of patients will 
undergo five MRI sessions to assess post-stroke brain 
reorganisation. The primary outcome measure will be 
the upper limb function score, assessed from grasp, grip, 
pinch and gross movements in the action research arm 
test, measured at 3 months after stroke. Patients will be 
blinded to treatment allocation. The primary outcome at 
3 months will also be assessed in a blinded fashion.
Ethics and dissemination The study has been approved 
by the Medical Research Ethics Committee of the 
University Medical Center Utrecht, The Netherlands. The 
results will be disseminated through (open access) peer-
reviewed publications, networks of scientists, professionals 
and the public, and presented at conferences.
trial registration number NTR6133

IntroductIon
Each year >15 million people worldwide 
have a stroke, which is a major cause of adult 
disability. The most common functional 

deficits after stroke are sensorimotor impair-
ments, which, in addition to functional 
disability, can have considerable negative 
effects on quality of life and societal partic-
ipation.1–5 In 33%–66% of stroke patients 
with a paretic arm, recovery of arm function 
is absent or negligible in the first 6 months,6–8 
and >50% do not show signs of significant arm 
function recovery after >5 years post-stroke.9–12 
On the other hand, 5%–20% of patients with 
impaired arm function after stroke demon-
strate full functional recovery of arm function 
within 6 months.6 13 Rehabilitation programs 
contribute to functional recovery, and signifi-
cant improvements in sensorimotor function 
can be achieved.7 14 Several studies suggest 
that functional improvement after stroke 
may be augmented by strategies that involve 
neuromodulation through non-invasive brain 
stimulation, such as TMS, in combination 
with rehabilitative training.15–21

TMS provides a non-invasive and safe way to 
directly facilitate or suppress brain activity in 
cortical areas. TMS induces a current in the 
cerebral cortex through a coil that generates 

Brain stimulation for arm recovery after 
stroke (B-STARS): protocol for a 
randomised controlled trial in subacute 
stroke patients

Eline C C van Lieshout,1 Johanna M A Visser-Meily,2 Sebastiaan F W Neggers,3 
H Bart van der Worp,4 Rick M Dijkhuizen1

To cite: van Lieshout ECC, 
Visser-Meily JMA, Neggers SFW, 
et al.  Brain stimulation for arm 
recovery after stroke (B-STARS): 
protocol for a randomised 
controlled trial in subacute 
stroke patients. BMJ Open 
2017;7:e016566. doi:10.1136/
bmjopen-2017-016566

 ► Prepublication history for 
this paper is available online. 
To view these files please visit 
the journal online (http:// dx. doi. 
org/ 10. 1136/ bmjopen- 2017- 
016566).

Received 23 February 2017
Revised 29 June 2017
Accepted 3 July 2017

1Biomedical MR Imaging and 
Spectroscopy Group, Center 
for Image Sciences, University 
Medical Center Utrecht, Utrecht, 
The Netherlands
2Department of Rehabilitation, 
Brain Center Rudolf Magnus 
and Center of Excellence 
for Rehabilitation Medicine, 
University Medical Center, 
Utrecht, The Netherlands
3Department of Psychiatry, 
Brain Center Rudolf Magnus, 
University Medical Center 
Utrecht, Utrecht, The 
Netherlands
4Department of Neurology and 
Neurosurgery, Brain Center 
Rudolf Magnus, University 
Medical Center, Utrecht, The 
Netherlands

correspondence to
Dr Rick M Dijkhuizen;  
 r. m. dijkhuizen@ umcutrecht. nl

Protocol

strengths and limitations of this study

 ► To the best of our knowledge, this is one of the 
first clinical trials evaluating the effect of theta 
burst stimulation on motor function in patients with 
subacute stroke (within 2 weeks).

 ► Long-term follow-up period up to 1 year after 
stroke onset, enabling assessment of durability of 
treatment effects.

 ► Multiple, different outcome measures, including 
motor function, activities of daily living and neural 
network activity.

 ► Participants are blinded to their allocated treatment 
group throughout the trial, but study personnel is 
only blinded for the primary outcome measurement 
at 3 months.
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a magnetic field.22 Repetitive delivery of TMS (rTMS) with 
a high-frequency train of pulses is believed to enhance 
cortical excitability, while repetitive low-frequency TMS 
would suppress cortical excitability.22 23 TMS-induced 
reduction of cortical excitability has been associated 
with long-term depression (LTD)-like effects, whereas 
TMS-induced increase of corticospinal excitability has 
been associated with long-term potentiation-like effects.24 
Recently, patterned protocols consisting of short trains 
of high-frequency TMS (30–100 Hz) alternating with rest 
periods in the theta frequency range (4–7 Hz) (theta 
burst stimulation (TBS))25 26 have been reported to 
provide effective and reliable paradigms for an excitatory 
(intermittent TBS (iTBS)) or inhibitory (continuous TBS 
(cTBS)) brain stimulation.27 Three pulses of stimulation 
are delivered at 50 Hz, given every 200 ms. TBS paradigms 
are particularly promising because stimulation sessions are 
shorter (2–3 min or less) (ie, more practical) as compared 
with standard rTMS protocols (20–30 min).28–31

Patients with hemiparetic stroke often have a function-
ally imbalanced interaction between the damaged and 
undamaged brain hemispheres, with reduced excitability 
of the ipsilesional motor cortex while excitability in the 
contralesional motor cortex is increased.32–39 Recent proof-
of-principle studies have demonstrated that specific TMS 
paradigms—that is, facilitatory stimulation of the affected 
hemisphere to upregulate excitability or inhibitory stim-
ulation of the unaffected hemisphere to downregulate 
excitability—can elicit significant behavioural improve-
ment in recovering patients with stroke.15 20 40 41 cTBS of 
the intact contralesional primary motor cortex may offer 
the most straightforward approach, as this brain region 
is easily identified from single-pulse TMS-induced motor 
evoked potentials (MEPs), which is more complicated in 
the structurally and/or functionally injured ipsilesional 
motor cortex.42 43

The feasibility and safety of TBS in patients with hemi-
paretic stroke have been demonstrated in a number of 
studies.28–31 44 45 However, most earlier studies involved 
chronic stroke patients in whom post-stroke neural 
network reorganisation had probably stabilised already, 
which may constrain the therapeutic potential of TBS. The 
most recent of these studies was a randomised controlled 
trial (RCT) in which chronic subcortical stroke patients 
were treated with iTBS of the ipsilesional motor cortex 
directly followed by upper limb physical therapy, daily for 
10 days. Upper limb function, assessed with the action 
research arm test (ARAT), improved for at least 1 month 
after treatment compared with sham therapy.45 Until 
now, however, a RCT on the long-term effects of TBS 
treatment in patients with subacute hemiparetic stroke 
is lacking. Previous studies that tested TMS treatment in 
the subacute phase after stroke applied low-frequency 
or high-frequency rTMS, some had a small sample size 
(18–58 patients) or was not supported by a power calcu-
lation and relatively short intervention duration of 5–10 
days.41 46–50 A RCT on the long-term effects of repetitive 
TBS in a larger patient population subacutely after stroke 

would provide important new insights into the therapeutic 
efficacy of this non-invasive and practicable intervention 
during an optimal time window for neurorehabilitation, 
especially in combination with a pragmatic upper limb 
training approach directly following brain stimulation.

objectives
The primary objective of this study is to determine the 
therapeutic effect of contralesional cTBS (inhibitory 
stimulation) on recovery of function of the paretic arm at 
3 months after ischaemic stroke. The secondary objectives 
are to evaluate:
1. the mode of action of contralesional cTBS on neural 

network reorganisation after ischaemic stroke, at 
different time points;

2. the therapeutic effect of contralesional cTBS on other 
sensorimotor functions, at different time points post-
treatment and

3. the therapeutic effect of contralesional cTBS on 
disability and quality of life, at different time points 
post-treatment.

MeThods and analysis
study design
The Brain-STimulation for Arm Recovery after Stroke 
study is a prospective, randomised, double-blind, 
controlled clinical trial. Subjects will be randomly allo-
cated to real or sham brain stimulation, followed by 
standard care upper limb training. They will remain 
blinded to treatment allocation. Non-invasive brain 
stimulation will involve 10 daily sessions of cTBS of the 
contralesional hand area of the primary motor cortex 
over a period of 2 weeks. The first cTBS session will be 
executed within 2 weeks after stroke onset. Patients will 
be tested seven times in total (figure 1): at the start of the 
study (T0; baseline), at the 10th day of the intervention 
(T1), at 1 week (T2) and 1 month (T3) after stimulation, 
and at 3 months (T4), 6 months (T5) and 1 year after 
stroke onset (T6). All baseline and follow-up assessments, 
except for the primary outcome measurement, will be 
conducted by a trained researcher (ECCvL) with support 
from research assistants.

The study has been approved by the Medical Research 
Ethics Committee of the University Medical Center 
Utrecht.

We used the Standard Protocol Items: Recommen-
dations for Interventional Trials recommendations on 
reporting.

study population
Participants (total of 60) will be recruited from the 
University Medical Center Utrecht and rehabilitation 
centre De Hoogstraat in Utrecht, The Netherlands. 
Patients who fulfil the study criteria will be asked to 
participate, and they will receive a patient informa-
tion letter explaining the background and methods 
of the study. Patients can decide to participate with 
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Figure 1 Schematic overview of the study procedure. TMS, transcranial magnetic stimulation.

or without additional MRI scanning at the Univer-
sity Medical Center Utrecht. After giving written 
informed consent, patients will be randomly allocated 
to the treatment procedures.

Inclusion and exclusion criteria
The inclusion criteria of this study are: (1) patient age 
≥18 years; (2) first-ever unilateral ischaemic stroke; 
(3) paresis of one arm, with Shoulder Abduction and 

Finger Extension scores for shoulder abduction of ≥9 
on the Motricity Index and for finger extension of ≥1 
on the Fugl-Meyer score51; (4) admission to ‘De Hoog-
straat’ within the first 2 weeks after stroke onset and (5) 
written informed consent. The exclusion criteria are: (1) 
disabling medical history (severe or recent heart disease, 
severe head trauma and coercively treated at a psychi-
atric ward); (2) history of epilepsy; (3) normal to almost 
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Table 1 Overview of functional outcome measures (motor function tests and questionnaires, including timing)

Instrument T0 T1 T2 T3 T4 T5 T6

Motor function

  ARAT (primary outcome measure) X X X X X X X

  FM X X X X X X

  SULCS X X X X

  9HPT X X X X X X

  JTT X X X X X

Soci(et)al participation

   SIS (hand function subscale + ‘thermometer’ of well-being) X X X X

  Modified Rankin Scale X X X X X

   HADS X X X X

The first assessment (T0) takes place in the first 7–14 days post-stroke. The follow-up assessments are at the last day of the stimulation 
session (T1); at 1 week (T2), 1 month (T3) after stimulation; and 3 months (T4), 6 months (T5) and 1 year (T6) post-stroke.
ARAT, action research arm test; FM, Fugl-Meyer score test; HADS, Hospital Anxiety and Depression Scale; JTT, Jebsen-Taylor Test; 9HPT, 
Nine-hole Peg Test; SIS, Stroke Impact Scale; SULCS, Stroke Upper Limb Capacity Scale.

normal use of hand, with a Motricity Index hand score 
of 33 (maximum score for this item, reflecting ‘normal’ 
function); (4) severe deficits in communication, memory 
or understanding that impede proper study participation, 
as determined by the treating physician and (5) contra-
indications for TMS (metal (implants) in skull/scalp/
head or fragments from welding or metalwork, implanted 
device (eg, spinal cord stimulator, cardiac pacemaker and 
cochlear implants), pregnancy and so on).52

randomisation
Patients will be randomly assigned to either the real cTBS 
or sham cTBS group, stratified to the severity of their 
arm paresis. Patients in the high-performance group 
must demonstrate a minimal ability of finger extension 
of the thumb or one or more fingers, while patients in 
the low-performance group have no ability of finger 
extension of the thumb or one or more fingers.53 Rando-
misation will be performed with a secured electronic data 
capture system (Research Online V.2.0, Julius Centrum). 
This will be done after the baseline assessment to account 
for possible improvements in motor function during the 
first days after stroke.

Intervention
All patients will receive the current standard rehabilitation 
programme parallel to the treatment. The rehabilitation 
programme consists of daily group treatment focused 
on the arm/hand (on functional and activity level, ca. 
60 min), next to individual physical therapy, occupa-
tional therapy, creative therapy, speech therapy and so 
on. All therapists and other rehabilitation staff will be 
blinded to group allocation. In addition, real cTBS or 
sham cTBS in combination with upper limb training will 
be applied in daily sessions during 2 weeks (10 working 
days), starting within 7–14 days after stroke onset. TBS 
will be performed using a Neuro-MS/D Advanced Ther-
apeutic stimulator (Neurosoft, Russia). cTBS will only 

be executed at rehabilitation centre De Hoogstraat. We 
will employ a standard cTBS paradigm consisting of 
three stimuli bursts at 50 Hz, repeated at 5 Hz frequency, 
resulting in 600 stimuli in 40 s.25 cTBS intensity will be at 
70% of resting motor threshold (RMT), which induces 
highly consistent LTD-like MEP suppression with low 
intersubject variability.54 Sham stimulation will be done 
with the stimulator in the sham mode (generates pulses at 
90% lower intensity of RMT), with the coil oriented at an 
angle of 45° relative to the scalp.20 For each session, the 
RMT will be determined from electromyography (EMG) 
(recorded with two Ag/AgCl surface electrodes) from the 
contralateral first dorsal interosseous (FDI) muscle. The 
motor threshold will be defined as the minimum intensity 
of TMS over the hand area of the contralesional primary 
motor cortex to elicit at least five contralateral MEPs with 
>50 μV peak-to-peak amplitude in 10 trials with 7 s inter-
trial intervals. A neuronavigation system (Brain Science 
Tools, the Netherlands), using a prestimulation CT or MRI 
scan (both techniques have been successfully applied for 
stereotactic imaging55 56) will be used to ensure consistent 
coil placement for cTBS of the hand area of the primary 
motor cortex. Applied protocol(s) will be in accordance 
with most recent safety and tolerability guidelines for 
TMS applications.27 57 58

outcome measures
Primary outcome measure
The primary outcome measure will be the change in the 
modified ARAT score59 assessed at 3 months post-stroke 
(see table 1 for all times of testing). The ARAT is a perfor-
mance test which assesses the ability to perform gross 
movements and the ability to grasp, move and release 
objects differing in size, weight and shape. The original 
test consists of 19 items, rated on 4-point ordinal scales 
(0–3), with a maximum score of 57 (best performance). 
By removing four items, a hierarchical one-dimensional 
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Table 2 Overview of neural outcome measures (including timing)

Instrument T0 T1 T2 T3 T4 T5 T6

Brain status

  Corticospinal excitability and intracortical inhibition Diagnostic TMS X X X X X X X

  Ischaemic injury, white matter integrity, functional 
connectivity and cortical activation

(f)MRI (optional) X X X X X

The first assessment (T0) takes place in the first 7–14 days post-stroke. The follow-up assessments are at the last day of the stimulation 
session (T1); at 1 week (T2), 1 month (T3) after stimulation; and 3 months (T4), 6 months (T5) and 1 year (T6) post-stroke.
fMRI, functional MRI; TMS, transcranial magnetic stimulation.

scale has been constructed.59 The ARAT has shown good 
psychometric properties in patients with stroke with mild 
to moderate motor severity and without severe cognitive 
impairment. It has also evidence of unidimensionality, 
predictive validity and reliability. The ARAT at 3 months 
will be performed by an independent assessor who will be 
blinded to treatment allocation.

Secondary outcome measures
In addition to the ARAT score, we will measure senso-
rimotor function with the following tests: Fugl-Meyer 
score test, Nine-Hole Peg Test, Jebson-Taylor hand test 
and the Stroke Upper Limb Capacity Scale (SULCS) 
test. The Fugl-Meyer arm score test is a reliable and valid 
motor performance test consisting of 33 tasks executed 
with the affected upper limb.60 61 Performance on each 
task is rated as 0, 1 or 2, with higher ratings representing 
better performance. The Nine-Hole Peg Test examines 
the speed of movement of fine motor skills. The duration 
of the task execution will be measured. The maximum 
allowed time will be 50 s, during which the number of 
pegs is counted.62 The Nine-Hole Peg Test has demon-
strated good reliability and validity and has the ability to 
be used across the age span.63 Hand skill will be measured 
with the Jebsen-Taylor hand test. The scores on all seven 
items, representing activities during daily living, will be 
summed for a total score. The Jebsen-Taylor test is a reli-
able and valid measure of gross functional dexterity.64 
The SULCS assesses arm function capacity, and basal and 
complex hand function capacity. It consists of 10 items, 
each of which is scored with 0 or 1. The SULCS has shown 
good psychometric properties and assesses upper limb 
capacity according to the International Classification of 
Functioning, Disability and Health definition.65

The following outcome measurements will be used 
to measure dependency, quality of life and depression: 
modified Rankin Scale, Stroke Impact Scale and Hospital 
Anxiety and Depression Scale. The modified Rankin 
Scale assesses disability and is subdivided into six scores. 
Score ‘0’ corresponds to no symptoms, whereas score 
‘5’ corresponds to severe handicap. When adhering to a 
series of rules and a structured interview, the modified 
Rankin Scale proved to be a reliable and valid measure.66 
The Stroke Impact Scale is a self-report health status 
measure, specifically developed for the stroke popula-
tion. This multidimensional instrument measures hand 

function, strength, activities of daily living, communica-
tion, emotion, memory and thinking. The Stroke Impact 
Scale has shown good psychometric properties in a diverse 
group of stroke survivors.67 The Hospital Anxiety and 
Depression Scale measures the core symptoms of anxiety 
and depression without involving physical symptoms.68 
This scale is commonly used in patients with stroke and 
has good psychometric properties.69

Corticospinal excitability and intracortical inhibition 
will be assessed from the amplitude and latency of MEP 
responses, respectively, induced by single-pulse TMS to 
the ipsilesional and contralesional primary motor cortex, 
measured by EMG with surface electrodes over the FDI 
muscle of both hands. Stimulus-response curves will be 
measured from 12 MEP recordings at 95%, 105%, 115%, 
125% and 135% stimulus intensity relative to the RMT (in 
random order).

To assess patients’ functional brain status, we will 
measure functional MRI (fMRI)-based sensorimotor 
activation (eg, percentage of blood oxygenation-level 
dependent change) and resting-state fMRI-based func-
tional connectivity in ipsilesional and contralesional 
sensory and motor regions. In addition, we will apply 
diffusion tensor imaging to assess structural integrity of 
the bilateral corticospinal tract and other white matter 
areas, based on different diffusion parameters (eg, 
fractional anisotropy). MRI will be executed on a clin-
ical 3T scanner. Task-related fMRI will be done during 
flexion–extension movement of the fingers of the hand 
in a blocked design. Before MRI scanning, patients will 
be trained to perform the task correctly. The secondary 
outcome measures including moment of administering 
can be found in tables 1 and 2.

Other baseline data and parameters
The following parameters will be screened from the 
medical records of patients and from questionnaires to 
control for possible confounding effects (see table 3 for 
an overview and the timing):
1. Use of alcohol or drugs in previous 12 hours, use of 

caffeine in previous 2 hours and quality of last night’s 
sleep prior to brain stimulation

2. Complaints of dizziness, headache, insult, tiredness, 
muscle stiffness and so on after brain stimulation

3. Medication (that lowers the seizure threshold)
4. Amount of (physical) therapy and self-practice
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Table 3 Overview of measures that are part of care as usual and extra care

Instrument T0 Treatment T1 T2 T3 T4 T5 T6

Activities of daily living

  Barthel Index X X* X* X* X* X*

Demographics and stroke characteristics

  Age, gender, education, marital status, ethnicity, work 
status and handedness

X

  MOCA X

  Type of stroke, stroke severity (NIHSS) and side affected 
limb

X

Other parameters

  Use of alcohol/caffeine/drugs, medication, (physical) 
therapy/self-practice and poststimulation complaints

X* X* X*

The first assessment (T0) takes place in the first 7–14 days post-stroke. The follow-up assessments are at the last day of the stimulation 
session (T1), and at 1 week (T2), 1 month (T3) after stimulation, 3 months (T4), 6 months (T5) and 1 year (T6) post-stroke.
MOCA, Montreal Cognitive Assessment; NIHSS, National Institutes of Health Stroke Scale. *, extra care.

5. Demographic parameters at baseline: gender, age, 
education level, handedness, marital status and 
ethnicity

6. Stroke-related parameters at baseline: type of stroke, 
stroke severity (National Institutes of Health Stroke 
Scale), side affected limb, days since stroke onset and 
cognition (Montreal Cognitive Assessment).

data management
Data will be collected in an electronic case report form. 
Data will be stored on a password-protected electronic 
server (OpenClinica V.2.0). This is only accessible by the 
researchers, according to the authorisation form. Data 
will be analysed on completion of the study. Participants 
will be given an anonymous study ID to protect confiden-
tiality, and only investigators will have access to the final 
trial dataset.

statistics
Sample size
Total sample size will be 60 patients, 30 patients per group, 
based on a recent meta-analysis that showed a mean effect 
size on motor outcome after rTMS of 0.55 with a 95% CI 
of 0.18 (statistical programme G*power, statistical power 
80%).70 71

Statistical analyses
ARAT scores will be statistically analysed using repeated 
measures analysis of variance (ANOVA) with ‘time’ 
(different time points before and after treatment) as with-
in-subject factor and ‘treatment’ (real cTBS vs sham cTBS) 
as between-subject factor. Paired t-tests with correction 
for multiple comparisons will be used for post hoc anal-
ysis. Before entering the data in ANOVA, we will check for 
normal distribution with the Kolmogorov-Smirnov test. 
Alternatively, Wilcoxon signed-rank tests will be used to 
analyse ARAT scores.

Secondary outcome parameters, that is, the additional 
sensorimotor function measures, disability/quality of 

life scores and measures of corticospinal excitability and 
intracortical inhibition, will be analysed in the same way 
as described for ARAT scores.

Statistical analysis of MRI parameters will involve 
repeated measures ANOVA with ‘time’ (different time 
points before and after treatment) as within-subject factor 
and ‘treatment’ (real cTBS vs sham cTBS) as between-sub-
ject factor, followed by post hoc t-testing with correction 
for multiple comparisons. For predictive modelling, we 
will employ generalised linear model-based algorithms,72 
but we may also use alternative algorithms that we have 
recently tested on their ability to predict infarction based 
on multiparametric MRI.73

All patients will be included in the analyses following an 
intention-to-treat approach. We do not plan to perform 
any interim analyses.

EthIcs And dIssEMInAtIon
ethics
The study has been approved by the Medical Research 
Ethics Committee of the University Medical Center 
Utrecht.

Before inclusion, patients should have read the patient 
information letter, which they may discuss with their rela-
tives, to understand the goal and execution plan of the 
trial. After giving written informed consent patients can 
participate. Before the first examination, a researcher will 
restate the study information, and patients will (again) 
be informed about the possibility to ask questions about 
the study. Furthermore, the option to withdraw from the 
study at any time will be explained. If the patient is not 
able to write down the needed information (because of 
hand/arm disability), a relative can fill out the informed 
consent form. The study will be conducted in accor-
dance with the principles of Good Clinical Practice, the 
Medical Research Involving Human Subjects act and the 
Declaration of Helsinki. All protocol changes such as 
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modifications in eligibility criteria, outcome measures, 
analyses or study procedures will be submitted to the 
Medical Research Ethics Committee.

safety
Adverse events are defined as any undesirable medical 
experience occurring to a subject during the study, 
whether or not considered related to cTBS. All adverse 
events reported spontaneously by the subject to (or 
observed by) the investigator or his/her staff will be 
recorded for the period of the treatment (2 weeks) and 
for an additional week after the treatment has ended. 
Seizures, which are the most serious rTMS-related side 
effect with a crude risk of approximately 0.02%,57 would 
only be expected to occur during or immediately after 
rTMS trains. Furthermore, all adverse events occurring 
within 24 hours after MRI will be reported. Any serious 
event will be immediately reported to the Medical 
Research Ethics Committee of the University Medical 
Center Utrecht.

An internal Data Safety and Monitoring Board (DSMB) 
at the University Medical Center Utrecht has been 
established to perform ongoing safety surveillance. A 
temporary, independent project-specific member is added 
to the internal DSMB. The internal DSMB will monitor 
the progress (randomisation and losses to follow-up) and 
safety (evidence for significant treatment harm) aspects of 
the study. The internal DSMB may also advise on protocol 
modifications suggested by investigators or sponsors and 
assess impact and relevance of external evidence.

dissemination
The results will be disseminated through (open access) 
peer-reviewed publications, networks of scientists, patient 
associations (like ‘ Hersenletsel. nl’ and ‘Kennisnetwerk 
CVA NL’), professionals and the public, and presented 
at relevant conferences. Participants of the study will 
be updated about the progress and results of the study 
by newsletters. Patient engagement will be achieved by 
involving patients in the development of the protocol and 
script, for example, in improving and refining the motor 
task during fMRI.
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