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AbstrAct
Objectives Vitamin D deficiency, elevated fibroblast 
growth factor 23 (FGF23) and elevated parathyroid 
hormone (PTH) have each been associated with increased 
mortality in people with chronic kidney disease (CKD). 
Previous studies have focused on the effects of FGF23 
in relatively advanced CKD. This study aims to assess 
whether FGF23 is similarly a risk factor in people with 
early CKD, and how this risk compares to that associated 
with vitamin D deficiency or elevated PTH.
Design Prospective cohort study.
setting Thirty-two primary care practices.
Participants One thousand six hundred and sixty-
four people who met Kidney Disease: Improving Global 
Outcomes (KDIGO) definitions for CKD stage 3 (two 
measurements of estimated glomerular filtration rate 
(eGFR) between 30 and 60 mL/min/1.73 m2 at least 90 
days apart) prior to study recruitment.
Outcome measures All-cause mortality over the period of 
study follow-up and progression of CKD defined as a 25% 
fall in eGFR and a drop in GFR category, or an increase in 
albuminuria category.
results Two hundred and eighty-nine participants died 
during the follow-up period. Vitamin D deficiency (HR 
1.62, 95% CI 1.01 to 2.58) and elevated PTH (HR 1.42, 
95% CI 1.09 to 1.84) were independently associated with 
all-cause mortality. FGF23 was associated with all-cause 
mortality in univariable but not multivariable analysis. 
Fully adjusted multivariable models of CKD progression 
showed no association with FGF23, vitamin D status or 
PTH.
conclusions In this cohort of predominantly older people 
with CKD stage 3 and low risk of progression, vitamin 
D deficiency and elevated PTH were independent risk 
factors for all-cause mortality but elevated FGF23 was not. 
While FGF23 may have a role as a risk marker in high-risk 
populations managed in secondary care, our data suggest 
that it may not be as important in CKD stage 3, managed 
in primary care.
trial registration number National Institute for Health 
Research Clinical Research Portfolio Study Number 
6632.

IntrODuctIOn
Fibroblast growth factor 23 (FGF23), vitamin 
D and parathyroid hormone (PTH) interact 
in the control of phosphate, calcium and bone 
metabolism. These factors are all affected by 
the loss of glomerular filtration rate (GFR) 
that characterises chronic kidney disease 
(CKD). Since the observation that elevated 
FGF23 is linked to mortality in haemodialysis 
patients, there has been increasing interest 
in FGF23 as a risk factor in CKD.1 FGF23 
has subsequently been associated with left 
ventricular hypertrophy,2 mortality,3 4 cardio-
vascular events4–6 and CKD progression3 4 in 
populations with and without CKD. Reports 
from cross-sectional studies suggest that 
elevated FGF23 is the earliest alteration 
in mineral metabolism in CKD,7 and have 
prompted calls for studies to explore the 
benefit of interventions to prevent increases 
FGF23 early in the course of CKD, including 
public health initiatives to reduce dietary 
phosphate intake.8 However, the interaction 
between FGF23, vitamin D and PTH with 
respect to adverse outcomes in early CKD is 
not completely understood.
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Research

strengths and limitations of this study

 ► This study reports results from an individually 
recruited and prospectively studied cohort of people 
with CKD stage 3.

 ► All participants met formal diagnostic criteria for 
CKD stage 3 prior to study recruitment.

 ► We used gold standard assays for the measurement 
of FGF23, PTH and Vitamin D.

 ► Our cohort was predominantly Caucasian and 
elderly and risk of CKD progression was low, which 
may limit the generalizability of these results to 
other populations.
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Like FGF23, PTH is a phosphaturic hormone that 
is commonly elevated in people with CKD. Previous 
studies have reported that PTH may become elevated 
with declining GFR before FGF23 in some populations,7 9 
including those without CKD.10 Vitamin D status appears 
to be an important determinant of this difference. In an 
analysis from the Renal Risk in Derby (RRID) study, we 
have previously shown that vitamin D status affects the 
relative elevation of FGF23 and PTH in people with CKD 
stage 3. Those with vitamin D insufficiency were found to 
be more likely to have high PTH than FGF23. In contrast, 
FGF23 levels were elevated preferentially in those who 
were vitamin D replete.11 Vitamin D deficiency has also 
been associated with an increased risk of all-cause mortality 
in the general population.12 There is much mechanistic 
work to suggest significant interaction between FGF23, 
PTH and vitamin D13 14; however, the association between 
relative levels of these hormones and outcomes in people 
with early CKD is not well understood.11 This paper aims 
to address the question of whether those with elevated 
FGF23, or those with elevated PTH and vitamin D defi-
ciency have worse outcomes in the context of early CKD.

MethODs
Participants
Detailed methods for the RRID study have been 
published previously.11 15 A total of 1741 participants 
were individually recruited and prospectively studied 
from 32 Derbyshire primary care practices between 2008 
and 2010. In total, 8280 people were invited from prac-
tice registers of people with CKD stage 3. A total of 1822 
people attended baseline visits. All participants were 
aged over 18 years. Participants were selected using the 
4-variable Modification of Diet in Renal Disease study 
(MDRD) equation modified for use with isotope dilution 
mass spectrometry-standardised creatinine measurement. 
Two MDRD eGFR results consistent with CKD stage 3 
(30–59 mL/min/1.73 m2) more than 90 days apart were 
required to be eligible. People who were judged to have a 
life expectancy of less than 1 year, were unable to attend 
study visits at their primary care surgery or had previously 
received a solid organ transplant were excluded from 
the study. Of the 1822 people who attended baseline 
visits, 1741 were eligible, and were included in the study 
cohort (figure 1).

study visits
Study visits were conducted at baseline, 1 and 5 years. 
Prior to each visit, participants completed a background 
questionnaire covering demographic details, medical 
history, smoking history and medication history. Partici-
pants’ responses to questions were reviewed at the study 
visit and clarified as required. At each study visit, the 
participant’s height, weight, waist- and hip-circumference 
were measured. Three blood pressure measurements 
were taken using an oscillometric device (UA-767 Plus 

30, A&D Medical) after at least 5 min rest. Readings were 
repeated so that values differed by no more than 10%.

Laboratory methods and GFr estimation
Participants collected three consecutive days’ early 
morning urine samples and stored these in a refriger-
ator prior to their study visit for subsequent albumin and 
creatinine analysis. The mean urine albumin to creat-
inine ratio (uACR) from three specimens was used for 
analysis. Blood samples were taken at each study visit. 
Participants were asked to abstain from eating meat for 
12 hours prior to the study visit to avoid confounding the 
creatinine assay.16 Blood and urine samples were analysed 
in a single clinical laboratory at the Royal Derby Hospital 
for standard haematological and biochemical variables. 
Creatinine was measured using the Jaffe method, stan-
dardised against an isotope dilution mass spectrometry 
method. For these analyses, GFR was estimated using the 
creatinine-based CKD-EPI equation.17

FGF23, 25-hydroxy vitamin D3 (25(OH)vit D) and PTH 
measurement was undertaken from frozen serum samples 
stored at −80°C following the baseline study visit. Serum 
FGF23 was measured using an intact two-site enzyme-
linked immunosorbent assay (Kainos Laboratories, 
Tokyo, Japan). The upper limit of normal (51 pg/mL) 
was defined as two SDs above the mean from a previous 
study of people without disease.18 25(OH)vit D levels were 
measured with an API 4000TM quadrupole mass spec-
trometer/MS system (ABSciex, Warrington, UK), which 
was coupled to a Prominence ultrafast liquid chromatog-
raphy system (Shimadzu Scientific Instruments, Columbia, 
MD). Vitamin D deficiency was defined as <25 nmol/L, 
vitamin D insufficiency as 25–50 nmol/L and optimal 
vitamin D levels were defined as >75 nmol/L.19 PTH was 
measured using an intact immunometric sandwich assay 
(Roche Diagnostics, Burgess Hill, UK, Modular Analytics 
E170). This assay has an upper limit of normal of 65 pg/
mL.

Mortality data
Date and cause of death as stated on death certificates 
was obtained from the Office of National Statistics via the 
Health and Social Care Information Centre (HSCIC). 
Three investigators (AS, RJF and MWT) independently 
classified cause of death into four categories (cardiovas-
cular, malignancy, infection and other). Differences were 
resolved by discussion.

statistical analysis
Independent samples t-tests and Mann-Whitney U tests 
were used to compare normally distributed and non-nor-
mally distributed variables respectively. FGF23 and PTH 
were assessed using strata based on the upper limit 
of normal for the respective assays. Other cut points 
were chosen to provide four groups of reasonable size. 
Vitamin D strata were based on existing definitions for 
vitamin D deficiency (<25 nmol/L) and insufficiency 
(25–50 nmol/L). Survival analysis was performed using 
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Figure 1 Flow sheet detailing participant numbers at recruitment and those included in the analyses presented in this 
paper. CKD, chronic kidney disease; FGF, fibroblast growth factor; KDIGO, kidney disease: improving global outcomes; PTH, 
parathyroid hormone.

Cox proportional hazards models. Participants surviving 
without reaching an endpoint were censored at the 
end of the year 5  follow-up period (1 May 2015). CKD 
Progression was assessed using binomial logistic regres-
sion. uACR, FGF23, 25(OH)vit D and PTH were not 
normally distributed, and were therefore log transformed 
(base 10) before use in multivariable analysis as contin-
uous variables. Three participants were excluded from 
progression analysis, as they underwent nephrectomy 
during the study period.

Independent predictors of outcomes from statistical 
models developed for a full analysis of year 5 outcomes for 
this cohort were used to adjust HRs for FGF23, 25(OH)vit 
D and PTH in this analysis.20

For sensitivity analyses, the cohort was subdivided 
according to baseline eGFR (≥45 mL/min/1.73 m2 
and <45 mL/min/1.73 m2) and baseline age (<75 years 
and ≥75 years).

endpoint definitions
During year 5 follow-up, we observed that few study 
participants reached end-stage kidney disease (ESKD). 
Therefore, in place of our study pre-specified endpoint 
of development of ESKD, we defined CKD progression 
based on the Kidney Disease: Improving Global Outcomes 
(KDIGO) guideline, which states that assessment of both 
GFR and albuminuria should be undertaken to evaluate 
progression,21 We therefore defined CKD progression as 

 on M
arch 20, 2024 by guest. P

rotected by copyright.
http://bm

jopen.bm
j.com

/
B

M
J O

pen: first published as 10.1136/bm
jopen-2017-016528 on 23 A

ugust 2017. D
ow

nloaded from
 

http://bmjopen.bmj.com/


4 Shardlow A, et al. BMJ Open 2017;7:e016528. doi:10.1136/bmjopen-2017-016528

Open Access 

Table 1 Baseline variables for participants included in this analysis (n=1664) by year 5 survival status

Variable
Total cohort
(n=1664)

Year 5 outcome

Survived
(n=1375)

Died
(n=289)

Female gender (%) 1010 (60.7) 880 (64.0) 130 (45.0)*

Age (years) 73.0±8.9 71.8±8.8 78.5±7.2*

CKD-EPI eGFR (mL/min/1.73 m2) 53.7±11.9 55.1±11.7 46.7±9.9*

uACR (mg/mmol) 0.3 (0.0–1.5) 0.3 (0.0–1.2) 0.9 (0.1–3.6)*

Diabetes (%) 275 (16.5) 213 (15.5) 62 (21.5)*

CVD (%) 374 (22.5) 263 (19.1) 111 (38.4)*

Current or previous smoker (%) 903 (54.3) 713 (51.9) 190 (65.7)*

ACE/ARB use (%) 1074 (64.5) 875 (63.6) 199 (68.9)

Weight (kg) 78.1±15.4 78.3±15.0 77.6±17.3

BMI (kg/m2) 29.0±5.1 29.1±5.0 28.4±5.4*

Waist:hip ratio 0.91±0.09 0.90±0.09 0.93±0.09*

SBP (mm Hg) 134.0±18.4 133.8±17.7 135.6±21.3

DBP (mm Hg) 72.8±11.0 73.3±10.9 70.3±11.2*

Haemoglobin (g/dL) 13.2±1.4 13.3±1.4 12.8±1.6*

Corrected calcium (mmol/L) 2.38±0.10 2.38±0.10 2.37±0.10

Phosphate (mmol/L) 1.11±0.18 1.11±0.17 1.11±0.19

Albumin (g/L) 40.7±3.2 40.8±3.1 39.7±3.4*

Bicarbonate (mmol/L) 25.5±2.7 25.6±2.5 25.5±3.1

Total cholesterol (mmol/L) 4.8±1.19 4.8±1.2 4.5±1.1*

Urate (μmol/L) 384±91 379±88 408±99*

FGF23 (pg/mL) 42 (33–53) 42 (33–52) 45 (34–59)*

PTH (pg/mL) 46 (34–66) 45 (33–62) 56 (39–86)*

25(OH) Vitamin D (nmol/L) 53 (38–71) 54 (39–72) 48 (31–67)*

On vitamin D supplementation (%) 67 (4.0) 49 (3.6) 18 (6.2)*

Data are number (%), mean ± SD or median (IQR).
End of year 5 follow-up period defined as 31 April 2015.
*p value < 0.05, versus group who survived to end of year 5 follow-up.
ACE, angiotensin converting enzyme; ARB, angiotensin receptor blocker; BMI, body mass index; CKD-EPI eGFR, chronic kidney disease 
epidemiology collaboration estimated glomerular filtration rate; CVD, cardiovascular disease; DBP, diastolic blood pressure; FGF, fibroblast 
growth factor; PTH, parathyroid hormone; SBP, systolic blood pressure; uACR, urinary albumin to creatinine ratio; 25(OH) Vitamin D, 
25-hydroxy-Vitamin D.

a 25% decline in GFR, accompanied by a worsening of 
GFR category, or a worsening of albuminuria category.

ethics
The RRID study was approved by the Nottingham 
Research Ethics Committee 1, and is included on the 
National Institute for Health Clinical Research Portfolio 
(NIHR Study ID. 6632). All participants provided written, 
informed consent. The RRID study complies with the 
Declaration of Helsinki and the principles of Good Clin-
ical Practice.

resuLts
Baseline data
Baseline data15 as well as FGF23 and PTH levels 
in relation to vitamin D status have previously 

been published.11 Table 1 shows baseline data for the 
1664 participants and subgroups according to survival 
after 5 years. Participants were predominantly elderly 
with relatively well preserved GFR. Classification of the 
cohort according to KDIGO GFR and albuminuria cate-
gories is shown in online supplementary table 1. Vitamin 
D deficiency was observed in 104 (6.3%) and vitamin D 
insufficiency in an additional 648 (38.9%). FGF23 was 
elevated (>51 pg/mL) in 475 (29%) and PTH was elevated 
(>65 pg/mL) in 422 (25%). Baseline characteristics by 
vitamin D, PTH and FGF23 are given in online supple-
mentary tables 2, 3 and 4 respectively.

All-cause mortality
Two hundred and eighty-nine participants (18.4%) died 
prior to the end of the year 5 follow-up period: 101 
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(34.9%) from cardiovascular causes, 75 (26.0%) from 
malignancy, 61 (21.1%) from infection, 41 (14.2%) from 
other causes and no cause of death data was available 
for 11 (3.8%). On average, participants who died were 
older (78.5±7.2 vs 71.8±8.8 years) and had lower eGFR 
(46.7±9.9 vs 55.1±11.7 mL/min/1.73 m2) compared 
with those who survived to the end of year 5 follow-up 
(table 1). Median FGF23 (45, IQR 34–59 versus 42, IQR 
33–52 pg/mL) and PTH levels (56, IQR 39–86 versus 45, 
IQR 33–62 pg/mL) were higher in those who died, and 
median vitamin D levels were lower (48, IQR 31–67 versus 
54, IQR 39–72 nmol/L). Only 67 participants (4.0%) 
were taking vitamin D supplementation at study baseline. 
Four participants (0.2%) progressed to ESKD by the end 
of year 5 follow-up. Two of those who progressed to ESKD 
subsequently died prior to year 5 follow-up, and were 
included as deaths in survival analysis.

Table 2 shows mortality outcomes at the end of the year 
5 follow-up period by strata of FGF23, PTH and 25(OH)
vit D. All-cause mortality was more common at higher 
baseline levels of FGF23 and PTH, and in the vitamin D 
deficiency and insufficiency groups.

Univariable analysis revealed increasing HRs for 
all-cause mortality across the strata for FGF23 and 
PTH. Vitamin D deficiency and insufficiency were asso-
ciated with increased HRs. Correcting these HRs for 
baseline eGFR, age, uACR and gender removed the asso-
ciation between increased FGF23 and all-cause mortality. 
However, the associations between both vitamin D 
deficiency and elevated PTH, and all-cause mortality 
remained (figure 2).

Multivariable Cox proportional hazards models showed 
that vitamin D deficiency was independently associated 
with all-cause mortality (HR 1.62, 95% CI 1.01 to 2.58) 
(table 2). Elevated PTH (>65 pg/mL) also reached statis-
tical significance in this model (HR 1.42, 95% CI 1.09 to 
1.84). Elevated FGF23 levels did not enter significance in 
a comparable model.

Multivariable models were constructed in which vitamin 
D, PTH and FGF23 were treated as continuous variables 
(online supplementary table 5). All were associated 
with all-cause mortality in univariate analysis. Whereas 
vitamin D (HR 0.81, 95% CI 0.72 to 0.91, per SD of log 
transformed continuous variable) and PTH (HR 1.19, 
95% CI 1.05 to 1.33) remained significant when adjusted 
for baseline eGFR, age, gender and uACR, FGF23 was 
not independently associated with all-cause mortality in 
this model (HR 0.97, 95% CI 0.86 to 1.10). Vitamin D 
and PTH also remained significant when additionally 
adjusted for diabetes, previous cardiovascular disease, 
haemoglobin, albumin and bicarbonate.

sensitivity analyses
Sensitivity analyses were performed to compare all-cause 
mortality in people with CKD 3a (eGFR ≥45 mL/
min/1.73 m2) to those with CKD 3b (eGFR <45 mL/
min/1.73 m2 at baseline visit, online supplementary 
table 6). In both groups, FGF23 did not associate with 

all-cause mortality in univariable analysis or in multivari-
able models corrected for age, gender, baseline eGFR and 
uACR. Vitamin D deficiency was associated with all-cause 
mortality in those with CKD 3a, but did not reach signifi-
cance in the CKD 3b group. Additionally, further analysis 
compared people aged greater than or equal to 75 years 
with those aged less than 75 years (online supplementary 
table 7); in people aged less than 75 at baseline, vitamin D 
deficiency was strongly associated with all-cause mortality 
(HR 5.70, 95% CI 2.55 to 12.73) in multivariable analysis 
corrected for age, gender, baseline eGFR and uACR. This 
relationship was not seen in participants aged 75 years or 
over (HR 1.41, 95% CI 0.81 to 2.43). There was no signif-
icant interaction between age greater than or equal to 75 
years and eGFR <45 mL/min/1.73 m2 when adjusted for 
gender and baseline uACR.

cardiovascular mortality
Both vitamin D deficiency and elevated PTH were asso-
ciated with an increased risk of cardiovascular mortality 
in this cohort (table 3). In contrast, there was no associa-
tion with cardiovascular mortality across strata of baseline 
FGF23. When adjusted for age, gender, baseline eGFR 
and uACR, vitamin D deficiency and elevated PTH were 
associated with cardiovascular mortality. Again, there 
was no association between cardiovascular mortality and 
FGF23 levels in a similar model. When adjusted for other 
baseline variables (previous CVD, diabetes, haemoglobin, 
bicarbonate and albumin), only PTH elevated above 
65 pg/mL and remained an independent predictor of 
cardiovascular mortality. In a fully adjusted model, neither 
FGF23, PTH nor vitamin D status remained significant.

Progression of kidney disease
Progression of CKD was observed in 289 participants 
(17.4%) over 5 years. Mean eGFR decreased from 
53.7±11.9 to 53.3±14.8 mL/min/1.73 m2 (p<0.001). Bino-
mial logistic regression was used to assess the associations 
with CKD progression. In univariable analysis, risk of 
CKD progression increased across strata of both FGF23 
and PTH. Vitamin D deficiency was also associated with 
progression (table 4). However, in multivariable models 
correcting for baseline eGFR, age, uACR and gender, 
these associations were not preserved.

DIscussIOn
In this cohort of people with CKD stage 3 with low risk 
of progression, managed predominantly in primary care, 
we observed independent associations between all-cause 
mortality and both vitamin D deficiency and elevated 
PTH. Conversely, there was no independent association 
between all-cause mortality and elevated FGF23. We 
found no association between FGF23, vitamin D status or 
PTH and progression of CKD.

Vitamin D deficiency has been shown to be associated 
with increased risk of all-cause mortality in the general 
population,12 and a similar relationship is evidenced in 
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Figure 2 Unadjusted and adjusted HRs for all-cause mortality for levels of FGF23, vitamin D and PTH. eGFR, estimated 
glomerular filtration rate; FGF, fibroblast growth factor; PTH, parathyroid hormone. 

this analysis. As well as its effects on calcium and bone 
homeostasis, vitamin D deficiency has been associated 
with the development of multiple markers of cardio-
vascular disease. Animal studies have shown links with 
atherosclerosis and atherosclerotic calcification,22 23 left 
ventricular hypertrophy and renin angiotensin system 
activation.23 24 Additionally, vitamin D status impacts 
on immune system function.25 These mechanisms may 
underlie the association between vitamin D and all-cause 
mortality. Alternatively, vitamin D deficiency may associate 
with comorbidity and poor nutrition, which subsequently 
explain the observed links with mortality. Vitamin D defi-
ciency is a potentially modifiable risk factor, but as yet 
there is no conclusive evidence that vitamin D supple-
mentation provides a survival benefit in people with 
CKD, although most studies included participants with 
25(OH)vit D levels above the range we have observed to 
be associated with increased risk.26 In addition, vitamin D 
supplementation is associated with an increase in FGF23 
levels that may counter some of the benefits.27 Our data 
suggest that vitamin D deficiency is particularly associ-
ated with mortality in those aged less than 75 years. This 
suggests that other factors are more important as determi-
nants of survival in the very elderly. Nonetheless, vitamin 
D deficiency in those aged less than 75 years represents a 
potentially modifiable risk factor, and is easily detectable 
and treatable within the primary care setting. Current 
consensus is that vitamin D deficiency should be treated 
but more prospective studies are required to evaluate the 
potential benefit of vitamin D replacement therapy in the 
context of CKD.28

We found that higher PTH was associated with increased 
all-cause mortality independently of eGFR. This result 
has been previously reported in people with CKD29 and 
the general population.30While elevated PTH may be 
secondary to vitamin D deficiency, PTH has also been 
shown to promote vascular calcification.31 Additionally, 
PTH increases the intracellular calcium concentration, 
which has been hypothesised to promote myocardial 
necrosis and scar tissue formation32 and this may explain 
observational associations between elevated PTH and 
sudden cardiac death.33 Further studies are required to 
investigate the mechanisms of this association and the 
impact of interventions to control PTH in early CKD.

In this cohort, FGF23 was not significantly associated 
with all-cause mortality or CKD progression in multivari-
able analysis. In contrast, results from the CRIC study 
showed associations between increased FGF23 and both 
a greater risk of all-cause mortality and progression of 
CKD to ESKD.3 The same study subsequently showed 
association between cardiovascular events including 
congestive heart failure.6 Elevated FGF23 levels have been 
associated with left ventricular hypertrophy, and animal 
models have suggested a causative role.2 Important differ-
ences between the RRID and CRIC study cohorts may 
account for the different associations including relatively 
preserved renal function in the RRID study (mean eGFR 
53 mL/min/1.73 m2 in RRID versus 43 mL/min/1.73 m2 
in CRIC), older mean age (73 years versus 58 years 
in CRIC) and less severe albuminuria (median uACR 
0.3 mg/mmol versus 5.9 mg/mmol). The CRIC study also 
contained a higher proportion of diabetics (48% versus 
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Table 4 ORs for CKD progression by baseline levels of FGF23, PTH and vitamin D

Variable

Univariate
Multivariable (corrected for age, eGFR, gender and 
uACR) 

OR (95% CI) OR (95% CI) p value

Vitamin D (nmol/L)

  <25 1.86 (1.01 to 3.41)* 1.49 (0.79 to 2.82) NS

  26–50 1.39 (0.97 to 1.98) 1.26 (0.87 to 1.84) NS

  51–75 1.17 (0.81 to 1.69) 1.19 (0.81 to 1.75) NS

  >75 1 (Ref) 1 (Ref)

FGF 23 (pg/mL)

  <25 1 (Ref) 1 (Ref)

  25–51 1.42 (0.77 to 2.45) 1.22 (0.64 to 2.32) NS

  52–70 2.07 (1.07 to 4.02)* 1.38 (0.69 to 2.77) NS

  >70 2.27 (1.09 to 4.75)* 1.27 (0.58 to 2.78) NS

PTH (pg/mL)

  <35 1 (Ref) 1 (Ref)

  35–65 1.75 (1.24 to 2.45)* 1.54 (1.08 to 2.20) 0.016

  66–95 2.14 (1.39 to 3.28)* 1.58 (1.00 to 2.48) 0.049

  >95 2.59 (1.48 to 4.53)* 1.44 (0.79 to 2.62) NS

CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; FGF, fibroblast growth factor; NS, not significant; PTH, parathyroid 
hormone; uACR, urinary albumin to creatinine ratio.

16.5% in RRID) and was more racially diverse (42% 
African-American versus 2.5% non-Caucasian in RRID). 
Additionally, we used an intact FGF23 assay, whereas the 
CRIC investigators used a C terminal assay, making direct 
comparison of the FGF23 measurements in these studies 
difficult. Nevertheless, the median FGF23 level reported 
in the CRIC study was greater than the reported normal 
range (median 145 RU/mL compared with upper limit 
of normal of 100 RU/mL)7 whereas median FGF23 was 
below the upper limit of normal in the RRID cohort and 
only 29% evidenced elevated FGF23 levels. Thus FGF23 
was relatively less elevated in our study population and 
this may account for the lack of association with all-cause 
mortality. FGF23 levels have also been reported to be 
associated with all-cause mortality in some but not all 
populations in the absence of CKD.5 34–38 The reasons 
for these variable results are not clear, but may relate to 
differences between the study populations and method-
ology.

strengths and limitations
Strengths of the RRID study include robust selection of 
participants meeting international criteria for CKD stage 
3 at study recruitment. Our cohort is representative of 
those with CKD stage 3 in the general United Kingdom 
population.39 Additionally, we have used gold standard 
assays for FGF23, PTH and 25(OH)vit D.

Limitations of the RRID study include a relative lack 
of ethnic diversity, which may have an impact on the 
generalizability of our results to other populations. Our 
cohort is also predominantly elderly and evidenced a low 
rate of CKD progression over 5 years. These results may 

therefore not be applicable to a younger population, or 
those at higher risk of progressive disease. Finally, anal-
yses of cardiovascular mortality and CKD progression 
were based on a relatively low event rate and may there-
fore have lacked power to show weaker associations. Due 
to the very low incidence of ESKD we were obliged to use 
a surrogate end-point of CKD progression as defined by 
KDIGO.

conclusions and implications for practice
We have demonstrated that elevated PTH and vitamin D 
deficiency are independently associated with an increased 
risk of all-cause mortality in a cohort of people with 
CKD stage 3 recruited from primary care. In contrast to 
previous studies, FGF23 was not associated with mortality 
or progression of CKD in multivariable analysis. While 
FGF23 may be useful as a risk marker and potential thera-
peutic target in referred populations with more advanced 
CKD and a higher risk of progression to ESKD, our data 
do not support the use of FGF23 measurement as a risk 
marker people with CKD stage 3 in primary care.8 Our 
findings suggest the hypothesis that detecting and treating 
vitamin D deficiency, a possible cause for elevated PTH, 
in those with CKD stage 3 may improve survival. However, 
this needs testing in a randomised controlled trial.
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