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AbstrAct
Objectives The use of benchmarks to assess the 
performance of implants such as those used in 
arthroplasty surgery is a widespread practice. It 
provides surgeons, patients and regulatory authorities 
with the reassurance that implants used are safe and 
effective. However, it is not currently clear how or how 
many implants should be statistically compared with 
a benchmark to assess whether or not that implant 
is superior, equivalent, non-inferior or inferior to the 
performance benchmark of interest. We aim to describe 
the methods and sample size required to conduct a one-
sample non-inferiority study of a medical device for the 
purposes of benchmarking.
Design Simulation study.
setting Simulation study of a national register of medical 
devices.
Methods We simulated data, with and without a non-
informative competing risk, to represent an arthroplasty 
population and describe three methods of analysis (z-test, 
1−Kaplan-Meier and competing risks) commonly used in 
surgical research.
Primary outcome We evaluate the performance of 
each method using power, bias, root-mean-square error, 
coverage and CI width.
results 1−Kaplan-Meier provides an unbiased estimate 
of implant net failure, which can be used to assess if a 
surgical device is non-inferior to an external benchmark. 
Small non-inferiority margins require significantly 
more individuals to be at risk compared with current 
benchmarking standards.
conclusion A non-inferiority testing paradigm provides a 
useful framework for determining if an implant meets the 
required performance defined by an external benchmark. 
Current contemporary benchmarking standards have 
limited power to detect non-inferiority, and substantially 
larger samples sizes, in excess of 3200 procedures, are 
required to achieve a power greater than 60%. It is clear 
when benchmarking implant performance, net failure 
estimated using 1−KM is preferential to crude failure 
estimated by competing risk models.

IntrODuctIOn
Arthroplasty prostheses are not currently 
required to undergo randomised clinical 
trials prior to their introduction into routine 
clinical practice, and postmarket surveillance 

is used to determine their efficacy. Without 
a head-to-head comparison against existing 
products, devices can be compared with 
external references or benchmarks. Product 
benchmarking in medical devices is common 
and is intended to help surgeons and health-
care administrators select safe and effective 
medical devices, yet there is no consensus on 
how this should be performed.

In arthroplasty, the process of bench-
marking prosthetic implants is extensive. 
However, there is considerable debate with 
regards to the standards and criteria that 
should be adopted.1 It has recently been 
suggested that the benchmark failure rate 
for prosthetic implants should become more 
stringent and reduced from the 10% to 5% 
at 10 years,2 and the National Institute for 
Health and Care Excellence has incorporated 
this into guidance with regards to patients 
with end-stage arthritis of the hip.3

Benchmarking bodies around the world 
were quick to respond and the Orthopaedic 
Device Evaluation Panel (UK),4 Prostheses 
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Research

strengths and limitations of this study

 ► We propose a one-sample non-inferiority design for 
assessing the failure rate of medical devices against 
an external benchmark, using arthroplasty as an 
exemplar.

 ► Using a simulation study, we demonstrate that 
device failure rate estimated using Kaplan-Meier 
is appropriate and provides unbiased estimates 
of implant failure in the context of benchmarking 
arthroplasty.

 ► The number of individuals required at the beginning 
of a study in order to obtain nominal power at 5 
different non-inferiority margins is described.

 ► The performance of three methods under two data 
generating processes is described in terms of bias, 
root-mean-square error, coverage and CI width.

 ► We assume that simple analyses using 1−Kaplan-
Meier derived from population registry studies can 
provide causal interpretations.
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List Advisory Committee (Australia)5 and Nederlandse 
Orthopaedische Vereniging (Netherlands)6 bodies have 
set their highest benchmark to 5% failure at 10 years in 
total hip prostheses.4–6 Despite subtle differences in each 
countries benchmarking system, a common question is 
how many implanted devices do we need to observe to 
determine if the device meets the specified benchmark 
or not? Both the UK and Netherlands require that there 
should be at least 500 implants remaining at risk at the 
end of the benchmarking period,4 6 but with no clear ratio-
nale of why 500 implants are more or less suitable than 
5000. Australia does not specify the numbers left at risk 
at the end of 10 years but requires data to be supported 
from their national arthroplasty registry,5 which is one of 
the world’s largest arthroplasty registers.

Despite the recommendations of a maximum failure 
rate of 5% at 10 years,2 it is not described how the data 
should be compared with the proposed benchmark. 
Therefore, the evaluation process is somewhat ill defined, 
and uncertainty around the estimates is not formally 
included in the decision-making process. Furthermore, 
there is ambiguity about how failure should be estimated 
and whether or not net or crude failure (estimands) is 
of primary interest, with some authors recommending 
crude failure in implant survival studies.7 Net failure is 
only possible in a hypothetical world of immortal patients, 
that is, the competing event (death) is prevented from 
occurring,8 and crude failure is the real-world probability 
of failure allowing for the competing risk (CR) (death).9

While benchmarking in arthroplasty is used as an 
exemplar, similar problems and arguments can be made 
in any medical discipline that utilises medical devices or 
implants, for example, cardiac or cosmetic surgery.

Hypothesis tests and power
In a simple setting of a clinical study with no loss to 
follow-up and no censoring, if implant survival is calcu-
lated and it is less than or equal to the benchmark, do 
we conclude that the implant has reached the bench-
mark? That is, 

⌢
P F <= PBM, where 

⌢
PF  is the proportion 

of failed implants and PBM is the proportion of failure 
defined by the benchmark. It is clear that this statement 
does not include a description with regards to the uncer-
tainty of the estimate. Therefore, as in the majority of 
the scientific literature, we would probably consider 
conducting a one-sample hypothesis test or (more pref-
erably) constructing a CI of whether or not the propor-
tion of implant failures at 10 years is not greater than 
the benchmark plus some level of uncertainty,10 11 that 
is, H1P̂F ± ϕ(z1−α/2)ŜE(P̂F) >= PBM, where ϕZ  is a centile of a 
standard normal distribution, and is the type I error rate. 
An analytical strategy equivalent to this would allow us to 
make probability statements such as ‘The average implant 
failure at 10 years is estimated to be PF , and in repeated 
sampling, we would expect on 1 − α/2% of occasions that 
the true, unknown, value is contained within the CI.’ This 
approach can be framed as a one-sample hypothesis test 
(z-test), of one proportion (see equation 1).

 

z =
�PF − PBM√
�PF

(
1 − �PF

)

n  (1)

The temptation is to simply rearrange equation 1, solve 
the hypothesis test for n and conclude that this is the 
minimal sample size required to detect if an implant is 
superior to the benchmark. However, this would be incor-
rect as this fails to recognise the uncertainty introduced 
by sampling variability. With small samples, sampling vari-
ability is large, and conversely when samples are large, 
sampling variability is small. Sampling variability is one 
of the reasons that type I and type II statistical errors are 
made. A type I error is made when we incorrectly reject a 
valid null hypothesis, that is, that the true device failure 
rate at 10 years is equal to the benchmark, whereas a type 
II error is when the null hypothesis is incorrect, that is, 
the true failure rate is not equal to the benchmark, yet 
we fail to reject it. One minus the type II error rate is also 
known as power (see figure 1).

While there has been some debate with regards to the 
use of formal sample size calculations, which are deter-
mined on the basis of power and type I errors or by 
prespecifying the desired width of the CI,12 13 we believe 
they are both useful tools for researchers and device 
manufacturers when planning clinical studies and deter-
mining the sample sizes required to draw reliable conclu-
sions, by explicitly stating expected power of a sample 
and/or defining the desired width of estimated CI. When 
planning a clinical study, decisions need to be made with 
regards to the uncertainty in which the null hypothesis 
should be rejected (commonly but not necessarily α = 0.05
) and power (1 − β), which is the ability to correctly reject 
the null hypothesis when it is false. Therefore, simply 
solving a hypothesis test for n fails to consider the power 
to detect an effect when it is truly present. A study with 
a sample size that gives 100% power will correctly reject 
the null hypothesis on all occasions (although in practice 
100% power is likely impossible), and correspondingly, 
a sample size that gives 50% power will correctly reject 
the null hypothesis on only half of occasions. This is the 
essence of nearly all superiority designed clinical studies.

non-inferiority and benchmarking studies
However, in the context of a benchmarking system, the 
definition of superiority is restrictive. For example, if the 
true failure rate of the implant of interest is exactly equal 
to the benchmark (P̂F = PBM), it would be desirable to say 
that the implant has met the required standard. Further-
more, it is impossible to demonstrate that it is superior 
because SE will always be positive and not 0, and therefore, 
the upper CI will always be greater than the benchmark 
((P̂F + Φ(z1−α/2)ŜE(P̂F) > PBM). Therefore, in a superiority 
study design, if a prosthesis failure rate is truly equiva-
lent to the benchmark (the null hypothesis is correct), in 
repeated sampling, we should only incorrectly reject it on 
5% of occasions if α = 0.05. Therefore, when comparing 
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Figure 1 Simple hypothesis testing framework and illustration of type I and II errors, power and true negatives.
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Figure 2 Schematic representation of inferiority, non-inferiority and superiority studies.

devices to a benchmark, a non-inferiority study design 
including sample size calculations, analysis and reporting 
maybe preferable.14–18

Despite the linguistic similarities between supe-
riority and non-inferiority studies, the analysis and 
interpretation are different. A non-inferiority frame-
work requires the interested parties to place limits 

around what could be described as non-inferior, that 
is, a non-inferiority margin (δ). This is stating that, 
if a device failure rate was 5%, the 95% CI ranged 
between 4.01% and 5.99% and that the non-inferi-
ority margin was 1%, we would be happy to conclude 
that device was clinically equivalent or non-inferior 
(see figure 2).

 on M
arch 8, 2024 by guest. P

rotected by copyright.
http://bm

jopen.bm
j.com

/
B

M
J O

pen: first published as 10.1136/bm
jopen-2016-015397 on 28 A

ugust 2017. D
ow

nloaded from
 

http://bmjopen.bmj.com/


4 Sayers A, et al. BMJ Open 2017;7:e015397. doi:10.1136/bmjopen-2016-015397

Open Access 

If the failure rate was 5.5% and the CI ranged between 
5.25% and 5.75%, we would still conclude that this 
device was clinically non-inferior, despite being statisti-
cally inferior, with a non-inferiority margin of 1%. The 
methods by which one should choose an appropriate 
non-inferiority margin are inherently subjective, and the 
risk of choosing too large a margin represents a risk of 
exposing patients to inferior and less efficacious prod-
ucts. This is opposed to a margin that is too small, which 
in turn limits products of similar performance being 
introduced to the market; both the Food Drug Admin-
istration19 (USA) and European Medicines Agency20 
provide extensive guidance in relation to the choice of 
non-inferiority margins.

Aims
The aim of this study is to investigate the sample size 
required at the beginning of a study to demonstrate supe-
riority and non-inferiority of implant failure compared 
with an external benchmark level of performance, that 
is, a one-sample non-inferiority study design in the pres-
ence of censoring, and the consequences of using three 
common methods of estimating failure in a simulation 
study.

MetHOD
The simulation study will be described using an Aims, 
Data generating process, Method of analysis, Estimands 
and Performance structure.21

Aims
The aim of this study is to describe the sample size 
required to identify if a prosthetic implant has a failure 
rate non-inferior to an external benchmark using simple 
analytical solutions. In addition, we will use a simula-
tion study to determine the power to detect superiority 
and non-inferiority with different sample sizes, different 
estimands, in the presence of a non-informative CR 
(mortality) and when the true implant failure rate is the 
same as the benchmark.

Analytical sample size calculation of one proportion
Using analytical solutions of a z-test in a non-inferi-
ority setting (see equations 2 and 3), the sample size at 
5 non-inferiority margins (δ) at 1, 2, …., 5% was calcu-
lated with power (1 − β) varied from 10% to 99.9%. The 
proportion of failures (P̂F) was assumed to be equal to the 
benchmark (PBM), 5%, and the type I error rate was set at 
α =2.5% (the one-tail equivalent of α=0.05).

 

z =
�PF − PBM − δ√
�PF

(
1 − �PF

)

n  (2)

 
n = �PF

(
1 − �PF

)(
z1−α + z1−β

�PF − PBM − δ

)2

 (3)

Data Generating Process
Two different data generating mechanisms with 
varying sample sizes (n=100, 200, 400, 800, 1600, 
3200, 6400) were explored: (DGP1) implant 
failure with no censoring and (DGP2) implant 
failure with censoring for mortality. Implant 
failure and mortality data were simulated inde-
pendently (non-informative censoring) from a 
parametric survival distribution (2-parameter 
Weibull) (failure: T ∼ Weib

(
λ = 0.01, γ = 0.71

)
; mortality: 

T ∼ Weib
(
λ = 0.017, γ = 1.32

)
, where λ and γ are scale and 

shape parameters in a Weibull distribution, respec-
tively.22 23 Parameters were chosen so failure and 
mortality were simulated to have 5% and 30% occur-
rence at 10 years, respectively, which is similar to 
data from the National Joint Registry of England 
Wales and Northern Ireland,24 and administratively 
censored at 10 years. A total of 1000 repetitions of 
each data generating process (DGP) were simulated; 
assuming nominal coverage of a z-test was achieved, 
Monte Carlo error would be equal to 0.7%.

Method of analysis
We investigated the first DGP (no CRs) using the z-test 
(see equation 2) where the proportion of failures is 
simply estimated by the number of observed failures (f) 
within the sample divided by the total sample.

 P̂F =
f
n  (4)

A failure function, 1 − Ŝ(t)25 (1−KM), approach was used 
to estimate failure where nj is the number at risk of failure 
preceding time tj and fj is the number of failures at time 
tj (see equation 5), with CIs estimated using asymptotic 
variance of log

(
−log�S (tj

))
.26

 
�S(t) =

∏
j|tj≤t

(
nj − fj

nj

)

 (5)

The second DGP was similarly investigated using three 
approaches: (1) a z-test, where the proportion of failures 
was calculated excluding those who died prior to 10 years; 
(2) a failure function, 1 − Ŝ(t)25 (1−KM), with the addition 
of censoring individuals when they died, was also used; 
(3) a non-parametric CR model27 was also explored (see 
equation 6). The CR model calculates the cumulative 
incidence for failure type k. It is estimated using a KM 
approach for all failure types at the instance before the 
failure of interest, Ŝ(tj−1), and then multiplying it by the 
cause specific hazard, dkj/nj, that is, those experiencing 
the failure of interest divided by all individuals who 
remain at risk.

 
�CIFk(t) =

∑
j|tj≤t

�S(tj−1)
dkj

nj  (6)

All analyses were conducted in Stata (Stata Statistical 
Software: Release 14.1).
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Figure 3 The sample size required to detect non-inferiority of the failure proportion with non-inferiority margins (δ) at 1%, 2%, 
3%, 4% and 5%.

estimands
The estimand of interest was cumulative implant 
failure at 10 years and its 95% CI in a hypothetical 
world where implant failure is the only possible 
outcome.

The first DGP explicitly simulates data where implant 
failure is the only possibly outcome, and the analyt-
ical methods purport to estimate net failure, whereas 
the second DGP simulates data where there are two 
potential outcomes (implant failure or death). The 
simple proportion of failures (P̂F ) and failure func-
tion (1− ŝ(t)) both estimate net failure (assuming the 
untestable assumption of independence between CR 
and implant failure), whereas the CR approach (�CIFk

(
t
)

) estimates crude failure, which can be described as 
the real-world probability of failure, which allows for 
the fact that some individuals die before their implant 
fails.

Performance
Performance was assessed in the superiority study 
setting using bias, 1

n

n∑
i=1

(�PF.i − PBM

)
, root-mean-square 

error (RMSE) (absolute error), 1
n

n∑
i=1

√(�PF.i − PBM

)2

, power to detect superiority, that is, a non-inferi-
ority margin at 0, which is equal to type I error in a 
one-tailed test, 1

n

n∑
i=1

100
(�PF.upp.i ≤ PBM

)
, coverage of the 

95% CI, 1
n

n∑
i=1

100
(�PF.low.i ≤ PBM ≤ �PF.upp.i

)
, and CI width, 

1
n

n∑
i=1

(�PF.upp − �PF.low

)
. Similarly, we estimated performance 

in a non-inferiority setting using power (1−type II 
error) to detect non-inferiority at 1%, 2%, 3%, 4% and 
5% at 10 years, 1

n

n∑
i=1

100(�PF.upp.i ≤ PBM + δ).

results
Analytical approach to sample size calculation of non-
inferiority against a benchmark
Using analytic sample size calculations, non-inferiority 
against a benchmark sample size was calculated and is 
presented in figure 3.

With a non-inferiority margin of 3% failure, power 
of 50%, 203 individuals are required at the beginning 
of the study, whereas with 90% power, 555 individuals 
are required at the beginning of the study. There is an 
approximately log-linear association between sample size 
and power between 50% and 90%, at all non-inferiority 
margins. However, sample size rapidly increases as the 
non-inferiority margin reduces.

simulation approach to sample size calculation of superiority 
against a benchmark
Results from the simulation study using a superiority 
design are presented in figure 4.

The method of analysis and DGP process are indi-
cated using five different coloured line styles. It is 
clear that the cumulative incidence function (CIF), 
which estimates crude failure, estimated in the pres-
ence of CR consistently underestimates net failure by 
0.5%, whereas the z-test, an estimate of net failure, in 
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Figure 4 Performance characteristics of five analyses; z-test and Kaplan-Meier when there is no competing risk (NCR) and a 
z-test, KM and cumulative incidence function (CIF) in the presence of competing risk (CR).

the presence of CR overestimates failure rates. Notably, 
the accuracies (RMSE) in the estimates of all methods 
are similar, and as sample size increases, they reduce. 
However, CIF and z-test in the presence of CR are 
biased estimates of net failure in comparison to 1−KM, 
and RMSE does not tend to 0 with increasing sample 
sizes. Correspondingly, coverage of the 95% CI reduces 
as the sample size increases for both CIF and z-test. The 
CIF power to detect superiority erroneously increases 
as a consequence of a consistent difference in the esti-
mand (crude vs net failure) and narrowing CIs. The 
width of the estimated CIs, across all methods, consis-
tently decreases as sample size increases. Despite their 

homogeneity, the width of CI from CIF is approximately 
1% larger than that of the 1−KM estimate in the pres-
ence of CR.

simulation approach to sample size calculation of non-
inferiority against a benchmark
Simulation results using a z-test with no CRs were 
compared with analytic sample size calculations assuming 
no CRs (see online supplementary figure 1). Simulation 
results are generally concordant with analytical results. 
However, analytical results tend to slightly overestimate 
power when the non-inferiority margin is greater than 
3%.
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Figure 5 Power to detect non-inferiority at 1%, 2%, 3%, 4% and 5% below a 95% benchmark performance. The data 
generating process and method of analysis are presented in separate panels. The sample size is indicated on the horizontal 
axis. CIF, cumulative incidence function. 

Results from the simulation study using a non-inferi-
ority paradigm are presented in figure 5.

When no CR is present, a 3% non-inferiority margin, 
and at samples sizes of 200 or 800, a z-test has 46% and 
94% power to detect non-inferiority, respectively, and 
KM has 34% and 91% power to detect non-inferiority. 
When a non-informative CR is present, a 3% non-infe-
riority margin, and sample sizes n=200 or n=800, a z-test 
has 22%and 44% power to detect non-inferiority, respec-
tively; 1−KM has 26% and 86% power to detect non-infe-
riority, respectively; and the CIF has 48% and 99% power 
to detect non-inferiority, respectively.

Mean performance estimates from the simulation study 
are tabulated in the online supplementary table 1.

DIscussIOn
This study investigates how and how many individuals 
are required to demonstrate non-inferiority in the 
failure rate of a medical device (arthroplasty prosthesis) 
compared with an external benchmark in the presence 
or absence of a CR.

Net failure estimated using 1−KM provides unbiased 
estimates in the presence or absence of a non-informative 
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CR, whereas a simple z-test or CIF overestimate and 
underestimate failure in the presence of a non-informa-
tive CR, respectively. While there is reasonable agree-
ment between analytical and simulation estimates of the 
sample size required to conduct a non-inferiority study, 
the failure to incorporate an adjustment for censoring 
due to mortality leads to erroneous estimates of power.

Using 1−KM to estimate failure in the presence of a 
non-informative CR (estimating net failure), a sample 
size of n=1600, will ensure coverage at nominal levels, 
have a CI width of approximately 2.3% and a RMSE of 
0.46% but have a 35%, 88%, 97%, 97% and 97% power of 
demonstrating non-inferiority at margins of 1%, 2%, 3%, 
4% and 5%, respectively.

This study has a number of strengths. We have shown 
the well-known differences between net and crude failure. 
Despite the persistent suggestion in arthroplasty research 
that 1−KM overestimates implant failure, it is clear that 
it is an unbiased estimate of net failure but a biased 
estimate of crude failure, a patient’s personal chance 
of revision surgery. CIF (crude failure) in a CR model 
unsurprisingly underestimates net failure, assuming 
independence between CR and implant failure. We have 
demonstrated the number of individuals required at the 
onset of a benchmarking study for a variety of non-infe-
riority margins, under two different DGPs, and the width 
of the estimated CI. Despite the exemplar of arthroplasty, 
similar methods would apply to any discipline interested 
in conducting a formal benchmarking process.

However, this study has a number of important limita-
tions. (1) We simulated data from a Weibull model with 
an uncorrelated CR, and while it provides a convenient 
and sensible method of generating data in an arthro-
plasty example, more complex models with correlated 
CRs may be appropriate in other areas. (2) We assume 
that time to revision surgery is a reasonable outcome of 
interest. However, alternative outcomes, for example, 
Patient Reported Outcome Measures, could similarly 
be incorporated into a non-inferiority benchmarking 
design. (3) The threshold for revision is assumed to be 
homogenous between different surgeons in this simula-
tion. (4) We have not considered the effect of analysing 
data from multiple sources or combining pre-existing 
data. However, methods of meta-analysis in non-inferi-
ority settings are well documented.28 29 (5) The contin-
uous accrual of data and regular assessment of data 
against benchmarks of interest will inevitably lead to 
multiple hypothesis testing, and therefore, the risk of 
incorrectly accepting or rejecting the null hypothesis of 
inferiority against the benchmark will increase. The deci-
sion to repeatedly look at the data must be made a priori, 
and due consideration for the multiple testing should be 
made in order to preserve the type I error rate.30 Related 
to this point is that, once a prosthesis meets the bench-
mark level of performance, this should be considered the 
beginning of the monitoring process, and as new data 
are accrued, periodic assessment should occur to ensure 
that satisfactory performance is being maintained. (6) 

Current implant rating organisations consider the failure 
rates of individual components (ie, head, stem and cups 
separately) opposed to the implanted construct. Despite 
the technical difficulties of disentangling the failures of 
each individual component, the multiple testing that 
ensues will ultimately require larger samples in order 
to preserve the type I error rate. (7) We have adopted 
a conservative scenario, where the implant failure rate is 
equal to the benchmark; in a more optimistic scenario, 
where the implant failure rate is less than the benchmark, 
fewer individuals will be required to detect non-inferi-
ority. Conversely, when implant failure rate is more than 
the benchmark but less than the non-inferiority margin, 
larger samples will be required. However, unless implant 
manufacturers are, a priori, willing to propose superiority 
opposed to non-inferiority, a conservative standpoint 
would appear sensible. Finally and most importantly, (8) 
we critically assume that a simple unadjusted analysis 
provides a causal interpretation, and there is no residual 
confounding or selection bias that inhibits making a fair 
comparison. However, we recognise that assumption 
has little validity given the strong variation in implant 
use and failure rates between those young and old and 
between males and females.24 Therefore, the necessity 
to adequately describe the population used within the 
benchmarking process or adopt a stratified approach 
to benchmarking is compelling. Similarly, the current 
design of arthroplasty benchmarking studies, specifi-
cally the use of an external benchmark, makes more 
sophisticated methods of adjusting data, via regression, 
weighting or matching, unfeasible. Therefore, there may 
be a number of benefits to choosing a contemporary 
prosthesis combination with established performance to 
which all other prosthesis can be benchmarked against. 
We also recognise as with nearly all clinical studies and 
registers that enrolled or consenting participants can be 
substantially different from those not enrolled or those 
who withhold consent to be included in a register. These 
potential differences may have a profound impact on 
how the results from benchmarking studies should be 
interpreted.

Despite some authors suggesting that a 1−KM overes-
timates implant survival in the presence of CR,7 it is clear 
that this is not universally true, and it is very important to 
understand what is being estimated (net or crude failure) 
and for what purpose, recognise that implant failure rate 
is not necessarily equal to the rate of revision surgery in 
arthroplasty and ensure that analyses reflect the research 
question being presented.31 The three methods of analysis, 
that is, a z-test (simple proportion), 1−KM and CIF, can 
provide equivalent or subtly different estimates depending 
on DGP. When data are fully complete (DGP1), that is, 
everyone is fully observed for the period of interest and 
there is no censoring, the failure rate estimated by a simple 
proportion, 1−KM and CIF will all be identical; variability in 
coverage and power will be due to inherent differences in 
the methods used to construct CIs. When there is censoring 
due to a CR (ie, DGP2), differences in the estimates arise. 
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These differences are best understood when data are fully 
observed for individuals experiencing the event of interest 
or the relevant competing event. A simple proportion 
(z-test) excludes patients who experience the competing 
event from the denominator, whereas CIF includes them; 
the numerator for both methods is simply the observed 
number of failures at 10 years. In this scenario, it is easy to 
see that failure rate estimated by a simple proportion will be 
greater than CIF due to the reduction in the denominator. 
It is also clear that CIF does not estimate the proportion of 
failures that would have occurred in those individuals who 
have experienced the competing event and therefore will 
underestimate the net failure rate of the device (the numer-
ator is too small relative to the denominator), whereas, the 
1−KM method excludes individuals from the analysis who 
experience CR, thereby reducing the denominator, which 
results in a higher failure rate than CIF.

This balancing act is very well known and demonstrated 
by the seminal work of Gooley et al.32 They generally recom-
mend that researchers report CIF but similarly note that, if 
one is interested in evaluating a cause-specific failure, CIF 
may be misleading, and inferences should be made from 
functions that are based solely on the hazard of failure from 
the cause of interest; that is, use the KM estimator. Putter 
et al8 similarly state that the ‘naive Kaplan-Meier estimator 
describes what would happen if the competing event could 
be prevented to occur, creating an imaginary world in 
which an individual remains at risk of failure from the event 
of interest,’ that is, an immortal patient cohort. Ranstam et 
al31 describe this in an arthroplasty setting as the ‘implicit 
assumption that the patient will be alive until the implant 
fails.’ This is not to say that CIF (crude failure) is not of 
interest to arthroplasty surgeons, patients, regulators or 
healthcare planners. It is just to say that CIF (crude failure) 
estimates a different quantity, which reflects the real-world 
(observed) probability of implant failure (arthroplasty revi-
sion rate) while acknowledging that CR of mortality explic-
itly prevents failure from the cause of interest. If CIF was 
used in a benchmarking setting, this may have a number 
of different consequences: (1) it could lead to a number of 
implants being claimed as non-inferior to the benchmark, 
when they are in fact inferior, due to differences between 
crude and net failure, and (2) the method of estimation 
may lead to the selective introduction of implants in older 
patients where mortality is higher, which is likely to reduce 
the reported failure rate.

The broad success of arthroplasty, as well as currently 
used benchmark failure rate of 5% at 10 years, necessi-
tates the use of small non-inferiority margins. A small 
non-inferiority margin of 1% in absolute risk represents 
a 20% increase in relative risk of failure compared with a 
benchmark of 5%. The minimum numbers of individuals 
required to demonstrate non-inferiority of a device where 
its true failure rate is equal to the benchmark is unsurpris-
ingly large. Modest sample sizes (n=1600) have limited 
power (35%) to detect non-inferiority, and only when 
sample sizes become large (n=6400) does power increase 
substantially (90%).

Despite differences in the performance of estimators 
and interpretation of estimands, the choice of sample size 
at the beginning of a study should be based on the desire 
to obtain sufficiently precise estimates (small RMSE and 
narrow CI’s), which mitigates type II errors for a given 
non-inferiority margin, which is tolerable to the public, 
surgeons and regulators, whereas the choice of sample 
size that should remain at risk at the end of the bench-
marking period is somewhat more difficult to determine. 
Two possible reasons to ensure the numbers at risk at the 
end of the period are large include (1) maintaining the 
performance and minimising the width of CIs and (2) 
ensuring that sufficient numbers of patients experience 
10 years of the risk of revision for the estimates and the 
benchmarking process to be credible.

From a conservative perspective, it is simple to request 
that the same number of patients for a given level of 
power, (1 − β), and non-inferiority margin, δ, at the begin-
ning of the benchmarking period, remain at risk at the 
end of the benchmarking period. However, this ignores 
that censoring due to mortality is expected to occur in 
an elderly populations and will delay the benchmarking 
process, whereas, it would not be difficult to request a 
specified delay (ie, 10 years) from surgery on the jthpa-
tient until the benchmarking assessment is made, a 
process that is similar to preregistration of randomised 
trials. This will implicitly allow for censoring due to 
mortality, without prespecifying how much censoring will 
occur, and assumes there is no loss to follow-up (which is 
often assumed in arthroplasty registers).

cOnclusIOn
The choice of non-inferiority margin, initial sample size 
or desired width of the CI in a benchmarking study are all 
subjective decisions and can only be chosen by balancing 
the risk of incorrectly awarding a benchmarking standard 
to an implant with a failure rate beyond the non-inferi-
ority margin versus benchmark inflation where all devices 
receive benchmarks and the entire process lacks credi-
bility. However, this study clearly demonstrates how 1−KM 
provides unbiased estimates of net implant failure, in a 
conservative scenario when the failure rate of an implant 
being tested is equal to the benchmark and has a CR that 
is uncorrelated to the event of interest.
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