BMJ Open

Prevalence and Antibiotic Resistance of Mycoplasma genitalium among STI Clinic Attendees in Western Canada: a Cross-Sectional Analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-016300
Article Type:	Research
Date Submitted by the Author:	05-Feb-2017
Complete List of Authors:	Gratrix, Jennifer Plitt, Sabrina Turnbull, LeeAnn Smyczek, Petra; University of Alberta, Medicine/Infectious Diseases; Alberta Health Services Brandley, Judith Scarrott, Ron; Alberta Health Services Naidu, Prenilla; Alberta Health Services Parker, Penny; Alberta Health Services Blore, Brenda; Alberta Health Services Bull, Amy; Alberta Health Services Shokoples, Sandy; Alberta Health Services Bertholet, Lindsay; Alberta Health Services Martin, Irene; Public Health Agency of Canada, Bacteriology and Enteric Diseases Chernesky, Max; McMaster Univ./St. Joseph's Healthcare, Read, Ron Singh , AE; University of Alberta, Medicine/Infectious Diseases
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Sexual health
Keywords:	Diagnostic microbiology < INFECTIOUS DISEASES, Epidemiology < INFECTIOUS DISEASES, BACTERIOLOGY

SCHOLARONE[™] Manuscripts

1	Prevalence and Antibiotic Resistance of Mycoplasma genitalium among STI Clinic Attendees
2	in Western Canada: a Cross-Sectional Analysis
3	
4	Authors and Affiliations:
5	Jennifer Gratrix ¹ , MSc; Sabrina Plitt ² , PhD; LeeAnn Turnbull ³ , BSc, MLT; Petra Smyczek ^{1,4} , MD;
6	Judith Brandley ⁴ , BN; Ron Scarrott ⁵ , RN, BScN; Prenilla Naidu ^{3,8} , MD; Penny Parker ⁴ , BN; Brenda
7	Blore ⁵ ; Amy Bull ³ , MLT ;Sandy Shokoples ³ ,MSc, MLT; Lindsay Bertholet ¹ , MN, RN; Irene Martin ⁶ ,
8	BSc; Max Chernesky ⁷ , PhD; Ron Read ⁵ , MD, PhD; Ameeta Singh ^{4,8} , BMBS, MSc
9	
10	¹ STI Centralized Services, Alberta Health Services, Alberta, Canada; ² Public Health Agency of
11	Canada, Ottawa, Canada; 3 Provincial Laboratory for Public Health, Edmonton, Canada; 4
12	Edmonton STI Clinic, Alberta Health Services, Edmonton, Canada; ⁵ Calgary STI Clinic, Alberta
13	Health Services-, Calgary, Canada; ⁶ National Microbiology Laboratory, Winnipeg, Canada;
14	⁷ McMaster University, Hamilton, Canada; ⁸ University of Alberta, Edmonton, Canada.
15	
16	Key Words: STD Epidemiology, Mycoplasma genitalium, STI clinics
17	
18	Word Count: Manuscript: 3000;Abstract:250 ;References: 36;Tables:3
19	
20	Corresponding author: Ameeta E. Singh
21	3B20 11111-Jasper Ave Edmonton, AB, Canada T5K0L4
22	Tel: 780 735 5678 ameeta@ualberta.ca
	1

1

60

1 2		
3 4	23	Abstract
5 6 7	24	Objectives: To determine the prevalence and correlates of <i>M. genitalium</i> (MG) infection,
8 9	25	compare test performance of female specimen types, and determine the prevalence of gene
10 11 12	26	mutations conferring resistance.
13 14	27	Methods: A cross sectional study was conducted on specimens collected for gonorrhea (NG)
15 16 17	28	and Chlamydia (CT) among Alberta STI Clinic attendees using the <i>M. genitalium</i> Transcription
18 19	29	Mediated Amplification – Research Use Only (RUO) test (Hologic Inc, San Diego, CA). Female
20 21 22	30	endocervical and urine specimens were compared. Positive specimens were sequenced for
23 24	31	23SrRNA, parC and gyrA genes. Gender-stratified analysis compared test results using Chi-
25 26 27	32	square or Fisher's exact test, Mann-Whitney test, and logistic regression.
28 29	33	Results: A total of 2,254 individuals were tested; 53.8% (n=1,212) were male. Male prevalence
30 31 32	34	of MG was 5.3%; CT was 5.9% and NG was 1.8%. Correlates of male infection were an NGU
33 34	35	diagnosis and NG co-infection. MG prevalence for females was 7.2%; CT was 5.8% and NG was
35 36 37	36	1.8%. Correlates of female infection were younger age, Indigenous/other ethnicity and CT/NG
38 39	37	co-infection. There was high concordance (98.1%) of results between urine and cervical swabs.
40 41 42	38	Nearly two-thirds of eligible specimens had mutations associated with macrolide resistance and
43 44	39	12.2% of specimens had a <i>parC</i> mutation signifying fluoroquinolone (FQ) resistance.
45 46 47	40	Conclusions: The high prevalence of MG relative to CT and NG supports the incorporation of
48 49	41	MG testing into routine STI screening and the good concordance of results between urine and
50 51 52	42	cervical swabs supports the use of female urine specimens for testing. The high rate of
53 54	43	resistance to macrolides and FQ raises concerns about treatment options.
55 56 57	44	
58 59		2

1		
2 3 4	45	
5 6	46	Key Words: Mycoplasma, Clinical STI Care, Epidemiology (Clinical)
7 8 9	47	
10 11	48	ARTICLE SUMMARY
12 13 14	49	Strengths and Limitations of this study
15 16 17	50	• This study is among the largest of global studies examining <i>Mycoplasma genitalium</i>
18 19	51	prevalence in heterosexual males, men who have sex with men and females attending
20 21 22	52	STI clinics.
23 24	53	 We tested for resistance genes to macrolides as well as fluorquinolones.
25 26 27	54	• We compared the performance of female urine specimens with endocervical swabs.
28 29	55	• Our study is the first to examine <i>Mycoplasma genitalium</i> prevalence by ethnicity.
30 31 32	56	Although the specimens were collected prospectively, we were only able to collect a
33 34	57	limited number of additional variables in addition to standard data collection at the
35 36 37	58	clinics due to time constraints; this may have limited our ability to identify additional
38 39	59	correlates of Mycoplasma genitalium.
40 41 42	60	
43 44 45	61	
45 46 47		
48		
49 50		
51		
52 53		
54		
55 56		
56 57		
58		
59 60		

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

62	BACKGROUND
63	Mycoplasma genitalium (MG) is an emerging sexually transmissible infection (STI) caused by
64	bacteria belonging to the <i>Mollicutes</i> class that lack a cell wall. ¹ In males, it has been implicated
65	as an etiologic agent of non-gonococcal urethritis (NGU) and persistent or recurrent urethritis. ¹
66	In females, available evidence suggests that MG infection is significantly associated with an
67	increased risk of cervicitis, pelvic inflammatory disease (PID), preterm birth, spontaneous
68	abortion and risk of infertility is also increased. ² Studies suggest that PID cases associated with
69	MG may be similar to <i>Chlamydia trachomatis</i> (CT) in terms of severity of symptoms and signs. ³
70	A two fold increased odds of HIV among populations with MG has also been reported. ⁴
71	
72	Globally, the prevalence of MG using molecular diagnostic tests ranges from 1-4% in men and
73	1-6% in women but is higher in those at risk for STI. ⁵ In a recent Eastern Canadian study, male
74	prevalence was 4.5% and prevalence in females was 3.2%. ⁶
75	
76	In Canada, access to testing for MG is currently largely limited to the referral of suitable
77	specimens to the National Microbiology Laboratory (NML) in Winnipeg. Azithromycin has been
78	recommended for treatment of MG but rising resistance has raised concerns about the use of
79	this drug as the preferred option. ⁷ Alternate treatment with moxifloxacin has been proposed
80	but the high cost of this medication, the potential for hepatotoxicity and reports of resistance
81	have also raised concerns. ⁸
82	

BMJ Open

Given the anticipated wider availability of test kits to screen for MG in the future, we sought to determine the prevalence and correlates of MG infection in urogenital specimens from attendees at two Alberta STI clinics, to compare the test performance in different types of urogenital specimens from females, and to determine the prevalence of mutations in genes conferring resistance to macrolides and fluoroquinolones (FQ).

METHODS

Specimens collected from January to April, 2016 for NG and CT screening from urogenital sites among sequential male and female attendees (>17 years old) at two Alberta STI Clinics were tested for MG. Inclusion in the study required that at least two months had elapsed since being treated for NG or CT to reduce chance visit was related to test of cure from previous infection, and screening could not be part of patient follow-up if named as a sexual contact to a NG/CT case to remove patients more likely to test positive. All individuals attending the two STI clinics were screened for NG and CT unless they specifically declined: all men were screened using urine tests while women were either screened with urine tests (asymptomatic, no speculum examination performed) or with an endocervical or vaginal swab (the presence or complaint of vaginal discharge, odor, or itching and speculum examination performed). Basic demographic and clinical information was collected on the laboratory requisition form and included ethnicity (Caucasian, Indigenous, or Other), presence of symptoms (yes/no; for

females, symptoms were defined as the presence or complaint of vaginal discharge, odor, or

itching and for males, urethral discharge or dysuria), diagnosis at the time of visit for those BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Page 6 of 30

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

BMJ Open

undergoing physical examination (NGU, mucopurulent cervicitis (MPC), bacterial vaginosis (BV)/yeast/trichomoniasis (TV) from wet mount) and self-reported HIV status at the time of the patient visit. For male visits only, the gender of the sexual partner was recorded. The M. genitalium Transcription Mediated Amplification – Research Use Only (Hologic Inc, San Diego, CA) test was used to screen endocervical, vaginal and urine specimens. Endocervical swabs are currently collected in preference to vaginal swabs in our STI clinics. For a female sub-population, test results from endocervical and urine specimens collected on the same individuals at the same visit were compared and the proportion of concordant results was calculated. The Hologic Aptima Combo 2 assay was used to test for CT and NG. For men, NGU was diagnosed if upon physical examination the Registered Nurse (RN) found urethral discharge +/- dysuria plus urethral smear with >5 polymorphonuclear leukocytes/ high power field in 5 or more fields with subsequent negative CT and NG test results. For women, BV, yeast, and TV were diagnosed and treated at the time of visit based on clinical criteria (patient complaint of abnormal vaginal discharge or RN assessment of abnormal vaginal discharge) for wet mount assessment. The number of wet mounts completed was not collected and therefore we used the number of individuals who had a pelvic examination as the denominator for prevalence of BV, yeast, and TV. MPC was diagnosed based on the RN assessment of mucopurulent cervical discharge or cervical friability on pelvic examination and negative tests for CT and NG. All positive specimens for MG were sent to the NML for additional testing. DNA was extracted from the specimens using the QIAamp Viral RNA Mini kit (Qiagen, Toronto,

2		
3 4	127	Ontario) or the MagNA Pure DNA and Viral Nucleic Acid kit (Roche, Laval, Quebec) as per
5 6 7	128	manufacturer's instructions. Positive specimens were analyzed by sequencing 23SrRNA to
, 8 9	129	identify mutations associated with macrolide resistance and parC and gyrA genes
10 11 12	130	associated with resistance to fluoroquinolones.910
13 14 15	131	
16 17 18	132	Sample size was determined by budgetary costs, impact on clinic staff and an acceptable
19 20	133	margin of error. Using a sample size of 2000, our margin of error was +/- 1% for a 5%
21 22 23	134	prevalence rate with 95% confidence. Gender-stratified analysis was performed to compare
24 25	135	MG test result and MG resistance testing results by demographic and clinical variables using
26 27 28	136	Chi-square or Fisher's exact for discrete variables and Mann-Whitney for continuous variables,
29 30	137	excluding missing data. A two-tailed p-value of <0.05 was defined as statistically significant for
31 32 33	138	univariate analysis. Multivariable logistic regression was performed for both males and females
34 35	139	separately to identify correlates independently associated with a positive MG test result. In
36 37 38	140	addition, the results from endocervical/vaginal swabs were compared to urine specimens for
39 40	141	females and Cohen's Kappa was calculated. A 95% binomial confidence interval (CI) was
41 42 43	142	calculated for each infection prevalence. Data was analyzed using IBM SPSS Statistics version
44 45	143	19.0 (IBM, Armonk, NY, USA). This study was approved by the University of Alberta Health
46 47 48	144	Research Ethics Board.
49 50	145	
51 52 53	146	RESULTS
54 55	147	A total of 2,294 individuals were tested. Forty patients were removed due to being <18 years
56 57 58	148	(n=20) and for having more than 1 visit during the study period (n=20). One-half (53.8%;
59 60		7

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

149	n=1,212) of the study population was men. The male prevalence of MG was 5.3% (95%Cl 4.0-
150	6.5); CT was 5.9% (95%Cl 4.6-7.3) and NG was 1.8% (95%Cl 1.1-2.6). Among MSM, the MG
151	prevalence was 6.6% with a CT prevalence of 3.4% and NG prevalence of 1.7%. In heterosexual
152	males, MG prevalence was 4.7% with a CT prevalence of 6.8% and NG prevalence of 2.0%. Of
153	73 cases of urethritis, 19.2% (n=14) were due to MG. One-third (37.0%; n=27) of NGU cases
154	were negative for MG, CT, and NG. Univariate correlates significantly associated with a higher
155	prevalence of MG infection among males included being symptomatic (p=0.001), a diagnosis of
156	NGU at time of visit (p<0.001), and co-infection with CT or NG (p=0.005 and p<0.001,
157	respectively) (Table 1). Independent correlates of infection with MG were a diagnosis of NGU
158	(Adjusted Odds Ratio (AOR)=7.6 95%CI 3.4-17.2) and co-infection with NG (AOR=7.2 95%CI 2.5-
159	20.4).
160	20.4).

BMJ Open

Table 1. Characteristics of *M. genitalium* Cases (Alberta STI Clinics, January to April 2016, N=2,254).

		Fer	nale			Male		
	Positive	Negative	Total			Negative	Total	
Category	(n=75)	(n=967)	(n=1,042)	p-value	Positive (n=64)	(n=1,148)	(n=1,212)	p-value
Median Age (IQR)	24 (21-28)	28 (24-34)	27 (23-33)	<0.001	28 (25-38)	30 (25-37)	30 (25-37)	0.53
Ethnicity								
Caucasian	33 (44.6)	795 (75.9)	728 (73.5)	<0.001	46 (75.4)	762 (71.0)	808 (71.3)	0.72
Indigenous	23 (31.1)	95 (10.4)	118 (11.9)		3 (4.9)	50 (4.7)	53 (4.7)	
Other	18 (24.3)	126 (13.8)	144 (14.5)		12 (19.7)	261 (24.3)	273 (24.1)	
Sexual Partners								
Heterosexual	-	-		-	37 (61.7)	758 (69.9)	795 (69.5)	0.18
Same Sex	-	-		-	23 (38.3)	326 (30.1)	349 (30.5)	
								9

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

U								
Calgary	19 (25.3)	415 (42.9)	434 (41.7)	0.003	27 (42.2)	553 (48.2)	580 (47.9)	0.35
Edmonton	56 (74.7)	552 (57.1)	608 (58.3)		37 (57.8)	595 (51.8)	632 (52.1)	
Symptomatic								
No	44 (59.5)	567 (60.9)	611 (60.8)	0.81	34 (55.7)	817 (74.9)	851 (73.9)	0.001
Yes	30 (40.5)	364 (39.1)	394 (39.2)		27 (44.3)	274 (25.1)	301 (26.1)	
Pregnant								
No	70 (95.9)	903 (99.1)	973 (98.9)	0.04	-	-	-	-
Yes	3 (4.1)	8 (0.9)	11 (1.1)		Č O	5, -	-	-
HIV Status								
Negative	58 (84.1)	702 (79.1)	760 (79.4)	0.58	36 (60.0)	644 (61.6)	680 (61.5)	0.64
								10

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Testing Location

				Interval			Co	onfidence
		Odds	s Ratio	95% Confidence	А	djusted Odds	Ratio	95%
			Multiva	ariate Analysis		5		
MPC ¹ /NGU	3 (9.1)	4 (1.0)	7 (1.6)	0.01	9 (15.3)	27 (21.5)	36 (3.2)	<0.001
Gonorrhea	6 (8.0)	13 (1.3)	19 (1.8)	<0.001	5 (7.8)	17 (1.5)	22 (1.8)	<0.001
Chlamydia	18 (24.0)	42 (4.3)	60 (5.8)	<0.001	9 (14.1)	63 (5.5)	72 (5.9)	0.005
Co-infections								
Yes	33 (44.0)	405 (41.9)	438 (42.0)		-	-	-	
No	42 (56.0)	562 (58.1)	604 (58.0)	0.81	-	-	-	
Pelvic Exam								
Unknown	11 (15.9)	182 (20.5)	193 (20.2)		22 (36.7)	386 (36.9)	408 (36.9)	
Positive	0	4 (0.5)	4 (0.4)		2 (3.3)	15 (1.4)	17 (1.5)	

⊿0

Male				
Co-infection with	5.6	2.0-15.8	7.2	2.5-20
Gonorrhea				
NGU Diagnosis	6.9	3.1-15.6	7.6	3.4-17
Female				
Age	0.91	0.87-0.95	0.92	0.87
Indigenous Ethnicity ²	5.1	2.9-9.1	4.3	2.7-8
Other Ethnicity ²	3.0	1.6-5.5	2.8	1.5-5
Chlamydia Co-Infection	7.0	3.8-12.9	5.1	2.6-10
Gonorrhea Co-Infection	5.8	2.0-16.6	3.5	1.0-11
1. Denominator for MPC is the	number of women who u	nderwent a pelvic examination.		
		·		

BMJ Open: first published as 10.1136/pmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

2. Referent group is Caucasian ethnicity.

Missing data: ethnicity (females=52, males=78), symptomatic (female=37, males=60), HIV status (female=85, male =107),

pregnant=58, sexual partners=68. or beer review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

2	
3 4	162
5 6 7	163
8 9	164
10 11 12	165
13 14	166
15 16 17	167
18 19	168
20 21 22	169
23 24	
25 26 27	
28 29	
30 31	
32 33 34	
35 36	
37 38	
39 40 41	
41 42 43	
44 45	
46 47	
48 49 50	
50 51 52	
53 54	170
55 56	
57 58	
59 60	

The overall	MG prevalence for femal	es, using any positive te	st result from endocerv	vical/vaginal			
or urine res	or urine results, was 7.2% (95%CI 5.6-8.8). CT prevalence was 5.8% (95%CI 4.3-7.2) and NG was						
1.8% (95%)	Cl 1.0-2.6). Seven cases (1	.6%) of MPC were diagno	osed among 438 wome	n who had			
pelvic exan	ninations. There was high	concordance of results b	between urine and cerv	ical swabs			
(98.1%; Tal	ole 2; Kappa was 0.85 (959	% CI: 0.77-1.0), represen	ting almost perfect agr	eement.			
Three vagir	nal swabs collected during	; our study were exclude	d from the comparison	of results			
between sp	pecimens.						
Table 2	. Concordance of <i>M. geni</i> t	alium Results from Cerv	ical and Urine Screenin	g among			
		Women.					
		women.					
		0.	Cervix				
			MC Negative	Total			
		MG Positive	MG Negative	TOLdi			
	MG Positive	22	3	25			
Urine	MG Negative	4	330	334			
	Total	26	333	359			
22:220/25	0.00.1%						
22+330/35	9=98.1% concordance bet	ween cervical and unne	results.				
Kappa: 0.8	5 (95% CI: 0.77-1.0)						

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

1 2		
3 4	171	Univariate correlates significantly associated with a higher prevalence of MG infection (Table 1)
5 6 7	172	among women were younger median age (<0.001), Indigenous ethnicity (p<0.001), Other
8 9 10 11 12 13 14 15 16 17	173	ethnicity (p<0.001), the Edmonton clinic testing location (p=0.003), being pregnant (p=0.04), CT
	174	or NG co-infection (p<0.001, for both), and MPC diagnosis at time of visit (p=0.01). Independent
	175	correlates of infection with MG were younger age (AOR=0.92 95%CI 0.87-0.96), and Indigenous
	176	ethnicity (AOR=4.3 95%Cl 2.7-8.1) and Other ethnicity (AOR=2.8 95%Cl 1.5-5.3) (vs. Caucasian),
18 19	177	co-infection with CT (AOR=5.1 95%Cl 2.6-10.2) and NG (AOR=3.5 95%Cl=1.0-11.8).
20 21 22 23 24 25 26 27	178	
	179	Macrolide resistance data provided through 23SrRNA sequencing data was available for 73.4%
	180	(n=47) of the 64 positive male specimens. Nearly two-thirds (63.8%; n=30) were found to have
28 29 30	181	mutations associated with macrolide resistance in either A2058T (n=3), A2058G (n=12), or
30 31 32	182	A2059G (n=15). There were no variables significantly associated with macrolide resistance,
33 34 35	183	although MSM was marginally associated with resistance among males (83.3% vs. 51.9%;
36 37	184	p=0.06; Table 3). Resistance to fluoroquinolones was assessed by markers gyrA and parC.
38 39 40	185	Nearly two-thirds (64.1%; n=41) of positive specimens had <i>parC</i> sequences available and 5
41 42	186	(12.2%) specimens had a <i>parC</i> mutation (Ser \rightarrow Ile83, n=4) and (Asp \rightarrow Tyr87, n=1) signifying
43 44 45	187	fluoroquinolone resistance. gyrA sequencing was performed on 46 specimens and no gyrA
46 47	188	mutations were identified.
48 49 50 51	189	
52		

Table 3. Characteristics of Macrolide Resistance in M. genitalium Specimens by Gender (Alberta STI Clinics, January to April 2016, N=94). Macrolide resistance Category Male Female Resistance Susceptible Total p-Resistance Susceptible Total p-(n=22) (n=23) (n=45) value (n=30) (n=17) (n=47) value 24 (20-28) 29 (23-41) **Median Age** 22 (20-26) 26 (22-29) 0.04 27 (25-40) 28 (24-41) 0.90 (IQR) Ethnicity 10 (45.5) 22 (50.0) 22 (75.9) 14 (87.5) 0.80 Caucasian 12 (54.5) 0.83 36 (80.0) 11 (25.0) 1 (2.2) Indigenous 6 (27.3) 5 (22.7) 1 (3.4) 0 Other 6 (27.3) 5 (22.7) 11 (25.0) 6 (20.7) 2 (12.5) 8 (17.8) 16 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Page 17 of 30

⊿0

	Sexual Partners								
	Heterosexual	-	-		-	14 (48.3)	13 (81.3)	27 (60.0)	0.06
	Same Sex		-		-	15 (51.7)	3 (18.8)	18 (40.0)	
	Testing Location								
	Calgary	5 (22.7)	8 (34.8)	13 (28.9)	0.37	10 (33.3)	9 (52.9)	19 (40.4)	0.19
	Edmonton	17 (77.3)	15 (65.2)	32 (71.1)		20 (66.7)	8 (47.1)	28 (59.6)	
	Symptomatic								
	No	15 (68.2)	14 (63.6)	29 (65.9)	0.75	15 (51.7)	11 (68.8)	26 (57.8)	0.27
	Yes	7 (31.8)	8 (36.4)	15 (34.1)		14 (48.3)	5 (31.3)	19 (42.2)	
	HIV Status								
	Negative	19 (95.0)	16 (80.0)	35 (87.5)	0.34	20 (71.4)	8 (50.0)	28 (63.6)	0.11
									17
ght.	4 by guest. Protected by copyri					out/guidelines.xhtm)↓ uo 00£9↓0-∠↓0Z-uəc		first published as	:neqO LMB

⊿0

Positive	0	0	0		2 (7.1)	0	2 (4.5)	
Unknown	1 (5.0)	4 (20.0)	5 (12.5)		6 (21.4)	8 (50.0)	14 (31.8)	
Co-infections								
Chlamydia	3 (13.6)	7 (30.4)	10 (22.2)	0.28	3 (10.0)	2 (11.8)	5 (10.6)	1.00
Gonorrhea	2 (9.1)	2 (8.7)	4 (8.9)	1.00	2 (6.7)	0	2 (4.3)	0.53
MPC ¹ /NGU	0	0	0		6 (20.0)	3 (17.6)	9 (19.1)	1.00
Missing data: et partners=2.	thnicity (females=1, ma	les=2), symp	tomatic (fema	ale=1, male	es=2), HIV status (fer	nale=5, male =	3), sexual	
								18
	For peer rev	iew only - htt	p://bmjopen.b	omj.com/site	e/about/guidelines.xl	ntml		

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

1 2		
3 4	190	Among women, 23SrRNA sequencing data was available for 60.0% (45/75) of positive
5 6 7	191	specimens. Nearly one-half (48.9%; n=22) had a 23SrRNA mutation associated with macrolide
8 9	192	resistance in A2058G (n=11), A2058T (n=5), A2059G (n=6), or A2059C (n=1). In univariate
10 11 12	193	analysis, younger median age (22y (IQR: 20-26) vs. 26y (IQR: 22-29); p=0.04; Table 3) was the
13 14	194	only variable significantly correlated with macrolide resistance. One-half (50.7%; n=38) of
15 16 17	195	positive specimens had <i>parC</i> sequencing available and only 1 specimen had a mutation
18 19	196	signifying fluoroquinolone resistance (Asp \rightarrow Tyr87); no gyrA mutations were identified.
20 21 22	197	
23 24	198	DISCUSSION
25 26 27	199	Our study underscores the significance of <i>M. genitalium</i> as a medically significant pathogen
28 29	200	from urogenital sites. In our male population, the prevalence of MG was 5.3%, within the range
30 31 32	201	of 3.1%-17.2% reported in males from other STI Clinics. ^{6 11 12 13} Although not statistically
33 34	202	significant, the prevalence of MG in our study trended toward being higher in MSM than among
35 36 37	203	heterosexual males (6.6% vs 4.7%, p=0.18). A recent Dutch study reported a similar prevalence
38 39	204	of MG in males (overall MG prevalence in males 3.1%; 2.5% in MSM, 3.8% in MSW, p=0.13). 12 A
40 41 42	205	diagnosis of NGU was significantly correlated with MG infection among males in our study
43 44	206	population, in accordance with previous studies reporting a strong association between MG
45 46 47	207	and NGU independent of Chlamydia infection. ¹⁵ In a meta-analysis of studies completed up to
48 49	208	2010, MG was associated with a pooled odds ratio (OR) of 5.5 (95% CI: 4.4-7.0) for NGU. 1
50 51 52	209	
53 54	210	The overall MG prevalence for females was 7.2% (95%CI 5.6-8.8), higher than the range of 3.2-
55 56 57	211	6% reported in most studies of females STI clinic attendees. ^{6 12 14 15} In females, MG has been
58 59 60		19
00		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
1		

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

associated with significant morbidity including MPC, PID and infertility, but the association between MG and symptoms is less clear.^{10 16 17} Among female STI clinic attendees in some studies, 40-75% were asymptomatic^{14 15} but a 1994-96 French study reported a very high prevalence of MG of 38% among symptomatic female STI clinic attendees.¹⁶ The presence of symptoms was not an independent correlate of MG infection in our study. Independent correlates of female infection with MG in our study were younger age, in contrast to two other studies which reported that the prevalence of MG peaked approximately 5 years later for both men and women and remained higher in older age groups.^{18 19} Co-infection with CT and NG was common in our patients, confirming the role of MG as a sexually transmitted pathogen and the probable overlap in behavioural and demographic characteristics for these STIs. Indigenous (First Nations, Inuit, Metis) ethnicity and other non- Caucasian ethnicity were also significant correlates of MG infection. We were unable to find other studies examining the prevalence of MG by ethnicity but the disproportionately high rates of MG among Indigenous persons in our study is in keeping with the higher estimated STI prevalence in Canadian Indigenous persons when compared to the overall general population.²⁰²¹ First Nations persons represent an estimated 3.8% of the overall Canadian population but chlamydia rates are estimated to be 7 times higher among First Nations adults than the overall population.²⁰ The reasons for the observed disproportionately high rates of STIs are unclear but Indigenous persons in Canada are also over-represented in adolescent pregnancy and under-represented in

234	sexual health research. ²² A recent First Nations Regional Health Survey stressed the importan	ce
235	of colonial history, barriers to health care services and socio-economic disadvantage. ²⁰	
236		
237	The optimal specimen type for MG testing remains unresolved with urine specimens consider	ed
238	acceptable in males and females and in females, vaginal swabs are also considered suitable. ²³	In
239	our study, the near perfect agreement between the test performance in female cervical and	
240	urine swabs is reassuring and supports the use of less invasive urine specimens for testing in	
241	females.	
242		
243	It is very likely that appropriate treatment of MG infections will result in reduced sexual	
244	transmission as well as prevention of complications. ² Alternates to macrolides and FQ, the	
245	antibiotics usually proposed for the treatment of MG, are limited since the lack of a cell wall i	n
246	MG precludes the use of penicillins and other beta lactam antibiotics. ²⁴ Further complicating	
247	this is that mycoplasmas can develop resistance either by gene mutation or by acquisition of	а
248	resistance gene. ²⁴ Since azithromycin has been proposed as the preferred first line agent for t	he
249	treatment of MG infections ^{25 26} , the high rate of mutations ($^2/3$ of eligible specimens)	
250	conferring resistance to azithromycin in our study is particularly alarming. Strains of M.	
251	genitalium began to develop resistance to azithromycin and have continued to do so through	
252	mutations in region V of the 23S ribosomal RNA gene. ²⁷ Macrolide resistance rates vary	
253	significantly by geographic region with 58% resistance reported in the only published Canadia	n
254	study conducted in Eastern Canada. ⁶ This level of resistance is well above the threshold of 5%)
255	resistance above which the World Health Organization typically recommends against the	
		21
	 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 	235 of colonial history, barriers to health care services and socio-economic disadvantage. ²⁰ 236 7 237 The optimal specimen type for MG testing remains unresolved with urine specimens consider 238 acceptable in males and females and in females, vaginal swabs are also considered suitable. ²¹ 239 our study, the near perfect agreement between the test performance in female cervical and 240 urine swabs is reassuring and supports the use of less invasive urine specimens for testing in 241 females. 242 it is very likely that appropriate treatment of MG infections will result in reduced sexual 244 transmission as well as prevention of complications. ² Alternates to macrolides and FQ, the 245 antibiotics usually proposed for the treatment of MG, are limited since the lack of a cell wall i 246 MG precludes the use of penicillins and other beta lactam antibiotics. ²⁴ Further complicating 247 this is that mycoplasmas can develop resistance either by gene mutation or by acquisition of treatment of MG infections ^{252,65} , the high rate of mutations (~2/3 of eligible specimens) 250 conferring resistance to azithromycin in our study is particularly alarming. Strains of M. 251 genitalium began to develop resistance to azithromycin and have continued to do so through 252 mutations in region V of the 23S ri

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

routine use of a drug for first line treatment of an STI.²⁸ A recent review reported that the efficacy of azithromycin 1 gm for the treatment of urogenital MG has decreased from 85% prior to 2009 to 60% in early 2015.⁷ This had been postulated to be due to increasing prevalence of macrolide resistance due to the widespread use of azithromycin for the treatment of CT, NGU and MPC.^{7 29 30 31} In a recent meta-analysis, persistent MG was associated with a pooled OR of 26 (95% CI: 11–57) for persistent urethritis, demonstrating that failure to eradicate MG leads to persistent or recurrent signs and symptoms of urethritis in the majority of men.⁷ The observation of MG as a significant pathogen in both NGU and MPC has generated much discussion around whether azithromycin, and especially single dose azithromycin should continue to be recommended as the preferred agent for these STI syndromes.²⁹ Instead it has been proposed that doxycycline be used as the first line agent because even though it is in only 30-40% effective against MG, it does not induce the development of antimicrobial resistance.²⁹ Moxifloxacin has been proposed as the drug of choice for treatment failures with azithromycin^{25 26} but our finding of 12.2% resistance to FQ as assessed by markers gyrA and parC is also above the 5% threshold set by the WHO.²⁸ Earlier studies reported cure rates of 100% with moxifloxacin.^{30 32 33} However, more recently Tagg et al. reported macrolide resistance-associated mutations in the 23S rRNA gene in 43% of samples and mutations in parC or *gyrA* sequences in 15% of samples.³⁴ Touati et al reported a point mutation in the 23S rRNA gene in 14.2% of samples.³⁵ Given the relatively high prevalence of MG in both males and females in ours and other studies,

the potential for significant morbidity and enhanced HIV transmission, global recommendations for MG screening are currently very diverse in part due to lack of access to good tests for MG. In the absence of an FDA approved test for MG, the U.S. CDC STD Treatment guidelines suggest that MG be suspected in cases of persistent/recurrent urethritis, cervicitis and PID.²⁵ Canada has a single Health Canada approved test for MG (Seegene Inc, Seoul, Korea) which is not widely available. The Europeans currently have the broadest recommendations for screening for MG including persons with STI symptoms and those engaging in high-risk sexual behavior, with a strong recommendation that all positive tests be followed by an assay capable of detecting macrolide resistance mutations.²⁶ Our study has a few limitations. Firstly, our specimens were collected in STI clinic patients in Western Canada and may not be generalizable to other STI clinics and are likely to be higher than rates reported in non-STI clinic populations. Secondly, although the specimens were collected prospectively, we were only able to collect a limited number of additional variables in addition to standard data collection at the clinics due to time constraints; this may have limited our ability to identify additional correlates of MG. Thirdly, as tetracycline resistance-associated mutations have not so far been identified in *M. genitalium*³⁶, we did not test our samples for resistance to doxycycline; this information may have been useful in guiding empiric treatment regimens for NGU and cervicitis in our region. In summary, our study found a MG prevalence of 6.2% in attendees at two Western Canadian

299 STI Clinics, within the range reported in other studies, but higher than that for chlamydia (in

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

females) and gonorrhea (in both genders). Over one-half of tested isolates were resistant to macrolides. These findings together with the high proportion of asymptomatic carriers who could facilitate the spread of infection, the potential for significant morbidity and the potential for enhanced HIV transmission support recommendations for broader screening for MG. The high prevalence of macrolide resistance also supports the recommendation to follow all positive tests with an assay that can detect macrolide resistance mutations.²⁶ Judicious use of antibiotics for the empiric treatment of NGU and MPC is needed to mitigate the further development of resistance to currently used antibiotics and to optimize treatment of CT, NG and MG. In order to facilitate this, wider access to testing for MG and adaptation of most

309 existing guidelines will be necessary.

1		
2 3	210	
4	310	ACKNOWLEDGEMENTS
5 6 7	311	We thank Hologic Inc, Canada for providing the test kits used in this study, the study
8 9	312	participants and staff of the Edmonton and Calgary STI clinics for enrolling patients in the study.
10 11 12	313	
13 14	314	FUNDING
15 16 17	315	This work was funded in part by an internal grant from Alberta Health Services- STI Centralized
18 19	316	Services to the Alberta Provincial Laboratory for Public Health to complete testing. M.
20 21 22	317	genitalium test kits were provided by Hologic Inc, Canada.
23 24	318	
25 26 27	319	COMPETING INTERESTS None
28 29	320	
30 31 32	321	AUTHOR CONTRIBUTIONS JG, SP, PN, LT, MC, IM, PS, RR, LB and AS developed the study
33 34 35	322	design, protocol and ethics submission. LB coordinated funding for the study. JG, SP conducted
36 37	323	epidemiologic analyses. JG, SP, AS drafted manuscript. PP, BB, JB, RS coordinated the study in
38 39 40	324	the clinics. AB, SS, LT and IM coordinated and/or conducted laboratory testing. All authors
41 42	325	contributed to final manuscript review.
43 44 45	326	
46 47	327	DATA SHARING STATEMENT: No additional data are available.
48 49 50 51 52 53 54 55 56 57 58	328	
59 60		25

329 **REFERENCES**

1

4 5			
6 7 8	330	1.	Taylor-Robinson D, Jensen JS. Mycoplasma genitalium: from Chrysalis to multicolored
9 10 11	331		butterfly. Clin Microbiol Rev 2011;24:498-514.
12 13	332	2.	Lis R, Rowhani-Rahbar A, Manhart LE. Mycoplasma genitalium Infection and Female
14 15 16	333		Reproductive Tract Disease: A Meta-Analysis. Clin Infect Dis 2015;61:418-26.
17 18	334	3.	Short VL, Totten PA, Ness RB, et al. Clinical presentation of Mycoplasma genitalium
19 20 21	335		infection versus Neisseria gonorrhoeae infection among women with pelvic
22 23	336		inflammatory disease. Clin Infect Dis 2009;48:41-7.
24 25 26	337	4.	Napierala Mavedzenge S, Weiss HA. Association of Mycoplasma genitalium and HIV
27 28	338		infection: a systematic review and meta-analysis. <i>AIDS</i> 2009; 23 :611-620.
29 30 31	339	5.	Manhart LE, Broad JM, Golden MR. Mycoplasma genitalium: should we treat and how?
32 33	340		Clin Infect Dis 2011; 53 Suppl 3 :S129-42.
34 35 36	341	6.	Gesink D, Racey CS, Seah C, et al. Mycoplasma genitalium in Toronto, Canada: Estimates
37 38	342		of Prevalence and Macrolide Resistance. Can Fam Physician 2016;62:e96-101.
39 40 41	343	7.	Lau A, Bradshaw CS, Lewis D, et al. The efficacy of azithromycin for the treatment of
42 43	344		genital Mycoplasma genitalium: a systematic review and meta-analysis. Clin Infect Dis
44 45 46	345		2015; 61 :1389–99.
47 48	346	8.	Bissessor M, Tabrizi SN, Twin J, et al. Macrolide resistance and azithromycin failure in a
49 50 51	347		Mycoplasma genitalium-infected cohort, and response of azithromycin failures to
52 53	348		alternative antibiotic regimens. Clin Infect Dis 2015; 60:1228–36.
54 55 56			
57 58			
59 60			26

BMJ Open

2 3 4	349	9. Jensen JS. Protocol for the detection of <i>Mycoplasma genitalium</i> by PCR from clinical
5 6 7	350	specimens and subsequent detection of macrolide resistance-mediating mutations in
7 8 9	351	region V of the 23SrRNA gene. <i>Method Molec Biol</i> 2012, 903 :129-139.
10 11 12	352	10. Shimada Y, Deguchi T, Nakane K, et al. Emergence of clinical strains of Mycoplasma
13 14	353	genitalium harbouring alterations in ParC associated with fluoroquinolone resistance.
15 16 17	354	Int J Antimicrob Agent 2010, 36 :255-8.
18 19	355	11. Getman D, Jiang A, O'Donnell M, Cohen S. Mycoplasma genitalium Prevalence,
20 21 22	356	Coinfection, and Macrolide Antibiotic Resistance Frequency in a Multicenter Clinical
23 24	357	Study Cohort in the United States. J Clin Microbiol. 2016;54:2278-83.
25 26 27	358	12. de Jong AS, Rahamat-Langendoen JC, van Alphen P, <i>et al</i> . Large two-centre study into
28 29 30 31 32	359	the prevalence of Mycoplasma genitalium and Trichomonas vaginalis in the
	360	Netherlands. Int J STD AIDS 2016; 27 :856-60.
33 34	361	13. van der Veer C, van Rooijen MS, Himschoot M, <i>et al. Trichomonas vaginalis</i>
35 36 37	362	and Mycoplasma genitalium: age-specific prevalence and disease burden in men
38 39	363	attending a sexually transmitted infections clinic in Amsterdam, the Netherlands. Sex
40 41 42	364	Transm Infect 2016; 92 :83-5.
43 44	365	14. Falk L, Fredlund H, Jensen JS. Signs and symptoms of urethritis and cervicitis among
45 46 47	366	women with or without Mycoplasma genitalium or Chlamydia trachomatis infection. Sex
48 49	367	Transm Infect 2005; 81 :73–78.
50 51 52 53	368	15. Anagrius C, Lor • e B, Jensen JS. <i>Mycoplasma genitalium</i> : prevalence, clinical
54 55 56	369	significance, and transmission. Sex Transm Infect 2005; 81: 458–462.
57 58		
59 60		27

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 28 of 30

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open

2 3		
3 4 5	370	16. Casin I, Vexiau-Robert D, de la Salmoniere P, <i>et al</i> . High prevalence of <i>Mycoplasma</i>
6 7	371	genitalium in the lower genital tract of women attending a sexually transmitted disease
8 9 10	372	clinic in Paris, France. <i>Sex Transm Dis</i> 2002; 29 :353–9.
11 12	373	17. Huppert JS, Mortensen JE, Reed JL, et al. Mycoplasma genitalium detected by
13 14 15	374	transcription-mediated amplification is associated with Chlamydia trachomatis in
16 17 18	375	adolescent women. Sex Transm Dis 2008;35:250-4.
19 20	376	18. Jensen JS, Bj€ornelius E, Dohn B, Lidbrink P. Comparison of first void urine and
21 22 23	377	urogenital swab specimens for detection of Mycoplasma genitalium and Chlamydia
24 25	378	trachomatis by polymerase chain reaction in patients attending a sexually transmitted
26 27	379	disease clinic. <i>Sex Transm Dis</i> 2004; 31 :499–507.
28 29 30	380	19. Salado-Rasmussen K, Jensen JS. Mycoplasma genitalium testing pattern and macrolide
31 32 33	381	resistance: a Danish nationwide retrospective survey. Clin Infect Dis 2014; 59:24–30.
34 35	382	20. The First Nations Information Governance Centre, First Nations Regional Health Survey
36 37 38	383	(RHS) Phase 2 (2008/10) National Report on Adults, Youth and Children Living in First
39 40	384	Nations Communities. 2012.
41 42 43	385	http://fnigc.ca/sites/default/files/First_Nations_Regional_Health_Survey_2008-
44 45	386	10_National_Report.pdf (accessed 19 Jan 2017).
46 47 48	387	21. Public Health Agency of Canada. Population-Specific HIV/AIDS Status Report: Aboriginal
49 50	388	Peoples. 2010. http://www.catie.ca/sites/default/files/26344.pdf (accessed 19 Jan
51 52 53	389	2017).
54 55	390	22. Devries KM, Free CJ, Morison L, Saewyc E. Factors associated with pregnancy and STI
56 57 58	391	among Aboriginal students in British Columbia. <i>Can J Public Health</i> 2009;1 00 :226-30.
59 60		28

1 2		
3 4	392	23. Jensen JS, Cusini M, Gomberg M, Moi H. Background review for the 2016 European
5 6 7	393	guideline on Mycoplasma genitalium infections. J Eur Acad Dermatol Venereol
8 9	394	2016; 30 :1686-93.
10 11 12	395	24. Taylor-Robinson D. Diagnosis and antimicrobial treatment of Mycoplasma
13 14 15	396	genitalium infection: sobering thoughts. Expert Rev Anti Infect Ther 2014;12:715-22.
16 17	397	25. Centers for Disease Control and Prevention. Sexually Transmitted Diseases Treatment
18 19 20	398	Guidelines, 2015. https://www.cdc.gov/std/tg2015/ (accessed 16 Jan 2017).
21 22 23	399	26. Jensen JS, Cusini M, Gomberg M. 2016 European Guideline on Mycoplasma genitalium
24 25	400	infections.
26 27 28	401	http://www.iusti.org/regions/europe/pdf/2016/2016EuropeanMycoplasmaGuidelines.p
29 30	402	df (accessed 16 Jan 2017).
31 32 33	403	27. Jensen JS, Bradshaw CS, Tabrizi SN, et al. Azithromycin treatment failure in Mycoplasma
34 35	404	genitalium-positive patients with nongonococcal urethritis is associated with induced
36 37 38	405	macrolide resistance. <i>Clin Infect Dis</i> 2008; 47 :1546-53.
39 40	406	28. World Health Organization. Guidelines for the management of sexually transmitted
41 42 43	407	infections. 2003. WHO, Geneva, Switzerland.
44 45 46	408	29. Horner PJ. Editorial Commentary: Mycoplasma genitalium and Declining Treatment
47 48	409	Efficacy of Azithromycin 1 g: What Can We Do? <i>Clin Infect Dis</i> 2015; 61 :1400-2.
49 50 51	410	30. Anagrius C, Loré B, Jensen JS. Treatment of Mycoplasma genitalium: observations from
52 53 54 55 56	411	a Swedish STD Clinic. PLoS One 2013; 8 : e61481.
57 58 59		
60		29

Page 30 of 30

1 2			
3 4	412	31. Ito S, Shimada Y, Yamaguchi Y, et al. Selection of Mycoplasma genitalium strains	
5 6 7	413	harbouring macrolide resistance-associated 23S rRNA mutations by treatment with a	£
8 9	414	single 1 g dose of azithromycin. <i>Sex Transm Infect</i> 2011; 87 :412–4.	
10 11 12 13 14 15 16 17	415	32. Bradshaw CS, Chen MY, Fairley CK. Persistence of Mycoplasma genitalium following	
	416	azithromycin therapy. PLoS One 2008; 3 :e3618.	
16	417	33. Jernberg E, Moghaddam A, Moi H. Azithromycin and moxifloxacin for microbiologica	d
18 19	418	cure of Mycoplasma genitalium infection: an open study. Int Journal STD AIDS	
20 21 22	419	2008; 19 :676–9.	
23 24 25	420	34. Tagg KA, Jeoffreys NJ, Couldwell DL, et al. Fluoroquinolone and macrolide resistance	-
26 27	421	associated mutations in Mycoplasma genitalium. J Clin Microbiol 2013;51:2245-9.	
28 29 30 31 32 33 34 35	422	35. Touati A, Peuchant O, Jensen JS, Bébéar C, Pereyre S. Direct detection of macrolide	
	423	resistance in Mycoplasma genitalium isolates from clinical specimens from France by	/
	424	use of real-time PCR and melting curve analysis. <i>J Clin Microbiol</i> 2014; 52 :1549-55.	
36 37 38	425	36. Couldwell DL, Lewis DA. Mycoplasma genitalium infection: current treatment option	15,
39 40	426	therapeutic failure, and resistance associated mutations. Infect Drug Resist 2015;8:1	47-
41 42 43	427	61.	
44 45	428		
46 47 48			
49 50 51			
52 53			
54 55 56			
57 58			
59 60			30

BMJ Open

Prevalence and Antibiotic Resistance of Mycoplasma genitalium among STI Clinic Attendees in Western Canada: a Cross-Sectional Analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-016300.R1
Article Type:	Research
Date Submitted by the Author:	11-Apr-2017
Complete List of Authors:	Gratrix, Jennifer; Alberta Health Services, STI Centralized Services Plitt, Sabrina; Public Health Agency of Canada Turnbull, LeeAnn; Provincial Laboratory for Public Health Smyczek, Petra; Alberta Health Services, Edmonton STI Clinic; Alberta Health Services, Centralized STI Services Brandley, Judith; Alberta Health Services, Edmonton STI Clinic Scarrott, Ron; Alberta Health Services, Calgary STI Clinic Naidu, Prenilla; Provincial Laboratory for Public Health Parker, Penny; Alberta Health Services, Edmonton STI Clinic Blore, Brenda; Alberta Health Services, Calgary STI Clinic Bull, Amy; Provincial Laboratory for Public Health Shokoples, Sandy; Provincial Laboratory for Public Health Bertholet, Lindsay; Alberta Health Services, Centralized STI Services Martin, Irene; Public Health Agency of Canada, Bacteriology and Enteric Diseases Chernesky, Max; McMaster Univ./St. Joseph's Healthcare, Read, Ron; Alberta Health Services, Calgary STI Clinic
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Sexual health
Keywords:	Diagnostic microbiology < INFECTIOUS DISEASES, Epidemiology < INFECTIOUS DISEASES, mycoplasma, clinical sti care

SCHOLARONE[™] Manuscripts

1	Prevalence and Antibiotic Resistance of Mycoplasma genitalium among STI Clinic Attendees
2	in Western Canada: a Cross-Sectional Analysis
3	
4	Authors and Affiliations:
5	Jennifer Gratrix ¹ , MSc; Sabrina Plitt ² , PhD; LeeAnn Turnbull ³ , BSc, MLT; Petra Smyczek ^{1,4} , MD;
6	Judith Brandley ⁴ , BN; Ron Scarrott ⁵ , RN, BScN; Prenilla Naidu ^{3,8} , MD; Penny Parker ⁴ , BN; Brenda
7	Blore ⁵ ; Amy Bull ³ , MLT ;Sandy Shokoples ³ ,MSc, MLT; Lindsay Bertholet ¹ , MN, RN; Irene Martin ⁶ ,
8	BSc; Max Chernesky ⁷ , PhD; Ron Read ⁵ , MD, PhD; Ameeta Singh ^{4,8} , BMBS, MSc
9	
10	¹ STI Centralized Services, Alberta Health Services, Alberta, Canada; ² Public Health Agency of
11	Canada, Ottawa, Canada; 3 Provincial Laboratory for Public Health, Edmonton, Canada; 4
12	Edmonton STI Clinic, Alberta Health Services, Edmonton, Canada; ⁵ Calgary STI Clinic, Alberta
13	Health Services-, Calgary, Canada; ⁶ National Microbiology Laboratory, Winnipeg, Canada;
14	⁷ McMaster University, Hamilton, Canada; ⁸ University of Alberta, Edmonton, Canada.
15	
16	Key Words: STD Epidemiology, Mycoplasma genitalium, STI clinics
17	
18	Word Count: Manuscript: 3023;Abstract:256 ;References: 39;Tables:3
19	
20	Corresponding author: Ameeta E. Singh
21	3B20 11111-Jasper Ave Edmonton, AB, Canada T5K0L4
22	Tel: 780 735 5678 ameeta@ualberta.ca
	1

1 2		
3 4	23	Ab
5 6 7	24	Oł
8 9	25	ma
10 11 12	26	со
13 14	27	M
15 16 17	28	an
18 19	29	ge
20 21 22	30	Sa
23 24	31	str
25 26 27	32	te
28 29	33	Re
30 31 32	34	of
33 34	35	dia
35 36 37	36	1.8
38 39	37	со
40 41 42	38	re
43 44	39	re
45 46 47	40	SW
48 49	41	Со
50 51 52	42	M
53 54	43	m
55 56 57	44	be
58 59 60		

23	Abstract
24	Objectives: To determine the prevalence and correlates of <i>M. genitalium</i> (MG) infection among
25	males and females, determine the prevalence of gene mutations conferring resistance, and
26	compare test performance of female specimen types.
27	Methods: A cross sectional study was conducted on specimens collected for gonorrhea (NG)
28	and Chlamydia (CT) among male and female Alberta STI Clinic attendees using the M.
29	genitalium Transcription Mediated Amplification – Research Use Only (RUO) test (Hologic Inc,
30	San Diego, CA). Positive specimens were sequenced for 23SrRNA, <i>parC</i> and <i>gyrA</i> genes. Gender-
31	stratified analysis compared test results using Chi-square or Fisher's exact test, Mann-Whitney
32	test, and logistic regression. Female endocervical and urine specimens were compared.
33	Results: A total of 2,254 individuals were tested; 53.8% (n=1,212) were male. Male prevalence
34	of MG was 5.3%; CT was 5.9% and NG was 1.8%. Correlates of male infection were an NGU
35	diagnosis and NG co-infection. MG prevalence for females was 7.2%; CT was 5.8% and NG was
36	1.8%. Correlates of female infection were younger age, Indigenous/other ethnicity and CT/NG
37	co-infection. Nearly two-thirds of eligible specimens had mutations associated with macrolide
38	resistance and 12.2% of specimens had a <i>parC</i> mutation signifying possible moxifloxacin
39	resistance. There was high concordance (98.1%) of results between urine and endocervical
40	swabs.
41	Conclusions: The high prevalence of MG relative to CT and NG supports the incorporation of
42	MG testing into routine STI screening. The high rate of resistance to macrolides and
43	moxifloxacin raises concerns about treatment options. The good concordance of results
44	between urine and endocervical swabs supports the use of female urine specimens for testing.
	2

2 3			
4 5	45	Key Words: Mycoplasma, Clinical STI Care, Epidemiology (Clinical)	
5 6 7	46	Strengths and Limitations of this study	
8 9	47	• The main strength of this study is that it is among the largest of global studies examining	
10 11 12	48	Mycoplasma genitalium prevalence in heterosexual males, men who have sex with men	
13 14	49	and females attending STI clinics.	
15 16 17	50	• Since we were only able to collect a small number of additional variables over standard	
18 19	51	clinic protocol due to time constraints, this may have limited our ability to identify	
20 21 22	52	additional correlates of Mycoplasma genitalium infection.	
23 24	53		
25 26 27	54		
28 29 30 31 23 34 35 36 37 39 40 42 43 44 50 51 52 53 45 56 57 58			
59 60		3	

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

55	BACKGROUND
56	Mycoplasma genitalium (MG) is an emerging sexually transmissible infection (STI) caused by
57	bacteria belonging to the <i>Mollicutes</i> class that lack a cell wall. ¹ In males, it has been implicated
58	as an etiologic agent of non-gonococcal urethritis (NGU) and persistent or recurrent urethritis. ¹
59	In females, available evidence suggests that MG infection is significantly associated with an
60	increased risk of cervicitis, pelvic inflammatory disease (PID), preterm birth, spontaneous
61	abortion and risk of infertility is also increased. ² Studies suggest that PID cases associated with
62	MG may be similar to <i>Chlamydia trachomatis</i> (CT) in terms of severity of symptoms and signs. ³
63	A two fold increased odds of HIV among populations with MG has also been reported. ⁴
64	
65	Globally, the prevalence of MG using molecular diagnostic tests ranges from 1-4% in men and
66	1-6% in women but is higher in those at risk for STI. ⁵ In a recent Eastern Canadian study, male
67	prevalence was 4.5% and prevalence in females was 3.2%. ⁶
68	
69	In Canada, access to testing for MG is currently largely limited to the referral of suitable
70	specimens to the National Microbiology Laboratory (NML) in Winnipeg. Azithromycin has been
71	recommended for treatment of MG but rising resistance has raised concerns about the use of
72	this drug as the preferred option. ⁷ Alternate treatment with moxifloxacin has been proposed
73	but the high cost of this medication, the potential for hepatotoxicity and reports of resistance
74	have also raised concerns. ⁸
75	

BMJ Open

Given the anticipated wider availability of test kits to screen for MG in the future, we sought to
 determine the prevalence and correlates of MG infection in urogenital specimens from
 attendees at two Alberta STI clinics, to compare the test performance in different types of
 urogenital specimens from females, and to determine the prevalence of mutations in genes
 conferring resistance to macrolides and moxifloxacin.

82 METHODS

Specimens collected from January to April 2016 for NG and CT screening from urogenital sites among sequential male and female attendees (>17 years old) at two Alberta STI Clinics were tested for MG. Inclusion in the study required that at least two months had elapsed since being treated for NG or CT to reduce chance visit was related to test of cure from previous infection, and screening could not be part of patient follow-up if named as a sexual contact to a NG/CT case to remove patients more likely to test positive. All individuals attending the two STI clinics were screened for NG and CT unless they specifically declined: all men were screened using urine tests while women were either screened with urine tests (mostly asymptomatic) or with an endocervical or vaginal swab (mostly symptomatic).

Basic demographic and clinical information was collected on the laboratory requisition form and included ethnicity (Caucasian, Indigenous, or Other), presence of symptoms (yes/no; for females, symptoms were defined as the presence or complaint of vaginal discharge, odor, or itching and for males, urethral discharge or dysuria), diagnosis at the time of visit for those undergoing physical examination (NGU, mucopurulent cervicitis (MPC)) and self-reported HIV BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

status at the time of the patient visit. For male visits only, the gender of the sexual partner was recorded. For men, NGU was diagnosed if upon physical examination the Registered Nurse (RN) found urethral discharge +/- dysuria plus urethral smear with >5 polymorphonuclear leukocytes/ high power field in 5 or more fields with subsequent negative CT and NG test results. For women, MPC was diagnosed based on the RN assessment of mucopurulent cervical discharge or cervical friability on vaginal speculum examination. The M. genitalium Transcription Mediated Amplification – Research Use Only (Hologic Inc, San Diego, CA) test was used to screen endocervical, vaginal, and urine specimens. Endocervical swabs are currently collected in preference to vaginal swabs in our STI clinics. For a female sub-population, test results from endocervical and urine specimens collected on the same individuals at the same visit were compared and the proportion of concordant results was calculated. The Hologic Aptima Combo 2 assay was used to test for CT and NG. All positive specimens for MG were sent to the NML for additional testing. DNA was extracted from the specimens using the QIAamp Viral RNA Mini kit (Qiagen, Toronto, Ontario) or the MagNA Pure DNA and Viral Nucleic Acid kit (Roche, Laval, Quebec) as per manufacturer's instructions. Positive specimens were analyzed by sequencing 23SrRNA to identify mutations associated with macrolide resistance and parC and gyrA genes associated with potential resistance to moxifloxacin.⁹¹⁰

Page 7 of 36

	119	Sample size was determined by budgetary costs, impact on clinic staff and an acceptable	
	120	margin of error. Using a sample size of 2000, our margin of error was +/- 1% for a 5%	
	121	prevalence rate with 95% confidence. Gender-stratified analysis was performed to compare	
)	122	MG test result and MG resistance testing results by demographic and clinical variables using	
- } 	123	Chi-square or Fisher's exact for discrete variables and Mann-Whitney for continuous variables	,
)) ,	124	excluding missing data. A two-tailed p-value of <0.05 was defined as statistically significant for	-
3	125	univariate analysis. Multivariable logistic regression was performed for both males and female	es
)	126	separately to determine adjusted estimates of odds ratios (AOR) and 95% CI for correlates	
- 	127	independently associated with a positive MG test result. All variables with a statistical	
) ; ,	128	significance of p< 0.10 in univariate analysis were considered in the regression models.	
3	129	Variables were removed from the model if they were deemed to be non-significant or did not	
) <u>></u>	130	contribute significantly to the overall model. In addition, the results from endocervical swabs	
} - -	131	were compared to urine specimens for females and Cohen's Kappa was calculated. A 95%	
)) ,	132	binomial confidence interval (CI) was calculated for each infection prevalence. Data was	
3	133	analyzed using IBM SPSS Statistics version 19.0 (IBM, Armonk, NY, USA). This study was	
) >	134	approved by the University of Alberta Health Research Ethics Board.	
} - -	135		
) ; ,	136	RESULTS	
3	137	A total of 2,294 individuals were tested. Forty patients were removed due to being <18 years	
)) -	138	(n=20) and for having more than 1 visit during the study period (n=20). The overall MG	
} 	139	prevalence was 6.2% (95%Cl 5.2-7.2). One-half (53.8%; n=1,212) of the study population was	
, ; ,	140	men. The male prevalence of MG was 5.3% (95%Cl 4.0-6.5); CT was 5.9% (95%Cl 4.6-7.3) and	
}))			7
,			

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

NG was 1.8% (95%CI 1.1-2.6). Among MSM, the MG prevalence was 6.6% with a CT prevalence of 3.4% and NG prevalence of 1.7%. In heterosexual males, MG prevalence was 4.7% with a CT prevalence of 6.8% and NG prevalence of 2.0%. Of 73 cases of urethritis, 19.2% (n=14) were due to MG. One-third (37.0%; n=27) of NGU cases were negative for MG, CT, and NG. Univariate correlates significantly associated with a higher prevalence of MG infection among males included being symptomatic (p=0.001), a diagnosis of NGU (p<0.001), and co-infection with CT or NG (p=0.005 and p<0.001, respectively) (Table 1). Independent correlates of infection with MG were a diagnosis of NGU (Adjusted Odds Ratio (AOR=7.6 95%CI 3.4-17.2) and .5-20.4, co-infection with NG (AOR=7.2 95%CI 2.5-20.4).

Page 9 of 36

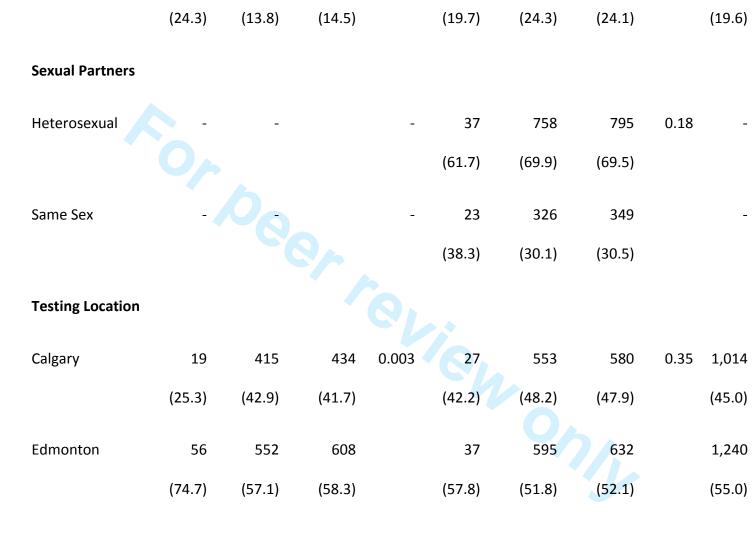

BMJ Open

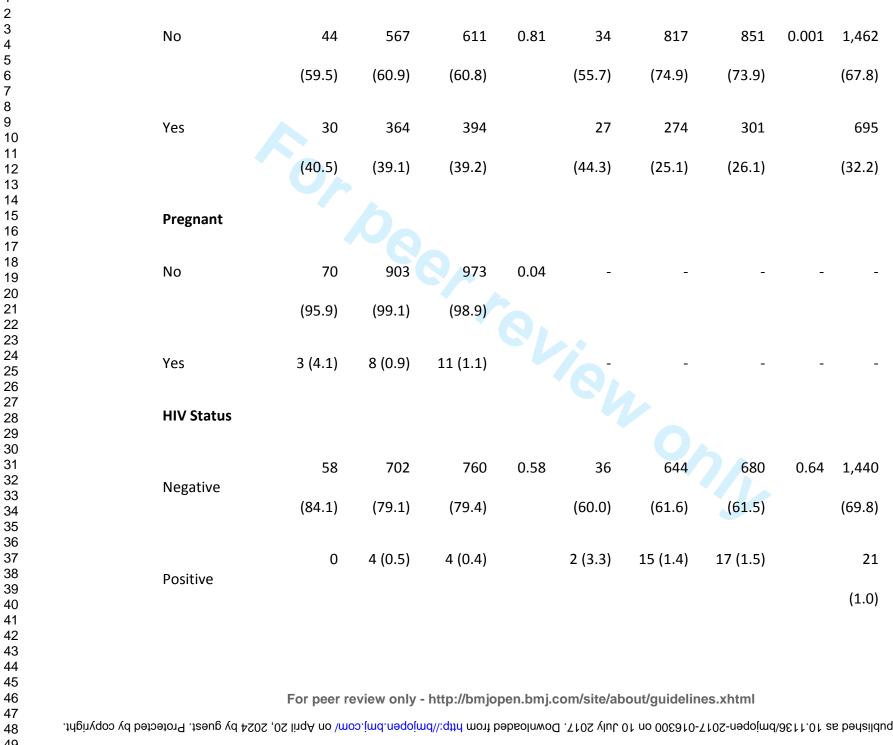
Table 1. Characteristics of M. genitalium Cases (A	Alberta STI Clinics, January to April 2016, N=2,254).
--	---

	Female			Male				Grand	
	Positive	Negative	Total	p-	Positive	Negative	Total	p-	Total
Category	(n=75)	(n=967)	(n=1,042)	value	(n=64)	(n=1,148)	(n=1,212)	value	
Median Age	24 (21-	28 (24-	27 (23-	<0.001	28 (25-	30 (25-	30 (25-	0.53	29
(IQR)	28)	34)	33)		38)	37)	37)		(24-
									35)
Ethnicity									
Caucasian	33	795	728	<0.001	46	762	808	0.72	1,536
	(44.6)	(75.9)	(73.5)		(75.4)	(71.0)	(71.3)		(72.3)
Indigenous	23	95	118		3 (4.9)	50 (4.7)	53 (4.7)		171
	(31.1)	(10.4)	(11.9)						(8.1)
Other	18	126	144		12	261	273		417

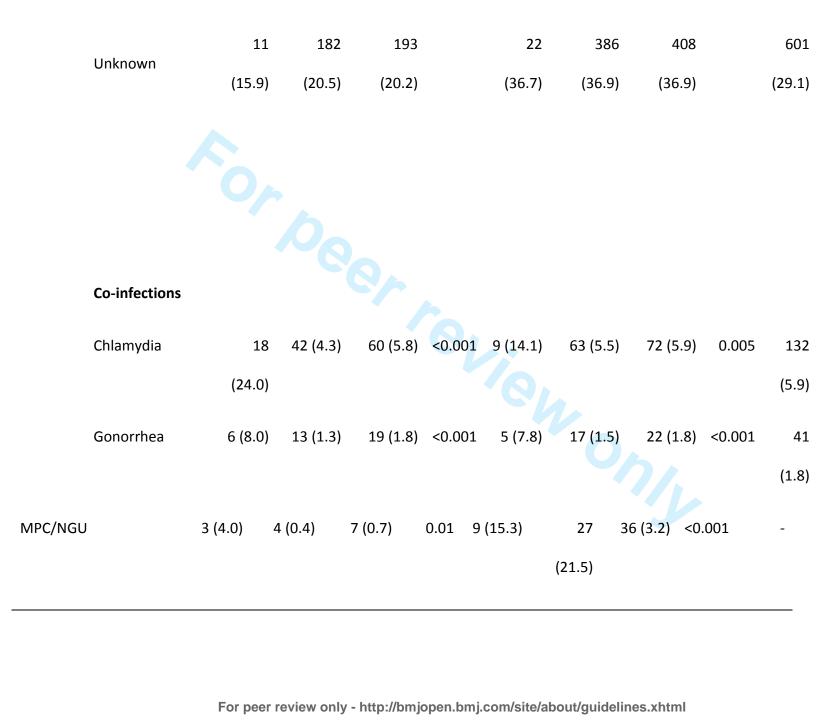
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Symptomatic


 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.


Page 11 of 36

6

 BMJ Open

BMJ Open: first published as 10.024 by guest. Protected by copyright. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

	Multiva	riate Analysis			
	Odds Ratio	95%	Adjusted Odds Ratio	95%	
		Confidence		Confidence	
		Interval		Interval	
Male ¹	000				
Co-infection with	5.6	2.0-15.8	7.2	2.5-20.4	
Gonorrhea					
NGU Diagnosis	6.9	3.1-15.6	7.6	3.4-17.2	
Female ²					
Age (increase in one	0.91	0.87-0.95	0.92	0.8796	
year)					
Indigenous Ethnicity ³	5.1	2.9-9.1	4.3	2.7-8.1	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Other Ethnicity ³	3.0	1.6-5.5	2.8	1.5-5.3
Chlamydia Co-	7.0	3.8-12.9	5.1	2.6-10.2
Infection				
Gonorrhea Co-	5.8	2.0-16.6	3.5	1.0-11.8
Infection	0			

1. Symptoms and CT co-infection were not retained in the final model due to lack of significance.

2. Testing location, pregnancy and MPC diagnosis were not retained in the final model due to lack of

significance.

3. Referent group is Caucasian ethnicity.

Missing data: ethnicity (females=52, males=78), symptomatic (female=37, males=60), HIV status

(female=85, male =107), pregnant=58, sexual partners=68.

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

1 2		
3 4	152	
5 6 7	153	The overall MG prevalence for females, using any positive test result from endocervical/vaginal
8 9	154	or urine results, was 7.2% (95%CI 5.6-8.8). CT prevalence was 5.8% (95%CI 4.3-7.2) and NG was
10 11 12	155	1.8% (95%CI 1.0-2.6). Seven cases (0.7%) of MPC were diagnosed.
13 14 15	156	Univariate correlates significantly associated with a higher prevalence of MG infection (Table 1)
15 16 17	157	among women were younger age (p<0.001), Indigenous ethnicity (p<0.001), Other ethnicity
18 19 20	158	(p<0.001), the Edmonton clinic testing location (p=0.003), being pregnant (p=0.04), CT or NG
20 21 22	159	co-infection (p<0.001, for both), and MPC diagnosis (p=0.01). Independent correlates of
23 24 25	160	infection with MG were younger age (AOR=0.92 95%CI 0.87-0.96), Indigenous ethnicity
25 26 27	161	(AOR=4.3 95%CI 2.7-8.1) and Other ethnicity (AOR=2.8 95%CI 1.5-5.3) (vs. Caucasian), co-
28 29 30	162	infection with CT (AOR=5.1 95%Cl 2.6-10.2) and NG (AOR=3.5 95%Cl=1.0-11.8).
30 31 32	163	
33 34 35	164	Macrolide resistance data provided through 23SrRNA sequencing data was available for two-
36 37	165	thirds (66.2%; n=92) of the 139 positive MG specimens. No significant differences were found
38 39 40	166	between specimens that were and were not sequenced for age, gender, symptoms, same sex
41 42	167	partners (for male cases only), NG, or CT results. There was a significant difference in ethnicity,
43 44 45	168	with fewer specimens from Indigenous cases being typed (46.2%) than from non-Indigenous
46 47	169	cases (70.6%; p=0.02). However, when stratified by gender, the significance was lost (women:
48 49 50	170	p=0.17, men=0.17). Over one-half (56.5%; n=52) of specimens were found to have mutations
51 52	171	associated with macrolide resistance. Of the 73.4% (n=47) positive male specimens sequenced,
53 54 55	172	nearly two-thirds (63.8%; n=30) were found to have mutations in either A2058T (n=3), A2058G
56 57 58	173	(n=12), or A2059G (n=15). There were no variables significantly associated with macrolide

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

resistance, although MSM was marginally associated with resistance among males (83.3% vs. 51.9%; p=0.06; Table 2). Resistance to moxifloxacin was assessed by markers gyrA and parC. Nearly two-thirds (64.1%; n=41) of positive male specimens had parC sequences available and 5 uta .et (12.2%) specimens had a *parC* mutation (Ser \rightarrow Ile83, n=4) and (Asp \rightarrow Tyr87, n=1) signifying possible moxifloxacin resistance. qyrA sequencing was performed on 46 specimens and no qyrA mutations were identified.

BMJ Open

Table 2. Characteristics of Macrolide Resistance in *M. genitalium* Specimens by Gender (Alberta STI Clinics, January to

April 2016, N=92).

Category					Macrolide	resistance			
	~	Fe	male			Male			Grand
	Resistance	Susceptible	Total	p-	Resistance	Susceptible	Total	p-	Total
	(n=22)	(n=23)	(n=45)	value	(n=30)	(n=17)	(n=47)	value	
Median Age	22 (20-26)	26 (22-29)	24 (20-	0.04	29 (23-41)	27 (25-40)	28 (24-	0.90	26
(IQR)			28)				41)		(22-
									31)
Ethnicity									
Caucasian	10 (45.5)	12 (54.5)	22 (50.0)	0.83	22 (75.9)	14 (87.5)	36 (80.0)	0.80	58
									(65.2)
Indigenous	6 (27.3)	5 (22.7)	11 (25.0)		1 (3.4)	0	1 (2.2)		12
									1
	יסד ארוון 20, 2024 by gues	peer review only			-				

						(
Other	6 (27.3)	5 (22.7) 11 (25.0)	6 (20.7)	2 (12.5)	8 (17.8)	
						(
Sexual						
Partners						
Heterosexual	-	6	- 14 (48.3)	13 (81.3)	27 (60.0)	0.06
Same Sex	-	<u>-</u>	- 15 (51.7)	3 (18.8)	18 (40.0)	
Testing						
Location						
Calgary	5 (22.7)	8 (34.8) 13 (28.9)	0.37 10 (33.3)	9 (52.9)	19 (40.4)	0.19
						(
Edmonton	17 (77.3)	15 (65.2) 32 (71.1)	20 (66.7)	8 (47.1)	28 (59.6)	
						(
	For pe	eer review only - http://bmjo	pen.bmi.com/site/about/g	uidelines.xhtml		

BMJ Open: first published as 10.1136/pmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

Symptomatic 14 (63.6) 29 (65.9) 15 (68.2) 0.75 15 (51.7) 11 (68.8) 26 (57.8) 0.27 55 No (61.8) Yes 7 (31.8) 8 (36.4) 15 (34.1) 14 (48.3) 5 (31.3) 19 (42.2) 34 (38.2) **HIV Status** 0.34 19 (95.0) 16 (80.0) 35 (87.5) 20 (71.4) 8 (50.0) 28 (63.6) 0.11 63 Negative (75.0) 2 (7.1) 2 (4.5) 0 0 0 0 2 Positive (2.4) 1 (5.0) 4 (20.0) 5 (12.5) 6 (21.4) 8 (50.0) 14 (31.8) 19 Unknown (22.6)

Co-infections

19

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

181	Among wom	Among women, 23SrRNA sequencing data was available for 60.0% (45/75) of positive							
182	specimens.	specimens. Nearly one-half (48.9%; n=22) had a 23SrRNA mutation associated with macrolide							
183	resistance ir	n A2058G (n=11), A2058T	「(n=5), A2059G (n=6), c	or A2059C (n=1). In univa	ariate				
0 1 184 2	analysis, you	unger median age (22y (I	QR: 20-26) vs. 26y (IQR:	: 22-29); p=0.04; Table 3) was the				
3 4 185	only variable	e significantly correlated	with macrolide resistan	nce. One-half (50.7%; n=	=38) of				
5 6 186 7	positive spe	cimens had <i>parC</i> sequend	cing available and only	1 specimen had a mutat	ion				
8 9 187	signifying po	otential moxifloxacin resis	stance (Asp→Tyr87); no	o gyrA mutations were id	dentified.				
0 1 188 2									
3 4 189	Among the s	subpopulation of women	who had both endocer	rvical swabs and urine co	ollected,				
5 6 190 7	there was hi	igh concordance of result	ts (98.1%; Table 3; Kapp	oa was 0.85 (95% CI: 0.7	5-0.96),				
8 9 191	representing	representing excellent agreement. Only three vaginal swabs were collected during the study							
0 1 192 2	period, ther	efore concordance with u	urine specimens was no	ot calculated. This subpo	pulation of				
3 4 193	women was	more likely to have symp	ptoms (61.1%) than tho	se with urines only (27.	5%;				
5 6 194 7	p<0.001).								
8 9	Table 3.	Concordance of <i>M. genit</i>	talium Results from Cer	vical and Urine Screenin	g among				
0			Women.						
2 3			women.						
4 5 6				Cervix					
7 8					Tatal				
9 0			MG Positive	MG Negative	Total				
1 2		MG Positive	22	3	25				
- 3 4	Urine								
5 6		MG Negative	4	333	337				
7 8 9									
0					21				

1 2									
3 4 5		Tota	l	26	336	362			
6 7 8		22+333/362=98.1% conco	rdance between cei	rvical and urine re	sults.				
9 10 11 12		Kappa: 0.85 (95% CI: 0.75-	0.96)						
13 14 15	195								
16 17	196								
18 19 20	197	DISCUSSION							
21 22	198	Our study underscores the	significance of <i>M</i> .	<i>genitalium</i> as a m	edically significant p	athogen			
23 24 25	199	from urogenital sites. In o	ur male population,	the prevalence o	f MG was 5.3%, with	in the range			
26 27	200	of 3.1%-17.2% reported in	males from other S	STI Clinics. ^{6 11 12 13}	۹ diagnosis of NGU ۱	was			
28 29 30	201	significantly correlated with MG infection among males in our study population, in accordance							
31 32	202	with previous studies reporting a strong association between MG and NGU independent of							
33 34 35	203	Chlamydia infection. ^{1, 5} In a meta-analysis of studies completed up to 2010, MG was associated							
36 37	204	with a pooled odds ratio (DR) of 5.5 (95% CI: 4	1.4-7.0) for NGU. ¹					
38 39 40	205								
41 42	206	The overall MG prevalence	e for females was 7.	2% (95%Cl 5.6-8.8	3), higher than the ra	ange of 3.2-			
43 44 45	207	6% reported in most studi	es of females STI cli	nic attendees. ^{6 12}	^{14 15} In females, MG	has been			
46 47	208	associated with significant	morbidity including	g MPC, PID and in	fertility, but the asso	ociation			
48 49 50	209	between MG and symptor	ns is less clear. ^{10 16 1}	⁷ Among female S	STI clinic attendees i	n some			
51 52	210	studies, 40-75% were asyn	nptomatic ^{14 15} but a	1994-96 French s	study reported a ver	y high			
53 54 55	211	prevalence of MG of 38% a	among symptomation	c female STI clinic	attendees. ¹⁶ The pr	esence of			
56 57	212	symptoms was not an inde	ependent correlate	of MG infection ir	n our study.				
58 59 60						22			

1 2		
3 4	213	
5 6 7	214	Independent correlates of female infection with MG in our study were younger age, in contrast
8 9	215	to two other studies which reported that the prevalence of MG peaked approximately 5 years
10 11 12	216	later for both men and women and remained higher in older age groups. ¹⁸¹⁹ Co-infection with
13 14	217	CT and NG was common in our patients, confirming the role of MG as a sexually transmitted
15 16 17	218	pathogen and the probable overlap in behavioural and demographic characteristics for these
18 19	219	STIs.
20 21 22	220	
23 24 25	221	Indigenous (First Nations, Inuit, Metis) ethnicity and other non- Caucasian ethnicity were also
25 26 27	222	significant correlates of MG infection. Other studies have reported higher rates of MG in non-
28 29 30	223	Caucasian populations. ^{20 21} Our finding of disproportionately high rates of MG among
30 31 32	224	Indigenous persons is in keeping with the higher estimated STI prevalence in Canadian
33 34 35	225	Indigenous persons when compared to the overall general population. ^{22 23} First Nations persons
36 37	226	represent an estimated 3.8% of the overall Canadian population but chlamydia rates are
38 39 40	227	estimated to be 7 times higher among First Nations adults than the overall population. ²² The
41 42	228	reasons for the observed disproportionately high rates of STIs are unclear but Indigenous
43 44 45	229	persons in Canada are also over-represented in adolescent pregnancy and under-represented in
46 47	230	sexual health research. ²⁴ A recent First Nations Regional Health Survey stressed the importance
48 49 50	231	of colonial history, barriers to health care services and socio-economic disadvantage. ²²
51 52	232	
53 54 55	233	It is very likely that appropriate treatment of MG infections will result in reduced sexual
56 57	234	transmission as well as prevention of complications. ² Alternates to macrolides and
58 59 60		23
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

moxifloxacin, the antibiotics usually proposed for the treatment of MG, are limited since the lack of a cell wall in MG precludes the use of penicillins and other beta lactam antibiotics.²⁵ Further complicating this is that mycoplasmas can develop resistance either by gene mutation or by acquisition of a resistance gene.²⁶ Since azithromycin has been proposed as the preferred first line agent for the treatment of MG infections^{27 28}, the high rate of mutations (~2/3 of eligible specimens) conferring resistance to azithromycin in our study is particularly alarming. Strains of *M. genitalium* began to develop resistance to azithromycin and have continued to do so through mutations in region V of the 23S ribosomal RNA gene.²⁹ Macrolide resistance rates vary significantly by geographic region with 58% resistance reported in the only published Canadian study conducted in Eastern Canada.⁶ This level of resistance is well above the threshold of 5% resistance above which the World Health Organization typically recommends against the routine use of a drug for first line treatment of an STI.³⁰ A recent review reported that the efficacy of azithromycin 1 gm for the treatment of urogenital MG has decreased from 85% prior to 2009 to 60% in early 2015.⁷ This had been postulated to be due to increasing prevalence of macrolide resistance due to the widespread use of azithromycin for the treatment of CT, NGU and MPC.^{7 31 32 33} In a recent meta-analysis, persistent MG was associated with a pooled OR of 26 (95% CI: 11–57) for persistent urethritis, demonstrating that failure to eradicate MG leads to persistent or recurrent signs and symptoms of urethritis in the majority of men.⁷ The observation of MG as a significant pathogen in both NGU and MPC has generated much discussion around whether azithromycin, and especially single dose azithromycin should continue to be recommended as the preferred agent for these STI syndromes.³¹ Instead it has been proposed that doxycycline be used as the first line agent because even though it is in only

2 3	257	30-40% effective against MG, it does not induce the development of antimicrobial resistance. ³¹
4 5	231	
6 7	258	
8 9	259	Moxifloxacin has been proposed as the drug of choice for treatment failures with
10 11 12	260	azithromycin ^{27 28} but our finding of potentially 12.2% resistance to moxifloxacin as assessed by
13 14	261	markers gyrA and parC is also above the 5% threshold set by the WHO. ³⁰ Earlier studies
15 16 17	262	reported cure rates of 100% with moxifloxacin. ^{32 34 35} However, more recently Tagg et al.
18 19	263	reported macrolide resistance-associated mutations in the 23S rRNA gene in 43% of samples
20 21 22	264	and mutations in <i>parC</i> or <i>gyrA</i> sequences in 15% of samples. ³⁶ Touati et al reported a point
23 24	265	mutation in the 23S rRNA gene in 14.2% of samples. ³⁷
25 26 27	266	
28 29	267	Despite the relatively high prevalence of MG in both males and females in ours and other
30 31 32	268	studies, the potential for significant morbidity and enhanced HIV transmission, global
33 34	269	recommendations for MG screening are currently very diverse in part due to lack of access to
35 36 37	270	good tests for MG. In the absence of an FDA approved test for MG, the U.S. CDC STD Treatment
38 39	271	guidelines suggest that MG be suspected in cases of persistent/recurrent urethritis, cervicitis
40 41 42	272	and PID. ²⁷ Canada has a single Health Canada approved test for MG (Seegene Inc, Seoul, Korea)
43 44	273	which is not widely available. The Europeans currently have the broadest recommendations for
45 46 47	274	screening for MG including persons with STI symptoms and those engaging in high-risk sexual
48 49	275	behavior, with a strong recommendation that all positive tests be followed by an assay capable
50 51 52	276	of detecting macrolide resistance mutations. ²⁸
53 54 55 56 57	277	
58 59 60		25

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

The optimal specimen type for MG testing remains unresolved with urine specimens considered acceptable in males and females and in females, vaginal swabs are also considered suitable.²⁵ In our study, the excellent agreement between the test performance in female endocervical swabs and urine is reassuring and supports the use of less invasive urine specimens for testing in females. It should be noted, however, that the comparison of test positivity in female urine and female endocervical swabs is likely biased since the subpopulation included in this calculation were more likely to be symptomatic than those not included. Organism burden may play a role in whether a woman is symptomatic or asymptomatic, and organism burden is also likely associated with test positivity.³⁸ Our study has a few limitations. Firstly, our specimens were collected in STI clinic patients in Western Canada and may not be generalizable to other STI clinics and are likely to be higher than rates reported in non-STI clinic populations. Secondly, although the specimens were collected prospectively, we were only able to collect a limited number of additional variables in addition to standard data collection at the clinics due to time constraints; this may have limited our ability to identify additional correlates of MG. Thirdly, as tetracycline resistance-associated mutations have not so far been identified in *M. genitalium*³⁹, we did not test our samples for resistance to doxycycline; this information may have been useful in guiding empiric treatment regimens for NGU and cervicitis in our region. In summary, our study found a MG prevalence of 6.2% in attendees at two Western Canadian

299 STI Clinics, within the range reported in other studies, but higher than that for chlamydia (in

females) and gonorrhea (in both genders). Over one-half of tested isolates were resistant to macrolides. These findings together with the high proportion of asymptomatic carriers who could facilitate the spread of infection, the potential for significant morbidity and the potential for enhanced HIV transmission support recommendations for broader screening for MG. The high prevalence of macrolide resistance also supports the recommendation to follow all positive tests with an assay that can detect macrolide resistance mutations.²⁸ Judicious use of antibiotics for the empiric treatment of NGU and MPC is needed to mitigate the further development of resistance to currently used antibiotics and to optimize treatment of CT, NG and MG. In order to facilitate this, wider access to testing for MG and adaptation of most existing guidelines will be necessary.

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

1 2		
3 4	310	ACKNOWLEDGEMENTS
5 6 7 8 9 10 11 21 31 41 51 61 71 81 92 21 22 32 42 52 62 72 82 93 31 32 33 43 53 63 73 83 94 41 42 43 44 54 64 74 84 95 51 52 55 55 55 55 55 55 55 55 55 55 55 55	311	We thank Hologic Inc, Canada for providing the test kits used in this study, the study
	312	participants and staff of the Edmonton and Calgary STI clinics for enrolling patients in the study.
	313	
	314	FUNDING
	315	This work was funded in part by an internal grant from Alberta Health Services- STI Centralized
	316	Services to the Alberta Provincial Laboratory for Public Health to complete testing. M.
	317	genitalium test kits were provided by Hologic Inc, Canada.
	318	
	319	COMPETING INTERESTS None
	320	
	321	AUTHOR CONTRIBUTIONS JG, SP, PN, LT, MC, IM, PS, RR, LB and AS developed the study
	322	design, protocol and ethics submission. LB coordinated funding for the study. JG, SP conducted
	323	epidemiologic analyses. JG, SP, AS drafted manuscript. PP, BB, JB, RS coordinated the study in
	324	the clinics. AB, SS, LT and IM coordinated and/or conducted laboratory testing. All authors
	325	contributed to final manuscript review.
	326	contributed to final manuscript review.
	327	DATA SHARING STATEMENT: No additional data are available.
	328	
	329	DISCLAIMER
53 54	330	The opinions expressed in this manuscript are those of the authors and should not be construed
55 56 57	331	to be those of any affiliated organization or entity.
58 59 60		28

2			
2 3 4	332	REFERI	ENCES
5 6 7	333	1.	Taylor-Robinson D, Jensen JS. Mycoplasma genitalium: from Chrysalis to multicolored
8 9	334		butterfly. <i>Clin Microbiol Rev</i> 2011; 24 :498-514.
10 11 12	335	2.	Lis R, Rowhani-Rahbar A, Manhart LE. Mycoplasma genitalium Infection and Female
13 14	336		Reproductive Tract Disease: A Meta-Analysis. Clin Infect Dis 2015;61:418-26.
15 16 17	337	3.	Short VL, Totten PA, Ness RB, et al. Clinical presentation of Mycoplasma genitalium
18 19	338		infection versus Neisseria gonorrhoeae infection among women with pelvic
20 21 22	339		inflammatory disease. <i>Clin Infect Dis</i> 2009; 48 :41-7.
23 24	340	4.	Napierala Mavedzenge S, Weiss HA. Association of Mycoplasma genitalium and HIV
25 26 27	341		infection: a systematic review and meta-analysis. <i>AIDS</i> 2009; 23 :611-620.
28 29	342	5.	Manhart LE, Broad JM, Golden MR. Mycoplasma genitalium: should we treat and how?
30 31 32	343		<i>Clin Infect Dis</i> 2011; 53 Suppl 3 :S129-42.
33 34	344	6.	Gesink D, Racey CS, Seah C, et al. Mycoplasma genitalium in Toronto, Canada: Estimates
35 36 37	345		of Prevalence and Macrolide Resistance. Can Fam Physician 2016;62:e96-101.
38 39	346	7.	Lau A, Bradshaw CS, Lewis D, et al. The efficacy of azithromycin for the treatment of
40 41 42	347		genital Mycoplasma genitalium: a systematic review and meta-analysis. Clin Infect Dis
43 44	348		2015; 61 :1389–99.
45 46 47	349	8.	Bissessor M, Tabrizi SN, Twin J, et al. Macrolide resistance and azithromycin failure in a
48 49	350		Mycoplasma genitalium-infected cohort, and response of azithromycin failures to
50 51 52	351		alternative antibiotic regimens. Clin Infect Dis 2015; 60:1228–36.
53 54			
55 56 57			
58 59			29
60			29

Page 30 of 36

BMJ Open

1

2			
3 4	352	9. Jensen JS. Protocol for the detection of <i>Mycoplasma genitalium</i> by PCR from clinical	
5 6 7 8 9	353	specimens and subsequent detection of macrolide resistance-mediating mutations in	
	354	region V of the 23SrRNA gene. <i>Method Molec Biol</i> 2012, 903 :129-139.	
10 11 12	355	10. Shimada Y, Deguchi T, Nakane K, et al. Emergence of clinical strains of Mycoplasma	
13 14	356	genitalium harbouring alterations in ParC associated with fluoroquinolone resistance.	
15 16 17	357	Int J Antimicrob Agent 2010, 36 :255-8.	
18 19	358	11. Getman D, Jiang A, O'Donnell M, Cohen S. Mycoplasma genitalium Prevalence,	
20 21 22	359	Coinfection, and Macrolide Antibiotic Resistance Frequency in a Multicenter Clinical	
23 24	360	Study Cohort in the United States. J Clin Microbiol. 2016;54:2278-83.	
25 26 27	361	12. de Jong AS, Rahamat-Langendoen JC, van Alphen P, <i>et al</i> . Large two-centre study into	
27 28 29	362	the prevalence of Mycoplasma genitalium and Trichomonas vaginalis in the	
30 31 32	363	Netherlands. Int J STD AIDS 2016; 27 :856-60.	
33 34	364	13. van der Veer C, van Rooijen MS, Himschoot M, <i>et al. Trichomonas vaginalis</i>	
35 36 37	365	and Mycoplasma genitalium: age-specific prevalence and disease burden in men	
38 39	366	attending a sexually transmitted infections clinic in Amsterdam, the Netherlands. Sex	
40 41 42	367	Transm Infect 2016; 92 :83-5.	
43 44	368	14. Falk L, Fredlund H, Jensen JS. Signs and symptoms of urethritis and cervicitis among	
45 46 47	369	women with or without Mycoplasma genitalium or Chlamydia trachomatis infection. S	еx
48 49	370	Transm Infect 2005; 81 :73–78.	
50 51 52	371	15. Anagrius C, Lor e B, Jensen JS. Mycoplasma genitalium: prevalence, clinical significanc	e,
53 54	372	and transmission. Sex Transm Infect 2005; 81: 458–462.	
55 56 57			
58 59			
60			30

2		
3 4	373	16. Casin I, Vexiau-Robert D, de la Salmoniere P, et al. High prevalence of Mycoplasma
5 6 7	374	genitalium in the lower genital tract of women attending a sexually transmitted disease
8 9 10	375	clinic in Paris, France. Sex Transm Dis 2002; 29 :353–9.
11 12	376	17. Huppert JS, Mortensen JE, Reed JL, et al. Mycoplasma genitalium detected by
13 14 15	377	transcription-mediated amplification is associated with Chlamydia trachomatis in
16 17 18	378	adolescent women. Sex Transm Dis 2008;35:250-4.
19 20	379	18. Jensen JS, Bj€ornelius E, Dohn B, Lidbrink P. Comparison of first void urine and
21 22 23	380	urogenital swab specimens for detection of Mycoplasma genitalium and Chlamydia
24 25	381	trachomatis by polymerase chain reaction in patients attending a sexually transmitted
26 27 28	382	disease clinic. <i>Sex Transm Dis</i> 2004; 31 :499–507.
29 30	383	19. Salado-Rasmussen K, Jensen JS. Mycoplasma genitalium testing pattern and macrolide
31 32 33	384	resistance: a Danish nationwide retrospective survey. Clin Infect Dis 2014; 59:24–30.
34 35	385	20. Sonnenberg P, Ison CA, Clifton S, et al. Epidemiology of Mycoplasma genitalium in
36 37 38	386	British men and women aged 16–44 years: evidence from the third National Survey of
39 40	387	Sexual Attitudes and Lifestyles (Natsal-3). Int J Epidemiol 2015;44:1982-94.
41 42 43	388	21. Hancock EB, Manhart LE, Nelson SJ, et al. Comprehensive assessment of
43 44 45	389	sociodemographic and behavioral risk factors for Mycoplasma genitalium infection in
46 47 48	390	women. <i>Sex Transm Dis</i> 2010; 37 :777-83.
49 50	391	22. The First Nations Information Governance Centre, First Nations Regional Health Survey
51 52 53	392	(RHS) Phase 2 (2008/10) National Report on Adults, Youth and Children Living in First
54 55	393	Nations Communities. 2012.
56 57		
58 59		
60		3

Page 32 of 36

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

1 2		
3 4	394	http://fnigc.ca/sites/default/files/First_Nations_Regional_Health_Survey_2008-
5 6 7	395	10_National_Report.pdf (accessed 19 Jan 2017).
8 9	396	23. Public Health Agency of Canada. Population-Specific HIV/AIDS Status Report: Aboriginal
10 11	397	Peoples. 2010. http://www.catie.ca/sites/default/files/26344.pdf (accessed 19 Jan
12 13 14	398	2017).
15 16	399	24. Devries KM, Free CJ, Morison L, Saewyc E. Factors associated with pregnancy and STI
17 18 19	400	among Aboriginal students in British Columbia. Can J Public Health 2009;100:226-30.
20 21	401	25. Jensen JS, Cusini M, Gomberg M, Moi H. Background review for the 2016 European
22 23 24	402	guideline on Mycoplasma genitalium infections. J Eur Acad Dermatol Venereol
25 26 27	403	2016; 30 :1686-93.
27 28 29	404	26. Taylor-Robinson D. Diagnosis and antimicrobial treatment of Mycoplasma
30 31 32	405	genitalium infection: sobering thoughts. Expert Rev Anti Infect Ther 2014;12:715-22.
33 34	406	27. Centers for Disease Control and Prevention. Sexually Transmitted Diseases Treatment
35 36 37	407	Guidelines, 2015. https://www.cdc.gov/std/tg2015/ (accessed 16 Jan 2017).
38 39	408	28. Jensen JS, Cusini M, Gomberg M. 2016 European Guideline on <i>Mycoplasma genitalium</i>
40 41 42	409	infections.
43 44		
45 46	410	http://www.iusti.org/regions/europe/pdf/2016/2016EuropeanMycoplasmaGuidelines.p
47 48	411	df (accessed 16 Jan 2017).
49 50	412	29. Jensen JS, Bradshaw CS, Tabrizi SN, et al. Azithromycin treatment failure in Mycoplasma
51 52 53	413	genitalium-positive patients with nongonococcal urethritis is associated with induced
54 55	414	macrolide resistance. Clin Infect Dis 2008;47:1546-53.
56 57		
58 59		32
60		

Page 33 of 36

1 2			
3 4	415	30. World Health Organization. Guidelines for the management of sexually transmitted	
5 6 7	416	infections. 2003. WHO, Geneva, Switzerland.	
8 9 10	417	31. Horner PJ. Editorial Commentary: Mycoplasma genitalium and Declining Treatment	
11 12 13	418	Efficacy of Azithromycin 1 g: What Can We Do? <i>Clin Infect Dis</i> 2015; 61 :1400-2.	
14 15	419	32. Anagrius C, Loré B, Jensen JS. Treatment of Mycoplasma genitalium: observations fro	m
16 17 18	420	a Swedish STD Clinic. PLoS One 2013; 8: e61481.	
19 20	421	33. Ito S, Shimada Y, Yamaguchi Y, et al. Selection of Mycoplasma genitalium strains	
21 22 23	422	harbouring macrolide resistance-associated 23S rRNA mutations by treatment with a	
24 25	423	single 1 g dose of azithromycin. <i>Sex Transm Infect</i> 2011; 87 :412–4.	
26 27 28	424	34. Bradshaw CS, Chen MY, Fairley CK. Persistence of Mycoplasma genitalium following	
29 30	425	azithromycin therapy. PLoS One 2008; 3:e3618.	
31 32 33	426	35. Jernberg E, Moghaddam A, Moi H. Azithromycin and moxifloxacin for microbiological	
34 35	427	cure of Mycoplasma genitalium infection: an open study. Int Journal STD AIDS	
36 37 38	428	2008; 19 :676–9.	
39 40 41	429	36. Tagg KA, Jeoffreys NJ, Couldwell DL, et al. Fluoroquinolone and macrolide resistance-	
42 43	430	associated mutations in Mycoplasma genitalium. J Clin Microbiol 2013;51:2245-9.	
44 45 46	431	37. Touati A, Peuchant O, Jensen JS, Bébéar C, Pereyre S. Direct detection of macrolide	
47 48	432	resistance in Mycoplasma genitalium isolates from clinical specimens from France by	
49 50 51	433	use of real-time PCR and melting curve analysis. <i>J Clin Microbiol</i> 2014; 52 :1549-55.	
52 53	434	38. Michel CE, Sonnex C, Carne CA, et al. Chlamydia trachomatis load at matched anatom	nic
54 55 56	435	sites: implications for screening strategies. J Clin Microbiol 2007;45:1395-402.	
57 58 50			
59 60			33

1 2		
2 3 4	436	39. Couldwell DL, Lewis DA. Mycoplasma genitalium infection: current treatment options,
5 5 7	437	therapeutic failure, and resistance associated mutations. Infect Drug Resist 2015;8:147-
3 9	438	61.
10 11	439	
12 13 14		
15 16		
17 18		
19 20		
21 22 23		
24 25		
26 27		
28 29		
30 31 32		
33 34		
35 36		
37 38		
39 40 41		
42 43		
44 45		
46 47		
48 49 50		
51 52 53		
54		
55 56		
55 56 57 58 59 60		
60		34

	Item No	Recommendation	Reported
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	2-3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
8		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection	6
		of participants	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	6-7
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	6-9
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6
Study size	10	Explain how the study size was arrived at	8
Quantitative	11	Explain how quantitative variables were handled in the analyses. If	8-9
variables		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	8-9
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	8-9
		(c) Explain how missing data were addressed	8
		(d) If applicable, describe analytical methods taking account of sampling	N/A
		strategy	
		(e) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	9
		potentially eligible, examined for eligibility, confirmed eligible, included	
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	9
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	9,18,
		social) and information on exposures and potential confounders	Table 1
		(b) Indicate number of participants with missing data for each variable of	17
		interest	
Outcome data	15*	Report numbers of outcome events or summary measures	9,18-19
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	
		estimates and their precision (eg, 95% confidence interval). Make clear	
		which confounders were adjusted for and why they were included	

BMJ Open: first published as 10.1136/bmjopen-2017-016300 on 10 July 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

		(b) Report category boundaries when continuous variables were	9,18-19
	_	categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute	N/A
		risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	N/A
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	25-29
Limitations	19	Discuss limitations of the study, taking into account sources of potential	30
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	25-29
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	30
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	32
-		and, if applicable, for the original study on which the present article is	
		based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.