BMJ Open

Red cell distribution width improves prognostic performance of the Acute Physiology and Chronic Health Evaluation II score in obstetric patients admitted to intensive care unit

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-012849
Article Type:	Research
Date Submitted by the Author:	27-May-2016
Complete List of Authors:	Chu, Yufeng; Shandong Provincial Hospital Affiliated to Shandong University Yuan, Zhongshang; Shandong University, Department of Epidemiology and Biostatistics Meng, Mei; Shandong Provincial Hospital Affiliated to Shandong University Zhou, Haiyan; Shandong Tumor Hospital and Institute Wang, Chunting; Shandong Provincial Hospital Affiliated to Shandong University Ren, Hongsheng; Shandong Provincial Hospital Affiliated to Shandong University, Department of Intensive Care Unit
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Obstetrics and gynaecology
Keywords:	APACHE-II score, Critical care, Mortality, Obstetrics, Red cell distribution width

SCHOLARONE[™] Manuscripts

TITLE PAGE

Red cell distribution width improves prognostic performance of the Acute Physiology and Chronic Health Evaluation II score in obstetric patients admitted to intensive care unit

Yufeng Chu, ^{a, *} Zhongshang Yuan, ^{b, *} Mei Meng, ^a Haiyan Zhou, ^c Chunting Wang, ^a Hongsheng Ren ^a

^a Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, P.R. China

^b Department of Epidemiology and Biostatistics, School of Public Health, Shandong University, Jinan, P.R. China

^c Department of Medical Oncology ,Shandong Tumor Hospital, Jinan, P.R. China

Yufeng Chu and Zhongshang Yuan are co-first authors.

Corresponding author:

Hongsheng Ren, MD, Ph. D.

Department of Intensive Care Unit

Shandong Provincial Hospital Affiliated to Shandong University

No. 324 Jingwu Road, Jinan, Shandong, 250012, P.R. China

Email: sdslicu@163.com

Abstract

Objectives: Red blood cell distribution width (RDW) has been shown to predict mortality in critically ill patients. The primary aim of this study was to examine the association between RDW and ICU mortality in obstetric critical care patients. The secondary aim was to investigate whether adding RDW to Acute Physiology and Chronic Health Evaluation II (APACHE II) improves the prognostic performance of APACHE II.

Setting: Single center, retrospective observational study in China.

Participants: A total of 447 consecutive obstetric patients admitted in the ICU from January 1, 2008 to December 31, 2013 were included. Patients were excluded if they had known hematologic diseases, history of recent blood transfusion, and patients who died or were discharged from ICU within 24 hours of admission.

Primary outcome measures: Each patient's ICU entrance characteristics including RDW were retrieved. APACHE II scores were calculated using the worst value of 12 acute physiological variables within 24 hours of presentation. The primary end point of the study was ICU mortality. The primary predictor of interest was RDW and APACHE II scores at ICU admission.

Results: A total of 376 patients were included in this present study. ICU mortality was 5.32%. A significant association was found between baseline RDW levels and ICU mortality (hazard ratio per percent increase in RDW, 1.21; 95% CI, 1.02 to 1.57). After categorization based on tertile of baseline RDW, as well as further adjustment for hematocrit and other risk factors, a

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

BMJ Open

graded independent association between RDW and mortality was observed (P<0.001). The addition of RDW to the APACHE II score improved the AUC for ICU mortality from 0.766 to 0.872 (P<0.001).

Conclusions: RDW is an independent predictor for ICU mortality in Chinese obstetric critical care patients. Combining RDW to APACHE II scores could further improve its prognostic performance.

Key words: APACHE-II score; Critical care; Mortality; Obstetrics; Red cell distribution width

Strengths and limitations of this study

• Red cell distribution width (RDW), a quantitative measure of erythrocyte size variability, is an independent prognostic outcome predictor in obstetric critical care patients.

• RDW significantly improved the prognostic accuracy of the APACHE II score in obstetric critical care patients.

• The study was a single-center study. It was very heterogenous, and patient numbers were relatively small, so large epidemiologic study may be required to validate the findings.

Introduction

Despite the advances in the care of obstetric patients, maternal mortality ratio (MMR) has remained high, especially in developing countries.^{1, 2} The use of scoring systems to assess severity and predict mortality may help identify obstetric patients who truly require intensive care.³ Acute Physiology and Chronic Health Evaluation II (APACHE II) scores are predictive scores for mortality that are widely used in the general population. However, results from obstetric patients have shown some inconsistencies; wherein, some studies have shown that these scores are a good predictor of illness severity, while more studies have shown that these scores overestimated mortality.^{4, 5, 6, 7-9} Further work is need to improve the prognostic accuracy of APACHE II scores in obstetric patients.

Red cell distribution width (RDW) is a parameter that is easy and inexpensive to obtain, and reflects the degree of heterogeneity of erythrocyte volume.¹⁰ RDW was used in the differential diagnosis of anemia in the past decades.¹¹ Recently, RDW has been shown to be a novel, independent prognostic marker for mortality, mainly in patients with cardiovascular disease and strokes, as well as in critically ill patients.¹²⁻¹⁹ However, few ICU subpopulations have been studied so far. The obstetric population is of special interest because of the limitations of existing scoring system, which largely are based on physiological parameters.

Therefore, we conducted a retrospective study to evaluate the prognostic value of RDW, and investigated whether adding RDW could improve the prognostic performance of APACHE-II scores in critically ill obstetric patients.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Methods

This study was approved by the Institutional Review Board of the Provincial Hospital Affiliated to Shandong University. Obstetric patients consecutively admitted in the ICU for at least 24 hours from January 1, 2008 to December 31, 2013 were included in this retrospective observational study. The requirement for patient consent was waived because this study did not affect the patient's clinical care, and all protected health information was deleted. Obstetric patients were defined as pregnant women or up to six weeks postpartum. This study was carried out at the Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China. The hospital is a 1500-bed tertiary academic hospital with 20 ICU beds. The hospital provides primary as well as tertiary care to an ethnically and socioeconomically diverse population within Shandong province and the surrounding region. The decision to transfer patients into the ICU was made by at least one senior critical care doctor and one senior obstetric doctor. Likewise, these doctors also made decisions to discharge patients or to transfer patients to general wards. Patients were excluded if they had known hematologic diseases (including leukemia, thrombotic thrombocytopenic purpura, and other hematologic diseases) or history of recent blood transfusion (less than two weeks). Patients who died or were discharged from the ICU within 24 hours of admission were excluded, because data was difficult to obtain from these patients.

Data collection

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

Demographic and clinical characteristics including age, gestational age, parity, pregnancy status at admission, diagnosis at entry and during ICU stay, and length of hospital stay were collected. The cesarean section was considered an emergency intervention. Diagnosis of acute kidney injury (AKI) was based on the Acute Kidney Injury Network (AKIN) criteria (20). AKI was defined as an absolute increase in serum creatinine of more than or equal to 0.3 mg/dl, a percentage increase in serum creatinine of more than or equal to 50% (1.5 fold from baseline) within 48 hours, or reduction in urine output (documented oliguria of less than 0.5 ml/Kg per hour for more than six hours).²⁰ APACHE II scores were calculated using the worst value of 12 acute physiological variables within 24 hours of presentation. These variables included temperature, blood pressure, heart rate, respiratory rate, arterial oxygenation, arterial pH, serum sodium, serum potassium, serum creatinine, hematocrit, white blood cell count, and Glasgow Coma scores. If the patient was sedated at the time of ICU admission, the last Glasgow Coma Scale obtained prior to sedation was collected. RDW, hemoglobin level, hematocrit and mean corpuscular volume (MCV) of all patients included in this study were determined at admission using a Beckman Coulter LH-750 Hematology Analyzer (Beckman Coulter, Inc., Fullerton, California), as a part of the complete blood cell count. Normal reference range for RDW in the hospital laboratory is 10.9% to 15.4%.

Study outcomes

All patients were followed up during hospitalization. The primary end point of the study was ICU mortality. The primary predictor of interest was RDW and APACHE II scores at ICU admission.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Statistics

All continuous variables were presented as means ± standard deviations, or medians with interquartile ranges as appropriate. Categorical data were summarized as number or percentage. We divided RDW into tertiles, and compared the demographics, diagnosis, clinical characteristics, laboratory test results, and APACHE-II scores of patients using analysis of variance or Kruskal-Wallis tests for continuous variables, and Chi-square or Fisher's exact tests for categorical variables. Univariate logistic regression analysis was conducted to examine the association between mortality and each of the predictors, separately. Multivariate logistic regression was further utilized to determine independent predictors of ICU mortality after adjusting for potential confounding factors. An appealing receiver operating characteristic (ROC) curve was used to examine the performance of APACHE-II scores and RDW in predicting ICU mortality. The curve represented a sensitivity plot versus 1specificity. The area under the curve (AUC) was derived from the ROC curve, and the Youden index was adopted to define the optimal cut-off value.²¹ We also constructed an ROC curve for the combined APACHE-II score and RDW results for predicting ICU mortality according to the weighted sum formula derived from multivariate logistic regression: logit (mortality) = 0.162 xAPACHE-II score + 0.203 x RDW - 7.503; wherein, logit (mortality) is the logarithm of the odds of a critically ill obstetric patient dying in the ICU. Differences between the AUC were detected by Delong's test.²² Two-sided *P*values <0.05 were considered statistically significant, and all analyses were performed with R software (http://www.cran.r-project.org/).

Results

Population

A total of 447 obstetric patients who were admitted to ICU were initially enrolled in this study. ICU admission rate was 21.73 per 1,000 births. Eight patients who were diagnosed with hematologic disease and 59 patients who received red blood cell transfusion within two weeks were excluded. Two patients who died within 24 hours after ICU admission were also excluded. Two patients were excluded for missing data. In the final analysis, 376 patients were included in this study.

Association between RDW and ICU mortality

A total of 20 deaths occurred in this cohort during the study period. ICU mortality was 5.32%, and RDW ranged from 10.7% to 24.0% (median, 14.8%; interquartile range, 13.4% to 16.0%).

Participants were divided into three categories on the basis of their baseline tertiles of RDW level: tertile I, 10.7%-13.9%; tertile II, 13.9%-15.6%; tertile III, 15.6%-20.4% (all *P*<0.001). There was no difference in age, gestational weeks, primary reasons for ICU admission, AKI morbidity, as well as in the total length of stay in hospital (TLSH) among the three tertiles. Hb, MCV and HCT significantly decreased with the increase of RDW, while APACHE II scores and ICU mortality significantly increased with the increase of RDW (Table 1). A significant association was found between baseline RDW levels and ICU mortality (hazard ratio per percent increase in RDW, 1.21; 95% CI, 1.02 to 1.57).

1
2
2 3 4 5 6 7 8
4
5
6
7
8
0
3
10
8 9 10 11
12
12 13 14 15
14
15
16
17
10
10
19
20
21
22
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
24
25
26
27
21
28
29
30
31
32
33
34
35
36
30
31
38
39
40
41
42
43
44
45
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Regression analysis for ICU mortality

Univariate logistic regression analysis demonstrated that patients with higher RDW, higher APACHE-II scores, higher AKI morbidity, and longer TLSH days had significantly greater death hazards (Table 2). Multivariate logistic regression analysis revealed that RDW, AKI and APACHE-II scores were independent predictors of ICU mortality (Table 3). The association of RDW and ICU mortality remained significant after adjusting for age, hemoglobin, MCV, hematocrit, APACHE-II score and AKI. RDW was a significant outcome predictor, which is independent of APACHE-II scores.

A ROC curve was drawn to evaluate the value for RDW and APACHE-II scores in predicting mortality (Figure 1). The AUC was calculated as 0.766 (95% CI, 0.705 to 0.826) for the APACHE-II score and 0.752 (95% CI, 0.684 to 0.862) for RDW. Optimal cut-off value of the APACHE-II score for predicting mortality was five points, which gave a sensitivity of 90.9% and a specificity of 60.7%. The optimal cut-off value of RDW was 16.1%, which gave a sensitivity of 68.2% and specificity of 77.9%. To further clarify whether RDW had an additive power with the APACHE-II score for ICU mortality, we combined RDW and the APACHE-II score to draw a third ROC curve, as shown in Figure 1. Compared with the APACHE-II score, adding RDW to APACHE-II scores improved the AUC from 0.766 to 0.872 (*P*<0.001). These results suggest that combining RDW and APACHE-II added to the ability to discriminate mortality risk.

Discussion

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

The main finding of our study was that RDW was independently associated with ICU mortality in obstetric critical care patients of China. This association remained significant even after adjusting for APACHE-II scores, hemoglobin levels, hematocrit and mean corpuscular volume. Combining RDW and the APACHE-II score improved the prognostic accuracy of ICU mortality predicted by APACHE-II alone in the study population.

We found that RDW was independently associated with ICU mortality in a Chinese obstetric ICU population. Patients were excluded if they had a history of recent blood transfusions because RDW could be increased in anemia or after blood transfusions.^{11, 23} In this present study, higher levels of RDW were associated with ICU mortality even after adjusting for hemoglobin and hematocrit. In addition, the independent association between RDW and ICU mortality was not eliminated even after adjusting for other potential confounders, including mean corpuscular volume, hemoglobin, hematocrit, APACHE-II score, gestational age and AKI. Our results were consistent with previous analyses of two large populations of critically ill patients.^{24, 25} Further, our results were also similar to the findings obtained in a single-center observational study in 2011; ¹⁶ wherein, the independent association between RDW and all-cause mortality in critically ill patients was shown.

The important finding in our analysis was that combining RDW and APACHE-II score performed better than APACHE-II score alone in predicting ICU mortality in critically ill obstetric patients. The APACHE-II scoring system developed in 1985 has shown a positive correlation with hospital mortality, and was one of the most common models used for evaluating the severity of a disease in critically ill patients.²⁶ Previous studies²⁷⁻²⁹ suggested APACHE II

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

score was a good discriminator of illness severity in obstetric cohorts. The sensitivity and specificity of the APACHE II score was evaluated with the use of receiver operating characteristic curve analysis. In accordance with previous studies²⁷⁻²⁹, the APACHE-II score was also demonstrated to have a strong power to predict ICU mortality (AUC=0.766) in the present study. Despite its moderate discriminative power alone (AUC=0.752), adding RDW to the APACHE-II score resulted to a better increase in the AUC from 0.766 to 0.872 (*P*<0.001). Combining RDW with APACHE-II score significantly improved prognostic performance in critically ill obstetric patients. Similarly, another study by Wang *et al.* ¹⁶ also revealed that adding RDW to APACHE-II score in identifying critically ill patients. Since RDW is a simple, inexpensive, and widely available test as part of the complete blood count, these data may have significant clinical implications for determining prognosis in critically ill obstetric patients.

The pathophysiologic mechanism underlying the association of higher RDW with worse outcomes in critically ill obstetric patients remains unclear. Generally, the increase in RDW reflects either impaired erythropoiesis, abnormal red blood cell survival, or both. Metabolic abnormalities such as shortening of telomere length, poor nutritional status, ^{30, 31} inflammation, ³²⁻³⁴ oxidative stress, ^{35, 36} dyslipidemia, hypertension, erythrocyte fragmentation, and alteration of erythropoietin function might contribute to RDW increase.³⁷ In normal parturition, the increase of RDW might be related to stimulus-induced reticulocytosis in the last few weeks.²⁹ This might not be the case in our study;

wherein, even if five patients with spontaneous onset of labor were excluded, RDW remained as a significant predictor of mortality.

In this present study, the admission rate of 21.73 per 1,000 births was relatively higher than those reported by other studies, ³⁸⁻³⁹ and the mean APACHE-II score was relatively lower compared with other groups.^{7, 16, 40} The lack of a high dependency unit as a referral center in local areas for complicated pregnancies could partially explain these difference.

This study had several limitations. First, we did not evaluate the evolution of RDW, and thus, it remained unclear whether changes in RDW over time may provide additional prognostic information. Second, we only used the APACHE-II score to predict mortality in obstetric patients, which was limited by spontaneous improvement after delivery in peripartum women, ⁴¹⁻⁴⁷ and inconsistent results.^{48, 49} Finally, our study was a single-center study. The study was very heterogenous and patient numbers were relatively small, so large epidemiologic study may be required to validate the findings.

In summary, the single-center study in China demonstrated that RDW was an independent predictor for mortality in obstetric critical care patients. Combining RDW and the APACHE-II score improved prognostic accuracy compared with the APACHE-II score model alone.

Contributorship statement

Yufeng Chu and Hongsheng Ren conceived of the study, and participated in its design and coordination. Mei Meng, Haiyan Zhou and Haiyan Zhou extracted data and participated in study design. Yufeng Chu and Zhongshang

BMJ Open

Yuan performed the statistical analysis and drafted the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Funding

This study was funded by the National Natural Science Foundation of China (NSFC 81200238), the Research Foundation for Excellent Young and Middleaged Scientists of Shandong Province (BS2011YY043, BS2011YY052), and the Natural Science Foundation of Shandong Province of China (ZR2013HM062).

Data sharing statement

No additional unpublished data are available.

References

- 1. World Health Organization. World Health Statistics 2014. Geneva, World Health Organization; 2014.
- Zeeman GG. Obstetric critical care: A blueprint for improved outcomes. Crit Care Med 2006; 34:S208–S214.
- Soubra SH, Guntupalli KK. Critical illness in pregnancy: an overview. Crit Care Med 2005;33(10 suppl):S248-S255.

4. Scarpinato L, Gerber D. Critically ill obstetrical patients: outcome and predictability. Crit Care Med 1995;23(8):1449-1451.

- Gopalan PD, Muckart DJ. The critically ill obstetric patient: what's the score? Int J Obstet Anesth 2004;13(3):144-145.
- Ramsay MM, James D, Steer P, et al, editors. Normal values in pregnancy. London: W.B. Saunders; 2000.
- Lapinsky SE, Hallett D, Collop N, et al. Evaluation of standard and modified severity of illness scores in the obstetric patient. J Crit Care 2011 Oct;26(5):535.e1-7.
- Harrison D, Penny J, Yentis S, et al. Case mix, outcome and activity for obstetric admissions to adult, general critical care units: A secondary analysis of the ICNARC Case Mix Programme Database. Crit Care 2005; 9(Suppl 3):S25–S37.
- Paternina-Caicedo A, Rojas-Suarez J, Duenas-Castel C, et al. Mortality risk prediction with an updated Acute Physiology and Chronic Health Evaluation II Score in critically ill obstetric patients: A cohort study. J Intensive Care Med 2015 Feb;30(2):97-102.
- Perkins SL. Examination of blood and bone marrow. In: Greer JP, Foerster J, Lukens JN, Rodgers GM, Paraksevas F, Glader BE, eds. Wintrobe's Clinical Hematology. 11th ed. Salt Lake City, Utah: Lippincott Wilkins & Williams; 2003:5–25.

1	
2	11 McKanzia CD. Introduction to anomia. In: McKanzia CD. ad. Clinical
3 4	11. McKenzie SD. Introduction to anemia. In: McKenzie SD, ed. Clinical
5	Laboratory Hematology. Saddle River, NJ: Pearson Prentice-Hall;
6	
7 8	2003:161–188.
9	
10	12. Tonelli M, Sacks F, Arnold M, et al. For the Cholesterol and Recurrent
11 12	
13	Events (CARE) Trial InvestigatorsCirculation. Relation Between Red
14	
15 16	Blood Cell Distribution Width and Cardiovascular Event Rate in People
17	With Coronary Disease. Circulation 2008;117:163–8.
18	With Corollary Disease. Circulation 2000, 117.100–0.
19	
20 21	13. Felker GM, Allen LA, Pocock S, et al. CHARM Investigators: Red cell
22	distribution width as a novel prognostic marker in heart failure: data from
23	distribution width as a nover prognostic marker in near failure, data nom
24 25	the CHARM Program and the Duke Databank for Cardiovascular
26	
27	Diseases. J Am Coll Cardiol 2007;50:40-47.
28 29	
30	14. Förhécz Z, Gombos T, Borgulya G, et al. Red cell distribution width in
31	
32 33	heart failure: prediction of clinical events and relationship with markers of
34	ineffective erythropoiesis, inflammation, renal function, and nutritional
35	increative crythropolesis, innanination, renaritation, and natitional
36 37	state. Am Heart J 2009; 158:659–66.
38	
39	15. Pascual-Figal DA, Bonaque JC, Redondo B, et al. Red blood cell
40 41	
42	distribution width predicts long-term outcome regardless of anaemia
43	
44 45	status in acute heart failure patients. Eur J Heart Fail 2009;11:840–6.
46	
47	16. Wang F, Pan W, Pan S, et al. Red cell distribution width as a novel
48 49	
49 50	predictor of mortality in ICU patients. Ann Med 2011 Feb;43(1):40-6.
51	
52 52	17. Ani C, Ovbiagele B. Elevated red blood cell distribution width predicts
53 54	
55	mortality in persons with known stroke. J Neurol Sci 2009;277:103–8.
56 57	
57 58	
59	
60	

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

 Purtle SW, Moromizato T, McKane CK, et al. The association of red cell distribution width at hospital discharge and out-of-hospital mortality following critical illness. Crit Care Med 2014 Apr;42(4):918-29.

- 19. Kim CH, Park JT, Kim EJ, et al. An increase in red blood cell distribution width from baseline predicts mortality in patients with severe sepsis or septic shock. Crit Care 2013 Dec 9;17(6):R282.
- 20. Mehta RL, Kellum JA, Shah SV, et al. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007;11: R31.
- 21. Youden WJ: Index for rating diagnostic tests. Cancer 1950;3:32–5.
- 22. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988 Sep;44(3):837-45.
- 23. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med 2005;352:1011–1023.
- 24. Sabina Hunziker, Leo A Celi, Joon Lee, et al. Red cell distribution width improves the simplified acute physiology score for risk prediction in unselected critically ill patients. Critical Care 2012,16:R89.
- 25. Heidi S. Bazick, Domingo Chang, Karthik Mahadevappa, et al. Red cell distribution width and all-cause mortality in critically ill patients. Crit Care Med 2011;39:1913–1921.

1	
2	
3	
4	
5	
2 3 4 5 6 7	
0	
1	
8	
9	
10	
11	
12	
13	
13	
14	
15	
16	
17	
18	
19	
20	
21	
∠ I 20	
22	
23	
$\begin{array}{c} 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 9\\ 21\\ 22\\ 23\\ 24\\ 25\\ 27\\ 28\\ 29\\ 31\\ 32\\ 33\\ 45\\ 36\\ 37\\ 38\\ 39\\ \end{array}$	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
26	
30	
37	
38	
39	
40	
41	
42	
43	
43 44	
45	
46	
47	
48	
49	
50	
50 51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

- 26. Knaus WA, Draper EA, Wagner DP, et al. APACHE II: a severity of disease classification system. Crit Care Med 1985;13:818–29.
 - Hazelgrove JF, Price C, Pappachan VJ, et al. Multicenter study of obstetric admissions to 14 intensive care units in southern England. Crit Care Med 2001 Apr;29(4):770-5.
- 28. Harrison D, Penny JA, Yentis SM, et al. Case mix, outcome and activity for obstetric admissions to adult, general critical care units: a secondary analysis of the ICNARC case mix programme database. Critical Care 2005;9(suppl 3):S25-S37.
- 29. Arabi Y, Goraj R, Horsfall D. Scoring systems in obstetric patients requiring intensive care in Saudi Arabia: a ten year review. Chest 1999;116:286S.
- 30. Duffy TP. Approach to the patient with anemia. In: Kelley WN, Dupont HL, Glick JH, Harris ED, Hathaway DR, Hazzard WR, Holmes EW, Hudson LD, Humes HD, Paty DW, eds. Kelley's Textbook of Internal Medicine.
 3rd ed. Philadelphia, Pa: Lippincott Williams and Wilkins; 1997:1295– 1299.
- 31. Forhecz Z, Gombos T, Borgulya G, et al. Red cell distribution width in heart failure: prediction of clinical events and relationship with markers of ineffective erythropoiesis, inflammation, renal function, and nutritional state. Am Heart J 2009, 158:659-666.

32. Ridker PM, Rifai N, Clearfield M, et al. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N Engl J Med 2001;344:1959 –1965.

- 33. Lippi G, Targher G, Montagnana M, et al. Relation between red blood cell distribution width and inflammatory biomarkers in a large cohort of unselected outpatients. Arch Pathol Lab Med 2009;133:628–632.
- 34. Sesso HD, Buring JE, Rifai N, et al. C-reactive protein and the risk of developing hypertension. JAMA 2003;290:2945–2951.
- 35. Kolls JK. Oxidative stress in sepsis: A redox redux. J Clin Invest 2006;116:860–863.
- Ghaffari S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Antioxid Redox Signal 2008;10:1923–1940.
- 37. Salvagno GL, Sanchis-Gomar F, Picanza A. Lippi G. Red blood cell distribution width: A simple parameter with multiple clinical applications. Crit Rev Clin Lab Sci.2014 Dec 23:1-20.
- Rojas-Suarez J, Paternina-Caicedo AJ, Miranda J, et al. Comparison of severity-of-illness scores in critically ill obstetric patients: a 6-year retrospective cohort. Crit Care Med 2014;42:1047–1054.
- Hazelgrove JF, Price C, Pappachan VJ, et al. Multicenter study of obstetric admissions to 14 intensive care units in southern England. Crit Care Med 2001 Apr;29(4):770-5.

1	
2 3 4	40. Karnad DR, Lapsia
5	patients admitted t
7 8 9	Jun;32(6):1294-9.
10 11	41. Higgins TL, Teres
12 13 14	(MPM-III). Chest 2
15 16	42. Knaus WA, Draper
17 18 19 20	disease classificat
20 21 22	43. Le Gall JR, Lemes
23 24	Score (SAPS II) ba
25 26 27	JAMA 1993;270:29
28 29	44. Lemeshow S, Tere
30 31 32	based on an intern
32 33 34 35	1993;270:2478–24
36 37	45. Metnitz PG, Moren
38 39	From evaluation of
40 41	1: Objectives, met
42 43 44	2005;31:1336–134
45 46	46. Moreno RP, Metnit
47 48 49	From evaluation of
49 50 51	2: Development of
52 53	admission. Intensiv
54 55	
56 57	
58 59	
60	

- 40. Karnad DR, Lapsia V, Krishnan A, et al. Prognostic factors in obstetric patients admitted to an Indian intensive care unit. Crit Care Med 2004 Jun;32(6):1294-9.
- Higgins TL, Teres D, Copes W. Updated Mortality Probability Model (MPM-III). Chest 2005;128(4 Suppl):348S.
- 42. Knaus WA, Draper EA, Wagner DP, et al. APACHE II: A severity of disease classification system. Crit Care Med 1985;13:818–829.
- Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 1993;270:2957–2963.
- 44. Lemeshow S, Teres D, Klar J, et al. Mortality Probability Models (MPM II) based on an international cohort of intensive care unit patients. JAMA 1993;270:2478–2486.
- 45. Metnitz PG, Moreno RP, Almeida E, et al. SAPS 3 Investigators: SAPS 3–
 From evaluation of the patient to evaluation of the intensive care unit. Part
 1: Objectives, methods and cohort description. Intensive Care Med
 2005;31:1336–1344.
- 46. Moreno RP, Metnitz PG, Almeida E, et al. SAPS 3 Investigators: SAPS 3–
 From evaluation of the patient to evaluation of the intensive care unit. Part
 2: Development of a prognostic model for hospital mortality at ICU
 admission. Intensive Care Med 2005;31: 1345–1355.

47. Higgins TL, Kramer AA, Nathanson BH, et al. Prospective validation of the intensive care unit admission Mortality Probability Model (MPM0-III). Crit Care Med 2009;37:1619–1623.

- 48. Stevens TA, Carroll MA, Promecene PA, et al. Utility of acute physiology, age, and chronic health evaluation (APACHE III) score in maternal admissions to the intensive care unit. Am J Obstet Gynecol 2006;194(5):e13-e15.
- 49. el-Solh AA, Grant BJ. A comparison of severity of illness scoring systems for critically ill obstetric patients. Chest 1996;110(5): 1299-1304.

Table 1. Baseline clinical and laboratory characteristics by tertile ofRDW at critical care initiation

	Tertile I	Tertile II	Tertile III	<i>P</i> -value
RDW (%)	10.7-13.9	13.9-15.6	15.6-20.4	<0.001
Ν	131	126	119	-
Age (years)	29.6 ± 4.3	29.3 ± 5.6	29.6 ± 5.9	0.84
Gestational age (weeks)	35 (32-37)	36 (33-39)	36 (32-38)	0.327
Primary diagnosis	to ICU admiss	sion (<i>n</i> , %)		
Hypertensive disorder of	50(38.17%)	55(43.65%)	52(43.70%)	0.417
pregnancy	12(9.16%)	10(7.94%)	8(6.72%)	0.322
Syndrome			. ,	
Acute fatty liver of pregnancy	10(7.63%)	8(6.35%)	7(5.88%)	0.485
Obstetric sepsis	5(3.82%)	4(3.17%)	3(2.52%)	0.657
Cardiovascular disease	42 (32.06%)	31 (24.60%)	26 (21.85%)	0.162
Gastrointestinal disease	2 (1.53%)	5 (3.97%)	4 (3.36%)	0.476
Stroke	2 (1.53%)	3 (2.38%)	0 (0)	0.332
Pulmonary embolism	1 (0.76%)	0 (0)	1 (0.84%)	0.766
Others	7(5.34%)	10(7.94%)	18(15.13)	0.142
Hemoglobin (g/L)	109.5 ± 19.7	100.1 ± 20.7	92.5 ± 24.1	<0.001
MCV(fL)	89.8 ± 5.1	86.7 ± 6.0	83.6 ± 11.4	<0.001
HCT (%)	32.6 ± 5.8	30.5 ± 6.3	28.8 ± 6.9	<0.001
APACHE II score (points)	2 (2-6)	5 (3-6)	10 (6-22)	0.017
AKI (<i>n</i> , %)	14 (10.69%)	17 (13.49%)	14 (11.76%)	0.207
TLSH (days)	8 (7-12)	8 (6-13)	8 (7-12)	0.203
ICU Mortality (n, %)	0 (0%)	5 (3.97%)	15 (12.61%)	<0.001

RDW, red cell distribution width; MCV, mean corpuscular volume; HCT,

Odds ratio	95% CI	P-value
1.048	0.969-1.133	0.244
0.997	0.977-1.017	0.763
0.962	0.919-1.006	0.098
0.997	0.934-1.064	0.929
1.192	1.124-1.265	< 0.001
16.61	6.580-42.014	< 0.001
0.803	0.691-0.933	0.004
1.023	0.920-1.138	0.677
1.309	1.150-1.489	<0.001
	1.048 0.997 0.962 0.997 1.192 16.61 0.803 1.023	1.048 0.969-1.133 0.997 0.977-1.017 0.962 0.919-1.006 0.997 0.934-1.064 1.192 1.124-1.265 16.61 6.580-42.014 0.803 0.691-0.933 1.023 0.920-1.138

Table 2. Univariate odds ratios of variables for predicting mortality

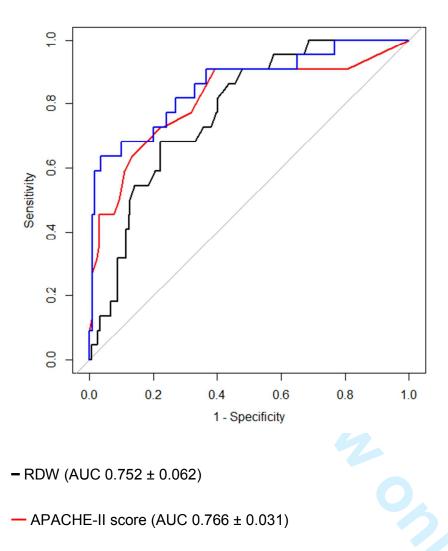

CI, confidence interval; RDW, red cell distribution width; MCV, mean corpuscular volume; HCT, hematocrit; APACHE-II score, Acute Physiology and Chronic Health Evaluation II score; AKI, acute kidney injury; TLSH, total length of stay in hospital.

Table 3. Independent predictors of mortality by multivariate logisticregression analysis

Variables	Odds ratio	95% CI	P value
APACHE-II (points)	1.189	1.071-1.319	0.001
	1.100		0.001
AKI (%)	23.784	6.129-92.296	<0.001
/ (((/)))	20.704	0.120 02.200	-0.001
RDW (%)	1.401	1.156-1.697	0.001
	1.401	1.150-1.097	0.001

Independent variables include age, hemoglobin, MCV, hematocrit, APACHE-II score, AKI, TLSH, gestational age, and RDW. Due to the high correlation between hemoglobin and hematocrit, hemoglobin was first regressed on hematocrit; and placed the residual and hematocrit in the multivariate regression. RDW, red cell distribution width; MCV, mean corpuscular volume; HCT, hematocrit; APACHE-II score, Acute Physiology and Chronic Health Evaluation II score; AKI, acute kidney injury; TLSH, total length of stay in hospital.

Figure 1 ROC curve for Acute Physiology and Chronic Health Evaluation (APACHE) II score, red blood cell distribution width (RDW) and the combination of both in predicting ICU mortality.

- RDW+ APACHE-II score (AUC 0.872 ± 0.055)

RDW, red cell distribution width; MCV, mean corpuscular volume; HCT, hematocrit; APACHE-II score, Acute Physiology and Chronic Health Evaluation II score; AKI, acute kidney injury; TLSH, total length of stay in hospital.

BMJ Open

Clinical Usefulness of Red Blood Cell Distribution Width in Obstetric Patients admitted to Intensive Care Unit

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-012849.R1
Article Type:	Research
Date Submitted by the Author:	20-Dec-2016
Complete List of Authors:	Chu, Yufeng; Shandong Provincial Hospital Affiliated to Shandong University Yuan, Zhongshang; Shandong University, Department of Epidemiology and Biostatistics Meng, Mei; Shandong Provincial Hospital Affiliated to Shandong University Zhou, Haiyan; Shandong Tumor Hospital and Institute Wang, Chunting; Shandong Provincial Hospital Affiliated to Shandong University Ren, Hongsheng; Shandong Provincial Hospital Affiliated to Shandong University, Department of Intensive Care Unit
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Obstetrics and gynaecology
Keywords:	APACHE-II score, Critical care, Mortality, OBSTETRICS, Red cell distribution width

SCHOLARONE[™] Manuscripts

1		
2 3	1	TITLE PAGE
4	T	IIIEE FAGE
5	2	Clinical Usefulness of Red Blood Cell Distribution Width in Obstetric
6 7		
8	3	Patients admitted to Intensive Care Unit
9		
10	4	Yufeng Chu, ^{a, *} Zhongshang Yuan, ^{b, *} Mei Meng, ^a Haiyan Zhou, ^c Chunting
11 12	5	Wang, ^a Hongsheng Ren ^a
13		
14	6	
15		
16 17	7	^a Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to
18	8	Shandong University, Shandong University, Jinan, P.R. China
19	0	Shahdong Oniversity, Shahdong Oniversity, Sinah, F.I.Y. Onina
20	9	^b Department of Epidemiology and Biostatistics, School of Public Health,
21 22		
22	10	Shandong University, Jinan, P.R. China
24		
25	11	^c Department of Medical Oncology ,Shandong Tumor Hospital, Jinan, P.R.
26	12	China
27 28		
29	13	Yufeng Chu and Zhongshang Yuan are co-first authors.
30		
31	14	Corresponding author:
32 33		
34	15	Hongsheng Ren, MD, Ph. D.
35		
36	16	Department of Intensive Care Unit
37 38		
39	17	Shandong Provincial Hospital Affiliated to Shandong University
40		
41	18	No. 324 Jingwu Road, Jinan, Shandong, 250012, P.R. China
42 43		
43 44	19	Email: sdslicu@163.com
45		
46	20	
47 48		
48 49		
50		
51		
52 53		
53 54		
55		
56		
57 59		
58 59		1
60		
		For peer review only - http://bmionen.hmi.com/site/about/quidelines.xhtml

21 Abstract

Background: Red blood cell distribution width (RDW) has been shown to
predict mortality in critically ill patients. The primary aim of this study was to
examine the association between RDW and hospital mortality in obstetric
critical care patients. The secondary aim was to investigate whether adding
RDW to Acute Physiology and Chronic Health Evaluation II (APACHE II)
improved the prognostic performance of APACHE II.

Methods: This is a single center, retrospective observational study. A total of 447 consecutive obstetric patients were included. Patients were excluded if they had known hematologic diseases, history of recent blood transfusion, and patients who died or were discharged from ICU within 24 hours of admission. Each patient's ICU entrance characteristics were retrieved. We modeled the association between RDW and mortality using multivariate logistic regression. The receiver operating characteristic curve was used to examine the performance of APACHE II score and RDW in predicting mortality.

Results: A total of 376 patients were included in this present study. The
hospital mortality and maternal mortality were both 5.32%. A significant
association was found between baseline RDW levels and hospital or maternal
mortality (hazard ratio per percent increase in RDW, 1.21; 95% CI, 1.02 to
1.57). After categorization based on tertile of baseline RDW, as well as further
adjustment for hematocrit and other risk factors, a graded independent
association between RDW and mortality was observed (*P*<0.001). The

BMJ Open

44	addition of RDW to the APACHE II score improved the AUC for hospital or
45	maternal mortality from 0.766 to 0.872 (<i>P</i> <0.001).
46	Conclusions: RDW is an independent predictor for hospital and maternal
47	mortality in obstetric critical care patients. Combining RDW to APACHE II
48	scores could further improve its prognostic performance.
49	Key words: APACHE-II score; Critical care; Mortality; Obstetrics; Red cell
50	distribution width
51	Strengths and limitations of this study
52	• To our knowledge, this is the first report of red cell distribution width (RDW)
53	as an independent prognostic outcome predictor in obstetric critical care
54	patients.
55	 Since RDW is easy to obtain and highly reproducible, RDW has the
56	potentially clinical utility to predict outcome for obstetric critical care patients.
57	• The study was a single-center study. It was very heterogenous, and patient
58	numbers were relatively small, so large epidemiologic study might be required
59	to validate the findings.
60	

61 Introduction

Despite the advances in the care of obstetric patients, maternal mortality ratio (MMR) has remained high, especially in developing countries.^{1, 2} The use of scoring systems to assess severity and predict mortality may help identify obstetric patients who truly require intensive care.³ Acute Physiology and Chronic Health Evaluation II (APACHE II) score is a predictive scores for mortality that are widely used in ICUs. However, results from obstetric patients have shown some inconsistencies; wherein, some studies have shown that these scores are a good predictor of illness severity, while more studies have shown that these scores overestimated mortality.^{4, 5, 6, 7-9} Further work is needed to improve the prognostic accuracy of APACHE II scores in obstetric patients.

Red cell distribution width (RDW) is a parameter that is easy and inexpensive to obtain, and reflects the degree of heterogeneity of erythrocyte volume.¹⁰ RDW was used in the differential diagnosis of anemia in the past decades.¹¹ Recently, RDW has been shown to be a novel, independent prognostic marker for mortality, mainly in patients with cardiovascular disease and strokes, as well as in critically ill patients.¹²⁻¹⁹ However, few ICU subpopulations have been studied so far. The obstetric population is of special interest because of the limitations of existing scoring system, which largely are based on physiological parameters.

Therefore, we conducted a retrospective study to evaluate the prognostic value of RDW, and investigated whether adding RDW could improve the prognostic performance of APACHE-II scores in critically ill obstetric patients.

8	5
80	6 Methods
87	7 This study was approved by the Institutional Review Board of the Provincial
88	B Hospital Affiliated to Shandong University. Obstetric patients consecutively
89	admitted in the ICU for at least 24 hours from January 1, 2008 to December
90	31, 2013 were included in this retrospective observational study. The
9:	requirement for patient consent was waived because this study did not affect
92	2 the patient's clinical care, and all protected health information was deleted.
93	3 Obstetric patients were defined as pregnant women or up to six weeks
94	postpartum. This study was carried out at the Shandong Provincial Hospital
95	5 Affiliated to Shandong University, Jinan, China. The hospital is a 1500-bed
96	5 tertiary academic hospital with 20 ICU beds. The hospital provides primary as
97	7 well as tertiary care to an ethnically and socioeconomically diverse population
98	3 within Shandong province and the surrounding region. The decision to
99	9 transfer patients into the ICU was made by at least one senior critical care
100) doctor and one senior obstetric doctor. Likewise, these doctors also made
10	decisions to discharge patients or to transfer patients to general wards.
102	2 Patients were excluded if they had known hematologic diseases (including
103	3 leukemia, thrombotic thrombocytopenic purpura, and other hematologic
104	diseases) or history of recent blood transfusion (less than two weeks).
105	5 According to the APACHE II scores criterion of Knaus WA, 1985, ²⁰ the
106	5 recorded value in our study was based on the most deranged reading during
107	each patient's initial 24h in an ICU, so we excluded the patients who died or
108	3 were discharged less than 24 hours.

BMJ Open

109 Data collection

110	Demographic and clinical characteristics including age, gestational age, parity,
111	pregnancy status at admission, diagnosis at entry and during ICU stay, and
112	length of hospital stay were collected. The cesarean section was considered
113	an emergency intervention. Diagnosis of acute kidney injury (AKI) was based
114	on the Acute Kidney Injury Network (AKIN) criteria. ²¹ AKI was defined as an
115	absolute increase in serum creatinine of more than or equal to 0.3 mg/dl, a
116	percentage increase in serum creatinine of more than or equal to 50% (1.5
117	fold from baseline) within 48 hours, or reduction in urine output (documented
118	oliguria of less than 0.5 ml/Kg per hour for more than six hours). ²¹ The
119	pregnancy associated with cardiac disease include congenital and acquired
120	heart disease during pregnancy. APACHE II scores were calculated using the
121	worst value of 12 acute physiological variables within 24 hours of presentation.
122	These variables included temperature, blood pressure, heart rate, respiratory
123	rate, arterial oxygenation, arterial pH, serum sodium, serum potassium, serum
124	creatinine, hematocrit, white blood cell count, and Glasgow Coma scores. If
125	the patient was sedated at the time of ICU admission, the last Glasgow Coma
126	Scale obtained prior to sedation was collected. RDW, hemoglobin level,
127	hematocrit and mean corpuscular volume (MCV) of all patients included in this
128	study were determined at admission using a Beckman Coulter LH-750
129	Hematology Analyzer (Beckman Coulter, Inc., Fullerton, California), as a part
130	of the complete blood cell count. Normal reference range for RDW in the
131	hospital laboratory is 10.9% to 15.4%.
122	Study outcomes

132 Study outcomes

2

BMJ Open

3
4
5
4 5 6 7
7 8 9 10 11
8
9
10
11
12
13
1/
14
10
10
1/
18
12 13 14 15 16 17 18 19
20
21
22
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 89 20
2/
24
20
20
27
28
29
30
31
32
33
3/
25
30
36
37
38
39
40
41
42
43
44 44
45
46
47
48
49
50
51
52
53
53 54
55
56
57
58
59
60

All patients were followed up during hospitalization. According to the rule of
our department, all ICU patients would be followed up at 1, 6, and 12 months
after discharge. The primary end points of the study were hospital mortality
and maternal mortality. The primary predictor of interest was RDW measured
at ICU admission.

138 Statistics

139 All continuous variables were presented as means ± standard deviations, or 140 medians with interquartile ranges as appropriate. Categorical data were 141 summarized as number or percentage. We divided RDW into tertiles, and 142 compared the demographics, diagnosis, clinical characteristics, laboratory test 143 results, and APACHE-II scores of patients using analysis of variance or 144 Kruskal-Wallis tests for continuous variables, and Chi-square or Fisher's exact 145 tests for categorical variables. Univariate logistic regression analysis was 146 conducted to examine the association between mortality and each of the 147 predictors, separately. Multivariate logistic regression was further utilized to 148 determine independent predictors of ICU mortality after adjusting for potential 149 confounding factors. An appealing receiver operating characteristic (ROC) 150 curve was used to examine the performance of APACHE-II scores and RDW 151 in predicting ICU mortality. The curve represented a sensitivity plot versus 1-152 specificity. The area under the curve (AUC) was derived from the ROC curve, 153 and the Youden index was adopted to define the optimal cut-off value.²² We 154 also constructed an ROC curve for the combined APACHE-II score and RDW 155 results for predicting ICU mortality according to the weighted sum formula 156 derived from multivariate logistic regression: logit (mortality) = 0.162 x

APACHE-II score + 0.203 x RDW - 7.503; wherein, logit (mortality) is the
logarithm of the odds of a critically ill obstetric patient dying in the ICU.
Differences between the AUC were detected by Delong's test which was a
nonparametric approach and could generate an estimated covariance matrix
by using the theory on generalized U-statistics.²³ Two-sided *P*-values <0.05
were considered statistically significant, and all analyses were performed with
R software (http://www.cran.r-project.org/).

165 Results

166 Population

A total of 447 obstetric patients who were admitted to ICU were initially enrolled in this study. ICU admission rate was 21.73 per 1,000 births. Eight patients who were diagnosed with hematologic disease and 59 patients who received red blood cell transfusion within two weeks were excluded. Two patients who died within 24 hours after ICU admission were also excluded. Two patients were excluded for missing data. In the final analysis, 376 patients were included in this study. Association between RDW and hospital mortality A total of 20 deaths occurred in this cohort during the study period. As mentioned before, all ICU patients would be followed up at 1, 6, and 12 months after discharge. As we know, of the total of 376 obstetric patients who were admitted to ICU, all the death occurred in the ICU. That is to say, there was no death outside of hospital or ICU. Thus, the maternal mortality was

BMJ Open

180	equal to hospital mortality in this population. In this study, heart failure was the
181	major cause of death in the cohort (n=8; 40.0%), followed by acute fatty liver
182	of pregnancy (n=5; 25%), postpartum hemorrhage (n=2), hemorrhagic shock
183	caused by liver tumor rupture (n=1), HELLP syndrome (n=1), acute pulmonary
184	embolism (n=1), stroke (n=1), and liver failure caused by severe hepatitis B
185	(n=1). The hospital mortality and maternal mortality were both 5.32%, and
186	RDW ranged from 10.7% to 24.0% (median, 14.8%; interquartile range, 13.4%
187	to 16.0%).

Participants were divided into three categories on the basis of their baseline tertiles of RDW level: tertile I, 10.7%-13.9%; tertile II, 13.9%-15.6%; tertile III, 15.6%-20.4% (all P<0.001). There was no difference in age, gestational weeks, primary reasons for ICU admission, AKI morbidity, as well as in the total length of stay in hospital (TLSH) among the three tertiles. Hb, MCV and HCT significantly decreased with the increase of RDW, while APACHE II scores and hospital mortality significantly increased with the increase of RDW (Table 1). A significant association was found between baseline RDW levels and hospital mortality (hazard ratio per percent increase in RDW, 1.21; 95% CI, 1.02 to 1.57).

Regression analysis for hospital mortality

Univariate logistic regression analysis demonstrated that patients with higher
RDW, higher APACHE-II scores, higher AKI morbidity, and longer TLSH days
had significantly greater death hazards (Table 2). Multivariate logistic
regression analysis revealed that RDW, AKI and APACHE-II scores were
independent predictors of hospital mortality (Table 3). The association of

Page 10 of 28

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

BMJ Open

1
2
3
4
5
6
7
8
g
10
11
10
12
13
14
15
16
17
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 8 9 10 11 2 3 4 5 8 9 10 11 2 3 4 5 8 9 10 11 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
19
20
21
21 22
22
23
24
25
26
27
28
29
30
31
22
3Z 22
33
34
35
36
37
38
39
40
41
42
43
43 44
44 45
46
47
48
49
50
51
52
53
54 55
56
57
58
59
60

1

204	RDW and hospital mortality remained significant after adjusting for age,
205	hemoglobin, MCV, hematocrit, APACHE-II score and AKI. RDW was a
206	significant outcome predictor, which is independent of APACHE-II scores.
207	A ROC curve was drawn to evaluate the value for RDW and APACHE-II
208	scores in predicting mortality (Figure 1). The AUC was calculated as 0.766
209	(95% CI, 0.705 to 0.826) for the APACHE-II score and 0.752 (95% CI, 0.684
210	to 0.862) for RDW. Optimal cut-off value of the APACHE-II score for
211	predicting mortality was five points, which gave a sensitivity of 90.9% and a
212	specificity of 60.7%. The optimal cut-off value of RDW was 16.1%, which gave
213	a sensitivity of 68.2% and specificity of 77.9%. To further clarify whether RDW
214	had an additive power with the APACHE-II score for hospital mortality, we
215	combined RDW and the APACHE-II score to draw a third ROC curve, as
216	shown in Figure 1. Compared with the APACHE-II score, adding RDW to
217	APACHE-II scores improved the AUC from 0.766 to 0.872 (P<0.001). These
218	results suggested that combining RDW and APACHE-II added to the ability to
219	discriminate mortality risk. As in multivariate logistic regression analysis, AKI
220	was another strong predictor for hospital mortality. We conducted the ROC
221	curve analysis using all three variables including RDW, APACHE-II and AKI.
222	Adding AKI improved the AUC from 0.872 to 0.884 (<i>P</i> >0.05), however, when
223	we compared them by Delong's test, no significance can be found.
224	

224

225 Discussion

The main finding of our study was that RDW was independently associated with hospital and maternal mortality in obstetric critical care patients . The 10

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

228	association remained significant even after adjusting for APACHE-II scores,
229	hemoglobin levels, hematocrit and mean corpuscular volume. Combining
230	RDW and the APACHE-II score improved the prognostic accuracy of hospital
231	mortality predicted by APACHE-II alone in the study population.
232	We found that RDW was independently associated with hospital and
233	maternal mortality in a Chinese obstetric ICU population. Patients were
234	excluded if they had a history of recent blood transfusions because RDW
235	could be increased in anemia or after blood transfusions. ^{11, 24} In this present
236	study, higher levels of RDW were associated with hospital and maternal
237	mortality even after adjusting for hemoglobin and hematocrit. In addition, the
238	independent association between RDW and hospital mortality or maternal
239	mortality was not eliminated even after adjusting for other potential
240	confounders, including mean corpuscular volume, hemoglobin, hematocrit,
241	APACHE-II score, gestational age and AKI. Our results were consistent with
242	previous analyses of two large populations of critically ill patients. ^{25, 26} Further,
243	our results were also similar to the findings obtained in a single-center
244	observational study in 2011; ¹⁶ wherein, the independent association between
245	RDW and all-cause mortality in critically ill patients was shown.
246	The important finding in our analysis was that combining RDW and
247	APACHE-II score performed better than APACHE-II score alone in predicting
248	hospital mortality or maternal mortality in critically ill obstetric patients. The
249	APACHE-II scoring system developed in 1985 has shown a positive
250	correlation with hospital mortality, and was one of the most common models
251	used for evaluating the severity of a disease in critically ill patients. ²⁰ Previous
	11

Page 12 of 28

BMJ Open

1
2
3
4 5 6 7
5
6
7
0
à
10
10
10
12
13
14
15
16
17
9 10 11 12 13 14 15 16 17 18 19
19
20
21
22
23
24
20 21 22 23 24 25 26 27 28 29 30 31
26
27
28
20
20
21
31
32
33
32 33 34 35 36 37 38 39
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
5 0
50 51
51 52
-
54
55
56
57
58
59
60

1

252	studies ²⁷⁻²⁹ suggested APACHE II score was a good discriminator of illness
253	severity in obstetric cohorts. The sensitivity and specificity of the APACHE II
254	score was evaluated with the use of receiver operating characteristic curve
255	analysis. In accordance with previous studies ²⁷⁻²⁹ , the APACHE-II score was
256	also demonstrated to have a strong power to predict hospital mortality or
257	maternal mortality (AUC=0.766) in the present study. Despite its moderate
258	discriminative power alone (AUC=0.752), adding RDW to the APACHE-II
259	score resulted to a better increase in the AUC from 0.766 to 0.872 (P<0.001).
260	Combining RDW with APACHE-II score significantly improved prognostic
261	performance in critically ill obstetric patients. Similarly, another study by Wang
262	et al. ¹⁶ also revealed that adding RDW to APACHE-II score significantly
263	improved prognostic reliability of APACHE-II score in identifying critically ill
264	patients. Since RDW is a simple, inexpensive, and widely available test as
265	part of the complete blood count, these data may have significant clinical
266	implications for determining prognosis in critically ill obstetric patients.
267	However, no significant improvement on prognostic performance was
268	observed when AKI was associated with RDW and APACHE-II score, even
269	though AKI was another strong predictor for hospital mortality in multivariate
270	logistic regression analysis. The reason was not clear, and further study
271	would be needed.
272	The pathophysiologic mechanism underlying the association of higher RDW
273	with worse outcomes in critically ill obstetric patients remains unclear.
274	Generally, the increase in RDW reflects either impaired erythropoiesis,
275	abnormal red blood cell survival, or both. Metabolic abnormalities such as

276 shortening of telomere length, poor nutritional status, ^{30, 31} inflammation, ³²⁻³⁴

12

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1		
2 3 4	277	oxidative stress, ^{35, 36} dyslipidemia, hypertension, erythrocyte fragmentation,
5 6	278	and alteration of erythropoietin function might contribute to RDW increase. ³⁷ In
7 8	279	normal parturition, the increase of RDW might be related to stimulus-induced
9 10	280	reticulocytosis in the last few weeks. ²⁹ This might not be the case in our study;
11 12	281	wherein, even if five patients with spontaneous onset of labor were excluded,
13 14 15 16	282	RDW remained as a significant predictor of mortality.
17 18	283	There were 20570 births from 2008 to 2013 in Shandong Provincial Hospital
19 20	284	and 447 ICU admissions. A total of 28 deaths occurred in the hospital during
21 22	285	the 6-year study period resulting in a maternal mortality rate of 136 per
23 24	286	100,000 births. There were 22 deaths occurred in the ICU, and the others
25 26 27	287	occurred in emergency room (n=2) and maternity ward (n=4). In this present
28 29	288	study, the admission rate of 21.73 per 1,000 births was relatively higher than
30 31	289	those reported by other studies, ³⁸⁻³⁹ and the mean APACHE-II score was
32 33	290	relatively lower compared with other groups. ^{7, 16, 40} The lack of a high
34 35	291	dependency unit as a referral center in local areas for complicated
36 37 38 20	292	pregnancies could partially explain these difference.
39 40 41	293	This study had several limitations. First, we did not evaluate the evolution of
42 43	294	RDW, and thus, it remained unclear whether changes in RDW over time may
44 45	295	provide additional prognostic information. Second, we only used the
46 47	296	APACHE-II score to predict mortality in obstetric patients, which was limited
48 49 50	297	by spontaneous improvement after delivery in peripartum women, ⁴¹⁻⁴⁷ and
50 51 52	298	inconsistent results. ^{48, 49} Finally, our study was a single-center study. The
53 54	299	study was very heterogenous and patient numbers were relatively small, so
55 56 57	300	large epidemiologic study may be required to validate the findings.
58 59		13

301	In summary, the single-center study in China demonstrated that RDW was
302	an independent predictor for mortality in obstetric critical care patients.
303	Combining RDW and the APACHE-II score improved prognostic accuracy
304	compared with the APACHE-II score model alone.
305	Acknowledgements
306	This study was funded by the National Natural Science Foundation of China
307	(NSFC 81200238), the Research Foundation for Excellent Young and Middle-
308	aged Scientists of Shandong Province (BS2011YY043, BS2011YY052),the
309	Young Scholars Program of Shandong University (2016WLJH23), the Clinical
310	medicine science and technology innovation plan of Jinan Bureau of Science
311	& Technology (201602164), the Shandong Provincial Department of Science
312	& Techno-logy research and development plan (2016GSF201052), and the
313	Natural Science Foundation of Shandong Province of China (ZR2013HM062).
314	Conflict of Interests
315	The authors declare that there is no conflict of interests regarding the
316	publication of this paper.
317	References
318	1. World Health Organization. World Health Statistics 2014. Geneva, World
319	Health Organization; 2014.
320	2. Zeeman GG. Obstetric critical care: A blueprint for improved outcomes.
321	Crit Care Med 2006; 34:S208–S214.

BMJ Open

322	3. Soubra SH, Guntupalli KK. Critical illness in pregnancy: an overview. Crit
323	Care Med 2005;33(10 suppl):S248-S255.
324	4. Scarpinato L, Gerber D. Critically ill obstetrical patients: outcome and
325	predictability. Crit Care Med 1995;23(8):1449-1451.
525	predictability. Chi Care Med 1993,23(0). 1449-1431.
326	5. Gopalan PD, Muckart DJ. The critically ill obstetric patient: what's the
327	score? Int J Obstet Anesth 2004;13(3):144-145.
328	6. Ramsay MM, James D, Steer P, et al, editors. Normal values in pregnancy.
329	London: W.B. Saunders; 2000.
330	7. Lapinsky SE, Hallett D, Collop N, et al. Evaluation of standard and
331	modified severity of illness scores in the obstetric patient. J Crit Care 2011
332	Oct;26(5):535.e1-7.
333	8. Harrison D, Penny J, Yentis S, et al. Case mix, outcome and activity for
334	obstetric admissions to adult, general critical care units: A secondary
335	analysis of the ICNARC Case Mix Programme Database. Crit Care 2005;
336	9(Suppl 3):S25–S37.
337	9. Paternina-Caicedo A, Rojas-Suarez J, Duenas-Castel C, et al. Mortality
338	risk prediction with an updated Acute Physiology and Chronic Health
339	Evaluation II Score in critically ill obstetric patients: A cohort study. J
340	Intensive Care Med 2015 Feb;30(2):97-102.
341	10. Perkins SL. Examination of blood and bone marrow. In: Greer JP,
342	Foerster J, Lukens JN, Rodgers GM, Paraksevas F, Glader BE, eds.
343	Wintrobe's Clinical Hematology. 11th ed. Salt Lake City, Utah: Lippincott
344	Wilkins & Williams; 2003:5–25.
	15
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	345	11. McKenzie SD. Introduction to anemia. In: McKenzie SD, ed. Clinical
4 5 6	346	Laboratory Hematology. Saddle River, NJ: Pearson Prentice-Hall;
7 8 9	347	2003:161–188.
10 11	348	12. Tonelli M, Sacks F, Arnold M, et al. For the Cholesterol and Recurrent
12 13	349	Events (CARE) Trial InvestigatorsCirculation. Relation Between Red
14 15 16	350	Blood Cell Distribution Width and Cardiovascular Event Rate in People
16 17 18 19	351	With Coronary Disease. Circulation 2008;117:163–8.
20 21	352	13. Felker GM, Allen LA, Pocock S, et al. CHARM Investigators: Red cell
22 23	353	distribution width as a novel prognostic marker in heart failure: data from
24 25	354	the CHARM Program and the Duke Databank for Cardiovascular
26 27 28	355	Diseases. J Am Coll Cardiol 2007;50:40-47.
29 30 31	356	14. Förhécz Z, Gombos T, Borgulya G, et al. Red cell distribution width in
31 32 33	357	heart failure: prediction of clinical events and relationship with markers of
34 35	358	ineffective erythropoiesis, inflammation, renal function, and nutritional
36 37 38	359	state. Am Heart J 2009; 158:659–66.
39 40	360	15. Pascual-Figal DA, Bonaque JC, Redondo B, et al. Red blood cell
41 42	361	distribution width predicts long-term outcome regardless of anaemia
43 44 45 46	362	status in acute heart failure patients. Eur J Heart Fail 2009;11:840–6.
40 47 48	363	16. Wang F, Pan W, Pan S, et al. Red cell distribution width as a novel
49 50 51	364	predictor of mortality in ICU patients. Ann Med 2011 Feb;43(1):40-6.
52 53	365	17. Ani C, Ovbiagele B. Elevated red blood cell distribution width predicts
54 55 56	366	mortality in persons with known stroke. J Neurol Sci 2009;277:103–8.
57 58 59 60		16

1

2

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

367	18. Purtle SW, Moromizato T, McKane CK, et al. The association of red cell
368	distribution width at hospital discharge and out-of-hospital mortality
369	following critical illness. Crit Care Med 2014 Apr;42(4):918-29.
370	19. Kim CH, Park JT, Kim EJ, et al. An increase in red blood cell distribution
371	width from baseline predicts mortality in patients with severe sepsis or
372	septic shock. Crit Care 2013 Dec 9;17(6):R282.
373	20. Youden WJ: Index for rating diagnostic tests. Cancer 1950;3:32–5.
374	21. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under
375	two or more correlated receiver operating characteristic curves: a
376	nonparametric approach. Biometrics 1988 Sep;44(3):837-45.
377	22. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med
378	2005;352:1011–1023.
379	23. Sabina Hunziker, Leo A Celi, Joon Lee, et al. Red cell distribution width
380	improves the simplified acute physiology score for risk prediction in
381	unselected critically ill patients. Critical Care 2012,16:R89.
382	24. Heidi S. Bazick, Domingo Chang, Karthik Mahadevappa, et al. Red cell
383	distribution width and all-cause mortality in critically ill patients. Crit Care
384	Med 2011;39:1913–1921.
385	25. Knaus WA, Draper EA, Wagner DP, et al. APACHE II: a severity of
386	disease classification system. Crit Care Med 1985;13:818–29.
387	26. Knaus WA, Draper EA, Wagner DP, et al. APACHE II: a severity of
388	disease classification system. Crit Care Med 1985;13:818–29.
	17

389	27. Hazelgrove JF, Price C, Pappachan VJ, et al. Multicenter study of
390	obstetric admissions to 14 intensive care units in southern England. Crit
391	Care Med 2001 Apr;29(4):770-5.
392	28. Harrison D, Penny JA, Yentis SM, et al. Case mix, outcome and activity
393	for obstetric admissions to adult, general critical care units: a secondary
394	analysis of the ICNARC case mix programme database. Critical Care
395	2005;9(suppl 3):S25-S37.
396	29. Arabi Y, Goraj R, Horsfall D. Scoring systems in obstetric patients
397	requiring intensive care in Saudi Arabia: a ten year review. Chest
398	1999;116:286S.
399	30. Duffy TP. Approach to the patient with anemia. In: Kelley WN, Dupont HL,
400	Glick JH, Harris ED, Hathaway DR, Hazzard WR, Holmes EW, Hudson
401	LD, Humes HD, Paty DW, eds. Kelley's Textbook of Internal Medicine.
402	3rd ed. Philadelphia, Pa: Lippincott Williams and Wilkins; 1997:1295–
403	1299.
404	31. Forhecz Z, Gombos T, Borgulya G, et al. Red cell distribution width in
405	heart failure: prediction of clinical events and relationship with markers of
406	ineffective erythropoiesis, inflammation, renal function, and nutritional
407	state. Am Heart J 2009, 158:659-666.
408	32. Ridker PM, Rifai N, Clearfield M, et al. Measurement of C-reactive protein
409	for the targeting of statin therapy in the primary prevention of acute
410	coronary events. N Engl J Med 2001;344:1959 –1965.
	18

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

BMJ Open

411	33. Lippi G, Targher G, Montagnana M, et al. Relation between red blood cell
412	distribution width and inflammatory biomarkers in a large cohort of
413	unselected outpatients. Arch Pathol Lab Med 2009;133:628–632.
414	34. Sesso HD, Buring JE, Rifai N, et al. C-reactive protein and the risk of
415	developing hypertension. JAMA 2003;290:2945–2951.
416	35. Kolls JK. Oxidative stress in sepsis: A redox redux. J Clin Invest
417	2006;116:860–863.
418	36. Ghaffari S. Oxidative stress in the regulation of normal and neoplastic
419	hematopoiesis. Antioxid Redox Signal 2008;10:1923–1940.
420	37. Salvagno GL, Sanchis-Gomar F, Picanza A. Lippi G. Red blood cell
421	distribution width: A simple parameter with multiple clinical applications.
422	Crit Rev Clin Lab Sci.2014 Dec 23:1-20.
423	38. Rojas-Suarez J, Paternina-Caicedo AJ, Miranda J, et al. Comparison of
424	severity-of-illness scores in critically ill obstetric patients: a 6-year
425	retrospective cohort. Crit Care Med 2014;42:1047–1054.
426	39. Hazelgrove JF, Price C, Pappachan VJ, et al. Multicenter study of
427	obstetric admissions to 14 intensive care units in southern England. Crit
428	Care Med 2001 Apr;29(4):770-5.
429	40. Karnad DR, Lapsia V, Krishnan A, et al. Prognostic factors in obstetric
430	patients admitted to an Indian intensive care unit. Crit Care Med 2004
431	Jun;32(6):1294-9.

432	41. Higgins TL, Teres D, Copes W. Updated Mortality Probability Model
433	(MPM-III). Chest 2005;128(4 Suppl):348S.
434	42. Knaus WA, Draper EA, Wagner DP, et al. APACHE II: A severity of
435	disease classification system. Crit Care Med 1985;13:818–829.
436	43. Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology
437	Score (SAPS II) based on a European/North American multicenter study.
438	JAMA 1993;270:2957–2963.
439	44. Lemeshow S, Teres D, Klar J, et al. Mortality Probability Models (MPM II)
440	based on an international cohort of intensive care unit patients. JAMA
441	1993;270:2478–2486.
442	45. Metnitz PG, Moreno RP, Almeida E, et al. SAPS 3 Investigators: SAPS 3-
443	From evaluation of the patient to evaluation of the intensive care unit. Part
444	1: Objectives, methods and cohort description. Intensive Care Med
445	2005;31:1336–1344.
446	46. Moreno RP, Metnitz PG, Almeida E, et al. SAPS 3 Investigators: SAPS 3-
447	From evaluation of the patient to evaluation of the intensive care unit. Part
448	2: Development of a prognostic model for hospital mortality at ICU
449	admission. Intensive Care Med 2005;31: 1345–1355.
450	47. Higgins TL, Kramer AA, Nathanson BH, et al. Prospective validation of the
451	intensive care unit admission Mortality Probability Model (MPM0-III). Crit
452	Care Med 2009;37:1619–1623.
453	48. Stevens TA, Carroll MA, Promecene PA, et al. Utility of acute physiology,
454	age, and chronic health evaluation (APACHE III) score in maternal

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

1		
2 3 4	455	admissions to the intensive care unit. Am J Obstet Gynecol
4 5 6	456	2006;194(5):e13-e15.
7 8	457	49. el-Solh AA, Grant BJ. A comparison of severity of illness scoring systems
9 10	450	for critically ill chototric notionts. Choot 4000:440/5\: 4200-4204
11	458	for critically ill obstetric patients. Chest 1996;110(5): 1299-1304.
12 13		
14		
15 16		
17		
18 19		
20		
21 22		
23		
24 25		
26		
27 28		
29		
30 31		
32		
33 34		
35		
36 37		
38		
39 40		
41		
42 43		
44		
45 46		
47		
48 49		
50		
51 52		
53		
54 55		
56		
57		
58 59		21
60		

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

1 2	
3 4 5	
5 6 7	
8	
10 11	
12 13	
14 15	
16 17	
9 10 11 12 13 14 15 16 17 18 19	
20 21	
22 23	
20 21 22 23 24 25 26	
25 26 27 28 29	
28 29 30	
31	
33 34	
35 36	
32 33 34 35 36 37 38 39	
40	
41 42	
43 44 45	
45 46 47	
48 49	
50 51	
52 53	
54 55	
56 57	
58 59	
60	

1

459	Table 1. Baseline clinical and laboratory characteristics by tertile of
-----	---

460 **RDW** at critical care initiation

	Tertile I	Tertile II	Tertile III	<i>P</i> -value
RDW (%)	10.7-13.9	13.9-15.6	15.6-20.4	<0.001
Ν	131	126	119	-
Age (years)	29.6 ± 4.3	29.3 ± 5.6	29.6 ± 5.9	0.84
Gestational age (weeks)	35 (32-37)	36 (33-39)	36 (32-38)	0.327
Primary diagnosis	to ICU admiss	sion (<i>n</i> , %)		
Hypertensive disorder of	50(38.17%)	55(43.65%)	52(43.70%)	0.417
pregnancy HELLP Syndrome	12(9.16%)	10(7.94%)	8(6.72%)	0.322
Acute fatty liver of pregnancy	10(7.63%)	8(6.35%)	7(5.88%)	0.485
Obstetric sepsis	5(3.82%)	4(3.17%)	3(2.52%)	0.657
Cardiovascular disease	42 (32.06%)	31 (24.60%)	26 (21.85%)	0.162
Gastrointestinal disease	2 (1.53%)	5 (3.97%)	4 (3.36%)	0.476
Stroke	2 (1.53%)	3 (2.38%)	0 (0)	0.332
Pulmonary embolism	1 (0.76%)	0 (0)	1 (0.84%)	0.766
Others	7(5.34%)	10(7.94%)	18(15.13)	0.142
Hemoglobin (g/L)	109.5 ± 19.7	100.1 ± 20.7	92.5 ± 24.1	<0.001
MCV(fL)	89.8 ± 5.1	86.7 ± 6.0	83.6 ± 11.4	<0.001
HCT (%)	32.6 ± 5.8	30.5 ± 6.3	28.8 ± 6.9	<0.001
APACHE II score	2 (2-6)	5 (3-6)	10 (6-22)	0.017
(points) AKI (<i>n</i> , %)	14 (10.69%)	17 (13.49%)	14 (11.76%)	0.207
TLSH (days)	8 (7-12)	8 (6-13)	8 (7-12)	0.203
Hospital Mortality (<i>n</i> , %)	0 (0%)	5 (3.97%)	15 (12.61%)	<0.001

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

RDW, red cell distribution width; MCV, mean corpuscular volume; HCT,

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

Variables	Odds ratio	95% CI	<i>P-</i> valu
Age (years)	1.048	0.969-1.133	0.24
Hemoglobin (g/L)	0.997	0.977-1.017	0.76
MCV (fL)	0.962	0.919-1.006	0.09
Hematocrit (%)	0.997	0.934-1.064	0.92
APACHE-II score	1.192	1.124-1.265	< 0.00
(points)			
AKI (%)	16.61	6.580-42.014	< 0.00
TLSH (days)	0.803	0.691-0.933	0.00
gestational age (weeks) 1.023	0.920-1.138	0.67
RDW (%)	1.309	1.150-1.489	<0.00

Table 2. Univariate odds ratios of variables for predicting mortality

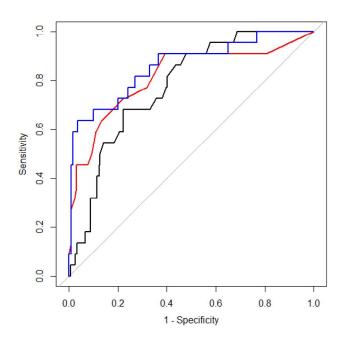
469 CI, confidence interval; RDW, red cell distribution width; MCV, mean

470 corpuscular volume; HCT, hematocrit; APACHE-II score, Acute Physiology

and Chronic Health Evaluation II score; AKI, acute kidney injury; TLSH, total

472 length of stay in hospital.

475 regression analysis


Odds ratio	95% CI	P value
1.189	1.071-1.319	0.001
23.784	6.129-92.296	<0.001
1.401	1.156-1.697	0.001
	1.189 23.784	1.1891.071-1.31923.7846.129-92.296

Independent variables include age, hemoglobin, MCV, hematocrit, APACHE-II score, AKI, TLSH, gestational age, and RDW. Due to the high correlation between hemoglobin and hematocrit, hemoglobin was first regressed on hematocrit; and placed the residual and hematocrit in the multivariate regression. RDW, red cell distribution width; MCV, mean corpuscular volume; HCT, hematocrit; APACHE-II score, Acute Physiology and Chronic Health Evaluation II score; AKI, acute kidney injury; TLSH, total length of stay in hospital.

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

Figure 1 ROC curve for Acute Physiology and Chronic Health Evaluation (APACHE) II score, red blood cell distribution width (RDW) and the combination of both in predicting hospital mortality.

- RDW (AUC 0.752 ± 0.062)

- APACHE-II score (AUC 0.766 ± 0.031)

- RDW+ APACHE-II score (AUC 0.872 ± 0.055)

RDW, red cell distribution width; MCV, mean corpuscular volume; HCT, hematocrit; APACHE-II score, Acute Physiology and Chronic Health Evaluation II score; AKI, acute kidney injury; TLSH, total length of stay in hospital.

179x220mm (300 x 300 DPI)

⊿0 **BMJ Open**

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6-7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	7
		(b) For matched studies, give matching criteria and number of exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6-10
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6-10
Bias	9	Describe any efforts to address potential sources of bias	5
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7-8
		(b) Describe any methods used to examine subgroups and interactions	7-8
		(c) Explain how missing data were addressed	7-8
		(d) If applicable, explain how loss to follow-up was addressed	7-8
		(e) Describe any sensitivity analyses	7-8
Results			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	8-9
·		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	8-10
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	8-10
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	8-10
		(b) Report category boundaries when continuous variables were categorized	8-10
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	8-10
Discussion			
Key results	18	Summarise key results with reference to study objectives	10-14
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	13
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	14

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

BMJ Open

RDW as a risk factor in obstetric patients admitted to the ICU – a single center, retrospective cohort study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-012849.R2
Article Type:	Research
Date Submitted by the Author:	20-Feb-2017
Complete List of Authors:	Chu, Yufeng; Shandong Provincial Hospital Affiliated to Shandong University Yuan, Zhongshang; Shandong University, Department of Epidemiology and Biostatistics Meng, Mei; Shandong Provincial Hospital Affiliated to Shandong University Zhou, Haiyan; Shandong Tumor Hospital and Institute Wang, Chunting; Shandong Provincial Hospital Affiliated to Shandong University Ren, Hongsheng; Shandong Provincial Hospital Affiliated to Shandong University, Department of Intensive Care Unit
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Obstetrics and gynaecology
Keywords:	APACHE-II score, Critical care, Mortality, OBSTETRICS, Red cell distribution width

SCHOLARONE[™] Manuscripts

LE PAGE
W as a risk factor in obstetric patients admitted to the ICU – a single ter, retrospective cohort study. eng Chu, ^{a,*} Zhongshang Yuan, ^{b,*} Mei Meng, ^a Haiyan Zhou, ^c Chunting ng, ^a Hongsheng Ren ^a
partment of Intensive Care Unit, Shandong Provincial Hospital Affiliated to ndong University, Shandong University, Jinan, P.R. China
partment of Epidemiology and Biostatistics, School of Public Health, ndong University, Jinan, P.R. China
partment of Medical Oncology ,Shandong Tumor Hospital, Jinan, P.R.
eng Chu and Zhongshang Yuan are co-first authors.
responding author:
gsheng Ren, MD, Ph. D.
artment of Intensive Care Unit
ndong Provincial Hospital Affiliated to Shandong University
324 Jingwu Road, Jinan, Shandong, 250012, P.R. China
ail: sdslicu@163.com
1
For peer review only - http://bmionen.hmi.com/site/about/guidelines.yhtml

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

1		
2 3 4	1	TITLE PAGE
5 6	2	RDW as a risk factor in obstetric patients admitted to the ICU – a
7	3	center, retrospective cohort study.
8 9	4	Yufeng Chu, ^{a,*} Zhongshang Yuan, ^{b,*} Mei Meng, ^a Haiyan Zhou, ^c Chun
10		
11 12	5	Wang, ^a Hongsheng Ren ^a
12 13 14	6	
15	_	
16	7	^a Department of Intensive Care Unit, Shandong Provincial Hospital Af
17 18	8	Shandong University, Shandong University, Jinan, P.R. China
19		
20	9	^b Department of Epidemiology and Biostatistics, School of Public Hea
21 22	10	Shandong University, Jinan, P.R. China
23		
24 25	11	^c Department of Medical Oncology ,Shandong Tumor Hospital, Jinan,
26	12	China
27		
28 29	13	Yufeng Chu and Zhongshang Yuan are co-first authors.
30	14	
31	14	Corresponding author:
32 33	15	Hongsheng Ren, MD, Ph. D.
34	15	
35	16	Department of Intensive Care Unit
36 37		
38	17	Shandong Provincial Hospital Affiliated to Shandong University
39 40		
40 41	18	No. 324 Jingwu Road, Jinan, Shandong, 250012, P.R. China
42		
43 44	19	Email: sdslicu@163.com
45		
46		
47 48		
49		
50		
51 52		
53		
54 55		
55 56		
57		
58		

20 Abstract

21	Background: Red blood cell distribution width (RDW) has been shown to
22	predict mortality in critically ill patients. The primary aim of this study was to
23	examine the association between RDW and hospital mortality in obstetric
24	critical care patients. The secondary aim was to investigate whether adding
25	RDW to Acute Physiology and Chronic Health Evaluation II (APACHE II)
26	improved the prognostic performance of APACHE II.
27	Methods: This is a single center, retrospective observational study. Patients
28	were excluded if they had known hematologic diseases, history of recent
29	blood transfusion, and patients who died or were discharged from ICU within
30	24 hours of admission were also excluded. Each patient's ICU entrance
31	characteristics were retrieved. Multivariate logistic regression was used to
32	determine the association between RDW and mortality. The receiver
33	operating characteristic curve was used to examine the performance of
34	APACHE II score and RDW in predicting mortality.
35	Results: A total of 376 patients were included in this present study and the
36	hospital mortality was 5.32%. A significant association was found between
37	baseline RDW levels and hospital mortality (odds ratio per percent increase in
38	RDW, 1.21; 95% CI, 1.02 to 1.57). After categorization based on tertile of
39	baseline RDW, as well as further adjustment for hematocrit and other risk
40	factors, a graded independent association between RDW and mortality was
41	observed (P<0.001). The addition of RDW to the APACHE II score improved
42	the AUC for hospital mortality from 0.766 to 0.872 (P<0.001).

2	
2 3	
4	
5 6	
7	
8	
9	
10 11	
12	
13	
14	
15	
17	
18	
19 20	
21	
22	
23 24	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	
26	
27	
27 28 29	
30	
31 32 33 34 35 36 37 38	
32 33	
34	
35	
36 37	
38	
39	
40	
41 42	
43	
44	
45 46	
47	
48	
49 50	
51	
52 53	
53 54	
54 55	
56	
57	
58 59	
60	

- 44 obstetric critical care patients. Combining RDW to APACHE II scores could
- 45 further improve its prognostic performance.
- 46 Key words: APACHE-II score; Critical care; Mortality; Obstetrics; Red cell
- 47 distribution width

48 Strengths and limitations of this study

- To our knowledge, this is the first report of red cell distribution width (RDW)
 as an independent prognostic outcome predictor in obstetric critical care
 patients.
- The advantage of RDW is that it is easy to obtain and highly reproducible,
- therefore, RDW may have the potential clinical utility to predict outcome forobstetric critical care patients.
- Results discussed in this study are coming from a single-center with
- relatively small patient numbers and high variability. A larger population based
- 57 cohort study might greatly strengthen our findings.

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

58 Introduction

Maternal mortality ratio (MMR) remain high despite the advances in the critical care of obstetric patients, especially in developing countries.^{1, 2} The use of scoring systems to assess severity and predict mortality may help identify obstetric patients who truly require intensive care.³ Acute Physiology and Chronic Health Evaluation II (APACHE II) score is a predictive scores for mortality that are widely used in ICUs. However, results from obstetric patients were inconsistencies; wherein, some studies have shown that these scores are a good predictor of illness severity, more recent studies have shown that these scores overestimated mortality.^{4, 5, 6, 7-9} Further work is needed to improve the prognostic accuracy of APACHE II scores in obstetric patients.

Red cell distribution width (RDW) is a parameter that is easy and inexpensive to obtain, and reflects the degree of heterogeneity of erythrocyte volume.¹⁰ RDW was used in the differential diagnosis of anemia in the past decades.¹¹ Recently, RDW has been shown to be a novel, independent prognostic marker for mortality, mainly in patients with cardiovascular disease and strokes, as well as in critically ill patients.¹²⁻¹⁹ However, few ICU subpopulations have been studied so far. The obstetric population is of special interest because of the limitations of existing scoring system, which are largely based on physiological parameters.

Therefore, we conducted a retrospective study to evaluate the prognostic
value of RDW, and investigated whether adding RDW could improve the
prognostic performance of APACHE-II scores in critically ill obstetric patients.

82	
83	Methods
84	This study was approved by the Institutional Review Board of the Provincial
85	Hospital Affiliated to Shandong University. Obstetric patients consecutively
86	admitted in the ICU for at least 24 hours from January 1, 2008 to December
87	31, 2013 were included in this retrospective observational study. The
88	requirement for patient consent was waived because this study did not affect
89	the patient's clinical care, and all protected health information was deleted.
90	Obstetric patients were defined as pregnant women or up to six weeks
91	postpartum. This study was carried out at the Shandong Provincial Hospital
92	Affiliated to Shandong University, Jinan, China. The hospital is a 1500-bed
93	tertiary academic hospital with 20 ICU beds. The hospital provides primary as
94	well as tertiary care to an ethnically and socioeconomically diverse population
95	within Shandong province and the surrounding region. The decision to
96	transfer patients into the ICU was made by at least one senior critical care
97	doctor and one senior obstetric doctor. Likewise, these doctors also made
98	decisions to discharge patients or to transfer patients to general wards.
99	Patients were excluded if they had known hematologic diseases (including
100	leukemia, thrombotic thrombocytopenic purpura, and other hematologic
101	diseases) or history of recent blood transfusion (less than two weeks).
102	According to the APACHE II scores criterion of Knaus WA, 1985, ²⁰ the
103	recorded value in our study was based on the most deranged reading during
104	each patient's initial 24h in an ICU, so we excluded the patients who died or
105	were discharged less than 24 hours.

106 Data collection

107	Demographic and clinical characteristics including age, gestational age, parity,
108	pregnancy status at admission, diagnosis at entry and during ICU stay, and
109	length of hospital stay were collected. The cesarean section was considered
110	an emergency intervention. The pregnancy associated with cardiac disease
111	include congenital and acquired heart disease during pregnancy. Diagnosis of
112	acute kidney injury (AKI) was based on the Acute Kidney Injury Network (AKIN)
113	criteria. ²¹ AKI was defined as an absolute increase in serum creatinine of
114	more than or equal to 0.3 mg/dl, a percentage increase in serum creatinine of
115	more than or equal to 50% (1.5 fold from baseline) within 48 hours, or
116	reduction in urine output (documented oliguria of less than 0.5 ml/Kg per hour
117	for more than six hours). ²¹ APACHE II scores were calculated using the worst
118	value of 12 acute physiological variables within 24 hours of presentation.
119	These variables included temperature, blood pressure, heart rate, respiratory
120	rate, arterial oxygenation, arterial pH, serum sodium, serum potassium, serum
121	creatinine, hematocrit, white blood cell count, and Glasgow Coma scores. If
122	the patient was sedated at the time of ICU admission, the last Glasgow Coma
123	Scale obtained prior to sedation was collected. RDW, hemoglobin level,
124	hematocrit and mean corpuscular volume (MCV) of all patients included in this
125	study were determined at admission using a Beckman Coulter LH-750
126	Hematology Analyzer (Beckman Coulter, Inc., Fullerton, California), as a part
127	of the complete blood cell count. Normal reference range for RDW in the
128	hospital laboratory is 10.9% to 15.4%. In addition, we got the number of birth
129	(from January 1, 2008 to December 31, 2013) from hospital database in order
130	to count ICU admission rate in the hospital.
	e

BMJ Open

All patients were followed up during hospitalization. The primary end point of
the study was hospital mortality. The primary predictor of interest was RDW
measured at ICU admission.

135 Statistics

All continuous variables were presented as means ± standard deviations, or medians with interquartile ranges as appropriate. Categorical data were summarized as number or percentage. We divided RDW into tertiles, and compared the demographics, diagnosis, clinical characteristics, laboratory test results, and APACHE-II scores of patients using analysis of variance or Kruskal-Wallis tests for continuous variables, and Chi-square or Fisher's exact tests for categorical variables. Univariate logistic regression analysis was conducted to examine the association between mortality and each of the predictors, separately. Multivariate logistic regression was further utilized to determine independent predictors of ICU mortality after adjusting for potential confounding factors. An appealing receiver operating characteristic (ROC) curve was used to examine the performance of APACHE-II scores and RDW in predicting hospital mortality. The curve represented a sensitivity plot versus 1-specificity. The area under the curve (AUC) was derived from the ROC curve, and the Youden index was adopted to define the optimal cut-off value.²² We also constructed an ROC curve for the combined APACHE-II score and RDW results for predicting hospital mortality according to the weighted sum formula derived from multivariate logistic regression: logit (mortality) = 0.162 x APACHE-II score + 0.203 x RDW - 7.503; wherein, logit

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

3
Δ
4 5 6 7 8
5
6
7
8
9
9 10 11
10
12 13 14 15 16
13
14
15
16
17
17
18
18 19
20
21
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
22
23
24
25
26
27
28
20
29
30
31
32
33
31
25
30
36
37
38
39
10
40
41
42
43
44
45
46
40 47
48
49
50
51
52
53
55
54
55
56
57
58
59
59 60
60

1

2

(mortality) is the logarithm of the odds of a critically ill obstetric patient dying in
the ICU. Differences between the AUC were detected by Delong's testwhich
was a nonparametric approach and could generate an estimated covariance
matrix by using the theory on generalized U-statistics.²³ Two-sided *P*-values
<0.05 were considered statistically significant, and all analyses were
performed with R software (http://www.cran.r-project.org/).

161

162 **Results**

163 Population

164 A total of 20570 births was reported from January 1, 2008 to December 31, 165 2013 in Shandong Provincial Hospital, among which 447 obstetric patients 166 were admitted to ICU. ICU admission rate was 21.73 per 1,000 births in the 167 hospital. 8 patients who were diagnosed with hematologic disease and 59 168 patients who received red blood cell transfusion within two weeks were 169 excluded. 2 patients who died within 24 hours after ICU admission were also 170 excluded. 2 patients were excluded for missing data. Thus, in the final 171 analysis, a total of 376 patients were included in this study. 172 Association between RDW and hospital mortality 173 A total of 20 deaths occurred in this cohort during the study period. In this 174 study, heart failure was the major cause of death in the cohort (n=8; 40.0%), 175 followed by acute fatty liver of pregnancy (n=5; 25%), postpartum hemorrhage 176 (n=2), hemorrhagic shock caused by liver tumor rupture (n=1), HELLP 177 syndrome (n=1), acute pulmonary embolism (n=1), stroke (n=1), and liver

BMJ Open

178	failure caused by severe hepatitis B (n=1). The hospital mortality was 5.32%,
179	and RDW ranged from 10.7% to 24.0% (median, 14.8%; interquartile range,
180	13.4% to 16.0%).
181	Participants were divided into 3 categories on the basis of their baseline
182	tertiles of RDW level: tertile I, 10.7%-13.9%; tertile II, 13.9%-15.6%; tertile III,
183	15.6%-20.4% (all <i>P</i> <0.001). There was no difference in age, gestational
184	weeks, primary reasons for ICU admission, AKI morbidity, as well as in the
185	total length of stay in hospital (TLSH) among the 3 tertiles. Hb, MCV and HCT
186	significantly decreased with the increase of RDW, while APACHE II scores
187	and hospital mortality significantly increased with the increase of RDW (Table
188	1). A significant association was found between baseline RDW levels and
189	hospital mortality (odds ratio per percent increase in RDW, 1.21; 95% CI, 1.02
190	to 1.57).
101	
191	Regression analysis for hospital mortality
192	Univariate logistic regression analysis demonstrated that patients with higher
193	RDW, higher APACHE-II scores, higher AKI morbidity, and longer TLSH days
194	had significantly greater death hazards (Table 2). Multivariate logistic
195	regression analysis revealed that RDW, AKI and APACHE-II scores were
196	independent predictors of hospital mortality (Table 3). The association of
197	RDW and hospital mortality remained significant after adjusting for age,
198	hemoglobin, MCV, hematocrit, APACHE-II score and AKI. RDW was a
199	significant outcome predictor, which is independent of APACHE-II scores.
200	A ROC curve was drawn to evaluate the value for RDW and APACHE-II
201	scores in predicting mortality (Figure 1). The AUC was calculated as 0.766
	9

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

202	(95% CI, 0.705 to 0.826) for the APACHE-II score and 0.752 (95% CI, 0.684
203	to 0.862) for RDW. Optimal cut-off value of the APACHE-II score for
204	predicting mortality was 5 points, which gave a sensitivity of 90.9% and a
205	specificity of 60.7%. The optimal cut-off value of RDW was 16.1%, which gave
206	a sensitivity of 68.2% and specificity of 77.9%. To further clarify whether RDW
207	had an additive power with the APACHE-II score for hospital mortality, we
208	combined RDW and the APACHE-II score to draw a third ROC curve, as
209	shown in Figure 1. Compared with the APACHE-II score, adding RDW to
210	APACHE-II scores improved the AUC from 0.766 to 0.872 (P<0.001). These
211	results suggested that combining RDW and APACHE-II added to the ability to
212	discriminate mortality risk. As in multivariate logistic regression analysis, AKI
213	was another strong predictor for hospital mortality. We conducted the ROC
214	curve analysis using all three variables including RDW, APACHE-II and AKI.
215	Adding AKI improved the AUC from 0.872 to 0.884 (<i>P</i> >0.05), however, no
216	significant difference was observed between the AUC derived from all three
217	variables or that derived only from RDW and APACHE-II. The Delong's Z
218	statistic and <i>P</i> value were equal to -0.668 and 0.504 respectively.
219	Discussion
220	The main finding of our study was that RDW was independently associated
221	with hospital mortality in obstetric critical care patients . The association
222	remained significant even after adjusting for APACHE-II scores, hemoglobin
223	levels, hematocrit and mean corpuscular volume. Combining RDW and the
224	APACHE-II score improved the prognostic accuracy of hospital mortality as
225	predicted by APACHE-II alone in the study population.
	10

BMJ Open

226	We found that RDW was independently associated with hospital mortality in
227	a Chinese obstetric ICU population. Patients were excluded if they had a
228	history of recent blood transfusions because RDW could be increased in
229	anemia or after blood transfusions. ^{11, 24} In this present study, higher level of
230	RDW was associated with hospital mortality even after adjusting for
231	hemoglobin and hematocrit. In addition, the independent association between
232	RDW and hospital mortality was not eliminated even after adjusting for other
233	potential confounders, including mean corpuscular volume, hemoglobin,
234	hematocrit, APACHE-II score, gestational age and AKI. Our results were
235	consistent with two previous population studies on critically ill patients. ^{25, 26} In
236	addition, our results were also in line with the findings obtained in a single-
237	center observational study in 2011 ¹⁶ , which showed independent association
238	between RDW and all-cause mortality in critically ill patients.
239	Our unique findings indicated that combining RDW and APACHE-II score
240	performed better than APACHE-II score alone in predicting hospital mortality
241	in critically ill obstetric patients. The APACHE-II scoring system developed in
242	1985 has shown a positive correlation with hospital mortality, and was one of
243	the most common models used for evaluating the severity of a disease in
244	critically ill patients. ²⁰ Previous studies ²⁷⁻²⁹ suggested APACHE II score was a
245	good discriminator of illness severity in obstetric cohorts. The sensitivity and
246	specificity of the APACHE II score was evaluated with the use of receiver
247	operating characteristic curve analysis. In accordance with previous studies ²⁷⁻
248	²⁹ , the APACHE-II score was also demonstrated to have a good ability to
249	predict hospital mortality (AUC=0.766) in the present study. Despite its
250	moderate discriminative power alone (AUC=0.752), adding RDW to the 11
	**

1
2
3
4
5
6
7
1
8
9
10
11
12
12
13
14
15
16
17
18
10
19
20
21
22
- 2 3 4 5 6 7 8 9 10 1 12 13 14 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 3 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
24
25
20
26
27
28
29
30
21
31
32
33
34
35
36
37
20
38
39
40
41
42
43
44
44 45
46
47
48
49
50
51
52
53
54
55
56
57
58
50
59
60

1

251	APACHE-II score resulted to a better increase in the AUC from 0.766 to 0.872
252	(P<0.001). Combining RDW with APACHE-II score significantly improved
253	prognostic performance in critically ill obstetric patients. Similarly, another
254	study by Wang et al. ¹⁶ also revealed that adding RDW to APACHE-II score
255	significantly improved prognostic reliability of APACHE-II score in identifying
256	critically ill patients. Since RDW is a simple, inexpensive, and widely available
257	test as part of the complete blood count, these data may have significant
258	clinical implications for determining prognosis in critically ill obstetric patients.
259	However, no significant improvement on prognostic performance was
260	observed when AKI was associated with RDW and APACHE-II score, even
261	though AKI was another strong predictor for hospital mortality in multivariate
262	logistic regression analysis.
263	The pathophysiologic mechanism underlying the association of higher RDW
264	with worse outcomes in critically ill obstetric patients remains unclear.
265	Generally, the increase in RDW reflects either impaired erythropoiesis,
266	abnormal red blood cell survival, or both. Metabolic abnormalities such as
267	shortening of telomere length, poor nutritional status, ^{30, 31} inflammation, ³²⁻³⁴
268	oxidative stress, ^{35, 36} dyslipidemia, hypertension, erythrocyte fragmentation,
269	or alteration of erythropoietin function might contribute to RDW increase. ³⁷ In
270	normal parturition, the increase of RDW might be related to stimulus-induced
271	reticulocytosis in the last few weeks. ²⁹ This might not be the case in our study;
272	wherein, even if five patients with spontaneous onset of labor were excluded,
	wherein, even if the patients with spontaneous onset of labor were excluded,
273	RDW remained as a significant predictor of mortality.

BMJ Open

274	In this present study, the admission rate of 21.73 per 1,000 births was
275	relatively high, ³⁸⁻³⁹ and the mean APACHE-II score was relatively low
276	compared with other studies. ^{7, 16, 40} The lack of a high dependency unit as a
277	referral center in local areas for complicated pregnancies could partially
278	explain these difference.
279	This study had several limitations. First, we did not evaluatethe evolution of
280	RDW, and thus, it remained unclear whether changes in RDW over time may
281	provide additional prognostic information. Second, we only used the APACHE-
282	Il score to predict mortality in obstetric patients, which was limited by
283	spontaneous improvement after delivery in peripartum women,41-47 and
284	inconsistent results. ^{48, 49} Finally, our study was a single-center study. The
285	study was very heterogenous and the case number was relatively small, in
286	future, a large population based study may validate and strengthen our
287	findings.
288	In summary, the single-center study in China demonstrated that RDW was
289	an independent predictor for mortality in obstetric critical care patients.
290	Combining RDW and the APACHE-II score improved prognostic accuracy
291	compared with the APACHE-II score model alone.
292	Acknowledgements
293	This study was funded by the National Natural Science Foundation of China
294	(NSFC 81200238), the Research Foundation for Excellent Young and Middle-
295	aged Scientists of Shandong Province (BS2011YY043, BS2011YY052),the
296	Young Scholars Program of Shandong University (2016WLJH23), the Clinical
297	medicine science and technology innovation plan of Jinan Bureau of Science

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

298	& Technology(201602164), the Shandong Provincial Department of Science &
299	Techno-logy research and development plan (2016GSF201052), and the
300	Natural Science Foundation of Shandong Province of China (ZR2013HM062).
301	Conflict of Interests
302	The authors declare that there is no conflict of interests regarding the
303	publication of this paper.
304	References
305	1. World Health Organization. World Health Statistics 2014. Geneva, World
306	Health Organization; 2014.
307	2. Zeeman GG. Obstetric critical care: A blueprint for improved outcomes.
308	Crit Care Med 2006; 34:S208–S214.
309	3. Soubra SH, Guntupalli KK. Critical illness in pregnancy: an overview. Crit
310	Care Med 2005;33(10 suppl):S248-S255.
311	4. Scarpinato L, Gerber D. Critically ill obstetrical patients: outcome and
312	predictability. Crit Care Med 1995;23(8):1449-1451.
313	5. Gopalan PD, Muckart DJ. The critically ill obstetric patient: what's the
314	score? Int J ObstetAnesth 2004;13(3):144-145.
315	6. Ramsay MM, James D, Steer P, et al, editors. Normal values in pregnancy.
316	London: W.B. Saunders; 2000.

BMJ Open

2			
3	317	Lapinsky SE, Hallett D, Collop N, et al. Evaluation of standard and	
4 5	318	modified severity of illness scores in the obstetric patient. J Crit Care 2011	
6	010		
7 8	319	Oct;26(5):535.e1-7.	
9			
10 11	320	8. Harrison D, Penny J, Yentis S, et al. Case mix, outcome and activity for	
12 13	321	obstetric admissions to adult, general critical care units: A secondary	
14 15	322	analysis of the ICNARC Case Mix Programme Database. Crit Care 2005;	
16 17 18 19	323	9(Suppl 3):S25–S37.	
20 21	324	9. Paternina-Caicedo A, Rojas-Suarez J, Duenas-Castel C, et al. Mortality	
22 23	325	risk prediction with an updated Acute Physiology and Chronic Health	
24 25	326	Evaluation II Score in critically ill obstetric patients: A cohort study. J	
26 27 28	327	Intensive Care Med 2015 Feb;30(2):97-102.	
29 30 31	328	10. Perkins SL. Examination of blood and bone marrow. In: Greer JP,	
32 33	329	Foerster J, Lukens JN, Rodgers GM, Paraksevas F, Glader BE, eds.	
34 35	330	Wintrobe's Clinical Hematology. 11th ed. Salt Lake City, Utah: Lippincott	
36 37 38	331	Wilkins & Williams; 2003:5–25.	
39 40	332	11. McKenzie SD. Introduction to anemia. In: McKenzie SD, ed. Clinical	
41 42 43	333	Laboratory Hematology. Saddle River, NJ: Pearson Prentice-Hall;	
44 45	334	2003:161–188.	
46 47 48	335	12. Tonelli M, Sacks F, Arnold M, et al. For the Cholesterol and Recurrent	
49 50	336	Events (CARE) Trial InvestigatorsCirculation.Relation Between Red Blood	
51 52	337	Cell Distribution Width and Cardiovascular Event Rate in People With	
53 54	338	Coronary Disease. Circulation 2008;117:163–8.	
55 56 57			
58 59		15	

Page 16 of 26

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

BMJ Open

3 4	339
4 5 6	340
7 8	341
9 10	342
11 12 13	343
14 15	344
16 17 18	345
19 20	346
21 22 23	347
24 25	348
26 27 28	349
29 30	350
31 32 33	351
34 35 36	352
37 38	353
39 40 41	354
42 43	355
44 45 46	356
47 48	357
49 50 51	358
52 53	359
54 55 56 57	360
58 59 60	

1

2

13. Felker GM, Allen LA, Pocock S, et al. CHARM Investigators: Red cell distribution width as a novel prognostic marker in heart failure: data from the CHARM Program and the Duke Databank for Cardiovascular Diseases. J Am CollCardiol 2007;50:40-47. 14. Förhécz Z, Gombos T, Borgulya G, et al. Red cell distribution width in heart failure: prediction of clinical events and relationship with markers of ineffective erythropoiesis, inflammation, renal function, and nutritional state. Am Heart J 2009; 158:659-66. 15. Pascual-Figal DA, Bonaque JC, Redondo B, et al. Red blood cell distribution width predicts long-term outcome regardless of anaemia status in acute heart failure patients. Eur J Heart Fail 2009;11:840-6. 16. Wang F, Pan W, Pan S, et al. Red cell distribution width as a novel predictor of mortality in ICU patients. Ann Med 2011 Feb;43(1):40-6. 17. Ani C, Ovbiagele B. Elevated red blood cell distribution width predicts mortality in persons with known stroke. J NeurolSci 2009;277:103-8. 18. Purtle SW, Moromizato T, McKane CK, et al. The association of red cell distribution width at hospital discharge and out-of-hospital mortality following critical illness.Crit Care Med 2014 Apr;42(4):918-29. 19. Kim CH, Park JT, Kim EJ, et al. An increase in red blood celldistributionwidth from baseline predicts mortality in patients with severe sepsis or septic shock.Crit Care 2013 Dec 9;17(6):R282. 20. Youden WJ: Index for rating diagnostic tests. Cancer 1950;3:32–5.

BMJ Open

361	21. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the
362	areasundertwo or morecorrelatedreceiver operating characteristiccurves:
363	a nonparametricapproach.Biometrics 1988 Sep;44(3):837-45.
364	22. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med
365	2005;352:1011–1023.
366	23. Sabina Hunziker, Leo A Celi, Joon Lee, et al. Red cell distribution width
367	improves the simplified acute physiology score for risk prediction in
368	unselected critically ill patients. Critical Care 2012,16:R89.
369	24. Heidi S. Bazick, Domingo Chang, KarthikMahadevappa, et al. Red cell
370	distribution width and all-cause mortality in critically ill patients. Crit Care
371	Med 2011;39:1913–1921.
372	25. Knaus WA, Draper EA, Wagner DP, et al. APACHE II: a severity of
373	disease classification system. Crit Care Med 1985;13:818–29.
374	26. Knaus WA, Draper EA, Wagner DP, et al. APACHE II: a severity of
375	disease classification system. Crit Care Med 1985;13:818–29.
376	27. Hazelgrove JF, Price C, Pappachan VJ, et al. Multicenter study of
377	obstetric admissions to 14 intensive care units in southern England.Crit
378	Care Med 2001 Apr;29(4):770-5.
379	28. Harrison D, Penny JA, Yentis SM, et al. Case mix, outcome and activity
380	for obstetric admissions to adult, general critical care units: a secondary
381	analysis of the ICNARC case mix programme database. Critical Care
382	2005;9(suppl 3):S25-S37.
	17

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

383	29. Arabi Y, Goraj R, Horsfall D. Scoring systems in obstetric patients
384	requiring intensive care in Saudi Arabia: a ten year review. Chest
385	1999;116:286S.
386	30. Duffy TP. Approach to the patient with anemia. In: Kelley WN, Dupont HL,
387	Glick JH, Harris ED, Hathaway DR, Hazzard WR, Holmes EW, Hudson
388	LD, Humes HD, Paty DW, eds. Kelley's Textbook of Internal Medicine.
389	3rd ed. Philadelphia, Pa: Lippincott Williams and Wilkins; 1997:1295–
390	1299.
391	31. Forhecz Z, Gombos T, Borgulya G, et al. Red cell distribution width in
392	heart failure: prediction of clinical events and relationship with markers of
393	ineffective erythropoiesis, inflammation, renal function, and nutritional
394	state. Am Heart J 2009, 158:659-666.
395	32. Ridker PM, Rifai N, Clearfield M, et al. Measurement of C-reactive protein
396	for the targeting of statin therapy in the primary prevention of acute
397	coronary events. N Engl J Med 2001;344:1959 –1965.
398	33. Lippi G, Targher G, Montagnana M, et al. Relation between red blood cell
399	distribution width and inflammatory biomarkers in a large cohort of
400	unselected outpatients. Arch Pathol Lab Med 2009;133:628–632.
401	34. Sesso HD, Buring JE, Rifai N, et al. C-reactive protein and the risk of
402	developing hypertension. JAMA 2003;290:2945–2951.
403	35. Kolls JK. Oxidative stress in sepsis: A redox redux. J Clin Invest
404	2006;116:860–863.

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

BMJ Open

405	36. Ghaffari S. Oxidative stress in the regulation of normal and neoplastic
406	hematopoiesis. Antioxid Redox Signal 2008;10:1923–1940.
407	37. Salvagno GL, Sanchis-Gomar F,Picanza A.Lippi G. Red blood cell
408	distribution width: A simple parameter with multiple clinical applications.
409	Crit Rev Clin Lab Sci.2014 Dec 23:1-20.
410	38. Rojas-Suarez J, Paternina-Caicedo AJ, Miranda J, et al. Comparison of
411	severity-of-illness scores in critically ill obstetric patients: a 6-year
412	retrospective cohort. Crit Care Med 2014;42:1047–1054.
413	39. Hazelgrove JF, Price C, Pappachan VJ, et al. Multicenter study of
414	obstetric admissions to 14 intensive care units in southern England.Crit
415	Care Med 2001 Apr;29(4):770-5.
416	40. Karnad DR, Lapsia V, Krishnan A, et al. Prognostic factors in obstetric
417	patients admitted to an Indian intensive care unit.Crit Care Med 2004
418	Jun;32(6):1294-9.
419	41. Higgins TL, Teres D, Copes W. Updated Mortality Probability Model
420	(MPM-III). Chest 2005;128(4 Suppl):348S.
421	42. Knaus WA, Draper EA, Wagner DP, et al.APACHE II: A severity of
422	disease classification system. Crit Care Med 1985;13:818–829.
423	43. Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology
424	Score (SAPS II) based on a European/North American multicenter study.
425	JAMA 1993;270:2957–2963.

Page 20 of 26

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

3
4
5
6
7 8
0
0
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
9 9 10 11 12 13 14 15 16 7 18 9 21 22 32 25 26 27 28 9 30 132 34 35 67 82 37 82
24
24
20
26
27
28
29
30
31
22
32
33
34
35
36
37
38
39
39 40
41
42
43
44
45
46
40 47
48
49
50
51
52
53
53 54
54 55
55
56
57
58
59
60
60

1

2

426	44. Lemeshow S, Teres D, Klar J, et al. Mortality Probability Models (MPM II)
427	based on an international cohort of intensive care unit patients. JAMA
428	1993;270:2478–2486.

429 45. Metnitz PG, Moreno RP, Almeida E, et al. SAPS 3 Investigators: SAPS 3–
430 From evaluation of the patient to evaluation of the intensive care unit. Part
431 1: Objectives, methods and cohort description. Intensive Care Med

- 432 2005;31:<mark>1</mark>336–1344.
- 433 46. Moreno RP, Metnitz PG, Almeida E, et al. SAPS 3 Investigators: SAPS 3–
- 434 From evaluation of the patient to evaluation of the intensive care unit. Part
- 435 2: Development of a prognostic model for hospital mortality at ICU
- 436 admission. Intensive Care Med 2005;31: 1345–1355.
- 437 47. Higgins TL, Kramer AA, Nathanson BH, et al. Prospective validation of the
- 438 intensive care unit admission Mortality Probability Model (MPM0-III). Crit
- 439 Care Med 2009;37:1619–1623.
- 440 48. Stevens TA, Carroll MA, Promecene PA, et al. Utility of acute physiology,
- 441 age, and chronic health evaluation (APACHE III) score in maternal
- 442 admissions to the intensive care unit. Am J ObstetGynecol
- 443 2006;194(5):e13-e15.
- 444 49. el-Solh AA, Grant BJ. A comparison of severity of illness scoring systems
- for critically ill obstetric patients. Chest 1996;110(5): 1299-1304.

446	Table 1. Baseline clinical and laboratory characteristics by tertile of
-----	---

447 **RDW at critical care initiation**

	Tertile I	Tertile II	Tertile III	P-value
RDW (%)	10.7-13.9	13.9-15.6	15.6-20.4	<0.001
N	131	126	119	-
Age (years)	29.6 ± 4.3	29.3 ± 5.6	29.6 ± 5.9	0.84
Gestational age (weeks)	35 (32-37)	36 (33-39)	36 (32-38)	0.327
Primary diagnosis	to ICU admiss	sion (<i>n</i> , %)		
Hypertensive disorder of	50(38.17%)	55(43.65%)	52(43.70%)	0.417
pregnancy HELLP Syndrome	12(9.16%)	10(7.94%)	8(6.72%)	0.322
Acute fatty liver	10(7.63%)	8(6.35%)	7(5.88%)	0.485
of pregnancy Obstetric sepsis	5(3.82%)	4(3.17%)	3(2.52%)	0.657
Cardiovascular disease	42 (32.06%)	31 (24.60%)	26 (21.85%)	0.162
Gastrointestinal disease	2 (1.53%)	5 (3.97%)	4 (3.36%)	0.476
Stroke	2 (1.53%)	3 (2.38%)	0 (0)	0.332
Pulmonary embolism	1 (0.76%)	0 (0)	1 (0.84%)	0.766
Others	7(5.34%)	10(7.94%)	18(15.13)	0.142
Hemoglobin (g/L)	109.5 ± 19.7	100.1 ± 20.7	92.5 ± 24.1	<0.001
MCV(fL)	89.8 ± 5.1	86.7 ± 6.0	83.6 ± 11.4	<0.001
HCT (%)	32.6 ± 5.8	30.5 ± 6.3	28.8 ± 6.9	<0.001
APACHE II score	2 (2-6)	5 (3-6)	10 (6-22)	0.017
(points) AKI (<i>n</i> , %)	14 (10.69%)	17 (13.49%)	14 (11.76%)	0.207
TLSH (days)	8 (7-12)	8 (6-13)	8 (7-12)	0.203
Hospital Mortality (<i>n</i> , %)	0 (0%)	5 (3.97%)	15 (12.61%)	<0.001

BMJ Open

- Note: RDW, red cell distribution width; MCV, mean corpuscular volume; HCT,
- hematocrit; APACHE-II score, Acute Physiology and Chronic Health

59 60

Variables	Odds ratio	95% CI	P-v
Age (year	rs) 1.048	0.969-1.133	C
Hemoglol	oin (g/L) 0.997	0.977-1.017	(
MCV (fL)	0.962	0.919-1.006	(
Hematocr	rit (%) 0.997	0.934-1.064	(
APACHE	-Il score 1.192	1.124-1.265	<
(points)			
AKI (%)	16.61	6.580-42.014	<
TLSH (da	ys) 0.803	0.691-0.933	0
gestation	al age (weeks) 1.023	0.920-1.138	0
RDW (%)	1.309	1.150-1.489	<(
455			
456 Note: CI, confid	lence interval; RDW, red c	ell distribution width	h; MC
457 corpuscular vol	ume; HCT, hematocrit; AP	ACHE-II score, Ac	ute Pł
458 and Chronic He	ealth Evaluation II score; A	KI, acute kidney inj	ury; T
159 length of stay ir	n hospital.		
60			

edicting mortality

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

Table 3. Independent predictors of mortality by multivariate logistic

regression analysis

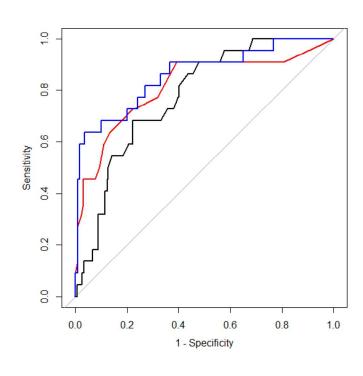
Variables	Odds ratio	95% CI	P value
APACHE-II (points)	1.189	1.071-1.319	0.001
AKI (%)	23.784	6.129-92.296	<0.001
RDW (%)	1.401	1.156-1.697	0.001

Note: Independent variables include age, hemoglobin, MCV, hematocrit, APACHE-II score, AKI, TLSH, gestational age, and RDW. Due to the high correlation between hemoglobin and hematocrit, hemoglobin was first regressed on hematocrit; and placed the residual and hematocrit in the multivariate regression. RDW, red cell distribution width; MCV, mean corpuscular volume; HCT, hematocrit; APACHE-II score, Acute Physiology and Chronic Health Evaluation II score; AKI, acute kidney injury; TLSH, total length of stay in hospital.

474

475

Figure legend:


in predicting hospital mortality.

1

Figure 1: ROC curve for APACHE II score, RDW, and the combination of both

2		
3		
4 5		
6		
7		
5 6 7 8		
9		
10		
11 12		
13		
14		
15		
16 17		
18		
19		
20		
21 22		
22 23		
24 25		
25		
26 27		
28		
29		
30		
31 32		
33		
34		
35		
36 37		
38		
39		
40		
41 42		
43		
44		
45		
46 47		
48		
49		
50		
51 52		
52 53		
54		
55		
56 57		
57 58		
59		
60		

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

Figure 1

ROC curve for APACHE II score, RDW, and the combination of both in predicting hospital mortality. Compared with the APACHE-II score, adding RDW to APACHE-II scores improved the AUC from 0.766 to 0.872 (P<0.001). — RDW (AUC 0.752 ± 0.062); — APACHE-II score (AUC 0.766 ± 0.031); — RDW+ APACHE-II score (AUC 0.872 ± 0.055); ROC, receiver operating characteristic; AUC, area under the curve; APACHE-II score, Acute Physiology and Chronic Health Evaluation II score; RDW, red cell distribution width.

173x177mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open

Red blood cell distribution width as a risk factor for inhospital mortality in obstetric patients admitted to Intensive care unit – a single center, retrospective cohort study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-012849.R3
Article Type:	Research
Date Submitted by the Author:	30-Mar-2017
Complete List of Authors:	Chu, Yufeng; Shandong Provincial Hospital Affiliated to Shandong University Yuan, Zhongshang; Shandong University, Department of Epidemiology and Biostatistics Meng, Mei; Shandong Provincial Hospital Affiliated to Shandong University Zhou, Haiyan; Shandong Tumor Hospital and Institute Wang, Chunting; Shandong Provincial Hospital Affiliated to Shandong University Yang, Gong; Vanderbilt School of Medicine, Department of Medicine Ren, Hongsheng; Shandong Provincial Hospital Affiliated to Shandong University, Department of Intensive Care Unit
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Obstetrics and gynaecology
Keywords:	APACHE-II score, Critical care, Mortality, OBSTETRICS, Red cell distribution width

SCHOLARONE[™] Manuscripts

1		
2 3	1	TITLE PAGE
4	T	IIILE PAGE
5 6	2	Red blood cell distribution width as a risk factor for in-hospital mortality
7	3	in obstetric patients admitted to Intensive care unit – a single center,
8 9	4	retrospective cohort study.
10 11	5	Yufeng Chu, ^{a,*} Zhongshang Yuan, ^{b,*} Mei Meng, ^a Haiyan Zhou, ^c Chunting
12	6	Wang, ^a Gong yang ^d , Hongsheng Ren ^a
13	0	Wang, Gong yang, Hongsneng Ken
14 15	7	
16		
17 18	8	^a Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to
10	9	Shandong University, Shandong University, Jinan, P.R. China
20	5	
21 22	10	^b Department of Epidemiology and Biostatistics, School of Public Health,
22	11	Shandong University, Jinan, P.R. China
24		
25 26	12	^c Department of Medical Oncology ,Shandong Tumor Hospital, Jinan, P.R.
27	13	China
28	15	on ma
29 30	14	^d Vanderbilt Epidemiology Center, Department of Medicine, Vanderbilt
31	15	University Medical Center, Nashville, TN, USA
32 33	15	
33 34	16	Yufeng Chu and Zhongshang Yuan are co-first authors.
35		
36 37	17	Corresponding author:
38		
39	18	Hongsheng Ren, MD, Ph. D.
40 41	10	Descriptions of Interaction Constitution
42	19	Department of Intensive Care Unit
43 44	20	Shandong Provincial Hospital Affiliated to Shandong University
44 45	20	Chandeling Provincial Prospital / Annated to Chandeling Chivelong
46	21	No. 324 Jingwu Road, Jinan, Shandong, 250012, P.R. China
47 48		
49	22	Email: sdslicu@163.com
50		
51 52		
53		
54 55		
55 56		
57		
58 59		1
60		

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

23 Abstract

Background: Red blood cell distribution width (RDW) has been shown to
predict mortality in critically ill patients. To our knowledge, it has not been
evaluated whether RDW is associated with clinical outcomes of obstetric
patients requiring critical care.

Methods: This is a single-center, retrospective observational study of obstetric patients admitted to intensive care unit (ICU). Patients were excluded from the analysis if they had known hematologic diseases or recently underwent blood transfusion. Patients who died or were discharged from ICU within 24 hours of admission were also excluded. Patient clinical characteristics at ICU admission were retrieved from medical chart. Multiple logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (95% CI) for in-hospital mortality associated with RDW. The receiver operating characteristic curve was used to examine the performance of RDW, alone or in combination with Acute Physiology and Chronic Health Evaluation II score (APACHE II), in predicting in-hospital mortality.

Results: A total of 376 patients were included in this study. The hospital
mortality was 5.32%. A significant association was found between baseline
RDW levels and hospital mortality (odds ratio per percent increase in RDW,
1.21; 95% CI, 1.02 to 1.57). Further adjustment for hematocrit and other
potential confounders did not appreciably alter the result (*P*<0.001). The area
under the curve (AUC) for in-hospital mortality by RDW was similar to that by

BMJ Open

2	
2	
3	
4	
$1 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 23 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 23 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 23 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 23 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 23 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 23 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 23 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 23 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 33 \\ 3$	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
23	
20	
24	
25	
26	
27	
28	
29	
20	
30	
31	
32	
31 32 33 34 35 36 37 38	
34	
35	
36	
27	
31	
38	
39	
40	
41	
42	
43	
43 44	
45	
46	
47	
48	
49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

46	APACHE II score (0.752 vs 0.766). Combination of these two factors resulted
47	in substantial improvement in risk prediction, with AUC of 0.872 (<i>P</i> <0.001).
48	Conclusions: This study suggests that RDW is an independent predictor for
49	in-hospital mortality among ICU-admitted obstetric patients. Combining RDW
50	and APACHE II scores could significantly improve in-hospital prognostic
51	prediction among these critically-ill obstetric patients.
52	Key words: APACHE-II score; Critical care; Mortality; Obstetrics; Red cell
53	distribution width
54	Strengths and limitations of this study
55	• To our knowledge, this is the first report of red cell distribution width (RDW)
56	as an independent prognostic predictor of clinical outcomes in obstetric
57	critical care patients.
58	 The study finding suggests that RDW, a routinely measured clinical
59	laboratory test with high reproducibility, may have direct clinical implications
60	and may aid the improvement of critical care for obstetric patients.
61	• This is a single-center study. Replication in other populations/settings is
62	warranted.

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

63 Introduction

64	Maternal mortality ratio (MMR) remains high, despite the advances in the
65	critical care of obstetric patients, especially in developing countries. ^{1, 2} The
66	use of scoring systems to assess its severity and predict mortality may help
67	identify obstetric patients who truly require intensive care. ³ Acute Physiology
68	and Chronic Health Evaluation II (APACHE II) score is a predictive score for
69	mortality that are widely used in ICUs. However, results from obstetric
70	patients requiring critical care have been mixed. Some studies suggest this is
71	a good predictor for illness severity, but other more recent studies have
72	shown that this score has overestimated mortality risk. ^{4, 5, 6, 7-9} Therefore,
73	there is a real need to identify new factors in order to improve the assessment
74	of illness severity and prediction of clinical outcomes for critically-ill obstetric
75	patients.
75 76	patients. Red cell distribution width (RDW), a routinely measured clinical laboratory
76	Red cell distribution width (RDW), a routinely measured clinical laboratory
76 77	Red cell distribution width (RDW), a routinely measured clinical laboratory test with high reproducibility, reflects the degree of heterogeneity of
76 77 78	Red cell distribution width (RDW), a routinely measured clinical laboratory test with high reproducibility, reflects the degree of heterogeneity of erythrocyte volume. ¹⁰ RDW has been used to differentiate anemia types over
76 77 78 79	Red cell distribution width (RDW), a routinely measured clinical laboratory test with high reproducibility, reflects the degree of heterogeneity of erythrocyte volume. ¹⁰ RDW has been used to differentiate anemia types over the past decades. ¹¹ Recently, RDW has been shown to be a novel,
76 77 78 79 80	Red cell distribution width (RDW), a routinely measured clinical laboratory test with high reproducibility, reflects the degree of heterogeneity of erythrocyte volume. ¹⁰ RDW has been used to differentiate anemia types over the past decades. ¹¹ Recently, RDW has been shown to be a novel, independent prognostic marker for mortality, mainly in patients with
76 77 78 79 80 81	Red cell distribution width (RDW), a routinely measured clinical laboratory test with high reproducibility, reflects the degree of heterogeneity of erythrocyte volume. ¹⁰ RDW has been used to differentiate anemia types over the past decades. ¹¹ Recently, RDW has been shown to be a novel, independent prognostic marker for mortality, mainly in patients with cardiovascular disease and strokes, as well as in critically ill patients. ¹²⁻¹⁹
76 77 78 79 80 81 82	Red cell distribution width (RDW), a routinely measured clinical laboratory test with high reproducibility, reflects the degree of heterogeneity of erythrocyte volume. ¹⁰ RDW has been used to differentiate anemia types over the past decades. ¹¹ Recently, RDW has been shown to be a novel, independent prognostic marker for mortality, mainly in patients with cardiovascular disease and strokes, as well as in critically ill patients. ¹²⁻¹⁹ However, to our knowledge, no study has directly examined the prognostic

86 with in-hospital mortality and examined the performance of RDW, alone or in

BMJ Open

87	combination with Acute Physiology and Chronic Health Evaluation II score
88	(APACHE II), in predicting risk for in-hospital mortality.
89	Methods
90	The study was carried out at the Shandong Provincial Hospital Affiliated to
91	Shandong University, Jinan, China. The hospital is a 1500-bed tertiary
92	academic hospital with 20 ICU beds, which provides primary as well as
93	tertiary care to an ethnically and socioeconomically diverse population within
94	Shandong province and the surrounding region. The study was approved by
95	the Institutional Review Board of the hospital. Obstetric patients consecutively
96	admitted in the ICU for at least 24 hours from January 1, 2008 to December
97	31, 2013 were included in this retrospective observational study. The
98	requirement for patient consent was waived given the retrospective nature of
99	this study design, i.e., no direct/indirect patient care intervention, and that all
100	identifiable information was removed. Obstetric patients were defined as
101	pregnant women or up to six weeks postpartum. The decision to transfer
102	patients into the ICU was made by at least one senior critical care doctor and
103	one senior obstetric doctor. Likewise, these doctors also made decisions to
104	discharge patients or to transfer patients to general wards. Patients were
105	excluded if they had known hematologic diseases (including leukemia,
106	thrombotic thrombocytopenic purpura, and other hematologic diseases) or
107	history of recent blood transfusion (less than two weeks). According to the
108	APACHE II score criterion of Knaus WA, 1985, ²⁰ the recorded value in our
109	study was based on the most deranged reading during each patient's initial

Page 6 of 26

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

BMJ Open

24h in an ICU, so patients who died or were discharged less than 24 hourswere excluded from the study.

112 Data collection

Demographic and clinical characteristics including age, gestational age, parity, pregnancy status at admission, diagnosis at entry and during ICU stay, and length of hospital stay were all collected. Cesarean section was considered an emergency intervention. The pregnancy associated with cardiac disease include congenital and acquired heart disease during pregnancy. Diagnosis of acute kidney injury (AKI) was based on the Acute Kidney Injury Network (AKIN) criteria.²¹ AKI was defined as an absolute increase in serum creatinine of more than or equal to 0.3 mg/dl, a percentage increase in serum creatinine of more than or equal to 50% (1.5 fold from baseline) within 48 hours, or reduction in urine output (documented oliguria of less than 0.5 ml/Kg per hour for more than six hours).²¹ APACHE II scores were calculated using the worst value of 12 acute physiological variables within 24 hours of presentation. These variables included temperature, blood pressure, heart rate, respiratory rate, arterial oxygenation, arterial pH, serum sodium, serum potassium, serum creatinine, hematocrit, white blood cell count, and Glasgow Coma scores. If the patient was sedated at the time of ICU admission, the last Glasgow Coma Scale obtained prior to sedation was collected. RDW, hemoglobin level, hematocrit and mean corpuscular volume (MCV) of all patients included in this study were determined at admission using a Beckman Coulter LH-750 Hematology Analyzer (Beckman Coulter, Inc., Fullerton, California), as a part of the complete blood cell count. Normal reference range for RDW in the

BMJ Open

134	hospital laboratory is between 10.9% and 15.4%. In addition, we obtained the
135	number of birth (from January 1, 2008 to December 31, 2013) from hospital
136	database in order to calculate ICU admission rate in the hospital.
137	Study outcomes
138	All patients were followed up during hospitalization. The primary end point of
139	the study was in-hospital mortality. The primary predictor of interest was RDW
140	measured at ICU admission.
141	Statistics
142	All continuous variables were presented as means \pm standard deviations, or
143	medians with interquartile ranges as appropriate. Categorical data were
144	summarized as number or percentage. Patient characteristics across tertiles
145	of RDW were compared using analysis of variance or Kruskal-Wallis tests for
146	continuous variables and Chi-square or Fisher's exact tests for categorical
147	variables. Logistic regression analysis was conducted to estimate odds ratios
148	(OR) and 95% confidence intervals (95% CI) for in-hospital mortality
149	associated with RDW and other clinical parameters after adjustment for
150	potential confounding factors. The receiver operating characteristic (ROC)
151	curve was used to examine the performance of RDW, alone or in combination
152	with other clinical parameters such as APACHE II score, in predicting in-
153	hospital mortality. The curve represented a sensitivity plot versus 1-specificity.
154	The area under the curve (AUC) was derived from the ROC curve, and the
155	Youden index was adopted to define the optimal cut-off value. ²² We also
156	constructed an ROC curve for the combined APACHE-II score and RDW
157	results for predicting in-hospital mortality according to the weighted sum

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

formula derived from multivariate logistic regression: logit (mortality) = 0.162 x APACHE-II score + 0.203 x RDW - 7.503; wherein, logit (mortality) is the logarithm of the odds of a critically ill obstetric patient dying in the ICU. Differences between the AUC were detected by Delong's test, which was a nonparametric approach and could generate an estimated covariance matrix by using the theory on generalized U-statistics.²³ Two-sided *P*-values < 0.05 were considered statistically significant. All analyses were performed with R software (http://www.cran.r-project.org/).

- **Results**
- 168 Population
- A total of 20570 births were reported from January 1, 2008 to December 31, 2013 in Shandong Provincial Hospital, among which 447 obstetric patients were admitted to the ICU. ICU admission rate was 21.73 per 1,000 births in the hospital. 8 patients who were diagnosed with hematologic disease and 59 patients who received red blood cell transfusion within two weeks were excluded. 2 patients who died within 24 hours after ICU admission were also excluded. Also 2 patients were excluded for missing data. Thus, in the final analysis, a total of 376 patients were included in this study. Association between RDW and hospital mortality A total of 20 deaths occurred in this cohort during the study period. In this study, heart failure was the major cause of death in the cohort (n=8; 40.0%), followed by acute fatty liver of pregnancy (n=5; 25%), postpartum hemorrhage

BMJ Open

181	(n=2; 10%), hemorrhagic shock caused by liver tumor rupture (n=1; 5%),
182	HELLP syndrome (n=1; 5%), acute pulmonary embolism (n=1; 5%), stroke
183	(n=1; 5%), and liver failure caused by severe hepatitis B (n=1; 5%). The in-
184	hospital mortality was 5.32%.
185	RDW ranged from 10.7% to 24.0% (median, 14.8%; interquartile range,
186	13.4% to 16.0%). Table 1 shows the comparison of patient clinical
187	characteristics across tertiles of RDW. RDW levels were inversely associated
188	with levels of Hb, MCV and HCT, but positively associated with APACHE II
189	score and in-hospital mortality. No difference was found in distributions of age,
190	gestational weeks, primary reasons for ICU admission, AKI morbidity, or the
191	total length of stay in hospital (TLSH) across RDW tertiles.
192	Regression analysis for in-hospital mortality
193	Univariate logistic regression analysis demonstrated that patients with higher
194	RDW, higher APACHE-II scores, higher AKI morbidity, and longer TLSH days
195	had significantly greater death hazards (Table 2). Per percent increase in
196	RDW was associated with 21% increase in the risk, with OR of 1.21 (95% CI,
197	1.02 to 1.57).
198	Multivariate logistic regression analysis revealed that RDW, AKI and
199	APACHE-II scores were independent predictors of in-hospital mortality (Table
200	3). The association of RDW and in-hospital mortality remained significant after
201	adjusting for age, hemoglobin, MCV, hematocrit, APACHE-II score and AKI.
202	RDW was a significant outcome predictor, which is independent of APACHE-II
203	scores.

Page 10 of 26

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

BMJ Open

2
3
4
5
6
7
<i>i</i>
8
9
10
11
3 4 5 6 7 8 9 10 11 12
13
11
14
10
16
17
18
19
13 14 15 16 17 18 19 20
21
~ ı 22
22
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
24
25
26
27
28
20
29
30
31
32
33
34
35
30
36
37
38
39
40
41
41
42
43
44
45
46
47
48
49
50
50 51 52
52
53
54
54 55
55
56
57
58
59
60

1

2

204	A ROC curve was drawn to evaluate the value for RDW and APACHE-II
205	scores in predicting mortality (Figure 1). RDW and APACHE-II score were
206	equally sensitive in prognostic prediction, with AUC of 0.766 (95% CI, 0.705 to
207	0.826) for the APACHE-II score and 0.752 (95% CI, 0.684 to 0.862) for RDW.
208	Optimal cut-off value of the APACHE-II score for predicting mortality was 5
209	points, which yielded sensitivity and specificity of 90.9% and 60.7%. The
210	optimal cut-off value of RDW was 16.1%, which resulted in sensitivity and
211	specificity of 68.2% and 77.9%, respectively. We further combined RDW and
212	the APACHE-II score to draw a third ROC curve, as shown in Figure 1,
213	yielding much greater discriminatory capacity for in-hospital mortality, with
214	AUC of 0.872. As shown in the multiple logistic regression analysis (Table 2),
215	AKI was also significantly associated with in-hospital mortality. However, no
216	appreciable improvement of prognostic performance was observed when
217	further incorporating AKI into the prediction model. AUC derived from all three
218	variables was 0.884.The Delong's Z statistic was -0.668 and P value was
219	0.504.
220	Discussion

The main finding of our study was that RDW was independently associated
with in-hospital mortality in obstetric critical care patients . The association
remained significant after adjusting for APACHE-II scores, hemoglobin levels,
hematocrit and mean corpuscular volume. revealed the first evidence that the
prognostic performance of RDW for in-hospital mortality among ICU-admitted
obstetric patients was similar to APACHE-II score, a widely-accepted

Page 11 of 26

BMJ Open

227	predictor of clinical outcomes in critically ill patients. Combination of RDW and
228	APACHE-II score provided even greater predictive power than either alone.
229	RDW has been associated with all-cause mortality in critically ill
230	patients. ^{16,24,25} We for the first time specifically evaluated the association
231	among obstetric patients requiring critical care. We found that RDW was
232	independently associated with in-hospital mortality inthese patients. Patients
233	were excluded if they had a history of recent blood transfusions because
234	RDW could be increased in anemia or after blood transfusions. ^{11, 26} In this
235	present study, higher level of RDW was associated with in-hospital mortality
236	even after adjusting for hemoglobin and hematocrit. In addition, the
237	independent association between RDW and hospital mortality was not
238	eliminated after further adjusting for other potential confounders such as
239	mean corpuscular volume, hemoglobin, hematocrit, APACHE-II score,
240	gestational age and AKI. Our findings indicated that combining RDW and
241	APACHE-II score performed better than APACHE-II score alone in predicting
242	in-hospital mortality in critically ill obstetric patients.
243	The APACHE-II scoring system developed in 1985 has shown a positive
244	correlation with hospital mortality, and was one of the most common models
245	used for evaluating the severity of a disease in critically ill patients. ²⁰ The
246	sensitivity and specificity of the APACHE II score was evaluated with the use
247	of receiver operating characteristic curve analysis in the present study. In
248	accordance with previous studies ²⁷⁻²⁹ , the APACHE-II score was
249	demonstrated to have a moderate discriminative ability to predict in-hospital
250	mortality (AUC=0.766), similar to that for RDW (AUC=0.752). Combining

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

1
2 3 4 5 6
4
5
6
7
7 8
9
10
11
12
13
14
15
10
18
9 9 10 11 12 13 14 15 16 7 18 9 21 22 32 25 26 27 28 9 0 12 33 34 35 67 89 20 31 23 34 35 37 89 20 30 31 23 34 35 37 89 30 30 31 32 33 34 35 36 37 38 37 37 38 37 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 37 38 37 37 37 37 37 37 37 37 37 37 37 37 37
20
21
22
23
24
25
26
27
28
29
30
31
3Z
30 31
34
36
37
38
39
40
41
42
43
44
45
46
47
48 49
49 50
51
52
53
54
55
56
57
58
59
60

1

251	RDW with APACHE-II score significantly improved prognostic performance
252	(AUC=0.872). Similarly, another study by Wang <i>et al.</i> ¹⁶ also revealed that
253	adding RDW to APACHE-II score significantly improved prognostic reliability
254	of APACHE-II score in identifying critically ill patients. Therefore, RDW, a
255	simple, inexpensive, and widely available clinical test as part of the complete
256	blood count, may have significant clinical implications for determining
257	prognosis in critically ill obstetric patients. AKI was also significantly
258	associated with in-hospital mortality. However, no significant improvement of
259	prognostic performance was observed when further incorporating AKI into the
260	prediction model.
261	The pathophysiologic mechanism underlying the association of higher RDW
262	with worse outcomes in critically ill obstetric patients remains unclear.
263	Generally, the increase in RDW reflects either impaired erythropoiesis,
264	abnormal red blood cell survival, or both. Metabolic abnormalities such as
265	shortening of telomere length, poor nutritional status, ^{30, 31} inflammation, ³²⁻³⁴
266	oxidative stress, ^{35, 36} dyslipidemia, hypertension, erythrocyte fragmentation,
267	or alteration of erythropoietin function might contribute to RDW increase. ³⁷ In
268	normal parturition, the increase of RDW might be related to stimulus-induced
269	reticulocytosis in the last few weeks. ³⁰ This might not be the case in our study;
270	wherein, even if five patients with spontaneous onset of labor were excluded,
271	RDW remained as a significant predictor of mortality.
272	In this present study, the admission rate of 21.73 per 1,000 births was
273	relatively high, ^{27,38} and the mean APACHE-II score was relatively low
274	compared with other studies. ^{7, 16, 39} The lack of a high dependency unit as a

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

275	referral center in local areas for complicated pregnancies could partially
276	explain these difference.
277	This study had several limitations. First, this work did not evaluate potential
278	changes in RDW over time which may provide additional prognostic
279	information. Second, only the APACHE-II score was used to predict mortality
280	in obstetric patients, which was limited by spontaneous improvement after
281	delivery in peripartum women, ⁴⁰⁻⁴⁶ and inconsistent results. ^{47, 48} Finally, the
282	study was a single-center study. It is warranted to examine the association in
283	different study settings/populations with a larger sample size.
203	
284	In summary, the study suggested that RDW may be an independent
285	predictor for in-hospital mortality in obstetric patients requiring clinical care.
286	Combining RDW and APACHE-II score significantly improved prognostic
287	assessment among critically ill obstetric patients, which may have direct
288	clinical implications and may aid the improvement of critical care for obstetric
289	patients.
290	Contributorship statement
291	Yufeng Chu and Hongsheng Ren conceived of the study, and participated in
291	its design and coordination. Mei Meng, Haiyan Zhou and Chunting Wang
293	extracted data and participated in study design. Yufeng Chu, Zhongshang
294	Yuan and Gong Yang performed the statistical analysis and drafted the
295	manuscript. All authors read and approved the final manuscript.
296	Competing Interests

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

3
4
5
6
7
8
9
10
11
12
12
13
14
15
16
9 10 11 12 13 14 15 16 17 18
10
10
19
20
21
21 22 23 24 25 26 27 28 29 30 31 32
23
20
∠4 0=
25
26
27
28
20
29
30
31
32
33
34
34
35
33 34 35 36
37
38
39
40
40
41
42
43
44
45
46
47
48
49
50
50
52
53
54
55
56
57
58
59
60

1

2

297	The authors declare that there is no competing interests regarding the
298	publication of this paper.

299 Fundings

- 300 This study was funded by the National Natural Science Foundation of China
- 301 (NSFC 81200238), the Research Foundation for Excellent Young and Middle-
- 302 aged Scientists of Shandong Province (BS2011YY043, BS2011YY052),the
- 303 Young Scholars Program of Shandong University (2016WLJH23), the Clinical
- 304 medicine science and technology innovation plan of Jinan Bureau of Science
- 305 & Technology(201602164), the Shandong Provincial Department of Science &
- 306 Techno-logy research and development plan (2016GSF201052), and the
- 307 Natural Science Foundation of Shandong Province of China (ZR2013HM062).
- 308 Data sharing statement
- 309 No additional unpublished data are available.

310 **References**

- 311 1. World Health Organization. World Health Statistics 2014. Geneva, World
- Health Organization; 2014.
- 313 2. Zeeman GG. Obstetric critical care: A blueprint for improved outcomes.
- 314 Crit Care Med 2006; 34:S208–S214.
- 315 3. Soubra SH, Guntupalli KK. Critical illness in pregnancy: an overview. Crit
 316 Care Med 2005;33 (10 suppl):S248-S255.
- 4. Scarpinato L, Gerber D. Critically ill obstetrical patients: outcome and
- 318 predictability. Crit Care Med 1995;23(8):1449-1451.

Page 15 of 26

BMJ Open

2		
3 4	319	5. Gopalan PD, Muckart DJ. The critically ill obstetric patient: what's the
5 6 7	320	score? Int J Obstet Anesth 2004;13(3):144-145.
8 9	321	6. Ramsay MM, James D, Steer P, et al, editors. Normal values in pregnancy.
10 11 12	322	London: W.B. Saunders; 2000.
13 14	323	7. Lapinsky SE, Hallett D, Collop N, et al. Evaluation of standard and
15 16 17	324	modified severity of illness scores in the obstetric patient. J Crit Care 2011
18 19	325	Oct;26(5):535.e1-7.
20 21 22	326	8. Harrison D, Penny J, Yentis S, et al. Case mix, outcome and activity for
23 24	327	obstetric admissions to adult, general critical care units: A secondary
25 26	328	analysis of the ICNARC Case Mix Programme Database. Crit Care 2005;
27 28 29	329	9 (Suppl 3):S25–S37.
30 31	330	9. Paternina-Caicedo A, Rojas-Suarez J, Duenas-Castel C, et al. Mortality
32 33 34	331	risk prediction with an updated Acute Physiology and Chronic Health
34 35 36	332	Evaluation II Score in critically ill obstetric patients: A cohort study. J
37 38 39	333	Intensive Care Med 2015 Feb;30(2):97-102.
40 41	334	10. Perkins SL. Examination of blood and bone marrow. In: Greer JP,
42 43	335	Foerster J, Lukens JN, Rodgers GM, Paraksevas F, Glader BE, eds.
44 45 46	336	Wintrobe's Clinical Hematology. 11th ed. Salt Lake City, Utah: Lippincott
46 47 48 49	337	Wilkins & Williams; 2003:5–25.
49 50 51	338	11. McKenzie SD. Introduction to anemia. In: McKenzie SD, ed. Clinical
52 53	339	Laboratory Hematology. Saddle River, NJ: Pearson Prentice-Hall;
54 55 56	340	2003:161–188.
57 58 59 60		15

Page 16 of 26

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

BMJ Open

2
3
4
5
3 4 5 6 7
7
0
9
10
11
12
12
14
14
10
10
9 10 11 12 13 14 15 16 17 18
18
19
20
21
19 20 21 22 23 24 25 26 27 28 29 30 31 32
23
24
25
26
27
21
20
29
30 31 32 33 34 35 36 37 38 39 40
31
32
33
34
35
36
37
38
30
10
40
41
42
43
44
45
46
47
48
49
50
51
52
52 53
53 54
55
56
57
58
59
60

1

341	12. Tonelli M, Sacks F, Arnold M, et al. For the Cholesterol and Recurrent
342	Events (CARE) Trial InvestigatorsCirculation.Relation Between Red Blood
343	Cell Distribution Width and Cardiovascular Event Rate in People With
344	Coronary Disease. Circulation 2008;117:163–8.
345	13. Felker GM, Allen LA, Pocock S, et al. CHARM Investigators: Red cell
346	distribution width as a novel prognostic marker in heart failure: data from
347	the CHARM Program and the Duke Databank for Cardiovascular
348	Diseases. J Am Coll Cardiol 2007;50:40-47.
349	14. Förhécz Z, Gombos T, Borgulya G, et al. Red cell distribution width in
350	heart failure: prediction of clinical events and relationship with markers of
351	ineffective erythropoiesis, inflammation, renal function, and nutritional
352	state. Am Heart J 2009; 158:659–66.
353	15. Pascual-Figal DA, Bonaque JC, Redondo B, et al. Red blood cell
354	distribution width predicts long-term outcome regardless of anaemia
355	status in acute heart failure patients. Eur J Heart Fail 2009;11:840–6.
356	16. Wang F, Pan W, Pan S, et al. Red cell distribution width as a novel
357	predictor of mortality in ICU patients. Ann Med 2011 Feb;43(1):40-6.
358	17. Ani C, Ovbiagele B. Elevated red blood cell distribution width predicts
359	mortality in persons with known stroke. J Neurol Sci 2009;277:103–8.
360	18. Purtle SW, Moromizato T, McKane CK, et al. The association of red cell
361	distribution width at hospital discharge and out-of-hospital mortality
362	following critical illness.Crit Care Med 2014 Apr;42(4):918-29.

BMJ Open

363	19. Kim CH, Park JT, Kim EJ, et al. An increase in red blood
364	celldistributionwidth from baseline predicts mortality in patients with
365	severe sepsis or septic shock. Crit Care 2013 Dec 9;17(6):R282.
366	20. Knaus WA, Draper EA, Wagner DP, et al. APACHE II: a severity of
367	disease classification system. Crit Care Med 1985;13:818–29.
368	21. Mehta RL, Kellum JA, Shah SV, et al. Acute kidney injury network: report
369	of an initiative to improve outcomes in acute kidney injury. Crit Care
370	2007;11: R31.
371	22. Youden WJ: Index for rating diagnostic tests. Cancer 1950;3:32–5.
372	23. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under
373	two or more correlated receiver operating characteristic curves: a
374	nonparametric approach. Biometrics 1988 Sep;44(3):837-45.
375	24. Sabina Hunziker, Leo A Celi, Joon Lee, et al. Red cell distribution width
376	improves the simplified acute physiology score for risk prediction in
377	unselected critically ill patients. Critical Care 2012,16:R89.
378	25. Heidi S. Bazick, Domingo Chang, Karthik Mahadevappa, et al. Red cell
379	distribution width and all-cause mortality in critically ill patients. Crit Care
380	Med 2011;39:1913–1921.
381	26. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med
382	2005;352:1011–1023.

BMJ Open

383	27. Hazelgrove JF, Price C, Pappachan VJ, et al. Multicenter study of
384	obstetric admissions to 14 intensive care units in southern England. Crit
385	Care Med 2001 Apr;29(4):770-5.
386	28. Harrison D, Penny JA, Yentis SM, et al. Case mix, outcome and activity
387	for obstetric admissions to adult, general critical care units: a secondary
388	analysis of the ICNARC case mix programme database. Critical Care
389	2005;9 (suppl 3):S25-S37.
390	29. Arabi Y, Goraj R, Horsfall D. Scoring systems in obstetric patients
391	requiring intensive care in Saudi Arabia: a ten year review. Chest
392	1999;116:286S.
393	30. Duffy TP. Approach to the patient with anemia. In: Kelley WN, Dupont HL,
394	Glick JH, Harris ED, Hathaway DR, Hazzard WR, Holmes EW, Hudson
395	LD, Humes HD, Paty DW, eds. Kelley's Textbook of Internal Medicine.
396	3rd ed. Philadelphia, Pa: Lippincott Williams and Wilkins; 1997:1295–
397	1299.
398	31. Forhecz Z, Gombos T, Borgulya G, et al. Red cell distribution width in
399	heart failure: prediction of clinical events and relationship with markers of
400	ineffective erythropoiesis, inflammation, renal function, and nutritional
401	state. Am Heart J 2009, 158:659-666.
402	32. Ridker PM, Rifai N, Clearfield M, et al. Measurement of C-reactive protein
403	for the targeting of statin therapy in the primary prevention of acute
404	coronary events. N Engl J Med 2001;344:1959 –1965.
	10

BMJ Open

405	33. Lippi G, Targher G, Montagnana M, et al. Relation between red blood cell
406	distribution width and inflammatory biomarkers in a large cohort of
407	unselected outpatients. Arch Pathol Lab Med 2009;133:628–632.
408	34. Sesso HD, Buring JE, Rifai N, et al. C-reactive protein and the risk of
409	developing hypertension. JAMA 2003;290:2945–2951.
410	35. Kolls JK. Oxidative stress in sepsis: A redox redux. J Clin Invest
411	2006;116:860–863.
412	36. Ghaffari S. Oxidative stress in the regulation of normal and neoplastic
413	hematopoiesis. Antioxid Redox Signal 2008;10:1923–1940.
414	37. Salvagno GL, Sanchis-Gomar F, Picanza A.Lippi G. Red blood cell
415	distribution width: A simple parameter with multiple clinical applications.
416	Crit Rev Clin Lab Sci. 2014 Dec 23:1-20.
417	38. Rojas-Suarez J, Paternina-Caicedo AJ, Miranda J, et al. Comparison of
418	severity-of-illness scores in critically ill obstetric patients: a 6-year
419	retrospective cohort. Crit Care Med 2014;42:1047–1054.
420	39. Karnad DR, Lapsia V, Krishnan A, et al. Prognostic factors in obstetric
421	patients admitted to an Indian intensive care unit. Crit Care Med 2004
422	Jun;32(6):1294-9.
423	40. Higgins TL, Teres D, Copes W. Updated Mortality Probability Model
424	(MPM-III). Chest 2005;128(4 Suppl):348S.
425	41. Knaus WA, Draper EA, Wagner DP, et al.APACHE II: A severity of
426	disease classification system. Crit Care Med 1985;13:818–829.
	19

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

BMJ Open

3	
4	
5	
6	
7	
8	
0	
3	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
32 33 34 35	
34	
35	
36 37	
30	
37	
38	
38 39 40	
40	
41	
42	
43	
44	
45	
40	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

427	42. Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology
428	Score (SAPS II) based on a European/North American multicenter study.
429	JAMA 1993;270:2957–2963.
430	43. Lemeshow S, Teres D, Klar J, et al. Mortality Probability Models (MPM II)
431	based on an international cohort of intensive care unit patients. JAMA
432	1993;270:2478–2486.
433	44. Metnitz PG, Moreno RP, Almeida E,et al. SAPS 3 Investigators: SAPS 3-
434	From evaluation of the patient to evaluation of the intensive care unit. Part
435	1: Objectives, methods and cohort description. Intensive Care Med
436	2005;31:1336–1344.
437	45. Moreno RP, Metnitz PG, Almeida E, et al. SAPS 3 Investigators: SAPS 3-
438	From evaluation of the patient to evaluation of the intensive care unit. Part
439	2: Development of a prognostic model for hospital mortality at ICU
440	admission. Intensive Care Med 2005;31: 1345–1355.
441	46. Higgins TL, Kramer AA, Nathanson BH, et al. Prospective validation of the
442	intensive care unit admission Mortality Probability Model (MPM0-III). Crit
443	Care Med 2009;37:1619–1623.
444	47. Stevens TA, Carroll MA, Promecene PA, et al. Utility of acute physiology,
445	age, and chronic health evaluation (APACHE III) score in maternal
446	admissions to the intensive care unit. Am J Obstet Gynecol
447	2006;194(5):e13-e15.

- 448 48. el-Solh AA, Grant BJ. A comparison of severity of illness scoring systems
- for critically ill obstetric patients. Chest 1996;110(5): 1299-1304.

450 Table 1. Baseline clinical and laboratory characteristics by tertile of

RDW at critical care initiation

	Tertile I	Tertile II	Tertile III	<i>P</i> -value
RDW (%)	10.7-13.9	13.9-15.6	15.6-20.4	<0.001
N	131	126	119	-
Age (years)	29.6 ± 4.3	29.3 ± 5.6	29.6 ± 5.9	0.84
Gestational age (weeks)	35 (32-37)	36 (33-39)	36 (32-38)	0.327
Primary diagnosis	to ICU admiss	sion (<i>n</i> , %)		
Hypertensive disorder of	50(38.17%)	55(43.65%)	52(43.70%)	0.417
pregnancy HELLP	12(9.16%)	10(7.94%)	8(6.72%)	0.322
Syndrome Acute fatty liver	10(7.63%)	8(6.35%)	7(5.88%)	0.485
of pregnancy Obstetric sepsis	5(3.82%)	4(3.17%)	3(2.52%)	0.657
Cardiovascular disease	42 (32.06%)	31 (24.60%)	26 (21.85%)	0.162
Gastrointestinal disease	2 (1.53%)	5 (3.97%)	4 (3.36%)	0.476
Stroke	2 (1.53%)	3 (2.38%)	0 (0)	0.332
Pulmonary embolism	1 (0.76%)	0 (0)	1 (0.84%)	0.766
Others	7(5.34%)	10(7.94%)	18(15.13)	0.142
Hemoglobin (g/L)	109.5 ± 19.7	100.1 ± 20.7	92.5 ± 24.1	<0.001
MCV(fL)	89.8 ± 5.1	86.7 ± 6.0	83.6 ± 11.4	<0.001
HCT (%)	32.6 ± 5.8	30.5 ± 6.3	28.8 ± 6.9	<0.001
APACHE II score (points)	2 (2-6)	5 (3-6)	10 (6-22)	0.017
AKI (<i>n</i> , %)	14 (10.69%)	17 (13.49%)	14 (11.76%)	0.207
TLSH (days)	8 (7-12)	8 (6-13)	8 (7-12)	0.203
Hospital Mortality (<i>n</i> , %)	0 (0%)	5 (3.97%)	15 (12.61%)	<0.001

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

- Note: RDW, red cell distribution width; MCV, mean corpuscular volume; HCT,
- hematocrit; APACHE-II score, Acute Physiology and Chronic Health

2

2 3 4 5	458	Table
4 5 6		-
7		
8 9		-
10 11		
12		
13 14		
15 16		
17 18		
19		
20 21		
22 23		
24 25		
26		
27 28		
29 30		
31 32		
33		
34 35		
36 37		
38 39	459	-
40	460	Note:
41 42	461	corpu
43 44	462	and C
45 46	463	lengtl
47		C
48 49	464	
50 51		
52 53		
54		
55 56		
57 58		
59		

60

458 **Table 2. Univariate odds ratios of variables for predicting mortality**

Variables	Odds ratio	95% CI	P-value
Age (years)	1.048	0.969-1.133	0.244
Hemoglobin (g/L)	0.997	0.977-1.017	0.763
MCV (fL)	0.962	0.919-1.006	0.098
Hematocrit (%)	0.997	0.934-1.064	0.929
APACHE-II score	1.192	1.124-1.265	< 0.001
(points)			
AKI (%)	16.61	6.580-42.014	< 0.001
TLSH (days)	0.803	0.691-0.933	0.004
Gestational age (weeks)	1.023	0.920-1.138	0.677
RDW (%)	1.309	1.150-1.489	<0.001

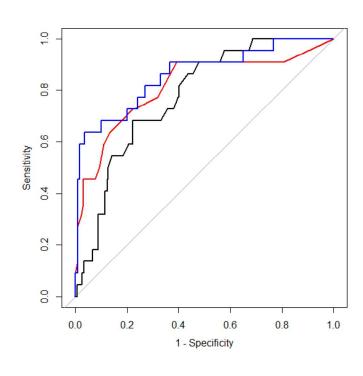
460 Note: CI, confidence interval; RDW, red cell distribution width; MCV, mean
461 corpuscular volume; HCT, hematocrit; APACHE-II score, Acute Physiology
462 and Chronic Health Evaluation II score; AKI, acute kidney injury; TLSH, total
463 length of stay in hospital.

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright

Table 3. Independent predictors of mortality by multivariate logistic

regression analysis

Variables	Odds ratio	95% CI	P value
APACHE-II (points)	1.189	1.071-1.319	0.001
AKI (%)	23.784	6.129-92.296	<0.001
RDW (%)	1.401	1.156-1.697	0.001



Note: Independent variables include age, hemoglobin, MCV, hematocrit, APACHE-II score, AKI, TLSH, gestational age, and RDW. Due to the high correlation between hemoglobin and hematocrit, hemoglobin was first regressed on hematocrit; and placed the residual and hematocrit in the multivariate regression. RDW, red cell distribution width; MCV, mean corpuscular volume; HCT, hematocrit; APACHE-II score, Acute Physiology and Chronic Health Evaluation II score; AKI, acute kidney injury; TLSH, total length of stay in hospital.

478

1	
2 3 4	
4 5	
6	
7 8	
9 10	
11	
12 13	
14 15	
16	
17 18	
19 20 21 22 23 24 25 26	
21	
22	
24 25	
26 27	
27 28	
29 30	
31 32	
33	
34 35	
36 37	
38 39	
40	
41 42	
43 44	
45	
46 47	
48 49	
50	
51 52	
53 54	
55	
56 57	
58 59	
60	

BMJ Open: first published as 10.1136/bmjopen-2016-012849 on 21 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 24, 2024 by guest. Protected by copyright.

Figure 1

ROC curve for APACHE II score, RDW, and the combination of both in predicting hospital mortality. Compared with the APACHE-II score, adding RDW to APACHE-II scores improved the AUC from 0.766 to 0.872 (P<0.001). — RDW (AUC 0.752 ± 0.062); — APACHE-II score (AUC 0.766 ± 0.031); — RDW+ APACHE-II score (AUC 0.872 ± 0.055); ROC, receiver operating characteristic; AUC, area under the curve; APACHE-II score, Acute Physiology and Chronic Health Evaluation II score; RDW, red cell distribution width.

173x177mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml