BMJ Open

BMJ Open

Weight change patterns and subsequent onset of type 2 diabetes mellitus in urban and rural Japan

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-014684
Article Type:	Research
Date Submitted by the Author:	11-Oct-2016
Complete List of Authors:	Yokomichi, Hiroshi; University of Yamanashi, Department of Health Sciences Ohde, Sachiko; St. Luke's International University, Center for Clinical Epidemiology Takahashi, Osamu; St. Luke's International University, Center for Clinical Epidemiology Mochizuki, Mie; University of Yamanashi, Department of Pediatrics Takahashi, Atsunori; University of Yamanashi, Department of Health Sciences Yoda, Yoshioki; Yamanashi Koseiren Health Care Center Tsuji, Masahiro; Yamanashi Koseiren Health Care Center Akiyama, Yuka; University of Yamanashi, Department of Health Sciences Yamagata, Zentaro; The University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering
Primary Subject Heading :	Diabetes and endocrinology
Secondary Subject Heading:	Health services research, Epidemiology, Nutrition and metabolism, Sports and exercise medicine
Keywords:	weight change, type 2 diabetes, body mass index, Asian, weight cycling

SCHOLARONE[™] Manuscripts

1
2
3
2 3 4 5 6 7
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
7 8 9 10 11 12 13 15 16 17 18 201 22 24 25 27 29 31 32 31 32 31 32 31 32 31 32 32 32 31 32
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
34 35 36 37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
57 58
59
60

Yokomichi H et al.

1	Weight change patterns and subsequent onset of type 2 diabetes mellitus in
2	urban and rural Japan
3	Hiroshi Yokomichi ^{1*} , Sachiko Ohde ² , Osamu Takahashi ² , Mie Mochizuki ³ , Atsunori
4	Takahashi ¹ , Yoshioki Yoda ⁴ , Masahiro Tsuji ⁴ , Yuka Akiyama ¹ and Zentaro Yamagata ¹
5	
6	¹ Department of Health Sciences, University of Yamanashi, Yamanashi, Japan
7	² Center for Clinical Epidemiology, St. Luke's International University, Tokyo, Japan
8	³ Department of Pediatrics, University of Yamanashi, Yamanashi, Japan
9	⁴ Yamanashi Koseiren Health Care Center, Yamanashi, Japan
10	
11	*Corresponding author:
12	Hiroshi Yokomichi
13	1110 Shimokato, Chuo City, Yamanashi, 4093898, Japan
14	E-mail: hyokomichi@yamanashi.ac.jp
15	Tel: +81-(0)80-5524-7303
16	
17	Keywords: weight change, type 2 diabetes, body mass index, Asian, weight cycling
18	
19	Word count: 2,718
20	
21	

Yokomichi H et al.

22 ABSTRACT

Objective: To investigate how weight change patterns impact the risk of diabetes, including
 weight change since 20 years of age.

Design: Cohort study.

26 Setting: Primary healthcare, urban and rural Japan.

Participants: 20,708 urban and 9,670 rural residents.

Primary outcome measure: Odds ratios (ORs) for diabetes in weight loss, loss–gain, stable,

29 gain–loss and weight gain groups for 10 years. Weight gain and loss were defined as more

30 than $\pm 4\%$ change from baseline weight.

Results: In the urban region, the ORs relative to the stable group for the loss–gain and gain–

32 loss groups were 0.63 (95% CI: 0.45–0.89) and 0.51 (95% CI: 0.32–0.82) for men and 0.72

33 (95%CI: 0.39–1.34) and 1.05 (95%CI: 0.57–1.95) for women, respectively, whereas in the

rural region, they were 1.58 (95%CI: 0.78–3.17) and 0.44 (95%CI: 0.15–1.29) in men and

35 0.41 (95%CI: 0.12–1.44) and 0.77 (95%CI: 0.28–2.14) in women, respectively. The ORs for

an increase in weight of 5–10 kg since the age of 20 years were 1.54 (95%CI: 1.03–2.30) in

37 men and 0.96 (95%CI: 0.55–1.65) in women.

Conclusions: Data from Japanese urban residents suggest that weight cycling reduces the 39 risk of diabetes. These results differ from those in Western studies, perhaps owing to the 40 motivations underlying the weight cycling.

42 Word count: 214 words

BMJ Open

Yokomichi H et al.

Strengths and limitations of this study

- In urban Japan, weight cyclers have a similar or lower risk of diabetes than people who
 - maintain a constant body weight.
- In urban and rural Japan, sustained weight gain increases the risk of diabetes.
- There is a dose–response relationship in both sexes between weight gain since the age of
- 20 years and the risk of diabetes.
- Odds ratios may change according to the threshold of $\pm 4\%$ weight change in 10 years.
- Levels of insulin secretion and sensitivity were not measured.

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Yokomichi H et al.

52 INTRODUCTION

Weight gain is a well-known risk factor for incidental type 2 diabetes. Research in people of Western, Oriental and African descent has quantitatively established the risks of developing diabetes in relation to increases and decreases in weight.[1-3] Two major studies in the USA, the Framingham Heart Study and the National Health and Nutrition Examination Survey, have both reported that weight cyclers, people who repeatedly gain and lose weight over short periods, can be at an increased risk of diabetes.[4, 5] However, the risk of diabetes in Asian weight cyclers remains to be established.

Because of the preconception that links being slim to an aesthetic standard, [6, 7] many Asian women make efforts to lose weight. [8, 9] Another group likely to try to reduce weight are middle-aged East Asian businesspeople who have gained weight but have few opportunities for physical activity. Recent studies have demonstrated that East Asians are much more likely than Westerners to develop type 2 diabetes at a lower body mass index (BMI).[10] As a result, it may take only a small change in weight to alter the risk of diabetes of East Asians. The aim of this study was to establish whether weight cyclers residing in Japan were at an increased risk of diabetes. We used Japanese urban and rural data to examine this clinical question in populations with various lifestyles.

70 METHODS

71 Study participants and measurements

In this cohort study, we enrolled participants from an urban area, Tokyo Metropolis, and a rural area, Yamanashi Prefecture. In Tokyo, we enrolled employees of private companies who underwent medical check-ups between January 2005 and December 2014 at St. Luke's

BMJ Open

Yokomichi H et al.

International Hospital. These annual medical check-ups were based on a legal obligation imposed by the Industrial Safety and Health Act in Japan. [11] In Yamanashi Prefecture, we enrolled employees and residents who paid for a private comprehensive medical check-up service between April 1999 and March 2009 at the Yamanashi Koseiren Health Care Center. A subset of participants in Yamanashi used a subsidy from their employing companies or administrative agencies to receive the private medical check-up. Thus, data sets covering a 10-year period in two institutions were used in the research. Inclusion criteria included no diagnosis of diabetes and HbA1c less than 6.5% (48 mmol/mol) during a baseline period for the first 3 years of the 10-year period. Those included were also required to undergo a medical check-up at least twice during the outcome measurement period of the later seven years of the study. The onset of diabetes was identified through questionnaires for the diagnosis of diabetes, the commencement of diabetic therapies or glycated haemoglobin $(HbA1c) \ge 6.5\%$ (48 mmol/mol).[12, 13] In the institution in Tokyo, trained nurses interviewed the participants from the age of 20 years to establish their changes in weight. BMI was calculated as the participant's weight in kilograms divided by the square of their height in metres.

92 Weight change categories

The participants were categorised into five groups according to their histories of weight change during the 3–10 years since the baseline period. The stable group comprised the participants whose weight had not changed from baseline by more than $\pm 4\%$. The sustained gain group were the participants who gained more than 4% of their baseline weight and did not subsequently lose this extra weight. Similarly, the sustained loss group were the participants who lost more than 4% of their baseline weight and did not subsequently regain

Yokomichi H et al.

this weight. The gain–loss group included the participants who gained more than 4% of their
baseline weight but brought their weight back below +4%. The loss–gain group were the
participants who lost more than 4% of their baseline weight but brought their weight back
above -4%.

The $\pm 4\%$ change of weight used for this categorisation was determined as approximately a one-unit change for a person with a BMI of 22 kg/m². This was based on the 2014 reference mean BMIs for Japanese men and women of 23.6 kg/m² and 21.7 kg/m², respectively.[14] It also took into consideration the relatively short time period of ten years for observation. The gain–loss and loss–gain group participants were the weight cyclers of interest.

109 Statistical analysis

The baseline characteristics recorded for the participants were age, weight, height, BMI, HbA1c and fasting plasma glucose. The incidence of diabetes was measured after the participants were categorised, and any data measured after a diagnosis of diabetes were ignored to conserve temporality of exposure to outcome for an epidemiological causation.[15] We used univariate and multivariate logistic regressions to compare the risk of diabetes between the categorised groups. In the urban data of Tokyo Metropolis, covariates used for adjustment at baseline were age, weight change from 20 years of age, BMI, smoking habits, alcohol consumption and physical activity. In the rural data of Yamanashi Prefecture, the available covariates for adjustment at baseline were age, BMI, smoking habit and alcohol consumption. The analyses were stratified by sex. All statistical analyses were performed using SAS statistical software (version 9.3, SAS Institute, NC, USA). The descriptive statistics are reported as means and standard deviations (SD). All reported p values were 2-sided; *P* values of <0.05 were considered statistically significant.

 BMJ Open

	Yokomichi H et al.
123	
124	RESULTS
125	Participants
100	
126	For the multivariate analyses of primary interest, 10,094 men and 10,614 women were
127	enrolled from Tokyo Metropolis (table 1). The means (SDs) of the baseline characteristics for
128	the men in the urban region were as follows: age 49.6 (11.9) years, weight 68.8 (9.7) kg, BMI
129	23.7 (2.8) kg/m ² and HbA1c 5.4% (0.3%) [35.3 (3.7) mmol/mol]. For the women in the urban
130	region, these values were as follows: age 48.3 (11.3) years, weight 52.3 (7.4) kg, BMI 21.0
131	(2.9) kg/m ² and HbA1c 5.3% (0.4%) [35.0 (3.8) mmol/mol].
132	Table 1 also shows the baseline characteristics of 4,818 men and 4,852 women enrolled
133	from Yamanashi Prefecture. The baseline characteristics for the men in the rural region were
134	as follows: age 51.2 (10.3) years, weight 65.7 (9.1) kg, BMI 23.2 (2.7) kg/m ² and HbA1c
135	5.3% (0.3%) [34.3 (3.8) mmol/L]. For the women in the rural area, the values were as
136	follows: age 52.1 (9.4) years, weight 53.1 (7.5) kg, BMI 22.1 (2.9) kg/m ² and HbA1c 5.3%
137	(0.3%) [34.4 (3.5) mmol/L].
138	Table 1. Baseline characteristics of the participants from urban (Tokyo Metropolis) and

Table 1. Baseline characteristics of the participants from urban (Tokyo Metropous) and

rural (Yamanashi Prefecture) regions of Japan.

Characteristics, mean (standard deviation)	Men	Women
Urban region		
No.	10,094	10,614
Age, years	49.6 (11.9)	48.3 (11.3)
Weight, kg	68.8 (9.7)	52.3 (7.4)
Height, cm	170.4 (6.1)	157.7 (5.6)
Body mass index, kg/m ²	23.7 (2.8)	21.0 (2.9)
HbA1c, %	5.4 (0.3)	5.3 (0.4)

Page	8	of	23
------	---	----	----

Yokomichi H et al.		
(HbA1c, mmol/mol)	35.3 (3.7)	35.0 (3.8)
Fasting plasma glucose, mg/dL	100.8 (8.6)	94.5 (8.0)
(Fasting plasma glucose, mmol/L)	5.6 (0.5)	5.2 (0.4)
Rural region		
No.	4,818	4,852
Age, years	51.2 (10.3)	52.1 (9.4)
Weight, kg	65.7 (9.1)	53.1 (7.5)
Height, cm	168.1 (6.2)	154.8 (5.6)
Body mass index, kg/m ²	23.2 (2.7)	22.1 (2.9)
HbA1c, %	5.3 (0.3)	5.3 (0.3)
(HbA1c, mmol/mol)	34.3 (3.8)	34.4 (3.5)
Fasting plasma glucose, mg/dL	96.3 (9.0)	93.2 (8.5)
(Fasting plasma glucose, mmol/L)	5.3 (0.5)	5.2 (0.5)

141 Risk of diabetes in urban and rural Japan

142	Tables 2 and 3 present the incidence of diabetes and the odds ratios (ORs) for each
143	explanatory variable in the urban and rural regions, respectively. For the men in the urban
144	region, the adjusted ORs (95% confidence intervals [95%CIs]) compared to the stable group
145	were 3.07 (2.15–4.39) in the sustained gain group, 0.51 (0.32–0.82) in the gain–loss group,
146	0.63 (0.45–0.89) in the loss–gain group and 1.11 (0.77–1.59) in the sustained loss group. For
147	the women in the urban region, the adjusted ORs relative to the stable group were 7.00 (4.11–
148	11.94) in the sustained gain group, 1.05 (0.57–1.95) in the gain–loss group, 0.72 (0.39–1.34)
149	in the loss–gain group and 1.48 (0.80–2.74) in the sustained loss group. For the men in the
150	rural region, the adjusted ORs were 3.15 (1.70–5.83) in the sustained gain group, 0.44 (0.15–
151	1.29) in the gain–loss group, 1.58 (0.78–3.17) in the loss–gain group and 0.36 (0.12–1.05) in
152	the sustained loss group. For the women in the rural region, the adjusted ORs were 1.43

Y.

Yokomichi H et al.

- 153 (0.59–3.48) in the sustained gain group, 0.77 (0.28–2.14) in the gain–loss group, 0.41 (0.12–
- 154 1.44) in the loss–gain group and 0.32 (0.09–1.10) in the sustained loss group.

155 Table 2. Incidence of diabetes mellitus (DM) over 10 years in an urban region of Japan

156 and odds ratios related to patterns of weight change and other variables

Exposure variables		Acquired DM / No. of subjects (incidence, %)	Odds ratio (95% CI)	Adjusted odds ratio (95% CI)
Men (No. For mult	tivariate analy	ysis =10,094)		
Baseline age	Per 10 years	_	1.44 (1.33–1.55)	1.44 (1.29–1.61)
	<-5	7/1438 (0.5)	2.18 (1.14-4.18)	1.68 (0.75–3.80)
Weight change	-5 to +5	73/10646 (0.7)	Ref	Ref
from 20 years of age, kg	+5 to +10	31/3200 (1.0)	1.98 (1.45–2.72)	1.54 (1.03–2.30)
	>+10	78/2166 (3.6)	3.37 (2.54–4.48)	2.08 (1.40-3.10)
	< 18.5	6/387 (1.6)	1.35 (0.57–3.16)	0.88 (0.29–2.70)
Baseline BMI,	18.5–22	49/4236 (1.2)	Ref	Ref
kg/m ²	22–25	168/7220 (2.3)	2.04 (1.48–2.89)	1.73 (1.14–2.63)
	> 25	190/4699 (4.0)	3.60 (2.62-4.94)	2.52 (1.60-3.95)
	Sustained loss	66/1903 (3.5)	1.39 (1.03–1.87)	1.11 (0.77–1.59)
Weight change	Loss-gain	87/4644 (1.9)	0.74 (0.56–0.97)	0.63 (0.45-0.89)
pattern over 10	Stable	142/5621 (2.5)	Ref	Ref
years	Gain-loss	38/3063 (1.2)	0.49 (0.34–0.70)	0.51 (0.32–0.82)
	Sustained gain	80/1311 (6.1)	2.51 (1.89–3.32)	3.07 (2.15–4.39)
	None	123/6385 (1.9)	Ref	Ref
Smoking	Ex-smoker	150/5940 (2.5)	1.32 (1.04–1.68)	0.97 (0.71–1.31)
_	Current smoker	140/4217 (3.3)	1.75 (1.37–2.23)	1.73 (1.25–2.34)
	None	69/2250 (3.1)	Ref	Ref
Alcohol drinking	Sometimes	48/1667 (2.9)	0.94 (0.65–1.36)	0.96 (0.66–1.40)
	Usually	156/6177 (2.5)	0.82 (0.61–1.09)	0.78 (0.58–1.05)
Duration of walking per day	Per 30 min	_	0.996 (0.92– 1.08)	1.01 (0.92–1.11)
Physical activity	0–1/week	85/3282 (2.6)	Ref	Ref

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Yokomichi H et al.

	1–2/week	108/4105 (2.6)	1.02 (0.76–1.36)	1.02 (0.76–1.36)
	3–5/week	43/1541 (2.8)	1.08 (0.74–1.57)	0.98 (0.67–1.45)
	6–7/week	37/1166 (3.2)	1.23 (0.83–1.82)	1.06 (0.69–1.62)
Women (No. for m		alysis = 10,614)		
Baseline age	Per 10 years		1.66 (1.48–1.87)	1.78 (1.50–2.12)
	<-5	11/439 (2.5)	0.71 (0.33–1.54)	0.48 (0.18–1.25)
Weight change	-5 to +5	61/5243 (1.2)	Ref	Ref
from 20 years of age, kg	+5 to +10	109/4779 (2.3)	1.42 (0.93–2.16)	0.96 (0.55–1.65)
	>+10	232/6081 (3.8)	5.41 (3.92–7.47)	2.10 (1.20-3.67)
	< 18.5	20/2916 (0.7)	1.24 (0.74–2.08)	1.47 (0.76–2.86)
Baseline BMI,	18.5–22	52/9388 (0.6)	Ref	Ref
kg/m ²	22–25	60/3676 (1.6)	2.98 (2.05-4.33)	2.01 (1.21-3.34)
	> 25	57/1470 (3.9)	7.24 (4.95– 10.59)	2.91 (1.53-5.52)
	Sustained loss	24/1661 (1.4)	2.11 (1.25–3.54)	1.48 (0.80–2.74)
Weight change	Loss-gain	32/4022 (0.7)	1.15 (0.72–1.86)	0.72 (0.39–1.34)
pattern over 10	Stable	36/5212 (1.3)	Ref	Ref
years	Gain-loss	30/4630 (0.6)	0.94 (0.58–1.53)	1.05 (0.57–1.95)
	Sustained gain	67/1925 (3.5)	5.19 (3.45-7.80)	7.00 (4.11–11.94
	None	156/14,194 (1.1)	Ref	Ref
Smoking	Ex-smoker	17/1789 (1.0)	0.86 (0.52– 1.1.43)	0.85 (0.45–1.61)
Smoking	Ex-smoker Current smoker			· · · · · · · · · · · · · · · · · · ·
Smoking	Current	17/1789 (1.0)	1.1.43)	· · · · · · · · · · · · · · · · · · ·
Smoking Alcohol drinking	Current smoker	17/1789 (1.0) 16/1467 (1.1)	1.1.43) 0.99 (0.59–1.67)	1.20 (0.63–2.32) Ref
	Current smoker None	17/1789 (1.0) 16/1467 (1.1) 78/5669 (1.4)	1.1.43) 0.99 (0.59–1.67) Ref	1.20 (0.63–2.32) Ref 0.91 (0.55–1.52)
	Current smoker None Sometimes	17/1789 (1.0) 16/1467 (1.1) 78/5669 (1.4) 20/2035 (1.0)	1.1.43) 0.99 (0.59–1.67) Ref 0.71 (0.43–1.17)	1.20 (0.63–2.32) Ref 0.91 (0.55–1.52) 0.95 (0.60–1.51)
Alcohol drinking Duration of	Current smoker None Sometimes Usually	17/1789 (1.0) 16/1467 (1.1) 78/5669 (1.4) 20/2035 (1.0)	1.1.43) 0.99 (0.59–1.67) Ref 0.71 (0.43–1.17) 0.67 (0.43–1.04)	1.20 (0.63–2.32) Ref 0.91 (0.55–1.52) 0.95 (0.60–1.51)
Alcohol drinking Duration of walking per day	Current smoker None Sometimes Usually Per 30 min	17/1789 (1.0) 16/1467 (1.1) 78/5669 (1.4) 20/2035 (1.0) 27/2910 (0.9)	1.1.43) 0.99 (0.59–1.67) Ref 0.71 (0.43–1.17) 0.67 (0.43–1.04) 1.01 (0.93–1.11)	1.20 (0.63–2.32) Ref 0.91 (0.55–1.52) 0.95 (0.60–1.51) 1.01 (0.90–1.13) Ref
Alcohol drinking Duration of	Current smoker None Sometimes Usually Per 30 min 0–1/week	17/1789 (1.0) 16/1467 (1.1) 78/5669 (1.4) 20/2035 (1.0) 27/2910 (0.9) 37/3894 (1.0)	1.1.43) 0.99 (0.59–1.67) Ref 0.71 (0.43–1.17) 0.67 (0.43–1.04) 1.01 (0.93–1.11) Ref	0.91 (0.55–1.52) 0.95 (0.60–1.51) 1.01 (0.90–1.13)

159 Table 3. Incidence of diabetes mellitus (DM) over 10 years in a rural region of Japan

160 and odds ratios related to patterns of weight change and other variables

Exposure varia	ibles	Acquired DM / No. of subjects (incidence, %)	Odds ratio (95% CI)	Adjusted odds ratio (95% CI)			
Men (No. for multivariate analysis = 4818)							
Baseline age	Per 10 years	_	1.36 (1.08–1.72)	1.60 (1.24–2.05)			
	< 18.5	0/167 (0)		_			
Baseline	18.5–22	10/1425 (0.7)	Ref	Ref			
BMI, kg/m ²	22–25	21/2079 (1.0)	1.44 (0.68–3.08)	1.69 (0.79–3.63)			
	> 25	35/1148 (3.1)	4.45 (2.19–9.03)	5.81 (2.82–11.97)			
	Sustained loss	4/725 (0.6)	0.43 (0.15–1.25)	0.36 (0.12–1.05)			
Weight	Loss–gain	13/681 (1.9)	1.50 (0.75–3.00)	1.58 (0.78–3.17)			
change pattern over	Stable	22/1719 (1.3)	Ref	Ref			
10 years	Gain-loss	4/916 (0.4)	0.34 (0.12–0.99)	0.44 (0.15–1.29)			
	Sustained gain	23/778 (3.0)	2.35 (1.30-4.24)	3.15 (1.70-5.83)			
	None	23/1695 (1.4)	Ref	Ref			
Smoking	Ex-smoker	8/998 (0.8)	0.59 (0.26–1.32)	0.72 (0.32–1.64)			
	Current smoker	35/2126 (1.7)	1.22 (0.72–2.07)	1.50 (0.85–2.62)			
Duin1-in a	None	11/1071 (1.0)	Ref	Ref			
Drinking	Drinker	55/3748 (1.5)	1.44 (0.75–2.75)	1.52 (0.79–2.94)			
Women (No. f	for multivariate a	nalysis = 4852)					
Baseline age	Per 10 years	—	1.43 (0.99–2.06)	1.23 (0.83–1.84)			
	< 18.5	0/411 (0)	-	-			
Baseline	18.5–22	7/2135 (0.3)	Ref	Ref			
BMI, kg/m ²	22–25	14/1563 (0.9)	2.75 (1.11-6.82)	2.69 (1.07-6.75)			
	> 25	13/744 (1.8)	5.41 (2.15– 13.60)	5.29 (2.07–13.51)			
	Sustained loss	3/863 (0.3)	0.37 (0.11–1.29)	0.32 (0.09–1.10)			
Weight	Loss-gain	3/757 (0.4)	0.42 (0.12–1.47)	0.41 (0.12–1.44)			
change	Stable	15/1615 (0.9)	Ref	Ref			
•			0.(5.(0.04, 1.70))	0.77 (0.20, 2.14)			
pattern over 10 years	Gain-loss	5/827 (0.6)	0.65 (0.24–1.79)	0.77 (0.28–2.14)			
pattern over	Gain–loss Sustained gain	5/827 (0.6) 8/791 (1.0)	0.65 (0.24–1.79) 1.09 (0.46–2.58)	0.77 (0.28–2.14) 1.43 (0.59–3.48)			

		Ex-smoker	29/3822 (0.8)	2.45 (0.58– 10.31)	2.19 (0.52–9.26)
		Current smoker	3/375 (0.8)	2.60 (0.43– 15.60)	3.33 (0.55–20.28)
Drinla	Deinlein e	None	31/3542 (0.9)	Ref	Ref
Drinki	ng	Drinker	3/1311 (0.2)	0.26 (0.08-0.85)	0.29 (0.09–0.95)

161 DM, diabetes mellitus; CI, confidence interval; Ref, reference group; BMI, body mass index

DISCUSSION

Yokomichi H et al.

The data for the urban region suggest that the risk of diabetes in male and female weight cyclers was similar to or lower than that in the participants who maintained a stable weight. In particular, the data for Japanese men residing in an urban region indicate that, compared with the men who maintained a stable weight, there was a significantly reduced risk of diabetes with weight cycling. The data for Japanese women residing in a rural region also suggest a reduced risk of diabetes with weight cycling compared with maintaining a stable weight.

These findings are not consistent with those from previous studies of Western populations, which showed that weight cycling increased the risk of diabetes. In the Framingham Heart Study, approximately 1 kg/m² of weight cycling in American men and women aged between 40 and 50 years carried a hazard ratio of 1.1 (95%CI: 0.8–1.5) for the risk of diabetes after adjustment for sex and BMI at 25 years of age.[4] In an American study of middle-aged women (the National Health and Nutrition Examination Survey), weight cycling of 4.5–9.1 kg and 9.1–22.2 kg with an intentional loss of weight three or more times in four years carried ORs for the risk of diabetes of 1.11 (95%CI: 0.89–1.37) and 1.39 (95%CI: 0.90–2.13), respectively.[5] A study from a cohort of medical students at the Johns Hopkins University School of Medicine reported that the highest quartile of BMI variability at ages between 25

BMJ Open

Yokomichi H et al.

181 and 45 years had an OR of 2.1 (95%CI: 1.0–4.6) for the risk of diabetes after 50 years,

182 compared with the other three lower quartiles.[16]

Inconsistency between the Western studies and this study that weight cycling was not associated with an increase in the risk of diabetes but may even reduce the risk, may be due to ethnic differences in diet, [17] the capacity to gain weight [18] and self-consciousness about body weight. [19] Further research is needed to explore why the relationship between weight cycling and risk of diabetes is reversed between Western and East Asian populations. The reason may be attributable to different motivations to lose weight in the context of different diet cultures and body self-consciousness. [20] The East Asians who try to lose weight are particularly those who are relatively concerned about the poor health outcomes of being overweight. Westerners in the study cohorts described who tried to lose weight may, in an extreme expression, have been those who lost and regained a great deal of weight and potentially ran the risk of poor health outcomes.

From the data from the urban region, a weight increase of more than +5 kg above the participant's weight at the age of 20 years increased the risk of developing diabetes with a dose-response relationship in both men and women (table 2). Furthermore, in both sexes, an increase in weight of more than ± 10 kg above that when aged 20 years more than doubles the risk of diabetes, with statistical significance, compared to the risk for those who maintained their weight within ± 5 kg of their weight when aged 20 years. These results agree with the study in a US cohort, which reported a relative risk of 3.2 (95%CI: 1.4–7.4) for the highest quartile of BMI increase from 25 to 45 years of age in comparison with the other three lower quartiles.[16] A dose-response relationship involving weight change from that aged 20 years occurred in the Japanese women residing in the urban region, with ORs of 0.48 (95%CI: 0.18–1.25) for a change less than 5 kg, 0.96 (95%CI: 0.55–1.65) for an increase of between 5 BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

and 10 kg and 2.10 (95%CI: 1.20–3.67) for an increase greater than 10 kg. In contrast, the Japanese men who had lost 5 kg or more of weight between the age of 20 years and early middle age had an OR of 1.68 (95%CI: 0.75–3.80). This paradoxically increased OR was probably due to the small number of participants (seven) who developed diabetes among a weight loss group of 1438 people. This study had several limitations. The first of these was the threshold of $\pm 4\%$ weight change in 10 years. This threshold referred to a study from United Kingdom on the association between weight change and the risk of diabetes. [21] The threshold of $\pm 4\%$ weight change was calculated as approximately 1 BMI unit in Japanese people with a mean BMI of 23 kg/m². However, the threshold for categorisation of weight cycling should vary according to mean BMIs in different ethnicities, in which people have different insulin sensitivities.[10, 22] Second, we did not evaluate insulin sensitivity. Measuring fasting plasma glucose and insulin concentration to calculate HOMA-IR.[23] an index of insulin resistance, would have allowed us to assess the association between weight cycling and the physiological hazard of diabetes. Third, the weight changes recorded in the rural region may be misclassified due to missing data for the years when participants did not undergo the health examination. However, such misclassification would bias the ORs to the null hypothesis, and we believe such a bias would not change the conclusions for the rural region. Finally, a subset of the diagnoses in this study was not made by physicians but by using an epidemiological criterion.[12] However, most observational studies in nature rely on epidemiological criteria for detecting diabetes, and the use of a consistent diagnostic criterion can allow researchers to compare the risk of diabetes onset between groups of reference and interest. The present study also has several strengths. First, to the best of our knowledge, this is the

first study to explore the relationship between weight cycling and the risk of diabetes in

Page 15 of 23

BMJ Open

229	Asians. Because the relationship was opposite to that in Americans, further research in East
230	Asians is necessary to confirm the relationship. Next, this study was conducted in two
231	differently characterised populations (urban and rural residents). The ORs of the risk of
232	diabetes were 1.05 (95%CI: 0.57–1.95) in the weight gain–loss pattern of the urban resident
233	women and 1.58 (95%CI: 0.78–3.17) in weight loss-gain pattern of the rural resident men.
234	However, all other weight cycling patterns in both sexes in urban and rural regions were
235	negatively correlated with the risk of diabetes. Third, the numbers of participants in both
236	sexes were approximately 10,000 in the urban region and approximately 5,000 in the rural
237	region. Because the present study included a large number of participants from both urban
238	and rural Japan, Japanese and East Asian weight cyclers can refer to its results.
239	This study can contribute to helping public health practitioners and on-site clinical
240	professionals prevent diabetes in the general population. A sustained weight gain greater than
241	4% over ten years in middle age and more than 5 kg of additional weight gained since the age
242	of 20 years both carried increased risks of diabetes for both sexes. Because middle-aged
243	people can easily undergo such a small weight gain over the short or long term, non-diabetic
244	people within the normal BMI range should be cautious about the risks resulting from even
245	such a slight weight gain through their lifetime. An interventional study indicated that weight
246	loss (-1.8 kg/m ² of BMI in a diet intervention group and -3.3 kg/m ² of BMI in a
247	diet-and-exercise intervention group) improved insulin sensitivity in Japanese patients with
248	obesity and type 2 diabetes.[24] Improved insulin sensitivity was also observed in Americans
249	who maintained their weight with treadmill exercise and no alteration of diet.[25] In addition,
250	studies have demonstrated that building muscle through exercising without changing weight
251	improves insulin sensitivity.[26]

Yokomichi H et al.

In the present study, two profiles of weight cycling pattern resulted in an increase in the risk of diabetes, whereas in the other six profiles the risk decreased. Because better insulin sensitivity directly leads to a decreased risk of diabetes, the results may be due to the differences in how the participants lost or gained weight (i.e. whether they lost or gained fat or muscle mass). Recent studies have indicated that sarcopenia, the loss of skeletal muscle alone or with increased fat mass in ageing, is a leading cause of death in old age.[27] The present study results, in the context of previous studies, suggest that over both the short term and long term, people can reduce their risk of diabetes by losing fat and maintaining muscle mass.

262 CONCLUSIONS

In urban and rural Japanese populations, weight cycling appears to reduce the risk of diabetes in most patterns of weight change. The results may be attributable to the motivations of the weight cyclers. The risk of diabetes increases linearly with weight gain from the age of 20 years in Japanese urban men and women. A study that includes the measurement of insulin sensitivity is necessary to confirm the present results and to improve understanding of the risks for East Asian weight cyclers.

BMJ Open

	Yokomichi H et al.
269	Acknowledgments We thank all participants in this study and staff at the St. Luke's
270	International Hospital and the Yamanashi Koseiren Health Care Center for their support,
271	which made this study possible.
272	Competing interests None declared.
273	Funding This work was supported by the Ministry of Education, Culture, Sports, Science and
274	Technology of Japan (MEXT) (KAKENHI grant number: JP15K08730 and JP15K15221).
275	Contributors ZY, YY, MT and OT: setting up the study and data collection. HY, ZY, MM
276	and AT: designing the study. HY and AT: data analysis. HY: writing and revising the draft. ZY,
277	SO, MM, YA and HY: development of the discussion section. All authors read and approved
278	the final manuscript.
279	Ethics approval The ethics committee of the School of Medicine, University of Yamanashi
280	(approval number: H27-1417).
281	Data sharing statement No additional data are available.

BMJ Open

Yokomichi H et al.

REFERENCES

283 1. Nanri A, Mizoue T, Takahashi Y, et al. Association of weight change in different periods of

- Health Center-Based Prospective Study. *J Epidemiol Commun H* 2011;65:1104–10.
- 286 2. Wannamethee SG, Shaper AG. Weight change and duration of overweight and obesity in
- the incidence of type 2 diabetes. *Diabetes Care* 1999;22:1266–72.
- 3. Ford ES, Williamson DF, Liu SM. Weight change and diabetes incidence: findings from a
 national cohort of US adults. *Am J Epidemiol* 1997;146:214–22.
- 4. Waring ME, Eaton CB, Lasater TM, et al. Incident diabetes in relation to weight patterns
- during middle age. *Am J Epidemiol* 2010;171:550–6.
- 292 5. Field AE, Manson JE, Laird N, et al. Weight cycling and the risk of developing type 2
- diabetes among adult women in the United States. *Obes Res* 2004;12:267–74.
- 6. Mukai T, Crago M, Shisslak CM. Eating attitudes and weight preoccupation among female
 high school students in Japan. *J Child Psychol Psychiatry* 1994;35:677–88.
- 296 7. Swami V, Frederick DA, Aavik T, et al. The attractive female body weight and female body
- dissatisfaction in 26 countries across 10 world regions: results of the International Body
- Project I. Personal Soc Psychol Bull 2010;36:309–25.
- 8. Chisuwa N, O'Dea JA. Body image and eating disorders amongst Japanese adolescents. a
 review of the literature. *Appetite* 2010;54:5–15.
- 301 9. Xu X, Mellor D, Kiehne M, et al. Body dissatisfaction, engagement in body change
- behaviors and sociocultural influences on body image among Chinese adolescents. *Body Image* 2010;7:156–64.
- 10. Kodama K, Tojjar D, Yamada S, et al. Ethnic differences in the relationship between
- 305 insulin sensitivity and insulin response: a systematic review and meta-analysis. *Diabetes*
- *Care* 2013;36:1789–96.

BMJ Open

	Yokomichi H et al.
307	11. Ministry of Health, Labour and Welfare of Japan. Industrial Safety and Health Act
308	(English version). 1972.
309	http://www.japaneselawtranslation.go.jp/law/detail/?printID=&id=1926&re=&vm=02
310	(acceseed 11 Oct 2016).
311	12. American Diabetes Association. Diagnosis and classification of diabetes mellitus.
312	<i>Diabetes Care</i> 2010;33:S62–S69.
313	13. The International Expert Committee. International Expert Committee report on the role of
314	the A1C assay in the diagnosis of diabetes. <i>Diabetes Care</i> 2009;32:1327–34.
315	14. NCD Risk Factor Collaboration. Worldwide trends in diabetes since 1980: a pooled
316	analysis of 751 population-based studies with $4 \cdot 4$ million participants. Lancet
317	2016;387:1513–30.
318	15. Rothman KJ, Greenland S, Lash TL. Modern Epidemiology: 3rd ed. Lippincott Williams
319	& Wilkins: New York; 2008: 26–31.
320	16. Brancati FL, Wang N, Mead LA, et al. Body weight patterns from 20 to 49 years of age
321	and subsequent risk for diabetes mellitus: the Johns Hopkins Precursors Study. Arch Int
322	Med 1999;159:957–63.
323	17. Slocum R. Race in the study of food. Prog Hum Geogr 2011;35:303-27.
324	18. The DECODE–DECODA Study Group. Age, body mass index and type 2
325	diabetes—associations modified by ethnicity. <i>Diabetologia</i> 2003;46:1063–70.
326	19. Mintz LB, Kashubeck S. Body image and disordered eating among Asian American and
327	Caucasian college students an examination of race and gender differences. Psychol Women
328	<i>Q</i> 1999;23:781–96.
329	20. Frederick DA, Forbes GB, Grigorian KE, et al. The UCLA Body Project I: gender and
330	ethnic differences in self-objectification and body satisfaction among 2,206
331	undergraduates. Sex Roles 2007;57:317–27.

Yokomichi H et al.

332	21. Wannamethee SG, Shaper AG, Walker M. Overweight and obesity and weight change in
333	middle aged men: impact on cardiovascular disease and diabetes. J Epidemiol Commun H
334	2005;59:134–9.
335	22. Ntuk UE, Gill JMR, Mackay DF, et al. Ethnic-specific obesity cutoffs for diabetes risk:
336	cross-sectional study of 490,288 UK Biobank participants. Diabetes Care 2014;37:2500-
337	7.
338	23. Matthews D, Hosker J, Rudenski A, et al. Homeostasis model assessment: insulin
339	resistance and β -cell function from fasting plasma glucose and insulin concentrations in
340	man. <i>Diabetologia</i> 1985;28:412–9.
341	24. Yamanouchi K, Shinozaki T, Chikada K, et al. Daily walking combined with diet therapy
342	is a useful means for obese NIDDM patients not only to reduce body weight but also to
343	improve insulin sensitivity. <i>Diabetes Care</i> 1995;18:775–8.
344	25. Duncan GE, Perri MG, Theriaque DW, et al. Exercise training, without weight loss,
345	increases insulin sensitivity and postheparin plasma lipase activity in previously sedentary
346	adults. Diabetes Care 2003;26:557–62.
347	26. Nassis GP, Papantakou K, Skenderi K, et al. Aerobic exercise training improves insulin
348	sensitivity without changes in body weight, body fat, adiponectin, and inflammatory
349	markers in overweight and obese girls. <i>Metabolism</i> 2005;54:1472–9.
350	27. Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in older
351	adults. Current consensus definition: prevalence, etiology, and consequences. International
352	Working Group on Sarcopenia. J Am Med Dir Assoc 2011;12:249–56.

BMJ Open

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No.	Recommendation	Page No.	Relevant text from manuscript
Fitle and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1	Line 1–2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was		
		found	2	Line 23–40
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4	Line 53–66
Objectives	3	State specific objectives, including any prespecified hypotheses	4	Line 66–67
Methods				
Study design	4	Present key elements of study design early in the paper	4	Line 72–72
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure,		
		follow-up, and data collection	4	Line 72–73
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of		
		participants. Describe methods of follow-up		
		Case-control study—Give the eligibility criteria, and the sources and methods of case		
		ascertainment and control selection. Give the rationale for the choice of cases and controls		
		Cross-sectional study-Give the eligibility criteria, and the sources and methods of selection of		
		participants	5	Line 81–83
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and		
		unexposed		
		Case-control study—For matched studies, give matching criteria and the number of controls per		
		case		NA
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers.		
		Give diagnostic criteria, if applicable	5–6	Line 85–87, 93–102
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment		
neasurement		(measurement). Describe comparability of assessment methods if there is more than one group	5–6	Line 93–102
Bias	9	Describe any efforts to address potential sources of bias	5	Line 83–90
Study size	10	Explain how the study size was arrived at	7	Line 126, 132
Continued on next page				

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

Quantitative	11	Explain how quantitative variables were handled in the analyses. If applicable, describe		
variables		which groupings were chosen and why	6	Line 103–107
Statistical	12	(a) Describe all statistical methods, including those used to control for confounding	6	Line 114–119
methods		(b) Describe any methods used to examine subgroups and interactions	6	Line 119
		(c) Explain how missing data were addressed	5	Line 83-85
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed		
		Case-control study—If applicable, explain how matching of cases and controls was		
		addressed		
		Cross-sectional study—If applicable, describe analytical methods taking account of		NA
		sampling strategy		
		(<u>e</u>) Describe any sensitivity analyses		NA
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	7	Line 126, 132
		eligible, examined for eligibility, confirmed eligible, included in the study, completing		
		follow-up, and analysed		
		(b) Give reasons for non-participation at each stage	5	Line 83-85
		(c) Consider use of a flow diagram		NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and		
		information on exposures and potential confounders	7–8	Table 1
		(b) Indicate number of participants with missing data for each variable of interest		NA
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)		NA
Outcome data	15*	<i>Cohort study</i> —Report numbers of outcome events or summary measures over time	9–12	Table 2 and 3
		Case-control study—Report numbers in each exposure category, or summary measures		NA
		of exposure		
		Cross-sectional study—Report numbers of outcome events or summary measures		NA
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	9–12	Table 2 and 3
		their precision (eg, 95% confidence interval). Make clear which confounders were		
		adjusted for and why they were included		
		(b) Report category boundaries when continuous variables were categorized	9–12 (BMI)	Table 2 and 3
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a		
		meaningful time period		NA

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

⊿0 **BMJ Open**

Continued on next page Other	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses		Table 2 and 3
analyses				
Discussion				
Key results	18	Summarise key results with reference to study objectives	12	Line 164–170
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both		
		direction and magnitude of any potential bias	14	Line 210–226
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of		
		analyses, results from similar studies, and other relevant evidence	12–14	Line 171–209
Generalisability	21	Discuss the generalisability (external validity) of the study results	15	Line 230–231
Other information	on			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the		
		original study on which the present article is based	17	Line 273–274

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

BMJ Open

Weight cycling and the subsequent onset of type 2 diabetes mellitus in urban and rural Japan

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-014684.R1
Article Type:	Research
Date Submitted by the Author:	17-Jan-2017
Complete List of Authors:	Yokomichi, Hiroshi; University of Yamanashi, Department of Health Sciences Ohde, Sachiko; St. Luke's International University, Center for Clinical Epidemiology Takahashi, Osamu; St. Luke's International University, Center for Clinical Epidemiology Mochizuki, Mie; University of Yamanashi, Department of Pediatrics Takahashi, Atsunori; University of Yamanashi, Department of Health Sciences Yoda, Yoshioki; Yamanashi Koseiren Health Care Center Tsuji, Masahiro; Yamanashi Koseiren Health Care Center Akiyama, Yuka; University of Yamanashi, Department of Health Sciences Yamagata, Zentaro; The University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering
Primary Subject Heading :	Diabetes and endocrinology
Secondary Subject Heading:	Health services research, Epidemiology, Nutrition and metabolism, Sports and exercise medicine
Keywords:	weight cycling, weight change, type 2 diabetes, body mass index, Asian

SCHOLARONE[™] Manuscripts

2
2
3
4
5
6
7
2
8
9
10
11
10
12
13
14
15
16
10
17
18
19
20
20
2 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 7 8 9 10 112 3 4 5 8 9 10 112 3 4 5 8 9 10 112 3 4 5 8 9 10 112 3 4 5 8 9 10 112 3 4 5 8 9 10 112 3 112 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
22
23
24
24
25
26
27
20
20
29
30
31
22
32
33
34
35
36
50
37
38
39
10
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
57
58
59

60

Yokomichi H et al.

1	Weight cycling and the subsequent onset of type 2 diabetes mellitus in
2	urban and rural Japan
3	Hiroshi Yokomichi ^{1*} , Sachiko Ohde ² , Osamu Takahashi ² , Mie Mochizuki ³ , Atsunori
4	Takahashi ¹ , Yoshioki Yoda ⁴ , Masahiro Tsuji ⁴ , Yuka Akiyama ¹ and Zentaro Yamagata ¹
5	
6	¹ Department of Health Sciences, University of Yamanashi, Yamanashi, Japan
7	² Center for Clinical Epidemiology, St. Luke's International University, Tokyo, Japan
8	³ Department of Pediatrics, University of Yamanashi, Yamanashi, Japan
9	⁴ Yamanashi Koseiren Health Care Center, Yamanashi, Japan
10	
11	*Corresponding author:
12	Hiroshi Yokomichi
13	1110 Shimokato, Chuo City, Yamanashi, 4093898, Japan
14	E-mail: hyokomichi@yamanashi.ac.jp
15	Tel: +81-(0)80-5524-7303
16	
17	Keywords: weight cycling; weight change; type 2 diabetes; body mass index; Asian
18	
19	Word count: 3,243
20	
21	

Yokomichi H et al.

22 ABSTRACT

Objective: To investigate how patterns in weight changes impact the risk of diabetes,

24 including those that occur after 20 years.

Design: Cohort study.

26 Setting: Primary healthcare in urban and rural Japan.

Participants: 20,708 urban and 9,670 rural residents.

Primary outcome measures: Odds ratios (ORs) for diabetes in weight loss, loss-gain, stable, gain-loss and weight gain for 10 years. Weight gain and loss were defined as a greater than $\pm 4\%$ change from baseline weight.

Results: In the urban region, the ORs relative to the stable group for the loss-gain and

32 gain-loss groups were 0.63 (95% CI: 0.45–0.89) and 0.51 (95% CI: 0.32–0.82) for men and

33 0.72 (95% CI: 0.39–1.34) and 1.05 (95% CI: 0.57–1.95) for women, respectively. In the rural

34 region, they were 1.58 (95% CI: 0.78–3.17) and 0.44 (95% CI: 0.15–1.29) in men and 0.41

35 (95% CI: 0.12–1.44) and 0.77 (95% CI: 0.28–2.14) in women, respectively. The ORs for an

increase in weight between 5–10 kg from the age of 20 years were 1.54 (95% CI: 1.03–2.30)

37 in men and 0.96 (95% CI: 0.55–1.65) in women.

Conclusions: In Japan, weight cycling is associated with a significant reduction in the risk of
 diabetes for men from an urban region and non-significantly for women from a rural region.

40 However, the associations are unclear for women from the urban region and in men of the

41 rural region. These results differ from those in Western studies, likely due to the motivations

42 underlying weight cycling.

1		Yokomichi H et al.
2 3	43	
5	44	Word count: 251 words (limit: 300 words)
4		Word count: 251 words (limit: 300 words)
37 38 39		
40 41 42 43		
44 45 46		
47 48 49 50 51		
52 53 54 55 56 57		
58 59 60		

Yokomichi H et al.

Strengths and limitations of this study

- In urban Japan, weight cyclers have a similar or lower risk of diabetes than people who
 - maintain a constant body weight.
- In urban and rural Japan, sustained weight gain increases the risk of diabetes.
- There is a dose–response relationship for both sexes between weight gain since the age
- of 20 years and the risk of diabetes.
- Odds ratios may change according to the threshold of $\pm 4\%$ weight change in 10 years. •
- The levels of insulin secretion and sensitivity were not measured. sulm s...

BMJ Open

Yokomichi H et al.

54 INTRODUCTION

Weight gain is a well-known risk factor for incidental type 2 diabetes. Research involving people of Western. Oriental and African descent has quantitatively established the risks of developing diabetes in relation to weight gain.¹⁻³ Researchers have also raised the question of whether repeatedly gaining and losing weight (weight cycling) is an independent risk factor for developing diabetes due to gaining weight. Studies on this topic are inconsistent in Westerners of Europe and the United States, and researchers currently appear to recognise that weight cycling may not independently increase but strongly induce the risk of diabetes. ⁴⁻⁸ In contrast, the risk of diabetes in Asian weight cyclers has not been researched. Due to the preconception linking being slim to an aesthetic standard,⁹¹⁰ many Asian women make an effort to lose weight.^{11 12} Another group likely to try to reduce weight are

middle-aged East Asian businesspeople who have gained weight but have few opportunities
for physical activity. Recent studies have demonstrated that East Asians are much more likely

67 than Westerners to develop type 2 diabetes at a lower body mass index (BMI).¹³ As a result, it

may take only a small change in weight to alter the risk of diabetes for East Asians. In

addition, the literature indicates that in Japan, diet, physical activity, prevalence of

- 70 overweight individuals and aesthetic consciousness of metropolitan residents are different
- from those of rural residents.^{14 15} The aim of this study was to establish whether weight

cyclers residing in Japan were at an increased risk of diabetes. We used Japanese urban and
 rural data to examine this clinical question in populations with varying lifestyles.

75 METHODS

76 Study participants and measurements

Yokomichi H et al.

 In this cohort study, we enrolled participants from an urban area, Tokyo Metropolis and a rural area, Yamanashi Prefecture. In Tokyo, we enrolled employees of private companies who underwent medical check-ups between January 2005 and December 2014 at St. Luke's International Hospital. These annual medical check-ups were based on a legal obligation imposed by the Industrial Safety and Health Act in Japan.¹⁶ In the Yamanashi Prefecture, we enrolled employees and residents who paid for a private comprehensive medical check-up service between April 1999 and March 2009 at the Yamanashi Koseiren Health Care Center. A subset of participants in Yamanashi used a subsidy from their employers or administrative agencies to receive the private medical check-up. Thus, the participants in the urban area received almost annual medical check-ups over 10 years, and those in the rural area received occasional voluntary check-ups. Participants were included in the analysis if they had no diagnosis of diabetes and an HbA1c less than 6.5% (48 mmol/mol) during a baseline period for the first three years of the 10-year period. If they received medical check-ups two or three times during the first three years, the data from the first visit were adopted for the baseline. Those included were also required to undergo a medical check-up at least twice during the latter seven years of the study. Hence, participants needed to receive at least three medical check-ups for the categorisation of weight change patterns (exposure). The onset of diabetes was identified through questionnaires for the diagnosis of diabetes, the commencement of diabetic therapies or glycated haemoglobin (HbA1c) $\geq 6.5\%$ (48 mmol/mol).^{17 18} At the institution in Tokyo, trained nurses interviewed the participants from the age of 20 years to establish their changes in weight. BMI was calculated as the participant's weight in kilograms divided by the square of their height in metres.

100 Weight change categories

BMJ Open

Yokomichi H et al.

The participants were categorised into five groups according to their patterns of weight change during the 3–10 years since the baseline period. The stable group was comprised of the participants whose weight had not changed from the baseline by more than $\pm 4\%$. The sustained gain group consisted of the participants who gained more than 4% of their baseline weight and did not subsequently lose this extra weight. Similarly, the sustained loss group was comprised of participants who lost more than 4% of their baseline weight and did not subsequently regain this weight. The gain-loss group included participants who gained more than 4% of their baseline weight but brought their weight back below +4%. The loss-gain group included participants who lost more than 4% of their baseline weight but brought their weight back above -4%. From the last time point of this categorisation, the outcome of incident diabetes was measured. Therefore, the duration of observing whether the participants developed diabetes was between one and six years among the categories. The incidence of diabetes was measured after the participants were categorised, and any data measured after a diagnosis of diabetes were ignored to conserve the temporality of exposure to outcome for an epidemiological causation.¹⁹ The incidence of diabetes was measured after the participants were categorised, and any data measured after a diagnosis of diabetes were ignored to conserve the temporality of exposure to outcome for an epidemiological causation. The $\pm 4\%$ change in weight used for this categorisation was determined as approximately a one-unit change for a person with a BMI of 22 kg/m². This was based on the 2014 reference mean BMIs for Japanese men and women of 23.6 kg/m² and 21.7 kg/m², respectively.²⁰ It also took into consideration the relatively short time period of ten years for the observation.

122 The gain-loss and loss-gain group of participants were the weight cyclers of interest.

124 Statistical analysis

Yokomichi H et al.

The baseline characteristics recorded for the participants included age, weight, height, BMI, HbA1c and fasting plasma glucose. We used univariate and multivariate logistic regressions to compare the risk of diabetes between the categorised groups. In the urban data of Tokyo Metropolis, the covariates used for the adjustment at baseline were age, weight change from 20 years of age, BMI, smoking habits, alcohol consumption and physical activity. In the rural data of the Yamanashi Prefecture, the available covariates for the adjustment at baseline were age, BMI, smoking habit and alcohol consumption. The analyses were stratified by sex. In addition, another focus of this study was the impact of weight cycling on incidental diabetes in middle-aged individuals. Hence, for a sensitivity analysis, we restricted the analyses to a middle-aged population of 45 to 64 years. All statistical analyses were performed using SAS statistical software (version 9.3, SAS Institute, NC, USA). The descriptive statistics are reported as the means and standard deviations (SD). All reported p values were two-sided; P values of <0.05 were considered to be statistically significant.

RESULTS

140 Participants

For the multivariate analyses of primary interest, 10,094 men and 10,614 women were
enrolled from Tokyo Metropolis (Table 1). The means (SDs) of the baseline characteristics
for the men in the urban region were as follows: age 49.6 (11.9) years, weight 68.8 (9.7) kg,
BMI 23.7 (2.8) kg/m² and HbA1c 5.4% (0.3%) (35.3 [3.7] mmol/mol). For the women in the
urban region, these values were as follows: age 48.3 (11.3) years, weight 52.3 (7.4) kg, BMI
21.0 (2.9) kg/m² and HbA1c 5.3% (0.4%) (35.0 [3.8] mmol/mol).

147Table 1 also shows the baseline characteristics of 4,818 men and 4,852 women enrolled148from the Yamanashi Prefecture. The baseline characteristics for the men in the rural region

Yokomichi H et al.

- 149 were as follows: age 51.2 (10.3) years, weight 65.7 (9.1) kg, BMI 23.2 (2.7) kg/m² and
- 150 HbA1c 5.3% (0.3%) (34.3 [3.8] mmol/L). For the women in the rural area, the values were as
- 151 follows: age 52.1 (9.4) years, weight 53.1 (7.5) kg, BMI 22.1 (2.9) kg/m² and HbA1c 5.3%
 - 152 (0.3%) (34.4 [3.5] mmol/L).

153 Table 1. Baseline characteristics of the participants from urban (Tokyo Metropolis) and

154 rural (Yamanashi Prefecture) regions of Japan.

Characteristics, mean (standard deviation)	Men	Women
Urban region		
No.	10,094	10,614
Age, years	49.6 (11.9)	48.3 (11.3)
Weight, kg	68.8 (9.7)	52.3 (7.4)
Height, cm	170.4 (6.1)	157.7 (5.6)
Body mass index, kg/m ²	23.7 (2.8)	21.0 (2.9)
HbA1c, %	5.4 (0.3)	5.3 (0.4)
(HbA1c, mmol/mol)	35.3 (3.7)	35.0 (3.8)
Fasting plasma glucose, mg/dL	100.8 (8.6)	94.5 (8.0)
(Fasting plasma glucose, mmol/L)	5.6 (0.5)	5.2 (0.4)
Rural region		
No.	4,818	4,852
Age, years	51.2 (10.3)	52.1 (9.4)
Weight, kg	65.7 (9.1)	53.1 (7.5)
Height, cm	168.1 (6.2)	154.8 (5.6)
Body mass index, kg/m ²	23.2 (2.7)	22.1 (2.9)
HbA1c, %	5.3 (0.3)	5.3 (0.3)
(HbA1c, mmol/mol)	34.3 (3.8)	34.4 (3.5)
Fasting plasma glucose, mg/dL	96.3 (9.0)	93.2 (8.5)
(Fasting plasma glucose, mmol/L)	5.3 (0.5)	5.2 (0.5)

 BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Yokomichi H et al.

56	Risk of	diabetes ir	ı urban	and rural	Japan

157	Tables 2 and 3 present the incidence of diabetes and the odds ratios (ORs) for each
158	explanatory variable in the urban and rural regions, respectively. For the men in the urban
159	region, the adjusted ORs (95% confidence intervals [95%CIs]) compared to the stable group
160	were 3.07 (2.15–4.39) in the sustained gain group, 0.51 (0.32–0.82) in the gain-loss group,
161	0.63 (0.45–0.89) in the loss-gain group and 1.11 (0.77–1.59) in the sustained loss group. For
162	the women in the urban region, the adjusted ORs relative to the stable group were 7.00 (4.11–
163	11.94) in the sustained gain group, 1.05 (0.57–1.95) in the gain-loss group, 0.72 (0.39–1.34)
164	in the loss-gain group and 1.48 (0.80–2.74) in the sustained loss group. For the men in the
165	rural region, the adjusted ORs were 3.15 (1.70–5.83) in the sustained gain group, 0.44 (0.15–
166	1.29) in the gain-loss group, 1.58 (0.78–3.17) in the loss-gain group and 0.36 (0.12–1.05) in
167	the sustained loss group. For the women in the rural region, the adjusted ORs were 1.43
168	(0.59–3.48) in the sustained gain group, 0.77 (0.28–2.14) in the gain-loss group, 0.41 (0.12–
169	1.44) in the loss-gain group and 0.32 (0.09–1.10) in the sustained loss group.

Table 2. The incidence and odds ratios (95% CIs) of diabetes related to patterns of

weight change over 10 years in residents of urban Japan

Exposure variables		Acquired DM / No. of subjects (incidence, %)	Crude	Multivariate
Men (No. For multivariate analysis =10,094)				
Baseline age	Per 10 years	—	1.44 (1.33–1.55)	1.44 (1.29–1.61)
	< -5	7/1438 (0.5)	2.18 (1.14-4.18)	1.68 (0.75–3.80)
Weight change	-5 to +5	73/10646 (0.7)	Ref	Ref
from 20 years of age, kg	+5 to +10	31/3200 (1.0)	1.98 (1.45–2.72)	1.54 (1.03–2.30)
	>+10	78/2166 (3.6)	3.37 (2.54-4.48)	2.08 (1.40-3.10)
Baseline BMI,	< 18.5	6/387 (1.6)	1.35 (0.57–3.16)	0.88 (0.29–2.70)

kg/m ²	18.5–22	49/4236 (1.2)	Ref	Ref	
	22–25	168/7220 (2.3)	2.04 (1.48-2.89)	1.73 (1.14–2.63)	
	> 25	190/4699 (4.0)	3.60 (2.62-4.94)	2.52 (1.60-3.95)	
	Sustained loss	66/1903 (3.5)	1.39 (1.03–1.87)	1.11 (0.77–1.59)	
Weight change pattern over 10 years	Loss-gain	87/4644 (1.9)	0.74 (0.56–0.97)	0.63 (0.45-0.89)	
	Stable	142/5621 (2.5)	Ref	Ref	
	Gain-loss	38/3063 (1.2)	0.49 (0.34–0.70)	0.51 (0.32–0.82)	
	Sustained gain	80/1311 (6.1)	2.51 (1.89–3.32)	3.07 (2.15-4.39)	
	None	123/6385 (1.9)	Ref	Ref	
Smoking	Ex-smoker	150/5940 (2.5)	1.32 (1.04–1.68)	0.97 (0.71–1.31)	
Sinohing	Current smoker	140/4217 (3.3)	1.75 (1.37–2.23)	1.73 (1.25–2.34)	
	None	69/2250 (3.1)	Ref	Ref	
Alcohol drinking	Sometimes	48/1667 (2.9)	0.94 (0.65–1.36)	0.96 (0.66–1.40)	
	Usually	156/6177 (2.5)	0.82 (0.61-1.09)	0.78 (0.58–1.05)	
Duration of walking per day	Per 30 min	_	0.996 (0.92– 1.08)	1.01 (0.92–1.11)	_
	0-1/week	85/3282 (2.6)	Ref	Ref	
	1-2/week	108/4105 (2.6)	1.02 (0.76–1.36)	1.02 (0.76–1.36)	
Physical activity	3–5/week	43/1541 (2.8)	1.08 (0.74–1.57)	0.98 (0.67–1.45)	
	6–7/week	37/1166 (3.2)	1.23 (0.83–1.82)	1.06 (0.69–1.62)	
Women (No. for m	ultivariate an	alysis = 10,614)			
Baseline age	Per 10 years	—	1.66 (1.48–1.87)	1.78 (1.50–2.12)	
	< -5	11/439 (2.5)	0.71 (0.33–1.54)	0.48 (0.18–1.25)	
Weight change	-5 to +5	61/5243 (1.2)	Ref	Ref	
Weight change from 20 years of age, kg	+5 to +10	109/4779 (2.3)	1.42 (0.93–2.16)	0.96 (0.55–1.65)	
	>+10	232/6081 (3.8)	5.41 (3.92-7.47)	2.10 (1.20-3.67)	
Baseline BMI, kg/m ²	< 18.5	20/2916 (0.7)	1.24 (0.74–2.08)	1.47 (0.76–2.86)	_
	18.5–22	52/9388 (0.6)	Ref	Ref	
	22–25	60/3676 (1.6)	2.98 (2.05-4.33)	2.01 (1.21-3.34)	
-	> 25	57/1470 (3.9)	7.24 (4.95– 10.59)	2.91 (1.53-5.52)	
Weight change	Sustained loss	24/1661 (1.4)	2.11 (1.25–3.54)	1.48 (0.80–2.74)	_
pattern over 10	Loss-gain	32/4022 (0.7)	1.15 (0.72–1.86)	0.72 (0.39–1.34)	
years	Stable	36/5212 (1.3)	Ref	Ref	
					11

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

1	
2	
3 4	
5	
6	
7 8	
8 9	
9 10	
11	
12	
13	
14	
16	
17	
18	
19 20	
20	
22	
11 12 13 14 15 16 17 18 19 20 21 22 23 24	
24 25	
26	
27	
28	
29 30	
31	
32	
33	
34 25	
35 36	
36 37	
38	
39 40	
40 41	
42	
43	
44 45	
45 46	
47	
48	
49 50	
50 51	
52	
53	
54	
55 56	
57	
58	
59	
60	

Yokomichi H et al.

	Gain-loss	30/4630 (0.6)	0.94 (0.58–1.53)	1.05 (0.57–1.95)
	Sustained gain	67/1925 (3.5)	5.19 (3.45-7.80)	7.00 (4.11–11.94)
	None	156/14,194 (1.1)	Ref	Ref
Smoking	Ex-smoker	17/1789 (1.0)	0.86 (0.52– 1.1.43)	0.85 (0.45–1.61)
	Current smoker	16/1467 (1.1)	0.99 (0.59–1.67)	1.20 (0.63–2.32)
	None	78/5669 (1.4)	Ref	Ref
Alcohol drinking	Sometimes	20/2035 (1.0)	0.71 (0.43–1.17)	0.91 (0.55–1.52)
	Usually	27/2910 (0.9)	0.67 (0.43–1.04)	0.95 (0.60–1.51)
Duration of walking per day	Per 30 min	_	1.01 (0.93–1.11)	1.01 (0.90–1.13)
	0–1/week	37/3894 (1.0)	Ref	Ref
Physical activity	1–2/week	42/3760 (1.1)	1.18 (0.76–1.84)	1.11 (0.70–1.75)
	3–5/week	27/1874 (1.4)	1.52 (0.93-2.52)	1.14 (0.67–1.94)
	6–7/week	19/1086 (1.7)	1.86 (1.06–3.24)	1.43 (0.79–2.60)

172 DM, diabetes mellitus; CI, confidence interval; Ref, reference group; BMI, body mass index

173 Table 3. The incidence and odds ratios (95% CIs) of diabetes related to patterns of

174 weight change over 10 years in residents of rural Japan

Exposure variables		Acquired DM / No. of subjects (incidence, %)	Crude	Multivariate
Men (No. for	multivariate ana	lysis = 4818)		
Baseline age	Per 10 years	—	1.36 (1.08–1.72)	1.60 (1.24–2.05)
	< 18.5	0/167 (0)	—	_
Baseline	18.5–22	10/1425 (0.7)	Ref	Ref
BMI, kg/m ²	22–25	21/2079 (1.0)	1.44 (0.68–3.08)	1.69 (0.79–3.63)
	> 25	35/1148 (3.1)	4.45 (2.19–9.03)	5.81 (2.82–11.97)
Weight change pattern over 10 years	Sustained loss	4/725 (0.6)	0.43 (0.15–1.25)	0.36 (0.12–1.05)
	Loss-gain	13/681 (1.9)	1.50 (0.75–3.00)	1.58 (0.78–3.17)
	Stable	22/1719 (1.3)	Ref	Ref
	Gain-loss	4/916 (0.4)	0.34 (0.12–0.99)	0.44 (0.15–1.29)
	Sustained gain	23/778 (3.0)	2.35 (1.30-4.24)	3.15 (1.70-5.83)

Yokomichi H et al.

	None	23/1695 (1.4)	Ref	Ref
Smoking	Ex-smoker	8/998 (0.8)	0.59 (0.26–1.32)	0.72 (0.32–1.64)
	Current smoker	35/2126 (1.7)	1.22 (0.72–2.07)	1.50 (0.85–2.62)
Duintaina	None	11/1071 (1.0)	Ref	Ref
Drinking	Drinker	55/3748 (1.5)	1.44 (0.75–2.75)	1.52 (0.79–2.94)
Women (No.	for multivariate a	nalysis = 4852)		
Baseline age	Per 10 years	—	1.43 (0.99–2.06)	1.23 (0.83–1.84)
	< 18.5	0/411 (0)	—	—
Baseline	18.5–22	7/2135 (0.3)	Ref	Ref
BMI, kg/m ²	22–25	14/1563 (0.9)	2.75 (1.11-6.82)	2.69 (1.07-6.75)
	> 25	13/744 (1.8)	5.41 (2.15– 13.60)	5.29 (2.07–13.51)
	Sustained loss	3/863 (0.3)	0.37 (0.11–1.29)	0.32 (0.09–1.10)
Weight	Loss-gain	3/757 (0.4)	0.42 (0.12–1.47)	0.41 (0.12–1.44)
change pattern over	Stable	15/1615 (0.9)	Ref	Ref
10 years	Gain-loss	5/827 (0.6)	0.65 (0.24–1.79)	0.77 (0.28–2.14)
	Sustained gain	8/791 (1.0)	1.09 (0.46–2.58)	1.43 (0.59–3.48)
	None	2/646 (0.3)	Ref	Ref
Smoking	Ex-smoker	29/3822 (0.8)	2.45 (0.58– 10.31)	2.19 (0.52–9.26)
	Current smoker	3/375 (0.8)	2.60 (0.43– 15.60)	3.33 (0.55–20.28)
	None	31/3542 (0.9)	Ref	Ref
Drinking	Drinker	3/1311 (0.2)	0.26 (0.08–0.85)	0.29 (0.09–0.95)

175 DM, diabetes mellitus; CI, confidence interval; Ref, reference group; BMI, body mass index

177 Table 4 shows the risk of diabetes risk due to weight cycling in the middle-aged population.

178 The ORs (95% CIs) for incidental diabetes were 0.57 (0.32–1.01) in the gain-loss group and

179 0.74 (0.49–1.11) in the loss-gain group among men living in the urban area. The

180 corresponding ORs (95% CIs) were 0.80 (0.36–1.77) and 0.76 (0.37–1.57), respectively

among women living in the urban area; 0.58 (0.19–1.77) and 1.76 (0.80–3.87), respectively

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Yokomichi H et al.

- 182 among men living in rural area. The ORs were 0.82 (0.26–2.62) and 0.54 (0.15–1.94),
- 183 respectively among the women living in the rural area.

185 Table 4. The incidence and odds ratios of diabetes related to patterns of weight change over 10 years

186 in middle-aged residents (45–64 years) in Japan

Exposure variables		Acquired DM / No. of subjects (incidence, %)	Odds ratio (95% CI)	Adjusted odds ratio (95% CI)
Urban middle-aged m	en (No. for multiv	ariate analysis =4,	,882)	
	Sustained loss	35/981 (3.6)	1.04 (0.65–1.67)	0.97 (0.60–1.55)
	Loss-gain	62/2203 (2.8)	0.79 (0.53–1.18)	0.74 (0.49–1.11)
Weight change pattern over 10 years	Stable	100/2749 (3.6)	Ref	Ref
over to years	Gain-loss	26/1098 (2.4)	0.56 (0.32-0.999)	0.57 (0.32–1.01)
	Sustained gain	50/489 (10.2)	3.09 (2.00-4.76)	3.13 (2.00-4.89)
Urban middle-aged wo	omen (No. for mul	tivariate analysis	= 5,053)	
	Sustained loss	15/994 (1.5)	1.30 (0.62–2.73)	1.13 (0.53–2.41)
	Loss-gain	20/1992 (1.0)	0.87 (0.43–1.77)	0.76 (0.37-1.57)
Weight change pattern over 10 years	Stable	24/2285 (1.1)	Ref	Ref
over ro years	Gain-loss	17/1642 (1.0)	0.74 (0.34–1.62)	0.80 (0.36–1.77)
	Sustained gain	40/603 (6.6)	5.62 (3.05–10.37)	6.97 (3.67–13.25)
Rural middle-aged me	n (No. for multiva	riate analysis =2,9	937)	
	Sustained loss	3/447 (0.7)	0.48 (0.14–1.66)	0.42 (0.12–1.47)
	Loss-gain	11/449 (2.5)	1.78 (0.81–3.91)	1.76 (0.80–3.87)
Weight change pattern over 10 years	Stable	15/1078 (1.4)	Ref	Ref
over ro years	Gain-loss	4/546 (0.7)	0.52 (0.17–1.58)	0.58 (0.19–1.77)
	Sustained gain	12/417 (2.9)	2.10 (0.98-4.53)	2.48 (1.12–5.49)
Rural middle-aged wo	men (No. for mult	tivariate analysis =	= 3,347)	
	Sustained loss	1/638 (0.2)	0.16 (0.02–1.25)	0.14 (0.02–1.01)
	Loss-gain	3/579 (0.5)	0.54 (0.15–1.92)	0.54 (0.15–1.94)
Weight change pattern over 10 years	Stable	11/1140 (1.0)	Ref	Ref
over to years	Gain-loss	4/558 (0.7)	0.74 (0.24–2.34)	0.82 (0.26-2.62)
	Sustained gain	5/432 (1.2)	1.20 (0.42–3.48)	1.30 (0.44–3.84)

Page 15 of 34

1

2

3	18
4 5	18
6 7	18
8 9	19
10 11	
12 13	
13 14 15 16 17 18	
10	
19 20	
21	
22 23 24	
25	
26 27	
28 29	
30 31	
32 33	
34 35	
36 37	
38 39	
40 41	
42 43	
44 45 46	
40 47 48	
40 49 50	
50 51 52	
52 53 54	
55	
56 57	
58 59	
60	

BMJ Open Yokomichi H et al. 37 Multivariate logistic regression calculated odds ratios with an adjustment for baseline age and BMI, weight change from 20 years of age, smoking and drinking habits, duration of walking per day and physical activity 88 9 per week in the urban data. The baseline age and BMI and smoking and drinking habits in the rural data. 0

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Yokomichi H et al.

191 DISCUSSION

The data for the urban region suggest that the risk of diabetes in male and female weight cyclers was similar to or lower than that of the participants who maintained a stable weight. In particular, the data for Japanese men residing in an urban region indicate that, compared with the men who maintained a stable weight, there was a significantly reduced risk of diabetes associated with weight cycling. The data for Japanese women residing in a rural region also suggest a reduced risk of diabetes with weight cycling compared with maintaining a stable weight. These results are reinforced by a sensitivity analysis with a restriction on middle-aged individuals, representing almost same ORs as those in the entire population except for the OR in the gain-loss group among women residing in the urban region.

These observations are not consistent with those from previous studies of Western populations, which showed that weight cycling significantly or non-significantly increased the risk of diabetes for point estimates. In the Framingham Heart Study, approximately 1 kg/m² of weight cycling in middle-aged Americans carried a hazard ratio of 1.1 (95%CI: 0.8–1.5) for the risk of diabetes after adjusting for sex and BMI at 25 years of age.⁴ In the American middle-aged women of the National Health and Nutrition Examination Survey, weight cycling of 4.5–9.1 kg and 9.1–22.2 kg with an intentional weight loss three or more times in four years carried ORs for the risk of diabetes of 1.11 (95%CI: 0.89–1.37) and 1.39 (95%CI: 0.90–2.13), respectively.⁵ A study from a cohort of medical students at the Johns Hopkins University School of Medicine reported that the highest quartile of BMI variability for ages between 25 and 45 years had an OR of 2.1 (95%CI: 1.0–4.6) for the risk of diabetes after 50 years,

BMJ Open

Yokomichi H et al.

214	compared with the other three lower quartiles. ²¹ In a large German cohort, weight
215	cycling of \geq 1.5 kg/year was significantly associated with an adjusted hazard ratio of
216	1.34. ⁶

The inconsistency between the Western studies and this study that weight cycling was not associated with an increase in the risk of diabetes but may even reduce the risk, may be due to ethnic differences in diet,²² the capacity to gain weight²³ and self-consciousness about body weight.²⁴ Further research is required to explore why the

relationship between weight cycling and risk of diabetes is inversed between Western and East Asian populations. The reason may be attributable to different motivations to lose weight in the context of different diet cultures and body self-consciousness.²⁵ The East Asians who try to lose weight may be particularly those who are relatively concerned about the poor health outcomes of being overweight. Westerners described in the study cohorts who tried to lose weight may, in an extreme expression, have been those who lost and regained a great deal of weight and potentially ran the risk of poor health outcomes.

From the data from the urban region, a weight increase of more than +5 kg above the participant's weight at the age of 20 years increased the risk of developing diabetes with a dose-response relationship in both men and women (Table 2). Furthermore, in both sexes, an increase in weight of more than +10 kg above that when aged 20 years more than doubles the risk of diabetes, with statistical significance, compared to the risk for those who maintained their weight within ± 5 kg of their weight when aged 20 years. These results agree with the study involving a US cohort, which reported a relative risk of 3.2 (95%CI: 1.4–7.4) for the highest quartile of an increase in BMI from 25 to 45

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Yokomichi H et al.
years of age in comparison with the other three lower quartiles. ²¹ A dose-response
relationship of weight change from that aged 20 years to the risk of diabetes occurred in
the Japanese women residing in the urban region, with ORs of 0.48 (95%CI: 0.18–1.25)
for a change less than 5 kg, 0.96 (95%CI: 0.55–1.65) for an increase of between 5 and
10 kg and 2.10 (95%CI: 1.20–3.67) for an increase greater than 10 kg. In contrast, the
Japanese men who had lost 5 kg or more of body weight between the age of 20 years
and early middle age had an OR of 1.68 (95%CI: 0.75–3.80). This paradoxically
increased OR was most likely due to the small number of participants (seven) who
developed diabetes among a weight loss group of 1438 people.
This study had several limitations. The first of these was the threshold of $\pm 4\%$ weight
change in 10 years. This threshold referred to a study from United Kingdom on the
association between weight change and the risk of diabetes. ²⁶ The threshold of a $\pm 4\%$
weight change was calculated as approximately 1 BMI unit in Japanese people with a
mean BMI of 23 kg/m ² . However, the threshold for categorisation of weight cycling
should vary according to mean BMIs in different ethnicities, in which people have
different insulin sensitivities. ^{13 27} Second, we did not evaluate insulin sensitivity.
Measuring fasting plasma glucose and insulin concentration to calculate HOMA-IR, ²⁸
an index of insulin resistance, would have allowed us to assess the association between
weight cycling and the physiological hazard of diabetes. Third, the weight changes
recorded in the rural region may be misclassified due to missing data for the years when
participants did not undergo the health examination. However, such misclassification
would bias the ORs to the null hypothesis, and we believe that such a bias would not
change the conclusions for the rural region. Fourth, we could not examine whether the

2	
3	
Δ	
4 5	
S	
6	
7	
0	
8	
9	
9 1	0
1	1
1	
1	2
1 1 1	3
1	Δ
4	E
1	5
1	6
1	7
1	Q
1	0
1	Э
2	0
2	1
5	ว
2	2
2	3
2	4
222222222233333333	5
~	2
2	6
2	7
2	8
2	0
2	9
3	0
3	1
2 2	ວ
3	2
3	3
3	4
ર	5
2	ĉ
3	ю
3	7
3	8
2 2	õ
3 3 3 3 4	J
4	U
4	1
4	
4	
4	
4	5
4	
	_
4	-
4	8
4	9
5	
5	
5	2
5	
	4
5	
5	6
5	
5	' 0
5	
_	~
5	9

BMJ Open

Yokomichi H et al.

weight cycling was intentional; however, we consider that a subset of unintentional weight loss could be attributed to metabolic diseases, and patients with such diseases could not usually regain the weight within a short duration. Fifth, the urban data for the weight at 20 years of age were derived from the participants' memory. Thus, recall bias could have existed in the results. Sixth, a subset of the diagnoses in this study were not made by physicians but via an epidemiological criteria.¹⁷ However, most observational studies by nature rely on epidemiological criteria for detecting diabetes, and the use of a consistent diagnostic criterion can allow researchers to compare the risk of diabetes onset between the reference group and that of interest. Last, this study lacks the information pertaining to lifestyle, including diet, marriage status, job type and owning a car, that may have partly explain the association between weight cycling and incident diabetes.

The present study also has several strengths. First, to the best of our knowledge, this is the first study to explore the relationship between weight cycling and the risk of diabetes in Asians. Since the relationship in this study was opposite to that of Americans, further research in East Asians is necessary to confirm this relationship. Next, this study was conducted in two differently characterised populations (urban and rural residents). The ORs of the risk of diabetes were 1.05 (95%CI: 0.57–1.95) in the weight gain-loss pattern of the urban resident women and 1.58 (95%CI: 0.78-3.17) in weight loss-gain pattern of the rural resident men. However, all other weight cycling patterns for both sexes in the urban and rural regions were negatively correlated with the risk of diabetes. Third, the number of participants in both sexes were approximately 10,000 in the urban region and approximately 5,000 in the rural region. Since the present study included a

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Yokomichi H et al.

large number of participants from both urban and rural Japan, Japanese and East Asian
weight cyclers can refer to its results.

This study can contribute to aiding public health practitioners and on-site clinical professionals prevent diabetes in the general population. A sustained weight gain greater than 4% over ten years in middle age and more than 5 kg of additional weight gained since the age of 20 years both carried an increased risk of diabetes for both sexes. Since middle-aged people can easily undergo such a small weight gain over the short or long term, non-diabetic people within the normal BMI range should be cautious about the risks resulting from even such a slight weight gain through their lifetime. An interventional study indicated that weight loss $(-1.8 \text{ kg/m}^2 \text{ of BMI})$ in a diet intervention group and -3.3 kg/m^2 of BMI in a diet-and-exercise intervention group) improved insulin sensitivity in Japanese patients with obesity and type 2 diabetes.²⁹ Improved insulin sensitivity was also observed in Americans who maintained their weight with treadmill-based exercise and no alteration in their diet.³⁰ In addition, studies have demonstrated that building muscle through exercising without changing weight improves insulin sensitivity.³¹

In the present study, two profiles of weight cycling pattern resulted in an increase in the risk of diabetes, whereas the risk decreased in the other six profiles. Since better insulin sensitivity directly leads to a decreased risk of diabetes, the results may be due to the differences in how the participants lost or gained weight (i.e. whether they lost or gained fat or muscle mass). Recent studies have indicated that sarcopenia, the loss of skeletal muscle alone or with increased fat mass in ageing, is a leading cause of death in old age.³² The results of the present study, in the context of previous studies, suggest

BMJ Open

Yokomichi H et al.

that over both the short- and long-term, people can reduce their risk of diabetes bylosing fat and maintaining muscle mass.

309 CONCLUSIONS

In men in the urban region and women of rural region in Japan, weight cycling has been associated with a reduction in the risk of diabetes, with statistical significance and non-significance, respectively; however, a clear association was not observed in the women of the urban region and men of the rural region. The results were different than those in Western countries and may be attributed to the motivations of the weight cyclers. In addition, the risk of diabetes increases linearly with weight gain from the age of 20 years in Japanese urban men and women. A study that includes the measurement of insulin sensitivity is necessary to confirm the present results and to improve the understanding of the risks for East Asian weight cyclers.

319 (3,243 words; limit of 4,000 words)

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Acknowledgments We thank all participants in this study and staff at the St. Luke's International Hospital and the Yamanashi Koseiren Health Care Center for their support, which made this study possible. Competing interests None declared. **Funding** This work was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) (KAKENHI grant number: JP15K08730 and JP15K15221). Contributors ZY, YY, MT and OT: setting up the study and data collection. HY, ZY, MM and AT: designing the study. HY and AT: data analysis. HY: writing and revising the draft. ZY, SO, MM, YA and HY: development of the discussion section. All authors read and approved the final manuscript. Ethics approval The ethics committee of the School of Medicine, University of Yamanashi (approval number: H27-1417).

Data sharing statement No additional data are available.

Yokomichi H et al.

BMJ Open

Yokomichi H et al.

REFERENCES

336	1. Nanri A, Mizoue T, Takahashi Y, et al. Association of weight change in different
337	periods of adulthood with risk of type 2 diabetes in Japanese men and women: the
338	Japan Public Health Center-Based Prospective Study. J Epidemiol Commun H
339	2011; 65 :1104–10.
340	2. Wannamethee SG, Shaper AG. Weight change and duration of overweight and
341	obesity in the incidence of type 2 diabetes. Diabetes Care 1999;22:1266-72.
342	3. Ford ES, Williamson DF, Liu SM. Weight change and diabetes incidence: findings
343	from a national cohort of US adults. Am J Epidemiol 1997;146:214–22.
344	4. Waring ME, Eaton CB, Lasater TM, et al. Incident diabetes in relation to weight
345	patterns during middle age. Am J Epidemiol 2010;171:550–6.
346	5. Field AE, Manson JE, Laird N, et al. Weight cycling and the risk of developing type
347	2 diabetes among adult women in the United States. Obes Res 2004;12:267-74.
348	6. Neamat-Allah J, Barrdahl M, Hüsing A, et al. Weight cycling and the risk of type 2
349	diabetes in the EPIC-Germany cohort. <i>Diabetologia</i> 2015; 58 :2718–25.
350	7. French S, Folsom A, Jeffery R, Zheng W, Mink P, Baxter J. Weight variability and
351	incident disease in older women: the Iowa Women's Health Study. Int J Obes Relat
352	<i>Metab Disord</i> 1997; 21 :217–23.
353	8. Morris RD, Rimm AA. Long-term weight fluctuation and non-insulin-dependent
354	diabetes mellitus in white women. Ann Epidemiol 1992;2:657-64.
355	9. Mukai T, Crago M, Shisslak CM. Eating attitudes and weight preoccupation among
356	female high school students in Japan. J Child Psychol Psychiatry 1994;35:677-88.

Yokomichi H et al.

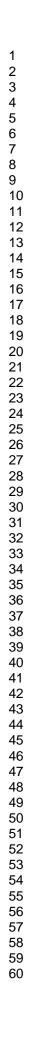
357	10. Swami V, Frederick DA, Aavik T, et al. The attractive female body weight and
358	female body dissatisfaction in 26 countries across 10 world regions: results of the
359	International Body Project I. Personal Soc Psychol Bull 2010;36:309-25.
360	11. Chisuwa N, O'Dea JA. Body image and eating disorders amongst Japanese
361	adolescents. a review of the literature. Appetite 2010;54:5-15.
362	12. Xu X, Mellor D, Kiehne M, et al. Body dissatisfaction, engagement in body change
363	behaviours and sociocultural influences on body image among Chinese adolescents.
364	<i>Body Image</i> 2010;7:156–64.
365	13. Kodama K, Tojjar D, Yamada S, et al. Ethnic differences in the relationship
366	between insulin sensitivity and insulin response: a systematic review and
367	meta-analysis. Diabetes Care 2013;36:1789–96.
368	14. Matsushita Y, Yoshiike N, Kaneda F, Yoshita K, Takimoto H. Trends in childhood
369	obesity in Japan over the last 25 years from the national nutrition survey. Obes Res
370	2004;12:205–14.
371	15. Yoshiike N, Seino F, Tajima S, et al. Twenty vear changes in the prevalence of
372	overweight in Japanese adults: The National Nutrition Survey 1976–95. Obes Rev
373	2002; 3 :183–90.
374	16. Ministry of Health, Labour and Welfare of Japan. Industrial Safety and Health Act
375	(English version). 1972.
376	http://www.japaneselawtranslation.go.jp/law/detail/?printID=&id=1926&re=&vm=
377	02 (acceseed 12 January 2017).
378	17. American Diabetes Association. Diagnosis and classification of diabetes mellitus.
379	<i>Diabetes Care</i> 2010; 33 :S62–S69.

BMJ Open

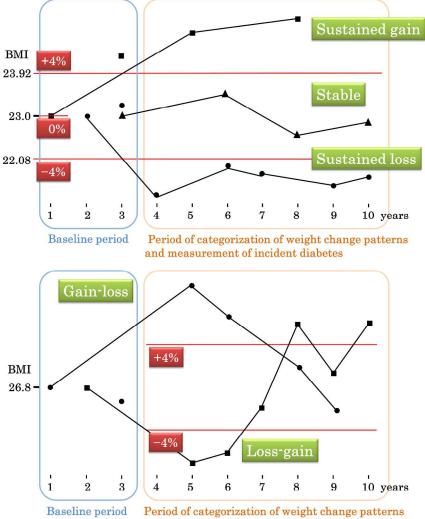
Yokomichi H et al.

38	18. The International Expert Committee. International Expert Committee report on the
38	role of the A1C assay in the diagnosis of diabetes. <i>Diabetes Care</i> 2009; 32 :1327–
38	2 34.
38	19. Kaufman J, Poole C. Looking back on "causal thinking in the health sciences".
38	4 Annu Rev Publ Health 2000; 21 :101-19.
38	5 20. NCD Risk Factor Collaboration. Worldwide trends in diabetes since 1980: a pooled
38	6 analysis of 751 population-based studies with $4 \cdot 4$ million participants. <i>Lancet</i>
38	7 2016; 387 :1513–30.
38	8 21. Brancati FL, Wang N, Mead LA, et al. Body weight patterns from 20 to 49 years of
38	9 age and subsequent risk for diabetes mellitus: the Johns Hopkins Precursors Study.
39	0 Arch Int Med 1999; 159 :957–63.
39	1 22. Slocum R. Race in the study of food. <i>Prog Hum Geogr</i> 2011; 35 :303–27.
39	2 23. The DECODE–DECODA Study Group. Age, body mass index and type 2
39	diabetes—associations modified by ethnicity. <i>Diabetologia</i> 2003; 46 :1063–70.
39	4 24. Mintz LB, Kashubeck S. Body image and disordered eating among Asian American
39	5 and Caucasian college students an examination of race and gender differences.
39	6 <i>Psychol Women Q</i> 1999; 23 :781–96.
39	25. Frederick DA, Forbes GB, Grigorian KE, et al. The UCLA Body Project I: gender
39	8 and ethnic differences in self-objectification and body satisfaction among 2,206
39	9 undergraduates. <i>Sex Roles</i> 2007; 57 :317–27.
40	26. Wannamethee SG, Shaper AG, Walker M. Overweight and obesity and weight
40	change in middle aged men: impact on cardiovascular disease and diabetes. J
40	2 <i>Epidemiol Commun H</i> 2005; 59 :134–9.
	95

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright


BMJ Open

403	27. Ntuk UE, Gill JMR, Mackay DF, et al. Ethnic-specific obesity cutoffs for diabetes
	risk: cross-sectional study of 490,288 UK Biobank participants. <i>Diabetes Care</i>
404	Tisk. cross-sectional study of 490,288 OK Biobank participants. Diabeles Care
405	2014; 37 :2500–7.
406	28. Matthews D, Hosker J, Rudenski A, et al. Homeostasis model assessment: insulin
407	resistance and β -cell function from fasting plasma glucose and insulin concentrations
408	in man. <i>Diabetologia</i> 1985; 28 :412–9.
409	29. Yamanouchi K, Shinozaki T, Chikada K, et al. Daily walking combined with diet
410	therapy is a useful means for obese NIDDM patients not only to reduce body weight
411	but also to improve insulin sensitivity. <i>Diabetes Care</i> 1995;18:775-8.
412	30. Duncan GE, Perri MG, Theriaque DW, et al. Exercise training, without weight loss,
413	increases insulin sensitivity and postheparin plasma lipase activity in previously
414	sedentary adults. <i>Diabetes Care</i> 2003; 26 :557–62.
415	31. Nassis GP, Papantakou K, Skenderi K, et al. Aerobic exercise training improves
416	insulin sensitivity without changes in body weight, body fat, adiponectin, and
417	inflammatory markers in overweight and obese girls. <i>Metabolism</i> 2005; 54 :1472–9.
418	32. Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in
419	older adults. Current consensus definition: prevalence, etiology, and consequences.
420	International Working Group on Sarcopenia. J Am Med Dir Assoc 2011;12:249–56.
421	
422	
423	


Yokomichi H et al.

2 3		
4 5		
6	424	Figure 1. Scheme of how participants were categorised into the five
7 8 9	425	weight change patterns
9 10 11	426	
12 13		
14		
15 16		
17 18		
19 20		
21 22		
23 24		
25 26		
27 28		
29 30		
31 32		
33 34		
35 36		
37 38		
39 40		
40 41 42		
42 43 44		
45		
46 47		
48 49		
50 51		
52 53		
54 55		
56 57		
58 59		
60		

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Period of categorization of weight change patter and measurement of incident diabetes

> Figure 1 Scheme of how participants wer 339x454mm (300 x 300 DPI)

BMJ Open BMJ Open Yokomichi H et al. Yokomichi Et al. Supplementary. Baseline characteristics among groups of weight change patterns over 10 years q

				D	
Men in urban Japan (n = 10,094)	Sustained loss	Loss-gain	Stable	Gain-loss	Sustained gain
Age, years	52.3 (12.2)	51.2 (12.0)	50.3 (11.3)	4¢.0 (11.4)	44.9 (11.3)
Weight, kg	70.8 (10.4)	69.8 (9.5)	68.3 (9.0)	67,3 (9.5)	67.8 (10.8)
Height, cm	170.1 (6.2)	170.3 (6.1)	170.2 (6.0)	179.7 (6.1)	171.2 (6.1)
Body mass index, kg/m2	24.4 (3.0)	24.0 (2.7)	23.5 (2.6)	2 <u>§</u> .1 (2.8)	23.1 (3.2)
HbA1c, %	5.4 (0.4)	5.4 (0.3)	5.4 (0.3)	se 3 (0.3)	5.3 (0.3)
HbA1c, mmol/mol	35.9 (3.9)	35.7 (3.7)	35.3 (3.7)	34.6 (3.7)	34.6 (3.4)
Fasting plasma glucose, mg/dL	102.3 (9.2)	101.5 (8.8)	101.0 (8.5)	9 9 .0 (8.0)	99.8 (8.4)
Fasting plasma glucose, mmol/L	5.7 (0.5)	5.6 (0.5)	5.6 (0.5)	5 (0.4)	5.5 (0.5)
Weight change from 20 years of age, kg	+9.7 (9.1)	+9.0 (8.1)	+8.2 (7.9)	+3.0 (8.4)	+7.0 (20.5)
Current smoking, %	20.0	22.8	23.6	<u>9</u> 31.3	33.7
Usually drinking alcohol, %	61.7	62.3	63.8	57.3	55.2
Duration of walking per day, min	41.0 (38.3)	41.3 (41.7)	43.3 (41.5)	404 (35.2)	38.6 (36.0)
Physical activity of 6–7/week, %	11.2	12.0	11.9	g10.4	11.6
				n April	
Women in urban Japan (n = 10,614)	Sustained loss	Loss-gain	Stable	Gain-loss	Sustained gain
Age, years	52.4 (10.7)	51.1 (11.5)	48.9 (11.3)	45 ^N / ₂ 7 (10.6)	43.5 (9.8)
Weight, kg	53.8 (8.0)	53.4 (7.8)	51.7 (7.0)	5₽ .8 (7.1)	51.6 (7.4)
Height, cm	156.9 (5.7)	157.2 (5.9)	157.8 (5.6)	158.1 (5.5)	158.4 (5.3)
Body mass index, kg/m2	21.8 (3.0)	21.6 (3.0)	20.8 (2.7)	20,7 (2.7)	20.6 (2.8)
HbA1c, %	5.5 (0.4)	5.4 (0.4)	5.4 (0.3)	5 3 (0.3)	5.3 (0.3)
HbA1c, mmol/mol	36.1 (4.1)	35.4 (3.8)	35.0 (3.8)	34.4 (3.6)	34.0 (3.7)
Fasting plasma glucose, mg/dL	96.5 (8.9)	95.7 (8.1)	94.6 (8.0)	99.2 (7.3)	92.8 (7.3)
				copyright.	1

	BMJ Open		ý/bm	
			joper	
			-1-201	
			6-01	
5.4 (0.5)	5.3 (0.4)	5.3 (0.4)	5 <u>4</u> 2 (0.4)	5.2 (1.4)
+4.1 (7.4)	+3.8 (7.3)	+2.4 (7.1)	+2.6 (7.1)	+2.2 (7.5)
6.6	6.7	5.7	une 9.9	11.8
23.7	26.7	27.3		28.3
42.9 (49.4)	41.2 (49.8)	42.3 (40.9)	41,5 (40.5)	43.8 (51.9)
12.1	10.6	11.3	Nownlo	8.8
Sustained loss	Loss-gain	Stable	Gain-loss	Sustained gain
53.5 (10.3)	51.7 (9.8)	52.3 (10.1)	49 2 (10.1)	48.3 (10.5)
67.2 (9.0)	66.2 (8.7)	66.0 (9.1)	_	64.3 (9.9)
167.5 (6.2)	168.0 (6.0)	167.8 (6.2)	T	168.8 (6.5)
23.9 (2.6)	23.4 (2.6)	23.4 (2.7)		22.5 (2.9)
5.3 (0.4)	5.3 (0.4)	5.3 (0.3)	52 (0.3)	5.2 (0.3)
34.7 (3.9)	34.6 (3.9)	34.3 (3.7)	33.9 (3.8)	33.8 (3.5)
97.5 (9.2)	96.4 (9.0)	96.9 (9.1)	9 <mark>5</mark> .1 (8.9)	95.1 (8.5)
5.4 (0.5)	5.4 (0.5)	5.4 (0.5)	5 <u>5</u> 3 (0.5)	5.3 (0.5)
38.5	42.7	37.7	≩49.3	58.5
79.5	77.5	78.4	¹ 75.7	77.5
Constained Land	T	C(-1-1-	2002	
	e			Sustained gain
	. ,	. ,		48.2 (9.9)
	. ,		Ä	52.6 (7.8)
	. ,	. ,		155.7 (5.6)
	. ,	, ,	0	21.7 (3.0)
· · · ·	· · · ·			5.2 (0.3)
34.9 (3.7)	34.0 (3.4)	34.0 (3.0)	<u>3</u> ¥.U(3.4) 8	33.6 (3.3)
			ругі	2
	+4.1 (7.4) 6.6 23.7 42.9 (49.4) 12.1 Sustained loss 53.5 (10.3) 67.2 (9.0) 167.5 (6.2) 23.9 (2.6) 5.3 (0.4) 34.7 (3.9) 97.5 (9.2) 5.4 (0.5) 38.5	5.4 (0.5) $5.3 (0.4)$ $+4.1 (7.4)$ $+3.8 (7.3)$ 6.6 6.7 23.7 26.7 $42.9 (49.4)$ $41.2 (49.8)$ 12.1 10.6 Sustained lossLoss-gain $53.5 (10.3)$ $51.7 (9.8)$ $67.2 (9.0)$ $66.2 (8.7)$ $167.5 (6.2)$ $168.0 (6.0)$ $23.9 (2.6)$ $23.4 (2.6)$ $5.3 (0.4)$ $5.3 (0.4)$ $34.7 (3.9)$ $34.6 (3.9)$ $97.5 (9.2)$ $96.4 (9.0)$ $5.4 (0.5)$ $5.4 (0.5)$ 38.5 42.7 79.5 77.5 Sustained lossLoss-gain $54.9 (9.0)$ $52.8 (8.6)$ $54.0 (8.1)$ $53.6 (7.5)$ $154.1 (5.6)$ $154.8 (5.8)$ $22.7 (3.1)$ $22.4 (2.8)$ $5.3 (0.3)$ $5.3 (0.3)$	5.4 (0.5) $5.3 (0.4)$ $5.3 (0.4)$ $+4.1 (7.4)$ $+3.8 (7.3)$ $+2.4 (7.1)$ 6.6 6.7 5.7 23.7 26.7 27.3 $42.9 (49.4)$ $41.2 (49.8)$ $42.3 (40.9)$ 12.1 10.6 11.3 Sustained loss $53.5 (10.3)$ $51.7 (9.8)$ $52.3 (10.1)$ $66.2 (8.7)$ $66.0 (9.1)$ $167.2 (9.0)$ $66.2 (8.7)$ $66.0 (9.1)$ $167.5 (6.2)$ $168.0 (6.0)$ $23.9 (2.6)$ $23.4 (2.6)$ $23.4 (2.6)$ $23.4 (2.7)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.4 (0.5)$ $5.4 (0.5)$ $34.7 (3.9)$ $34.6 (3.9)$ 34.5 42.7 77.5 78.4 Sustained loss $Loss-gain$ $Stable$ $54.9 (9.0)$ $52.8 (8.6)$ $53.1 (9.2)$ $54.0 (8.1)$ $53.6 (7.5)$ $52.9 (6.9)$ $154.1 (5.6)$ $154.8 (5.8)$ $154.0 (8.1)$ $53.6 (7.5)$ $52.9 (6.9)$ $154.1 (5.6)$ $154.8 (5.8)$ $154.6 (5.4)$ $22.7 (3.1)$ $22.4 (2.8)$ $22.1 (2.8)$ $5.3 (0.3)$ $5.3 (0.3)$	5.4 (0.5) $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.2 (0.4)$ $+4.1 (7.4)$ $+3.8 (7.3)$ $+2.4 (7.1)$ $+3.6 (7.1)$ 6.6 6.7 5.7 9.9 23.7 26.7 27.3 $42.9 (49.4)$ $41.2 (49.8)$ $42.3 (40.9)$ $41.5 (40.5)$ 11.3 8.6 Sustained lossLoss-gain $53.5 (10.3)$ $51.7 (9.8)$ $52.3 (10.1)$ $492 (10.1)$ $67.2 (9.0)$ $66.2 (8.7)$ $66.0 (9.1)$ $64.7 (8.6)$ $167.5 (6.2)$ $168.0 (6.0)$ $167.8 (6.2)$ $168.5 (6.2)$ $23.9 (2.6)$ $23.4 (2.6)$ $23.4 (2.6)$ $23.4 (2.7)$ $24.8 (2.5)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.3)$ $34.7 (3.9)$ $34.6 (3.9)$ $34.3 (3.7)$ $32.9 (3.8)$ $97.5 (9.2)$ $96.4 (9.0)$ $96.9 (9.1)$ $92.1 (8.9)$ $5.4 (0.5)$ $5.4 (0.5)$ $5.4 (0.5)$ $5.4 (0.5)$ $54.9 (9.0)$ $52.8 (8.6)$ $53.1 (9.2)$ $52.7 (7.5)$ 77.5 78.4 75.7 $54.9 (9.0)$ $52.8 (8.6)$ $53.1 (9.2)$ $52.8 (2.9)$ $53.0 (3.3)$ $53.0 (3.3)$ $53.0 (3.3)$ $53.0 (3.3)$ $53.0 (3.3)$ $53.0 (3.3)$

		BMJ Open		i6/bmjop	
Yokomichi H et al.				ben-2016-01	
Fasting plasma glucose, mg/dL Fasting plasma glucose, mmol/L Current smoker, % Current drinker, % The data are presented as the mean (SD	94.1 (9.1) 5.2 (0.5) 5.5 24.2	93.0 (8.3) 5.2 (0.5) 8.1 27.2	93.7 (8.8) 5.2 (0.5) 6.6 26.5	16-01460 (8.0) 9 9 2 (0.4) 9 8.5 June 27.1 Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by gues	91.9 (7.9) 5.1 (0.4) 11.5 30.9
				Protected by copyright.	3
	Fasting plasma glucose, mg/dL Fasting plasma glucose, mmol/L Current smoker, % Current drinker, % The data are presented as the mean (SD	Fasting plasma glucose, mg/dL 94.1 (9.1) Fasting plasma glucose, mmol/L 5.2 (0.5) Current smoker, % 5.5 Current drinker, % 24.2 The data are presented as the mean (SD) or %	Yokomichi H et al. <u>Fasting plasma glucose, mg/dL</u> 94.1 (9.1) 93.0 (8.3) <u>Stating plasma glucose, mmol/L</u> 5.2 (0.5) 5.2 (0.5) <u>Current smoker, %</u> 5.5 8.1 <u>Current drinker, %</u> 24.2 27.2 The data are presented as the mean (SD) or %.	Yokomichi H et al. Fasting plasma glucose, mmol/L 5.2 (0.5) 5.2 (0.5) 5.2 (0.5) Current smoker, % 24.2 27.2 26.5 The data are presented as the mean (SD) or %.	Yokomichi H et al. Fasting plasma glucose, mg/dL 94.1 (9.1) 93.0 (8.3) 93.7 (8.8) 9960 (8.0) Fasting plasma glucose, mmol/L 5.2 (0.5) 5.2 (0.5) 5.2 (0.4) Current smoker, % 24.2 27.2 26.5 The data are presented as the mean (SD) or %. 900 or %. 900 or %.

BMJ Open

STROBE Statement-checklist of items that should be included in reports of observational studies

⊿0

	Item No.	Recommendation	Page No.	Relevant text from manuscript
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1	Line 1–2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was		
		found	2	Line 23–42
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5	Line 55–62
Objectives	3	State specific objectives, including any prespecified hypotheses	5	Line 71–73
Methods				
Study design	4	Present key elements of study design early in the paper	6	Line 77–78
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure,		
		follow-up, and data collection	6	Line 77–87
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of		
		participants. Describe methods of follow-up		
		Case-control study—Give the eligibility criteria, and the sources and methods of case		
		ascertainment and control selection. Give the rationale for the choice of cases and controls		
		Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of		
		participants	6	Line 87–93
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and		
		unexposed		
		Case-control study—For matched studies, give matching criteria and the number of controls per		
		case		NA
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers.		
		Give diagnostic criteria, if applicable	6	Line 93–97
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment		
measurement		(measurement). Describe comparability of assessment methods if there is more than one group	6–7	Line 100–122
Bias	9	Describe any efforts to address potential sources of bias	5	Line 83–90
Study size	10	Explain how the study size was arrived at	8	Line 141–142, 147–14
Continued on next page				
		1		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.	vhtml	

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

Quantitative	11	Explain how quantitative variables were handled in the analyses. If applicable,		
variables		describe which groupings were chosen and why	6–7	Line 100–122
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7–8	Line 102–103, 124–
		(b) Describe any methods used to examine subgroups and interactions	8	Line 131–133
		(c) Explain how missing data were addressed	6	Line 89–93
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed		
		Case-control study—If applicable, explain how matching of cases and controls was		
		addressed		
		Cross-sectional study—If applicable, describe analytical methods taking account of		NA
		sampling strategy		
		(<u>e</u>) Describe any sensitivity analyses	8	Line 131–133
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	8	Line 141–142, 147–14
-		eligible, examined for eligibility, confirmed eligible, included in the study, completing		
		follow-up, and analysed		
		(b) Give reasons for non-participation at each stage	6	Line 92–93
		(c) Consider use of a flow diagram		NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and		
		information on exposures and potential confounders	9	Table 1
		(b) Indicate number of participants with missing data for each variable of interest		NA
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)		NA
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	10–13	Table 2 and 3
		Case-control study—Report numbers in each exposure category, or summary		NA
		measures of exposure		
		Cross-sectional study—Report numbers of outcome events or summary measures		NA
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	10–13	Table 2 and 3
		their precision (eg, 95% confidence interval). Make clear which confounders were		
		adjusted for and why they were included		
		(b) Report category boundaries when continuous variables were categorized	10–13 (BMI)	Table 2 and 3
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a		
		2		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.x	tml	

⊿0

meaningful time period					
Continued on next page Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	14–15	Table 4	
Discussion					
Key results	18	Summarise key results with reference to study objectives	16	Line 192–201	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both			
		direction and magnitude of any potential bias	18–19	Line 246–271	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses,			
		results from similar studies, and other relevant evidence	20	Line 285–298	
Generalisability	21	Discuss the generalisability (external validity) of the study results	19–20	Line 281–284	
Other information	on				
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the			
		original study on which the present article is based	22	Line 324–326	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

BMJ Open

Weight cycling and the subsequent onset of type 2 diabetes mellitus: ten-year cohort studies in urban and rural Japan

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-014684.R2
Article Type:	Research
Date Submitted by the Author:	24-Feb-2017
Complete List of Authors:	Yokomichi, Hiroshi; University of Yamanashi, Department of Health Sciences Ohde, Sachiko; St. Luke's International University, Center for Clinical Epidemiology Takahashi, Osamu; St. Luke's International University, Center for Clinical Epidemiology Mochizuki, Mie; University of Yamanashi, Department of Pediatrics Takahashi, Atsunori; University of Yamanashi, Department of Health Sciences Yoda, Yoshioki; Yamanashi Koseiren Health Care Center Tsuji, Masahiro; Yamanashi Koseiren Health Care Center Akiyama, Yuka; University of Yamanashi, Department of Health Sciences Yamagata, Zentaro; The University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Diabetes and endocrinology, Health services research, Nutrition and metabolism, Sports and exercise medicine
Keywords:	body weight changes, type 2 diabetes, body mass index, Asian, sarcopenia

SCHOLARONE[™] Manuscripts

BMJ Open

1	
2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$	
23	
24	
25	
26	
20	
21	
20	
29	
30	
31	
32	
33	
34	
35	
34 35 36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
49 50	
51	
52	
53	
54	
55	
56 57 58	
57	
58	
59	
60	

Yokomichi H et al.

1	Weight cycling and the subsequent onset of type 2 diabetes mellitus:
2	ten-year cohort studies in urban and rural Japan
3	Hiroshi Yokomichi ^{1*} , Sachiko Ohde ² , Osamu Takahashi ² , Mie Mochizuki ³ , Atsunori
4	Takahashi ¹ , Yoshioki Yoda ⁴ , Masahiro Tsuji ⁴ , Yuka Akiyama ¹ and Zentaro Yamagata ¹
5	
6	¹ Department of Health Sciences, University of Yamanashi, Yamanashi, Japan
7	² Center for Clinical Epidemiology, St. Luke's International University, Tokyo, Japan
8	³ Department of Pediatrics, University of Yamanashi, Yamanashi, Japan
9	⁴ Yamanashi Koseiren Health Care Center, Yamanashi, Japan
10	
11	*Corresponding author:
12	Hiroshi Yokomichi
13	1110 Shimokato, Chuo City, Yamanashi, 4093898, Japan
14	E-mail: hyokomichi@yamanashi.ac.jp
15	Tel: +81-(0)80-5524-7303
16	
17	Keywords: body weight changes; type 2 diabetes; body mass index; Asian; sarcopenia
18	
19	Word count: 3,508
20	
21	

Yokomichi H et al.

22 ABSTRACT

 Objective: To investigate how weight cycling impacts on the risk of diabetes.

Design: Cohort studies.

25 Setting: Primary healthcare in urban and rural Japan.

Participants: 20,708 urban and 9,670 rural residents.

Primary outcome measures: Odds ratios (ORs) for diabetes in weight loss, loss-gain, stable,
gain-loss and weight gain for 10 years. Weight gain and loss were defined as a greater than
±4% change from baseline weight.

Results: In the urban region, the ORs relative to the stable group for the loss-gain and

31 gain-loss groups were 0.63 (95% CI: 0.45–0.89) and 0.51 (95% CI: 0.32–0.82) for men and

32 0.72 (95% CI: 0.39–1.34) and 1.05 (95% CI: 0.57–1.95) for women, respectively. In the rural

33 region, they were 1.58 (95% CI: 0.78–3.17) and 0.44 (95% CI: 0.15–1.29) in men and 0.41

34 (95% CI: 0.12–1.44) and 0.77 (95% CI: 0.28–2.14) in women, respectively. The ORs for an

35 increase in weight between 5–10 kg from the age of 20 years were 1.54 (95% CI: 1.03–2.30)

36 in men and 0.96 (95% CI: 0.55–1.65) in women.

37 Conclusions: In Japan, weight cycling has been associated with a significant reduction in the 38 risk of diabetes for men from an urban region. However, the associations were unclear for 39 women from the urban region and for men and women from the rural region. These results 40 differ from those in Western studies, likely due to differences in diet, insulin secretion and 41 sensitivity and weight-consciousness.

 $\mathbf{2}$

2 3 4	43	Word count: 242 words (limit: 300 words)	
4 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 6 7 8 9 0 21 22 32 4 5 26 7 8 9 30 132 33 4 5 6 7 8 9 30 11 22 23 4 5 6 7 8 9 30 11 22 23 4 5 6 7 8 9 30 132 33 4 5 6 7 8 9 30 14 2 7 8 9 30 12 23 4 5 6 7 8 9 30 132 33 4 5 6 7 8 9 30 14 2 7 8 9 30 132 33 4 5 6 7 8 9 30 14 2 7 8 9 30 132 33 4 5 6 7 7 8 9 30 14 2 7 8 9 30 132 33 4 5 6 7 7 8 9 30 14 2 3 3 4 5 6 7 7 8 9 30 12 23 4 5 6 7 7 8 9 30 132 33 4 5 6 7 7 8 9 30 14 23 34 5 6 7 7 8 9 30 14 23 34 5 6 7 7 8 9 30 14 23 34 5 6 7 7 8 9 30 14 23 34 5 6 7 7 8 9 9 0 11 22 33 4 5 6 7 7 8 9 30 12 23 5 6 7 7 8 9 9 0 12 23 5 6 7 7 8 9 9 0 12 23 5 6 7 7 8 9 9 0 12 23 5 6 7 7 8 9 9 0 12 23 5 6 7 7 8 9 9 0 12 23 5 6 7 7 8 9 9 0 12 23 5 6 7 7 8 9 9 0 1 2 5 5 6 7 7 8 9 9 0 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Yokomichi H et al.

Strengths and limitations of this study

- Of men in urban Japan, weight cyclers have a lower risk of diabetes than those who
 - maintain a constant body weight.
- In urban and rural Japan, sustained weight gain increases the risk of diabetes.
- There is a dose–response relationship for both sexes between weight gain since the age
- of 20 years and the risk of diabetes.
- Odds ratios may change according to the threshold of $\pm 4\%$ weight change in 10 years.
- sulin sec. The levels of insulin secretion and sensitivity were not measured.

BMJ Open

Yokomichi H et al.

53 INTRODUCTION

Weight gain is a well-known risk factor for incidental type 2 diabetes. Research involving people of Western. Oriental and African descent has quantitatively established the risks of developing diabetes in relation to weight gain.¹⁻³ Researchers have also raised the question of whether repeatedly gaining and losing weight (weight cycling) is an independent risk factor for developing diabetes due to gaining weight. Studies on this topic are inconsistent in Westerners of Europe and the United States; several prospective studies point to weight cycling as a risk factor for type 2 diabetes while others do not. ⁴⁻⁸ In contrast, the risk of diabetes in Asian weight cyclers has not been researched.

Due to the preconception linking being slim to an aesthetic standard,⁹¹⁰ many Asian women make an effort to lose weight.^{11 12} Another group likely to try to reduce weight is middle-aged Asian businesspeople who have gained weight but have few opportunities for physical activity. Recent studies have demonstrated that East Asians are much more likely than Westerners to develop type 2 diabetes at a lower body mass index (BMI).¹³ As a result, it may take only a small change in weight to alter the risk of diabetes for East Asians. In addition, the literature indicates that in Japan, diet, physical activity, prevalence of overweight individuals and aesthetic consciousness of metropolitan residents are different from those of rural residents.^{14 15} The aim of this study was to establish whether weight cyclers residing in Japan were at an increased risk of diabetes. We used Japanese urban and rural data to examine this clinical question in populations with varying lifestyles.

74 METHODS

75 Study participants and measurements

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Yokomichi H et al.

 In these cohort studies, we enrolled participants from an urban area, Tokyo Metropolis and a rural area, Yamanashi Prefecture. In Tokyo, we enrolled employees of private companies who underwent medical check-ups between January 2005 and December 2014 at St. Luke's International Hospital. These annual medical check-ups were based on a legal obligation imposed by the Industrial Safety and Health Act in Japan.¹⁶ In the Yamanashi Prefecture, we enrolled employees and residents who paid for a private comprehensive medical check-up service between April 1999 and March 2009 at the Yamanashi Koseiren Health Care Center. A subset of participants in Yamanashi used a subsidy from their employers or administrative agencies to receive the private medical check-up. Thus, the participants in the urban area received almost annual medical check-ups over 10 years, and those in the rural area received occasional voluntary check-ups. Participants were included in the analysis if they had no diagnosis of diabetes and an HbA1c less than 6.5% (48 mmol/mol) during a baseline period for the first three years of the 10-year period. If they received medical check-ups two or three times during the first three years, the data from the first visit were adopted for the baseline. Those included were also required to undergo a medical check-up at least twice during the latter seven years of the study. Hence, participants received three to eight medical check-ups to categorise weight change patterns (exposure). The onset of diabetes was identified through questionnaires for the diagnosis of diabetes, the commencement of diabetic therapies or glycated haemoglobin (HbA1c) $\geq 6.5\%$ (48 mmol/mol).¹⁷¹⁸ At the institution in Tokyo, trained nurses interviewed the participants from the age of 20 years to establish their changes in weight. BMI was calculated as the participant's weight in kilograms divided by the square of their height in metres.

99 Weight change categories

BMJ Open

Yokomichi H et al.

The participants were categorised into five groups according to their patterns of weight change during the 3-10 years since the baseline period (figure 1). The stable group was comprised of the participants whose weight had not changed from the baseline by more than $\pm 4\%$. The sustained gain group consisted of the participants who gained more than 4% of their baseline weight and did not subsequently lose this extra weight. Similarly, the sustained loss group was comprised of participants who lost more than 4% of their baseline weight and did not subsequently regain this weight. The gain-loss group included participants who gained more than 4% of their baseline weight but brought their weight back below +4%. The loss-gain group included participants who lost more than 4% of their baseline weight but brought their weight back above -4%. From the last time point of this categorisation, the outcome of incident diabetes was measured. Therefore, the duration of observing whether the participants developed diabetes was between one and six years among the categories. The incidence of diabetes was measured after the participants were categorised, and any data measured after a diagnosis of diabetes were ignored to conserve the temporality of exposure to outcome for an epidemiological causation.¹⁹ The $\pm 4\%$ change in weight used for this categorisation was determined as approximately a

The $\pm 4\%$ change in weight used for this categorisation was determined as approximately a one-unit change for a person with a BMI of 22 kg/m². This was based on the 2014 reference mean BMIs for Japanese men and women of 23.6 kg/m² and 21.7 kg/m², respectively.²⁰ We also took into consideration the relatively short time period of ten years for the observation. The gain-loss and loss-gain group of participants were the weight cyclers of interest.

121 Statistical analysis

122 The baseline characteristics recorded for the participants included age, weight, height, BMI,

123 HbA1c and fasting plasma glucose. We used univariate and multivariable logistic regressions

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Yokomichi H et al.

124	to compare the risk of diabetes between the categorised groups. In the urban data of Tokyo
125	Metropolis, the covariates used for the adjustment at baseline were age, weight change from
126	20 years of age, BMI, smoking habits, alcohol consumption and physical activity. In the rural
127	data of the Yamanashi Prefecture, the available covariates for the adjustment at baseline were
128	age, BMI, smoking habit and alcohol consumption. The analyses were stratified by sex. In
129	addition, another focus of this study was the impact of weight cycling on incidental diabetes
130	in middle-aged individuals. Hence, for a sensitivity analysis, we restricted the analyses to a
131	middle-aged population of 45 to 64 years. All statistical analyses were performed using SAS
132	statistical software (version 9.3, SAS Institute, NC, USA). The descriptive statistics are
133	reported as the means and standard deviations (SD). All reported p values were two-sided; P
134	values of <0.05 were considered to be statistically significant.
135	
136	RESULTS
137	Participants
138	For the multivariable analyses of primary interest, 10,094 men and 10,614 women were
139	enrolled from Tokyo Metropolis (Table 1). The means (SDs) of the baseline characteristics
140	for the men in the urban region were as follows: age 49.6 (11.9) years, weight 68.8 (9.7) kg,
1/1	BMI 23.7 (2.8) kg/m^2 and HbA1c 5.4% (0.3%) (35.3 [3.7] mmol/mol). For the women in the

- 141 BMI 23.7 (2.8) kg/m² and HbA1c 5.4% (0.3%) (35.3 [3.7] mmol/mol). For the women in the
- 142 urban region, these values were as follows: age 48.3 (11.3) years, weight 52.3 (7.4) kg, BMI
- 143 21.0 (2.9) kg/m² and HbA1c 5.3% (0.4%) (35.0 [3.8] mmol/mol).

Table 1 also shows the baseline characteristics of 4,818 men and 4,852 women enrolled

145 from the Yamanashi Prefecture. The baseline characteristics for the men in the rural region

146 were as follows: age 51.2 (10.3) years, weight 65.7 (9.1) kg, BMI 23.2 (2.7) kg/m² and

147 HbA1c 5.3% (0.3%) (34.3 [3.8] mmol/L). For the women in the rural area, the values were as

 Yokomichi H et al.

148 follows: age 52.1 (9.4) years, weight 53.1 (7.5) kg, BMI 22.1 (2.9) kg/m² and HbA1c 5.3%

149 (0.3%) (34.4 [3.5] mmol/L).

150 Table 1. Baseline characteristics of the participants from urban (Tokyo Metropolis) and

151 rural (Yamanashi Prefecture) regions of Japan.

Characteristics, mean (standard deviation)	Men	Women
Urban region		
No.	10,094	10,614
Age, years	49.6 (11.9)	48.3 (11.3)
Weight, kg	68.8 (9.7)	52.3 (7.4)
Height, cm	170.4 (6.1)	157.7 (5.6)
Body mass index, kg/m ²	23.7 (2.8)	21.0 (2.9)
HbA1c, %	5.4 (0.3)	5.3 (0.4)
(HbA1c, mmol/mol)	35.3 (3.7)	35.0 (3.8)
Fasting plasma glucose, mg/dL	100.8 (8.6)	94.5 (8.0)
(Fasting plasma glucose, mmol/L)	5.6 (0.5)	5.2 (0.4)
Rural region		
No.	4,818	4,852
Age, years	51.2 (10.3)	52.1 (9.4)
Weight, kg	65.7 (9.1)	53.1 (7.5)
Height, cm	168.1 (6.2)	154.8 (5.6)
Body mass index, kg/m ²	23.2 (2.7)	22.1 (2.9)
HbA1c, %	5.3 (0.3)	5.3 (0.3)
(HbA1c, mmol/mol)	34.3 (3.8)	34.4 (3.5)
Fasting plasma glucose, mg/dL	96.3 (9.0)	93.2 (8.5)
(Fasting plasma glucose, mmol/L)	5.3 (0.5)	5.2 (0.5)

153 Risk of diabetes in urban and rural Japan

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Yokomichi H et al.

154	Tables 2 and 3 present the incidence of diabetes and the odds ratios (ORs) for each
155	explanatory variable in the urban and rural regions, respectively. For men in the urban region,
156	means (SDs) of follow-up duration and numbers of measurements were 7.4 (1.9) years and
157	5.4 (1.6) in the sustained gain group, 8.2 (1.2) years and 5.7 (1.4) in the gain-loss group, 7.9
158	(1.7) years and 4.9 (1.7) in the stable group, 8.2 (1.2) years and 5.8 (1.4) in the loss-gain
159	group and 7.7 (1.9) years and 5.8 (1.6) in the sustained loss group, respectively. The
160	corresponding values for women in the urban region were $7.5(1.9)$ years and $5.6(1.6)$ in the
161	sustained gain group, 8.2 (1.1) years and 5.9 (1.4) in the gain-loss group, 7.9 (1.6) years and
162	5.0 (1.7) in the stable group, 8.2 (1.2) years and 5.9 (1.4) in the loss-gain group and 7.9 (1.7)
163	years and 6.0 (1.5) in the sustained loss group, respectively. For men in the rural region,
164	means (SDs) of follow-up duration and numbers of measurement were 7.4 (1.6) years and 5.4
165	(1.6) in the sustained gain group, 7.8 (1.4) years and 6.1 (1.3) in the gain-loss group, 7.1 (1.9)
166	years and 5.2 (1.6) in the stable group, 7.9 (1.4) years and 6.2 (1.2) in the loss-gain group and
167	7.3 (1.7) years and 5.2 (1.6) in the sustained loss group, respectively. The corresponding
168	values for women in the rural region were 7.3 (1.6) years and 5.1 (1.6) in the sustained gain
169	group, 7.9 (1.4) years and 6.0 (1.3) in the gain-loss group, 7.0 (1.8) years and 5.0 (1.6) in the
170	stable group, 7.9 (1.3) years and 6.1 (1.3) in the loss-gain group and 7.4 (1.7) years and 5.4
171	(1.5) in the sustained loss group, respectively. For the men in the urban region, the adjusted
172	ORs (95% confidence intervals [95%CIs]) compared to the stable group were 3.07 (2.15–
173	4.39) in the sustained gain group, 0.51 (0.32–0.82) in the gain-loss group, 0.63 (0.45–0.89) in
174	the loss-gain group and 1.11 (0.77–1.59) in the sustained loss group. For the women in the
175	urban region, the adjusted ORs compared to the stable group were 7.00 (4.11-11.94) in the
176	sustained gain group, 1.05 (0.57–1.95) in the gain-loss group, 0.72 (0.39–1.34) in the
177	loss-gain group and 1.48 (0.80–2.74) in the sustained loss group. For the men in the rural
178	region, the adjusted ORs were 3.15 (1.70–5.83) in the sustained gain group, 0.44 (0.15–1.29)

BMJ Open

Yokomichi H et al.

- 179 in the gain-loss group, 1.58 (0.78–3.17) in the loss-gain group and 0.36 (0.12–1.05) in the
 - 180 sustained loss group. For the women in the rural region, the adjusted ORs were 1.43 (0.59–
 - 181 3.48) in the sustained gain group, 0.77 (0.28–2.14) in the gain-loss group, 0.41 (0.12–1.44) in
 - 182 the loss-gain group and 0.32 (0.09-1.10) in the sustained loss group.

183 Table 2. The incidence and odds ratios (95% CIs) of diabetes related to patterns of

184 weight change over 10 years in residents of urban Japan

Exposure variables		Acquired DM / No. of subjects (incidence, %)	Crude	Multivariate
Men (No. For multivariate analysis =10,094)				
Baseline age	Per 10 years	-	1.44 (1.33–1.55)	1.44 (1.29–1.61)
	< -5	7/1438 (0.5)	2.18 (1.14-4.18)	1.68 (0.75-3.80)
Weight change	-5 to +5	73/10646 (0.7)	Ref	Ref
from 20 years of age, kg	+5 to +10	31/3200 (1.0)	1.98 (1.45–2.72)	1.54 (1.03–2.30)
	>+10	78/2166 (3.6)	3.37 (2.54–4.48)	2.08 (1.40-3.10)
	< 18.5	6/387 (1.6)	1.35 (0.57–3.16)	0.88 (0.29–2.70)
Baseline BMI,	18.5–22	49/4236 (1.2)	Ref	Ref
kg/m ²	22–25	168/7220 (2.3)	2.04 (1.48–2.89)	1.73 (1.14–2.63)
	> 25	190/4699 (4.0)	3.60 (2.62-4.94)	2.52 (1.60-3.95)
	Sustained loss	66/1903 (3.5)	1.39 (1.03–1.87)	1.11 (0.77–1.59)
Weight change	Loss-gain	87/4644 (1.9)	0.74 (0.56–0.97)	0.63 (0.45–0.89)
pattern over 10	Stable	142/5621 (2.5)	Ref	Ref
years	Gain-loss	38/3063 (1.2)	0.49 (0.34–0.70)	0.51 (0.32–0.82)
	Sustained gain	80/1311 (6.1)	2.51 (1.89–3.32)	3.07 (2.15-4.39)
	None	123/6385 (1.9)	Ref	Ref
Smoking	Ex-smoker	150/5940 (2.5)	1.32 (1.04–1.68)	0.97 (0.71–1.31)
_	Current smoker	140/4217 (3.3)	1.75 (1.37–2.23)	1.73 (1.25–2.34)
	None	69/2250 (3.1)	Ref	Ref
Alcohol drinking	Sometimes	48/1667 (2.9)	0.94 (0.65–1.36)	0.96 (0.66–1.40)
	Usually	156/6177 (2.5)	0.82 (0.61–1.09)	0.78 (0.58–1.05)

Yokomichi H et al.

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

ionomieni îi ci al.				
Duration of walking per day	Per 30 min		0.996 (0.92– 1.08)	1.01 (0.92–1.11)
	0-1/week	85/3282 (2.6)	Ref	Ref
	1–2/week	108/4105 (2.6)	1.02 (0.76–1.36)	1.02 (0.76–1.36)
Physical activity	3–5/week	43/1541 (2.8)	1.08 (0.74–1.57)	0.98 (0.67–1.45)
	6–7/week	37/1166 (3.2)	1.23 (0.83–1.82)	1.06 (0.69–1.62)
Women (No. for m	ultivariate an	alysis = 10,614)		
Baseline age	Per 10 years	—	1.66 (1.48–1.87)	1.78 (1.50–2.12)
	<-5	11/439 (2.5)	0.71 (0.33–1.54)	0.48 (0.18-1.25)
Weight change	-5 to +5	61/5243 (1.2)	Ref	Ref
from 20 years of age, kg	+5 to +10	109/4779 (2.3)	1.42 (0.93–2.16)	0.96 (0.55-1.65
	>+10	232/6081 (3.8)	5.41 (3.92–7.47)	2.10 (1.20-3.67)
	< 18.5	20/2916 (0.7)	1.24 (0.74–2.08)	1.47 (0.76–2.86
Baseline BMI,	18.5–22	52/9388 (0.6)	Ref	Ref
kg/m ²	22–25	60/3676 (1.6)	2.98 (2.05-4.33)	2.01 (1.21-3.34)
	> 25	57/1470 (3.9)	7.24 (4.95– 10.59)	2.91 (1.53-5.52
	Sustained loss	24/1661 (1.4)	2.11 (1.25–3.54)	1.48 (0.80–2.74
Weight change	Loss-gain	32/4022 (0.7)	1.15 (0.72–1.86)	0.72 (0.39–1.34
pattern over 10	Stable	36/5212 (1.3)	Ref	Ref
years	Gain-loss	30/4630 (0.6)	0.94 (0.58–1.53)	1.05 (0.57–1.95
	Sustained gain	67/1925 (3.5)	5.19 (3.45–7.80)	7.00 (4.11–11.94
	None	156/14,194 (1.1)	Ref	Ref
Smoking	Ex-smoker	(1.1)	0.86 (0.52– 1.1.43)	0.85 (0.45–1.61)
	Current smoker	16/1467 (1.1)	0.99 (0.59–1.67)	1.20 (0.63–2.32
	None	78/5669 (1.4)	Ref	Ref
Alcohol drinking	Sometimes	20/2035 (1.0)	0.71 (0.43–1.17)	0.91 (0.55–1.52)
	Usually	27/2910 (0.9)	0.67 (0.43-1.04)	0.95 (0.60-1.51)
Duration of walking per day	Per 30 min	—	1.01 (0.93–1.11)	1.01 (0.90–1.13
	0–1/week	37/3894 (1.0)	Ref	Ref
Dhysical activity	1-2/week	42/3760 (1.1)	1.18 (0.76–1.84)	1.11 (0.70–1.75)
Physical activity	3–5/week	27/1874 (1.4)	1.52 (0.93–2.52)	1.14 (0.67–1.94)
	6–7/week	19/1086 (1.7)	1.86 (1.06–3.24)	1.43 (0.79–2.60)

 Yokomichi H et al.

185 DM, diabetes mellitus; CI, confidence interval; Ref, reference group; BMI, body mass index

186 Table 3. The incidence and odds ratios (95% CIs) of diabetes related to patterns of

187 weight change over 10 years in residents of rural Japan

Exposure variables		Acquired DM / No. of subjects (incidence, %)	Crude	Multivariate
Men (No. for	multivariate anal	ysis = 4818)		
Baseline age	Per 10 years	—	1.36 (1.08–1.72)	1.60 (1.24–2.05)
	< 18.5	0/167 (0)	_	_
Baseline	18.5–22	10/1425 (0.7)	Ref	Ref
BMI, kg/m ²	22–25	21/2079 (1.0)	1.44 (0.68–3.08)	1.69 (0.79–3.63)
	> 25	35/1148 (3.1)	4.45 (2.19–9.03)	5.81 (2.82–11.97)
	Sustained loss	4/725 (0.6)	0.43 (0.15-1.25)	0.36 (0.12-1.05)
Weight	Loss-gain	13/681 (1.9)	1.50 (0.75-3.00)	1.58 (0.78–3.17)
change pattern over	Stable	22/1719 (1.3)	Ref	Ref
10 years	Gain-loss	4/916 (0.4)	0.34 (0.12–0.99)	0.44 (0.15–1.29)
	Sustained gain	23/778 (3.0)	2.35 (1.30-4.24)	3.15 (1.70-5.83)
	None	23/1695 (1.4)	Ref	Ref
Smoking	Ex-smoker	8/998 (0.8)	0.59 (0.26–1.32)	0.72 (0.32–1.64)
	Current smoker	35/2126 (1.7)	1.22 (0.72–2.07)	1.50 (0.85-2.62)
D.11	None	11/1071 (1.0)	Ref	Ref
Drinking	Drinker	55/3748 (1.5)	1.44 (0.75–2.75)	1.52 (0.79–2.94)
Women (No. for multivariate analysis = 4852)				
Baseline age	Per 10 years	—	1.43 (0.99–2.06)	1.23 (0.83–1.84)
	< 18.5	0/411 (0)	—	_
Baseline	18.5–22	7/2135 (0.3)	Ref	Ref
BMI, kg/m^2	22–25	14/1563 (0.9)	2.75 (1.11-6.82)	2.69 (1.07-6.75)
	> 25	13/744 (1.8)	5.41 (2.15– 13.60)	5.29 (2.07–13.51)
Weight	Sustained loss	3/863 (0.3)	0.37 (0.11–1.29)	0.32 (0.09–1.10)
change	Loss-gain	3/757 (0.4)	0.42 (0.12–1.47)	0.41 (0.12–1.44)
pattern over	Stable	15/1615 (0.9)	Ref	Ref
10 years	Gain-loss	5/827 (0.6)	0.65 (0.24–1.79)	0.77 (0.28–2.14)

	Yokomichi H et	al.			
		Sustained gain	8/791 (1.0)	1.09 (0.46–2.58)	1.43 (0.59–3.48)
		None	2/646 (0.3)	Ref	Ref
	Smoking	Ex-smoker	29/3822 (0.8)	2.45 (0.58– 10.31)	2.19 (0.52–9.26)
		Current smoker	3/375 (0.8)	2.60 (0.43– 15.60)	3.33 (0.55–20.28)
	Drinking	None	31/3542 (0.9)	Ref	Ref
	Drinking	Drinker	3/1311 (0.2)	0.26 (0.08–0.85)	0.29 (0.09–0.95)
188	DM, diabetes n	nellitus; CI, confid	dence interval; R	ef, reference group	; BMI, body mass inde
189					
190	Table 4 shows	the risk of diabete	es risk due to wei	ght cycling in the n	niddle-aged population
191	The ORs (95%	CIs) for incidenta	al diabetes were).57 (0.32–1.01) in	the gain-loss group an
192	0.74 (0.49–1.11) in the loss-gain	group among me	en living in the urba	an area. The
193	corresponding	ORs (95% CIs) w	ere 0.80 (0.36–1	.77) and 0.76 (0.37-	-1.57), respectively
194	among women	living in the urba	n area. The ORs	were 0.58 (0.19–1.	77) and 1.76 (0.80–3.8
195	respectively an	ong men living ir	n rural area; 0.82	(0.26–2.62) and 0.	54 (0.15–1.94),
196	respectively am	ong the women li	iving in the rural	area.	
197					
Table	e 4. The incidenc	e and odds ratio	s of diabetes rel	ated to patterns of	weight change over
		nts (45–64 years)		Ċ	
Expo	sure variables		Acquired D No. of subje (incidence, ⁶	cts Odds ratio ((95% Adjusted od (95% C
Urba	n middle-aged n	nen (No. for mult	ivariate analysi	s =4,882)	
		Sustained loss	35/981 (3.6	6) 1.04 (0.65–	1.67) 0.97 (0.60-
		Loss-gain	62/2203 (2.	8) 0.79 (0.53–	1.18) 0.74 (0.49-
W 7-'	ht charges with				
•	ht change pattern over 10 years		100/2749 (3	.6) Ref	Ref
•	ht change pattern over 10 years	-	100/2749 (3 26/1098 (2.	,	

Yokomichi H et al.

	Sustained loss	15/994 (1.5)	1.30 (0.62–2.73)	1.13 (0.53–2.41)
	Loss-gain	20/1992 (1.0)	0.87 (0.43–1.77)	0.76 (0.37–1.57)
Weight change pattern over 10 years	Stable	24/2285 (1.1)	Ref	Ref
over to years	Gain-loss	17/1642 (1.0)	0.74 (0.34–1.62)	0.80 (0.36–1.77)
	Sustained gain	40/603 (6.6)	5.62 (3.05–10.37)	6.97 (3.67–13.25
Rural middle-aged me	n (No. for multiva	riate analysis =2,	937)	
	Sustained loss	3/447 (0.7)	0.48 (0.14–1.66)	0.42 (0.12–1.47)
	Loss-gain	11/449 (2.5)	1.78 (0.81–3.91)	1.76 (0.80–3.87)
Weight change pattern over 10 years	Stable	15/1078 (1.4)	Ref	Ref
over to years	Gain-loss	4/546 (0.7)	0.52 (0.17–1.58)	0.58 (0.19–1.77)
	Sustained gain	12/417 (2.9)	2.10 (0.98-4.53)	2.48 (1.12-5.49)
Rural middle-aged wo	men (No. for mult	ivariate analysis =	= 3,347)	
	Sustained loss	1/638 (0.2)	0.16 (0.02–1.25)	0.14 (0.02–1.01)
	Loss-gain	3/579 (0.5)	0.54 (0.15–1.92)	0.54 (0.15–1.94)
Weight change pattern over 10 years	Stable	11/1140 (1.0)	Ref	Ref
over to years	Gain-loss	4/558 (0.7)	0.74 (0.24–2.34)	0.82 (0.26-2.62)
	Sustained gain	5/432 (1.2)	1.20 (0.42–3.48)	1.30 (0.44–3.84)
Multivariable logistic re	gression calculated	l odds ratios with a	in adjustment for basel	ine age and BMI, we
change from 20 years of	fage, smoking and	drinking habits, du	uration of walking per o	day and physical act
per week in the urban da	ata. The baseline ag	ge and BMI and sm	oking and drinking ha	bits in the rural data

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Yokomichi H et al.

DISCUSSION

The data for the Japanese urban region suggest that the risk of diabetes in male weight cyclers was significantly lower than that of those who maintained a stable weight (table 2). The diabetes risk for female weight cyclers in the urban region was non-significantly lower than or similar to the risk for those maintaining a stable weight. The data for Japanese men and women residing in the rural region also suggest no risk and a non-significantly lower risk, respectively, of diabetes with weight cycling compared with maintaining a stable weight (table 3). These results are reinforced by a sensitivity analysis with a restriction on middle-aged individuals, yielding almost same ORs without statistical significance (table 4) as those of the entire population. These observations are not consistent with those from previous studies of Western populations, which showed that weight cycling significantly or non-significantly increased the risk of diabetes for point estimates. In the Framingham Heart Study, approximately 1 kg/m² of weight cycling in middle-aged Americans carried a hazard ratio of 1.1 (95%CI: 0.8–1.5) for the risk of diabetes after adjusting for sex and BMI at 25 years of age.⁴ In the American middle-aged women of the National Health and Nutrition Examination Survey, weight cycling of 4.5-9.1 kg and 9.1-22.2 kg with an intentional weight loss three or more times in four years carried ORs for the risk of

diabetes of 1.11 (95%CI: 0.89–1.37) and 1.39 (95%CI: 0.90–2.13), respectively.⁵ A study from a cohort of medical students at the Johns Hopkins University School of Medicine reported that the highest quartile of BMI variability for ages between 25 and 45 years had an OR of 2.1 (95%CI: 1.0–4.6) for the risk of diabetes after 50 years,

226 compared with the other three lower quartiles.²¹ In a large German cohort, weight

BMJ Open

Yokomichi H et al.

cycling of \geq 1.5 kg/year was significantly associated with an adjusted hazard ratio of 1.34.⁶

229	The disparity between the results of this study and the Western studies may be due to
230	ethnic differences in diet, ²² the capacity to gain weight ²³ and self-consciousness about
231	body weight. ²⁴ Further research is required to explore why the relationship between
232	weight cycling and risk of diabetes is inversed between Western and East Asian
233	populations. The reason may be attributable to different motivations to lose weight in
234	the context of different diet cultures and body self-consciousness. ²⁵ The East Asians
235	who try to lose weight may be particularly those who are relatively concerned about the
236	poor health outcomes of being overweight. Westerners described in the study cohorts
237	who tried to lose weight may, in an extreme expression, have been those who lost and
238	regained a great deal of weight and potentially ran the risk of poor health outcomes.
239	From the data from the urban region, a weight increase of more than +5 kg above the
240	participant's weight at the age of 20 years increased the risk of developing diabetes with
241	a dose-response relationship in both men and women (table 2). Furthermore, in both
242	sexes, an increase in weight of more than +10 kg above that when aged 20 years more
243	than doubles the risk of diabetes, with statistical significance, compared to the risk for
244	those who maintained their weight within ± 5 kg of their weight when aged 20 years.
245	These results agree with the study involving a US cohort, which reported a relative risk

relationship of weight change from that aged 20 years to the risk of diabetes occurred in

the Japanese women residing in the urban region, with ORs of 0.48 (95%CI: 0.18–1.25)

of 3.2 (95%CI: 1.4-7.4) for the highest quartile of an increase in BMI from 25 to 45

years of age in comparison with the other three lower quartiles.²¹ A dose–response

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Yokomichi H et al.

250	for a change less than 5 kg, 0.96 (95%CI: 0.55–1.65) for an increase of between 5 and
251	10 kg and 2.10 (95%CI: 1.20–3.67) for an increase greater than 10 kg (table 2). In
252	contrast, the Japanese men who had lost 5 kg or more of body weight between the age
253	of 20 years and early middle age had an OR of 1.68 (95%CI: 0.75–3.80). This
254	paradoxically increased OR was most likely due to the small number of participants
255	(seven) who developed diabetes among a weight loss group of 1438 people.

This study had several limitations. The first of these was the threshold of $\pm 4\%$ weight change in 10 years. This threshold referred to a study from United Kingdom on the association between weight change and the risk of diabetes.²⁶ The threshold of a $\pm 4\%$ weight change was calculated as approximately 1 BMI unit in Japanese people with a mean BMI of 23 kg/m². However, the threshold for categorisation of weight cycling should vary according to mean BMIs in different ethnicities, in which people have different insulin sensitivities.^{13 27} Second, we did not evaluate insulin sensitivity. Measuring fasting plasma glucose and insulin concentration to calculate HOMA-IR.²⁸ an index of insulin resistance, would have allowed us to assess the association between weight cycling and the physiological hazard of diabetes. Third, the weight changes recorded in the rural region may be misclassified due to missing data for the years when participants did not undergo the health examination. However, such misclassification would bias the ORs to the null hypothesis, and we believe that such a bias would not change the conclusions for the rural region. Fourth, we could not examine whether the weight cycling was intentional; however, we consider that a subset of unintentional weight loss could be attributed to metabolic diseases, and patients with such diseases could not usually regain the weight within a short duration. Fifth, the follow-up duration

BMJ Open

Yokomichi H et al.

273	and the numbers of weight measurements vary among the groups of weight change
274	patterns. However, because perfect categorisation of changing weight over time would
275	be impossible, we think that this study design could answer the study question. Sixth,
276	the urban data for the weight at 20 years of age were derived from the participants'
277	memory. Thus, recall bias could have existed in the results. Seventh, a subset of the
278	diagnoses in this study were not made by physicians but via an epidemiological
279	criteria. ¹⁷ However, most observational studies by nature rely on epidemiological
280	criteria for detecting diabetes, and the use of a consistent diagnostic criterion can allow
281	researchers to compare the risk of diabetes onset between the reference group and that
282	of interest. Last, this study lacks the information pertaining to lifestyle, including diet,
283	marriage status, job type and owning a car, that may have partly explain the association
284	between weight cycling and incident diabetes.
285	The present study also has several strengths. First, to the best of our knowledge, this
286	is the first study to explore the relationship between weight cycling and the risk of

diabetes in Asians. Since the relationship in this study was almost opposite to that of Americans, further research in East Asians is necessary to confirm this relationship. Next, this study was conducted in two differently characterised populations (urban and rural residents). The ORs of the risk of diabetes were 1.05 (95%CI: 0.57–1.95) in the weight gain-loss pattern of the urban resident women (table 2) and 1.58 (95%CI: 0.78– 3.17) in weight loss-gain pattern of the rural resident men (table 3). However, all other weight cycling patterns for both sexes in the urban and rural regions were negatively correlated with the risk of diabetes with and without statistical significance (tables 2 and 3). Third, the number of participants in both sexes were approximately 10,000 in the

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

BMJ Open

296	urban region and approximately 5,000 in the rural region. Since the present study
297	included a large number of participants from both urban and rural Japan, Japanese and
298	East Asian weight cyclers could refer to its results.
299	This study could contribute to aiding public health practitioners and on-site clinical
300	professionals prevent diabetes in the general population. A sustained weight gain greater
301	than 4% over ten years in middle age (table 4) and more than 5 kg of additional weight
302	gain since the age of 20 years (table 2) both may carry an increased risk of diabetes for
303	both sexes. Since middle-aged people can easily undergo such a small weight gain over
304	the short or long term, non-diabetic people within the normal BMI range should be
305	cautious about the risks resulting from even such a slight weight gain through their
306	lifetime. An interventional study indicated that weight loss $(-1.8 \text{ kg/m}^2 \text{ of BMI} \text{ in a diet})$
307	intervention group and -3.3 kg/m^2 of BMI in a diet-and-exercise intervention group)
308	improved insulin sensitivity in Japanese patients with obesity and type 2 diabetes. ²⁹
309	Improved insulin sensitivity was also observed in Americans who maintained their
310	weight with treadmill-based exercise and no alteration in their diet. ³⁰ In addition, studies
311	have demonstrated that building muscle through exercising without changing weight
312	improves insulin sensitivity. ³¹
313	While not statistically significant, two profiles of weight cycling pattern in the
314	present study resulted in an increased risk of diabetes whereas the risk decreased for the
315	other six profiles (tables 2 and 3). Since better insulin sensitivity directly leads to a
316	decreased risk of diabetes, the results may be due to the differences in how the
317	participants lost or gained weight (i.e. whether they lost or gained fat or muscle mass).
318	Recent studies have indicated that sarcopenia, the loss of skeletal muscle alone or with

BMJ Open

Yokomichi H et al.

increased fat mass in ageing, is a leading cause of death in old age.³² The results of the
present study, in the context of previous studies, suggest that over both the short- and
long-term, people might reduce their risk of diabetes by losing fat and maintaining
muscle mass.

324 CONCLUSIONS

In men in an urban region of Japan, weight cycling was associated with a significant reduction in the risk of diabetes; however, a clear association was not observed in either women of the urban region or in men and women of a rural region. The results were different than those recorded in Western countries and may be attributed to differences in diet, endocrinological capacity to gain weight and weight-consciousness. In addition, the risk of diabetes increases linearly with weight gain from the age of 20 years in Japanese urban men and women. A study that includes the measurement of insulin sensitivity is necessary to confirm the present results and to improve the understanding of the risks for East Asian weight cyclers.

334 (3,508 words; limit of 4,000 words)

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Yokomichi H et al.

Acknowledgments We thank all participants in this study and staff at the St. Luke's International Hospital and the Yamanashi Koseiren Health Care Center for their support, which made this study possible. Competing interests None declared. **Funding** This work was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) (KAKENHI grant number: JP15K08730 and JP15K15221). The funder had no role in study design, analysis, decision to publish or preparation of the manuscript. Contributors ZY, YY, MT and OT: setting up the study and data collection. HY, ZY, MM and AT: designing the study. HY and AT: data analysis. HY: writing and revising the draft. ZY, SO, MM, YA and HY: development of the discussion section. All authors read and approved the final manuscript. Ethics approval The ethics committee of the School of Medicine, University of Yamanashi (approval number: H27-1417). Data sharing statement No additional data are available.

BMJ Open

Yokomichi H et al.

REFERENCES

352	1. Nanri A, Mizoue T, Takahashi Y, et al. Association of weight change in different
353	periods of adulthood with risk of type 2 diabetes in Japanese men and women: the
354	Japan Public Health Center-Based Prospective Study. J Epidemiol Commun H
355	2011; 65 :1104–10.
356	2. Wannamethee SG, Shaper AG. Weight change and duration of overweight and
357	obesity in the incidence of type 2 diabetes. <i>Diabetes Care</i> 1999;22:1266–72.
358	3. Ford ES, Williamson DF, Liu SM. Weight change and diabetes incidence: findings
359	from a national cohort of US adults. <i>Am J Epidemiol</i> 1997; 146 :214–22.
360	4. Waring ME, Eaton CB, Lasater TM, et al. Incident diabetes in relation to weight
361	patterns during middle age. Am J Epidemiol 2010;171:550–6.
362	5. Field AE, Manson JE, Laird N, et al. Weight cycling and the risk of developing type
363	2 diabetes among adult women in the United States. Obes Res 2004;12:267–74.
364	6. Neamat-Allah J, Barrdahl M, Hüsing A, et al. Weight cycling and the risk of type 2
365	diabetes in the EPIC-Germany cohort. <i>Diabetologia</i> 2015; 58 :2718–25.
366	7. French S, Folsom A, Jeffery R, Zheng W, Mink P, Baxter J. Weight variability and
367	incident disease in older women: the Iowa Women's Health Study. Int J Obes Relat
368	<i>Metab Disord</i> 1997; 21 :217–23.
369	8. Morris RD, Rimm AA. Long-term weight fluctuation and non-insulin-dependent
370	diabetes mellitus in white women. Ann Epidemiol 1992;2:657-64.
371	9. Mukai T, Crago M, Shisslak CM. Eating attitudes and weight preoccupation among
372	female high school students in Japan. J Child Psychol Psychiatry 1994;35:677-88.

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Yokomichi H et al.

2
3
4
т 5
2 3 4 5 6 7 8
0
1
8
9
9 10
11
12
13
1/
14
15
16
17
18
10 11 12 13 14 15 16 17 18 19 21 22 32 25 26 27 28 20 31 23 34 35 37 89 04
20
21
22
22
∠3 04
24
25
26
27
28
29
30
31
20
32
33
34
35
36
37
38
39
40
40 41
42
43
44
45
46
47
48
49
49 50
51
52
53
54
55
56
57
58
59
60
60

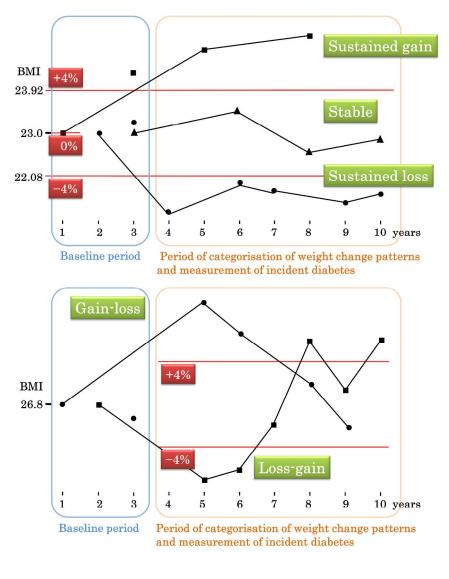
373	10. Swami V, Frederick DA, Aavik T, et al. The attractive female body weight and
374	female body dissatisfaction in 26 countries across 10 world regions: results of the
375	International Body Project I. Personal Soc Psychol Bull 2010;36:309-25.
376	11. Chisuwa N, O'Dea JA. Body image and eating disorders amongst Japanese
377	adolescents. a review of the literature. Appetite 2010;54:5–15.
378	12. Xu X, Mellor D, Kiehne M, et al. Body dissatisfaction, engagement in body change
379	behaviours and sociocultural influences on body image among Chinese adolescents.
380	<i>Body Image</i> 2010; 7 :156–64.
381	13. Kodama K, Tojjar D, Yamada S, et al. Ethnic differences in the relationship
382	between insulin sensitivity and insulin response: a systematic review and
383	meta-analysis. Diabetes Care 2013;36:1789–96.
384	14. Matsushita Y, Yoshiike N, Kaneda F, Yoshita K, Takimoto H. Trends in childhood
385	obesity in Japan over the last 25 years from the national nutrition survey. Obes Res
386	2004; 12 :205–14.
387	15. Yoshiike N, Seino F, Tajima S, et al. Twenty year changes in the prevalence of
388	overweight in Japanese adults: The National Nutrition Survey 1976–95. Obes Rev
389	2002; 3 :183–90.
390	16. Ministry of Health, Labour and Welfare of Japan. Industrial Safety and Health Act
391	(English version). 1972.
392	http://www.japaneselawtranslation.go.jp/law/detail/?printID=&id=1926&re=&vm=
393	02 (accessed 24 February 2017).
394	17. American Diabetes Association. Diagnosis and classification of diabetes mellitus.

BMJ Open

Yokomichi H et al.

396	18. The International Expert Committee. International Expert Committee report on the
397	role of the A1C assay in the diagnosis of diabetes. <i>Diabetes Care</i> 2009; 32 :1327–
398	34.
399	19. Kaufman J, Poole C. Looking back on "causal thinking in the health sciences".
400	<i>Annu Rev Publ Health</i> 2000; 21 :101-19.
401	20. NCD Risk Factor Collaboration. Worldwide trends in diabetes since 1980: a pooled
402	analysis of 751 population-based studies with $4 \cdot 4$ million participants. <i>Lancet</i>
403	2016; 387 :1513–30.
404	21. Brancati FL, Wang N, Mead LA, et al. Body weight patterns from 20 to 49 years of
405	age and subsequent risk for diabetes mellitus: the Johns Hopkins Precursors Study.
406	Arch Int Med 1999; 159 :957–63.
407	22. Slocum R. Race in the study of food. <i>Prog Hum Geogr</i> 2011; 35 :303–27.
408	23. The DECODE–DECODA Study Group. Age, body mass index and type 2
409	diabetes—associations modified by ethnicity. <i>Diabetologia</i> 2003; 46 :1063–70.
410	24. Mintz LB, Kashubeck S. Body image and disordered eating among Asian American
411	and Caucasian college students an examination of race and gender differences.
412	Psychol Women Q 1999; 23 :781–96.
413	25. Frederick DA, Forbes GB, Grigorian KE, et al. The UCLA Body Project I: gender
414	and ethnic differences in self-objectification and body satisfaction among 2,206
415	undergraduates. Sex Roles 2007;57:317–27.
416	26. Wannamethee SG, Shaper AG, Walker M. Overweight and obesity and weight
417	change in middle aged men: impact on cardiovascular disease and diabetes. J
418	<i>Epidemiol Commun H</i> 2005; 59 :134–9.

BMJ Open


Yokomichi H et al.

419	27. Ntuk UE, Gill JMR, Mackay DF, et al. Ethnic-specific obesity cutoffs for diabetes
420	risk: cross-sectional study of 490,288 UK Biobank participants. Diabetes Care
421	2014; 37 :2500–7.
422	28. Matthews D, Hosker J, Rudenski A, et al. Homeostasis model assessment: insulin
423	resistance and β -cell function from fasting plasma glucose and insulin concentrations
424	in man. <i>Diabetologia</i> 1985; 28 :412–9.
425	29. Yamanouchi K, Shinozaki T, Chikada K, et al. Daily walking combined with diet
426	therapy is a useful means for obese NIDDM patients not only to reduce body weight
427	but also to improve insulin sensitivity. <i>Diabetes Care</i> 1995; 18 :775–8.
428	30. Duncan GE, Perri MG, Theriaque DW, et al. Exercise training, without weight loss,
429	increases insulin sensitivity and postheparin plasma lipase activity in previously
430	sedentary adults. <i>Diabetes Care</i> 2003;26:557–62.
431	31. Nassis GP, Papantakou K, Skenderi K, et al. Aerobic exercise training improves
432	insulin sensitivity without changes in body weight, body fat, adiponectin, and
433	inflammatory markers in overweight and obese girls. <i>Metabolism</i> 2005;54:1472–9.
434	32. Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in
435	older adults. Current consensus definition: prevalence, etiology, and consequences.
436	International Working Group on Sarcopenia. J Am Med Dir Assoc 2011;12:249–56.
437	
438	
439	

Yokomichi H et al.

2 3		
4 5		
6	440	Figure 1. Scheme of how participants were categorised into the five
7 8 9	441	weight change patterns
9 10 11	442	
12 13		
14 15		
16 17		
18 19		
20 21		
22 23		
24 25		
26 27		
28 29		
30 31		
32 33		
34 35		
36 37		
38 39		
40 41		
42 43		
44 45		
46 47		
48 49		
50 51		
52 53		
54 55		
56 57		
58 59		
60		

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Categorisation of weight change patterns

Scheme of how participants were categorised into the five weight change patterns figure 1 339x454mm (300 x 300 DPI)

BMJ Open BMJ Open Yokomichi H et al. Yokomichi Et al. Supplementary. Baseline characteristics among groups of weight change patterns over 10 years q

				D	
Men in urban Japan (n = 10,094)	Sustained loss	Loss-gain	Stable	Gain-loss	Sustained gain
Age, years	52.3 (12.2)	51.2 (12.0)	50.3 (11.3)	4¢.0 (11.4)	44.9 (11.3)
Weight, kg	70.8 (10.4)	69.8 (9.5)	68.3 (9.0)	67,3 (9.5)	67.8 (10.8)
Height, cm	170.1 (6.2)	170.3 (6.1)	170.2 (6.0)	179.7 (6.1)	171.2 (6.1)
Body mass index, kg/m2	24.4 (3.0)	24.0 (2.7)	23.5 (2.6)	2 <u>§</u> .1 (2.8)	23.1 (3.2)
HbA1c, %	5.4 (0.4)	5.4 (0.3)	5.4 (0.3)	se 3 (0.3)	5.3 (0.3)
HbA1c, mmol/mol	35.9 (3.9)	35.7 (3.7)	35.3 (3.7)	34.6 (3.7)	34.6 (3.4)
Fasting plasma glucose, mg/dL	102.3 (9.2)	101.5 (8.8)	101.0 (8.5)	9 9 .0 (8.0)	99.8 (8.4)
Fasting plasma glucose, mmol/L	5.7 (0.5)	5.6 (0.5)	5.6 (0.5)	5 (0.4)	5.5 (0.5)
Weight change from 20 years of age, kg	+9.7 (9.1)	+9.0 (8.1)	+8.2 (7.9)	+3.0 (8.4)	+7.0 (20.5)
Current smoking, %	20.0	22.8	23.6	<u>9</u> 31.3	33.7
Usually drinking alcohol, %	61.7	62.3	63.8	57.3	55.2
Duration of walking per day, min	41.0 (38.3)	41.3 (41.7)	43.3 (41.5)	404 (35.2)	38.6 (36.0)
Physical activity of 6–7/week, %	11.2	12.0	11.9	g10.4	11.6
				n April	
Women in urban Japan (n = 10,614)	Sustained loss	Loss-gain	Stable	Gain-loss	Sustained gain
Age, years	52.4 (10.7)	51.1 (11.5)	48.9 (11.3)	45 ^N / ₂ 7 (10.6)	43.5 (9.8)
Weight, kg	53.8 (8.0)	53.4 (7.8)	51.7 (7.0)	5₽ .8 (7.1)	51.6 (7.4)
Height, cm	156.9 (5.7)	157.2 (5.9)	157.8 (5.6)	158.1 (5.5)	158.4 (5.3)
Body mass index, kg/m2	21.8 (3.0)	21.6 (3.0)	20.8 (2.7)	20,7 (2.7)	20.6 (2.8)
HbA1c, %	5.5 (0.4)	5.4 (0.4)	5.4 (0.3)	5 3 (0.3)	5.3 (0.3)
HbA1c, mmol/mol	36.1 (4.1)	35.4 (3.8)	35.0 (3.8)	34.4 (3.6)	34.0 (3.7)
Fasting plasma glucose, mg/dL	96.5 (8.9)	95.7 (8.1)	94.6 (8.0)	99.2 (7.3)	92.8 (7.3)
				copyright.	1

	BMJ Open		ý/bm	
			joper	
			-1-201	
			6-01	
5.4 (0.5)	5.3 (0.4)	5.3 (0.4)	$\frac{1}{5}$ (0.4)	5.2 (1.4)
+4.1 (7.4)	+3.8 (7.3)	+2.4 (7.1)	+2.6 (7.1)	+2.2 (7.5)
6.6	6.7	5.7	une 9.9	11.8
23.7	26.7	27.3		28.3
42.9 (49.4)	41.2 (49.8)	42.3 (40.9)	$41\overline{5}$ (40.5)	43.8 (51.9)
12.1	10.6	11.3	Nownlo	8.8
Sustained loss	Loss-gain	Stable	Gain-loss	Sustained gain
53.5 (10.3)	51.7 (9.8)	52.3 (10.1)	49 2 (10.1)	48.3 (10.5)
67.2 (9.0)	66.2 (8.7)	66.0 (9.1)	_	64.3 (9.9)
167.5 (6.2)	168.0 (6.0)	167.8 (6.2)	T	168.8 (6.5)
23.9 (2.6)	23.4 (2.6)	23.4 (2.7)		22.5 (2.9)
5.3 (0.4)	5.3 (0.4)	5.3 (0.3)	52 (0.3)	5.2 (0.3)
34.7 (3.9)	34.6 (3.9)	34.3 (3.7)	33.9 (3.8)	33.8 (3.5)
97.5 (9.2)	96.4 (9.0)	96.9 (9.1)	9 <mark>5</mark> .1 (8.9)	95.1 (8.5)
5.4 (0.5)	5.4 (0.5)	5.4 (0.5)	5 <u>5</u> 3 (0.5)	5.3 (0.5)
38.5	42.7	37.7	≩49.3	58.5
79.5	77.5	78.4	¹ 75.7	77.5
Constained Land	T	C(-1-1-	2002	
	e			Sustained gain
	. ,	. ,		48.2 (9.9)
	. ,		÷	52.6 (7.8)
	. ,	. ,		155.7 (5.6)
	. ,	, ,	0	21.7 (3.0)
· · · ·	· · · ·			5.2 (0.3)
34.9 (3.7)	34.0 (3.4)	34.0 (3.0)	<u>3</u> ¥.U(3.4) 8	33.6 (3.3)
			ругі	2
	+4.1 (7.4) 6.6 23.7 42.9 (49.4) 12.1 Sustained loss 53.5 (10.3) 67.2 (9.0) 167.5 (6.2) 23.9 (2.6) 5.3 (0.4) 34.7 (3.9) 97.5 (9.2) 5.4 (0.5) 38.5	5.4 (0.5) $5.3 (0.4)$ $+4.1 (7.4)$ $+3.8 (7.3)$ 6.6 6.7 23.7 26.7 $42.9 (49.4)$ $41.2 (49.8)$ 12.1 10.6 Sustained lossLoss-gain $53.5 (10.3)$ $51.7 (9.8)$ $67.2 (9.0)$ $66.2 (8.7)$ $167.5 (6.2)$ $168.0 (6.0)$ $23.9 (2.6)$ $23.4 (2.6)$ $5.3 (0.4)$ $5.3 (0.4)$ $34.7 (3.9)$ $34.6 (3.9)$ $97.5 (9.2)$ $96.4 (9.0)$ $5.4 (0.5)$ $5.4 (0.5)$ 38.5 42.7 79.5 77.5 Sustained lossLoss-gain $54.9 (9.0)$ $52.8 (8.6)$ $54.0 (8.1)$ $53.6 (7.5)$ $154.1 (5.6)$ $154.8 (5.8)$ $22.7 (3.1)$ $22.4 (2.8)$ $5.3 (0.3)$ $5.3 (0.3)$	5.4 (0.5) $5.3 (0.4)$ $5.3 (0.4)$ $+4.1 (7.4)$ $+3.8 (7.3)$ $+2.4 (7.1)$ 6.6 6.7 5.7 23.7 26.7 27.3 $42.9 (49.4)$ $41.2 (49.8)$ $42.3 (40.9)$ 12.1 10.6 11.3 Sustained loss $53.5 (10.3)$ $51.7 (9.8)$ $52.3 (10.1)$ $66.2 (8.7)$ $66.0 (9.1)$ $167.2 (9.0)$ $66.2 (8.7)$ $66.0 (9.1)$ $167.5 (6.2)$ $168.0 (6.0)$ $23.9 (2.6)$ $23.4 (2.6)$ $23.4 (2.6)$ $23.4 (2.7)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.4 (0.5)$ $5.4 (0.5)$ 38.5 42.7 77.5 78.4 Sustained loss $Loss-gain$ $Stable$ $54.9 (9.0)$ $52.8 (8.6)$ $53.1 (9.2)$ $54.0 (8.1)$ $53.6 (7.5)$ $52.9 (6.9)$ $154.1 (5.6)$ $154.8 (5.8)$ $154.6 (5.4)$ $22.7 (3.1)$ $22.4 (2.8)$ $22.1 (2.8)$ $5.3 (0.3)$ $5.3 (0.3)$	5.4 (0.5) $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.2 (0.4)$ $+4.1 (7.4)$ $+3.8 (7.3)$ $+2.4 (7.1)$ $+3.6 (7.1)$ 6.6 6.7 5.7 9.9 23.7 26.7 27.3 $42.9 (49.4)$ $41.2 (49.8)$ $42.3 (40.9)$ $41.5 (40.5)$ 11.3 8.6 Sustained lossLoss-gain $53.5 (10.3)$ $51.7 (9.8)$ $52.3 (10.1)$ $492 (10.1)$ $67.2 (9.0)$ $66.2 (8.7)$ $66.0 (9.1)$ $64.7 (8.6)$ $167.5 (6.2)$ $168.0 (6.0)$ $167.8 (6.2)$ $168.5 (6.2)$ $23.9 (2.6)$ $23.4 (2.6)$ $23.4 (2.6)$ $23.4 (2.7)$ $24.8 (2.5)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.4)$ $5.3 (0.3)$ $34.7 (3.9)$ $34.6 (3.9)$ $34.3 (3.7)$ $32.9 (3.8)$ $97.5 (9.2)$ $96.4 (9.0)$ $96.9 (9.1)$ $92.1 (8.9)$ $5.4 (0.5)$ $5.4 (0.5)$ $5.4 (0.5)$ $5.4 (0.5)$ $54.9 (9.0)$ $52.8 (8.6)$ $53.1 (9.2)$ $52.7 (7.5)$ 77.5 78.4 75.7 $54.9 (9.0)$ $52.8 (8.6)$ $53.1 (9.2)$ $52.8 (2.9)$ $53.0 (3.3)$ $53.0 (3.3)$ $53.0 (3.3)$ $53.0 (3.3)$ $53.0 (3.3)$ $53.0 (3.3)$

		BMJ Open		i6/bmjop	
Yokomichi H et al.				ben-2016-01	
Fasting plasma glucose, mg/dL Fasting plasma glucose, mmol/L Current smoker, % Current drinker, % The data are presented as the mean (SD	94.1 (9.1) 5.2 (0.5) 5.5 24.2	93.0 (8.3) 5.2 (0.5) 8.1 27.2	93.7 (8.8) 5.2 (0.5) 6.6 26.5	16-01460 (8.0) 9 9 2 (0.4) 9 8.5 June 27.1 Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by gues	91.9 (7.9) 5.1 (0.4) 11.5 30.9
				Protected by copyright.	3
	Fasting plasma glucose, mg/dL Fasting plasma glucose, mmol/L Current smoker, % Current drinker, % The data are presented as the mean (SD	Fasting plasma glucose, mg/dL 94.1 (9.1) Fasting plasma glucose, mmol/L 5.2 (0.5) Current smoker, % 5.5 Current drinker, % 24.2 The data are presented as the mean (SD) or %	Yokomichi H et al. <u>Fasting plasma glucose, mg/dL</u> 94.1 (9.1) 93.0 (8.3) <u>Stating plasma glucose, mmol/L</u> 5.2 (0.5) 5.2 (0.5) <u>Current smoker, %</u> 5.5 8.1 <u>Current drinker, %</u> 24.2 27.2 The data are presented as the mean (SD) or %.	Yokomichi H et al. Fasting plasma glucose, mmol/L 5.2 (0.5) 5.2 (0.5) 5.2 (0.5) Current smoker, % 24.2 27.2 26.5 The data are presented as the mean (SD) or %.	Yokomichi H et al. Fasting plasma glucose, mg/dL 94.1 (9.1) 93.0 (8.3) 93.7 (8.8) 9960 (8.0) Fasting plasma glucose, mmol/L 5.2 (0.5) 5.2 (0.5) 5.2 (0.4) Current smoker, % 24.2 27.2 26.5 The data are presented as the mean (SD) or %. 900 or %. 900 or %.

BMJ Open

STROBE Statement-checklist of items that should be included in reports of observational studies

⊿0

	Item No.	Recommendation	Page No.	Relevant text from manuscript
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1	Line 1–2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was		
		found	2	Line 23–41
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5	Line 54–70
Objectives	3	State specific objectives, including any prespecified hypotheses	5	Line 70–71
Methods				
Study design	4	Present key elements of study design early in the paper	6	Line 76–77
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure,		
		follow-up, and data collection	6	Line 77–92
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of		
		participants. Describe methods of follow-up		
		Case-control study—Give the eligibility criteria, and the sources and methods of case		
		ascertainment and control selection. Give the rationale for the choice of cases and controls		
		Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of		
		participants	6	Line 86–91
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and		
		unexposed		
		Case-control study—For matched studies, give matching criteria and the number of controls per		
		case		NA
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers.		
		Give diagnostic criteria, if applicable	6	Line 92–94
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment		
measurement		(measurement). Describe comparability of assessment methods if there is more than one group	6–7	Line 99–119
Bias	9	Describe any efforts to address potential sources of bias	5	Line 79–86
Study size	10	Explain how the study size was arrived at	8	Line 138–139, 144–14
Continued on next page				
		1		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.		

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

methods Results	12	describe which groupings were chosen and why (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy (e) Describe any sensitivity analyses	7 7-8 8 6 	Line 115–119 Line 122–131 Line 128–131 Line 88–89 NA Line 128–131 Line 128–131
methods Results		 (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy (e) Describe any sensitivity analyses 	8 6 8	Line 128–131 Line 88–89 NA Line 128–131
Results	13*	 (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy (e) Describe any sensitivity analyses (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing 	6	Line 88–89 NA Line 128–131
	13*	 (d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy (e) Describe any sensitivity analyses (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing 	8	NA Line 128–131
	13*	Case-control study—If applicable, explain how matching of cases and controls was addressed Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy (e) Describe any sensitivity analyses (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing		Line 128–131
	13*	addressed Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy (e) Describe any sensitivity analyses (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing		Line 128–131
	13*	Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy (e) Describe any sensitivity analyses (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing		Line 128–131
	13*	sampling strategy (e) Describe any sensitivity analyses (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing		Line 128–131
	13*	(e) Describe any sensitivity analyses (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing		
	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing		
	13*	eligible, examined for eligibility, confirmed eligible, included in the study, completing	8	Line 138–139, 144–1
Participants 1	13*	eligible, examined for eligibility, confirmed eligible, included in the study, completing	8	Line 138–139, 144–1
		follow-up, and analysed		
		(b) Give reasons for non-participation at each stage	6	Line 90–91
		(c) Consider use of a flow diagram		NA
Descriptive data 1	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and		
		information on exposures and potential confounders	9	Table 1
		(b) Indicate number of participants with missing data for each variable of interest		NA
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	10	Line 155–171
Outcome data 1	15*	Cohort study—Report numbers of outcome events or summary measures over time	11–14	Tables 2 and 3
		Case-control study—Report numbers in each exposure category, or summary		NA
		measures of exposure		
		Cross-sectional study—Report numbers of outcome events or summary measures		NA
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	11-14	Tables 2 and 3
		their precision (eg, 95% confidence interval). Make clear which confounders were		
		adjusted for and why they were included		
		(b) Report category boundaries when continuous variables were categorized	11–15 (BMI)	Tables 2–4
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a		
		meaningful time period		NA
		2		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.x	vhtml	

Continued on next page Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	14–15	Table 4
Discussion				
Key results	18	Summarise key results with reference to study objectives	16	Line 205–213
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both		
		direction and magnitude of any potential bias	18–19	Line 256–284
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses,		
		results from similar studies, and other relevant evidence	20–21	Line 313–322
Generalisability	21	Discuss the generalisability (external validity) of the study results	20	Line 299–312
Other information	on			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the		
		original study on which the present article is based	22	Line 339–342

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

BMJ Open

Weight cycling and the subsequent onset of type 2 diabetes mellitus: 10-year cohort studies in urban and rural Japan

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-014684.R3
Article Type:	Research
Date Submitted by the Author:	15-Mar-2017
Complete List of Authors:	Yokomichi, Hiroshi; University of Yamanashi, Department of Health Sciences Ohde, Sachiko; St. Luke's International University, Center for Clinical Epidemiology Takahashi, Osamu; St. Luke's International University, Center for Clinical Epidemiology Mochizuki, Mie; University of Yamanashi, Department of Pediatrics Takahashi, Atsunori; University of Yamanashi, Department of Health Sciences Yoda, Yoshioki; Yamanashi Koseiren Health Care Center Tsuji, Masahiro; Yamanashi Koseiren Health Care Center Akiyama, Yuka; University of Yamanashi, Department of Health Sciences Yamagata, Zentaro; The University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Diabetes and endocrinology, Health services research, Nutrition and metabolism, Sports and exercise medicine
Keywords:	body weight changes, type 2 diabetes, body mass index, Asian, sarcopenia

SCHOLARONE[™] Manuscripts

BMJ Open

2
2
3
3 4 5 6 7 8
5
6
7
1
8
9
10
11
10
12
13
14
15
16
10
17
18
19
20
20
21
10 11 12 13 14 15 16 17 18 20 21 22 23 25 26 27 28 20 31 23 34 35 37 80 37 80
23
24
24
25
26
27
28
20
29
30
31
32
22
33
34
35
36
27
31
38 39 40
39
40
41
42
43
44
45
46
47
48
49
5 0
51
52
53
54
55
56
57
58
50
59
60

Yokomichi H et al.

1	Weight cycling and the subsequent onset of type 2 diabetes mellitus:
2	10-year cohort studies in urban and rural Japan
3	Hiroshi Yokomichi ^{1*} , Sachiko Ohde ² , Osamu Takahashi ² , Mie Mochizuki ³ , Atsunori
4	Takahashi ¹ , Yoshioki Yoda ⁴ , Masahiro Tsuji ⁴ , Yuka Akiyama ¹ and Zentaro Yamagata ¹
5	
6	¹ Department of Health Sciences, University of Yamanashi, Yamanashi, Japan
7	² Center for Clinical Epidemiology, St. Luke's International University, Tokyo, Japan
8	³ Department of Pediatrics, University of Yamanashi, Yamanashi, Japan
9	⁴ Yamanashi Koseiren Health Care Center, Yamanashi, Japan
10	
11	*Corresponding author:
12	Hiroshi Yokomichi
13	1110 Shimokato, Chuo City, Yamanashi 4093898, Japan
14	E-mail: hyokomichi@yamanashi.ac.jp
15	Tel: +81-(0)80-5524-7303
16	
17	Keywords: body weight changes; type 2 diabetes; body mass index; Asian; sarcopenia
18	
19	Word count: 2,718
20	
21	

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Yokomichi H et al.

22 ABSTRACT

Objective: To investigate how weight cycling (gaining and losing weight) affects the risk of
 diabetes.

Design: Cohort studies.

26 Setting: Primary healthcare in urban and rural Japan.

Participants: 20,708 urban and 9,670 rural residents.

28 Primary outcome measures: Odds ratios (ORs) for diabetes in those with weight loss,

29 weight loss-gain, stable weight, weight gain-loss and weight gain over 10 years. Weight gain

30 and loss were defined as a change of more than $\pm 4\%$ from baseline weight.

Results: In the urban region, the ORs relative to the stable group for the loss-gain and

32 gain-loss groups were 0.63 (95% CI: 0.45–0.89) and 0.51 (95% CI: 0.32–0.82) for men and

33 0.72 (95% CI: 0.39–1.34) and 1.05 (95% CI: 0.57–1.95) for women. In the rural region, they

were 1.58 (95% CI: 0.78–3.17) and 0.44 (95% CI: 0.15–1.29) in men and 0.41 (95% CI:

35 0.12–1.44) and 0.77 (95% CI: 0.28–2.14) in women. The ORs for an increase in weight

between 5 and 10 kg from the age of 20 years were 1.54 (95% CI: 1.03–2.30) in men and

37 0.96 (95% CI: 0.55–1.65) in women.

38 Conclusions: In Japan, weight cycling was associated with a significant reduction in the risk 39 of diabetes for men from urban regions. The associations were unclear for women from urban 40 regions and both men and women from rural regions. These results differ from those in 41 Western studies, probably because of differences in diet, insulin secretion and sensitivity and 42 weight-consciousness.

 $\mathbf{2}$

1		Yokomichi H et al.
2 3	43	
4 5		
6	44	Word count: 245 words (limit: 300 words)
7 8		
9 10		
11		
12 13		
14 15		
16		
17 18		
19 20		
21		
22 23		
24 25		
26 27		
28		
29 30		
31 32		
33 34		
35		
36 37		
38 39		
40 41		
42 43		
44		
45 46		
47 48		
49 50		
51		
52 53		
54 55		
56 57		
58		
59 60		
		For neer review only - http://bmionen.hmi.com/site/about/quidelines.yhtml

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Yokomichi H et al.

Strengths and limitations of this study

- Participants were invited from both urban and rural Japan.
- Several weight change patterns, including weight gain after loss and loss after gain, were

measured.

- Odds ratios may change with weight changes of more than $\pm 4\%$ in 10 years.
- The levels of insulin secretion and sensitivity were not measured.
- Whether participants' weight loss was intentional was undetermined.

BMJ Open

Yokomichi H et al.

53 INTRODUCTION

Weight gain is a well-known risk factor for incidental type 2 diabetes. Research involving people of Western. Oriental and African descent has quantitatively established the risks of developing diabetes linked to weight gain.¹⁻³ Researchers have also raised the question of whether repeatedly gaining and losing weight (weight cycling) is an independent risk factor for developing diabetes. Studies on this topic have reported inconsistent results in Westerners in Europe and North America. Several prospective studies suggest that weight cycling is a risk factor for type 2 diabetes, but others do not.⁴⁻⁸ To our knowledge, the risk of diabetes in Asian weight cyclers has not been researched.

There is a preconception linking being slim to an aesthetic standard,⁹¹⁰ and many Asian women therefore try to lose weight.^{11 12} Another group likely to try to reduce their weight is middle-aged Asian businesspeople with few opportunities for physical activity. Recent studies have demonstrated that East Asians are much more likely than Westerners to develop type 2 diabetes at a lower body mass index (BMI).¹³ It may therefore take only a small change in weight to alter the risk of diabetes for this group. The literature indicates that in Japan, diet, physical activity, prevalence of overweight individuals and aesthetic consciousness are different among urban and rural residents.^{14 15} The aim of this study was to establish whether weight cyclers in Japan were at an increased risk of diabetes. We used Japanese urban and rural data to examine this guestion in populations with varying lifestyles.

Yokomichi H et al.

77 METHODS

78 Study participants and measurements

These cohort studies involved participants from both an urban area, Tokyo and a rural area, Yamanashi Prefecture. In Tokyo, participants were employees of private companies who underwent medical check-ups between January 2005 and December 2014 at St. Luke's International Hospital. These annual check-ups were based on a legal obligation imposed by the Industrial Safety and Health Act in Japan.¹⁶ In Yamanashi Prefecture, participants were employees and also residents who paid for a private comprehensive medical check-up between April 1999 and March 2009 at the Yamanashi Koseiren Health Care Center. A subset of participants in Yamanashi used a subsidy from their employers or administrative agencies for this check-up. Those from the urban area therefore received approximately annual medical check-ups over a 10-year period, and those in the rural area received occasional voluntary check-ups. Participants were included in the analysis if they had no diagnosis of diabetes and an HbA1c less than 6.5% (48 mmol/mol) during a baseline period of the first three years of the 10-year period. If they attended two or three medical check-ups in the first three years, the data from the first visit were used as the baseline. Participants were also required to attend at least two medical check-ups during the last 7 years of the study. They therefore received three to eight medical check-ups over the period, to enable us to categorise weight change patterns (exposure). The onset of diabetes was indicated by the results of questions about the diagnosis of diabetes, the commencement of diabetic therapies or glycated haemoglobin (HbA1c) $\geq 6.5\%$ (48 mmol/mol).^{17 18} In Tokyo, trained nurses interviewed participants over 20 years old to establish changes in weight. BMI was calculated as the participant's weight in kilograms divided by the square of their height in metres.

BMJ Open

Yokomichi H et al.

101 Weight change categories

102	The participants were categorised into five groups by their pattern of weight change during
103	the 3–10 years after the baseline (Figure 1). The stable group included all participants whose
104	weight did not change by more than $\pm 4\%$ from the baseline. The sustained gain group
105	consisted of those who gained more than 4% of their baseline weight and did not
106	subsequently lose it again. The sustained loss group included those who lost more than 4% of
107	their baseline weight and did not subsequently regain it. The gain-loss group included all
108	participants who gained more than 4% of their baseline weight, but later brought their weight
109	back below +4%. The loss-gain group included participants who lost more than 4% of their
110	baseline weight but brought their weight back above -4%. When the participants had been
111	categorised, we measured whether they developed diabetes. The length of time over which
112	the participants were observed to see if they developed diabetes was between 1 and 6 years.
113	Any data measured after a diagnosis of diabetes were ignored to conserve the temporality of
114	exposure to outcome for epidemiological causation. ¹⁹

The $\pm 4\%$ change in weight used for this categorisation was considered to be approximately a one-unit change for a person with a BMI of 22 kg/m². This was based on the 2014 reference mean BMIs for Japanese men and women of 23.6 kg/m² and 21.7 kg/m².²⁰ The gain-loss and loss-gain groups were the weight cyclers of interest in this study.

120 Statistical analysis

The baseline characteristics recorded for the participants included age, weight, height, BMI,
HbA1c and fasting plasma glucose. We used univariate and multivariable logistic regressions
to compare the risk of diabetes between the groups. In the data from the urban group, the

Yokomichi H et al.

	Characteristics, mean (standard deviation)MenWomen
142	(Yamanashi Prefecture) regions of Japan
141	Table 1. Baseline characteristics of the participants from urban (Tokyo) and rural
140	in Table 1 and Supplementary.
139	men and 4,852 women from Yamanashi Prefecture. Their baseline characteristics are shown
138	In total, 10,094 men and 10,614 women were enrolled from the Tokyo urban area, and 4,818
137	Participants
136	RESULTS Participants
135	
134	considered statistically significant.
133	and standard deviations (SD). All reported p-values were two-sided; p-values of < 0.05 were
132	(version 9.3, SAS Institute, NC, USA). The descriptive statistics were reported as the means
131	population aged 45 to 64 years old. All statistical analyses used SAS statistical software
130	middle-aged individuals. For a sensitivity analysis, we therefore restricted the analyses to a
120	Another focus of this study was the impact of weight cycling on incidental diabetes in
128	each weight change pattern group were calculated. The analyses were stratified by sex.
127	and alcohol consumption. Means of follow-up duration and numbers of measurements for
126	group, the available covariates for the adjustment at baseline were age, BMI, smoking habits
125	BMI, smoking habits, alcohol consumption and physical activity. In the data from the rural
124	covariates used for the adjustment at baseline were age, weight change from the age of 20,
	Yokomichi H et al.

deviation)	Wien	wonnen
Urban region		
No.	10,094	10,614
Age, years	49.6 (11.9)	48.3 (11.3)
Weight, kg	68.8 (9.7)	52.3 (7.4)

Yokomichi H et al.

Height, cm	170.4 (6.1)	157.7 (5.6)
Body mass index, kg/m ²	23.7 (2.8)	21.0 (2.9)
HbA1c, %	5.4 (0.3)	5.3 (0.4)
(HbA1c, mmol/mol)	35.3 (3.7)	35.0 (3.8)
Fasting plasma glucose, mg/dL	100.8 (8.6)	94.5 (8.0)
(Fasting plasma glucose, mmol/L)	5.6 (0.5)	5.2 (0.4)
Rural region		
No.	4,818	4,852
Age, years	51.2 (10.3)	52.1 (9.4)
Weight, kg	65.7 (9.1)	53.1 (7.5)
Height, cm	168.1 (6.2)	154.8 (5.6)
Body mass index, kg/m ²	23.2 (2.7)	22.1 (2.9)
HbA1c, %	5.3 (0.3)	5.3 (0.3)
(HbA1c, mmol/mol)	34.3 (3.8)	34.4 (3.5)
Fasting plasma glucose, mg/dL	96.3 (9.0)	93.2 (8.5)
(Fasting plasma glucose, mmol/L)	5.3 (0.5)	5.2 (0.5)
Risk of diabetes in urban and rura	al Japan	

Risk of diabetes in urban and rural Japan

Table 2 shows means (SDs) of follow-up duration and numbers of measurements in each weight change group. The numbers of measurements were smallest in the stable group in both sexes and both regions. Tables 3 and 4 show the incidence of diabetes and the odds ratios (ORs) for each explanatory variable in the urban and rural regions.

Table 2. Means (standard deviations) of follow-up duration and numbers of

measurements in the groups of weight change patterns

Urban region Weight change pattern over 10 Follow-up duration, No. of measurements

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Yokomichi H et al.

	years	years	
	Sustained loss	7.7 (1.9)	5.8 (1.6)
	Loss-gain	8.2 (1.2)	5.8 (1.4)
Men	Stable	7.9 (1.7)	4.9 (1.7)
	Gain-loss	8.2 (1.2)	5.7 (1.4)
	Sustained gain	7.4 (1.9)	5.4 (1.6)
	Sustained loss	7.9 (1.7)	6.0 (1.5)
	Loss-gain	8.2 (1.2)	5.9 (1.4)
Women	Stable	7.9 (1.6)	5.0 (1.7)
	Gain-loss	8.2 (1.1)	5.9 (1.4)
	Sustained gain	7.5 (1.9)	5.6 (1.6)
Rural region	Weight change pattern over 10 years	Follow-up duration	No. of measurements
	Sustained loss	7.3 (1.7)	5.2 (1.6)
	Loss-gain	7.9 (1.4)	6.2 (1.2)
Men	Stable	7.1 (1.9)	5.2 (1.6)
	Gain-loss	7.8 (1.4)	6.1 (1.3)
	Sustained gain	7.4 (1.6)	5.4 (1.6)
Women	Sustained loss	7.4 (1.7)	5.4 (1.5)
	Loss-gain	7.9 (1.3)	6.1 (1.3)
	Stable	7.0 (1.8)	5.0 (1.6)
	Gain-loss	7.9 (1.4)	6.0 (1.3)
	Sustained gain	7.3 (1.6)	5.1 (1.6)

153 Table 3. The incidence and odds ratios (95% CIs) of diabetes for different patterns of

154 weight change over 10 years among urban residents in Japan

Exposure variables		Acquired DM / No. of subjects (incidence, %)	Crude	Multivariate	
Men (no. for multivariate analysis = 10,094)					
Baseline age	Per 10 years	—	1.44 (1.33–1.55)	1.44 (1.29–1.61)	
Weight change	<-5	7/1438 (0.5)	2.18 (1.14-4.18)	1.68 (0.75–3.80)	

	_			
from 20 years of	-5 to +5	73/10646 (0.7)	Ref	Ref
age, kg	+5 to +10	31/3200 (1.0)	1.98 (1.45–2.72)	1.54 (1.03–2.30)
	>+10	78/2166 (3.6)	3.37 (2.54–4.48)	2.08 (1.40-3.10)
	< 18.5	6/387 (1.6)	1.35 (0.57–3.16)	0.88 (0.29–2.70)
Baseline BMI,	18.5–22	49/4236 (1.2)	Ref	Ref
kg/m ²	22–25	168/7220 (2.3)	2.04 (1.48-2.89)	1.73 (1.14–2.63)
	> 25	190/4699 (4.0)	3.60 (2.62-4.94)	2.52 (1.60-3.95)
	Sustained loss	66/1903 (3.5)	1.39 (1.03–1.87)	1.11 (0.77–1.59)
Weight change	Loss-gain	87/4644 (1.9)	0.74 (0.56–0.97)	0.63 (0.45-0.89)
pattern over 10	Stable	142/5621 (2.5)	Ref	Ref
years	Gain–loss	38/3063 (1.2)	0.49 (0.34–0.70)	0.51 (0.32–0.82)
	Sustained gain	80/1311 (6.1)	2.51 (1.89–3.32)	3.07 (2.15-4.39)
	None	123/6385 (1.9)	Ref	Ref
Smoking	Ex-smoker	150/5940 (2.5)	1.32 (1.04–1.68)	0.97 (0.71–1.31)
C	Current smoker	140/4217 (3.3)	1.75 (1.37–2.23)	1.73 (1.25–2.34)
	None	69/2250 (3.1)	Ref	Ref
Alcohol drinking	Sometimes	48/1667 (2.9)	0.94 (0.65–1.36)	0.96 (0.66–1.40)
	Usually	156/6177 (2.5)	0.82 (0.61-1.09)	0.78 (0.58–1.05)
Amount of walking per day	Per 30 min	_	0.996 (0.92– 1.08)	1.01 (0.92–1.11)
	0–1	85/3282 (2.6)	Ref	Ref
Physical activity	1–2	108/4105 (2.6)	1.02 (0.76–1.36)	1.02 (0.76–1.36)
(sessions/week)	3–5	43/1541 (2.8)	1.08 (0.74–1.57)	0.98 (0.67–1.45)
	6–7	37/1166 (3.2)	1.23 (0.83–1.82)	1.06 (0.69–1.62)
Women (no. for multivariate analysis = 10,614)				
Baseline age	Per 10 years	_	1.66 (1.48–1.87)	1.78 (1.50–2.12)
Weight change from 20 years of age, kg	< -5	11/439 (2.5)	0.71 (0.33–1.54)	0.48 (0.18–1.25)
	-5 to +5	61/5243 (1.2)	Ref	Ref
	+5 to +10	109/4779 (2.3)	1.42 (0.93–2.16)	0.96 (0.55–1.65)
	>+10	232/6081 (3.8)	5.41 (3.92–7.47)	2.10 (1.20-3.67)
	< 18.5	20/2916 (0.7)	1.24 (0.74–2.08)	1.47 (0.76–2.86)
Baseline BMI, kg/m ²	18.5–22	52/9388 (0.6)	Ref	Ref
6	22–25	60/3676 (1.6)	2.98 (2.05-4.33)	2.01 (1.21–3.34)

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

	> 25	57/1470 (3.9)	7.24 (4.95– 10.59)	2.91 (1.53-5.52)
	Sustained loss	24/1661 (1.4)	2.11 (1.25–3.54)	1.48 (0.80–2.74)
Weight change	Loss-gain	32/4022 (0.7)	1.15 (0.72–1.86)	0.72 (0.39–1.34)
pattern over 10	Stable	36/5212 (1.3)	Ref	Ref
years	Gain-loss	30/4630 (0.6)	0.94 (0.58–1.53)	1.05 (0.57–1.95)
-	Sustained gain	67/1925 (3.5)	5.19 (3.45-7.80)	7.00 (4.11–11.94)
	None	156/14,194 (1.1)	Ref	Ref
Smoking	Ex-smoker	17/1789 (1.0)	0.86 (0.52– 1.1.43)	0.85 (0.45–1.61)
	Current smoker	16/1467 (1.1)	0.99 (0.59–1.67)	1.20 (0.63–2.32)
	None	78/5669 (1.4)	Ref	Ref
Alcohol drinking	Sometimes	20/2035 (1.0)	0.71 (0.43–1.17)	0.91 (0.55–1.52)
	Usually	27/2910 (0.9)	0.67 (0.43-1.04)	0.95 (0.60–1.51)
Amount of walking per day	Per 30 min	-	1.01 (0.93–1.11)	1.01 (0.90–1.13)
	0–1	37/3894 (1.0)	Ref	Ref
Physical activity (sessions/week)	1–2	42/3760 (1.1)	1.18 (0.76–1.84)	1.11 (0.70–1.75)
	3–5	27/1874 (1.4)	1.52 (0.93–2.52)	1.14 (0.67–1.94)
DM dishatas mallit	6–7	19/1086 (1.7)	1.86 (1.06–3.24)	1.43 (0.79–2.60)

Yokomichi H et al.

155 DM, diabetes mellitus; CI, confidence interval; Ref, reference group; BMI, body mass index

156 Table 4. The incidence and odds ratios (95% CIs) of diabetes for different patterns of

157 weight change over 10 years among rural residents in Japan

Exposure variables		Acquired DM / No. of subjects (incidence, %)	Crude	Multivariate
Men (no. for	multivariate ana	alysis = 4,818)		
Baseline age	Per 10 years	—	1.36 (1.08–1.72)	1.60 (1.24–2.05)
	< 18.5	0/167 (0)	—	—
Baseline BMI, kg/m ²	18.5–22	10/1425 (0.7)	Ref	Ref
	22–25	21/2079 (1.0)	1.44 (0.68–3.08)	1.69 (0.79–3.63)
	> 25	35/1148 (3.1)	4.45 (2.19–9.03)	5.81 (2.82–11.97)

Yokomichi H et al.

	Sustained loss	4/725 (0.6)	0.43 (0.15–1.25)	0.36 (0.12–1.05)
Weight change	Loss-gain	13/681 (1.9)	1.50 (0.75–3.00)	1.58 (0.78–3.17)
	Stable	22/1719 (1.3)	Ref	Ref
pattern over 10 years	Gain-loss	4/916 (0.4)	0.34 (0.12-0.99)	0.44 (0.15–1.29)
5	Sustained gain	23/778 (3.0)	2.35 (1.30-4.24)	3.15 (1.70-5.83)
	None	23/1695 (1.4)	Ref	Ref
Smoking	Ex-smoker	8/998 (0.8)	0.59 (0.26–1.32)	0.72 (0.32–1.64)
	Current smoker	35/2126 (1.7)	1.22 (0.72–2.07)	1.50 (0.85–2.62)
Duiulius	None	11/1071 (1.0)	Ref	Ref
Drinking	Drinker	55/3748 (1.5)	1.44 (0.75–2.75)	1.52 (0.79–2.94)
Women (no. f	or multivariate a	nalysis = 4,852)		
Baseline age	Per 10 years	—	1.43 (0.99–2.06)	1.23 (0.83–1.84)
	< 18.5	0/411 (0)	_	_
Baseline	18.5–22	7/2135 (0.3)	Ref	Ref
BMI, kg/m^2	22–25	14/1563 (0.9)	2.75 (1.11-6.82)	2.69 (1.07-6.75)
	> 25	13/744 (1.8)	5.41 (2.15– 13.60)	5.29 (2.07–13.51)
	Sustained loss	3/863 (0.3)	0.37 (0.11–1.29)	0.32 (0.09–1.10)
Weight	Loss-gain	3/757 (0.4)	0.42 (0.12–1.47)	0.41 (0.12–1.44)
change pattern over	Stable	15/1615 (0.9)	Ref	Ref
10 years	Gain-loss	5/827 (0.6)	0.65 (0.24–1.79)	0.77 (0.28–2.14)
-	Sustained gain	8/791 (1.0)	1.09 (0.46–2.58)	1.43 (0.59–3.48)
	None	2/646 (0.3)	Ref	Ref
Smoking	Ex-smoker	29/3822 (0.8)	2.45 (0.58– 10.31)	2.19 (0.52–9.26)
	Current smoker	3/375 (0.8)	2.60 (0.43– 15.60)	3.33 (0.55–20.28)
D · 1 ·	None	31/3542 (0.9)	Ref	Ref
Drinking	Drinker	3/1311 (0.2)	0.26 (0.08–0.85)	0.29 (0.09–0.95)

 160 Table 5 shows the risk of diabetes linked to weight cycling in the middle-aged population.

Yokomichi H et al.

3

6

Table 5. The incidence and odds ratios of diabetes for different patterns of weight change over 10

years in middle-aged people (45-64 years) in Japan

	Exposure variables		Acquired DM / No. of subjects (incidence, %)	Odds ratio (95% CI)	Adjusted odds ratio (95% CI)
Urban middle-aged men (no. for multivariate analysis = 4,882)					
		Sustained loss	35/981 (3.6)	1.04 (0.65–1.67)	0.97 (0.60–1.55)
		Loss-gain	62/2203 (2.8)	0.79 (0.53–1.18)	0.74 (0.49–1.11)
	Weight change pattern over 10 years	Stable	100/2749 (3.6)	Ref	Ref
	over to years	Gain-loss	26/1098 (2.4)	0.56 (0.32-0.999)	0.57 (0.32–1.01)
		Sustained gain	50/489 (10.2)	3.09 (2.00-4.76)	3.13 (2.00-4.89)
-	Urban middle-aged wo	omen (no. for mu	tivariate analysis =	= 5,053)	
		Sustained loss	15/994 (1.5)	1.30 (0.62–2.73)	1.13 (0.53–2.41)
		Loss-gain	20/1992 (1.0)	0.87 (0.43–1.77)	0.76 (0.37–1.57)
	Weight change pattern over 10 years	Stable	24/2285 (1.1)	Ref	Ref
	over to years	Gain-loss	17/1642 (1.0)	0.74 (0.34–1.62)	0.80 (0.36–1.77)
		Sustained gain	40/603 (6.6)	5.62 (3.05-10.37)	6.97 (3.67–13.25)
	Rural middle-aged men (no. for multivariate analysis = 2,937)				
		Sustained loss	3/447 (0.7)	0.48 (0.14–1.66)	0.42 (0.12–1.47)
		Loss-gain	11/449 (2.5)	1.78 (0.81–3.91)	1.76 (0.80–3.87)
	Weight change pattern over 10 years	Stable	15/1078 (1.4)	Ref	Ref
	over to years	Gain-loss	4/546 (0.7)	0.52 (0.17–1.58)	0.58 (0.19–1.77)
		Sustained gain	12/417 (2.9)	2.10 (0.98–4.53)	2.48 (1.12-5.49)
-	Rural middle-aged women (no. for multivariate analysis = 3,347)				
		Sustained loss	1/638 (0.2)	0.16 (0.02–1.25)	0.14 (0.02–1.01)
		Loss-gain	3/579 (0.5)	0.54 (0.15–1.92)	0.54 (0.15–1.94)
	Weight change pattern over 10 years	Stable	11/1140 (1.0)	Ref	Ref
	over to years	Gain-loss	4/558 (0.7)	0.74 (0.24–2.34)	0.82 (0.26–2.62)
		Sustained gain	5/432 (1.2)	1.20 (0.42–3.48)	1.30 (0.44–3.84)
Multivariable logistic regression-calculated odds ratios with an adjustment for baseline age and BMI, change from 20 years of age, smoking and drinking habits, amount of walking per day and sessions o		line age and BMI, we			
		lay and sessions of			
physical activity per week in the urban data, and baseline age, BMI and smoking and drinking habits in the					
	rural data.				

60

Yokomichi H et al.

1		Yokomichi H et al.	
$\begin{smallmatrix} 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 21 & 31 & 4 & 15 & 16 & 17 & 18 & 19 & 20 & 22 & 22 & 22 & 22 & 22 & 22 & 2$	168		

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Yokomichi H et al.

DISCUSSION

170	The data for the Japanese urban region suggest that the risk of diabetes in male weight
171	cyclers was significantly lower than in those who maintained a stable weight (Table 3).
172	The diabetes risk for female weight cyclers in the urban region was non-significantly
173	lower than or similar to the risk for those maintaining a stable weight. The data for the
174	rural region suggest no difference in diabetes risk for weight-cycling men and a
175	non-significantly lower risk for women compared with maintaining a stable weight
176	(Table 4). These results are reinforced by a sensitivity analysis focusing on middle-aged
177	individuals, yielding almost identical non-significant ORs (Table 5).
178	These observations are not consistent with those from previous studies of Western
179	populations. ^{4-6 21} These studies showed that weight cycling significantly or
180	non-significantly increased the risk of diabetes for point estimates. In the Framingham
181	Heart Study, approximately 1 kg/m ² of weight cycling in middle-aged Americans
182	carried a hazard ratio of 1.1 (95% CI: 0.8–1.5) for the risk of diabetes after adjusting for
183	sex and BMI at 25 years of age. ⁴ In American middle-aged women examined in the
184	National Health and Nutrition Examination Survey, weight cycling of 4.5–9.1 kg and
185	9.1–22.2 kg with intentional weight loss three or more times in 4 years carried ORs for
186	the risk of diabetes of 1.11 (95% CI: 0.89–1.37) and 1.39 (95% CI: 0.90–2.13). ⁵ A study
187	from a cohort of medical students at the Johns Hopkins University School of Medicine
188	reported that the highest quartile of BMI variability for ages between 25 and 45 years
189	had an OR of 2.1 (95% CI: 1.0-4.6) for the risk of diabetes after 50 years, compared
190	with the other three quartiles. ²¹ In a large German cohort, weight cycling of ≥ 1.5
191	kg/year was significantly associated with an adjusted hazard ratio of 1.34.6

BMJ Open

Yokomichi H et al.

192	The disparity between the results of this study and the Western studies may be
193	because of ethnic differences in diet, ²² the capacity to gain weight ²³ and
194	self-consciousness about body weight. ²⁴ Further research is needed to explore why the
195	relationship between weight cycling and risk of diabetes is reversed for Western and
196	East Asian populations. It may be attributable to different motivations to lose weight
197	because of different cultural views on dieting and body self-consciousness. ²⁵ Those East
198	Asians who try to lose weight may be more concerned about the poor health outcomes
199	of being overweight. The Westerners in the studies who tried to lose weight may have
200	been more likely to lose and regain a great deal of weight, and therefore potentially ran
201	the risk of poor health outcomes.
202	The urban data in this study showed that an increase of more than +5 kg above
203	weight at 20 years old increased the risk of developing diabetes with a dose-response
204	relationship in both men and women (Table 3). An increase of more than +10 kg from
205	weight at 20 years old more than doubled the risk of diabetes compared with
206	maintaining weight within ± 5 kg. These results agree with the study involving a US
207	cohort, which reported a relative risk of 3.2 (95% CI: 1.4–7.4) for the highest quartile of
208	an increase in BMI from 25 to 45 years of age in comparison with the other three
209	quartiles. ²¹ A dose–response relationship of weight change from that at 20 years old to
210	the risk of diabetes was seen in urban Japanese women, with ORs of 0.48 (95% CI:
211	0.18–1.25) for a change of less than 5 kg, 0.96 (95% CI: 0.55–1.65) for an increase of
212	between 5 and 10 kg and 2.10 (95% CI: 1.20–3.67) for an increase greater than 10 kg
213	(Table 3). In contrast, Japanese men who lost 5 kg or more of body weight between the
214	age of 20 years and early middle age had an OR of 1.68 (95% CI: 0.75–3.80). This

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Yokomichi H et al.

2
3
4 5
5 6
7
8
0
9 10
10
12
13
9 10 11 12 13 14 15 16 17
15
16
17
18
19
20
21
22
23
20 21 22 23 24 25 26 27 28 29 30 31 32 33
25
26
27
28
29
30
31
32
33
34 35
30
30 27
31 20
20
35 36 37 38 39 40 41
40
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 60
00

1

215	paradoxically increased OR was probably because of the small number of participants
216	(seven) who developed diabetes among a weight loss group of 1,438 people.
217	This study had several limitations. The first of these was the threshold of $\pm 4\%$ weight
218	change in 10 years. This was drawn from a study in the United Kingdom on the
219	association between weight change and the risk of diabetes. ²⁶ It was calculated as
220	approximately one BMI unit in Japanese people with a mean BMI of 23 kg/m ^{2} .
221	However, the threshold for categorisation of weight cycling is likely to vary by mean
222	BMI in different ethnicities, because of different insulin sensitivities. ^{13 27} Second, we
223	did not evaluate insulin sensitivity. Measuring fasting plasma glucose and insulin
224	concentration to calculate HOMA-IR, ²⁸ an index of insulin resistance, would have
225	allowed us to assess the association between weight cycling and the physiological
226	hazard of diabetes. Third, the weight changes recorded in the rural region may have
227	been misclassified because of missing data from the years when participants did not
228	undergo a medical check-up. However, this misclassification would have biased the
229	ORs towards the null hypothesis, and we believe that this would therefore not change
230	the conclusions for the rural region. Fourth, we could not examine whether weight
231	cycling was intentional. We consider, however, that a subset of unintentional weight loss
232	could be attributed to metabolic diseases, and patients with such diseases would not
233	usually be able to regain the weight within a short time. Fifth, the follow-up duration
234	and the numbers of weight measurements varied among the weight change groups.
235	However, because perfect categorisation of weight changes over time would be
236	impossible, we think that our study design enables us to answer the study question.
237	Sixth, the urban data for weight at 20 years old were self-reported by participants. They

BMJ Open

Yokomichi H et al.

238	may therefore have been affected by recall bias. Seventh, a subset of the diagnoses in
239	this study were not made by physicians but via an epidemiological criteria. ¹⁷ However,
240	most observational studies rely on epidemiological criteria for detecting diabetes, and
241	the use of a consistent diagnostic criterion allows researchers to compare the risk of
242	diabetes onset between the reference group and groups of interest. Last, this study lacks
243	any information about lifestyle, including diet, marital status, job type and car
244	ownership. All these may partly explain the association between weight cycling and
245	diabetes.

This study also has several strengths. First, to the best of our knowledge, it is the first study to explore the relationship between weight cycling and the risk of diabetes in Asians. The relationship found in this study was almost directly opposite to that found in US studies, so further research in East Asians is necessary to confirm the findings. Next, this study was conducted in two different populations (urban and rural residents). The ORs of the risk of diabetes were 1.05 (95% CI: 0.57–1.95) in the urban women with weight gain-loss (Table 3) and 1.58 (95% CI: 0.78-3.17) in rural men with weight loss-gain (Table 4). All other weight-cycling patterns for both sexes in both urban and rural regions were negatively correlated with the risk of diabetes, although some relationships were not statistically significant (Tables 3 and 4). Third, the study included a large number of participants across both sexes (approximately 10,000 in the urban region and 5,000 in the rural region). Its findings are therefore likely to be generalisable to Japanese and East Asian weight cyclers.

This study could help public health practitioners and on-site clinical professionals prevent diabetes in the general population. A sustained weight gain of more than 4% Yokomichi H et al.

261	over 10 years in middle age (Table 5) and more than 5 kg of additional weight gain
262	since the age of 20 years (Table 3) may both carry an increased risk of diabetes for both
263	sexes. Middle-aged people can easily undergo such a small weight gain over the short-
264	or long-term, so even non-diabetic people within the normal BMI range should be
265	cautious about the risks resulting from small weight gains throughout their lifetime. An
266	interventional study indicated that weight loss (-1.8 kg/m ² of BMI in a diet intervention
267	group and -3.3 kg/m^2 of BMI in a diet-and-exercise intervention group) improved
268	insulin sensitivity in Japanese patients with obesity and type 2 diabetes. ²⁹ Improved
269	insulin sensitivity was also observed in Americans who maintained their weight with
270	treadmill-based exercise and no alteration in their diet. ³⁰ Studies have also demonstrated
271	that building muscle through exercising without changing weight improves insulin
272	sensitivity. ³¹
273	While not statistically significant, two weight-cycling patterns were found to result in

273 While not statistically significant, two weight-cycling patterns were found to result in 274 an increased risk of diabetes (Tables 3 and 4). Better insulin sensitivity leads directly to 275 a decreased risk of diabetes, so these results may be because of differences in how the 276 participants lost or gained weight (i.e. whether they lost or gained fat or muscle mass). 277 Recent studies have indicated that sarcopenia, the loss of skeletal muscle alone or with 278 increased fat mass in ageing, is a leading cause of death in old age.³² The results of our 279 study, in the context of previous studies, suggest that over both the short- and long-term, 280 people might reduce their risk of diabetes by losing fat and maintaining muscle mass.

BMJ Open

Yokomichi H et al.

283 CONCLUSIONS

In urban men in Japan, weight cycling was associated with a significant reduction in the risk of diabetes. No clear association was seen in either urban women or in men and women living in the rural region. The results were different from those seen in Western countries and may be attributed to differences in diet, endocrinological capacity to gain weight and weight-consciousness. The risk of diabetes seems to increase linearly with weight gain from the age of 20 years in urban Japanese men and women. A study that includes the measurement of insulin sensitivity is necessary to confirm these results and to improve the understanding of the risks for East Asian weight cyclers.

292 (2,718 words; limit of 4,000 words)

ls)

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Yokomichi H et al.

3	
4	
5	
5 6	
1	
8	
9	
10	
11	
12	
13	
14	
8 9 10 11 12 13 14 15 16 17 18 19 20	
16	
17	
18	
19	
20	
21	
22	
23	
21 22 23 24 25 26 27 28 29 30 31 32	
25	
26	
27	
28	
29	
30	
31 32 33 34 35 36 37 38 39	
32 22	
33 24	
34	
36	
37	
30	
30	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

293	Acknowledgments We thank all participants in this study and staff at the St. Luke's
294	International Hospital and the Yamanashi Koseiren Health Care Center for their support,
295	which made this study possible.
296	Competing interests None declared.
297	Funding This work was supported by the Ministry of Education, Culture, Sports,
298	Science and Technology of Japan (MEXT) (KAKENHI grant number: JP15K08730 and
299	JP15K15221). The funder had no role in study design, analysis, decision to publish or
300	preparation of the manuscript.
301	Contributors ZY, YY, MT and OT: setting up the study and data collection. HY, ZY,
302	MM and AT: designing the study. HY and AT: data analysis. HY: writing and revising
303	the draft. ZY, SO, MM, YA and HY: development of the discussion section. All authors
304	read and approved the final manuscript.
305 306	Ethics approval The ethics committee of the School of Medicine, University of Yamanashi approved this study (approval number: H27-1417).
300	
307	Data sharing statement No additional data are available.

BMJ Open

Yokomichi H et al.

	308	REFERENCES
--	-----	------------

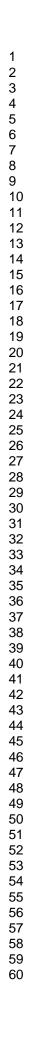
309	1. Nanri A, Mizoue T, Takahashi Y, et al. Association of weight change in different
310	periods of adulthood with risk of type 2 diabetes in Japanese men and women: the
311	Japan Public Health Center-Based Prospective Study. J Epidemiol Commun H
312	2011; 65 :1104–10.
313	2. Wannamethee SG, Shaper AG. Weight change and duration of overweight and
314	obesity in the incidence of type 2 diabetes. <i>Diabetes Care</i> 1999;22:1266–72.
315	3. Ford ES, Williamson DF, Liu SM. Weight change and diabetes incidence: findings
316	from a national cohort of US adults. Am J Epidemiol 1997;146:214–22.
317	4. Waring ME, Eaton CB, Lasater TM, et al. Incident diabetes in relation to weight
318	patterns during middle age. Am J Epidemiol 2010;171:550-6.
319	5. Field AE, Manson JE, Laird N, et al. Weight cycling and the risk of developing type
320	2 diabetes among adult women in the United States. Obes Res 2004;12:267-74.
321	6. Neamat-Allah J, Barrdahl M, Hüsing A, et al. Weight cycling and the risk of type 2
322	diabetes in the EPIC-Germany cohort. <i>Diabetologia</i> 2015;58:2718–25.
323	7. French S, Folsom A, Jeffery R, Zheng W, Mink P, Baxter J. Weight variability and
324	incident disease in older women: the Iowa Women's Health Study. Int J Obes Relat
325	<i>Metab Disord</i> 1997; 21 :217–23.
326	8. Morris RD, Rimm AA. Long-term weight fluctuation and non-insulin-dependent
327	diabetes mellitus in white women. Ann Epidemiol 1992;2:657-64.
328	9. Mukai T, Crago M, Shisslak CM. Eating attitudes and weight preoccupation among
329	female high school students in Japan. J Child Psychol Psychiatry 1994;35:677-88.

Yokomichi H et al.

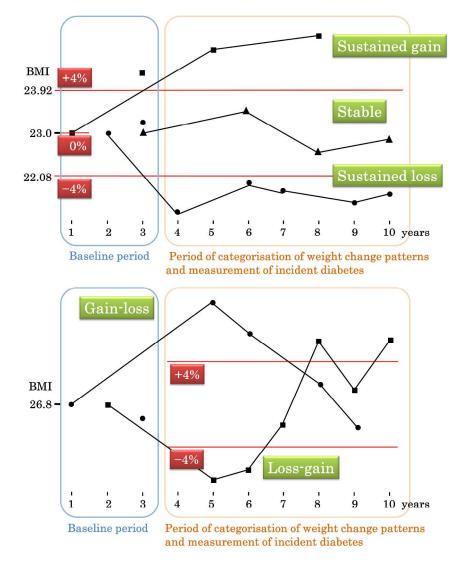
330	10. Swami V, Frederick DA, Aavik T, et al. The attractive female body weight and
331	female body dissatisfaction in 26 countries across 10 world regions: results of the
332	International Body Project I. Personal Soc Psychol Bull 2010;36:309-25.
333	11. Chisuwa N, O'Dea JA. Body image and eating disorders amongst Japanese
334	adolescents. a review of the literature. Appetite 2010;54:5-15.
335	12. Xu X, Mellor D, Kiehne M, et al. Body dissatisfaction, engagement in body change
336	behaviours and sociocultural influences on body image among Chinese adolescents.
337	<i>Body Image</i> 2010; 7 :156–64.
338	13. Kodama K, Tojjar D, Yamada S, et al. Ethnic differences in the relationship
339	between insulin sensitivity and insulin response: a systematic review and
340	meta-analysis. <i>Diabetes Care</i> 2013; 36 :1789–96.
341	14. Matsushita Y, Yoshiike N, Kaneda F, Yoshita K, Takimoto H. Trends in childhood
342	obesity in Japan over the last 25 years from the national nutrition survey. Obes Res
343	2004; 12 :205–14.
344	15. Yoshiike N, Seino F, Tajima S, et al. Twenty year changes in the prevalence of
345	overweight in Japanese adults: The National Nutrition Survey 1976–95. Obes Rev
346	2002; 3 :183–90.
347	16. Ministry of Health, Labour and Welfare of Japan. Industrial Safety and Health Act
348	(English version). 1972.
349	http://www.japaneselawtranslation.go.jp/law/detail/?printID=&id=1926&re=&vm=0
350	2 (accessed 15 March 2017).
351	17. American Diabetes Association. Diagnosis and classification of diabetes mellitus.
352	<i>Diabetes Care</i> 2010; 33 :S62–S69.

BMJ Open

Yokomichi H et al.


353	18. The International Expert Committee. International Expert Committee report on the
354	role of the A1C assay in the diagnosis of diabetes. <i>Diabetes Care</i> 2009; 32 :1327–34.
355	19. Kaufman J, Poole C. Looking back on "causal thinking in the health sciences".
356	Annu Rev Publ Health 2000; 21 :101-19.
357	20. NCD Risk Factor Collaboration. Worldwide trends in diabetes since 1980: a pooled
358	analysis of 751 population-based studies with 4^{\cdot} 4 million participants. Lancet
359	2016; 387 :1513–30.
360	21. Brancati FL, Wang N, Mead LA, et al. Body weight patterns from 20 to 49 years of
361	age and subsequent risk for diabetes mellitus: the Johns Hopkins Precursors Study.
362	Arch Int Med 1999;159:957–63.
363	22. Slocum R. Race in the study of food. <i>Prog Hum Geogr</i> 2011; 35 :303–27.
364	23. The DECODE–DECODA Study Group. Age, body mass index and type 2
365	diabetes—associations modified by ethnicity. <i>Diabetologia</i> 2003;46:1063-70.
366	24. Mintz LB, Kashubeck S. Body image and disordered eating among Asian American
367	and Caucasian college students an examination of race and gender differences.
368	<i>Psychol Women Q</i> 1999; 23 :781–96.
369	25. Frederick DA, Forbes GB, Grigorian KE, et al. The UCLA Body Project I: gender
370	and ethnic differences in self-objectification and body satisfaction among 2,206
371	undergraduates. Sex Roles 2007;57:317–27.
372	26. Wannamethee SG, Shaper AG, Walker M. Overweight and obesity and weight
373	change in middle aged men: impact on cardiovascular disease and diabetes. J
374	<i>Epidemiol Commun H</i> 2005; 59 :134–9.

375	27. Ntuk UE, Gill JMR, Mackay DF, et al. Ethnic-specific obesity cutoffs for diabetes
376	risk: cross-sectional study of 490,288 UK Biobank participants. Diabetes Care
377	2014; 37 :2500–7.
378	28. Matthews D, Hosker J, Rudenski A, et al. Homeostasis model assessment: insulin
379	resistance and β -cell function from fasting plasma glucose and insulin concentrations
380	in man. <i>Diabetologia</i> 1985; 28 :412–9.
381	29. Yamanouchi K, Shinozaki T, Chikada K, et al. Daily walking combined with diet
382	therapy is a useful means for obese NIDDM patients not only to reduce body weight
383	but also to improve insulin sensitivity. <i>Diabetes Care</i> 1995;18:775-8.
384	30. Duncan GE, Perri MG, Theriaque DW, et al. Exercise training, without weight loss,
385	increases insulin sensitivity and postheparin plasma lipase activity in previously
386	sedentary adults. <i>Diabetes Care</i> 2003; 26 :557–62.
387	31. Nassis GP, Papantakou K, Skenderi K, et al. Aerobic exercise training improves
388	insulin sensitivity without changes in body weight, body fat, adiponectin, and
389	inflammatory markers in overweight and obese girls. <i>Metabolism</i> 2005; 54 :1472–9.
390	32. Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in
391	older adults. Current consensus definition: prevalence, etiology, and consequences.
392	International Working Group on Sarcopenia. J Am Med Dir Assoc 2011;12:249–56.
393	
394	
395	


Yokomichi H et al.

2 3		
4 5	396	Figure 1. How participants were categorised into the five weight
6 7 8	397	change patterns
9 10	398	
11 12		
13 14		
15 16 17		
18 19		
20 21		
22 23		
24 25		
26 27		
28 29		
30 31		
32 33 34		
34 35 36		
37 38		
39 40		
41 42		
43 44		
45 46		
47 48 49		
49 50 51		
52 53		
54 55		
56 57		
58 59		
60		

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

How participants were categorised into the five weight change patterns Figure 1 339x454mm (300 x 300 DPI)

BMJ Open BMJ Open Yokomichi H et al. Yokomichi Et al. Supplementary. Baseline characteristics among groups of weight change patterns over 10 years q

				D	
Men in urban Japan (n = 10,094)	Sustained loss	Loss-gain	Stable	Gain-loss	Sustained gain
Age, years	52.3 (12.2)	51.2 (12.0)	50.3 (11.3)	4¢.0 (11.4)	44.9 (11.3)
Weight, kg	70.8 (10.4)	69.8 (9.5)	68.3 (9.0)	67,3 (9.5)	67.8 (10.8)
Height, cm	170.1 (6.2)	170.3 (6.1)	170.2 (6.0)	179.7 (6.1)	171.2 (6.1)
Body mass index, kg/m2	24.4 (3.0)	24.0 (2.7)	23.5 (2.6)	2 <u>§</u> .1 (2.8)	23.1 (3.2)
HbA1c, %	5.4 (0.4)	5.4 (0.3)	5.4 (0.3)	se 3 (0.3)	5.3 (0.3)
HbA1c, mmol/mol	35.9 (3.9)	35.7 (3.7)	35.3 (3.7)	34.6 (3.7)	34.6 (3.4)
Fasting plasma glucose, mg/dL	102.3 (9.2)	101.5 (8.8)	101.0 (8.5)	9 9 .0 (8.0)	99.8 (8.4)
Fasting plasma glucose, mmol/L	5.7 (0.5)	5.6 (0.5)	5.6 (0.5)	5 (0.4)	5.5 (0.5)
Weight change from 20 years of age, kg	+9.7 (9.1)	+9.0 (8.1)	+8.2 (7.9)	+3.0 (8.4)	+7.0 (20.5)
Current smoking, %	20.0	22.8	23.6	<u>9</u> 31.3	33.7
Usually drinking alcohol, %	61.7	62.3	63.8	57.3	55.2
Duration of walking per day, min	41.0 (38.3)	41.3 (41.7)	43.3 (41.5)	404 (35.2)	38.6 (36.0)
Physical activity of 6–7/week, %	11.2	12.0	11.9	g10.4	11.6
				n April	
Women in urban Japan (n = 10,614)	Sustained loss	Loss-gain	Stable	Gain-loss	Sustained gain
Age, years	52.4 (10.7)	51.1 (11.5)	48.9 (11.3)	45 ^N / ₂ 7 (10.6)	43.5 (9.8)
Weight, kg	53.8 (8.0)	53.4 (7.8)	51.7 (7.0)	5₽ .8 (7.1)	51.6 (7.4)
Height, cm	156.9 (5.7)	157.2 (5.9)	157.8 (5.6)	158.1 (5.5)	158.4 (5.3)
Body mass index, kg/m2	21.8 (3.0)	21.6 (3.0)	20.8 (2.7)	20,7 (2.7)	20.6 (2.8)
HbA1c, %	5.5 (0.4)	5.4 (0.4)	5.4 (0.3)	5 3 (0.3)	5.3 (0.3)
HbA1c, mmol/mol	36.1 (4.1)	35.4 (3.8)	35.0 (3.8)	34.4 (3.6)	34.0 (3.7)
Fasting plasma glucose, mg/dL	96.5 (8.9)	95.7 (8.1)	94.6 (8.0)	99.2 (7.3)	92.8 (7.3)
				copyright.	1

		BMJ Open		6/bm	
				joper	
/okomichi H et al.				-1-201	
				6-01	
Fasting plasma glucose, mmol/L	5.4 (0.5)	5.3 (0.4)	5.3 (0.4)	36/bmjopen-2016-014684 (0.4)	5.2 (1.4)
Weight change from 20 years of age, kg	+4.1 (7.4)	+3.8 (7.3)	+2.4 (7.1)	+2.6 (7.1)	+2.2 (7.5)
Current smoking, %	6.6	6.7	5.7	June 9.9	11.8
Usually drinking alcohol, %	23.7	26.7	27.3	S≥29.4	28.3
Duration of walking per day, min	42.9 (49.4)	41.2 (49.8)	42.3 (40.9)	41,5 (40.5)	43.8 (51.9)
Physical activity of 6–7/week, %	12.1	10.6	11.3	4155 (40.5) \$.6	8.8
Men in rural Japan (n = 4,818)	Sustained loss	Loss-gain	Stable	Gain-loss	Sustained gain
Age, years	53.5 (10.3)	51.7 (9.8)	52.3 (10.1)	4 <u>9</u> 2 (10.1)	48.3 (10.5)
Weight, kg	67.2 (9.0)	66.2 (8.7)	66.0 (9.1)	64.7 (8.6)	64.3 (9.9)
Height, cm	167.5 (6.2)	168.0 (6.0)	167.8 (6.2)	168.5 (6.2)	168.8 (6.5)
Body mass index, kg/m2	23.9 (2.6)	23.4 (2.6)	23.4 (2.7)	22.8 (2.5)	22.5 (2.9)
HbA1c, %	5.3 (0.4)	5.3 (0.4)	5.3 (0.3)	52 (0.3)	5.2 (0.3)
HbA1c, mmol/mol	34.7 (3.9)	34.6 (3.9)	34.3 (3.7)	33.9 (3.8)	33.8 (3.5)
Fasting plasma glucose, mg/dL	97.5 (9.2)	96.4 (9.0)	96.9 (9.1)	95.1 (8.9)	95.1 (8.5)
Fasting plasma glucose, mmol/L	5.4 (0.5)	5.4 (0.5)	5.4 (0.5)	53 (0.5)	5.3 (0.5)
Current smoker, %	38.5	42.7	37.7	≩49.3	58.5
Current drinker, %	79.5	77.5	78.4	≥49.3 175.7	77.5
				Rain-loss	
Women in rural Japan (n = 4,852)	Sustained loss	Loss-gain	Stable		Sustained gain
Age, years	54.9 (9.0)	52.8 (8.6)	53.1 (9.2)	58.7 (9.2)	48.2 (9.9)
Weight, kg	54.0 (8.1)	53.6 (7.5)	52.9 (6.9)	5र्क्ट्र.6 (7.6)	52.6 (7.8)
Height, cm	154.1 (5.6)	154.8 (5.8)	154.6 (5.4)	$15\frac{1}{5}$.3 (5.5)	155.7 (5.6)
Body mass index, kg/m2	22.7 (3.1)	22.4 (2.8)	22.1 (2.8)	28.8 (2.9)	21.7 (3.0)
HbA1c, %	5.3 (0.3)	5.3 (0.3)	5.3 (0.3)	$5\frac{1}{2}$ (0.3)	5.2 (0.3)
HbA1c, mmol/mol	34.9 (3.7)	34.6 (3.4)	34.6 (3.6)	34.0 (3.4)	33.6 (3.3)
				34.0 (3.4) 34.0 (3.4)	2

Page 31 of 34			BMJ Open		i6/bmjoj	
1 2 3	Yokomichi H et al.				ben-2016-01	
$ \begin{array}{r} 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ \end{array} $	Fasting plasma glucose, mg/dL Fasting plasma glucose, mmol/L Current smoker, % Current drinker, % The data are presented as the mean (SD	94.1 (9.1) 5.2 (0.5) 5.5 24.2	93.0 (8.3) 5.2 (0.5) 8.1 27.2	93.7 (8.8) 5.2 (0.5) 6.6 26.5	6/bmjopen-2016-014684 9,8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest.	91.9 (7.9) 5.1 (0.4) 11.5 30.9
35 36 37 38 39 40 41 42 43 44		eer review only - http:			Protected by copyright.	3

STROBE Statement-checklist of items that should be included in reports of observational studies

⊿0

	Item No.	Recommendation	Page No.	Relevant text from manuscript
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1	Line 1–2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was		
		found	2	Line 23–42
Introduction		U A		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5	Line 54–69
Objectives	3	State specific objectives, including any prespecified hypotheses	5	Line 69–71
Methods				
Study design	4	Present key elements of study design early in the paper	6	Line 79-80
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure,		
		follow-up, and data collection	6	Line 79–89
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of		
		participants. Describe methods of follow-up		
		Case-control study-Give the eligibility criteria, and the sources and methods of case		
		ascertainment and control selection. Give the rationale for the choice of cases and controls		
		Cross-sectional study-Give the eligibility criteria, and the sources and methods of selection of		
		participants	6	Line 80-89
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and		
		unexposed		
		Case-control study—For matched studies, give matching criteria and the number of controls per		
		case		NA
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers.		
		Give diagnostic criteria, if applicable	6	Line 93–97
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment		
measurement		(measurement). Describe comparability of assessment methods if there is more than one group	7	Line 102–110
Bias	9	Describe any efforts to address potential sources of bias	5	Line 82–89
Study size	10	Explain how the study size was arrived at	8	Line 138–139
Continued on next page				
		1		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines	.xhtml	

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

variables Statistical methods	12	describe which groupings were chosen and why (a) Describe all statistical methods, including those used to control for confounding	77	Line 115–117
	12	(a) Describe all statistical methods, including those used to control for confounding	7_8	
methods			7-0	Line 121–128
		(b) Describe any methods used to examine subgroups and interactions	8	Line 129–131
		(c) Explain how missing data were addressed	6	Line 87–89, 92–9
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed		
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was		
		addressed		
		Cross-sectional study—If applicable, describe analytical methods taking account of		NA
		sampling strategy		
		(<u>e</u>) Describe any sensitivity analyses	8	Line 129–131
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	8	Line 138–139
		eligible, examined for eligibility, confirmed eligible, included in the study, completing		
		follow-up, and analysed		
		(b) Give reasons for non-participation at each stage	6	Line 89–95
		(c) Consider use of a flow diagram		NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and		
		information on exposures and potential confounders	8–9	Table 1
		(b) Indicate number of participants with missing data for each variable of interest		NA
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	9–10	Table 2
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	10–13	Tables 3 and 4
		Case-control study—Report numbers in each exposure category, or summary		NA
		measures of exposure		
		Cross-sectional study—Report numbers of outcome events or summary measures		NA
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	10–13	Tables 3 and 4
		their precision (eg, 95% confidence interval). Make clear which confounders were		
		adjusted for and why they were included		
		(b) Report category boundaries when continuous variables were categorized	10–14 (BMI)	Tables 3–5
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a		
		meaningful time period		NA
		2		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.x	thtml	

Continued on next page Other	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	14–15	Table 5
analyses				
Discussion				
Key results	18	Summarise key results with reference to study objectives	16	Line 170–177
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both		
		direction and magnitude of any potential bias	18–19	Line 217–245
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses,		
		results from similar studies, and other relevant evidence	19–20	Line 259–272
Generalisability	21	Discuss the generalisability (external validity) of the study results	19	Line 255–258
Other information	on			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the		
		original study on which the present article is based	22	Line 297–300

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-014684 on 8 June 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.