
BMJ Open

Effects of Testosterone and Evoked Resistance Exercise after Spinal Cord Injury [TEREX-SCI]: A Randomized Clinical Trial

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-014125
Article Type:	Protocol
Date Submitted by the Author:	06-Sep-2016
Complete List of Authors:	Gorgey, Ashraf; Hunter Holmes McGuire VA Medical Center, Spinal Cord Injury Service and Disorders Khalil1, Refka; Hunter Holmes McGuire VA Medical Center, Spinal Cord Injury Service and Disorders Gill, Ranjodh; Hunter Holmes McGuire VA Medical Center, Endocrine Service O'Brien1, Laura; Hunter Holmes McGuire VA Medical Center, Spinal Cord Injury Service and Disorders Lavis, Timothy Lavis1; Hunter Holmes McGuire VA Medical Center, Spinal Cord Injury Service and Disorders Castillo, Teodoro ; Hunter Holmes McGuire VA Medical Center, Spinal Cord Injury Service and Disorders Cifu, David; Commonwealth of Virginia, Physical Medicine and Rehab. Savas, Jeannie ; Hunter Holmes McGuire VA Medical Center, Surgery Service Khan, Rehan; Hunter Holmes McGuire VA Medical Center, Radiology Service Cardozo, Christopher ; 7) National Center for the Medical Consequences of Spinal Cord Injury Lesnefsky, Edward ; Hunter Holmes McGuire VA Medical Center, Cardiology Service Gater, David; Pennsylvania State University Adler, Robert; Hunter Holmes McGuire VA Medical Center, Endocrine Service
Primary Subject Heading :	Rehabilitation medicine
Secondary Subject Heading:	Nutrition and metabolism
Keywords:	SPINAL CORD INJURY, TESTOSTERONE, RESISTANCE TRAINING, BODY COMPOSITION and METABOLISM, MITOCHONDRIA, INFLAMMATORY BIOMARKERS

SCHOLARONE[™] Manuscripts

1		
2 3		
4	1	
5	2	
6 7	3	
8	4	
9	5	Effects of Testosterone and Evoked Resistance Exercise after Spinal Cord
10	6	Injury [TEREX-SCI]: study protocol for a randomized controlled trial
11		injury [TEREA-SCI]. study protocorior a randomized controlled that
12 13	7	
13	8	
15	9	Ashraf S. Gorgey ^{1,2} ; Refka E. Khalil ¹ ; Ranjodh Gill ^{3,4} ; Laura C. O'Brien ¹ ; Timothy
16	10	Lavis ^{1,2} ; Teodoro Castillo ¹ ; David X. Cifu ^{1,2} ; Jeannie Savas ⁵ ; Rehan Khan ⁶ ; Christopher
17	11	Cardozo ^{7,8} ; Edward J. Lesnefsky ^{9,10} ; David R Gater ¹¹ ; Robert A Adler ^{3,4}
18 19	12	1) Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, 1201 Broad
20	13	Rock Boulevard, Richmond, VA 23249, USA
21	14	2) Virginia Commonwealth University, Department of Physical Medicine & Rehabilitation,
22	15	Richmond, VA
23	16	3) Endocrinology Service; Hunter Holmes McGuire VA Medical Center, Richmond, VA
24 25	17	4) Endocrine Division; Virginia Commonwealth University School of Medicine, Richmond,
26	18	VA
27	19	5) Surgical Service; Hunter Holmes McGuire VA Medical Center, Richmond, VA
28	20	6) Radiology Service; Hunter Holmes McGuire VA Medical Center, Richmond, VA
29	21	7) National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA
30 31	22	Medical Center, Bronx, NY
32	23	8) Icahn School of Medicine at Mt. Sinai, Medicine, New York City, NY
33	24	9) Cardiology Service; Hunter Holmes McGuire VA Medical Center, Richmond, VA
34	25	10) Division of Cardiology, Department of Medicine, Pauley Heart Center Virginia
35 36	26	Commonwealth University, Richmond, VA
37	27	11) Department of Physical Medicine and Rehabilitation, Penn State Milton S.
38	28	Hershey Medical Center, Hershey, PA
39	29	
40	30	
41 42	31	
43	32	
44	32 33	
45	33 34	
46 47	34 35	Correspondence
47 48	36	Ashraf S. Gorgey, MPT, PhD, FACSM
49	37	Department of Veterans Affairs
50	38	Hunter Holmes McGuire Medical Center
51	39	Spinal Cord Injury & Disorders Service
52 53	40	1201 Broad Rock Boulevard
53 54	41	Richmond, VA 23249
55	42	Email: ashraf.gorgey@va.gov
56	43	Tel: $+ 1- (804)-675-5000 \text{ ext. } 3386$
57 59	44	Fax: + 1- 804-675-5223
58 59		
60		1
		For near review only http://bmienen.hmi.com/site/sheut/auidelines.yhtml

1	Abstract
2	Introduction: Individuals with spinal cord injury (SCI) are at a lifelong risk of obesity and
3	chronic metabolic disorders including insulin resistance and dyslipidemia. Within few weeks of
4	injury, there is a significant decline in whole body fat-free mass, particularly lower extremity
5	skeletal muscle mass, and subsequent increase in fat mass (FM). This is accompanied by a
6	decrease in anabolic hormones including testosterone. Testosterone replacement therapy (TRT)
7	has been shown to increase skeletal muscle mass and improve metabolic profiles. Additionally,
8	resistance training (RT) has been shown to increase lean mass and reduce metabolic disturbances
9	in SCI and other clinical populations.
10	Methods and analysis: Twenty-six individuals with chronic, motor complete SCI between 18-
11	50 years old were randomly assigned to a RT+TRT group ($n = 13$) or a TRT group ($n = 13$).
12	Twenty-two participants completed the initial 16-week training phase of the study and 4
13	participants withdrew. Thirteen participants out of the 22 completed the second 16 week of the
14	detraining phase. The TRT was provided via transdermal testosterone patches (4-6 mg/day). The
15	RT+TRT group had 16 weeks of supervised unilateral progressive RT using surface
16	neuromuscular electrical stimulation with ankle weights. This study will investigate the effects of
17	evoked RT+TRT or TRT alone on body composition (muscle cross sectional area, visceral
18	adipose tissue, %FM) and metabolic profile (glucose and lipid metabolisms) in individuals with
19	motor complete SCI. Findings from this study may help in designing exercise therapies to
20	alleviate the deterioration in body composition after SCI and decrease the incidence of metabolic
21	disorders in this clinical population.
22	Ethics and Dissemination: The study is currently approved by the McGuire VA Medical Center
23	and Virginia Commonwealth University. All participants read and signed approved consent

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open

2			
3 4	1	forms. Results will be submitted to peer-reviewed journals and presented at national and	
5 6 7	2	international conferences.	
7 8 9	3	Trial Registration: NCT01652040	
10 11	4		
12 13	5	Keywords: RESISTANCE TRAINING, SPINAL CORD INJURY, BODY COMPOSITION,	
14 15 16	6	METABOLISM, TESTOSTERONE, MITOCHONDRIA, INFLAMMATORY BIOMARKERS	,
17 18	7		
19 20 21	8	Strengths and limitations	
22 23 24	9	> The trial will investigate the use of surface neuromuscular electrical stimulation induced	
25 26 27	10	resistance training (NMES-RT) to restore muscle size after spinal cord injury (SCI)	
27 28 29	11	> The trial will provide evidence on the effectiveness of testosterone replacement therapy	
30 31	12	(TRT) to restore muscle size and lean mass and serve as an alternative approach for those	
32 33 34	13	who cannot benefit from NMES.	
34 35 36	14	> The trial will determine how restoring muscle size and lean mass by RT+TRT or TRT can	
37 38	15	benefit the metabolic profile after SCI.	
39 40 41	16	The study is only limited to men with complete SCI	
42 43	17	Surface NMES may not benefit those with full sensation or peripheral lower motor neuron	
44 45 46	18	denervation	
46 47 48	19		
49 50	20		
51 52 53	21		
53 54 55	22		
56 57 58 59 60	23		3

Introduction

BMJ Open

-	
2	There are approximately 11,000-12,000 new cases of spinal cord injury (SCI) in the
3	United States annually with an overall prevalence of 250,000-400,000 [1, 2]. Persons with motor
4	complete injury have loss of both sensation and motor function below the level of injury, while
5	incomplete injury is characterized by preserved motor or sensory function. Chronic SCI is
6	associated with dramatic skeletal muscle atrophy [3-5], increase of fat mass (FM) [6-8] and
7	decrease of fat free mass (FFM) [6, 7]. Collectively, these factors put individuals with SCI at
8	risk for metabolic disorders such as type II diabetes and cardiovascular disease.
9	Previous studies reveal that 60% of individuals with SCI are either overweight or obese
10	[2, 9-11]. Individuals with SCI also have a redistribution of adipose tissue, with greater trunk FM
11	and visceral adipose tissue (VAT) compared to age and waist circumference matched able-
12	bodied controls [12-14]. Adipose tissue, particularly VAT, secretes proinflammatory cytokines
13	including interleukin-6 (IL-6) and tumor-necrosis factor- α (TNF- α). Therefore, the increase in
14	VAT after SCI may contribute to metabolic syndrome by stimulating the hepatic production of
15	C-reactive protein (CRP) which is tied to vascular inflammation [15-18]. Another type of ectopic
16	adipose tissue, intramuscular fat (IMF), is increased after SCI and has been correlated with
17	reduced insulin sensitivity [19, 20].
18	Metabolic changes also accompany SCI, with previous studies finding that more than

50% of individuals with SCI are glucose intolerant, while one out of five is diabetic [2, 9-11, 21].
Other studies report that 55% of individuals with SCI are at risk of developing metabolic
syndrome [22, 23]. Individuals with complete tetraplegia are more likely to experience
decreased glucose and carbohydrate tolerance and have a higher prevalence of heart disease than

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open

those with incomplete injuries [24, 25]. Furthermore, those with motor complete injury have lower HDL-C [24].

While previous studies have shown a link between body composition and metabolic profile after SCI, the cellular mechanisms remain unknown. Mitochondria are the site of oxygen consumption and energy production from glucose and lipid metabolism. Unfortunately, mitochondrial function is impaired in a number of diseases including neurodegenerative disease, atherosclerosis, hypertension and cancer [26-29]. Fewer and smaller mitochondria are found in skeletal muscle of insulin resistant, obese and type II diabetic individuals [30]. Previous studies found decreased muscle oxidative capacity and succinate dehydrogenase activity, complex II of the electron transport chain, after SCI [31-33]. One hypothesis is that skeletal muscle mitochondrial function is decreased in metabolic disorders, leading to decreased fatty acid oxidation which contributes to insulin resistance [34, 35]; however, this is controversial [35]. Mitochondria are dynamic organelles and undergo biogenesis, remodeling, and degradation. Mitochondrial biogenesis is driven in part through the action of peroxisome proliferator-activated receptor (PPAR) coactivator 1 alpha (PGC-1a) [36, 37]. In addition, PGC-1a integrates insulin signaling and lipogenesis in skeletal muscle [38, 39]. PGC-1 α is decreased in animal models following denervation [40, 41]. Decreased mitochondrial biogenesis and reduced mitochondrial mass may result in decreased energy production and therefore play a significant role in the altered metabolic profile following SCI [42]. Body composition and metabolic changes after SCI may be further exacerbated by reduced anabolic hormones including T, growth hormone and the growth hormone second

messenger insulin like growth factor-1 (IGF-1) [43, 44]. Previous studies have shown that 60%

Page 7 of 37

BMJ Open

1	of men with SCI have low T and that TRT increases IGF-1 in men [45-48]. In a rodent model of
2	SCI, TRT attenuates the loss of muscle [49, 50]. TRT decreases total body fat, increases lean
3	mass [51, 52] and increases the number of proliferating skeletal muscle satellite cells in in men
4	[53]. These findings suggest that TRT may provide metabolic benefits to individuals with SCI.
5	Resistance training (RT) improves insulin sensitivity and increased fatty acid and
6	carbohydrate metabolism as well as attenuates sarcopenia in the elderly and after SCI [54-61].
7	Moreover, RT has been shown to influence body composition by increasing lean mass,
8	decreasing FM and reducing VAT, suggesting that the benefits of RT could overcome the risk of
9	developing insulin resistance [54-57]. Neuromuscular electrical stimulation (NMES) has been
10	used to evoke RT using ankle weights in individuals with chronic SCI [57, 60]. One study
11	showed a 40% increase in skeletal muscle size and improved glucose tolerance after 12 weeks of
12	training [57].
12 13	training [57]. While there is evidence that loading the paralyzed skeletal muscles results in significant
13	While there is evidence that loading the paralyzed skeletal muscles results in significant
13 14	While there is evidence that loading the paralyzed skeletal muscles results in significant muscle hypertrophy, improvement of body composition and metabolic profile, depression of T
13 14 15	While there is evidence that loading the paralyzed skeletal muscles results in significant muscle hypertrophy, improvement of body composition and metabolic profile, depression of T after SCI may limit these effects of RT. Thus, in hypogonadal men with SCI, TRT may be an
13 14 15 16	While there is evidence that loading the paralyzed skeletal muscles results in significant muscle hypertrophy, improvement of body composition and metabolic profile, depression of T after SCI may limit these effects of RT. Thus, in hypogonadal men with SCI, TRT may be an effective therapy to counterbalance the growing rate of obesity, type II diabetes and
13 14 15 16 17	While there is evidence that loading the paralyzed skeletal muscles results in significant muscle hypertrophy, improvement of body composition and metabolic profile, depression of T after SCI may limit these effects of RT. Thus, in hypogonadal men with SCI, TRT may be an effective therapy to counterbalance the growing rate of obesity, type II diabetes and cardiovascular disease among individuals with SCI. Moreover, TRT may provide an effective
13 14 15 16 17 18	While there is evidence that loading the paralyzed skeletal muscles results in significant muscle hypertrophy, improvement of body composition and metabolic profile, depression of T after SCI may limit these effects of RT. Thus, in hypogonadal men with SCI, TRT may be an effective therapy to counterbalance the growing rate of obesity, type II diabetes and cardiovascular disease among individuals with SCI. Moreover, TRT may provide an effective intervention for those who cannot effectively benefit from NMES because of denervation. With
13 14 15 16 17 18 19	While there is evidence that loading the paralyzed skeletal muscles results in significant muscle hypertrophy, improvement of body composition and metabolic profile, depression of T after SCI may limit these effects of RT. Thus, in hypogonadal men with SCI, TRT may be an effective therapy to counterbalance the growing rate of obesity, type II diabetes and cardiovascular disease among individuals with SCI. Moreover, TRT may provide an effective intervention for those who cannot effectively benefit from NMES because of denervation. With these considerations in mind, here we report the design of an ongoing study for which the major
13 14 15 16 17 18 19 20	While there is evidence that loading the paralyzed skeletal muscles results in significant muscle hypertrophy, improvement of body composition and metabolic profile, depression of T after SCI may limit these effects of RT. Thus, in hypogonadal men with SCI, TRT may be an effective therapy to counterbalance the growing rate of obesity, type II diabetes and cardiovascular disease among individuals with SCI. Moreover, TRT may provide an effective intervention for those who cannot effectively benefit from NMES because of denervation. With these considerations in mind, here we report the design of an ongoing study for which the major research goal is to investigate the effects of 16 weeks of evoked RT+TRT vs. TRT on body
13 14 15 16 17 18 19 20 21	While there is evidence that loading the paralyzed skeletal muscles results in significant muscle hypertrophy, improvement of body composition and metabolic profile, depression of T after SCI may limit these effects of RT. Thus, in hypogonadal men with SCI, TRT may be an effective therapy to counterbalance the growing rate of obesity, type II diabetes and cardiovascular disease among individuals with SCI. Moreover, TRT may provide an effective intervention for those who cannot effectively benefit from NMES because of denervation. With these considerations in mind, here we report the design of an ongoing study for which the major research goal is to investigate the effects of 16 weeks of evoked RT+TRT vs. TRT on body composition (primary outcome variables; muscle cross sectional area (CSA), VAT, %FM) and

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

1 Methods and analysis

2 <u>Study design</u>

A randomized controlled study will be undertaken in which individuals with SCI will be
randomized to receive RT+TRT or TRT alone for 16 weeks.

The study was approved by the McGuire Veteran Affairs Investigation Research Board and the Virginia Commonwealth University (VCU) Office of Research and Innovation. The trial has been registered at clinicaltrials.gov (NCT01652040). A member of the research team will explain the study and obtain written informed consent. After informed consent each subject underwent a detailed physical examination at the Hunter Holmes McGuire VA Medical Center (VAMC) by a physiatrist board certified in SCI medicine. This exam included a neurological assessment, electrocardiogram and American Spinal Cord Injury Association (ASIA) examination.

The study design and procedures are presented in Figure 1. The study visits included
estimation of body composition, anthropometry, and dual x-ray absorptiometry (DXA; baselines
1 and 2 and post-interventions 1 and 2). Additionally, MRI scans were obtained for trunk
adipose tissue and lower extremity skeletal muscles and IMF CSA (baseline 2, post-interventions
1 and 2). Participants were then escorted to the VCU-CRS unit (VCU Clinical Research Unit)
for dinner, and remained in the VCU-CRS unit overnight for the 4 study visits.

Recruitment and Randomization

The recruitment process started in July 2012 and ended in June 2015 and data analysis is currently being performed. Recruitment details and randomization are presented in Table 1 and Figure 2. Prior to the start of the study, numbers 1-26 were randomized using the n-Query software program by the principal investigator. At the end of the two-day assessment period Page 9 of 37

BMJ Open

(Baseline 1), the allocation of subjects into either group was performed in a blinded fashion by
drawing a folded paper with a number (1-26) by the research coordinator. This number was
matched with the assignment from the randomization procedure.

Twenty-six participants were recruited to participate in the study. A 4 week delayed entry period was included to obtain baseline measurements, stabilize body weight and educate participants on how to monitor their dietary intake. Four participants withdrew from the trial. At baseline 2, two participants failed to comply with study protocol and he withdrew from the study because lack of interest. Nurses failed to locate the veins on the third participant to conduct IVGTT and he was asked to withdraw from the trial. The fourth participant was diagnosed with unhealed grade IV pressure ulcer after being admitted into the trial. Following the delayed entry period, participants were randomly assigned to a RT+TRT group (n = 13) or TRT group (n = 13). TRT patches (4-6 mg/day) were replaced daily on alternating shoulders at bedtime for 16 weeks. The RT+TRT group received 16 weeks of supervised unilateral progressive RT using surface NMES and ankle weights. Following the intervention the two-day assessment period was

15 repeated (Figure 1).

Participants and eligibility criteria

Participants were men between 18-50 years old with a body mass index (BMI) of \leq 30 kg/m². The upper limit of age was set to 50 years to avoid unanticipated side effects that may result from TRT applications. Participants had motor complete SCI C5-L2, ASIA A or B.

20 Participants with pre-existing medical conditions were excluded. These included cardiovascular

disease, uncontrolled type II diabetes and those on insulin, pressures sores stage 2 or greater,

supra-physiological T level, hematocrit above 50% and urinary tract infection or symptoms.

I. Interventions

Resistance training

The first week of RT was conducted with no ankle weights to ensure that the knee extensor muscles could extend the weight of the lower leg against gravity. Once full knee extension was achieved in a sitting position, two pounds were added on a weekly basis with the criteria that full knee extension was achieved before more weight was added. Surface NMES was applied to the knee extensor muscles via surface electrodes. One electrode was placed 2–3 cm above the superior aspect of the patella over the vastus medialis muscle, and the other lateral to and 30 cm above the patella over vastus lateralis muscle. Current from the stimulator was manually increased in 5-second intervals to evoke full knee extension with a 3-minute rest between sets, 30 Hz, 450µs pulses and a current sufficient to evoke full knee extension as previously described [62-64]. Four sets of 10 repetitions was performed twice weekly for 16 weeks.

14 <u>Testosterone replacement therapy (TRT)</u>

Following baseline measurements, T was administered by a patch (Androderm, Watson Pharma. Inc, Parsippany, NJ) that delivered between 4-6 mg/day [51]. Serum T concentration was measured and reviewed in a blinded fashion weekly for the first month and then every 4 weeks. The dose was decreased to 2 mg/day if the serum T concentration was more than 1000 ng/dL (34.7 nmol/L) and the participant was reeducated about use of the patch if the concentration was less than 250 ng/dL (8.7nmol/L) above the pretreatment concentration. Patches were returned after use to ensure adherence to the intervention protocol.

BMJ Open

Detraining after 16-week intervention Six participants from the RT+TRT group continued training once weekly using the same training approach for 16 weeks. Their TRT dose was set at 2 mg/ day. Six participants from the TRT group were followed for additional 16 weeks without intervention. Following the detraining phase, the two-day assessment period was repeated without performing skeletal muscle biopsy (Figure 1). The rationale of the detraining phase is to determine whether once weekly training can maintain skeletal muscle hypertrophy, body composition and metabolic improvements incurred by the 16 week intervention.

II. <u>Primary Outcomes</u>

Data will main confidential at all times and any patient identifiers will be removed prior to data analysis. Analysis for all study procedures will be performed in a blinded fashion ensuring full concealment until complete data analysis.

13 Anthropometrics and Body Composition Assessments

Height of each participant was determined while lying on their left side in the supine position. Two smooth wooden boards were placed at the participant's head and heels and the distance between them was measured to the nearest cm. Measurement of waist circumference was determined in duplicate by identifying the narrowest region of the trunk from sitting and supine positions. Three-site skin fold assessment was conducted in triplicates for suprailiac, abdominal and thigh.

A Lunar Prodigy Advance (Lunar Inc., Madison, WI) bone densitometer was used to
 measure total body and regional (lumbar spine, proximal femur, and forearm) FM) and FFM.
 Testing was performed after lower extremity elevation for at least 30 minutes to minimize fluid

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open

shift. The subject was assisted to lie on a padded table and both legs were strapped proximal to the knees and ankles. The arms and legs were positioned to ensure proper alignment.

3 <u>Magnetic resonance imaging (MRI)</u>

MRI was performed at the VAMC Hospital using a 1.5 Tesla magnet (GE) as previously described [4, 19, 57, 65, 66]. Transaxial images, 10 mm thick and 10 mm apart, were taken from the hip joint to the knee joint and from knee to the ankle using the whole body coil. The location of the scan was identified by placing a mark 6 inches proximal to and distal to the patella and matched on follow up scans. To analyze VAT and subcutaneous adipose tissue (SAT) transverse slices (0.8 cm thickness) were acquired every 0.4 cm gap from the xyphoid process to the femoral heads. Images were acquired in series of two stacks with L4-L5 used as a separating point.

Analyses will be performed using commercial available software (X-vessel) as previously described [4, 19, 65, 66]. Briefly, the thigh and leg images will be segmented into fat (high intensity), skeletal muscle (mid intensity) and background/bone (low intensity). Manual selection of a pixel of skeletal muscle will highlight all skeletal muscle pixels and provide the total number of skeletal muscle pixels while excluding fat. VAT and SAT will be measured by manually tracing around the anatomical borders. The number of pixels in the highlighted region will be multiplied by the matrix size to measure VAT and SAT CSA (cm²).

19 Skeletal muscle torque and specific tension

Torque and muscle CSA of the knee extensor muscle group was evaluated using a Biodex isokinetic dynamometer (Shirely, NY). Measurements were done 72 hours after the muscle biopsy to prevent acute effects. Participants were seated with both the trunk-thigh angle and the knee-thigh angle at 90°. Each participant was securely strapped to the test chair by a crossover Page 13 of 37

BMJ Open

shoulder harnesses and a belt across the hip joint. The axis of the dynamometer was aligned to the anatomical knee axis and the lever arm was attached 2-3 cm above the lateral malleolus. Before measuring isometric torque, passive tension of the right knee extensor muscle group was measured at 5, 30, 60, 90,180, 270 degrees/sec as an index of spasticity. Isometric torque was measured using current amplitude of 50 and 100 mA at a frequency of 30 Hz and pulse duration $450 \,\mu\text{s}$. Isokinetic torque was measured at 60, 90 and 180 degrees/sec using the same

stimulation protocol.

Serum and plasma analysis

All metabolic profile analysis is presented in Table 2. Blood samples were collected after an overnight fast. Total T was measured by liquid chromatography with isotope dilution mass spectrometry detection after supported liquid extraction. Free T concentration was calculated using sex hormone binding globulin and albumin concentrations (www.issam.ch/freetesto.htm) [67]. Serum IGF-I concentration will be measured by an immunoluminometric assay (Quest Diagnostics, Madison, NJ). Fasting lipid profiles (HDL-C, LDL-C, total cholesterol, and triglycerides) will be determined as previously described [8, 20]. Inflammatory biomarkers CRP, IL-6, TNF- α , and free fatty acids will be determined by commercially available enzyme-linked immunosorbent assay kits (ALPCO; Salem, NH).

Basal metabolic rate

After an overnight fast for 10-12 hours, participants were kept in a dark room for 20-30 minutes to attain a resting state during which basal metabolic rate was measured as previously described [8]. Briefly, while in a supine position a canopy was placed over the subject's head. Each subject was allowed 2-3 minutes before starting the test no ensure no signs of apnea or claustrophobic episodes. All subjects were instructed to stay awake during the entire test and to

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

1	breathe normally. The canopy was then attached to a vacuum to draw the expired gases to the
2	flowmeter of the metabolic unit (COSMED KB42). Prior to the test, the metabolic unit was
3	calibrated using the standard procedures identified by the manufacturer. Carbon dioxide and
4	oxygen output was used to calculate the respiratory exchange ratio and basal metabolic rate
5	(kcal/day) was calculated using the average of the last 15 minutes of the test. This was used to
6	measure the percentage of substrate utilization (% fat vs. % carbohydrate) [8, 68].
7	To determine whether NMES-RT improves exercise performance, testing was performed
8	using a functional electrical stimulation bike (Restorative Therapies, RTI-300) against
9	progressive resistance protocol until fatigue. The protocol started with 3 minutes resting with the
10	participant attached to the bike, 3 minute warm-up (35-37 RPM) using the servomotor and then
11	two minute incremental progressive resistance protocol (1 Nm, 3 Nm, 5 Nm) until fatigue. After
12	fatigue, a one minute cool down period was allowed followed by 5 minutes of rest. Energy
13	expenditure and cardiovascular performance $[VO_2(1/min)]$, blood pressure and hear rate] was
14	collected at baseline 2 and post-interventions 1 and 2.
15	Each participant met with a dietician at the start of the study and was asked to maintain a
16	5 day food dietary log monitoring their caloric intake for the duration of the study. Participants
17	were instructed to record all liquid and food consumption and no nutritional advice was given on
18	the size or the portion of the food. Dietary logs were analyzed on a weekly basis using a
19	nutritional software package (Nutrition Data System for Research version 2014) under the
20	supervision of a registered dietitian. After analysis was completed, the average caloric intake
21	(kcal) and percentage macronutrients (carbohydrates, fat and protein) were calculated. Each
22	participant received monthly feedback via phone call with the registered dietician on how to
23	maintain appropriate dietary habits based on his basal metabolic rate and percentage

Page 15 of 37

BMJ Open

macronutrients (45% carbohydrates, 30% fat and 25%). Every effort was made to balance the
 dietary habits between the RT+TRT and the TRT group.

Intravenous Glucose Tolerance Test (IVGTT)

An IVGTT was used to determine insulin sensitivity and glucose effectiveness before training and 48 hours after the last exercise bout. After an overnight fast, an intravenous line was placed to facilitate infusion of glucose and blood sampling. Blood samples were taken every 2-3 minutes before and 30 minutes after glucose injection (0.3 gm/kg IV over 30 seconds), followed by 5-10 minutes sampling ending at 180 minutes. Twenty minutes after the glucose injection a bolus of insulin (0.02 U/kg) was injected to determine insulin sensitivity. Plasma glucose was measured by the Autoanalyzer glucose oxidase method and plasma insulin concentrations were determined by commercial radioimmunoassay (Table 2). The glucose disposal rate per unit of secreted insulin per unit time and glucose mediated glucose disposal rate were calculated from a least-squares fitting of the temporal pattern of glucose and insulin throughout the IVGTT using the MINMOD program [69]. A representative analysis of IVGTT is presented in Figure 3. The acute insulin response to IV glucose was calculated as the mean rise in plasma insulin above baseline at 3, 4 and 5 minutes after IV glucose administration. KG, a measure of glucose tolerance, was calculated as the least square slope of the natural log of absolute glucose concentration between 5 and 20 minutes after the glucose bolus [70]. The homeostatic model of assessment of insulin resistance (HOMA-IR) was calculated and insulin sensitivity was determined using Matsuda and Defronzo formula [70, 71].

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

III. <u>Secondary Outcomes</u>

<u>Skeletal muscle biopsy</u>

Biopsy samples of vastus lateralis muscle ($\sim 100 \text{ mg}$ wet weight total) were obtained by a 14 gauge tru-cut biopsy needle, before and 72 hours after the interventions. The biopsy samples were quickly frozen in liquid nitrogen and stored at -80°C until further analysis. One sample was split into two halves and used for measuring activities of mitochondrial enzymes. The second sample was used for Western blot analysis. The third sample was used for immunohistochemistry. **Mitochondrial Electron Transport Chain activities** Electron transport chain enzyme activities were measured spectrophotometrically in skeletal muscle homogenates as previously described [72]. Rotenone-sensitive NADH cytochrome c reductase measured complexes I and III. Decylubiquinol-cytochrome c oxidoreductase was measured as the antimycin-sensitive reductase to assess complex III. Citrate synthase was measured as an estimate of mitochondrial mass as previously described [72]. **Protein content** Proteins were resolved by SDS-PAGE then transferred to a PVDF membrane (Trans-blot; Bio-Rad). Equal protein loading was confirmed with a Ponceau S stain after the transfer. After blocking for one hour, membranes were incubated overnight at 4 °C with primary antibody diluted 1:1000. Primary antibodies included glucose transpoter-4, focal adhesion kinase, PGC-1a (Santa Cruz Biotechnology), total protein kinase B (AKT), phosphorylated AKT, total mammalian target of rapamycin (mTOR), phosphorylated mTOR, (Cell Signaling). Membranes were rinsed and placed in a 1:2000 solution of a horseradish peroxidase-conjugated secondary antibody (Cell Signaling) for 1 hour at room temperature. Membranes were then rinsed and

1

BMJ Open

2	
3	
4	
5	
2	
6	
7	
' ~	
8	
a	0
4	~
1	0
1	1
1	2 3
1	3
ż	4
1	4
1	4 5 6 7 8 9
ż	č
1	6
1	7
	0
ľ	8
1	9
Ś	0
2	0
2	01234567890123456789
5	ົ
2	Z
2	3
ົ	1
2	4
2	5
\sim	6
2	0
2	7
\sim	0
2	0
2	9
2	Λ
5	U
3	1
Q	2
2	2
3	3
ຊ	Λ
-	-
3	5
ຊ	6
-	2
3	7
ຊ	8
2	0
3	9
Δ	0
4	
4	2
4	
4	4
	5
4	6
4	
4	8 9 0
,	o l
4	Э
5	0
5	
0	1
5	2
	3
J	3
5	4
ᄃ	5
ں ۔	5
5	6
ᄃ	7
5	7
5	7 8

60

incubated with a horseradish peroxidase chemiluminescence detection reagent (GE Healthcare)
 for 5 minutes. Proteins were visualized using an Amersham Imager 600 (GE Healthcare). Optical
 densities were measured using iQuant software and all samples were normalized to the baseline
 values for that participant.

<u>Histological Analysis</u>

Immediately after muscle biopsy, samples were mounted on tongue blades by using a 6 medium of OCT compound and tragacanth gum and stored at -70°C until analysis. Serial cross 7 sections (8-10 µM) will be collected on glass slides and frozen at -20°C until analysis. Fiber type 8 and CSA will be determined by histochemical staining for myosin ATPase (preincubation at pH 9 10 4.3 or 9.4) as previously described [73]. Type I fibers will be identified by dark staining after 11 acid preincubation, type II fibers light staining, and type IIB intermediate. At pH 9.4 the staining 12 pattern was the opposite. Haematoxylin & Eosin (H&E) staining will be performed according to conventional histological procedures. Mitochondrial complex II and IV activity will be estimated 13 14 by the activity of succinate dehydrogenase and cytochrome c oxidase activity, respectively, as previously described [74, 75]. Stained muscle sections will be observed using an Olympus BX-15 51 fluorescent microscope (Olympus, Tokyo, Japan) and analyzed using ImageJ software. 16

17 <u>Statistical Analyses</u>

Paired t-tests will be used to determine differences in body composition and metabolic profile between baseline 1 and baseline 2. To determine the effect of interventions and detraining, a repeated measures ANOVA will be used. Simple linear and multivariate regression analyses were used to examine the relationship between body composition and metabolic profile variables. For protein expression, we will use paired t-tests to examine the effects of each intervention. The effect size is calculated based on the effects of RT on body composition and BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

metabolic profiles that were previously published [62]. The number of subjects necessary to find statistical differences in the major variables (muscle size, VAT and insulin concentration) of this study was found to be 10 participants per group. Thirteen subjects per group would provide greater than 80% power to detect a change of this magnitude using a two-sample t-test with an alpha level of 0.05. Even if three subjects were to drop out, ten subjects per group would still have 80% power to detect a change in muscle size. One participant from the RT+TRT group withdrew after developing side effects to TRT patches and the medical monitor personnel recommended to withdraw from the trial in week 8. However, we will perform intent to treat analysis on his data. We anticipate that we will collect sufficient data to determine the effects of rehabilitation interventions on protein expression, mitochondrial enzymatic and ETC activities in individuals with SCI. Statistical analysis will be performed using SPSS version 23.0 (Chicago, IL) with a level of significance set at p < 0.05. **Ethics and Dissemination**

Ethical approval has been obtained from the institutional review boards at the McGuire VA Medical Center and Virginia Commonwealth University. All participants read and signed approved consent forms prior to baseline assessment. Results of the study will be published in peer-reviewed journal and presented at national and international conferences.

18 Data Monitoring

The research staff will oversee and monitor the study to ensure data quality and
participant compliance. Adverse events, regardless of severity, will be reported to the McGuire
institutional review board. Only members of the research team will have access to data.

Discussion

BMJ Open

2	Individuals with SCI experience profound skeletal muscle atrophy, deterioration in body
3	composition and abnormal metabolic profile. Within few weeks of injury, there is a significant
4	decrease in whole body FFM, particularly lower extremity skeletal muscle mass, and subsequent
5	increase in FM. These changes predispose this population to the risk of glucose intolerance,
6	insulin resistance, dyslipidemia and the development of type II diabetes and cardiovascular
7	disease. The main purpose of this study is to investigate the effects of 16 weeks of evoked
8	RT+TRT or TRT alone on body composition (muscle CSA, IMF, VAT, %FM, FFM) and
9	metabolic profile (glucose, lipid and basal metabolic rate) in individuals with motor complete
10	SCI.
11	Ectopic adipose tissue accumulation, IMF and VAT, has been strongly associated with
12	altered metabolic profile after SCI [19, 20]. IMF has been determined to account for a 70%
13	reduction in glucose tolerance in individuals with complete SCI [19]. VAT is independently
14	associated with impairment in glucose tolerance, insulin resistance and dyslipidemia after SCI
15	[20]. Edwards et al noted significant positive association between VAT and insulin resistance
16	and a negative correlation between VAT:SAT ratio and HDL-C [13]. Increase in VAT is also
17	related to leptin and plasminogen activator inhibitor-1 concentrations [14]. It is possible that
18	increases in FM are associated with inflammatory biomarkers that trigger metabolic syndrome
19	after SCI [22]. Ectopic adipose tissue has been demonstrated to secrete proinflammatory
20	cytokines, including IL-6 and TNF- α . This stimulates hepatic production of CRP which is tied to
21	vascular inflammation [15-19].

RT is an important type of exercise that has been shown to induce positive physiological
adaptations such as increasing lean mass and reducing metabolic disorders in other clinical

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

populations. Previous work suggests that twice weekly NMES-RT can induce favorable body composition and metabolic adaptations. Twelve weeks of NMES-RT has shown to increase thigh muscle CSA by 35-40% as measured by MRI [57]. Moreover, there was a reduction in %leg FM and a trend towards decrease in VAT CSA after 12 weeks of NMES-RT [62]. The favorable adaptations in body composition were associated with decrease in plasma insulin area under the curve and plasma triglycerides [57]. These findings were attributed to an increase in plasma IGF-1. However, the effect of training appears to be limited to the trained muscle and only modestly impacted whole body composition. It is unclear whether a longer RT program greater than 12 weeks would provide additional benefits to individuals with SCI. TRT has been shown to increase skeletal muscle mass in hypogonadal men, men with chronic illness, and older men [51-53]. Androgen deficiency in men is associated with a loss of FFM and an increase in FM [51]. In epidemiologic studies, men with decreased free T-index had lower appendicular skeletal muscle mass than those with normal T levels [76]. Previous work documented that TRT increases muscle mass with a reciprocal decrease in total body FM [51, 52]. This reciprocal action has been suggested due to a switch from adipogenic toward myogenic differentiation of mesenchymal stem cells [76]. In a randomized controlled double blinded clinical trial, TRT was shown to improve insulin sensitivity, CRP and reduce VAT [52]. Sixty percent of men with SCI have low T level and levels are associated with time since injury [47, 48]. TRT has also been reported to increase IGF-1 and several molecular mechanisms related to the protective pathways have been recently elucidated [45, 46, 49, 77]. Therefore, enhancing the decline in anabolic homeostasis by providing TRT may provide additional benefits as was previously demonstrated by increasing lean mass and resting metabolic trial in individuals with SCI.

BMJ Open

In summary, we anticipate that this trial will provide important insights into the body composition and metabolic benefits following 16 weeks of evoked RT+TRT or TRT. If beneficial, this may be a feasible strategy for the rehabilitation of individuals with chronic SCI and increase the health of this and other clinical populations. Additionally, TRT alone may provide an alternative intervention for those who cannot benefit from training using surface NMES, because of lower motor neuron denervation or intolerance to applications of electrical stimulation. The study will also shed light on several molecular pathways that have been suggested to influence both body composition and metabolic profile. Trial Status: Enrollment into the study started in July 2012 and as of April 2016 all participants have completed the study. Data collection and data analysis are expected to be completed in December 2016. The study is expected to be closed in June 2017. **Contributions:** ASG supervised all aspects of the trial including all interventions and measurements and secured funding for the trial procedures. ASG, REK, LCO drafted the manuscript. REK, JS, RK, and LCO contributed to data collection and analysis. RG, TL, TC, DXC, CC, RA, EJL and DRG are research physicians that contributed to patient monitoring and study design. DXC and RA will provide guidance during data analysis and manuscript preparation. All authors affirm that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned have been explained.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Competing interests: The authors have no competing interests to declare

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Funding: This work was supported by VA-RRD CDA2 to Ashraf S. Gorgey, clinical trial registration number NCT01652040. Acknowledgements: We would like to thank Rodney Wade, Sakita Sistrun, Liron Segal for helping in the processes of data capturing and analysis as well as the study participants for their time and effort. We would also like to thank Hunter Holmes McGuire Research Institute and Spinal Cord Injury Services and Disorders for providing the environment to conduct clinical human research trials. VCU Clinical Research Service for providing space and staff to perform the blood work procedures. The work is supported by the Department of Veteran Affairs, Veteran Health Administration, Rehabilitation Research and Development Service (B7867-W). **Open Access:** This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/.

BMJ Open

2			
3	1	Refe	rences
4 5			
6	2	1.	Center, N.S.C.I.S., Spinal cord injury facts and figures at a glance. J Spinal Cord Med,
7	3		2013. 36 (1): p. 1-2.
8	4	2.	DeVivo, M.J., B.K. Go, and A.B. Jackson, Overview of the national spinal cord injury
9	5		statistical center database. J Spinal Cord Med, 2002. 25 (4): p. 335-8.
10	6	3.	Castro, M.J., et al., Influence of complete spinal cord injury on skeletal muscle cross-
11	7	5.	sectional area within the first 6 months of injury. Eur J Appl Physiol Occup Physiol,
12			1999. 80 (4): p. 373-8.
13 14	8	4	
14	9	4.	Gorgey, A.S. and G.A. Dudley, <i>Skeletal muscle atrophy and increased intramuscular fat</i>
16	10	-	after incomplete spinal cord injury. Spinal Cord, 2007. 45(4): p. 304-9.
17	11	5.	Wielopolski, L., et al., Measuring partial body potassium in the legs of patients with
18	12		<i>spinal cord injury: a new approach.</i> J Appl Physiol (1985), 2009. 106 (1): p. 268-73.
19	13	6.	Spungen, A.M., et al., Soft tissue body composition differences in monozygotic twins
20	14		discordant for spinal cord injury. J Appl Physiol (1985), 2000. 88(4): p. 1310-5.
21	15	7.	Spungen, A.M., et al., Factors influencing body composition in persons with spinal cord
22	16		injury: a cross-sectional study. J Appl Physiol (1985), 2003. 95(6): p. 2398-407.
23 24	17	8.	Gorgey, A.S., et al., Relationship of spasticity to soft tissue body composition and the
24 25	18		metabolic profile in persons with chronic motor complete spinal cord injury. J Spinal
26	19		Cord Med, 2010. 33 (1): p. 6-15.
27	20	9.	Gater, D.R., Jr., <i>Obesity after spinal cord injury</i> . Phys Med Rehabil Clin N Am, 2007.
28	21	γ.	18 (2): p. 333-51, vii.
29	22	10.	Weaver, F.M., et al., <i>Prevalence of obesity and high blood pressure in veterans with</i>
30	23	10.	spinal cord injuries and disorders: a retrospective review. Am J Phys Med Rehabil,
31			
32	24	11	2007. 86 (1): p. 22-9.
33 34	25	11.	Lavela, S.L., et al., <i>Diabetes mellitus in individuals with spinal cord injury or disorder</i> . J
34 35	26	10	Spinal Cord Med, 2006. 29 (4): p. 387-95.
36	27	12.	Mojtahedi, M.C., et al., The association between regional body composition and
37	28		metabolic outcomes in athletes with spinal cord injury. Spinal Cord, 2008. 46(3): p. 192-
38	29		7.
39	30	13.	Edwards, L.A., J.M. Bugaresti, and A.C. Buchholz, Visceral adipose tissue and the ratio
40	31		of visceral to subcutaneous adipose tissue are greater in adults with than in those without
41	32		spinal cord injury, despite matching waist circumferences. Am J Clin Nutr, 2008. 87(3):
42	33		p. 600-7.
43 44	34	14.	Maruyama, Y., et al., Serum leptin, abdominal obesity and the metabolic syndrome in
45	35		individuals with chronic spinal cord injury. Spinal Cord, 2008. 46(7): p. 494-9.
46	36	15.	Manns, P.J., J.A. McCubbin, and D.P. Williams, Fitness, inflammation, and the
47	37		<i>metabolic syndrome in men with paraplegia</i> . Arch Phys Med Rehabil, 2005. 86 (6): p.
48	38		1176-81.
49	39	16.	Matsuzawa, Y., <i>White adipose tissue and cardiovascular disease</i> . Best Pract Res Clin
50		10.	Endocrinol Metab, 2005. 19 (4): p. 637-47.
51	40	17	
52	41	17.	Kern, P.A., et al., Adipose tissue tumor necrosis factor and interleukin-6 expression in
53 54	42		<i>human obesity and insulin resistance</i> . Am J Physiol Endocrinol Metab, 2001. 280 (5): p.
54 55	43	10	E745-51.
56	44	18.	Blake, G.J. and P.M. Ridker, Novel clinical markers of vascular wall inflammation. Circ
57	45		Res, 2001. 89 (9): p. 763-71.
58			
59			
60			22

1

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

2			
3	1	19.	Elder, C.P., et al., Intramuscular fat and glucose tolerance after spinal cord injurya
4	2	- / •	cross-sectional study. Spinal Cord, 2004. 42 (12): p. 711-6.
5 6	3	20.	Gorgey, A.S., K.J. Mather, and D.R. Gater, <i>Central adiposity associations to</i>
7	4	20.	carbohydrate and lipid metabolism in individuals with complete motor spinal cord injury.
8	5		Metabolism, 2011. 60 (6): p. 843-51.
9	6	21.	Bauman, W.A. and A.M. Spungen, <i>Disorders of carbohydrate and lipid metabolism in</i>
10	7	21.	veterans with paraplegia or quadriplegia: a model of premature aging. Metabolism,
11			
12	8	22	1994. 43 (6): p. 749-56.
13	9	22.	Grundy, S.M., et al., <i>Definition of metabolic syndrome: Report of the National Heart,</i>
14 15	10		Lung, and Blood Institute/American Heart Association conference on scientific issues
16	11	22	related to definition. Circulation, 2004. 109 (3): p. 433-8.
17	12	23.	Nelson, M.D., et al., Metabolic syndrome in adolescents with spinal cord dysfunction. J
18	13		Spinal Cord Med, 2007. 30 Suppl 1: p. S127-39.
19	14	24.	Bauman, W.A. and A.M. Spungen, Coronary heart disease in individuals with spinal
20	15		cord injury: assessment of risk factors. Spinal Cord, 2008. 46(7): p. 466-76.
21	16	25.	Lee, C.S., et al., Evaluating the prevalence of silent coronary artery disease in
22	17		asymptomatic patients with spinal cord injury. Int Heart J, 2006. 47(3): p. 325-30.
23 24	18	26.	Itoh, K., et al., <i>Mitochondrial dynamics in neurodegeneration</i> . Trends Cell Biol, 2013.
25	19		23 (2): p. 64-71.
26	20	27.	Chan, D.C., Mitochondria: dynamic organelles in disease, aging, and development. Cell,
27	21		2006. 125 (7): p. 1241-52.
28	22	28.	Zhao, J., et al., Mitochondrial dynamics regulates migration and invasion of breast
29	23		cancer cells. Oncogene, 2013. 32(40): p. 4814-24.
30 31	24	29.	Phielix, E. and M. Mensink, Type 2 diabetes mellitus and skeletal muscle metabolic
32	25		<i>function</i> . Physiol Behav, 2008. 94 (2): p. 252-8.
33	26	30.	Ritov, V.B., et al., <i>Deficiency of electron transport chain in human skeletal muscle</i>
34	27	200	mitochondria in type 2 diabetes mellitus and obesity. Am J Physiol Endocrinol Metab,
35	28		2010. 298 (1): p. E49-58.
36	29	31.	Erickson, M.L., et al., Near-infrared assessments of skeletal muscle oxidative capacity in
37	30	51.	persons with spinal cord injury. Eur J Appl Physiol, 2013. 113 (9): p. 2275-83.
38	31	32.	Martin, T.P., et al., Influence of electrical stimulation on the morphological and
39 40	32	52.	metabolic properties of paralyzed muscle. J Appl Physiol (1985), 1992. 72(4): p. 1401-6.
41		33.	Grimby, G., et al., <i>Muscle fiber composition in patients with traumatic cord lesion</i> . Scand
42	33	55.	
43	34 25	24	J Rehabil Med, 1976. 8 (1): p. 37-42.
44	35	34.	Goodpaster, B.H., <i>Mitochondrial deficiency is associated with insulin resistance</i> .
45	36	25	Diabetes, 2013. 62 (4): p. 1032-5.
46 47	37	35.	Holloszy, J.O., "Deficiency" of mitochondria in muscle does not cause insulin resistance.
47 48	38	26	Diabetes, 2013. 62 (4): p. 1036-40.
49	39	36.	Scarpulla, R.C., Metabolic control of mitochondrial biogenesis through the PGC-1 family
50	40		regulatory network. Biochim Biophys Acta, 2011. 1813(7): p. 1269-78.
51	41	37.	Arany, Z., PGC-1 coactivators and skeletal muscle adaptations in health and disease.
52	42		Curr Opin Genet Dev, 2008. 18(5): p. 426-34.
53	43	38.	Summermatter, S., et al., Peroxisome proliferator-activated receptor {gamma}
54 55	44		coactivator 1{alpha} (PGC-1{alpha}) promotes skeletal muscle lipid refueling in vivo by
55 56	45		activating de novo lipogenesis and the pentose phosphate pathway. J Biol Chem, 2010.
50 57	46		285 (43): p. 32793-800.
58			
59			
60			23

BMJ Open

	s.
	2
	Ο
	õ
	Φ
	÷
	J Open: firs
	rst published as 10
	g
	F
	≌
	<u>s</u>
	ž
	R
	~
	SE
	1
	<u></u>
	5
	ത്
	×
	Ξ.
	36/bmjopen-2016-014125 on 4 April 2017. Downld
	<u>o</u>
	ğ
	Щ.
	٦.
	2016-0
	Š
	6
	ĭ
	ó
	~
	÷
	Ñ
	σī
	0
)14125 on 4
	4
	-
	₽
	2
	ril 201
	N
	Ó
	<u>-</u>
	7
	2
	ĭ
	S
	<u> </u>
	õ
	ő
	loao
	bade
	bade
	loaded fr
	bade
-	paded from http://bmjop
-	paded from http://bmjope
-	paded from http://bmjop
-	paded from http://bmjope
-	baded from http://bmjopen.bmj.com/ on Apr
-	paded from http://bmjope
-	baded from http://bmjopen.bmj.com/ on Apr
-	baded from http://bmjopen.bmj.com/ on Apr
-	baded from http://bmjopen.bmj.com/ on April 18,
•	baded from http://bmjopen.bmj.com/ on Apr
•	baded from http://bmjopen.bmj.com/ on April 18,
•	baded from http://bmjopen.bmj.com/ on April 18, 20
•	baded from http://bmjopen.bmj.com/ on April 18, 20
•	baded from http://bmjopen.bmj.com/ on April 18, 20
•	baded from http://bmjopen.bmj.com/ on April 18, 20
•	baded from http://bmjopen.bmj.com/ on April 18, 20
•	baded from http://bmjopen.bmj.com/ on April 18, 20
•	baded from http://bmjopen.bmj.com/ on April 18, 20
•	baded from http://bmjopen.bmj.com/ on April 18, 2024 by guest.
•	baded from http://bmjopen.bmj.com/ on April 18, 20
•	baded from http://bmjopen.bmj.com/ on April 18, 2024 by guest.
•	baded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Pri
•	baded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Pri
•	baded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Pri
•	baded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Pri
•	baded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Pri
•	baded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Pri
•	baded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Pri
•	baded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Pri
•	baded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Pri
•	baded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Pri
•	baded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Pri
•	baded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Pri

2			
3	1	39.	Pagel-Langenickel, I., et al., PGC-1alpha integrates insulin signaling, mitochondrial
4	2	57.	regulation, and bioenergetic function in skeletal muscle. J Biol Chem, 2008. 283 (33): p.
5	2		22464-72.
6 7	4	40.	Sacheck, J.M., et al., <i>Rapid disuse and denervation atrophy involve transcriptional</i>
8	5	т 0.	changes similar to those of muscle wasting during systemic diseases. FASEB J, 2007.
9	6		21(1): p. 140-55.
10	7	41.	
11	8	41.	Adhihetty, P.J., et al., <i>Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle</i> . J Appl Physiol (1985), 2007. 102 (3): p. 1143-51.
12		42.	
13 14	9	42.	O'Brien, L.C.G., A.S., <i>Skeletal muscle mitochondrial health and spinal cord injury.</i>
15	10	12	World J Orthop., 2016(In press).
16	11	43.	Tsitouras, P.D., et al., Serum testosterone and growth hormone/insulin-like growth
17	12	4.4	factor-I in adults with spinal cord injury. Horm Metab Res, 1995. 27(6): p. 287-92.
18	13	44.	Bauman, W.A., et al., Blunted growth hormone response to intravenous arginine in
19	14		subjects with a spinal cord injury. Horm Metab Res, 1994. 26(3): p. 152-6.
20	15	45.	Bhasin, S., <i>Regulation of body composition by androgens</i> . J Endocrinol Invest, 2003.
21 22	16		26 (9): p. 814-22.
23	17	46.	Bhasin, S. and J.G. Buckwalter, Testosterone supplementation in older men: a rational
24	18		<i>idea whose time has not yet come.</i> J Androl, 2001. 22 (5): p. 718-31.
25	19	47.	Clark, M.J., et al., Testosterone levels among men with spinal cord injury: relationship
26	20		between time since injury and laboratory values. Am J Phys Med Rehabil, 2008. 87(9): p.
27	21		758-67.
28	22	48.	Kostovski, E., et al., Decreased levels of testosterone and gonadotrophins in men with
29 30	23		long-standing tetraplegia. Spinal Cord, 2008. 46(8): p. 559-64.
31	24	49.	Zhao, W., et al., Testosterone protects against dexamethasone-induced muscle atrophy,
32	25		protein degradation and MAFbx upregulation. J Steroid Biochem Mol Biol, 2008. 110(1-
33	26		2): p. 125-9.
34	27	50.	Gregory, C.M., et al., Effects of testosterone replacement therapy on skeletal muscle after
35	28		<i>spinal cord injury</i> . Spinal Cord, 2003. 41 (1): p. 23-8.
36 37	29	51.	Isidori, A.M., et al., Effects of testosterone on body composition, bone metabolism and
38	30		serum lipid profile in middle-aged men: a meta-analysis. Clin Endocrinol (Oxf), 2005.
39	31		63 (3): p. 280-93.
40	32	52.	Aversa, A., et al., Effects of testosterone undecanoate on cardiovascular risk factors and
41	33		atherosclerosis in middle-aged men with late-onset hypogonadism and metabolic
42	34		syndrome: results from a 24-month, randomized, double-blind, placebo-controlled study.
43 44	35		J Sex Med, 2010. 7(10): p. 3495-503.
44 45	36	53.	Sinha-Hikim, I., et al., Effects of testosterone supplementation on skeletal muscle fiber
46	37		hypertrophy and satellite cells in community-dwelling older men. J Clin Endocrinol
47	38		Metab, 2006. 91 (8): p. 3024-33.
48	39	54.	Ryan, A.S., et al., Skeletal muscle hypertrophy and muscle myostatin reduction after
49	40	01.	resistive training in stroke survivors. Stroke, 2011. 42 (2): p. 416-20.
50	41	55.	Ibanez, J., et al., <i>Twice-weekly progressive resistance training decreases abdominal fat</i>
51 52	42	55.	and improves insulin sensitivity in older men with type 2 diabetes. Diabetes Care, 2005.
53	43		28 (3): p. 662-7.
54	43 44	56.	Chromiak, J.A., et al., <i>Effect of a 10-week strength training program and recovery drink</i>
55	44 45	50.	on body composition, muscular strength and endurance, and anaerobic power and
56			capacity. Nutrition, 2004. 20 (5): p. 420-7.
57	46		cupucuy. Numuon, 2004. 20 (3). p. 420-7.
58 59			
JJ			

2			
3	1	57.	Mahoney, E.T., et al., Changes in skeletal muscle size and glucose tolerance with
4	2		electrically stimulated resistance training in subjects with chronic spinal cord injury.
5 6	3		Arch Phys Med Rehabil, 2005. 86 (7): p. 1502-4.
7	4	58.	Mohr, T., et al., Insulin action and long-term electrically induced training in individuals
8	5		with spinal cord injuries. Med Sci Sports Exerc, 2001. 33 (8): p. 1247-52.
9	6	59.	Kjaer, M., et al., <i>Fatty acid kinetics and carbohydrate metabolism during electrical</i>
10	7		<i>exercise in spinal cord-injured humans.</i> Am J Physiol Regul Integr Comp Physiol, 2001.
11	8		281 (5): p. R1492-8.
12 13	9	60.	Crameri, R.M., et al., <i>Effects of electrical stimulation-induced leg training on skeletal</i>
14	10	00.	muscle adaptability in spinal cord injury. Scand J Med Sci Sports, 2002. 12 (5): p. 316-
15	11		22.
16	12	61.	Gerrits, H.L., et al., Peripheral vascular changes after electrically stimulated cycle
17	13	01.	training in people with spinal cord injury. Arch Phys Med Rehabil, 2001. 82(6): p. 832-9.
18	13 14	62.	Gorgey, A.S., et al., <i>Effects of resistance training on adiposity and metabolism after</i>
19	14 15	02.	spinal cord injury. Med Sci Sports Exerc, 2012. 44(1): p. 165-74.
20 21	15 16	62	Gorgey, A.S., et al., <i>Effects of neuromuscular electrical stimulation parameters on</i>
22		63.	
23	17	61	specific tension. Eur J Appl Physiol, 2006. 97 (6): p. 737-44.
24	18	64.	Gorgey, A.S., et al., <i>Effects of electrical stimulation parameters on fatigue in skeletal</i>
25	19	(5	<i>muscle</i> . J Orthop Sports Phys Ther, 2009. 39 (9): p. 684-92.
26	20	65.	Gorgey, A.S., et al., Influence of motor complete spinal cord injury on visceral and
27 28	21		subcutaneous adipose tissue measured by multi-axial magnetic resonance imaging. J
29	22		Spinal Cord Med, 2011. 34 (1): p. 99-109.
30	23	66.	Gorgey, A.S. and C. Shepherd, Skeletal muscle hypertrophy and decreased intramuscular
31	24		fat after unilateral resistance training in spinal cord injury: case report. J Spinal Cord
32	25	~-	Med, 2010. 33 (1): p. 90-5.
33	26	67.	Vermeulen, A., L. Verdonck, and J.M. Kaufman, A critical evaluation of simple methods
34 35	27		for the estimation of free testosterone in serum. J Clin Endocrinol Metab, 1999. 84(10): p.
36	28	6.0	3666-72.
37	29	68.	Collins, E.G., et al., <i>Energy cost of physical activities in persons with spinal cord injury</i> .
38	30		Med Sci Sports Exerc, 2010. 42 (4): p. 691-700.
39	31	69.	Bergman, R.N., Lilly lecture 1989. Toward physiological understanding of glucose
40	32		tolerance. Minimal-model approach. Diabetes, 1989. 38(12): p. 1512-27.
41 42	33	70.	Matthews, D.R., et al., Homeostasis model assessment: insulin resistance and beta-cell
42	34		function from fasting plasma glucose and insulin concentrations in man. Diabetologia,
44	35		1985. 28 (7): p. 412-9.
45	36	71.	Matsuda, M. and R.A. DeFronzo, Insulin sensitivity indices obtained from oral glucose
46	37		tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care, 1999.
47	38		22 (9): p. 1462-70.
48	39	72.	Brass, E.P., et al., Decreased NADH dehydrogenase and ubiquinol-cytochrome c
49 50	40		oxidoreductase in peripheral arterial disease. Am J Physiol Heart Circ Physiol, 2001.
51	41		280 (2): p. H603-9.
52	42	73.	Brooke, M.H. and K.K. Kaiser, Three "myosin adenosine triphosphatase" systems: the
53	43		nature of their pH lability and sulfhydryl dependence. J Histochem Cytochem, 1970.
54	44		18 (9): p. 670-2.
55 56			
56 57			
58			
59			

1			
2			
3	1	74.	Nachlas, M.M., et al., Cytochemical demonstration of succinic dehydrogenase by the use
4	2	,	of a new p-nitrophenyl substituted ditetrazole. J Histochem Cytochem, 1957. 5 (4): p.
5			
6	3		420-36.
7	4	75.	Wong-Riley, M., Changes in the visual system of monocularly sutured or enucleated cats
8	5		demonstrable with cytochrome oxidase histochemistry. Brain Res, 1979. 171(1): p. 11-28.
9	6	76.	Herbst, K.L. and S. Bhasin, Testosterone action on skeletal muscle. Curr Opin Clin Nutr
10	7	70.	Metab Care, 2004. 7(3): p. 271-7.
11		77	
12	8	77.	Wu, Y., et al., Identification of androgen response elements in the insulin-like growth
13	9		factor I upstream promoter. Endocrinology, 2007. 148(6): p. 2984-93.
14			
15	10		
16			
17	11		
18			
19			
20	12		
21			
22	13		
23			
24	14		
25	14		
26			
27	15		
28			
29	16		
30			
31	47		
32	17		
33			
34	18		
35			
36	19		
37	10		
38			
39	20		
40			
41	21		
42			
43	22		
44	~~		
45			
46	23		
47			
48	24		
49			
50	25		
51	20		
52			
53	26		
54			
55	27		
56	28		
57	20		
58			
59			
60			26

B۷

	Ž
	õ
	ben
	Ē
	ot b
	MJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.cc
	she
	ă
	s N
	0.1
	136
	i/bn
:	<u> </u>
	en
	-20
	1 6-
	27
	112
	ດ ວ
	ר 4
	Apr
	≓ 2
	212
	. `
	NV NV
	solc
	de
	d fr
	m
	Ē
	o://t
	<u>3</u> .
1	- Be
	ñ.b
	3.
	ğ
	~
	n A
	pril
	18,
	8, 2024 b
	24
;	Š V
	Jue
	st. F
	rot
	ect
	ed
•	р У С
	ğ
	√rig
	ħ.

Subject ID	Assignment	Baseline 1	Baseline 2	Post-Intervention 1	Post- Intervention- 2
10001	RT+TRT	С	С	С	С
10002	TRT	С	С	С	С
10003	TRT	С	С	С	С
10004	RT+TRT	C	С	С	С
10005	RT+TRT	C	С	С	С
10006	TRT	С	С	С	Х
10007	RT+TRT	C	С	С	С
10008	TRT	C	С	С	С
10009	RT+TRT	C	withdraw	Х	Х
10010	TRT	NA	NA	NA	NA
10011	RT+TRT	C	withdraw	Х	X
10012	TRT	С	С	С	С
10013	TRT	C	С	С	Х
10014	RT+TRT	С	С	С	withdraw
10015	TRT	C	С	С	X
10016	TRT	С	С	С	С
10017	RT+TRT	C ()	C	С	х
10018	TRT	С	С	С	Х
10019	RT+TRT	C	С	С	С
10020	RT+TRT	withdraw	Х	Х	Х
10021	RT+TRT	C	С	С	Х
10022	TRT	C	С	С	С
10023	RT+TRT	C	С	С	С
10024	TRT	С	withdraw	X	X
10025	RT+TRT	C	С	C	С
10026	RT+TRT	C	С	Withdraw-week 8	Х
10027	TRT	С	С	С	Х

1	Table 1. Randomization of individuals with motor complete SCI into either RT+TRT (n=13) or
2	TRT ($n = 13$) using n Ouerv software with a treatment ratio 1:1.

for all the participants. Prior to baseline 2, randomization was performed into RT+TRT or TRT

groups. Post-intervention 1 (n=22) was conducted following 16 weeks of both interventions.

Post-intervention 2 (n= 13) was conducted following 16 weeks of RT+TRT (n=7) or no

intervention (n=6).

1 2 3 4 5 6 7 8 9 10 11 2 3 14 15 16 17 18 19	1 2
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	3
42 43 44 45 46	4 5 6 7
47 48 49 50 51 52 53 54 55 56 57 58 59 60	8 9 10 11 12 13 14 15 16

Table 2. Metabolic health variables measured at baseline 1, baseline 2, post-intervention 1 and post-intervention 2

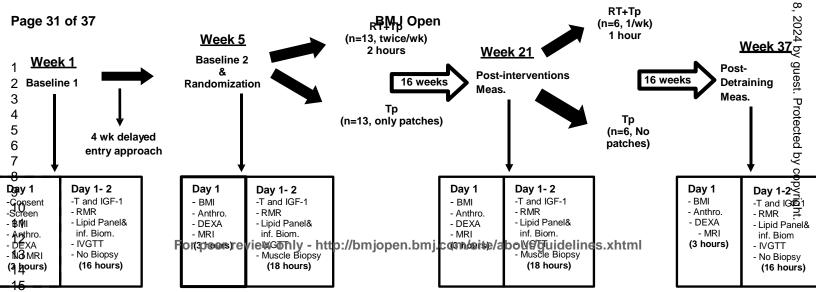

		Quantity	Special handling	Techniques of Analysis
	Insulin and Glucose	2 ml	Potassium oxalate/sodium fluoride tube (Grey	ELISA and biochemistry analyzer
	HBA1C		Top) SST	Standard Procedure
	Testosterone every 4 weeks	4 ml	SST	Liquid chromatography with isotope dilution mass spectrometry detection
	Albumin*		SST	Standard Procedure
	SHBG*		SST	Standard Procedure
	IGF-1, IGFBP-1 and 3	4 ml	SST	ELISA
	Inflammatory biomarkers (CRP, IL-6, TNFα)	4 ml	SST	ELISA
	Free fatty acids	2 ml	Potassium oxalate/sodium fluoride tube (Grey Top)	Enzymatic colorimetric quantification
	Triglycerides, total cholesterol, HDL, LDL	4 ml	SST	Enzymatic colorimetric quantification
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	*, Only at baseline 2 and pos linked immunosorbent assay SST, serum separator tube; I factor binding protein; CRP, alpha	; HBA1C, hemog GF-1, insulin-lik	globin A1c; SHBG, sex hore e growth factor 1; IGF-BP,	rmone binding globulin; , insulin-like growth

Figure Legends

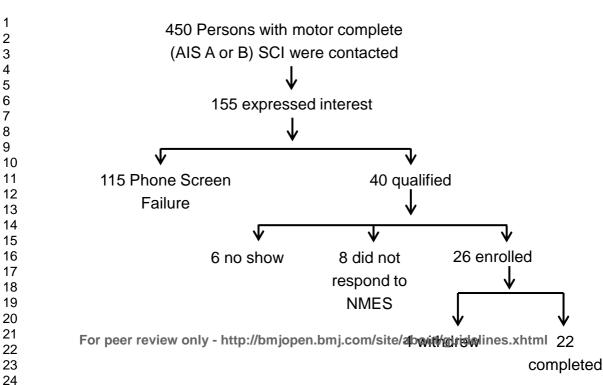

Figure 1. Timeline and main procedures of the TEREX trial for both the RT+TRT and TRT groups during baseline 1, baseline 2, post-intervention 1 and post-intervention 26 for persons with motor complete SCI.

Figure 2. Schematic diagram showing the process of recruitment over the 3 year period of the
TEREX trial.

Figure 3. A representative figure of analysis for IVGTT in a person with SCI after infusion of dextrose followed by insulin 20 minutes later. The dextrose concentration is calculated by multiplying 0.3g x body weight (kg) in 50% solution. Insulin concentration is determined by multiplying 0.02 units x body weight (kg). Blue line represents fasting glucose concentration, resting, following infusion, and over 120 minutes. Red line represents the line of best fit of glucose concentration. Green line represents fasting insulin level, spike following 20 minutes of dextrose infusion and over 120 minutes. Black line represents the line of best fit for insulin concentration.

Recruftment

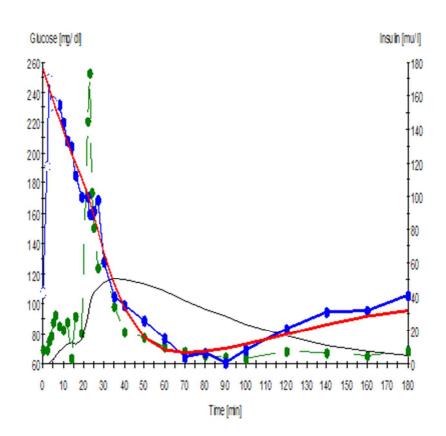


Figure 3. A representative figure of analysis for IVGTT in a person with SCI after infusion of dextrose followed by insulin 20 minutes later. The dextrose concentration is calculated by multiplying 0.3g x body weight (kg) in 50% solution. Insulin concentration is determined by multiplying 0.02 units x body weight (kg). Blue line represents fasting glucose concentration, resting, following infusion, and over 120 minutes. Red line represents the line of best fit of glucose concentration. Green line represents fasting insulin level, spike following 20 minutes of dextrose infusion and over 120 minutes. Black line represents the line of best fit for insulin concentration.

132x126mm (96 x 96 DPI)

STANDARD PROTOCOL ITEMS: RECOMMENDATIONS FOR INTERVENTIONAL TRIALS

SPIRIT 2013 Checklist: Recommended items to address in a clinical trial protocol and related documents*

2 Section/item	ltem No	Description	Addressed on page number
Administrative i	nformatior		
7 Title	1	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym	1
Trial registration	2a	Trial identifier and registry name. If not yet registered, name of intended registry	3, 7
	2b	All items from the World Health Organization Trial Registration Data Set	3, 7
Protocol version	3	Date and version identifier	
1 5 Funding	4	Sources and types of financial, material, and other support	21
Roles and	5a	Names, affiliations, and roles of protocol contributors	20
responsibilities	5b	Name and contact information for the trial sponsor	21
) 2 3	5c	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities	
4 5 7 3 9 0 1 2 2	5d	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee)	
+ 5 6		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

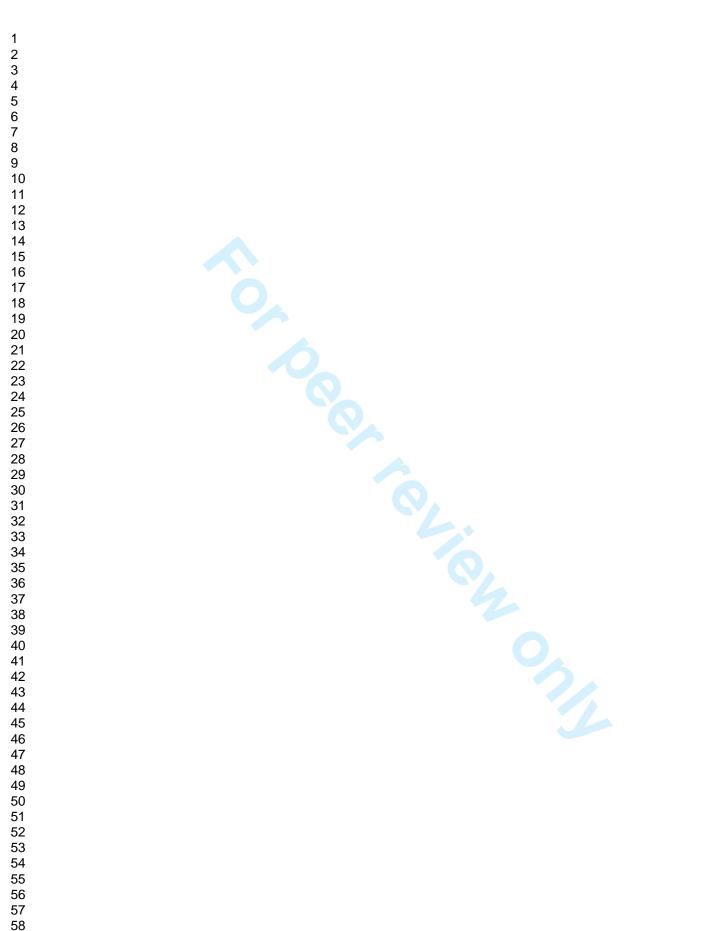
BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open

2					
3 4	Introduction				
5 6 7	Background and rationale	6a	Description of research question and justification for undertaking the trial, including summary of relevant	4-6	
8 9		6b	Explanation for choice of comparators	5-6	
10 11	Objectives	7	Specific objectives or hypotheses	6	
12 13 14 15	Trial design	8	Description of trial design including type of trial (eg, parallel group, crossover, factorial, single group), allocation ratio, and framework (eg, superiority, equivalence, noninferiority, exploratory)	7	
16	Methods: Participa	nts, inte	erventions, and outcomes		
17 18 19	Study setting	9	Description of study settings (eg, community clinic, academic hospital) and list of countries where data will be collected. Reference to where list of study sites can be obtained	7	
20 21 22 23	Eligibility criteria	10	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and	8	
23 24 25 26	Interventions	11a	Interventions for each group with sufficient detail to allow replication, including how and when they will be administered	9-10	
27 28 29		11b	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving/worsening disease)		
30 31 32		11c	Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return, laboratory tests)	9	
33 34		11d	Relevant concomitant care and interventions that are permitted or prohibited during the trial	8	
35 36 37 38 39	Outcomes	12	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended	10-16	
40 41 42 43	Participant timeline	13	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure)	_7, Fig 1	,
44 45				2	
46			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		
47 48 49	scted by copyright.	est. Prote	t published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by gue	BMJ Open: firs	

2				
3 4	Sample size	14	Estimated number of participants needed to achieve study objectives and how it was determined, including _ clinical and statistical assumptions supporting any sample size calculations	16-17
5 6 7	Recruitment	15	Strategies for achieving adequate participant enrolment to reach target sample size	7-8
8 9	Methods: Assignm	ent of i	nterventions (for controlled trials)	
10 11	Allocation:			
12 13 14 15 16	Sequence generation	16a	Method of generating the allocation sequence (eg, computer-generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions	7-8
17 18 19 20 21	Allocation concealment mechanism	16b	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered,	7-8
22 23 24	Implementation	16c	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to	8
25 26 27	Blinding (masking)	17a	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how	9-10
28 29 30		17b	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's _ allocated intervention during the trial	
31 32	Methods: Data coll	ection,	management, and analysis	
33 34 35 36 37 38	Data collection methods	18a	Plans for assessment and collection of outcome, baseline, and other trial data, including any related _ processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol	10-16
39 40 41 42		18b	Plans to promote participant retention and complete follow-up, including list of any outcome data to be	17
43 44 45				3
46			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
47 48 49	BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.			BMJ Open: first

1 2				
3 4 5 6	Data management	19	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol	10
7 8 9	Statistical methods	20a	Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol	16-17
10 11		20b	Methods for any additional analyses (eg, subgroup and adjusted analyses)	N/A
12 13 14		20c	Definition of analysis population relating to protocol non-adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation)	17
15 16	Methods: Monitorir	ng		
17 18 19 20 21 22	Data monitoring	21a	Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed	17
23 24 25		21b	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial	
26 27 28	Harms	22	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct	17
29 30 31	Auditing	23	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor	
32 33 34	Ethics and dissemi	nation		
35 36 37	Research ethics approval	24	Plans for seeking research ethics committee/institutional review board (REC/IRB) approval	3, 7, 17
38 39 40 41 42	Protocol amendments	25	Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators)	
43 44				4
45 46			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
47 48 49	scted by copyright.	est. Prote	up yd 2012, 81 ind no Noo-imd.nagojmd//:qtth mont bebsolnwoll. 7102. Downloaded from http://bmjopen.bmj.com/ on	BMJ Open: first p


2 3 4	Consent or assent	26a	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32)	7
5 6 7 8		26b	Additional consent provisions for collection and use of participant data and biological specimens in ancillary _ studies, if applicable	N/A
9 10 11	Confidentiality	27	How personal information about potential and enrolled participants will be collected, shared, and maintained _ in order to protect confidentiality before, during, and after the trial	10
12 13 14	Declaration of interests	28	Financial and other competing interests for principal investigators for the overall trial and each study site	21
15 16 17 18 19 20 21 22 23 24	Access to data	29	Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that	17
	Ancillary and post- trial care	30	Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial _ participation	
	Dissemination policy	31a	Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions	3, 17
25 26		31b	Authorship eligibility guidelines and any intended use of professional writers	20
27 28		31c	Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code	
29 30 31 32 33 34	Appendices			
	Informed consent materials	32	Model consent form and other related documentation given to participants and authorised surrogates	attached
35 36 37	Biological specimens	33	Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable	15
38 39 40 41 42 43 44	Amendments to the p	orotocol	that this checklist be read in conjunction with the SPIRIT 2013 Explanation & Elaboration for important clarificat should be tracked and dated. The SPIRIT checklist is copyrighted by the SPIRIT Group under the Creative Cor <u>NoDerivs 3.0 Unported</u> " license.	
45 46			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
47 48 49	tected by copyright.	iest. Prot	ug vd 4202,81 lingA no \moo. <mark>imd.nəqoimd\\:qtt</mark> h mont bəbsolnwoD .7102 lingA 4 no 751410-9102-nəqoimd\3611.01 as bəhsilduq	BMJ Open: first

BMJ Open

Effects of Testosterone and Evoked Resistance Exercise after Spinal Cord Injury [TEREX-SCI]: A Randomized Clinical Trial

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-014125.R1
Article Type:	Protocol
Date Submitted by the Author:	23-Dec-2016
Complete List of Authors:	Gorgey, Ashraf; Hunter Holmes McGuire VA Medical Center, Spinal Cord Injury Service and Disorders Khalil1, Refka; Hunter Holmes McGuire VA Medical Center, Spinal Cord Injury Service and Disorders Gill, Ranjodh; Hunter Holmes McGuire VA Medical Center, Endocrine Service O'Brien, Laura; Hunter Holmes McGuire VA Medical Center, Spinal Cord Injury Service and Disorders Lavis, Timothy Lavis1; Hunter Holmes McGuire VA Medical Center, Spinal Cord Injury Service and Disorders Castillo, Teodoro ; Hunter Holmes McGuire VA Medical Center, Spinal Cord Injury Service and Disorders Cifu, David; Commonwealth of Virginia, Physical Medicine and Rehab. Savas, Jeannie ; Hunter Holmes McGuire VA Medical Center, Surgery Service Khan, Rehan; Hunter Holmes McGuire VA Medical Center, Radiology Service Cardozo, Christopher ; 7) National Center for the Medical Consequences of Spinal Cord Injury Lesnefsky, Edward ; Hunter Holmes McGuire VA Medical Center, Cardiology Service Gater, David; Pennsylvania State University Adler, Robert; Hunter Holmes McGuire VA Medical Center, Endocrine Service
Primary Subject Heading :	Rehabilitation medicine
Secondary Subject Heading:	Nutrition and metabolism
Keywords:	SPINAL CORD INJURY, TESTOSTERONE, RESISTANCE TRAINING, BODY COMPOSITION and METABOLISM, MITOCHONDRIA, INFLAMMATORY BIOMARKERS

SCHOLARONE[™] Manuscripts

4	1	
5	2	
4 5 6		Effacts of Tostostarana and Evolved Desistance Evereise after Spinal Cord
7	3	Effects of Testosterone and Evoked Resistance Exercise after Spinal Cord
8	4	Injury [TEREX-SCI]: study protocol for a randomized controlled trial
9	5	
10		
11	6	$A = C = C = \frac{12}{7} D = C = \frac{12}{12} D =$
12	7	Ashraf S. Gorgey ^{1,2} ; Refka E. Khalil ¹ ; Ranjodh Gill ^{3,4} ; Laura C. O'Brien ¹ ; Timothy
13	8	Lavis ^{1,2} ; Teodoro Castillo ¹ ; David X. Cifu ^{1,2} ; Jeannie Savas ⁵ ; Rehan Khan ⁶ ; Christopher Cardozo ^{7,8} ; Edward J. Lesnefsky ^{9,10} ; David R Gater ¹¹ ; Robert A Adler ^{3,4}
14	9	Cardozo ^{7,} ⁶ ; Edward J. Lesnefsky ^{9,10} ; David R Gater ¹¹ ; Robert A Adler ^{3,4}
15		
16	10	1) Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, 1201 Broad
17	11	Rock Boulevard, Richmond, VA 23249, USA
18 19	12	2) Virginia Commonwealth University, Department of Physical Medicine & Rehabilitation,
20	13	Richmond, VA
21	14	3) Endocrinology Service; Hunter Holmes McGuire VA Medical Center, Richmond, VA
22	15	4) Endocrine Division; Virginia Commonwealth University School of Medicine, Richmond,
23	16	VA
24	17	5) Surgical Service; Hunter Holmes McGuire VA Medical Center, Richmond, VA
25		
26	18	6) Radiology Service; Hunter Holmes McGuire VA Medical Center, Richmond, VA
27	19	7) National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA
28	20	Medical Center, Bronx, NY
29	21	8) Icahn School of Medicine at Mt. Sinai, Medicine, New York City, NY
30	22	9) Cardiology Service; Hunter Holmes McGuire VA Medical Center, Richmond, VA
31	23	10) Division of Cardiology, Department of Medicine, Pauley Heart Center Virginia
32	24	Commonwealth University, Richmond, VA
33 34	25	11) Department of Physical Medicine and Rehabilitation, Penn State Milton S.
34 35	26	Hershey Medical Center, Hershey, PA
36		Thershey Miculcal Center, Hershey, IA
37	27	
38	28	
39	29	
40		
41	30	
42	31	
43	32	
44	33	Correspondence
45	34	Ashraf S. Gorgey, MPT, PhD, FACSM
46	35	Department of Veterans Affairs
47 48	36	Hunter Holmes McGuire Medical Center
40 49	37	Spinal Cord Injury & Disorders Service
49 50	38	1201 Broad Rock Boulevard
51	39	Richmond, VA 23249
52		
53	40	Email: ashraf.gorgey@va.gov
54	41	Tel: $+ 1 - (804) - 675 - 5000$ ext. 3386
55	42	Fax: + 1- 804-675-5223
56	43	
57		
58		
59		

44	Abstract
45	Introduction: Individuals with spinal cord injury (SCI) are at a lifelong risk of obesity and
46	chronic metabolic disorders including insulin resistance and dyslipidemia. Within few weeks of
47	injury, there is a significant decline in whole body fat-free mass, particularly lower extremity
48	skeletal muscle mass, and subsequent increase in fat mass (FM). This is accompanied by a
49	decrease in anabolic hormones including testosterone. Testosterone replacement therapy (TRT)
50	has been shown to increase skeletal muscle mass and improve metabolic profiles. Additionally,
51	resistance training (RT) has been shown to increase lean mass and reduce metabolic disturbances
52	in SCI and other clinical populations.
53	Methods and analysis: Twenty-six individuals with chronic, motor complete SCI between 18-
54	50 years old were randomly assigned to a RT+TRT group ($n = 13$) or a TRT group ($n = 13$).
55	Twenty-two participants completed the initial 16-week training phase of the study and 4
56	participants withdrew. Twelve participants out of the 22 completed 16 weeks of detraining. The
57	TRT was provided via transdermal testosterone patches (4-6 mg/day). The RT+TRT group had
58	16 weeks of supervised unilateral progressive RT using surface neuromuscular electrical
59	stimulation with ankle weights. This study will investigate the effects of evoked RT+TRT or
60	TRT alone on body composition (muscle cross sectional area, visceral adipose tissue, %FM) and
61	metabolic profile (glucose and lipid metabolisms) in individuals with motor complete SCI.
62	Findings from this study may help in designing exercise therapies to alleviate the deterioration in
63	body composition after SCI and decrease the incidence of metabolic disorders in this clinical
64	population.
65	Ethics and Dissemination: The study is currently approved by the McGuire VA Medical Center
66	and Virginia Commonwealth University. All participants read and signed approved consent

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open

3 4	67	forms. Results will be submitted to peer-reviewed journals and presented at national and
5 6 7	68	international conferences.
8 9	69	Trial Registration: NCT01652040
10 11	70	
12 13	71	Keywords: RESISTANCE TRAINING, SPINAL CORD INJURY, BODY COMPOSITION,
14 15 16	72	METABOLISM, TESTOSTERONE, MITOCHONDRIA, INFLAMMATORY BIOMARKERS
17 18	73	
19 20 21	74	Strengths and limitations
22 23 24	75	> The trial will investigate the use of surface neuromuscular electrical stimulation induced
25 26	76	resistance training (NMES-RT) to restore muscle size after spinal cord injury (SCI)
27 28 29	77	> The trial will provide evidence on the effectiveness of testosterone replacement therapy
30 31	78	(TRT) to restore muscle size and lean mass and serve as an alternative approach for those
32 33	79	who cannot benefit from NMES.
34 35 36	80	> The trial will determine how restoring muscle size and lean mass by RT+TRT or TRT can
37 38	81	benefit the metabolic profile after SCI.
39 40 41	82	The study is only limited to men with complete SCI
41 42 43	83	Surface NMES may not benefit those with full sensation or lower motor neuron denervation
44 45	84	
46 47 48	85	
49 50	86	
51 52	87	
53 54 55	88	
56 57 58 59 60	89	

Introduction

sensitivity [19, 20].

BMJ Open

91	There are approximately 11,000-12,000 new cases of spinal cord injury (SCI) in the
92	United States annually with an overall prevalence of 250,000-400,000 [1, 2]. Persons with motor
93	complete injury have loss of both sensation and motor function below the level of injury, while
94	incomplete injury is characterized by preserved motor or sensory function. Chronic SCI, defined
95	as one year post injury, is associated with dramatic skeletal muscle atrophy [3-5], increase of fat
96	mass (FM) [6-8] and decrease of fat free mass (FFM) [6, 7]. Collectively, these factors put
97	individuals with SCI at risk for metabolic disorders such as type II diabetes and cardiovascular
98	disease.
99	Previous studies reveal that 60% of individuals with SCI in the United States are either
100	overweight or obese [2, 9-11]. Despite a low body mass index (BMI) in 50% of the SCI
101	population, individuals are likely to have more than 30% of their body mass as FM. Furthermore,
102	person with SCI are 13% fatter per unit BMI than able-bodied individuals. Individuals with SCI
103	also have a redistribution of adipose tissue, with greater trunk FM and visceral adipose tissue
104	(VAT) compared to age and waist circumference matched able-bodied controls [12-14].
105	Adipose tissue, particularly VAT, secretes proinflammatory cytokines including interleukin-6
106	(IL-6) and tumor-necrosis factor- α (TNF- α). Therefore, the increase in VAT after SCI may
107	contribute to metabolic syndrome by stimulating the hepatic production of C-reactive protein
108	(CRP), which is tied to vascular inflammation [15-18]. Another type of ectopic adipose tissue,
109	intramuscular fat (IMF), is increased after SCI and has been correlated with reduced insulin

Metabolic changes also accompany SCI, with previous studies finding that more than
50% of individuals with SCI are glucose intolerant, while one out of five is diabetic [2, 9-11, 21].

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Other studies report that 55% of individuals with SCI are at risk of developing metabolic syndrome [21-23]. Individuals with complete tetraplegia are more likely to experience decreased glucose and carbohydrate tolerance and have a higher prevalence of heart disease than those with incomplete injuries [24, 25]. Likewise, depressed HDL-C ($\leq 35 \text{ mg} \cdot dL^{-1}$) and a higher total cholesterol/HDL-C ratio, predictors of coronary heart disease, were noted in those with chronic SCI compared with able bodied controls [24, 26]. These are not universal findings, however, as a systematic review of carbohydrate and lipid disorders in persons with SCI did not find strong evidence of increased risk beyond that of the general population [27]. While previous studies have shown a link between body composition and metabolic profile after SCI, the cellular mechanisms remain unknown. Mitochondria are the site of oxygen consumption and energy production from glucose and lipid metabolism. Unfortunately, mitochondrial function is impaired in a number of diseases including neurodegenerative disease, atherosclerosis, hypertension and cancer [28-31]. Fewer and smaller mitochondria are found in skeletal muscle of insulin resistant, obese and type II diabetic individuals [32]. Previous studies found decreased muscle oxidative capacity and succinate dehydrogenase activity, complex II of the electron transport chain, after SCI [33-35]. One hypothesis is that skeletal muscle mitochondrial function is decreased in metabolic disorders, leading to decreased fatty acid oxidation which contributes to insulin resistance [36, 37]; however, this is controversial [37]. Mitochondria are dynamic organelles and undergo biogenesis, remodeling, and degradation. Mitochondrial biogenesis is driven in part through the action of peroxisome proliferator-activated receptor (PPAR) coactivator 1 alpha (PGC-1a) [38,

39]. In addition, PGC-1 α integrates insulin signaling and lipogenesis in skeletal muscle [40, 41].

PGC-1 α is decreased in animal models following denervation [42, 43]. Decreased

mitochondrial biogenesis and reduced mitochondrial mass may result in decreased energy
production and therefore play a significant role in the altered metabolic profile following SCI
[44].

Body composition and metabolic changes after SCI may be further exacerbated by reduced anabolic hormones including testosterone (T), growth hormone and the growth hormone second messenger insulin like growth factor-1 (IGF-1) [45, 46]. Previous studies have shown that 60% of men with SCI have low T and that testosterone replacement therapy (TRT) increases IGF-1 in men [47-50]. In rodent models of SCI, TRT attenuates the loss of muscle [51, 52]. TRT decreases total body fat, increases lean mass [53, 54] and increases the number of proliferating skeletal muscle satellite cells in in men [55]. These findings suggest that TRT may provide metabolic benefits to individuals with SCI.

Resistance training (RT) improves insulin sensitivity and increases fatty acid and carbohydrate metabolism as well as attenuates sarcopenia in the elderly and after SCI [56-63]. Moreover, RT has been shown to influence body composition by increasing lean mass, decreasing FM and reducing VAT, suggesting that the benefits of RT could overcome the risk of developing insulin resistance [56-59]. Functional electrical stimulation (FES) has been shown to improve fatty acid kinetics, carbohydrate metabolism and vascular health after SCI [60-63]. Electrically evoked RT using neuromuscular electrical stimulation (NMES-RT) and ankle weights is another form that has been shown to be effective in inducing muscle hypertrophy in individuals with chronic SCI [59, 64]. One study showed a 40% increase in skeletal muscle size and improved glucose tolerance after 12 weeks of training [59]. Another study showed that following 12 weeks of NMES-RT, whole thigh, knee extensor and flexor cross sectional areas (CSAs) increased by 28%, 35% and 16%, respectively. Moreover, the ratio of leg FFM to whole

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

body FFM increased by 20% following intervention. There was 32% decrease in glucose area
under the curve adjusted to muscle CSA following 12 weeks of NMES-RT. However, there
were only modest effects on whole body composition as well as a non-significant decrease in
VAT [64]. It is possible that the limited effects of NMES-RT on parameters of body
composition and VAT can be possibly explained by depressed T-level in persons with SCI.
Supplementing exogenous T may optimize the outcomes of NMES-RT on parameters of body
composition and metabolic profile such as increase basal metabolic rate (BMR).

TRT may be an effective therapy to counterbalance the growing rate of obesity, type II diabetes and cardiovascular disease among individuals with SCI. Moreover, results from the current trial may provide evidence that TRT is an effective intervention for those who cannot effectively benefit from NMES because of lower motor neuron denervation or intolerance to electrical stimulation. Therefore, the primary hypothesis is that the addition of TRT will maximize the benefits of electrically evoked RT on parameters of body composition and metabolic profile in men with chronic complete SCI. We, hereby, report the design of an study for which the major research goal is to investigate the effects of 16 weeks of evoked RT+TRT vs. TRT on body composition (primary outcome variables; muscle CSA, VAT, %FM) and metabolic profiles (secondary outcome variables; glucose and lipid metabolism) in individuals with motor complete SCI.

- 177 Methods and analysis
- 178 <u>Study design</u>

A randomized controlled study was undertaken in which individuals with SCI were
 randomized to receive RT+TRT or TRT alone for 16 weeks. The study was approved by the
 McGuire Veteran Affairs Investigation Research Board and the Virginia Commonwealth

University (VCU) Office of Research and Innovation. The trial has been registered at clinicaltrials.gov (NCT01652040). A member of the research team explained the study and obtained written informed consent. After informed consent each subject underwent a detailed physical examination at the Hunter Holmes McGuire VA Medical Center (VAMC) by a physiatrist board certified in SCI medicine. This exam included a neurological assessment according to the International Standards for Neurological Classification of SCI (ISNCSCI), including the American Spinal Injury Association (ASIA) Impairment Scale (AIS) [65]. The study design and procedures are presented in Figures 1 and 2. The study visits included estimation of body composition, anthropometry, and dual x-ray absorptiometry (DEXA; baselines 1 and 2 and post-interventions 1 and 2). Additionally, MRI scans were obtained for trunk adipose tissue and lower extremity skeletal muscles and IMF CSA (baseline 2, post-interventions 1 and 2). Participants were then escorted to the VCU-CRS unit (VCU Clinical Research Unit) for dinner, and remained in the VCU-CRS unit overnight for the four study visits. Muscle biopsies were obtained at baseline 2 and post intervention 1.

Recruitment and Randomization

The recruitment process started in July 2012 and ended in June 2015. Data analysis is currently being performed. Recruitment details and randomization are presented in Table 1 and Figure 3. Prior to the start of the study, numbers 1-26 were randomized using the n-Query software program by the principal investigator. At the end of the two-day assessment period (Baseline 1), the allocation of subjects into either group was performed in a blinded fashion by drawing a folded paper with a number (1-26) by the research coordinator. This number was matched with the assignment from the randomization procedure.

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Twenty-six participants were recruited to participate in the study. A four week delayed entry period was included to obtain baseline measurements, stabilize body weight and educate participants on how to monitor their dietary intake. This allowed participants to serve as their own controls. Four participants withdrew from the trial. At baseline 2, two participants failed to comply with study protocol and withdrew from the study because lack of interest. Nurses failed to locate the veins on the third participant to conduct IVGTT and he was asked to withdraw from the trial. The fourth participant was diagnosed with a grade IV pressure ulcer after being admitted into the trial. Following the delayed entry period, participants were randomly assigned to a RT+TRT group (n = 13) or TRT group (n = 13). TRT patches (2-6 mg/day) were replaced daily on alternating shoulders at bedtime for 16 weeks. The RT+TRT group received 16 weeks of supervised unilateral progressive RT using surface NMES and ankle weights. Following the intervention the two-day assessment period was repeated (Figure 1).

Participants and eligibility criteria

Participants were men between 18-50 years old with a BMI of $< 30 \text{ kg/m}^2$. The upper limit of age was set to 50 years to avoid unanticipated side effects that may result from TRT. Participants had motor complete SCI C5-L2, ASIA A or B. Participants with pre-existing medical conditions were excluded. These included cardiovascular disease, uncontrolled type II diabetes and those on insulin, pressures sores stage 2 or greater, supra-physiological T level, hematocrit above 50% and urinary tract infection or symptoms.

- I. Interventions
- **Resistance training**

The first week of RT was conducted with no ankle weights to ensure that the knee extensor muscles could extend the weight of the lower leg against gravity. Once full knee

extension was achieved in a sitting position, two pounds were added on a weekly basis with the criteria that full knee extension was achieved before more weight was added. Surface NMES was applied to the knee extensor muscles via surface electrodes (Figure 2). One electrode was placed 2-3 cm above the superior aspect of the patella over the vastus medialis muscle, and the other lateral to and 30 cm above the patella over vastus lateralis muscle. Current from the stimulator was manually increased in 5-second intervals to evoke full knee extension with a 3-minute rest between sets, 30 Hz, 450 µs pulses and a current sufficient to evoke full knee extension as previously described [64, 66, 67]. Four sets of 10 repetitions was performed twice weekly for 16 weeks.

Testosterone replacement therapy (TRT)

Following baseline measurements, T was administered by patches (Androderm, Watson Pharma. Inc, Parsippany, NJ) that delivered between 2-6 mg/day [53] (Figure 2). Serum T concentration was measured and reviewed in a blinded fashion weekly for the first month and then every 4 weeks by an endocrinologist. Baseline dose was prescribed according to the initial T level. A dose of 6, 4 or 2 mg/day was prescribed if the serum T-level was less than 300, 300-600 or above 600, respectively. The dose was decreased to 2 mg/day if the serum T concentration was more than 1000 ng/dL (34.7 nmol/L) and the participant was reeducated about use of the patch if the concentration was less than 250 ng/dL (8.7nmol/L) above the pretreatment concentration. Patches were returned after use to ensure adherence to the intervention protocol. Participants were instructed to place patches at bedtime and only remove them during showering. If skin irritation became an issue, participants were initially advised to move patches up or down on the shoulder muscles from the irritation site and if the situation was not resolved, a hydrocortisone cream was prescribed.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

250 Detraining after 16-week intervention

Six participants from each group were followed for 16 weeks after the initial intervention. The RT+TRT group continued training once weekly using the same training approach for an additional16 weeks. For the first week, the maximum ankle weights attained during the training phase were used. The weights were then gradually decreased by two pounds per week until the lowest weight was attained (2 pounds). TRT dose was set at 2 mg/day for the entire detraining phase. Participants from the TRT group were followed for additional 16 weeks without intervention. Following the detraining phase, the two-day assessment period was repeated without performing skeletal muscle biopsy (Figure 1). The rationale of the detraining phase is to determine whether once weekly training can maintain skeletal muscle hypertrophy, body composition and metabolic improvements incurred by the 16 week intervention.

261 II. Primary Outcomes

Data will remain confidential at all times and any patient identifiers will be removed prior to data analysis. Analysis for all study procedures will be performed in a blinded fashion ensuring full concealment until complete data analysis.

265 Anthropometrics and Body Composition Assessments

Height of each participant was determined while lying in the supine position. Two
smooth wooden boards were placed at the participant's head and heels and the distance between
them was measured to the nearest cm. Measurement of waist circumference was determined in
triplicate by identifying the narrowest region of the trunk from sitting and supine positions.
Three-site skin fold assessment was conducted in triplicate for suprailiac, abdominal and thigh.
A Lunar Prodigy Advance (Lunar Inc., Madison, WI) bone densitometer was used to
measure total body and regional (lumbar spine, proximal femur, and forearm) FM and FFM.

Page 13 of 41

BMJ Open

Testing was performed after lower extremity elevation for at least 20 minutes to minimize fluid shift. The subject was assisted to lie on a padded table and both legs were strapped proximal to the knees and ankles. The arms and legs were positioned to ensure proper alignment.

276 Magnetic resonance imaging (MRI)

MRI was performed at the VAMC Hospital using a 1.5 Tesla magnet (GE) as previously described [4, 19, 59, 68, 69]. Transaxial images, 10 mm thick and 10 mm apart, were taken from the hip joint to the knee joint and from knee to the ankle using the whole body coil. The location of the scan was identified by placing a mark 6 inches proximal to and distal to the patella and matched on follow up scans. To analyze VAT and subcutaneous adipose tissue (SAT) transverse slices (0.8 cm thickness) were acquired every 0.4 cm gap from the xyphoid process to the femoral heads. Images were acquired in series of two stacks with L4-L5 used as a separating point. TRT patches were removed 48-72 hours prior to MRI scans to avoid skin burn.

Analyses will be performed using commercial available software (X-vessel) as previously described [4, 19, 68, 69]. Briefly, the thigh and leg images will be segmented into fat (high intensity), skeletal muscle (mid intensity) and background/bone (low intensity). Manual selection of a pixel of skeletal muscle will highlight all skeletal muscle pixels and provide the total number of skeletal muscle pixels while excluding fat. VAT and SAT will be measured by manually tracing around the anatomical borders. The number of pixels in the highlighted region will be multiplied by the matrix size to measure VAT and SAT CSA (cm²).

Skeletal muscle torque and specific tension

Torque of the knee extensor muscle group was evaluated using a Biodex isokinetic
dynamometer (Shirely, NY). Measurements were done 72 hours after the muscle biopsy to
prevent acute effects on protein expression. Participants were seated with both the trunk-thigh

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

angle and the knee-thigh angle at 90°. Each participant was securely strapped to the test chair by a crossover shoulder harnesses and a belt across the hip joint. The axis of the dynamometer was aligned to the anatomical knee axis and the lever arm was attached 2-3 cm above the lateral malleolus. Before measuring isometric torque, passive tension of the right knee extensor muscle group was measured at 5, 30, 60, 90,180, 270 degrees/sec as an index of spasticity. Isometric torque was measured using current amplitude of 50 and 100 mA at a frequency of 30 Hz and pulse duration 450 µs. Isokinetic torque was measured at 60, 90 and 180 degrees/sec using the same stimulation protocol. Serum and plasma analysis All metabolic profile analysis is presented in Table 2. Blood samples were collected after an overnight fast. Total T was measured by liquid chromatography with isotope dilution mass spectrometry detection after supported liquid extraction. Free T concentration was calculated using sex hormone binding globulin and albumin concentrations (www.issam.ch/freetesto.htm) [70]. Serum IGF-I concentration was measured by an immunoluminometric assay (Quest Diagnostics, Madison, NJ). Fasting lipid profiles (HDL-C, LDL-C, total cholesterol, and triglycerides) were determined as previously described [8, 20]. Inflammatory biomarkers CRP, IL-6, TNF- α , and free fatty acids were determined by commercially available enzyme-linked immunosorbent assay kits (ALPCO; Salem, NH). **Energy Expenditure**

After an overnight fast for 10-12 hours, participants were kept in a dark room for 20-30 minutes to attain a resting state during which BMR was measured as previously described [8]. Briefly, while in a supine position a canopy was placed over the subject's head. Each subject was allowed 2-3 minutes before starting the test to ensure no signs of apnea or claustrophobic

BMJ Open

2	
3	
5	
4	
5	
6	
6	
7	
8	
9	
10	
11	
11	
12 13 14	
13	
11	
14	
15 16 17 18	
16	
17	
17	
18	
19	
19 20 21 22 23 24 25 27 28 20 31 23 33 33 33 33 33 33 33 33 33 33 33 33	
20	
21	
22	
~~	
23	
24	
25	
20	
26	
27	
ာ၀	
20	
29	
30	
24	
31	
32	
33	
20	
34	
35	
36	
~~	
37	
38	
za	
40	
40	
41	
42	
43	
44	
45	
46	
47	
۰ ۱۵	
48	
49	
49 50	
51	
51 52 53	
52	
53	
50 E A	
54	
55	
56	
57	
58	
59	
ບອ	

60

319 episodes. All subjects were instructed to stay awake during the entire test and to breathe 320 normally. The canopy was then attached to a vacuum to draw the expired gases to the flowmeter of the metabolic unit (COSMED KB42). Prior to the test, the metabolic unit was calibrated 321 using the standard procedures identified by the manufacturer. Carbon dioxide and oxygen output 322 was used to calculate the respiratory exchange ratio and BMR (kcal/day) was calculated using 323 the average of the last 15 minutes of the test. This was used to measure the percentage of 324 substrate utilization (% fat vs. % carbohydrate) [8, 71]. 325 To determine whether NMES-RT improves exercise performance, testing was performed 326 327 using a functional electrical stimulation bike (Restorative Therapies, RTI-300) against progressive resistance protocol until fatigue. The protocol started with 3 minutes resting, 3 328 minute warm-up (35-37 RPM) using the servomotor and then a two minute incremental 329 330 progressive resistance protocol (1 Nm, 3 Nm, 5 Nm, etc.) until fatigue. After fatigue, a one minute cool down period was allowed followed by 5 minutes of rest. Energy expenditure and 331

cardiovascular performance [VO₂ (l/min), blood pressure and heart rate] was collected at baseline
2 and post-interventions 1 and 2.

Each participant met with a dietician at the start of the study and was asked to maintain a 334 5 day food dietary log monitoring their caloric intake for the duration of the study. Participants 335 were instructed to record all liquid and food consumption and no nutritional advice was given on 336 the size or the portion of the food. Dietary logs were analyzed on a weekly basis using a 337 nutritional software package (Nutrition Data System for Research version 2014) under the 338 supervision of a registered dietitian. After analysis was completed, the average caloric intake 339 (kcal) and percentage macronutrients (carbohydrates, fat and protein) were calculated. Each 340 341 participant received monthly feedback via phone call with the registered dietician on how to

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Page 16 of 41

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open

maintain appropriate dietary habits based on his BMR and percentage macronutrients (45% carbohydrates, 30% fat and 25%). Every effort was made to balance the dietary habits between the RT+TRT and the TRT group.

Intravenous Glucose Tolerance Test (IVGTT)

An IVGTT was used to determine insulin sensitivity and glucose effectiveness before training and 48 hours after the last exercise bout. After an overnight fast, an intravenous line was placed to facilitate infusion of glucose and blood sampling. Blood samples were taken every 2-3 minutes before and 30 minutes after glucose injection (0.3 gm/kg IV over 30 seconds), followed by 5-10 minutes sampling ending at 180 minutes. Twenty minutes after the glucose injection a bolus of insulin (0.02 U/kg) was injected to determine insulin sensitivity. Plasma glucose was measured by the Autoanalyzer glucose oxidase method and plasma insulin concentrations were determined by commercial radioimmunoassay (Table 2). The glucose disposal rate per unit of secreted insulin per unit time and glucose mediated glucose disposal rate were calculated from a least-squares fitting of the temporal pattern of glucose and insulin throughout the IVGTT using the MINMOD program [72]. A representative analysis of IVGTT is presented in Figure 4. The acute insulin response to IV glucose was calculated as the mean rise in plasma insulin above baseline at 3, 4 and 5 minutes after IV glucose administration. KG, a measure of glucose tolerance, was calculated as the least square slope of the natural log of absolute glucose concentration between 5 and 20 minutes after the glucose bolus [73]. The homeostatic model of assessment of insulin resistance (HOMA-IR) was calculated and insulin sensitivity was determined using Matsuda and Defronzo formula [73, 74].

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 17 of 41

III.

Secondary Outcomes

BMJ Open

36	5 <u>Skeletal muscle biopsy</u>
36	Biopsy samples of vastus lateralis muscle (~50-100 mg wet weight total) were obtained
) 36	by a 14 gauge tru-cut biopsy needle, immediately prior-to and 72 hours after the 16 weeks of
2 3 369	RT+TRT or TRT interventions. The 72 hours post-intervention was to avoid any acute effects
- 2 370	from the last training bout on muscle protein expression to ensure that changes are due training
3 37	effect. There was no muscle biopsy during the detraining phase. The biopsy samples were
)) 37:	2 quickly frozen in liquid nitrogen and stored at -80°C until further analysis. One sample was split
2 3 3	3 into two halves and used for measuring activities of mitochondrial enzymes. The second sample
4 5 374	4 was used for Western blot analysis. The third sample was used for immunohistochemistry.
5 7 37:	5 <u>Mitochondrial Electron Transport Chain activities</u>
) 37(5 Electron transport chain enzyme activities were measured spectrophotometrically in
2 37	7 skeletal muscle homogenates as previously described [75]. Rotenone-sensitive NADH
378 378	3 cytochrome c reductase measured complexes I and III. Decylubiquinol-cytochrome c
, 37	oxidoreductase was measured as the antimycin-sensitive reductase to assess complex III. Citrate
3) 38(5 synthase was measured as an estimate of mitochondrial mass as previously described [75].
38:	1 <u>Protein content</u>
3 1 38	2 Proteins were resolved by SDS-PAGE then transferred to a PVDF membrane (Trans-blot;
5 5 38: 7	Bio-Rad). Equal protein loading was confirmed with a Ponceau S stain after the transfer. After
3) 384	blocking for one hour, membranes were incubated overnight at 4 °C with primary antibody
) 38!	diluted 1:1000. Primary antibodies included glucose transpoter-4, focal adhesion kinase, PGC-1 α
2 3 380	5 (Santa Cruz Biotechnology), total protein kinase B (AKT), phosphorylated AKT, total
38 [°]	7 mammalian target of rapamycin (mTOR), phosphorylated mTOR, (Cell Signaling). Membranes
3	

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

were rinsed and placed in a 1:2000 solution of a horseradish peroxidase-conjugated secondary
antibody (Cell Signaling) for 1 hour at room temperature. Membranes were then rinsed and
incubated with a horseradish peroxidase chemiluminescence detection reagent (GE Healthcare)
for 5 minutes. Proteins were visualized using an Amersham Imager 600 (GE Healthcare). Optical
densities were measured using iQuant software and all samples were normalized to the baseline
values for that participant.

394 <u>Histological Analysis</u>

Immediately after muscle biopsy, samples were mounted on tongue blades by using a medium of OCT compound and tragacanth gum and stored at -70°C until analysis. Serial cross sections (8-10 µM) were collected on glass slides and frozen at -20°C until analysis. Fiber type and CSA will be determined by histochemical staining for myosin ATPase (preincubation at pH 4.3 or 9.4) as previously described [76]. Type I fibers will be identified by dark staining after acid preincubation, type II fibers light staining, and type IIB intermediate. At pH 9.4 the staining pattern was the opposite. Haematoxylin & Eosin (H&E) staining was performed according to conventional histological procedures. Mitochondrial complex II and IV activity was estimated by the activity of succinate dehydrogenase and cytochrome c oxidase activity, respectively, as previously described [77, 78]. Stained muscle sections will be observed using an Olympus BX-51 fluorescent microscope (Olympus, Tokyo, Japan) and analyzed using ImageJ software.

Statistical Analyses

Paired t-tests will be used to determine differences in body composition and metabolic
profile between baseline 1 and baseline 2. To determine the effect of interventions and
detraining, a repeated measures ANOVA will be used. Simple linear and multivariate regression
analyses were used to examine the relationship between body composition and metabolic profile

BMJ Open

variables. For protein expression, we will use paired t-tests to examine the effects of eachintervention.

The effect size is calculated based on the effects of RT on body composition and metabolic profiles that were previously published [62]. The number of subjects necessary to find statistical differences in the major variables (muscle size, VAT and insulin concentration) of this study was found to be 10 participants per group. One participant from the RT+TRT group withdrew after developing side effects to TRT patches and the medical monitor personnel recommended him to withdraw from the trial in week 8. However, we will perform intent to treat analysis on his data, which means that despite his early withdrawal from the study his data will be included in the final analysis. This will allow extrapolation of his post-intervention data using the SPSS missing values option. We anticipate that we will collect sufficient data to determine the effects of rehabilitation interventions on protein expression, mitochondrial enzymatic and ETC activities in individuals with SCI. Statistical analysis will be performed using SPSS version 23.0 (Chicago, IL) with a level of significance set at p < 0.05.

Ethics and Dissemination

Ethical approval has been obtained from the institutional review boards at the McGuire VA Medical Center and Virginia Commonwealth University. All participants read and signed approved consent forms prior to baseline assessment. Results of the study will be published in peer-reviewed journal and presented at national and international conferences.

430 Data Monitoring

The research staff oversaw and monitored the study to ensure data quality and participant
compliance. There were no adverse events. Only members of the research team will have access
to data.

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Discussion

Individuals with SCI experience profound skeletal muscle atrophy, deterioration in body composition and abnormal metabolic profile. Within few weeks of injury, there is a significant decrease in whole body FFM, particularly lower extremity skeletal muscle mass, and subsequent increase in FM. These changes predispose this population to the risk of glucose intolerance, insulin resistance, dyslipidemia and the development of type II diabetes and cardiovascular disease. The main purpose of this study is to investigate the effects of 16 weeks of evoked RT+TRT or TRT alone on body composition (muscle CSA, IMF, VAT, %FM, FFM) and metabolic profile (glucose, lipid and BMR) in individuals with motor complete SCI. Ectopic adipose tissue accumulation, IMF and VAT, has been strongly associated with altered metabolic profile after SCI [19, 20]. IMF has been determined to account for a 70% reduction in glucose tolerance in individuals with complete SCI [19]. VAT is independently associated with impairment in glucose tolerance, insulin resistance and dyslipidemia after SCI [20]. Edwards et al noted significant positive association between VAT and insulin resistance and a negative correlation between VAT:SAT ratio and HDL-C [13]. Increase in VAT is also related to leptin and plasminogen activator inhibitor-1 concentrations [14]. It is possible that increases in FM are associated with inflammatory biomarkers that trigger metabolic syndrome after SCI [22]. Ectopic adipose tissue has been demonstrated to secrete pro-inflammatory cytokines, including IL-6 and TNF- α . This stimulates hepatic production of CRP which is suggestive of vascular inflammation [15-19].

RT is an important type of exercise that has been shown to induce positive physiological adaptations such as increasing lean mass and reducing the incidence of metabolic disorders in other clinical populations. Previous work suggests that twice weekly NMES-RT can induce Page 21 of 41

BMJ Open

favorable body composition and metabolic adaptations. Twelve weeks of NMES-RT has shown to increase thigh muscle CSA by 35-40% as measured by MRI [59]. Moreover, there was a reduction in %leg FM and a trend towards decrease in VAT CSA after 12 weeks of NMES-RT [64]. The favorable adaptations in body composition were associated with decrease in plasma insulin area under the curve and plasma triglycerides [59]. These findings were attributed to an increase in plasma IGF-1. However, the effect of training appears to be limited to the trained muscle and only modestly impacted whole body composition. It is unclear whether a RT program longer than 12 weeks may provide additional benefits to individuals with SCI. The cellular changes underlying the alterations in skeletal muscle glucose utilization and energy metabolism after SCI are unclear. Previous work indicated that expression of AMP-activated protein kinase (AMPK), a key regulator of energy homeostasis for lipid and carbohydrate utilization, was altered in persons with SCI compared to BMI matched able bodied controls [79]. Another study revealed decreased expression of genes involved in glucose and lipid metabolism [80]. Despite these abnormalities, one study reported that leg glucose uptake during cycling was increased in individuals with SCI compared to able-bodied controls [61]. Another study showed similar glucose uptake of isolated muscle fibers from SCI and able bodied individuals in vitro [81]. Benefits of other forms of functional electrical stimulation lower extremity cycling (FES-LEC) have included improvements in body composition, carbohydrate-and lipid metabolism and muscle fiber type composition [60-63, 82-84]. Similarly, we have recently shown that 16 weeks of FES-LEC increased the protein abundance of GLUT-4, PGC- 1α and AMPK by 3.8, 2.3 and 3.4 fold, respectively, in the vastus lateralis muscle in persons with motor complete SCI [85].

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

TRT has been shown to increase skeletal muscle mass in hypogonadal men, men with chronic illness, and older men [53-55]. Androgen deficiency in men is associated with a loss of FFM and an increase in FM [53]. In epidemiologic studies, men with decreased free T had lower appendicular skeletal muscle mass than those with normal T levels [86]. Previous work documented that TRT increases muscle mass with a reciprocal decrease in total body FM [53, 54]. This reciprocal action has been suggested due to a switch from adipogenic toward myogenic differentiation of mesenchymal stem cells [86]. In a randomized controlled double blinded clinical trial, TRT was shown to improve insulin sensitivity, CRP and reduce VAT [54]. Sixty percent of men with SCI have low T level and levels are associated with time since injury [49, 50]. TRT has also been reported to increase IGF-1 and several molecular mechanisms related to the protective pathways have been recently elucidated [47, 48, 51, 87]. Therefore, enhancing the decline in anabolic homeostasis by providing TRT may provide additional benefits as was previously demonstrated by increasing lean mass and metabolic rate in individuals with SCI. It was very important to highlight that this protocol has 3 different phases including four weeks of delayed entry, 16 weeks of intervention and 16 weeks of detraining. The delayed entry period was included to allow each participant to serve as his own control. Moreover, we were successful in retaining 12 participants (n=6/group) to complete the detraining phase. This means that we had participants 6 participants that agreed to stick to our exercise program and the use of TRT patches up to 9 months. This may reflect on the study protocol frequency that ensured long-term adherence despite the length of the study. A very important point that is worth highlighting is that our study protocol was designed to include 3 levels of outcome measurements including body composition, metabolic profile and cellular changes. This design

BMJ Open

The current study was limited to those who were less than or equal to 50 years old. Because of advances in healthcare, many individuals with SCI have a near-normal life span which may make the results of this study less generalizable. However, this age limit was implemented because the effect of TRT on cardiovascular health has been controversial. There are data showing that hypogonadism is a risk for cardiovascular disease [88]. Some replacement studies show increased risk, but another study showed decreased mortality in men receiving testosterone [89]. Another study in older men reported that injectable testosterone may be associated with increased cardiovascular risk but topical testosterone was not [90]. Therefore, we set the inclusion criteria of less than or equal to 50 years old to reduce the likelihood of developing cardiovascular complications.

Currently NMES-RT is not readily available to the majority of SCI patients. Women
were not included because administering TRT is not either appropriate or safe, because women
are at risk of virulization by testosterone. Thus, the trial was limited only to males with SCI.
Moreover, only a small percentage of individuals with motor complete SCI are women.

In summary, we anticipate that this trial will provide important insights into the body
composition and metabolic benefits of 16 weeks of evoked RT+TRT or TRT. If beneficial, this
may be a feasible strategy for the rehabilitation of individuals with chronic SCI and increase the
health of this and other clinical populations. Additionally, TRT alone may provide an alternative
intervention for those who cannot benefit from training using surface NMES, because of lower
motor neuron denervation or intolerance to applications of electrical stimulation. The study will

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Page 24 of 41

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open

also shed light on several molecular pathways that have been suggested to influence both body composition and metabolic profile. Trial Status: Enrollment into the study started in July 2012 and as of April 2016 all participants have completed the study. Data collection and data analysis are expected to be completed in December 2016. The study is expected to be closed in June 2017. **Contributions:** ASG supervised all aspects of the trial including all interventions and measurements and secured funding for the trial procedures. ASG, REK, LCO drafted the manuscript. REK, JS, RK, and LCO contributed to data collection and analysis. RG, TL, TC, DXC, CC, RA, EJL and DRG are research physicians that contributed to patient monitoring and study design. DXC and RA will provide guidance during data analysis and manuscript preparation. All authors affirm that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned have been explained. **Competing interests:** The authors have no competing interests to declare Funding: This work was supported by VA-RRD CDA2 to Ashraf S. Gorgey, clinical trial registration number NCT01652040.

Page 25 of 41

BMJ Open

546	Acknowledgements: We would like to thank Rodney Wade, Sakita Sistrun, Liron Segal for
547	helping in the processes of data capturing and analysis as well as the study participants for their
548	time and effort. We would also like to thank Hunter Holmes McGuire Research Institute and
549	Spinal Cord Injury Services and Disorders for providing the environment to conduct clinical
550	human research trials. VCU Clinical Research Service for providing space and staff to perform
551	the blood work procedures. The work is supported by the Department of Veteran Affairs,
552	Veteran Health Administration, Rehabilitation Research and Development Service (B7867-W).
553	
554	
555	Open Access: This is an Open Access article distributed in accordance with the Creative
556	Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to
557	distribute, remix, adapt, build upon this work non-commercially, and license their derivative
558	works on different terms, provided the original work is properly cited and the use is non-
559	commercial. See: http://creativecommons.org/licenses/by-nc/3.0/.
560	
561	
562	
563	
564	
565	
566	
567	
568	
	2

1			
2 3			
4	569	Refe	rences
5	570	1.	Center, N.S.C.I.S., Spinal cord injury facts and figures at a glance. J Spinal Cord Med,
6 7	571	1.	2013. 36 (1): p. 1-2.
8		C	DeVivo, M.J., B.K. Go, and A.B. Jackson, <i>Overview of the national spinal cord injury</i>
9	572	2.	
10	573	2	statistical center database. J Spinal Cord Med, 2002. 25 (4): p. 335-8.
11	574	3.	Castro, M.J., et al., Influence of complete spinal cord injury on skeletal muscle cross-
12	575		sectional area within the first 6 months of injury. Eur J Appl Physiol Occup Physiol,
13	576		1999. 80 (4): p. 373-8.
14 15	577	4.	Gorgey, A.S. and G.A. Dudley, Skeletal muscle atrophy and increased intramuscular fat
16	578	_	after incomplete spinal cord injury. Spinal Cord, 2007. 45(4): p. 304-9.
17	579	5.	Wielopolski, L., et al., Measuring partial body potassium in the legs of patients with
18	580		<i>spinal cord injury: a new approach.</i> J Appl Physiol (1985), 2009. 106 (1): p. 268-73.
19	581	6.	Spungen, A.M., et al., Soft tissue body composition differences in monozygotic twins
20	582		discordant for spinal cord injury. J Appl Physiol (1985), 2000. 88(4): p. 1310-5.
21	583	7.	Spungen, A.M., et al., <i>Factors influencing body composition in persons with spinal cord</i>
22 23	584		injury: a cross-sectional study. J Appl Physiol (1985), 2003. 95(6): p. 2398-407.
23 24	585	8.	Gorgey, A.S., et al., Relationship of spasticity to soft tissue body composition and the
25	586		metabolic profile in persons with chronic motor complete spinal cord injury. J Spinal
26	587		Cord Med, 2010. 33 (1): p. 6-15.
27	588	9.	Gater, D.R., Jr., Obesity after spinal cord injury. Phys Med Rehabil Clin N Am, 2007.
28	589		18 (2): p. 333-51, vii.
29	590	10.	Weaver, F.M., et al., Prevalence of obesity and high blood pressure in veterans with
30 31	591		spinal cord injuries and disorders: a retrospective review. Am J Phys Med Rehabil,
32	592		2007. 86 (1): p. 22-9.
33	593	11.	Lavela, S.L., et al., Diabetes mellitus in individuals with spinal cord injury or disorder. J
34	594		Spinal Cord Med, 2006. 29 (4): p. 387-95.
35	595	12.	Mojtahedi, M.C., et al., The association between regional body composition and
36	596		metabolic outcomes in athletes with spinal cord injury. Spinal Cord, 2008. 46(3): p. 192-
37 38	597		7.
39	598	13.	Edwards, L.A., J.M. Bugaresti, and A.C. Buchholz, Visceral adipose tissue and the ratio
40	599		of visceral to subcutaneous adipose tissue are greater in adults with than in those without
41	600		spinal cord injury, despite matching waist circumferences. Am J Clin Nutr, 2008. 87(3):
42	601		p. 600-7.
43	602	14.	Maruyama, Y., et al., Serum leptin, abdominal obesity and the metabolic syndrome in
44 45	603	1	individuals with chronic spinal cord injury. Spinal Cord, 2008. 46(7): p. 494-9.
45 46	604	15.	Manns, P.J., J.A. McCubbin, and D.P. Williams, <i>Fitness, inflammation, and the</i>
47	605	10.	<i>metabolic syndrome in men with paraplegia</i> . Arch Phys Med Rehabil, 2005. 86 (6): p.
48	606		1176-81.
49	607	16.	Matsuzawa, Y., <i>White adipose tissue and cardiovascular disease</i> . Best Pract Res Clin
50	608	10.	Endocrinol Metab, 2005. 19 (4): p. 637-47.
51 52	609	17.	Kern, P.A., et al., Adipose tissue tumor necrosis factor and interleukin-6 expression in
52 53	610	17.	human obesity and insulin resistance. Am J Physiol Endocrinol Metab, 2001. 280(5): p.
54	611		E745-51.
55	612	18.	Blake, G.J. and P.M. Ridker, <i>Novel clinical markers of vascular wall inflammation</i> . Circ
56		10.	Res, 2001. 89 (9): p. 763-71.
57	613		Nes, 2001. 0 7(7). p. 703-71.
58 59			
60			25

	Ž
	3MJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downlo
)pen:
	firs
	ğ
	pli
	ish
	e
	as
	10
	36
	/bn
•	3/bmjopen-2016-014125 on 4
	per
	Ч N
	2
	ဓ
	24
	57
	ί Ο
	S
	4 7
•	ģ.
	2
	2
	7.
	ğ
	Š
	loa
	īde
	₫ Ţ
	d fron
	ded from h
	d from http:
	nttp://t
	nttp://t
	nttp://t
•	nttp://t
	d from http://bmjopen.brr
	nttp://t
•	nttp://t
•	nttp://t
	nttp://t
	nttp://t
	nttp://t
•	nttp://t
	nttp://t
	nttp://t
	nttp://t
-	nttp://t
-	nttp://t
	nttp://t
-	nttp://t
	nttp://t
-	nttp://t
	nttp://t
	nttp://t
	nttp://t
	nttp://t

Page 27 of 41		1	BMJ Open			
1 2						
3 4 5	614 615	19.	Elder, C.P., et al., <i>Intramuscular fat and glucose tolerance after spinal cord injurya cross-sectional study</i> . Spinal Cord, 2004. 42 (12): p. 711-6.			
6 7	616 617	20.	Gorgey, A.S., K.J. Mather, and D.R. Gater, <i>Central adiposity associations to carbohydrate and lipid metabolism in individuals with complete motor spinal cord injury.</i>			
8 9	618 619	21.	Metabolism, 2011. 60 (6): p. 843-51. Bauman, W.A. and A.M. Spungen, <i>Disorders of carbohydrate and lipid metabolism in</i>			
10 11 12	620 621		<i>veterans with paraplegia or quadriplegia: a model of premature aging.</i> Metabolism, 1994. 43 (6): p. 749-56.			
12 13 14	622 623	22.	Grundy, S.M., et al., Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues			
15 16	624 625	23.	<i>related to definition.</i> Circulation, 2004. 109 (3): p. 433-8. Nelson, M.D., et al., <i>Metabolic syndrome in adolescents with spinal cord dysfunction.</i> J			
17 18	626 627	24.	Spinal Cord Med, 2007. 30 Suppl 1 : p. S127-39. Bauman, W.A. and A.M. Spungen, <i>Coronary heart disease in individuals with spinal</i>			
19 20 21	628		cord injury: assessment of risk factors. Spinal Cord, 2008. 46(7): p. 466-76.			
22 23	629 630 631	25. 26.	Lee, C.S., et al., <i>Evaluating the prevalence of silent coronary artery disease in asymptomatic patients with spinal cord injury</i> . Int Heart J, 2006. 47 (3): p. 325-30. Bauman, W.A., et al., <i>Depressed serum high density lipoprotein cholesterol levels in</i>			
24 25 26	632 633	27.	veterans with spinal cord injury. Paraplegia, 1992. 30 (10): p. 697-703. Wilt, T.J., et al., Carbohydrate and lipid disorders and relevant considerations in persons			
27 28 29	634 635	28.	<i>with spinal cord injury</i> . Evid Rep Technol Assess (Full Rep), 2008(163): p. 1-95. Itoh, K., et al., <i>Mitochondrial dynamics in neurodegeneration</i> . Trends Cell Biol, 2013.			
30 31	636 637	29.	23 (2): p. 64-71. Chan, D.C., <i>Mitochondria: dynamic organelles in disease, aging, and development</i> . Cell,			
32 33 34	638 639	30.	2006. 125 (7): p. 1241-52. Zhao, J., et al., <i>Mitochondrial dynamics regulates migration and invasion of breast</i>			
35 36	640 641	31.	<i>cancer cells</i> . Oncogene, 2013. 32 (40): p. 4814-24. Phielix, E. and M. Mensink, <i>Type 2 diabetes mellitus and skeletal muscle metabolic function</i> . Physiol Behav, 2008. 94 (2): p. 252-8.			
37 38 39	642 643 644	32.	Ritov, V.B., et al., <i>Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity</i> . Am J Physiol Endocrinol Metab,			
40 41	645 646	33.	2010. 298 (1): p. E49-58. Erickson, M.L., et al., <i>Near-infrared assessments of skeletal muscle oxidative capacity in</i>			
42 43 44	647 648	34.	persons with spinal cord injury. Eur J Appl Physiol, 2013. 113 (9): p. 2275-83. Martin, T.P., et al., <i>Influence of electrical stimulation on the morphological and</i>			
44 45 46	649 650	35.	metabolic properties of paralyzed muscle. J Appl Physiol (1985), 1992. 72(4): p. 1401-6. Grimby, G., et al., Muscle fiber composition in patients with traumatic cord lesion. Scand			
47 48	651 652	36.	J Rehabil Med, 1976. 8 (1): p. 37-42. Goodpaster, B.H., <i>Mitochondrial deficiency is associated with insulin resistance</i> .			
49 50 51	653 654	37.	Diabetes, 2013. 62 (4): p. 1032-5. Holloszy, J.O., " <i>Deficiency</i> " of mitochondria in muscle does not cause insulin resistance.			
52 53	655 656	38.	Diabetes, 2013. 62 (4): p. 1036-40. Scarpulla, R.C., <i>Metabolic control of mitochondrial biogenesis through the PGC-1 family</i>			
54 55 56	657 658	39.	<i>regulatory network.</i> Biochim Biophys Acta, 2011. 1813 (7): p. 1269-78. Arany, Z., <i>PGC-1 coactivators and skeletal muscle adaptations in health and disease.</i>			
57 58 59 60	659		Curr Opin Genet Dev, 2008. 18 (5): p. 426-34.			

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open

1 2			
3	660	40.	Summermetter S at al Deverisories proliferator activated recentor (camma)
4	660 661	40.	Summermatter, S., et al., <i>Peroxisome proliferator-activated receptor {gamma}</i>
5	662		coactivator 1{alpha} (PGC-1{alpha}) promotes skeletal muscle lipid refueling in vivo by activating de novo lipogenesis and the pentose phosphate pathway. J Biol Chem, 2010.
6 7			
7 8	663	41	285 (43): p. 32793-800.
9	664	41.	Pagel-Langenickel, I., et al., PGC-1alpha integrates insulin signaling, mitochondrial
10	665		<i>regulation, and bioenergetic function in skeletal muscle.</i> J Biol Chem, 2008. 283 (33): p.
11	666	40	22464-72.
12	667	42.	Sacheck, J.M., et al., <i>Rapid disuse and denervation atrophy involve transcriptional</i>
13	668		<i>changes similar to those of muscle wasting during systemic diseases.</i> FASEB J, 2007.
14 15	669	12	21 (1): p. 140-55.
16	670	43.	Adhihetty, P.J., et al., Effect of denervation on mitochondrially mediated apoptosis in
17	671	4.4	<i>skeletal muscle</i> . J Appl Physiol (1985), 2007. 102 (3): p. 1143-51.
18	672	44.	O'Brien, L.C.G., A.S., Skeletal muscle mitochondrial health and spinal cord injury.
19	673	4.5	World J Orthop., 2016(In press).
20	674	45.	Tsitouras, P.D., et al., Serum testosterone and growth hormone/insulin-like growth
21 22	675		factor-I in adults with spinal cord injury. Horm Metab Res, 1995. 27(6): p. 287-92.
23	676	46.	Bauman, W.A., et al., Blunted growth hormone response to intravenous arginine in
24	677		subjects with a spinal cord injury. Horm Metab Res, 1994. 26(3): p. 152-6.
25	678	47.	Bhasin, S., Regulation of body composition by androgens. J Endocrinol Invest, 2003.
26	679		26 (9): p. 814-22.
27	680	48.	Bhasin, S. and J.G. Buckwalter, Testosterone supplementation in older men: a rational
28 29	681		<i>idea whose time has not yet come.</i> J Androl, 2001. 22 (5): p. 718-31.
30	682	49.	Clark, M.J., et al., Testosterone levels among men with spinal cord injury: relationship
31	683		between time since injury and laboratory values. Am J Phys Med Rehabil, 2008. 87(9): p.
32	684		758-67.
33	685	50.	Kostovski, E., et al., Decreased levels of testosterone and gonadotrophins in men with
34 35	686		long-standing tetraplegia. Spinal Cord, 2008. 46(8): p. 559-64.
35 36	687	51.	Zhao, W., et al., Testosterone protects against dexamethasone-induced muscle atrophy,
37	688		protein degradation and MAFbx upregulation. J Steroid Biochem Mol Biol, 2008. 110(1-
38	689		2): p. 125-9.
39	690	52.	Gregory, C.M., et al., Effects of testosterone replacement therapy on skeletal muscle after
40	691		<i>spinal cord injury</i> . Spinal Cord, 2003. 41 (1): p. 23-8.
41 42	692	53.	Isidori, A.M., et al., Effects of testosterone on body composition, bone metabolism and
43	693		serum lipid profile in middle-aged men: a meta-analysis. Clin Endocrinol (Oxf), 2005.
44	694		63 (3): p. 280-93.
45	695	54.	Aversa, A., et al., Effects of testosterone undecanoate on cardiovascular risk factors and
46	696		atherosclerosis in middle-aged men with late-onset hypogonadism and metabolic
47	697		syndrome: results from a 24-month, randomized, double-blind, placebo-controlled study.
48 49	698		J Sex Med, 2010. 7(10): p. 3495-503.
4 5 50	699	55.	Sinha-Hikim, I., et al., Effects of testosterone supplementation on skeletal muscle fiber
51	700		hypertrophy and satellite cells in community-dwelling older men. J Clin Endocrinol
52	701		Metab, 2006. 91 (8): p. 3024-33.
53	702	56.	Ryan, A.S., et al., Skeletal muscle hypertrophy and muscle myostatin reduction after
54 55	703		resistive training in stroke survivors. Stroke, 2011. 42(2): p. 416-20.
55 56			
57			
58			
59			

59 60

BMJ Open

2				
3	704	57.	Ibanez, J., et al., Twice-weekly progressive resistance training decreases abdominal fat	
4	705		and improves insulin sensitivity in older men with type 2 diabetes. Diabetes Care, 2005.	
5 6	706		28 (3): p. 662-7.	
7	707	58.	Chromiak, J.A., et al., <i>Effect of a 10-week strength training program and recovery drink</i>	
8	708	20.	on body composition, muscular strength and endurance, and anaerobic power and	
9	709		<i>capacity</i> . Nutrition, 2004. 20 (5): p. 420-7.	
10	710	59.	Mahoney, E.T., et al., Changes in skeletal muscle size and glucose tolerance with	
11		39.	electrically stimulated resistance training in subjects with chronic spinal cord injury.	
12	711			
13	712	()	Arch Phys Med Rehabil, 2005. 86 (7): p. 1502-4.	
14 15	713	60.	Mohr, T., et al., Insulin action and long-term electrically induced training in individuals	
16	714	<i>(</i> 1	with spinal cord injuries. Med Sci Sports Exerc, 2001. 33(8): p. 1247-52.	
17	715	61.	Kjaer, M., et al., Fatty acid kinetics and carbohydrate metabolism during electrical	
18	716		exercise in spinal cord-injured humans. Am J Physiol Regul Integr Comp Physiol, 2001.	
19	717		281 (5): p. R1492-8.	
20	718	62.	Crameri, R.M., et al., Effects of electrical stimulation-induced leg training on skeletal	
21	719		muscle adaptability in spinal cord injury. Scand J Med Sci Sports, 2002. 12(5): p. 316-	
22	720		22.	
23 24	721	63.	Gerrits, H.L., et al., Peripheral vascular changes after electrically stimulated cycle	
25	722		training in people with spinal cord injury. Arch Phys Med Rehabil, 2001. 82(6): p. 832-9).
26	723	64.	Gorgey, A.S., et al., Effects of resistance training on adiposity and metabolism after	
27	724		spinal cord injury. Med Sci Sports Exerc, 2012. 44(1): p. 165-74.	
28	725	65.	Kirshblum, S.C., et al., International standards for neurological classification of spinal	
29	726		cord injury (revised 2011). J Spinal Cord Med, 2011. 34 (6): p. 535-46.	
30	727	66.	Gorgey, A.S., et al., <i>Effects of neuromuscular electrical stimulation parameters on</i>	
31	728	00.	specific tension. Eur J Appl Physiol, 2006. 97(6): p. 737-44.	
32 33	729	67.	Gorgey, A.S., et al., <i>Effects of electrical stimulation parameters on fatigue in skeletal</i>	
34	730	07.	<i>muscle.</i> J Orthop Sports Phys Ther, 2009. 39 (9): p. 684-92.	
35		68.		
36	731	08.	Gorgey, A.S., et al., <i>Influence of motor complete spinal cord injury on visceral and</i>	
37	732		subcutaneous adipose tissue measured by multi-axial magnetic resonance imaging. J	
38	733	(0)	Spinal Cord Med, 2011. 34 (1): p. 99-109.	
39	734	69.	Gorgey, A.S. and C. Shepherd, Skeletal muscle hypertrophy and decreased intramuscula	r
40 41	735		fat after unilateral resistance training in spinal cord injury: case report. J Spinal Cord	
42	736	-	Med, 2010. 33 (1): p. 90-5.	
43	737	70.	Vermeulen, A., L. Verdonck, and J.M. Kaufman, A critical evaluation of simple methods	
44	738		for the estimation of free testosterone in serum. J Clin Endocrinol Metab, 1999. 84(10): p).
45	739		3666-72.	
46	740	71.	Collins, E.G., et al., <i>Energy cost of physical activities in persons with spinal cord injury</i> .	
47	741		Med Sci Sports Exerc, 2010. 42 (4): p. 691-700.	
48 40	742	72.	Bergman, R.N., Lilly lecture 1989. Toward physiological understanding of glucose	
49 50	743		tolerance. Minimal-model approach. Diabetes, 1989. 38(12): p. 1512-27.	
51	744	73.	Matthews, D.R., et al., <i>Homeostasis model assessment: insulin resistance and beta-cell</i>	
52	745		function from fasting plasma glucose and insulin concentrations in man. Diabetologia,	
53	746		1985. 28 (7): p. 412-9.	
54	747	74.	Matsuda, M. and R.A. DeFronzo, Insulin sensitivity indices obtained from oral glucose	
55	748	-	tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care, 1999.	
56	749		22 (9): p. 1462-70.	
57 58				
58 59				
60			2	8

1

2 3

4

5

6 7

8

9

10

11

12

13 14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32 33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50 51

52 53 54

55 56

57 58 59

60

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

Brass, E.P., et al., <i>Decreased NADH dehydrogenase and ubiquinol-cytochrome c</i> <i>oxidoreductase in peripheral arterial disease</i> . Am J Physiol Heart Circ Physiol, 2001.
280 (2): p. H603-9. Brooke, M.H. and K.K. Kaiser, <i>Three "myosin adenosine triphosphatase" systems: the nature of their pH lability and sulfhydryl dependence</i> . J Histochem Cytochem, 1970. 19 (0): p. 670.2
18 (9): p. 670-2. Nachlas, M.M., et al., <i>Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole</i> . J Histochem Cytochem, 1957. 5 (4): p. 420-36.
 Wong-Riley, M., Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res, 1979. 171(1): p. 11-28. Kostovski, E., et al., Altered content of AMP-activated protein kinase isoforms in skeletal muscle from spinal cord injured subjects. Am J Physiol Endocrinol Metab, 2013. 305(9): p. E1071-80.
Long, Y.C., et al., <i>Differential expression of metabolic genes essential for glucose and lipid metabolism in skeletal muscle from spinal cord injured subjects</i> . J Appl Physiol (1985), 2011. 110 (5): p. 1204-10.
Aksnes, A.K., et al., <i>Intact glucose transport in morphologically altered denervated skeletal muscle from quadriplegic patients</i> . Am J Physiol, 1996. 271 (3 Pt 1): p. E593-600.
Hjeltnes, N., et al., <i>Improved body composition after 8 wk of electrically stimulated leg cycling in tetraplegic patients</i> . Am J Physiol, 1997. 273 (3 Pt 2): p. R1072-9. Hjeltnes, N., et al., <i>Exercise-induced overexpression of key regulatory proteins involved in glucose uptake and metabolism in tetraplegic persons: molecular mechanism for improved glucose homeostasis</i> . FASEB J, 1998. 12 (15): p. 1701-12.
Mohr, T., et al., <i>Long-term adaptation to electrically induced cycle training in severe spinal cord injured individuals</i> . Spinal Cord, 1997. 35 (1): p. 1-16.
Gorgey, A.S., et al., <i>Abundance in proteins expressed after functional electrical stimulation cycling or arm cycling ergometry training in persons with chronic spinal cord injury</i> . J Spinal Cord Med, 2016: p. 1-10.
Herbst, K.L. and S. Bhasin, <i>Testosterone action on skeletal muscle</i> . Curr Opin Clin Nutr Metab Care, 2004. 7 (3): p. 271-7. Wu, Y., et al., <i>Identification of androgen response elements in the insulin-like growth</i>
<i>factor I upstream promoter</i> . Endocrinology, 2007. 148 (6): p. 2984-93. Araujo, A.B., et al., <i>Clinical review: Endogenous testosterone and mortality in men: a</i>
systematic review and meta-analysis. J Clin Endocrinol Metab, 2011. 96 (10): p. 3007-19. Shores, M.M., et al., <i>Testosterone treatment and mortality in men with low testosterone levels.</i> J Clin Endocrinol Metab, 2012. 97 (6): p. 2050-8.
Layton, J.B., et al., <i>Comparative Safety of Testosterone Dosage Forms</i> . JAMA Intern Med, 2015. 175 (7): p. 1187-96.
29

BMJ Open

Subject ID	Assignment	Baseline 1	Baseline 2	Post-	Post-
				Intervention 1	Intervention 2
10001	RT+TRT	С	С	С	С
10002	TRT	C	С	С	С
10003	TRT	Ċ	Ċ	Ċ	C
10004	RT+TRT	C	C	C	C
10005	RT+TRT	Ċ	Ċ	Ċ	Ċ
10006	TRT	Ċ	Ċ	Ċ	X
10007	RT+TRT	Č	Č	Č	C
10008	TRT	Ċ	Ċ	Ċ	Ċ
10009	RT+TRT	Č	withdraw	X	X
10010	TRT	NA	NA	NA	NA
10011	RT+TRT	C	withdraw	X	X
10012	TRT	С	С	С	С
10013	TRT	С	C	С	Х
10014	RT+TRT	C	C	С	withdraw
10015	TRT	С	C	С	Х
10016	TRT	С	С	С	С
10017	RT+TRT	C	С	С	Х
10018	TRT	C	Ċ	C	х
10019	RT+TRT	C	С	С	С
10020	RT+TRT	withdraw	x	X	Х
10021	RT+TRT	С	С	C	Х
10022	TRT	C	C	C	С
10023	RT+TRT	Ċ	Ċ	C	Ċ
10024	TRT	C	withdraw	X	X
10025	RT+TRT	C	С	Ĉ	C
10026	RT+TRT	С	С	withdraw	х
10027	TRT	C	С	С	х

793	Table 1. Randomization of individuals with motor complete SCI into either RT+TRT (n=13) or
794	TRT ($n = 13$) using n Query software with a treatment ratio 1:1.

C: completed; NA: not assigned for #10. Baseline 1 was followed by 4 weeks of no intervention
for all the participants. Prior to baseline 2, randomization was performed into RT+TRT or TRT
groups. Post-intervention 1 (n=22) was conducted following 16 weeks of intervention. Postintervention 2 (n= 13) was conducted following 16 weeks of RT+TRT (n=6) or no intervention
(n=6).

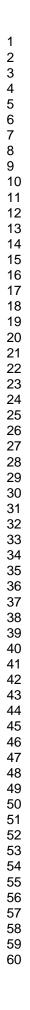
BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

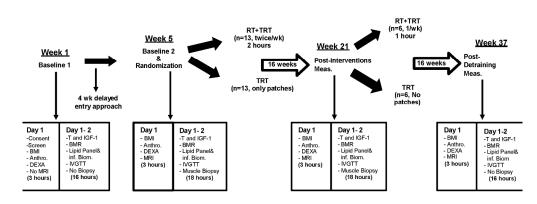
3 4	80
5 6 7 8	80
9 10 11 12	
13 14 15	
16 17 18 19	
20 21 22 23	
24 25 26	
27 28 29 30	
31 32 33 34	
35 36 37 38	80 80 80
39 40 41 42	80 80
43 44 45	80 81 81
46 47 48 49	81 81 81
50 51 52 53	81 81 81
54 55 56	81
57 58 59 60	

1

2 3

802 Table 2. Metabolic health variables measured at baseline 1, baseline 2, post-intervention 1 and post-intervention 2 03


6 7 8			Quantity	Special handling	Techniques of Analysis
9 10 11		Insulin and Glucose	2 ml	Potassium oxalate/sodium fluoride tube (Grey Top)	ELISA and biochemistry analyzer
12		HBA1C		SST	Standard Procedure
13 14 15 16 17		Testosterone every 4 weeks	4 ml	SST	Liquid chromatography with isotope dilution mass
18 19 20		Albumin*		SST	spectrometry detection Standard Procedure
21 22		SHBG*		SST	Standard Procedure
23 24 25		IGF-1, IGFBP-1 and 3	4 ml	SST	ELISA
26 27 28 29		Inflammatory biomarkers (CRP, IL-6, TNFα)	4 ml	SST	ELISA
29 30 31		Free fatty acids	2 ml	Potassium oxalate/sodium fluoride tube (Grey Top)	Enzymatic colorimetric quantification
32 33 34		Triglycerides, total cholesterol, HDL, LDL	4 ml	SST	Enzymatic colorimetric quantification
35	804	*, Only at baseline 2 and po	st-interventio	n 1 to calculate free testosteror	ne. ELISA, enzyme-
36 37	805			emoglobin A1c; SHBG, sex ho	
38	806	_		n-like growth factor 1; IGF-BP	_
39 40	807	factor binding protein; CRP	, C-reactive p	rotein; IL-6, interleukin 6; TN	Fa, tumor necrosis factor
40 41 42	808	alpha			
43	809				
44	810				
45	811				
46	812				
47 48	813				
49	814				
50	815				
51	816				
52 53 54	817				
55 56 57 58 59 60	818				31


Figure Legends

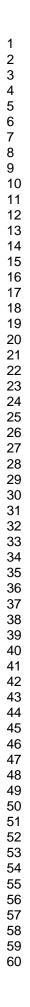
BMJ Open

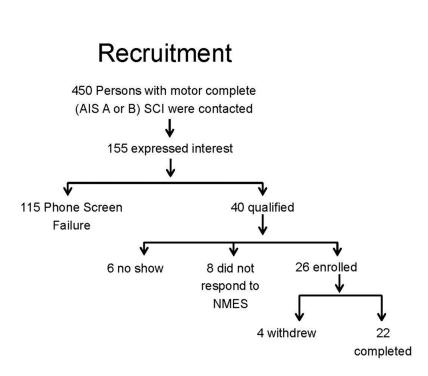
Figure 1. Timeline and main procedures of the TEREX-SCI trial for both the RT+TRT and TRT groups during baseline 1, baseline 2, post-intervention 1 and post-intervention 26 for persons with motor complete SCI. Figure 2. A person with T4 motor complete SCI undergoing both electrically evoked RT (left panel) and TRT using transdermal patches (right panel) as a part of a 16 week intervention. Figure 3. Schematic diagram showing the process of recruitment over the 3 year period of the TEREX trial. Figure 4. A representative figure of analysis for IVGTT in a person with SCI after infusion of dextrose followed by insulin 20 minutes later. The dextrose concentration is calculated by multiplying $0.3g \times body$ weight (kg) in 50% solution. Insulin concentration is determined by multiplying 0.02 units x body weight (kg). Blue line represents fasting glucose concentration, resting, following infusion, and over 120 minutes. Red line represents the line of best fit of glucose concentration. Green line represents fasting insulin level, spike following 20 minutes of dextrose infusion and over 120 minutes. Black line represents the line of best fit for insulin concentration.

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Timeline and main procedures of the TEREX-SCI trial for both the RT+TRT and TRT groups during baseline 1, baseline 2, post-intervention 1 and post-intervention 26 for persons with motor complete SCI.

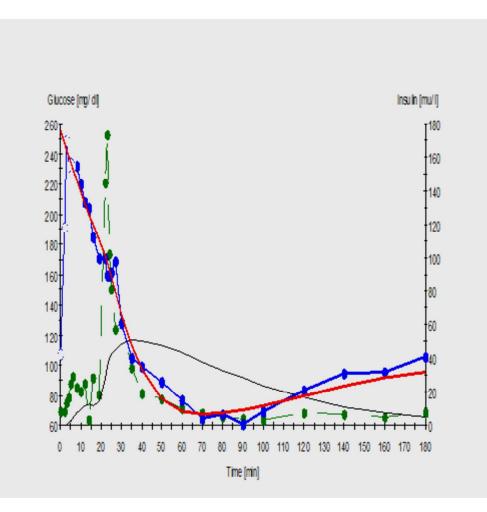
215x77mm (300 x 300 DPI)


A person with T4 motor complete SCI undergoing both electrically evoked RT (left panel) and TRT using transdermal patches (right panel) as a part of a 16 week intervention.


BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

121x92mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Schematic diagram showing the process of recruitment over the 3 year period of the TEREX trial.

114x76mm (300 x 300 DPI)

A representative figure of analysis for IVGTT in a person with SCI after infusion of dextrose followed by insulin 20 minutes later. The dextrose concentration is calculated by multiplying 0.3g x body weight (kg) in 50% solution. Insulin concentration is determined by multiplying 0.02 units x body weight (kg). Blue line represents fasting glucose concentration, resting, following infusion, and over 120 minutes. Red line represents the line of best fit of glucose concentration. Green line represents fasting insulin level, spike following 20 minutes of dextrose infusion and over 120 minutes. Black line represents the line of best fit for insulin concentration.

126x120mm (300 x 300 DPI)

STANDARD PROTOCOL ITEMS: RECOMMENDATIONS FOR INTERVENTIONAL TRIALS

SPIRIT 2013 Checklist: Recommended items to address in a clinical trial protocol and related documents*

1 2 3	Section/item	ltem No	Description	Addressed on page number
4 5 6	Administrative info	ormation		
7 8	Title	1	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym	1
9	Trial registration	2a	Trial identifier and registry name. If not yet registered, name of intended registry	3, 7
1		2b	All items from the World Health Organization Trial Registration Data Set	3, 7
2	Protocol version	3	Date and version identifier	
4 5	Funding	4	Sources and types of financial, material, and other support	21
6 7	Roles and	5a	Names, affiliations, and roles of protocol contributors	20
8	responsibilities	5b	Name and contact information for the trial sponsor	21
0		5c	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities	
4 5 6 7 8 9		5d	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee)	
0 1 2				
2 3 4				1
5 6 7			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

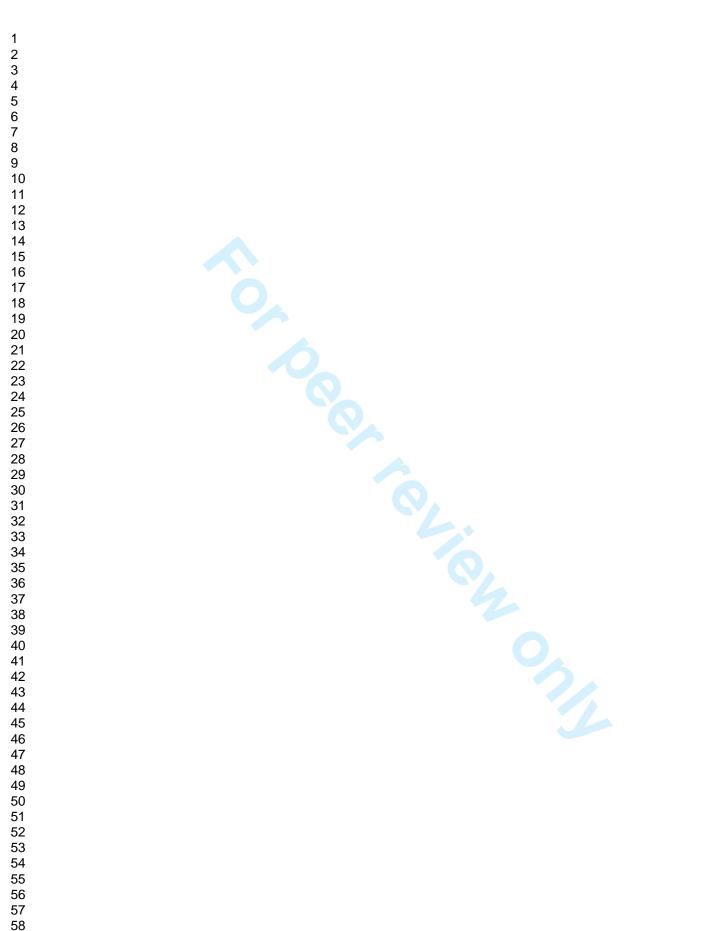
1 2				
3 4	Introduction			
5 6 7	Background and rationale	6a	Description of research question and justification for undertaking the trial, including summary of relevant	4-6
8 9		6b	Explanation for choice of comparators	5-6
10 11	Objectives	7	Specific objectives or hypotheses	6
12 13 14	Trial design	8	Description of trial design including type of trial (eg, parallel group, crossover, factorial, single group), allocation ratio, and framework (eg, superiority, equivalence, noninferiority, exploratory)	7
15 16	Methods: Participa	nts, inte	erventions, and outcomes	
17 18 19	Study setting	9	Description of study settings (eg, community clinic, academic hospital) and list of countries where data will be collected. Reference to where list of study sites can be obtained	7
20 21 22 23 24 25 26	Eligibility criteria	10	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and	8
	Interventions	11a	Interventions for each group with sufficient detail to allow replication, including how and when they will be administered	9-10
27 28 29		11b	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose	
30 31 32		11c	Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return, laboratory tests)	99
33 34		11d	Relevant concomitant care and interventions that are permitted or prohibited during the trial	8
35 36 37 38 39	Outcomes	12	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended	10-16
40 41 42 43 44	Participant timeline	13	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure)	7, Fig 1 2
45				
46 47			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
48 ⊿q	BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.			

2					
3 4	Sample size	14	Estimated number of participants needed to achieve study objectives and how it was determined, including	16-17	
5 6 7	Recruitment	15	Strategies for achieving adequate participant enrolment to reach target sample size	7-8	
8 9	Methods: Assignm	ent of i	nterventions (for controlled trials)		
10 11	Allocation:				
12 13 14 15 16	Sequence generation	16a	Method of generating the allocation sequence (eg, computer-generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions	7-8	
17 18 19 20 21	Allocation concealment mechanism	16b	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered,	7-8	
21 22 23 24	Implementation	16c	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to	8	
25 26 27	Blinding (masking)	17a	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how	9-10	
28 29 30		17b	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's _ allocated intervention during the trial		
31 32	Methods: Data coll	ection,	management, and analysis		
33 34 35 36 37 38	Data collection methods	18a	Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol	10-16	
39 40 41 42		18b	Plans to promote participant retention and complete follow-up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols	17	
43 44 45				3	
46	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				
47 48 49	BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.				

Page	41	of	41
------	----	----	----

BMJ Open

1 2 3 4	Data management	19	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management	10	_
5			procedures can be found, if not in the protocol		
6 7 8 9	Statistical methods	20a	Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol	16-17	—
10		20b	Methods for any additional analyses (eg, subgroup and adjusted analyses)	N/A	
11 12 13 14		20c	Definition of analysis population relating to protocol non-adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation)	17	
15 16	Methods: Monitorir	ıg			
17 18 19 20 21 22	Data monitoring	21a	Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed	17	
23 24 25		21b	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial		
26 27 28	Harms	22	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct	17	
29 30 31	Auditing	23	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor		
32 33 34	Ethics and dissemi	nation			
35 36 37	Research ethics approval	24	Plans for seeking research ethics committee/institutional review board (REC/IRB) approval	3, 7, 17	
38 39 40 41 42	Protocol amendments	25	Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators)		
43 44					4
45					
46 47	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				
48 ⊿q	scted by copyriaht.	est. Prote	up valished as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by gu	BMJ Open: first c	


2 3 4	Consent or assent	26a	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32)	7	
5 6 7		26b	Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable	N/A	_
8 9 10 11	Confidentiality	27	How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial	10	_
12 13 14	Declaration of interests	28	Financial and other competing interests for principal investigators for the overall trial and each study site	21	_
15 16 17	Access to data	29	Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators	17	_
18 19 20	Ancillary and post- trial care	30	Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participation	<u></u>	
21 22 23 24	Dissemination policy	31a	Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions	3, 17	_
25 26		31b	Authorship eligibility guidelines and any intended use of professional writers	20	_
27 28		31c	Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code		
29 30 31	Appendices				
32 33 34	Informed consent materials	32	Model consent form and other related documentation given to participants and authorised surrogates	attached	_
35 36 37	Biological specimens	33	Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable	15	_
38 39 40 41 42 43 44	Amendments to the p	protocol	that this checklist be read in conjunction with the SPIRIT 2013 Explanation & Elaboration for important clarifical should be tracked and dated. The SPIRIT checklist is copyrighted by the SPIRIT Group under the Creative Con- <u>NoDerivs 3.0 Unported</u> " license.	nmons	5
45 46			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		
 46 48 10.1136/bmjopen-2014.125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright. 44 44 				BMJ Open: first p	

BMJ Open

Effects of Testosterone and Evoked Resistance Exercise after Spinal Cord Injury [TEREX-SCI]: A Randomized Clinical Trial

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-014125.R2
Article Type:	Protocol
Date Submitted by the Author:	17-Jan-2017
Complete List of Authors:	Gorgey, Ashraf; Hunter Holmes McGuire VA Medical Center, Spinal Cord Injury Service and Disorders Khalil1, Refka; Hunter Holmes McGuire VA Medical Center, Spinal Cord Injury Service and Disorders Gill, Ranjodh; Hunter Holmes McGuire VA Medical Center, Endocrine Service O'Brien, Laura; Hunter Holmes McGuire VA Medical Center, Spinal Cord Injury Service and Disorders Lavis, Timothy Lavis1; Hunter Holmes McGuire VA Medical Center, Spinal Cord Injury Service and Disorders Castillo, Teodoro ; Hunter Holmes McGuire VA Medical Center, Spinal Cord Injury Service and Disorders Cifu, David; Commonwealth of Virginia, Physical Medicine and Rehab. Savas, Jeannie ; Hunter Holmes McGuire VA Medical Center, Surgery Service Khan, Rehan; Hunter Holmes McGuire VA Medical Center, Radiology Service Cardozo, Christopher ; 7) National Center for the Medical Consequences of Spinal Cord Injury Lesnefsky, Edward ; Hunter Holmes McGuire VA Medical Center, Cardiology Service Gater, David; Pennsylvania State University Adler, Robert; Hunter Holmes McGuire VA Medical Center, Endocrine Service
Primary Subject Heading :	Rehabilitation medicine
Secondary Subject Heading:	Nutrition and metabolism
Keywords:	SPINAL CORD INJURY, TESTOSTERONE, RESISTANCE TRAINING, BODY COMPOSITION and METABOLISM, MITOCHONDRIA, INFLAMMATORY BIOMARKERS

SCHOLARONE[™] Manuscripts

4	1	
5	2	
4 5 6		Effacts of Tostostarana and Evolved Desistance Evereise after Spinal Cord
7	3	Effects of Testosterone and Evoked Resistance Exercise after Spinal Cord
8	4	Injury [TEREX-SCI]: study protocol for a randomized controlled trial
9	5	
10		
11	6	$A = C = C = \frac{12}{7} D = C = \frac{12}{12} D =$
12	7	Ashraf S. Gorgey ^{1,2} ; Refka E. Khalil ¹ ; Ranjodh Gill ^{3,4} ; Laura C. O'Brien ¹ ; Timothy
13	8	Lavis ^{1,2} ; Teodoro Castillo ¹ ; David X. Cifu ^{1,2} ; Jeannie Savas ⁵ ; Rehan Khan ⁶ ; Christopher Cardozo ^{7,8} ; Edward J. Lesnefsky ^{9,10} ; David R Gater ¹¹ ; Robert A Adler ^{3,4}
14	9	Cardozo ^{7,} ⁶ ; Edward J. Lesnefsky ^{9,10} ; David R Gater ¹¹ ; Robert A Adler ^{3,4}
15		
16	10	1) Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, 1201 Broad
17	11	Rock Boulevard, Richmond, VA 23249, USA
18 19	12	2) Virginia Commonwealth University, Department of Physical Medicine & Rehabilitation,
20	13	Richmond, VA
21	14	3) Endocrinology Service; Hunter Holmes McGuire VA Medical Center, Richmond, VA
22	15	4) Endocrine Division; Virginia Commonwealth University School of Medicine, Richmond,
23	16	VA
24	17	5) Surgical Service; Hunter Holmes McGuire VA Medical Center, Richmond, VA
25		
26	18	6) Radiology Service; Hunter Holmes McGuire VA Medical Center, Richmond, VA
27	19	7) National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA
28	20	Medical Center, Bronx, NY
29	21	8) Icahn School of Medicine at Mt. Sinai, Medicine, New York City, NY
30	22	9) Cardiology Service; Hunter Holmes McGuire VA Medical Center, Richmond, VA
31	23	10) Division of Cardiology, Department of Medicine, Pauley Heart Center Virginia
32	24	Commonwealth University, Richmond, VA
33 34	25	11) Department of Physical Medicine and Rehabilitation, Penn State Milton S.
34 35	26	Hershey Medical Center, Hershey, PA
36		Thershey Miculcal Center, Hershey, IA
37	27	
38	28	
39	29	
40		
41	30	
42	31	
43	32	
44	33	Correspondence
45	34	Ashraf S. Gorgey, MPT, PhD, FACSM
46	35	Department of Veterans Affairs
47 48	36	Hunter Holmes McGuire Medical Center
40 49	37	Spinal Cord Injury & Disorders Service
49 50	38	1201 Broad Rock Boulevard
51	39	Richmond, VA 23249
52		
53	40	Email: ashraf.gorgey@va.gov
54	41	Tel: $+ 1 - (804) - 675 - 5000$ ext. 3386
55	42	Fax: + 1- 804-675-5223
56	43	
57		
58		
59		

44	Abstract
45	Introduction: Individuals with spinal cord injury (SCI) are at a lifelong risk of obesity and
46	chronic metabolic disorders including insulin resistance and dyslipidemia. Within few weeks of
47	injury, there is a significant decline in whole body fat-free mass, particularly lower extremity
48	skeletal muscle mass, and subsequent increase in fat mass (FM). This is accompanied by a
49	decrease in anabolic hormones including testosterone. Testosterone replacement therapy (TRT)
50	has been shown to increase skeletal muscle mass and improve metabolic profiles. Additionally,
51	resistance training (RT) has been shown to increase lean mass and reduce metabolic disturbances
52	in SCI and other clinical populations.
53	Methods and analysis: Twenty-six individuals with chronic, motor complete SCI between 18-
54	50 years old were randomly assigned to a RT+TRT group ($n = 13$) or a TRT group ($n = 13$).
55	Twenty-two participants completed the initial 16-week training phase of the study and 4
56	participants withdrew. Twelve participants out of the 22 completed 16 weeks of detraining. The
57	TRT was provided via transdermal testosterone patches (4-6 mg/day). The RT+TRT group had
58	16 weeks of supervised unilateral progressive RT using surface neuromuscular electrical
59	stimulation with ankle weights. This study will investigate the effects of evoked RT+TRT or
60	TRT alone on body composition (muscle cross sectional area, visceral adipose tissue, %FM) and
61	metabolic profile (glucose and lipid metabolisms) in individuals with motor complete SCI.
62	Findings from this study may help in designing exercise therapies to alleviate the deterioration in
63	body composition after SCI and decrease the incidence of metabolic disorders in this clinical
64	population.
65	Ethics and Dissemination: The study is currently approved by the McGuire VA Medical Center
66	and Virginia Commonwealth University. All participants read and signed approved consent

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

BMJ Open

3 4	67	forms. Results will be submitted to peer-reviewed journals and presented at national and
5 6 7	68	international conferences.
8 9	69	Trial Registration: NCT01652040
10 11	70	
12 13	71	Keywords: RESISTANCE TRAINING, SPINAL CORD INJURY, BODY COMPOSITION,
14 15 16	72	METABOLISM, TESTOSTERONE, MITOCHONDRIA, INFLAMMATORY BIOMARKERS
17 18	73	
19 20 21	74	Strengths and limitations
22 23 24	75	> The trial will investigate the use of surface neuromuscular electrical stimulation induced
25 26	76	resistance training (NMES-RT) to restore muscle size after spinal cord injury (SCI)
27 28 29	77	> The trial will provide evidence on the effectiveness of testosterone replacement therapy
30 31	78	(TRT) to restore muscle size and lean mass and serve as an alternative approach for those
32 33	79	who cannot benefit from NMES.
34 35 36	80	> The trial will determine how restoring muscle size and lean mass by RT+TRT or TRT can
37 38	81	benefit the metabolic profile after SCI.
39 40 41	82	The study is only limited to men with complete SCI
41 42 43	83	Surface NMES may not benefit those with full sensation or lower motor neuron denervation
44 45	84	
46 47 48	85	
49 50	86	
51 52	87	
53 54 55	88	
56 57 58 59 60	89	

Introduction

sensitivity [19, 20].

BMJ Open

91	There are approximately 11,000-12,000 new cases of spinal cord injury (SCI) in the
92	United States annually with an overall prevalence of 250,000-400,000 [1, 2]. Persons with motor
93	complete injury have loss of both sensation and motor function below the level of injury, while
94	incomplete injury is characterized by preserved motor or sensory function. Chronic SCI, defined
95	as one year post injury, is associated with dramatic skeletal muscle atrophy [3-5], increase of fat
96	mass (FM) [6-8] and decrease of fat free mass (FFM) [6, 7]. Collectively, these factors put
97	individuals with SCI at risk for metabolic disorders such as type II diabetes and cardiovascular
98	disease.
99	Previous studies reveal that 60% of individuals with SCI in the United States are either
100	overweight or obese [2, 9-11]. Despite a low body mass index (BMI) in 50% of the SCI
101	population, individuals are likely to have more than 30% of their body mass as FM. Furthermore,
102	person with SCI are 13% fatter per unit BMI than able-bodied individuals. Individuals with SCI
103	also have a redistribution of adipose tissue, with greater trunk FM and visceral adipose tissue
104	(VAT) compared to age and waist circumference matched able-bodied controls [12-14].
105	Adipose tissue, particularly VAT, secretes proinflammatory cytokines including interleukin-6
106	(IL-6) and tumor-necrosis factor- α (TNF- α). Therefore, the increase in VAT after SCI may
107	contribute to metabolic syndrome by stimulating the hepatic production of C-reactive protein
108	(CRP), which is tied to vascular inflammation [15-18]. Another type of ectopic adipose tissue,
109	intramuscular fat (IMF), is increased after SCI and has been correlated with reduced insulin

Metabolic changes also accompany SCI, with previous studies finding that more than
50% of individuals with SCI are glucose intolerant, while one out of five is diabetic [2, 9-11, 21].

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Other studies report that 55% of individuals with SCI are at risk of developing metabolic syndrome [21-23]. Individuals with complete tetraplegia are more likely to experience decreased glucose and carbohydrate tolerance and have a higher prevalence of heart disease than those with incomplete injuries [24, 25]. Likewise, depressed HDL-C ($\leq 35 \text{ mg} \cdot dL^{-1}$) and a higher total cholesterol/HDL-C ratio, predictors of coronary heart disease, were noted in those with chronic SCI compared with able bodied controls [24, 26]. These are not universal findings, however, as a systematic review of carbohydrate and lipid disorders in persons with SCI did not find strong evidence of increased risk beyond that of the general population [27]. While previous studies have shown a link between body composition and metabolic profile after SCI, the cellular mechanisms remain unknown. Mitochondria are the site of oxygen consumption and energy production from glucose and lipid metabolism. Unfortunately, mitochondrial function is impaired in a number of diseases including neurodegenerative disease, atherosclerosis, hypertension and cancer [28-31]. Fewer and smaller mitochondria are found in skeletal muscle of insulin resistant, obese and type II diabetic individuals [32]. Previous studies found decreased muscle oxidative capacity and succinate dehydrogenase activity, complex II of the electron transport chain, after SCI [33-35]. One hypothesis is that skeletal muscle mitochondrial function is decreased in metabolic disorders, leading to decreased fatty acid oxidation which contributes to insulin resistance [36, 37]; however, this is controversial [37]. Mitochondria are dynamic organelles and undergo

biogenesis, remodeling, and degradation. Mitochondrial biogenesis is driven in part through the
action of peroxisome proliferator-activated receptor (PPAR) coactivator 1 alpha (PGC-1α) [38,

134 39]. In addition, PGC-1 α integrates insulin signaling and lipogenesis in skeletal muscle [40, 41].

135 PGC-1 α is decreased in animal and human models following denervation [42, 43]. Decreased

mitochondrial biogenesis and reduced mitochondrial mass may result in decreased energy
production and therefore play a significant role in the altered metabolic profile following SCI
[44].

Body composition and metabolic changes after SCI may be further exacerbated by reduced anabolic hormones including testosterone (T), growth hormone and the growth hormone second messenger insulin like growth factor-1 (IGF-1) [45, 46]. Previous studies have shown that 60% of men with SCI have low T and that testosterone replacement therapy (TRT) increases IGF-1 in men [47-50]. In rodent models of SCI, TRT attenuates the loss of muscle [51, 52]. TRT decreases total body fat, increases lean mass [53, 54] and increases the number of proliferating skeletal muscle satellite cells in in men [55]. These findings suggest that TRT may provide metabolic benefits to individuals with SCI.

Resistance training (RT) improves insulin sensitivity and increases fatty acid and carbohydrate metabolism as well as attenuates sarcopenia in the elderly and after SCI [56-63]. Moreover, RT has been shown to influence body composition by increasing lean mass, decreasing FM and reducing VAT, suggesting that the benefits of RT could overcome the risk of developing insulin resistance [56-59]. Functional electrical stimulation (FES) has been shown to improve fatty acid kinetics, carbohydrate metabolism and vascular health after SCI [60-63]. Electrically evoked RT using neuromuscular electrical stimulation (NMES-RT) and ankle weights is another form that has been shown to be effective in inducing muscle hypertrophy in individuals with chronic SCI [59, 64]. One study showed a 40% increase in skeletal muscle size and improved glucose tolerance after 12 weeks of training [59]. Another study showed that following 12 weeks of NMES-RT, whole thigh, knee extensor and flexor cross sectional areas (CSAs) increased by 28%, 35% and 16%, respectively. Moreover, the ratio of leg FFM to whole

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

body FFM increased by 20% following intervention. There was 32% decrease in glucose area
under the curve adjusted to muscle CSA following 12 weeks of NMES-RT. However, there
were only modest effects on whole body composition as well as a non-significant decrease in
VAT [64]. It is possible that the limited effects of NMES-RT on parameters of body
composition and VAT can be possibly explained by depressed T-level in persons with SCI.
Supplementing exogenous T may optimize the outcomes of NMES-RT on parameters of body
composition and metabolic profile such as increase basal metabolic rate (BMR).

TRT may be an effective therapy to counterbalance the growing rate of obesity, type II diabetes and cardiovascular disease among individuals with SCI. Moreover, results from the current trial may provide evidence that TRT is an effective intervention for those who cannot effectively benefit from NMES because of lower motor neuron denervation or intolerance to electrical stimulation. Therefore, the primary hypothesis is that the addition of TRT will maximize the benefits of electrically evoked RT on parameters of body composition and metabolic profile in men with chronic complete SCI. We, hereby, report the design of a study for which the major research goal is to investigate the effects of 16 weeks of evoked RT+TRT vs. TRT on body composition (primary outcome variables; muscle CSA, VAT, %FM) and metabolic profiles (secondary outcome variables; glucose and lipid metabolism) in individuals with motor complete SCI.

177 Methods and analysis

178 <u>Study design</u>

A randomized controlled study was undertaken in which individuals with SCI were
 randomized to receive RT+TRT or TRT alone for 16 weeks. The study was approved by the
 McGuire Veteran Affairs Investigation Research Board and the Virginia Commonwealth

University (VCU) Office of Research and Innovation. The trial has been registered at clinicaltrials.gov (NCT01652040). A member of the research team explained the study and obtained written informed consent. After informed consent each subject underwent a detailed physical examination at the Hunter Holmes McGuire VA Medical Center (VAMC) by a physiatrist board certified in SCI medicine. This exam included a neurological assessment according to the International Standards for Neurological Classification of SCI (ISNCSCI), including the American Spinal Injury Association (ASIA) Impairment Scale (AIS) [65]. The study design and procedures are presented in Figures 1 and 2. The study visits included estimation of body composition, anthropometry, and dual x-ray absorptiometry (DEXA; baselines 1 and 2 and post-interventions 1 and 2). Additionally, MRI scans were obtained for trunk adipose tissue and lower extremity skeletal muscles and IMF CSA (baseline 2, post-interventions 1 and 2). Participants were then escorted to the VCU-CRS unit (VCU Clinical Research Unit) for dinner, and remained in the VCU-CRS unit overnight for the four study visits. Muscle biopsies were obtained at baseline 2 and post intervention 1.

Recruitment and Randomization

The recruitment process started in July 2012 and ended in June 2015. Data analysis is currently being performed. Recruitment details and randomization are presented in Table 1 and Figure 3. Prior to the start of the study, numbers 1-26 were randomized using the n-Query software program by the principal investigator. At the end of the two-day assessment period (Baseline 1), the allocation of subjects into either group was performed in a blinded fashion by drawing a folded paper with a number (1-26) by the research coordinator. This number was matched with the assignment from the randomization procedure.

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Twenty-six participants were recruited to participate in the study. A four week delayed entry period was included to obtain baseline measurements, stabilize body weight and educate participants on how to monitor their dietary intake. This allowed participants to serve as their own controls. Four participants withdrew from the trial. At baseline 2, two participants failed to comply with study protocol and withdrew from the study because lack of interest. Nurses failed to locate the veins on the third participant to conduct IVGTT and he was asked to withdraw from the trial. The fourth participant was diagnosed with a grade IV pressure ulcer after being admitted into the trial. Following the delayed entry period, participants were randomly assigned to a RT+TRT group (n = 13) or TRT group (n = 13). TRT patches (2-6 mg/day) were replaced daily on alternating shoulders at bedtime for 16 weeks. The RT+TRT group received 16 weeks of supervised unilateral progressive RT using surface NMES and ankle weights. Following the intervention the two-day assessment period was repeated (Figure 1).

Participants and eligibility criteria

Participants were men between 18-50 years old with a BMI of $< 30 \text{ kg/m}^2$. The upper limit of age was set to 50 years to avoid unanticipated side effects that may result from TRT. Participants had motor complete SCI C5-L2, ASIA A or B. Participants with pre-existing medical conditions were excluded. These included cardiovascular disease, uncontrolled type II diabetes and those on insulin, pressures sores stage 2 or greater, supra-physiological T level, hematocrit above 50% and urinary tract infection or symptoms.

- I. Interventions
- **Resistance training**

The first week of RT was conducted with no ankle weights to ensure that the knee extensor muscles could extend the weight of the lower leg against gravity. Once full knee

extension was achieved in a sitting position, two pounds were added on a weekly basis with the criteria that full knee extension was achieved before more weight was added. Surface NMES was applied to the knee extensor muscles via surface electrodes (Figure 2). One electrode was placed 2-3 cm above the superior aspect of the patella over the vastus medialis muscle, and the other lateral to and 30 cm above the patella over vastus lateralis muscle. Current from the stimulator was manually increased in 5-second intervals to evoke full knee extension with a 3-minute rest between sets, 30 Hz, 450 µs pulses and a current sufficient to evoke full knee extension as previously described [64, 66, 67]. Four sets of 10 repetitions was performed twice weekly for 16 weeks.

236 <u>Testosterone replacement therapy (TRT)</u>

Following baseline measurements, T was administered by patches (Androderm, Watson Pharma. Inc, Parsippany, NJ) that delivered between 2-6 mg/day [53] (Figure 2). Serum T concentration was measured and reviewed in a blinded fashion weekly for the first month and then every 4 weeks by an endocrinologist. Baseline dose was prescribed according to the initial T level. A dose of 6, 4 or 2 mg/day was initially prescribed if the serum baseline T-level was less than 300, 300-600 or above 600, respectively. During the course of the study, the dose was decreased to 2 mg/day if the serum T concentration was more than 1000 ng/dL (34.7 nmol/L) and the participant was reeducated about use of the patch if the concentration was less than 250 ng/dL (8.7nmol/L) above the pretreatment concentration. Patches were returned after use to ensure adherence to the intervention protocol. Participants were instructed to place patches at bedtime and only remove them during showering. If skin irritation became an issue, participants were initially advised to move patches up or down on the shoulder muscles from the irritation site and if the situation was not resolved, a hydrocortisone cream was prescribed.

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

250 Detraining after 16-week intervention

Six participants from each group were followed for 16 weeks after the initial intervention. The RT+TRT group continued training once weekly using the same training approach for an additional16 weeks. For the first week, the maximum ankle weights attained during the training phase were used. The weights were then gradually decreased by two pounds per week until the lowest weight was attained (2 pounds). TRT dose was set at 2 mg/day for the entire detraining phase. Participants from the TRT group were followed for additional 16 weeks without intervention. Following the detraining phase, the two-day assessment period was repeated without performing skeletal muscle biopsy (Figure 1). The rationale of the detraining phase is to determine whether once weekly training can maintain skeletal muscle hypertrophy, body composition and metabolic improvements incurred by the 16 week intervention.

261 II. Primary Outcomes

Data will remain confidential at all times and any patient identifiers will be removed prior to data analysis. Analysis for all study procedures will be performed in a blinded fashion ensuring full concealment until complete data analysis.

265 Anthropometrics and Body Composition Assessments

Height of each participant was determined while lying in the supine position. Two
smooth wooden boards were placed at the participant's head and heels and the distance between
them was measured to the nearest cm. Measurement of waist circumference was determined in
triplicate by identifying the narrowest region of the trunk from sitting and supine positions.
Three-site skin fold assessment was conducted in triplicate for suprailiac, abdominal and thigh.
A Lunar Prodigy Advance (Lunar Inc., Madison, WI) bone densitometer was used to
measure total body and regional (lumbar spine, proximal femur, and forearm) FM and FFM.

Page 13 of 41

BMJ Open

Testing was performed after lower extremity elevation for at least 20 minutes to minimize fluid shift. The subject was assisted to lie on a padded table and both legs were strapped proximal to the knees and ankles. The arms and legs were positioned to ensure proper alignment.

276 Magnetic resonance imaging (MRI)

MRI was performed at the VAMC Hospital using a 1.5 Tesla magnet (GE) as previously described [4, 19, 59, 68, 69]. Transaxial images, 10 mm thick and 10 mm apart, were taken from the hip joint to the knee joint and from knee to the ankle using the whole body coil. The location of the scan was identified by placing a mark 6 inches proximal to and distal to the patella and matched on follow up scans. To analyze VAT and subcutaneous adipose tissue (SAT) transverse slices (0.8 cm thickness) were acquired every 0.4 cm gap from the xyphoid process to the femoral heads. Images were acquired in series of two stacks with L4-L5 used as a separating point. TRT patches were removed 48-72 hours prior to MRI scans to avoid skin burn.

Analyses will be performed using commercial available software (X-vessel) as previously described [4, 19, 68, 69]. Briefly, the thigh and leg images will be segmented into fat (high intensity), skeletal muscle (mid intensity) and background/bone (low intensity). Manual selection of a pixel of skeletal muscle will highlight all skeletal muscle pixels and provide the total number of skeletal muscle pixels while excluding fat. VAT and SAT will be measured by manually tracing around the anatomical borders. The number of pixels in the highlighted region will be multiplied by the matrix size to measure VAT and SAT CSA (cm²).

Skeletal muscle torque and specific tension

Torque of the knee extensor muscle group was evaluated using a Biodex isokinetic
dynamometer (Shirely, NY). Measurements were done 72 hours after the muscle biopsy to
prevent acute effects on protein expression. Participants were seated with both the trunk-thigh

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

angle and the knee-thigh angle at 90°. Each participant was securely strapped to the test chair by a crossover shoulder harnesses and a belt across the hip joint. The axis of the dynamometer was aligned to the anatomical knee axis and the lever arm was attached 2-3 cm above the lateral malleolus. Before measuring isometric torque, passive tension of the right knee extensor muscle group was measured at 5, 30, 60, 90,180, 270 degrees/sec as an index of spasticity. Isometric torque was measured using current amplitude of 50 and 100 mA at a frequency of 30 Hz and pulse duration 450 µs. Isokinetic torque was measured at 60, 90 and 180 degrees/sec using the same stimulation protocol. Serum and plasma analysis All metabolic profile analysis is presented in Table 2. Blood samples were collected after an overnight fast. Total T was measured by liquid chromatography with isotope dilution mass spectrometry detection after supported liquid extraction. Free T concentration was calculated using sex hormone binding globulin and albumin concentrations (www.issam.ch/freetesto.htm) [70]. Serum IGF-I concentration was measured by an immunoluminometric assay (Quest Diagnostics, Madison, NJ). Fasting lipid profiles (HDL-C, LDL-C, total cholesterol, and triglycerides) were determined as previously described [8, 20]. Inflammatory biomarkers CRP, IL-6, TNF- α , and free fatty acids were determined by commercially available enzyme-linked immunosorbent assay kits (ALPCO; Salem, NH). **Energy Expenditure**

After an overnight fast for 10-12 hours, participants were kept in a dark room for 20-30 minutes to attain a resting state during which BMR was measured as previously described [8]. Briefly, while in a supine position a canopy was placed over the subject's head. Each subject was allowed 2-3 minutes before starting the test to ensure no signs of apnea or claustrophobic

BMJ Open

2	
3	
5	
4	
5	
6	
6	
7	
8	
9	
10	
11	
11	
12 13 14	
13	
11	
14	
15 16 17 18	
16	
17	
17	
18	
19	
19 20 21 22 23 24 25 27 28 20 31 23 33 33 33 33 33 33 33 33 33 33 33 33	
20	
21	
22	
~~	
23	
24	
25	
20	
26	
27	
ာ၀	
20	
29	
30	
24	
31	
32	
33	
20	
34	
35	
36	
~~	
37	
38	
za	
40	
40	
41	
42	
43	
44	
45	
46	
47	
۰ ۱۵	
48	
49	
49 50	
51	
51 52 53	
52	
53	
55 E A	
54	
55	
56	
57	
58	
59	
ບອ	

60

319 episodes. All subjects were instructed to stay awake during the entire test and to breathe 320 normally. The canopy was then attached to a vacuum to draw the expired gases to the flowmeter of the metabolic unit (COSMED KB42). Prior to the test, the metabolic unit was calibrated 321 using the standard procedures identified by the manufacturer. Carbon dioxide and oxygen output 322 was used to calculate the respiratory exchange ratio and BMR (kcal/day) was calculated using 323 the average of the last 15 minutes of the test. This was used to measure the percentage of 324 substrate utilization (% fat vs. % carbohydrate) [8, 71]. 325 To determine whether NMES-RT improves exercise performance, testing was performed 326 327 using a functional electrical stimulation bike (Restorative Therapies, RTI-300) against progressive resistance protocol until fatigue. The protocol started with 3 minutes resting, 3 328 minute warm-up (35-37 RPM) using the servomotor and then a two minute incremental 329 330 progressive resistance protocol (1 Nm, 3 Nm, 5 Nm, etc.) until fatigue. After fatigue, a one minute cool down period was allowed followed by 5 minutes of rest. Energy expenditure and 331

cardiovascular performance [VO₂ (l/min), blood pressure and heart rate] was collected at baseline
2 and post-interventions 1 and 2.

Each participant met with a dietician at the start of the study and was asked to maintain a 334 5 day food dietary log monitoring their caloric intake for the duration of the study. Participants 335 were instructed to record all liquid and food consumption and no nutritional advice was given on 336 the size or the portion of the food. Dietary logs were analyzed on a weekly basis using a 337 nutritional software package (Nutrition Data System for Research version 2014) under the 338 supervision of a registered dietitian. After analysis was completed, the average caloric intake 339 (kcal) and percentage macronutrients (carbohydrates, fat and protein) were calculated. Each 340 341 participant received monthly feedback via phone call with the registered dietician on how to

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Page 16 of 41

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open

maintain appropriate dietary habits based on his BMR and percentage macronutrients (45% carbohydrates, 30% fat and 25% protein). Every effort was made to balance the dietary habits between the RT+TRT and the TRT group.

Intravenous Glucose Tolerance Test (IVGTT)

An IVGTT was used to determine insulin sensitivity and glucose effectiveness before training and 48 hours after the last exercise bout. After an overnight fast, an intravenous line was placed to facilitate infusion of glucose and blood sampling. Blood samples were taken every 2-3 minutes before and 30 minutes after glucose injection (0.3 gm/kg IV over 30 seconds), followed by 5-10 minutes sampling ending at 180 minutes. Twenty minutes after the glucose injection a bolus of insulin (0.02 U/kg) was injected to determine insulin sensitivity. Plasma glucose was measured by the Autoanalyzer glucose oxidase method and plasma insulin concentrations were determined by commercial radioimmunoassay (Table 2). The glucose disposal rate per unit of secreted insulin per unit time and glucose mediated glucose disposal rate were calculated from a least-squares fitting of the temporal pattern of glucose and insulin throughout the IVGTT using the MINMOD program [72]. A representative analysis of IVGTT is presented in Figure 4. The acute insulin response to IV glucose was calculated as the mean rise in plasma insulin above baseline at 3, 4 and 5 minutes after IV glucose administration. KG, a measure of glucose tolerance, was calculated as the least square slope of the natural log of absolute glucose concentration between 5 and 20 minutes after the glucose bolus [73]. The homeostatic model of assessment of insulin resistance (HOMA-IR) was calculated and insulin sensitivity was determined using Matsuda and Defronzo formula [73, 74].

Page 17 of 41

III.

Secondary Outcomes

BMJ Open

	366	Skeletal muscle biopsy
	367	Biopsy samples of vastus lateralis muscle (~50-100 mg wet weight total) were obtained
)	368	by a 14 gauge tru-cut biopsy needle, immediately prior-to and 72 hours after the 16 weeks of
2 3	369	RT+TRT or TRT interventions. The 72 hours post-intervention was to avoid any acute effects
+ 5 6	370	from the last training bout on muscle protein expression to ensure that changes are due training
3	371	effect. There was no muscle biopsy during the detraining phase. The biopsy samples were
))	372	quickly frozen in liquid nitrogen and stored at -80°C until further analysis. One sample was split
2 2 3	373	into two halves and used for measuring activities of mitochondrial enzymes. The second sample
F 5	374	was used for Western blot analysis. The third sample was used for immunohistochemistry.
) 7 2	375	Mitochondrial Electron Transport Chain activities
))	376	Electron transport chain enzyme activities were measured spectrophotometrically in
2	377	skeletal muscle homogenates as previously described [75]. Rotenone-sensitive NADH
5 	378	cytochrome c reductase measured complexes I and III. Decylubiquinol-cytochrome c
5	379	oxidoreductase was measured as the antimycin-sensitive reductase to assess complex III. Citrate
3	380	synthase was measured as an estimate of mitochondrial mass as previously described [75].
) 2	381	Protein content
3	382	Proteins were resolved by SDS-PAGE then transferred to a PVDF membrane (Trans-blot;
5	383	Bio-Rad). Equal protein loading was confirmed with a Ponceau S stain after the transfer. After
3	384	blocking for one hour, membranes were incubated overnight at 4 °C with primary antibody
)	385	diluted 1:1000. Primary antibodies included glucose transpoter-4, focal adhesion kinase, PGC-1 α
2 3 1	386	(Santa Cruz Biotechnology), total protein kinase B (AKT), phosphorylated AKT, total
5	387	mammalian target of rapamycin (mTOR), phosphorylated mTOR, (Cell Signaling). Membranes
7 3		

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

were rinsed and placed in a 1:2000 solution of a horseradish peroxidase-conjugated secondary
antibody (Cell Signaling) for 1 hour at room temperature. Membranes were then rinsed and
incubated with a horseradish peroxidase chemiluminescence detection reagent (GE Healthcare)
for 5 minutes. Proteins were visualized using an Amersham Imager 600 (GE Healthcare). Optical
densities were measured using iQuant software and all samples were normalized to the baseline
values for that participant.

394 <u>Histological Analysis</u>

Immediately after muscle biopsy, samples were mounted on tongue blades by using a medium of OCT compound and tragacanth gum and stored at -70°C until analysis. Serial cross sections (8-10 µM) were collected on glass slides and frozen at -20°C until analysis. Fiber type and CSA will be determined by histochemical staining for myosin ATPase (preincubation at pH 4.3 or 9.4) as previously described [76]. Type I fibers will be identified by dark staining after acid preincubation, type II fibers light staining, and type IIB intermediate. At pH 9.4 the staining pattern was the opposite. Haematoxylin & Eosin (H&E) staining was performed according to conventional histological procedures. Mitochondrial complex II and IV activity was estimated by the activity of succinate dehydrogenase and cytochrome c oxidase activity, respectively, as previously described [77, 78]. Stained muscle sections will be observed using an Olympus BX-51 fluorescent microscope (Olympus, Tokyo, Japan) and analyzed using ImageJ software.

406 Statistical Analyses

Paired t-tests will be used to determine differences in body composition and metabolic
profile between baseline 1 and baseline 2. To determine the effect of interventions and
detraining, a repeated measures ANOVA will be used. Simple linear and multivariate regression
analyses will be used to examine the relationship between body composition and metabolic

BMJ Open

411 profile variables. For protein expression, we will use paired t-tests to examine the effects of each412 intervention.

The effect size was calculated based on the effects of RT on body composition and metabolic profiles that were previously published [62]. The number of subjects necessary to find statistical differences in the major variables (muscle size, VAT and insulin concentration) of this study was found to be 10 participants per group. One participant from the RT+TRT group withdrew after developing side effects to TRT patches and the medical monitor personnel recommended him to withdraw from the trial in week 8. However, we will perform intent to treat analysis on his data, which means that despite his early withdrawal from the study his data will be included in the final analysis. This will allow extrapolation of his post-intervention data using the SPSS missing values option. We anticipate that we will collect sufficient data to determine the effects of rehabilitation interventions on protein expression, mitochondrial enzymatic and ETC activities in individuals with SCI. Statistical analysis will be performed using SPSS version 23.0 (Chicago, IL) with a level of significance set at p < 0.05.

Ethics and Dissemination

Ethical approval has been obtained from the institutional review boards at the McGuire VA Medical Center and Virginia Commonwealth University. All participants read and signed approved consent forms prior to baseline assessment. Results of the study will be published in peer-reviewed journal and presented at national and international conferences.

430 Data Monitoring

The research staff oversaw and monitored the study to ensure data quality and participant
compliance. There were no adverse events. Only members of the research team will have access
to data.

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Discussion

Individuals with SCI experience profound skeletal muscle atrophy, deterioration in body composition and abnormal metabolic profile. Within few weeks of injury, there is a significant decrease in whole body FFM, particularly lower extremity skeletal muscle mass, and subsequent increase in FM. These changes predispose this population to the risk of glucose intolerance, insulin resistance, dyslipidemia and the development of type II diabetes and cardiovascular disease. The main purpose of this study is to investigate the effects of 16 weeks of evoked RT+TRT or TRT alone on body composition (muscle CSA, IMF, VAT, %FM, FFM) and metabolic profile (glucose, lipid and BMR) in individuals with motor complete SCI. Ectopic adipose tissue accumulation, IMF and VAT, has been strongly associated with altered metabolic profile after SCI [19, 20]. IMF has been determined to account for a 70% reduction in glucose tolerance in individuals with complete SCI [19]. VAT is independently associated with impairment in glucose tolerance, insulin resistance and dyslipidemia after SCI [20]. Edwards et al noted significant positive association between VAT and insulin resistance and a negative correlation between VAT:SAT ratio and HDL-C [13]. Increase in VAT is also related to leptin and plasminogen activator inhibitor-1 concentrations [14]. It is possible that increases in FM are associated with inflammatory biomarkers that trigger metabolic syndrome after SCI [22]. Ectopic adipose tissue has been demonstrated to secrete pro-inflammatory cytokines, including IL-6 and TNF- α . This stimulates hepatic production of CRP which is suggestive of vascular inflammation [15-19].

RT is an important type of exercise that has been shown to induce positive physiological adaptations such as increasing lean mass and reducing the incidence of metabolic disorders in other clinical populations. Previous work suggests that twice weekly NMES-RT can induce Page 21 of 41

BMJ Open

favorable body composition and metabolic adaptations. Twelve weeks of NMES-RT has shown to increase thigh muscle CSA by 35-40% as measured by MRI [59]. Moreover, there was a reduction in %leg FM and a trend towards decrease in VAT CSA after 12 weeks of NMES-RT [64]. The favorable adaptations in body composition were associated with decrease in plasma insulin area under the curve and plasma triglycerides [59]. These findings were attributed to an increase in plasma IGF-1. However, the effect of training appears to be limited to the trained muscle and only modestly impacted whole body composition. It is unclear whether a RT program longer than 12 weeks may provide additional benefits to individuals with SCI. The cellular changes underlying the alterations in skeletal muscle glucose utilization and energy metabolism after SCI are unclear. Previous work indicated that expression of AMP-activated protein kinase (AMPK), a key regulator of energy homeostasis for lipid and carbohydrate utilization, was altered in persons with SCI compared to BMI matched able bodied controls [79]. Another study revealed decreased expression of genes involved in glucose and lipid metabolism [80]. Despite these abnormalities, one study reported that leg glucose uptake during cycling was increased in individuals with SCI compared to able-bodied controls [61]. Another study showed similar glucose uptake of isolated muscle fibers from SCI and able bodied individuals in vitro [81]. Benefits of other forms of functional electrical stimulation lower extremity cycling (FES-LEC) have included improvements in body composition, carbohydrate-and lipid metabolism and muscle fiber type composition [60-63, 82-84]. Similarly, we have recently shown that 16 weeks of FES-LEC increased the protein abundance of GLUT-4, PGC- 1α and AMPK by 3.8, 2.3 and 3.4 fold, respectively, in the vastus lateralis muscle in persons with motor complete SCI [85].

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

TRT has been shown to increase skeletal muscle mass in hypogonadal men, men with chronic illness, and older men [53-55]. Androgen deficiency in men is associated with a loss of FFM and an increase in FM [53]. In epidemiologic studies, men with decreased free T had lower appendicular skeletal muscle mass than those with normal T levels [86]. Previous work documented that TRT increases muscle mass with a reciprocal decrease in total body FM [53, 54]. This reciprocal action has been suggested due to a switch from adipogenic toward myogenic differentiation of mesenchymal stem cells [86]. In a randomized controlled double blinded clinical trial, TRT was shown to improve insulin sensitivity, CRP and reduce VAT [54]. Sixty percent of men with SCI have low T level and levels are associated with time since injury [49, 50]. TRT has also been reported to increase IGF-1 and several molecular mechanisms related to the protective pathways have been recently elucidated [47, 48, 51, 87]. Therefore, enhancing the decline in anabolic homeostasis by providing TRT may provide additional benefits as was previously demonstrated by increasing lean mass and metabolic rate in individuals with SCI. It was very important to highlight that this protocol has 3 different phases including four weeks of delayed entry, 16 weeks of intervention and 16 weeks of detraining. The delayed entry period was included to allow each participant to serve as his own control. Moreover, we were successful in retaining 12 participants (n=6/group) to complete the detraining phase. This means that we had participants 6 participants that agreed to stick to our exercise program and the use of TRT patches up to 9 months. This may reflect on the study protocol frequency that ensured long-term adherence despite the length of the study. A very important point that is worth highlighting is that our study protocol was designed to include 3 levels of outcome measurements including body composition, metabolic profile and cellular changes. This design

BMJ Open

The current study was limited to those who were less than or equal to 50 years old. Because of advances in healthcare, many individuals with SCI have a near-normal life span which may make the results of this study less generalizable. However, this age limit was implemented because the effect of TRT on cardiovascular health has been controversial. There are data showing that hypogonadism is a risk for cardiovascular disease [88]. Some replacement studies show increased risk, but another study showed decreased mortality in men receiving testosterone [89]. Another study in older men reported that injectable testosterone may be associated with increased cardiovascular risk but topical testosterone was not [90]. Therefore, we set the inclusion criteria of less than or equal to 50 years old to reduce the likelihood of developing cardiovascular complications.

Currently NMES-RT is not readily available to the majority of SCI patients. Women
were not included because administering TRT is not either appropriate or safe, because women
are at risk of virulization by testosterone. Thus, the trial was limited only to males with SCI.
Moreover, only 21% of individuals with motor complete SCI are women based on the Model
System Data.

In summary, we anticipate that this trial will provide important insights into the body composition and metabolic benefits of 16 weeks of evoked RT+TRT or TRT. If beneficial, this may be a feasible strategy for the rehabilitation of individuals with chronic SCI and increase the health of this and other clinical populations. Additionally, TRT alone may provide an alternative intervention for those who cannot benefit from training using surface NMES, because of lower BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

motor neuron (LMN) denervation or intolerance to applications of electrical stimulation. Although the current study did not include any cauda equina participants, further research is warranted to examine the effects of TRT on muscle atrophy following LMN denervation. This is important because skeletal muscle following LMN denervation may respond differently than innervated muscle. The study will also shed light on several molecular pathways that have been suggested to influence both body composition and metabolic profile. **Trial Status:** Enrollment into the study started in July 2012 and as of April 2016 all participants have completed the study. Data collection and data analysis are expected to be completed in December 2016. The study is expected to be closed in June 2017. Contributions: ASG supervised all aspects of the trial including all interventions and measurements and secured funding for the trial procedures. ASG, REK, LCO drafted the manuscript. REK, JS, RK, and LCO contributed to data collection and analysis. RG, TL, TC, DXC, CC, RA, EJL and DRG are research physicians that contributed to patient monitoring and study design. DXC and RA will provide guidance during data analysis and manuscript preparation. All authors affirm that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned have been explained. **Competing interests:** The authors have no competing interests to declare Funding: This work was supported by VA-RRD CDA2 to Ashraf S. Gorgey, clinical trial registration number NCT01652040.

Page 25 of 41

BMJ Open

547	Acknowledgements: We would like to thank Rodney Wade, Sakita Sistrun, Liron Segal for
548	helping in the processes of data capturing and analysis as well as the study participants for their
549	time and effort. We would also like to thank Hunter Holmes McGuire Research Institute and
550	Spinal Cord Injury Services and Disorders for providing the environment to conduct clinical
551	human research trials. VCU Clinical Research Service for providing space and staff to perform
552	the blood work procedures. The work is supported by the Department of Veteran Affairs,
553	Veteran Health Administration, Rehabilitation Research and Development Service (B7867-W).
554	
555	
556	Open Access: This is an Open Access article distributed in accordance with the Creative
557	Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to
558	distribute, remix, adapt, build upon this work non-commercially, and license their derivative
559	works on different terms, provided the original work is properly cited and the use is non-
560	commercial. See: http://creativecommons.org/licenses/by-nc/3.0/.
561	
562	
563	
564	
565	
566	
567	
568	
569	
	24

4	570	Kele	rences
5			
6	571	1.	Center, N.S.C.I.S., Spinal cord injury facts and figures at a glance. J Spinal Cord Med,
7	572		2013. 36 (1): p. 1-2.
8	573	2.	DeVivo, M.J., B.K. Go, and A.B. Jackson, <i>Overview of the national spinal cord injury</i>
9	574		statistical center database. J Spinal Cord Med, 2002. 25(4): p. 335-8.
10 11	575	3.	Castro, M.J., et al., Influence of complete spinal cord injury on skeletal muscle cross-
12	576		sectional area within the first 6 months of injury. Eur J Appl Physiol Occup Physiol,
13	577		1999. 80 (4): p. 373-8.
14	578	4	Gorgev A S and G A Dudley Skeletal muscle atrophy and increased intramuscular fo

D

1

2 3

- 145784.Gorgey, A.S. and G.A. Dudley, Skeletal muscle atrophy and increased intramuscular fat15579after incomplete spinal cord injury. Spinal Cord, 2007. 45(4): p. 304-9.
- 165805.Wielopolski, L., et al., Measuring partial body potassium in the legs of patients with
spinal cord injury: a new approach. J Appl Physiol (1985), 2009. 106(1): p. 268-73.
- 195826.Spungen, A.M., et al., Soft tissue body composition differences in monozygotic twins20583discordant for spinal cord injury. J Appl Physiol (1985), 2000. 88(4): p. 1310-5.
- 215847.Spungen, A.M., et al., Factors influencing body composition in persons with spinal cord22585injury: a cross-sectional study. J Appl Physiol (1985), 2003. 95(6): p. 2398-407.
- ²³ 586
 ²⁴ 586
 ²⁵ 587
 ²⁶ 588
 ²⁷ Gorgey, A.S., et al., *Relationship of spasticity to soft tissue body composition and the metabolic profile in persons with chronic motor complete spinal cord injury.* J Spinal Cord Med, 2010. **33**(1): p. 6-15.
- 27
 589
 9.
 Gater, D.R., Jr., Obesity after spinal cord injury. Phys Med Rehabil Clin N Am, 2007.

 28
 590
 18(2): p. 333-51, vii.
- Solution
 Sol
- 3359411.Lavela, S.L., et al., Diabetes mellitus in individuals with spinal cord injury or disorder. J34595Spinal Cord Med, 2006. 29(4): p. 387-95.
- ³⁵ 596 12. Mojtahedi, M.C., et al., *The association between regional body composition and* ³⁶ 597 *metabolic outcomes in athletes with spinal cord injury.* Spinal Cord, 2008. 46(3): p. 192 ³⁸ 598 7.
- 3959913.Edwards, L.A., J.M. Bugaresti, and A.C. Buchholz, Visceral adipose tissue and the ratio40600of visceral to subcutaneous adipose tissue are greater in adults with than in those without41601spinal cord injury, despite matching waist circumferences. Am J Clin Nutr, 2008. 87(3):42602p. 600-7.
- 4460314.Maruyama, Y., et al., Serum leptin, abdominal obesity and the metabolic syndrome in45604individuals with chronic spinal cord injury. Spinal Cord, 2008. 46(7): p. 494-9.
- 4660515.Manns, P.J., J.A. McCubbin, and D.P. Williams, Fitness, inflammation, and the47606metabolic syndrome in men with paraplegia. Arch Phys Med Rehabil, 2005. 86(6): p.486071176-81.4960214
- 4560816.Matsuzawa, Y., White adipose tissue and cardiovascular disease. Best Pract Res Clin50609Endocrinol Metab, 2005. 19(4): p. 637-47.
- 610
 611
 611
 611
 612
 612
 613
 614
 614
 615
 615
 616
 617
 617
 618
 619
 619
 619
 610
 610
 611
 611
 612
 612
 612
 613
 614
 614
 615
 615
 616
 617
 617
 618
 618
 619
 619
 619
 610
 610
 611
 611
 612
 612
 612
 613
 614
 614
 615
 615
 616
 617
 618
 618
 619
 619
 619
 610
 610
 611
 611
 612
 612
 612
 612
 613
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
 614
- 5061318.Blake, G.J. and P.M. Ridker, Novel clinical markers of vascular wall inflammation. Circ56614Res, 2001. 89(9): p. 763-71.
- 58 59
- 59 60

	3MJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://b
	õ
	Open: f
	fir
-	ots
	ubli
	ishe
	a Q
	ິດ
	0.1
	136
	/brr
	ij
	36/bmjopen-2016-014125 on 4 A
	201
	6-0
	<u>4</u>
	125
	9
	4 7
•	pri
	20
	17.
	2017. Down
	۸N
	oac
	ed
	fror
	л Д
	om http://
	//bmjopen.bm
-	g
	en.
	<u>B</u>
	8
	Ę
	n /
•	pri.
	18
	22
	224
	Ş
C	que
	st.
	Pro
	tect
	é
	p Aq
	goo
	≤riq
	īt.

2			
3	615	19.	Elder, C.P., et al., Intramuscular fat and glucose tolerance after spinal cord injurya
4	616	17.	cross-sectional study. Spinal Cord, 2004. 42 (12): p. 711-6.
5 6	617	20.	Gorgey, A.S., K.J. Mather, and D.R. Gater, <i>Central adiposity associations to</i>
7	618	_0.	carbohydrate and lipid metabolism in individuals with complete motor spinal cord injury.
8	619		Metabolism, 2011 . 60 (6): p. 843-51.
9	620	21.	Bauman, W.A. and A.M. Spungen, <i>Disorders of carbohydrate and lipid metabolism in</i>
10	621	21.	veterans with paraplegia or quadriplegia: a model of premature aging. Metabolism,
11	622		1994. 43 (6): p. 749-56.
12 13	623	22.	Grundy, S.M., et al., Definition of metabolic syndrome: Report of the National Heart,
14	624	22.	Lung, and Blood Institute/American Heart Association conference on scientific issues
15	625		related to definition. Circulation, 2004. 109 (3): p. 433-8.
16	626	23.	Nelson, M.D., et al., Metabolic syndrome in adolescents with spinal cord dysfunction. J
17	627	23.	Spinal Cord Med, 2007. 30 Suppl 1 : p. S127-39.
18	628	24.	Bauman, W.A. and A.M. Spungen, <i>Coronary heart disease in individuals with spinal</i>
19 20	629	24.	cord injury: assessment of risk factors. Spinal Cord, 2008. 46(7): p. 466-76.
20 21	630	25.	Lee, C.S., et al., Evaluating the prevalence of silent coronary artery disease in
22	631	23.	asymptomatic patients with spinal cord injury. Int Heart J, 2006. 47(3): p. 325-30.
23		26.	Bauman, W.A., et al., <i>Depressed serum high density lipoprotein cholesterol levels in</i>
24	632	20.	
25	633	27	veterans with spinal cord injury. Paraplegia, 1992. 30 (10): p. 697-703.
26 27	634	27.	Wilt, T.J., et al., Carbohydrate and lipid disorders and relevant considerations in persons
28	635	20	with spinal cord injury. Evid Rep Technol Assess (Full Rep), 2008(163): p. 1-95.
29	636	28.	Itoh, K., et al., <i>Mitochondrial dynamics in neurodegeneration</i> . Trends Cell Biol, 2013.
30	637	20	23 (2): p. 64-71.
31	638	29.	Chan, D.C., <i>Mitochondria: dynamic organelles in disease, aging, and development.</i> Cell,
32	639	20	2006. 125 (7): p. 1241-52.
33 24	640	30.	Zhao, J., et al., <i>Mitochondrial dynamics regulates migration and invasion of breast</i>
34 35	641	2.1	<i>cancer cells</i> . Oncogene, 2013. 32 (40): p. 4814-24.
36	642	31.	Phielix, E. and M. Mensink, <i>Type 2 diabetes mellitus and skeletal muscle metabolic</i>
37	643		<i>function</i> . Physiol Behav, 2008. 94 (2): p. 252-8.
38	644	32.	Ritov, V.B., et al., Deficiency of electron transport chain in human skeletal muscle
39	645		mitochondria in type 2 diabetes mellitus and obesity. Am J Physiol Endocrinol Metab,
40	646		2010. 298 (1): p. E49-58.
41 42	647	33.	Erickson, M.L., et al., Near-infrared assessments of skeletal muscle oxidative capacity in
43	648		persons with spinal cord injury. Eur J Appl Physiol, 2013. 113(9): p. 2275-83.
44	649	34.	Martin, T.P., et al., Influence of electrical stimulation on the morphological and
45	650		metabolic properties of paralyzed muscle. J Appl Physiol (1985), 1992. 72(4): p. 1401-6.
46	651	35.	Grimby, G., et al., Muscle fiber composition in patients with traumatic cord lesion. Scand
47	652		J Rehabil Med, 1976. 8 (1): p. 37-42.
48 49	653	36.	Goodpaster, B.H., Mitochondrial deficiency is associated with insulin resistance.
- 50	654		Diabetes, 2013. 62 (4): p. 1032-5.
51	655	37.	Holloszy, J.O., "Deficiency" of mitochondria in muscle does not cause insulin resistance.
52	656		Diabetes, 2013. 62 (4): p. 1036-40.
53	657	38.	Scarpulla, R.C., Metabolic control of mitochondrial biogenesis through the PGC-1 family
54	658		regulatory network. Biochim Biophys Acta, 2011. 1813(7): p. 1269-78.
55 56	659	39.	Arany, Z., PGC-1 coactivators and skeletal muscle adaptations in health and disease.
50 57	660		Curr Opin Genet Dev, 2008. 18(5): p. 426-34.
58			
59			

Page 28 of 41

BMJ Open

661	40.	Summermatter, S., et al., <i>Peroxisome proliferator-activated receptor {gamma}</i>
662		coactivator 1{alpha} (PGC-1{alpha}) promotes skeletal muscle lipid refueling in vivo by
663		activating de novo lipogenesis and the pentose phosphate pathway. J Biol Chem, 2010.
664		285 (43): p. 32793-800.
665	41.	Pagel-Langenickel, I., et al., PGC-1alpha integrates insulin signaling, mitochondrial
666		regulation, and bioenergetic function in skeletal muscle. J Biol Chem, 2008. 283(33): p.
667	10	22464-72.
668	42.	Adhihetty, P.J., et al., <i>Effect of denervation on mitochondrially mediated apoptosis in</i>
669 670	43.	skeletal muscle. J Appl Physiol (1985), 2007. 102 (3): p. 1143-51.
670 671	43.	Kramer, D.K., et al. <i>Human skeletal muscle fibre type variations correlate with PPAR alpha, PPAR delta and PGC-1 alpha mRNA.</i> Acta Physiol (Oxf).,
672		2006. 188 (3-4):p.207-16.
673	44.	O'Brien, L.C.Gorgey, A.S., Skeletal muscle mitochondrial health and spinal cord injury.
674		World J Orthop., 2016. 18 ;7(10):p.628-637.
675	45.	Tsitouras, P.D., et al., Serum testosterone and growth hormone/insulin-like growth
676		factor-I in adults with spinal cord injury. Horm Metab Res, 1995. 27(6): p. 287-92.
677	46.	Bauman, W.A., et al., Blunted growth hormone response to intravenous arginine in
678		subjects with a spinal cord injury. Horm Metab Res, 1994. 26(3): p. 152-6.
679	47.	Bhasin, S., Regulation of body composition by androgens. J Endocrinol Invest, 2003.
680		26 (9): p. 814-22.
681	48.	Bhasin, S. and J.G. Buckwalter, <i>Testosterone supplementation in older men: a rational</i>
682	40	idea whose time has not yet come. J Androl, 2001. 22 (5): p. 718-31.
683	49.	Clark, M.J., et al., <i>Testosterone levels among men with spinal cord injury: relationship</i>
684		<i>between time since injury and laboratory values.</i> Am J Phys Med Rehabil, 2008. 87 (9): p. 758-67.
685 686	50.	Kostovski, E., et al., Decreased levels of testosterone and gonadotrophins in men with
687	50.	long-standing tetraplegia. Spinal Cord, 2008. 46(8): p. 559-64.
688	51.	Zhao, W., et al., <i>Testosterone protects against dexamethasone-induced muscle atrophy</i> ,
689	01.	protein degradation and MAFbx upregulation. J Steroid Biochem Mol Biol, 2008. 110(1-
690		2): p. 125-9.
691	52.	Gregory, C.M., et al., <i>Effects of testosterone replacement therapy on skeletal muscle after</i>
692		<i>spinal cord injury</i> . Spinal Cord, 2003. 41 (1): p. 23-8.
693	53.	Isidori, A.M., et al., Effects of testosterone on body composition, bone metabolism and
694		serum lipid profile in middle-aged men: a meta-analysis. Clin Endocrinol (Oxf), 2005.
695		63 (3): p. 280-93.
696	54.	Aversa, A., et al., Effects of testosterone undecanoate on cardiovascular risk factors and
697		atherosclerosis in middle-aged men with late-onset hypogonadism and metabolic
698		syndrome: results from a 24-month, randomized, double-blind, placebo-controlled study.
699 700	55.	J Sex Med, 2010. 7(10): p. 3495-503. Sinha Hilkim L at al. Effects of testastastanone supplementation on skalatal muscle fiber
700 701	55.	Sinha-Hikim, I., et al., <i>Effects of testosterone supplementation on skeletal muscle fiber</i> <i>hypertrophy and satellite cells in community-dwelling older men.</i> J Clin Endocrinol
701		Metab, 2006. 91 (8): p. 3024-33.
702	56.	Ryan, A.S., et al., Skeletal muscle hypertrophy and muscle myostatin reduction after
704	20.	resistive training in stroke survivors. Stroke, 2011. 42 (2): p. 416-20.
		······································

2			
3	705	57.	Ibanez, J., et al., Twice-weekly progressive resistance training decreases abdominal fat
4 5	706		and improves insulin sensitivity in older men with type 2 diabetes. Diabetes Care, 2005.
6	707		28 (3): p. 662-7.
7	708	58.	Chromiak, J.A., et al., <i>Effect of a 10-week strength training program and recovery drink</i>
8	709		on body composition, muscular strength and endurance, and anaerobic power and
9	710		<i>capacity</i> . Nutrition, 2004. 20 (5): p. 420-7.
10	711	59.	Mahoney, E.T., et al., <i>Changes in skeletal muscle size and glucose tolerance with</i>
11	712	07.	electrically stimulated resistance training in subjects with chronic spinal cord injury.
12 13	713		Arch Phys Med Rehabil, 2005. 86 (7): p. 1502-4.
14	714	60.	Mohr, T., et al., Insulin action and long-term electrically induced training in individuals
15	715	00.	with spinal cord injuries. Med Sci Sports Exerc, 2001. 33 (8): p. 1247-52.
16		61.	
17	716	01.	Kjaer, M., et al., Fatty acid kinetics and carbohydrate metabolism during electrical
18	717		<i>exercise in spinal cord-injured humans.</i> Am J Physiol Regul Integr Comp Physiol, 2001.
19	718	(\mathbf{a})	281 (5): p. R1492-8.
20 21	719	62.	Crameri, R.M., et al., <i>Effects of electrical stimulation-induced leg training on skeletal</i>
21 22	720		muscle adaptability in spinal cord injury. Scand J Med Sci Sports, 2002. 12(5): p. 316-
23	721		22.
24	722	63.	Gerrits, H.L., et al., Peripheral vascular changes after electrically stimulated cycle
25	723		training in people with spinal cord injury. Arch Phys Med Rehabil, 2001. 82(6): p. 832-9
26	724	64.	Gorgey, A.S., et al., Effects of resistance training on adiposity and metabolism after
27	725		spinal cord injury. Med Sci Sports Exerc, 2012. 44(1): p. 165-74.
28 29	726	65.	Kirshblum, S.C., et al., International standards for neurological classification of spinal
29 30	727		cord injury (revised 2011). J Spinal Cord Med, 2011. 34(6): p. 535-46.
31	728	66.	Gorgey, A.S., et al., Effects of neuromuscular electrical stimulation parameters on
32	729		<i>specific tension</i> . Eur J Appl Physiol, 2006. 97 (6): p. 737-44.
33	730	67.	Gorgey, A.S., et al., Effects of electrical stimulation parameters on fatigue in skeletal
34	731		<i>muscle</i> . J Orthop Sports Phys Ther, 2009. 39 (9): p. 684-92.
35	732	68.	Gorgey, A.S., et al., Influence of motor complete spinal cord injury on visceral and
36 37	733		subcutaneous adipose tissue measured by multi-axial magnetic resonance imaging. J
37 38	734		Spinal Cord Med, 2011. 34 (1): p. 99-109.
39	735	69.	Gorgey, A.S. and C. Shepherd, Skeletal muscle hypertrophy and decreased intramuscular
40	736		fat after unilateral resistance training in spinal cord injury: case report. J Spinal Cord
41	737		Med, 2010. 33 (1): p. 90-5.
42	738	70.	Vermeulen, A., L. Verdonck, and J.M. Kaufman, A critical evaluation of simple methods
43	739		for the estimation of free testosterone in serum. J Clin Endocrinol Metab, 1999. 84(10): p
44 45	740		3666-72.
46	741	71.	Collins, E.G., et al., <i>Energy cost of physical activities in persons with spinal cord injury</i> .
47	742	/1.	Med Sci Sports Exerc, 2010. $42(4)$: p. 691-700.
48	743	72.	Bergman, R.N., Lilly lecture 1989. Toward physiological understanding of glucose
49	744	12.	tolerance. Minimal-model approach. Diabetes, 1989. 38 (12): p. 1512-27.
50	745	73.	Matthews, D.R., et al., <i>Homeostasis model assessment: insulin resistance and beta-cell</i>
51 52	745	15.	function from fasting plasma glucose and insulin concentrations in man. Diabetologia,
52 53	740		1985. 28 (7): p. 412-9.
54	747	74	Matsuda, M. and R.A. DeFronzo, <i>Insulin sensitivity indices obtained from oral glucose</i>
55		74.	
56	749		tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care, 1999.
57	750		22 (9): p. 1462-70.
58			
59 60			28
00			

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

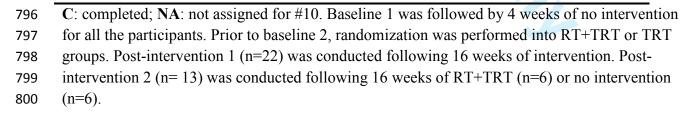
85.

86.

87.

88.

89.


90.

Brass, E.P., et al., <i>Decreased NADH dehydrogenase and ubiquinol-cytochrome c oxidoreductase in peripheral arterial disease</i> . Am J Physiol Heart Circ Physiol, 2001. 280 (2): p. H603-9.
Brooke, M.H. and K.K. Kaiser, <i>Three "myosin adenosine triphosphatase" systems: the nature of their pH lability and sulfhydryl dependence</i> . J Histochem Cytochem, 1970. 18 (9): p. 670-2.
Nachlas, M.M., et al., <i>Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole</i> . J Histochem Cytochem, 1957. 5 (4): p. 420-36.
Wong-Riley, M., Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res, 1979. 171 (1): p. 11-28 Kostovski, E., et al., Altered content of AMP-activated protein kinase isoforms in skeletal muscle from spinal cord injured subjects. Am J Physiol Endocrinol Metab, 2013. 305 (9): p. E1071-80.
Long, Y.C., et al., <i>Differential expression of metabolic genes essential for glucose and lipid metabolism in skeletal muscle from spinal cord injured subjects</i> . J Appl Physiol (1985), 2011. 110 (5): p. 1204-10.
Aksnes, A.K., et al., <i>Intact glucose transport in morphologically altered denervated</i> <i>skeletal muscle from quadriplegic patients</i> . Am J Physiol, 1996. 271 (3 Pt 1): p. E593- 600.
Hjeltnes, N., et al., <i>Improved body composition after 8 wk of electrically stimulated leg cycling in tetraplegic patients</i> . Am J Physiol, 1997. 273 (3 Pt 2): p. R1072-9. Hjeltnes, N., et al., <i>Exercise-induced overexpression of key regulatory proteins involved in glucose uptake and metabolism in tetraplegic persons: molecular mechanism for improved glucose homeostasis</i> . FASEB J, 1998. 12 (15): p. 1701-12.
Mohr, T., et al., <i>Long-term adaptation to electrically induced cycle training in severe spinal cord injured individuals</i> . Spinal Cord, 1997. 35 (1): p. 1-16.
Gorgey, A.S., et al., <i>Abundance in proteins expressed after functional electrical</i> <i>stimulation cycling or arm cycling ergometry training in persons with chronic spinal</i> <i>cord injury</i> . J Spinal Cord Med, 2016: p. 1-10.
Herbst, K.L. and S. Bhasin, <i>Testosterone action on skeletal muscle</i> . Curr Opin Clin Nutr Metab Care, 2004. 7 (3): p. 271-7.
Wu, Y., et al., <i>Identification of androgen response elements in the insulin-like growth</i> <i>factor I upstream promoter</i> . Endocrinology, 2007. 148 (6): p. 2984-93.
Araujo, A.B., et al., <i>Clinical review: Endogenous testosterone and mortality in men: a systematic review and meta-analysis.</i> J Clin Endocrinol Metab, 2011. 96 (10): p. 3007-19. Shores, M.M., et al., <i>Testosterone treatment and mortality in men with low testosterone levels.</i> J Clin Endocrinol Metab, 2012. 97 (6): p. 2050-8.
Layton, J.B., et al., <i>Comparative Safety of Testosterone Dosage Forms</i> . JAMA Intern Med, 2015. 175 (7): p. 1187-96.
29
23

BMJ Open

Subject ID	Assignment	Baseline 1	Baseline 2	Post-	Post-
				Intervention 1	Intervention 2
10001	RT+TRT	С	С	С	С
10002	TRT	C	С	С	С
10003	TRT	С	С	С	С
10004	RT+TRT	C	С	С	С
10005	RT+TRT	C	C	C	C
10006	TRT	C	C	Ċ	X
10007	RT+TRT	Č	Č	Č	C
10008	TRT	C	Ċ	Ċ	C
10009	RT+TRT	Č	withdraw	X	X
10010	TRT	NA	NA	NA	NA
10010	RT+TRT	C	withdraw	X	X
10012	TRT	С	С	С	С
10013	TRT	С	C	С	Х
10014	RT+TRT	C	C	Ċ	withdraw
10015	TRT	С	C	С	Х
10016	TRT	Ċ	Ċ	Ċ	C
10017	RT+TRT	Ċ	Č	Ċ	X
10018	TRT	Č	Č	Č	X
10019	RT+TRT	Ċ	Ċ	Ċ	C
10020	RT+TRT	withdraw	x	x	X
10021	RT+TRT	С	C	Ċ	X
10022	TRT	C C	Č	Č	Ċ
10022	RT+TRT	C C	Č	C	Č
10025	TRT	C C	withdraw	x	x
10024	RT+TRT	C C	C	C	Č
10026	RT+TRT	C	C C	withdraw	x
10027	TRT	C	C	С	х

Table 1. Randomization of individuals with motor complete SCI into either RT+TRT (n=13) or TRT (n =13) using n Query software with a treatment ratio 1:1.

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

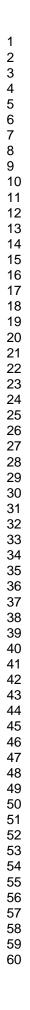
4 5	8 8
5 6 7	
8 9	
10	
12	
13 14	
15 16	
11 12 13 14 15 16 17 18	
19 20	
21 22	
23 24	
25 26	
27	
28 29	
30 31	
31 32 33 34	
35	8
36 37	8
38 39	8 8
40 41	ہ 8
42 43	8
44 45	8
46	8 8
47 48	8 8
49 50	8 8
51 52	8 8
53 54	Ū
55 56	8
57 58	
59 60	

2 3

Table 2. Metabolic health variables measured at baseline 1, baseline 2, post-intervention 1 and 803 post-intervention 2 304

			Quantity	Special handling	Techniques of Analysis
0 1		Insulin and Glucose	2 ml	Potassium oxalate/sodium fluoride tube (Grey Top)	ELISA and biochemistry analyzer
2		HBA1C		SST	Standard Procedure
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7		Testosterone every 4 weeks	4 ml	SST	Liquid chromatography with isotope dilution mass spectrometry detection
8 9 0		Albumin*		SST	Standard Procedure
1 2		SHBG*		SST	Standard Procedure
3 4 5		IGF-1, IGFBP-1 and 3	4 ml	SST	ELISA
6 7 8 9		Inflammatory biomarkers (CRP, IL-6, TNFα)	4 ml	SST	ELISA
0		Free fatty acids	2 ml	Potassium oxalate/sodium fluoride tube (Grey Top)	Enzymatic colorimetric quantification
1 2 3 4 5 6 7		Triglycerides, total cholesterol, HDL, LDL	4 ml	SST	Enzymatic colorimetric quantification
8 8 9 8 0 1	805 806 807 808 809	linked immunosorbent assa SST, serum separator tube;	y; HBA1C, he IGF-1, insulir	n 1 to calculate free testosteror moglobin A1c; SHBG, sex ho n-like growth factor 1; IGF-BP rotein; IL-6, interleukin 6; TN	rmone binding globulin; , insulin-like growth
2 3 3	810				
5 5 6 5 7	811 812 813				
8	814 815				
	816 816				
	817				
3 4	818				
5 7 8	819				
9 0					31

BMJ Open


Figure Legends Figure 1. Timeline and main procedures of the TEREX-SCI trial for both the RT+TRT and TRT groups during baseline 1, baseline 2, post-intervention 1 and post-intervention 26 for persons with motor complete SCI.

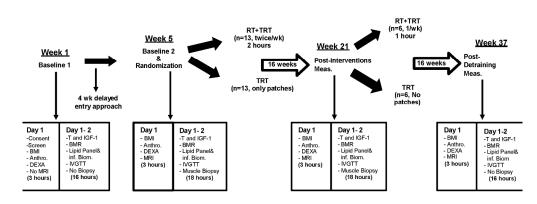

Figure 2. A person with T4 motor complete SCI undergoing both electrically evoked RT (left
panel) and TRT using transdermal patches (right panel) as a part of a 16 week intervention.

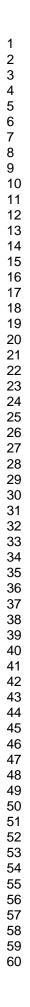
Figure 3. Schematic diagram showing the process of recruitment over the 3 year period of theTEREX trial.

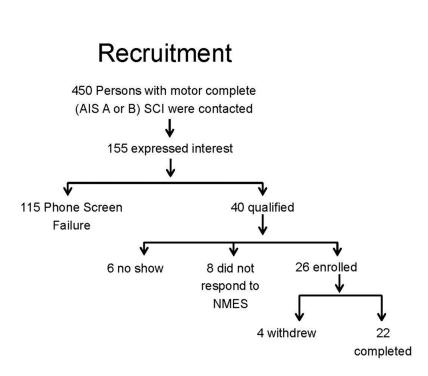
Figure 4. A representative figure of analysis for IVGTT in a person with SCI after infusion of dextrose followed by insulin 20 minutes later. The dextrose concentration is calculated by multiplying $0.3g \times body$ weight (kg) in 50% solution. Insulin concentration is determined by multiplying 0.02 units x body weight (kg). Blue line represents fasting glucose concentration, resting, following infusion, and over 120 minutes. Red line represents the line of best fit of glucose concentration. Green line represents fasting insulin level, spike following 20 minutes of dextrose infusion and over 120 minutes. Black line represents the line of best fit for insulin concentration.

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Timeline and main procedures of the TEREX-SCI trial for both the RT+TRT and TRT groups during baseline 1, baseline 2, post-intervention 1 and post-intervention 26 for persons with motor complete SCI.

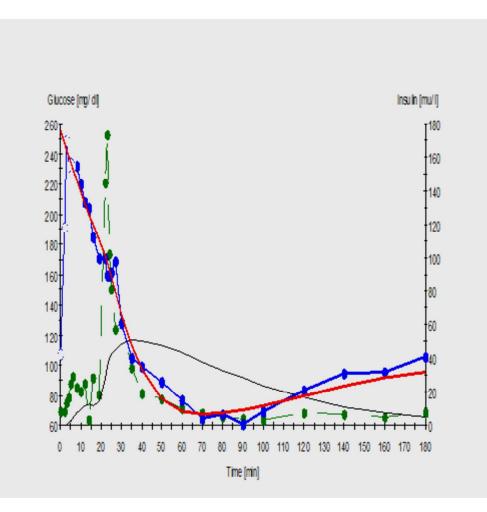
215x77mm (300 x 300 DPI)


A person with T4 motor complete SCI undergoing both electrically evoked RT (left panel) and TRT using transdermal patches (right panel) as a part of a 16 week intervention.


BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

121x92mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright

Schematic diagram showing the process of recruitment over the 3 year period of the TEREX trial.

114x76mm (300 x 300 DPI)

A representative figure of analysis for IVGTT in a person with SCI after infusion of dextrose followed by insulin 20 minutes later. The dextrose concentration is calculated by multiplying 0.3g x body weight (kg) in 50% solution. Insulin concentration is determined by multiplying 0.02 units x body weight (kg). Blue line represents fasting glucose concentration, resting, following infusion, and over 120 minutes. Red line represents the line of best fit of glucose concentration. Green line represents fasting insulin level, spike following 20 minutes of dextrose infusion and over 120 minutes. Black line represents the line of best fit for insulin concentration.

126x120mm (300 x 300 DPI)

Standard Protocol Items: Recommendations for Interventional Trials

SPIRIT 2013 Checklist: Recommended items to address in a clinical trial protocol and related documents*

Section/item	ltem No	Description	Addressed on page number
Administrative inf	ormation		
Title	1	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym	2
Trial registration	2a	Trial identifier and registry name. If not yet registered, name of intended registry	4, 9
	2b	All items from the World Health Organization Trial Registration Data Set	4, 9
Protocol version	3	Date and version identifier	9
Funding	4	Sources and types of financial, material, and other support	24
Roles and	5a	Names, affiliations, and roles of protocol contributors	24
responsibilities	5b	Name and contact information for the trial sponsor	24
	5c	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities	24
	5d	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee)	N/A

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

1 2				
3 4	Introduction			
5 6 7	Background and rationale	6a	Description of research question and justification for undertaking the trial, including summary of relevant	5-8
8 9		6b	Explanation for choice of comparators	6-8
10 11	Objectives	7	Specific objectives or hypotheses	8
12 13 14	Trial design	8	Description of trial design including type of trial (eg, parallel group, crossover, factorial, single group), allocation ratio, and framework (eg, superiority, equivalence, noninferiority, exploratory)	2, 8
15 16	Methods: Participa	nts, inte	erventions, and outcomes	
17 18 19	Study setting	9	Description of study settings (eg, community clinic, academic hospital) and list of countries where data will _ be collected. Reference to where list of study sites can be obtained	8-9
20 21 22 23	Eligibility criteria	10	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and	10
23 24 25 26	Interventions	11a	Interventions for each group with sufficient detail to allow replication, including how and when they will be _ administered	10-12
27 28 29		11b	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose _ change in response to harms, participant request, or improving/worsening disease)	11
30 31 32		11c	Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence _ (eg, drug tablet return, laboratory tests)	11
33 34		11d	Relevant concomitant care and interventions that are permitted or prohibited during the trial	10
35 36 37 38 39	Outcomes	12	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, _ median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended	12-18
38 39 40 41 42 43 44	Participant timeline	13	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for _ participants. A schematic diagram is highly recommended (see Figure)	9, Fig 1
44 45				_
46 47			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
48 49	ected by copyright.	est. Prote	ug vd 2024 by 10-2016-014125 on 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by gu	BMJ Open: first

Sample size	14	Estimated number of participants needed to achieve study objectives and how it was determined, including _ clinical and statistical assumptions supporting any sample size calculations	19
Recruitment	15	Strategies for achieving adequate participant enrolment to reach target sample size	9-10
Methods: Assignm	ent of i	nterventions (for controlled trials)	
) Allocation:			
2 Sequence 3 generation 5	16a	Method of generating the allocation sequence (eg, computer-generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions	99
7 3 Allocation 9 concealment 0 mechanism 1	16b	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered,	9
2 Implementation	16c	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to	9
Blinding (masking)	17a	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how	11
	17b	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's _ allocated intervention during the trial	N/A
Methods: Data col	lection,	management, and analysis	
Data collection methods	18a	Plans for assessment and collection of outcome, baseline, and other trial data, including any related _ processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol	12-18
)) 2	18b	Plans to promote participant retention and complete follow-up, including list of any outcome data to be	18-19
3			3
5		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
cted by copyright.	est. Prote	up yd 1202, 2024 by gue ac 10.1136/md/.com 4 April 2017. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by gue	first: first

Page	41	of	41	
------	----	----	----	--

1 2					
3 4 5 6	Data management	19	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol	12	_
7 8 9	Statistical methods	20a	Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol	18-19	
10 11		20b	Methods for any additional analyses (eg, subgroup and adjusted analyses)	N/A	
12 13 14 15 16 17 18 19 20 21 22		20c	Definition of analysis population relating to protocol non-adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation)	19	
	Methods: Monitorin	ıg			
	whether it is independent from the sp		Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed	19	
23 24 25		21b	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial	N/A	
26 27 28	Harms	22	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct	19	
29 30 31	Auditing	23	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor	N/A	_
32 33 34	Ethics and dissemi	nation			
35 36 37	Research ethics approval	24	Plans for seeking research ethics committee/institutional review board (REC/IRB) approval	_3, 8-9, 19	
38 39 40 41 42	Protocol amendments	25	Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators)	N/A	_
43 44 45					4
46	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				
47 48 49	ected by copyright.	up vd +202, 81 linqA no \moo.imd.nəqoimd\\:qtth mont babsolnwod. 7102 linqA + no 321+10-3102-nəqoimd\811.01 as bəhaildu	BMJ Open: first pr		

2 3 4 5 6 7 8	Consent or assent	26a	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32)	9	
		26b	Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable	N/A	-
9 10 11	Confidentiality	27	How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial	11	-
12 13 14	Declaration of interests	28	Financial and other competing interests for principal investigators for the overall trial and each study site	24	-
15 16 17	Access to data	29	Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators	19	-
18 19 20	Ancillary and post- trial care	30	Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participation	N/A	-
21 22 23 24	Dissemination policy	31a	Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions	19	
25 26		31b	Authorship eligibility guidelines and any intended use of professional writers	24	_
27 28		31c	Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code	N/A	_
29 30 31	Appendices				
32 33 34	Informed consent materials	32	Model consent form and other related documentation given to participants and authorised surrogates	attached	-
35 36 37	Biological specimens	33	Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable	17-18	-
38 39 40 41 42 43 44	Amendments to the p	rotocol	that this checklist be read in conjunction with the SPIRIT 2013 Explanation & Elaboration for important clarificat should be tracked and dated. The SPIRIT checklist is copyrighted by the SPIRIT Group under the Creative Cor <u>NoDerivs 3.0 Unported</u> " license.	nmons	5
45 46			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		
47 48 49	tected by copyright.	ior9 .test	ug vd 4202,81 lingA no \moo.imd.nəqoimd\\:qtth mont bəbsolnwoD .7102 lingA 4 no 321410-3102-nəqoimd\3611.01 as bəhsilduc	BMJ Open: first I	