BMJ Open

Worsening Sufficiency and Equity in the Geographic Distribution of Physicians in Japan

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-013922
Article Type:	Research
Date Submitted by the Author:	18-Aug-2016
Complete List of Authors:	Hara, Koji; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management Otsubo, Tetsuya; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management Kunisawa, Susumu; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management Imanaka, Yuichi; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management
Primary Subject Heading :	Health policy
Secondary Subject Heading:	Public health
Keywords:	Japan, Physicians, geographic distribution, sufficiency, healthcare demand, equity

BMJ Open

1	Worsening Sufficiency and Equity in the Geographic Distribution of
2	Physicians in Japan
3	
4	Authors:
5	Koji Hara, Tetsuya Otsubo, PhD, Susumu Kunisawa, MD, PhD, and Yuichi Imanaka,
6	MD,PhD
7	Department of Healthcare Economics and Quality Management, Graduate School of
8	Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan
9	606-8501
10	
11	Corresponding author:
12	Yuichi Imanaka, Professor
13	Mailing address: Department of Healthcare Economics and Quality Management,
14	Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku,
15	Kyoto City, Kyoto, Japan 606-8501
16	Tel: +81 75 753 4454
17	Fax: +81 75 753 4455
18	Email: imanaka-y@umin.net Word count:
19	
20	Word count:
21	3,137 words
22	

Page 2 of 22

BMJ Open: first published as 10.1136/bmjopen-2016-013922 on 14 March 2017. Downloaded from http://bmjopen.bmj.com/ on April 26, 2024 by guest. Protected by copyright.

BMJ Open

23	Worsening Sufficiency and Equity in the Geographic Distribution of
25	Worsening Sumereney and Equity in the Seographic Distribution of
24	Physicians in Japan
25	Abstract
26	Objectives
27	The objective of this study was to examine longitudinally the geographic distribution of physicians in
28	Japan with adjustment for healthcare demand according to changes in population age structure.
29	Methods
30	We examined trends in the number of physicians per 100 000 population in Japan's secondary medical
31	areas (SMAs) from 2000 to 2014. Healthcare demand was adjusted using health expenditure per capita.
32	Trends in Gini coefficient and the number of SMAs with a low physician supply were analysed. A
33	sub-group analysis was also conducted where SMAs were divided into four groups according to
34	urban-rural classification and initial physician supply.
35	Results
36	The time-based changes in both Gini coefficient and the number of SMAs with a low physician supply
37	indicated that the equity in physician distribution had worsened throughout the study period. The
38	number of physicians per 100 000 population had seemingly increased in all groups, with increases of
39	22.9% and 34.5% in urban groups with higher and lower initial physician supply, respectively. However,
40	after adjusting healthcare demand, physician supply decreased by 1.3% in the former group and
41	increased by 3.5% in the latter group; decreases were also observed in the rural groups.
42	Conclusions
43	Although the total number of physicians increased in Japan, when healthcare demand was adjusted,
44	physician supply decreased in recent years in all areas except for urban areas with a lower initial
45	physician supply. In addition, the equity of physician distribution had consistently deteriorated since
46	2000. The results indicate the need for major reform of Japan's healthcare system to improve physician
47	distribution.
48	
49	Strengths and limitations of this study
50	• This study longitudinally examines the geographic distribution of physicians in Japan with
51	adjustment for healthcare demand according to changes in population age structure.

1	
2	
3	
4	
2 3 4 5 6	
6	
7	
ν Q	
8 9	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
24	
25	
26	
27	
21	
20	
29	
30	
31	
32	
33	
34	
35	
34 35 36 37 38	
37	
38	
39	
40	
41	
42	
43	
44	
45	
45 46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57 58	
59	
60	

The trends in sufficiency and equity in Japan's physician supply changed after adjusting
 healthcare demand, indicating that healthcare demand should be considered when examining the
 geographic distribution of physicians. This adjustment will become increasingly important as the
 age structure of the Japanese population continues to change.

The primary limitation of this study is that it was a retrospective study and, as such, does not
 provide estimates on future physician supply and healthcare demand.

58

59 Keywords

60 Japan; physicians; geographic distribution; sufficiency; equity; healthcare demand

61

62 Introduction

The inequitable geographic distribution of physicians is a pressing issue in many countries ¹⁻⁴. There are at least two reasons why this issue attracts social and political attention. The reason comes from the issue of equity and social justice, that is, a citizen's right to access healthcare equally. The other is rooted in the belief in linkages between physician availability and health status ⁵.

67

58 Studies that address this topic frequently use the number of physicians per population as an indicator of 59 physician supply. However, this simple calculations may present an oversimplification of findings due to 50 its reliance on simple head counts that ignore differences within a population ⁵. In particular, healthcare 51 demand is likely to differ substantially among the age strata as elderly people tend to require more health 52 care. As many parts of the world are experiencing accelerated population ageing, it is becoming 53 increasingly important to consider the differences in age-dependent healthcare demand when examining

74 physician supply.

75

Population ageing has become a key policy issue throughout the world ⁶. Japan currently has the highest proportion of people aged 65 years or older, and became one of the first "super-aged" societies when this proportion exceeded 21% in 2007 ⁷. In addition, Japan's rate of population ageing is unprecedented: the rise in the proportion of people aged 65 years or older from 10% to 20% occurred within 20 years. In contrast, the UK had almost 79 years and the US had almost 59 years to adapt to this shift in population age structure. Furthermore, Japan's proportion of elderly people is predicted to rise to 33.4% in 2035 and 39.9% in 2060 ⁸, indicating that its population is still undergoing rapid changes.

3

BMJ Open: first published as 10.1136/bmjopen-2016-013922 on 14 March 2017. Downloaded from http://bmjopen.bmj.com/ on April 26, 2024 by guest. Protected by copyright.

83	
84	In Japan, the issue of the number of physicians has been changing from a shortage to a surplus. Japan
85	faced a shortage of physicians in the 1960s and 1970s ⁹ . During that period, the country experienced a
86	massive increase in population from 94 million to 117 million people. The government at that time aimed
87	to ensure a minimum of 150 physicians for every 100 000 people, and doubled medical school
88	enrolments in the 1970s to increase physician supply. The target number of physicians was achieved in
89	1984, and has since continued to increase. Due to the ageing and projected decrease of the Japanese
90	population, the possible surplus of physicians is an issue that needs to be addressed. Although the
91	government-sanctioned reduction of enrolments in medical schools has been proposed as a possible
92	measure to control physician numbers, this measure is controversial and has been met with resistance
93	from several interest groups ¹⁰ . Detailed and accurate information on physician supply that accounts for
94	age-dependent healthcare demand is needed to support this decision-making process.
95	
96	Although previous studies have examined trends in physician geographic distribution using healthcare
97	demand-adjusted populations ^{11 12} , there is currently no standardized method for adjusting healthcare
98	demand. Furthermore, the trends in physician supply in a super-aged society such as Japan have yet to be
99	investigated. In this study, we conducted a longitudinal examination of the geographic distribution of
100	physicians with adjustment for healthcare demand according to the changing age structure of the
101	Japanese population.
102	
103	Methods
104	Data sources
105	The number of physicians was obtained from the National Physician Census, which is conducted
106	biennially by the Ministry of Health, Labour and Welfare. The census data included the type and location
107	(municipality) of workplace for each physician. Population data were collected from the National Basic
108	Resident Register, which is published annually by the Ministry of Internal Affairs and Communications.
109	We collected national health expenditure data from the Ministry of Health, Labour and Welfare, and
110	calculated the expenditure per capita for each age group in 2014. Although national health expenditure
111	includes various types of health care, we only used general treatment medical fees for our analysis
112	because the other types of care were deemed to have little direct relevance to the number of physicians.

BMJ Open

113	Medical consultation rates were collected from the 2014 Patient Survey conducted by the Ministry of
114	Health, Labour and Welfare. Population density was calculated by dividing the number of people
115	residing in each secondary medical area (SMA, described below) by the area (km ²). The area of each
116	region was obtained from statistical reports on land areas of prefectures and municipalities by the
117	Geospatial Information Authority of Japan.
118	
119	Physicians and population
120	Practicing physicians at all Japanese clinics and hospitals were included in analysis, whereas registered
121	physicians working in non-clinician roles (e.g., basic researchers or government officials) were excluded.
122	Physician numbers were calculated for both the raw (unadjusted) population and the healthcare
123	demand-adjusted population; the former included all Japanese citizens and the latter included all
124	Japanese citizens adjusted for age-dependent healthcare demand. The population was stratified into
125	5-year age groups, with the initial group comprising persons aged 0 to 4 years and the final group
126	comprising persons aged 80 years or older.
127	
128	Secondary medical areas
129	The SMA was used as the geographic unit of analysis. The Japanese government has designated medical
130	service administration areas throughout the country, and these areas are categorized into primary,
131	secondary, and tertiary medical areas. Primary medical areas are set at the municipal level, and generally
132	represent areas that are capable of providing basic primary care to residents. Tertiary medical areas are
133	generally set at the prefectural level, and generally represent areas that are capable of providing the most
134	advanced and specialized medical treatments. SMAs, which are between these two levels, generally
135	supply and manage the majority of primary care and emergency medical services to regional
136	communities. Therefore, SMAs are arguably the most important of the three geographic units with regard
137	to implementing health policies. The geographic boundaries of the primary and tertiary medical areas are
138	based on existing regional borders, whereas SMAs are demarcated by the prefectural governments based
139	on healthcare provision capabilities. As a result, SMAs are directly relevant to the functional aspects of
140	healthcare administration. Previous studies on physician geographic distribution in Japan have been
141	conducted at the municipal level ⁹¹³ , although recent studies have also focused on SMAs ⁴¹⁴¹⁵ . SMA
142	boundaries can be modified by prefectural governments in response to changing healthcare requirements.
1.12	of an and the second of protocol and go of more possible to enanging neurone requirements.

BMJ Open: first published as 10.1136/bmjopen-2016-013922 on 14 March 2017. Downloaded from http://bmjopen.bmj.com/ on April 26, 2024 by guest. Protected by copyright.

143	In this study, we analysed the 349 designated SMAs in 2012.
144	
145	Analysis of physician distribution
146	First, we calculated the healthcare demand-adjusted population using adjustment coefficients that were
147	derived according to the health expenditure per capita for each age group. The health expenditure for
148	each age group was divided by the overall mean health expenditure of the population, and the obtained
149	quotients were used as age group-specific adjustment coefficients. We applied the adjustment
150	coefficients to the raw population to obtain the healthcare demand-adjusted population. The numbers of
151	physicians per 100 000 population in the SMAs were calculated for both the raw and demand-adjusted
152	populations, and these values were used in the following analyses. In addition, we assessed the
153	robustness of the adjustment coefficients by comparing them with alternative coefficients based on
154	medical consultation rates instead of health expenditure, and also examined the annual changes in the
155	adjustment coefficients by age group during the study period.
156	
157	Next, we assessed the equity of the geographic distribution of physicians. The Gini coefficient was used
158	as the indicator of equity, and has been widely used in similar analyses ^{2 4 16-18} . This coefficient measures
159	the degree of departure from a uniform distribution known as the Lorenz curve, and takes a value
160	between 0 (indicating perfect equality) and 1 (indicating perfect inequality). The Lorenz curve for the
161	SMAs was plotted based on the number of physicians per 100 000 population.
162	
163	We then examined the time-based trends in the number of SMAs with a low physician supply. SMAs
164	were categorized into quartiles according to the number of physicians per 100 000 raw population in
165	2000, and the SMAs in the first quartile were specified as having a low physician supply. We examined
166	the changes in the proportions of SMAs that fulfilled this criterion throughout the study period.
167	
168	Finally, we divided SMAs into four groups according to two criteria: whether they were rural or urban,
169	and whether they had a lower or higher initial physician supply at the start of the study period. Using an
170	approach described previously in ¹⁴ the degree of urbanization was determined using the population
171	density in 2000 as a proxy variable, and the initial physician supply was indicated using the number of
172	physicians per 100 000 population in 2000. We divided the SMAs according to the median values of each

BMJ Open

173	variable to obtain four groups: Group 1 comprised urban SMAs with a higher initial physician supply,
174	Group 2 comprised rural SMAs with a higher initial physician supply, Group 3 comprised rural areas
175	with a lower initial physician supply, and Group 4 comprised urban areas with a lower initial physician
176	supply. The changes in physician numbers were compared among these groups. All analyses were
177	performed using R statistical software (version 3.2.2).
178	
179	Results
180	As shown in Table 1, the adjustment coefficients for the age groups ranged from 0.22 (15–24 years) to
181	3.33 (80 years or older). The adjustment coefficient of the elderly population (65 years or older) was
182	approximately four times that of the younger population (10-39 years). The results of robustness testing
183	indicated that our adjustment coefficient was consistent with the results of the alternative coefficient
184	based on medical consultation rates, with a high level of correlation (correlation coefficient: 0.99)
185	between the primary adjustment coefficients and medical consultations rates by age group. Furthermore,
186	our coefficient also appeared robust to time-based changes from 2000 to 2014 (data not shown).
187	
188	Table 2 shows the temporal trends in the number of physicians and population from 2000 to 2014 at
189	2-year intervals. The number of physicians consistently increased by approximately 6000 to 8000 every
190	two years, and was 1.22 times higher in 2014 than in 2000. The raw population generally remained
191	unchanged throughout the study period. In contrast, the healthcare demand-adjusted population was 1.23
192	times higher in 2014 than it was in 2000. Hence, the increase rate of the demand-adjusted population
193	slightly exceeded the increase rate of physicians.
194	
195	Table 3 summarizes the descriptive statistics for the 349 SMAs. The mean number of physicians and
196	demand-adjusted population had increased between 2000 and 2014. Figure 1 illustrates the temporal
197	changes in Gini coefficient for the number of physicians per 100 000 population (both raw and
198	demand-adjusted) at the SMA level, and indicates that the equity in physician numbers had worsened in
199	both populations. In particular, equity had deteriorated more (higher Gini coefficient) in the healthcare
200	demand-adjusted population.
201	
202	Figure 2 shows the changes in the proportion of SMAs with a low physician supply across the study

2	
2 3	20
4 5	20
6 7	20
8 9	20
10 11	20
12 13	20
14 15	20
16	2
17 18	2
19 20	2
21 22	2
23 24	2
25 26	2
27	2
28 29	2
30 31 32	2
32 33	2
34 35	22
36 37	22
38	22
39 40	22
41 42	22
43 44	22
45 46	22
47 48	22
49 50	22
51	22
52 53	23
54 55	23
56 57	23
58 59	
60	

1

period. In the raw population, the proportion consistently decreased from 24.9% to 13.2% (with a brief increase between 2006 and 2008). In contrast, the same proportion in the healthcare demand-adjusted population consistently increased from 24.9% to 35.0% (with a brief decrease between 2000 and 2002); notably, there was a relatively large increase of 4.5% between 2006 and 2008 in the demand-adjusted population.

208

209	Table 4 presents the changes in the absolute numbers of physicians and physicians per 100 000
210	population in Groups 1 to 4 between 2000 and 2014. There were 100 SMAs in Group 1, 75 SMAs in
211	Group 2, 99 SMAs in Group 3, and 75 SMAs in Group 4. The absolute numbers of physicians showed
212	considerable increases in Groups 1 and 4, whereas the increases were smaller in the other two groups. In
213	the raw population, all groups (including the rural areas) exhibited increases in the number of physicians
214	per 100 000 population. In contrast, the number of physicians per 100 000 healthcare demand-adjusted
215	population was observed to decrease in all groups except Group 4.

216

217 Discussion

18 We conducted a longitudinal examination of the geographic distribution of physicians in Japan that 19 accounted for changes in age-dependent healthcare demand in accordance with the changing age 20 structure of the Japanese population. Our study produced two major findings: First, the equity in 21 physician geographic distribution for the demand-adjusted population had worsened throughout the 22 study period when analysing the time-based trends of both Gini coefficient and the number of SMAs 23 with a low physician supply. Second, the number of physicians per 100 000 healthcare demand-adjusted 24 population decreased in all types of areas except for urban areas with a lower initial physician supply. 25 26 Although the number of physicians per population has been widely used as an indicator of physician 27 supply, it does not account for intra-population variations in healthcare demand. Healthcare demand 28 differs among the age strata because elderly people tend to utilize more health care. As Japan is 29 undergoing unprecedented population ageing, changes in age structure and healthcare demand should 30 be considered when examining the geographic distribution of physicians. 31 32 In fact, the changes in the number of physicians per raw population in each group were markedly

BMJ Open

different from the changes in the demand-adjusted population. The number of physicians per 100 000 raw population had seemingly increased in all types of areas, especially in the urban groups: there was an increase of 22.9% in Group 1 and 34.5% in Group 4. However, after adjusting healthcare demand, the number decreased by 1.3% in Group 1, and increased by 3.5% in Group 4; the number of physicians also decreased in the rural groups. The disparity in results indicates that it is necessary to adjust healthcare demand when analysing physician supply. Furthermore, this adjustment will become increasingly important in the future as the age structure of the Japanese population continues to change. Despite the consistent nationwide increase in the absolute number of physicians, this increase was not accompanied by improved equity in physician distribution. It has been previously proposed that increasing the overall number of physicians may resolve uneven physician distribution as competitive forces play a major role in determining distribution patterns¹⁹²⁰. However, studies in Japan have reported that increases in overall physician numbers have not been able to improve the regional disparity in physician supply ⁴⁹²¹. Similarly, our results indicate that this disparity has not been resolved in recent years. In fact, the problem appears to have worsened when physician supply was analysed in the healthcare demand-adjusted population. We surmise that equity in physician supply will continue to worsen without the prompt development and implementation of appropriate measures. The number of SMAs with a low physician supply had appeared to decrease throughout the study period in the raw population, but adjusting for age-dependent healthcare demand revealed that these SMAs had actually increased. We posit that these conflicting results may be attributed to the higher increase rate of the demand-adjusted population relative to the increase rate of physicians. An earlier study found that physician supply had increased in SMAs with small populations due to the larger effects of reductions in population size⁴. However, our study was able to detect reductions in the number of physicians in SMAs with similarly small populations when healthcare demand was adjusted. Although population numbers have been decreasing in rural areas, their demand for health care is increasing due to the rising proportion of elderly persons.

BMJ Open: first published as 10.1136/bmjopen-2016-013922 on 14 March 2017. Downloaded from http://bmjopen.bmj.com/ on April 26, 2024 by guest. Protected by copyright

Although physician supply had appeared to increase in Group 1 (urban SMAs with a higher initial

262 physician supply), our study showed that the supply had actually decreased after healthcare demand was

BMJ Open: first published as 10.1136/bmjopen-2016-013922 on 14 March 2017. Downloaded from http://bmjopen.bmj.com/ on April 26, 2024 by guest. Protected by copyright

adjusted. This discovery is interesting in that it contradicts the convention that physician supply tends to increase in urban areas, and indicates that healthcare demand has rapidly increased in these regions. Many countries are experiencing population ageing; the OECD has reported an increase of 23.8% in elderly populations in urban areas from 2001 to 2011, whereas the increase was lower in rural areas at 18.2%²². It is therefore evident that physician shortages are not limited to rural areas, and should also be actively addressed as an urban issue. On the other hand, our study also found that physician supply had increased in Group 4 (urban SMAs with lower initial physician supply) after adjusting healthcare demand. Many SMAs in Group 4 are composed of suburban areas with large populations and relatively small numbers of physicians. Despite the increase in physician supply in Group 4, the number of physicians per 100 000 demand-adjusted population was almost half that of Group 1 in 2014.

Our findings are also important in the context of the study setting: Japan has gained worldwide attention as it addresses the challenges of a super-aged society ²³. Due to the lengthy training periods and declining birth rate in Japan, it will be difficult to quickly increase the number of physicians if needed. We therefore propose that there is a need for major reform of the healthcare delivery system that does not rely on increasing physician numbers. For example, possible measures include establishing and enhancing the roles of medical teams to improve physician productivity or promoting the utilization of information and communications technology, such as telemedicine.

Several studies have previously attempted to account for healthcare demand through the use of variables such as patient age, sex, and health status ^{11 12 24}. In this study, we elected to use health expenditure per capita as the adjustment coefficient to represent healthcare demand. This indicator was chosen based on the assumption that expenditure per capita is reflective of the general workload of healthcare providers across regions and provider types ¹². Japan's healthcare system is characterized by universal health coverage, and hospital reimbursements for medical services are uniform throughout the nation²⁵. Hence, health expenditure provides a standardized indicator that reflects the vast majority of healthcare services provided (with the exception of cosmetic, advanced, or experimental care not covered under insurance), and generally indicates the same workload regardless of where patients receive healthcare services. Furthermore, we consider that medical health expenditure per capita more accurately reflects the degree

of workload than medical consultation rates because the former accounts for variations in patient health

BMJ Open

293	status.
294	
295	These findings should be interpreted in the context of several limitations. First, this was a retrospective
296	study and, as such, does not provide estimates on future physician supply and healthcare demand. Next,
297	the long-term generalizability of our adjustment coefficient may be susceptible to changes in population
298	structure. However, our study showed that the coefficient remained essentially unchanged from 2000 to
299	2014, and it is not likely to undergo major changes in the near future. In addition, the coefficient itself
300	cannot be applied to other countries, but the adjustment method may have applications outside of Japan.
301	
302	Conclusions
303	The number of physicians per 100 000 raw population had seemingly increased in both urban and rural
304	areas in Japan. After healthcare demand was adjusted, however, physician supply was observed to
305	decrease in all types of areas except for urban areas with lower initial physician supply. In addition,
306	physician distribution had consistently become less equitable in recent years. These results indicate the
307	need for major reform of Japan's healthcare system.
308	
309	List of abbreviations
310	List of abbreviations SMA, secondary medical area Footnotes Acknowledgements
311	
312	Footnotes
313	Acknowledgements
314	Not applicable.
315	Not applicable.
316	Competing interests
317	The authors declare that they have no competing interests.
318	
319	Funding
320	This work was supported in part by Health Sciences Research Grants from the Ministry of Health,
321	Labour grant number H27-iryo-ippan-001 and Welfare of Japan and a Grant-in-Aid for Scientific
322	Research from the Japan Society for the Promotion of Science grant number [A]16H02634.
	11

BMJ Open: first published as 10.1136/bmjopen-2016-013922 on 14 March 2017. Downloaded from http://bmjopen.bmj.com/ on April 26, 2024 by guest. Protected by copyright.

323	
324	Contributors
325	KH contributed to the study conception and design, data collection, analysis, interpretation, and
326	drafting. TO and SK contributed to the data collection and the data management. YI contributed to the
327	study design, data acquisition, and interpretation. All authors critically revised the article, and approved
328	the final version.
329	
330	Ethics approval and consent to participate
331	Not applicable
332	
333	Consent for publication
334	Not applicable
335	
336	Reference
337	1. Horev T, Pesis-Katz I, Mukamel DB. Trends in geographic disparities in allocation of health care
338	resources in the US. <i>Health Policy</i> 2004; 68 :223-32. doi: 10.1016/j.healthpol.2003.09.011
339	2. Isabel C, Paula V. Geographic distribution of physicians in Portugal. European Journal of Health
340	Economics 2010;11:383-93. doi: 10.1007/s10198-009-0208-8
341	3. Anand S, Fan VY, Zhang J, et al. China's human resources for health: quantity, quality, and
342	distribution. <i>Lancet</i> 2008; 372 :1774-81. doi: 10.1016/s0140-6736(08)61363-x
343	4. Tanihara S, Kobayashi Y, Une H, et al. Urbanization and physician maldistribution: a
344	longitudinal study in Japan. <i>BMC Health Serv Res</i> 2011; 11 :260. doi:
345	10.1186/1472-6963-11-260
346	5. Pitblado JR, and Raymond W. Pong. Geographic distribution of physicians in Canada. Sudbury,
347	Ontario, Canada: Centre for Rural and Northern Health Research, Laurentian University
348	1999.
349	6. WHO. World report on ageing and health 2015.
350	http://apps.who.int/iris/bitstream/10665/186463/1/9789240694811_eng.pdf
351	(accessed 12 Jul 2016).
352	7. National Institute of Population and Social Security Research. Population statistics book 2015.
	12

BMJ Open

353	http://www.ipss.go.jp/syoushika/tohkei/Popular/P_Detail2015.asp?fname=T02-18.htm
354	(accessed 12 Jul 2016).
355	8. National Institute of Population and Social Security Research. population projection for
356	Japan:2011-2060 2012. http://www.ipss.go.jp/syoushika/tohkei/newest04/gh2401.pdf
357	(accessed 29 Jul 2016).
358	9. Kobayashi Y, Takaki H. Geographic distribution of physicians in Japan. <i>Lancet</i> 1992; 340 :1391-3.
359	10. Asano N, Kobayashi Y, Kano K. Issues of intervention aimed at preventing prospective surplus
360	of physicians in Japan. <i>Med Educ</i> 2001; 35 :488-94.
361	11. Gravelle H, Sutton M. Inequality in the geographical distribution of general practitioners in
362	England and Wales 1974-1995. J Health Serv Res Policy 2001; 6 :6-13.
363	12. Hann M, Gravelle H. The maldistribution of general practitioners in England and Wales:
364	1974-2003. Br J Gen Pract 2004; 54 :894-8.
365	13. Toyabe S. Trend in geographic distribution of physicians in Japan. <i>Int J Equity Health</i> 2009; 8 :5.
366	doi: 10.1186/1475-9276-8-5
367	14. Sasaki H, Otsubo T, Imanaka Y. Widening disparity in the geographic distribution of
368	pediatricians in Japan. <i>Hum Resour Health</i> 2013; 11 :59. doi: 10.1186/1478-4491-11-59
369	15. Shinjo D, Aramaki T. Geographic distribution of healthcare resources, healthcare service
370	provision, and patient flow in Japan: a cross sectional study. Soc Sci Med
371	2012; 75 :1954-63. doi: 10.1016/j.socscimed.2012.07.032
372	16. Munga MA, Maestad O. Measuring inequalities in the distribution of health workers: the case
373	of Tanzania. <i>Human Resources for Health</i> 2009; 7 :12. doi: 10.1186/1478-4491-7-4
374	17. Theodorakis PN, Mantzavinis GD. Inequalities in the distribution of rural primary care
375	physicians in two remote neighboring prefectures of Greece and Albania. <i>Rural Remote</i>
376	Health 2005; 5 :457.
377	18. Kanchanachitra C, Lindelow M, Johnston T, et al. Human resources for health in southeast
378	Asia: shortages, distributional challenges, and international trade in health services.
379	Lancet 2011; 377 :769-81. doi: 10.1016/s0140-6736(10)62035-1
380	19. Newhouse JP, Williams AP, Bennett BW, et al. Where have all the doctors gone? Jama
381	1982; 247 :2392-6.
382	20. Schwartz WB, Newhouse JP, Bennett BW, et al. The changing geographic distribution of

1		
2 3	383	
4 5	384	
6 7	385	21. M
8 9	386	
10 11	387	
12 13	388	22.0
14 15	389	23. N
16 17	390	24. K
18	391	
19 20	392	25. Il
21 22	393	
23 24	394	
25 26	395	
27 28	396	Figu
29 30	397	Figu
31 32	398	secor
33 34	399	Figu
35	400	
36 37	401	Figu
38 39	402	Figu
40 41	403	SMA
42 43	404	phys
44 45	405	to thi
46 47	406	
48	407	
49 50		
51 52		
53 54		
55 56		
57 58		
59 60		
~~		

1

383	board-certified physicians. N Engl J Med 1980;303:1032-8. doi:
384	10.1056/nejm198010303031803
385	21. Matsumoto M, Inoue K, Bowman R, et al. Geographical distributions of physicians in Japan and
386	US: Impact of healthcare system on physician dispersal pattern. Health Policy
387	2010; 96 :255-61. doi: 10.1016/j.healthpol.2010.02.012
388	22. OECD. Ageing in Cities. Paris: OECD Publishing 2015.
389	23. McCurry J. Japan will be model for future super-ageing societies. <i>Lancet</i> 2015; 386 :1523-23.
390	24. Kephart G, Asada Y. Need-based resource allocation: different need indicators, different
391	results? <i>BMC Health Serv Res</i> 2009; 9 :122. doi: 10.1186/1472-6963-9-122
392	25. Ikegami N, Yoo BK, Hashimoto H, et al. Japanese universal health coverage: evolution,
393	achievements, and challenges. Lancet 2011; 378 :1106-15. doi:
394	10.1016/s0140-6736(11)60828-3
395	
396	Figure titles
397	Figure 1: Temporal changes in Gini coefficients of the number of physicians per 100 000 population in
398	secondary medical areas
399	Figure 2: Temporal changes in the proportion of secondary medical areas with a low physician supply
400	
401	Figure legend
402	Figure2: SMA, Secondary medical area
403	SMAs with a low physician supply were defined as those in the first quartile according to the number of
404	physicians per 100 000 population in 2000; the y-axis shows the proportion of SMAs defined according
405	to this criterion to all 349 SMAs.
406	
407	

Page 15 of 22

1

BMJ Open

2 3	Table 1: Adjustmer	nt coefficients of healthcare o
4 5		Expenditure per
6 7	Age group	capita (US dollars*)
8	All Patients	1881.7
9 10	0–4 years	1532.5
11 12	5–9 years	629.2
13	10–14 years	505.8
14 15	15–19 years	411.7
16 17	20-24 years	423.3
18	25–29 years	556.7
19 20	30–34 years	661.7
21 22	35–39 years	725.0
23	40-44 years	825.8
24 25	45–49 years	1031.7
26 27	50-54 years	1329.2
28	55–59 years	1726.7
29 30	60-64 years	2260.8
31 32	65–69 years	2892.5
33 34	70–74 years	3821.7
35	75–79 years	4777.5
36 37	≥80 years	6266.0
38 39 40 41 42 43 44 45	* An exchange rate	of US\$1 = 120 Yen was used.
46		

47

48 10

l: Adjustment coefficients of healthcare demand by age group based on health expenditure per capita

Adjustment

coefficient

Reference

0.81

0.33

0.27

0.22

0.22

0.30

0.35

0.39

0.44

0.55

0.71

0.92

1.20

1.54 2.03

2.54

3.33

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

15

Year	2000	2002	2004	2006	2008	2010	2012	2014
The number of physicians	243 201	249 574	256 668	263 540	271 897	280 431	288 850	296 845
	(100)	(102.6)	(105.5)	(108.4)	(111.8)	(115.3)	(118.8)	(122.1)
Raw population	126 071 305	126 478 672	126 824 166	127 055 025	127 066 178	127 057 860	126 659 683	126 434 634
	(100)	(100.3)	(100.6)	(100.8)	(100.8)	(100.8)	(100.5)	(100.3)
emand-adjusted population*	102 426 743	106 236 098	110 121 313	113 627 296	117 265 790	120 684 904	123 445 680	125 991 667
	(100)	(103.7)	(107.5)	(110.9)	(114.5)	(117.8)	(120.5)	(123.0)
-	-				-	value of 100.		
*Population numbers were rounded The values in parentheses represent	-			number in 2000, w	-	value of 100.		

Table 2. Trends in the absolute number of physicians and population in Japan

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 3: Descriptive statistics of the secondary medical areas (n=349)

I	•		,							
Year	2000					2014				
	Min	Median	Max	Mean	SD	Min	Median	Max	Mean	SD
Number of physicians	27.0	333.0	7527.0	696.9	967.2	27.0	374.0	9841.0	850.6	1237.4
Population										
Raw population	25 527.0	23 2582.0	2 471 100.0	361 235.8	366 575.6	21 204	215 770	2 551 482	362 276.9	390 804.1
Demand-adjusted population	28 133.4	200 105.6	2 023 140.0	293 486.4	277 230.4	27 965.9	227 926.4	2 467 691	361 007.6	362 612.6
Area (km ²)	41.9	261.0	3908.0	350.0	322.8	41.9	261.0	3908.0	350.0	322.8
Population density (per km ²)	51.4	757.6	15 609.5	1638.9	2468.8	46.9	703.6	16 582.0	1679.5	2685.8
SD, standard deviation										

SD, standard deviation

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 4: Temporal changes in physician numbers for the four groups of secondary medical areas

Year	2000	2014	Increase rate (%)
Absolute nu	umber of physi	cians	
Group 1	153 602	188 842	22.9
Group 2	26 367	28 331	7.4
Group 3	17 260	17 823	3.3
Group 4	45 972	61 849	34.5
Physicians _I	per 100 000 rav	w population	n
Group 1	247.0	297.9	20.6
Group 2	194.2	225.6	16.2
Group 3	124.3	142.0	14.2
Group 4	126.2	163.0	29.1
Physicians p	per 100 000 de	mand-adjus	ted population
Group 1	309.3	305.1	-1.3
Group 2	211.5	202.1	-4.4
Group 3	137.4	127.0	-7.6
Group 4	165.8	171.6	3.5
Group 1: urba	an areas with high	her initial phy	sician supply, Group 2: ru
Group 3: rura	l areas with lowe	er initial physi	cian supply, Group 4: urb

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 19 of 22

Figure 1

0.25

0.24

0.23

0.22

10.21

0.20

0.18

0.17

0.16

2000

2002

2004

BMJ Open

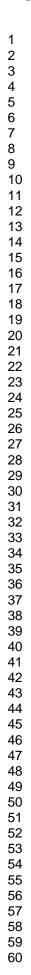


Figure 1: Temporal changes in Gini coefficients of the number of physicians per 100 000 population in secondary medical areas

Per raw population

2012

2014

2010

2008

2006 Year

209x148mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2016-013922 on 14 March 2017. Downloaded from http://bmjopen.bmj.com/ on April 26, 2024 by guest. Protected by copyright.

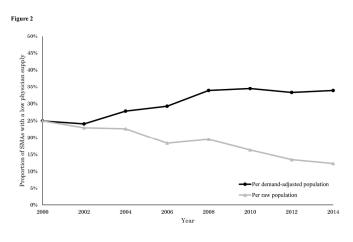


Figure 2: Temporal changes in the proportion of secondary medical areas with a low physician supply Figure2: SMA, Secondary medical area

SMAs with a low physician supply were defined as those in the first quartile according to the number of physicians per 100 000 population in 2000; the y-axis shows the proportion of SMAs defined according to this criterion to all 349 SMAs.

209x148mm (300 x 300 DPI)

BMJ Open

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract
		-p2
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found – p2
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported -p3-4
Objectives	3	State specific objectives, including any prespecified hypotheses – p4
Methods		
Study design	4	Present key elements of study design early in the paper – p6-7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
C		exposure, follow-up, and data collection –p4-5
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of
*		selection of participants. Describe methods of follow-up
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of
		case ascertainment and control selection. Give the rationale for the choice of cases
		and controls
		Cross-sectional study—Give the eligibility criteria, and the sources and methods of
		selection of participants $- p4-6$
		(b) Cohort study—For matched studies, give matching criteria and number of
		exposed and unexposed
		Case-control study—For matched studies, give matching criteria and the number of
		controls per case
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable – p5-7
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there
		is more than one group –p5-6
Bias	9	Describe any efforts to address potential sources of bias -not applicable
Study size	10	Explain how the study size was arrived at – p5-6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why – p5-7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		-not applicable
		(b) Describe any methods used to examine subgroups and interactions –p6-7
		(c) Explain how missing data were addressed –not applicable
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was
		addressed
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of
		sampling strategy –not applicable
		(<u>e</u>) Describe any sensitivity analyses –not applicable
Continued on next page		

BMJ Open: first published as 10.1136/bmjopen-2016-013922 on 14 March 2017. Downloaded from http://bmjopen.bmj.com/ on April 26, 2024 by guest. Protected by copyright.

1
2
3
4
5
6
7
1
8
9
10
11
12
13
14
14
15
16
17
2 3 4 5 6 7 8 9 10 11 21 31 4 15 6 17 8 9 10 11 21 31 4 15 6 17 8 9 10 11 21 31 4 15 6 17 8 19 20 12 22 32 4 5 6 27 28 9 30 11 32 33 4 35 36 37 8 39 10 10 10 10 10 10 10 10 10 10 10 10 10
19
20
20
21
22
23
24
25
26
27
21
28
29
30
31
32
33
24
34
35
36
37
38
39
40
40
41 42
43
44
45
46
47
48
49
50
51
52
53
54
54 55
56
57
58
59
60

60

1

Results		
Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially eligible,
		examined for eligibility, confirmed eligible, included in the study, completing follow-up, and
		analysed –p7
		(b) Give reasons for non-participation at each stage -not applicable
		(c) Consider use of a flow diagram – no use
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information
data		on exposures and potential confounders -not applicable
		(b) Indicate number of participants with missing data for each variable of interest -not
		applicable
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time
		Case-control study-Report numbers in each exposure category, or summary measures of
		exposure
		Cross-sectional study-Report numbers of outcome events or summary measures -p7-8
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and
		why they were included –not applicable
		(b) Report category boundaries when continuous variables were categorized -not applicable
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful
		time period – not applicable
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity
		analyses –p8
Discussion		
Key results	18	Summarise key results with reference to study objectives – p8
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.
		Discuss both direction and magnitude of any potential bias -p11
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity
		of analyses, results from similar studies, and other relevant evidence -p8-11
Generalisability	21	Discuss the generalisability (external validity) of the study results -p10
Other informati	ion	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable,
		for the original study on which the present article is based –p12

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Examining sufficiency and equity in the geographic distribution of physicians in Japan: a longitudinal study

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-013922.R1
Article Type:	Research
Date Submitted by the Author:	04-Nov-2016
Complete List of Authors:	Hara, Koji; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management Otsubo, Tetsuya; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management Kunisawa, Susumu; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management Imanaka, Yuichi; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management
Primary Subject Heading :	Health policy
Secondary Subject Heading:	Public health
Keywords:	Japan, Physicians, geographic distribution, sufficiency, healthcare demand, equity

BMJ Open

1	Examining sufficiency and equity in the geographic distribution of
2	physicians in Japan: a longitudinal study
3	
4	Authors:
5	Koji Hara, MA, Tetsuya Otsubo, PhD, Susumu Kunisawa, MD, PhD, and Yuichi
6	Imanaka, MD, PhD
7	Department of Healthcare Economics and Quality Management, Graduate School of
8	Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan
9	606-8501
10	
11	Corresponding author:
12	Yuichi Imanaka, Professor
13	Mailing address: Department of Healthcare Economics and Quality Management,
14	Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku,
15	Kyoto City, Kyoto, Japan 606-8501
16	Tel: +81 75 753 4454
17	Fax: +81 75 753 4455
18	Email: imanaka-y@umin.net
19 20	Email: imanaka-y@umin.net Word count:
21	3,614words
22	

23	Examining sufficiency and equity in the geographic distribution of
24	physicians in Japan: a longitudinal study
25	Abstract
26	Objectives
27	The objective of this study was to longitudinally examine the geographic distribution of physicians i
28	Japan with adjustment for healthcare demand according to changes in population age structure.
29	Methods
30	We examined trends in the number of physicians per 100 000 population in Japan's secondary medic
31	areas (SMAs) from 2000 to 2014. Healthcare demand was adjusted using health expenditure per cap
32	Trends in Gini coefficient and the number of SMAs with a low physician supply were analysed. A
33	sub-group analysis was also conducted where SMAs were divided into four groups according to
34	urban-rural classification and initial physician supply.
35	Results
36	The time-based changes in both Gini coefficient and the number of SMAs with a low physician supp
37	indicated that the equity in physician distribution had worsened throughout the study period. The num
38	of physicians per 100 000 population had seemingly increased in all groups, with increases of 22.9%
39	34.5% in urban groups with higher and lower initial physician supply, respectively. However, after
40	adjusting healthcare demand, physician supply decreased by 1.3% in the former group and increased
41	3.5% in the latter group. Decreases were also observed in the rural groups, where the number of
42	physicians decreased by 4.4% in the group with higher initial physician supply and 7.6% in the group
43	with lower initial physician supply.
44	Conclusions
45	Although the total number of physicians increased in Japan, demand-adjusted physician supply
46	decreased in recent years in all areas except for urban areas with a lower initial physician supply. In
47	addition, the equity of physician distribution had consistently deteriorated since 2000. The results
48	indicate that failing to adjust healthcare demand will produce misleading results, and that there is a n
49	for major reform of Japan's healthcare system to improve physician distribution.
50	

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

Strengths and limitations of this study

BMJ Open

This study longitudinally examines the geographic distribution of physicians in Japan with

1		
2		
3 ⊿		
3 4 5		
6		
7		
8 9		
10		
11		
12 13		
13 14		
15 16		
16 17		
18		
19 20		
19 20 21		
22		
23 24		
22 23 24 25 26		
26		
27 28		
29		
30		
31 32		
33		
34		
35 36		
37		
38 39		
39 40		
41		
42 43		
43 44		
45		
46 47		
48		
49		
50 51		
52		
53		
54 55		
55 56		
57		
58 59		
59 60		

adjustment for healthcare demand according to changes in population age structure. The use of medical health expenditure per capita for the adjustment of healthcare demand enabled a more accurate reflection of the degree of workload than medical consultation rates. The primary limitation of this study is that it was a retrospective study and, as such, does not provide estimates on future physician supply and healthcare demand. Although the adjustment methodology itself may have international applications, the adjustment coefficient values that we used must undergo further examination and modification before their application to other countries. Keywords Japan; physicians; geographic distribution; sufficiency; equity; healthcare demand Introduction The inequitable geographic distribution of physicians is a pressing issue in many countries ¹⁻⁴. There are at least two reasons why this issue attracts social and political attention. The first reason comes from the issue of equity and social justice, that is, a citizen's right to access healthcare equally. The other is rooted in the belief in linkages between physician availability and health status⁵. Studies that address this topic frequently use the number of physicians per population as an indicator of physician supply. However, this simple calculation may present an oversimplification of findings due to its reliance on simple head counts that ignore differences within a population⁵. In particular, healthcare demand is likely to differ substantially among the age strata as elderly people tend to require more health

care. As many parts of the world are experiencing accelerated population ageing, it is becoming

increasingly important to consider the differences in age-dependent healthcare demand when examining
 physician supply.

78

Population ageing has become a key policy issue throughout the world ⁶. Japan currently has the highest proportion of people aged 65 years or older, and became one of the first "super-aged" societies when this proportion exceeded 21% in 2007 ⁷. In addition, Japan's rate of population ageing is unprecedented: the

BMJ Open: first published as 10.1136/bmjopen-2016-013922 on 14 March 2017. Downloaded from http://bmjopen.bmj.com/ on April 26, 2024 by guest. Protected by copyright

2
3
4
5
6
7
2 2
8
9
10
11
12
13
9 10 11 12 13 14 15
15
16
16 17 18
10
10
19
20
21
22
23
20 21 22 23 24 25 26 27 28 29 30 31 22
25
20
20
21
28
29
30
31
32
33
33 34 35 36
35
20
30
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
53 54
55
56
57
58
59
60

1

82	proportion of people aged 65 years or older rose from 10% to 20% within 20 years. In contrast, the UK
83	had almost 79 years and the US almost 59 years to adapt to this shift in population age structure.
84	Furthermore, Japan's proportion of elderly people is predicted to rise to 33.4% in 2035 and 39.9% in
85	2060 ⁸ , indicating that its population is still undergoing rapid changes.
86	
87	In Japan, the issue concerning the number of physicians has shifted from a shortage to a surplus. Japan
88	faced a shortage of physicians in the 1960s and 1970s ⁹ . During that period, the country experienced a
89	massive increase in population from 94 million to 117 million people. The government at that time aimed
90	to ensure a minimum of 150 physicians for every 100 000 people, and doubled medical school
91	enrolments in the 1970s to bolster physician supply. The target number of physicians was achieved in
92	1984, but has since continued to increase. Due to the ageing and projected decrease of the Japanese

93 population, the possible surplus of physicians is an issue that needs to be addressed. Although the 94 government-sanctioned reduction of enrolments in medical schools has been proposed as a possible 95 measure to control physician numbers, this measure is controversial and has been met with resistance from several interest groups ¹⁰. Detailed and accurate information on physician supply that accounts for 96 97 age-dependent healthcare demand is needed to support this decision-making process.

98

99 Although previous studies have examined trends in physician geographic distribution using healthcare 100 demand-adjusted populations^{11 12}, there is currently no standardised method for adjusting healthcare 101 demand. Furthermore, the trends in physician supply in a super-aged society such as Japan have yet to be 102 investigated. In this study, we conducted a longitudinal examination of the geographic distribution of 103 physicians with adjustment for healthcare demand according to the changing age structure of the 104 Japanese population.

105

106 Methods

107 **Data sources**

108 The number of physicians was obtained from the National Physician Census, which is conducted 109 biennially by Japan's Ministry of Health, Labour and Welfare (MHLW). The census data included the 110 type and location (municipality) of workplace for each physician. Population data were collected from 111 the National Basic Resident Register, which is published annually by the Ministry of Internal Affairs and

BMJ Open

112	Communications. We collected data on national health expenditure per capita according to patient age in
113	2014 from the MHLW. Although national health expenditure includes various types of health care, we
114	only used general treatment medical fees for our analysis because the other types of care were deemed to
115	have little direct relevance to the number of physicians. Medical consultation rates were collected from
116	the 2014 Patient Survey conducted by the MHLW. Population density was calculated by dividing the
117	number of people residing in each secondary medical area (SMA, described below) by the area (km ²).
118	The area of each region was obtained from statistical reports on land areas of prefectures and
119	municipalities by the Geospatial Information Authority of Japan.
120	
121	Physicians and population
122	Practicing physicians at all Japanese clinics and hospitals were included in analysis, whereas registered
123	physicians working in non-clinician roles (e.g., basic researchers or government officials) were excluded.
124	Physician densities were calculated for both the raw (unadjusted) population and the healthcare
125	demand-adjusted population; the former included all Japanese citizens and the latter included all
126	Japanese citizens adjusted for age-dependent healthcare demand. The population was stratified into
127	5-year age groups, with the initial group comprising persons aged 0 to 4 years and the final group
128	comprising persons aged 80 years or older.
129	
130	Secondary medical areas
131	The SMA was used as the geographic unit of analysis. The Japanese government has designated medical
132	service administration areas throughout the country, and these areas are categorised into primary,
133	secondary, and tertiary medical areas. Primary medical areas are set at the municipal level, and generally
134	represent areas that are capable of providing basic primary care to residents. Tertiary medical areas are
135	generally set at the prefectural level, and generally represent areas that are capable of providing the most
136	advanced and specialised medical treatments. SMAs, which are between these two levels, supply and
137	manage the majority of primary care and emergency medical services to regional communities.
138	Therefore, SMAs are arguably the most important of the three geographic units with regard to
139	implementing health policies. The geographic boundaries of the primary and tertiary medical areas are
140	based on existing regional borders, whereas SMAs are demarcated by the prefectural governments based
141	on healthcare provision capabilities. As a result, SMAs are directly relevant to the functional aspects of

BMJ Open: first published as 10.1136/bmjopen-2016-013922 on 14 March 2017. Downloaded from http://bmjopen.bmj.com/ on April 26, 2024 by guest. Protected by copyright.

142	healthcare administration. Previous studies on physician geographic distribution in Japan have been
143	conducted at the municipal level ⁹¹³ , although recent studies have also focused on SMAs ⁴¹⁴¹⁵ . SMA
144	boundaries can be modified by prefectural governments in response to changing healthcare requirements.
145	In this study, we analysed the 349 designated SMAs in 2012.
146	
147	Analysis of physician distribution
148	First, we calculated the healthcare demand-adjusted population using adjustment coefficients that were
149	derived according to the health expenditure per capita for each age group. The health expenditure for
150	each age group was divided by the overall mean health expenditure of the population, and the obtained
151	quotients were used as age group-specific adjustment coefficients. We then applied the adjustment
152	coefficients to the raw population to obtain the healthcare demand-adjusted population. The numbers of
153	physicians per 100 000 population in the SMAs were calculated for both the raw and demand-adjusted
154	populations, and these values were used in the following analyses. In addition, we assessed the
155	robustness of the adjustment coefficients by comparing them with alternative coefficients based on
156	medical consultation rates instead of health expenditure, and also examined the annual changes in the
157	adjustment coefficients by age group during the study period.
157 158	adjustment coefficients by age group during the study period.
158	
158 159	Next, we assessed the equity of the geographic distribution of physicians. The Gini coefficient was used
158 159 160	Next, we assessed the equity of the geographic distribution of physicians. The Gini coefficient was used as the indicator of equity, and has been widely used in similar analyses ^{2 4 16-18} . This coefficient measures
158 159 160 161	Next, we assessed the equity of the geographic distribution of physicians. The Gini coefficient was used as the indicator of equity, and has been widely used in similar analyses ^{2 4 16-18} . This coefficient measures the degree of departure from a uniform distribution known as the Lorenz curve, and takes a value
158 159 160 161 162	Next, we assessed the equity of the geographic distribution of physicians. The Gini coefficient was used as the indicator of equity, and has been widely used in similar analyses ^{2 4 16-18} . This coefficient measures the degree of departure from a uniform distribution known as the Lorenz curve, and takes a value between 0 (indicating perfect equality) and 1 (indicating perfect inequality). The Lorenz curve for the
158 159 160 161 162 163	Next, we assessed the equity of the geographic distribution of physicians. The Gini coefficient was used as the indicator of equity, and has been widely used in similar analyses ^{2 4 16-18} . This coefficient measures the degree of departure from a uniform distribution known as the Lorenz curve, and takes a value between 0 (indicating perfect equality) and 1 (indicating perfect inequality). The Lorenz curve for the
158 159 160 161 162 163 164	Next, we assessed the equity of the geographic distribution of physicians. The Gini coefficient was used as the indicator of equity, and has been widely used in similar analyses ^{2 4 16-18} . This coefficient measures the degree of departure from a uniform distribution known as the Lorenz curve, and takes a value between 0 (indicating perfect equality) and 1 (indicating perfect inequality). The Lorenz curve for the SMAs was plotted based on the number of physicians per 100 000 population.
158 159 160 161 162 163 164 165	Next, we assessed the equity of the geographic distribution of physicians. The Gini coefficient was used as the indicator of equity, and has been widely used in similar analyses ^{2 4 16-18} . This coefficient measures the degree of departure from a uniform distribution known as the Lorenz curve, and takes a value between 0 (indicating perfect equality) and 1 (indicating perfect inequality). The Lorenz curve for the SMAs was plotted based on the number of physicians per 100 000 population. We then examined the time-based trends in the number of SMAs with a low physician supply. SMAs
158 159 160 161 162 163 164 165 166	Next, we assessed the equity of the geographic distribution of physicians. The Gini coefficient was used as the indicator of equity, and has been widely used in similar analyses ^{2 4 16-18} . This coefficient measures the degree of departure from a uniform distribution known as the Lorenz curve, and takes a value between 0 (indicating perfect equality) and 1 (indicating perfect inequality). The Lorenz curve for the SMAs was plotted based on the number of physicians per 100 000 population. We then examined the time-based trends in the number of SMAs with a low physician supply. SMAs were categorised into quartiles according to the number of physicians per 100 000 raw population or 100
158 159 160 161 162 163 164 165 166 167	Next, we assessed the equity of the geographic distribution of physicians. The Gini coefficient was used as the indicator of equity, and has been widely used in similar analyses ^{2 4 16-18} . This coefficient measures the degree of departure from a uniform distribution known as the Lorenz curve, and takes a value between 0 (indicating perfect equality) and 1 (indicating perfect inequality). The Lorenz curve for the SMAs was plotted based on the number of physicians per 100 000 population. We then examined the time-based trends in the number of SMAs with a low physician supply. SMAs were categorised into quartiles according to the number of physicians per 100 000 raw population or 100 000 healthcare demand-adjusted population in 2000, and the SMAs in the first quartiles were specified as
158 159 160 161 162 163 164 165 166 167 168	Next, we assessed the equity of the geographic distribution of physicians. The Gini coefficient was used as the indicator of equity, and has been widely used in similar analyses ^{2 4 16-18} . This coefficient measures the degree of departure from a uniform distribution known as the Lorenz curve, and takes a value between 0 (indicating perfect equality) and 1 (indicating perfect inequality). The Lorenz curve for the SMAs was plotted based on the number of physicians per 100 000 population. We then examined the time-based trends in the number of SMAs with a low physician supply. SMAs were categorised into quartiles according to the number of physicians per 100 000 raw population or 100 000 healthcare demand-adjusted population in 2000, and the SMAs in the first quartiles were specified as having a low physician supply. We examined the changes in the proportions of SMAs that fulfilled this
158 159 160 161 162 163 164 165 166 167 168 169	Next, we assessed the equity of the geographic distribution of physicians. The Gini coefficient was used as the indicator of equity, and has been widely used in similar analyses ^{2 4 16-18} . This coefficient measures the degree of departure from a uniform distribution known as the Lorenz curve, and takes a value between 0 (indicating perfect equality) and 1 (indicating perfect inequality). The Lorenz curve for the SMAs was plotted based on the number of physicians per 100 000 population. We then examined the time-based trends in the number of SMAs with a low physician supply. SMAs were categorised into quartiles according to the number of physicians per 100 000 raw population or 100 000 healthcare demand-adjusted population in 2000, and the SMAs in the first quartiles were specified as having a low physician supply. We examined the changes in the proportions of SMAs that fulfilled this

BMJ Open

and whether they had a lower or higher initial physician supply at the start of the study period. Using an approach described in an earlier study¹⁴, the degree of urbanization was determined using the population density in 2000 as a proxy variable. We divided the SMAs according to the median value of the population density in 2000 to obtain two groups: SMAs with population densities above the median value were designated urban areas, whereas SMAs with population densities below the median value were designated rural areas. Similarly, the initial physician supply was calculated using the number of physicians per 100 000 population in 2000. We divided the SMAs according to the median values of the initial physician supply to obtain two groups: SMAs with initial physician densities above the median value were designated as having higher initial physician supply, whereas SMAs with initial physician densities below the median value were designated as having lower initial physician supply. Based on a combination of these two criteria, the SMAs were divided into four groups: Group 1 comprised urban SMAs with a higher initial physician supply, Group 2 comprised rural SMAs with a higher initial physician supply, Group 3 comprised rural areas with a lower initial physician supply, and Group 4 comprised urban areas with a lower initial physician supply. The changes in physician numbers were compared among these groups. All analyses were performed using R statistical software (version 3.2.2).

188 Results

As shown in Table 1, the adjustment coefficients for the age groups ranged from 0.22 (15–24 years) to 3.33 (80 years or older). The adjustment coefficient of the elderly population (65 years or older) was approximately four times that of the younger population (10–39 years). The results of robustness testing indicated that our adjustment coefficient was consistent with the results of the alternative coefficient based on medical consultation rates, with a high level of correlation (correlation coefficient: 0.99) between the primary adjustment coefficients and medical consultations rates by age group. Furthermore, our coefficient also appeared robust to time-based changes from 2000 to 2014 (data not shown). BMJ Open: first published as 10.1136/bmjopen-2016-013922 on 14 March 2017. Downloaded from http://bmjopen.bmj.com/ on April 26, 2024 by guest. Protected by copyright

Table 2 shows the temporal trends in the number of physicians and population from 2000 to 2014 at 2-year intervals. The number of physicians consistently increased by approximately 6000 to 8000 every two years, and was 1.22 times higher in 2014 than in 2000. The raw population generally remained unchanged throughout the study period. In contrast, the healthcare demand-adjusted population was 1.23 times higher in 2014 than it was in 2000. Hence, the increase rate of the demand-adjusted population

BMJ Open: first published as 10.1136/bmjopen-2016-013922 on 14 March 2017. Downloaded from http://bmjopen.bmj.com/ on April 26, 2024 by guest. Protected by copyright

BMJ Open

slightly exceeded the increase rate of physicians. Table 3 and Table 4 summarize the descriptive statistics for the 349 SMAs and the four groups, respectively. Table 3 shows that the mean number of physicians and demand-adjusted population had increased between 2000 and 2014. Figure 1 illustrates the temporal changes in Gini coefficient for the number of physicians per 100 000 population (both raw and demand-adjusted) at the SMA level, and indicates that the equity in physician numbers had worsened in both populations. In particular, equity had deteriorated more (higher Gini coefficient) in the healthcare demand-adjusted population. Figure 2 shows the changes in the proportion of SMAs with a low physician supply across the study period. In the raw population, the proportion consistently decreased from 24.9% to 13.2% (with a brief increase between 2006 and 2008). In contrast, the same proportion in the healthcare demand-adjusted population consistently increased from 24.9% to 35.0% (with a brief decrease between 2000 and 2002); notably, there was a relatively large increase of 4.5% between 2006 and 2008 in the demand-adjusted population. Table 5 presents the changes in the absolute numbers of physicians and physicians per 100 000 population in Groups 1 to 4 between 2000 and 2014. There were 100 SMAs in Group 1, 75 SMAs in Group 2, 99 SMAs in Group 3, and 75 SMAs in Group 4. The absolute numbers of physicians showed considerable increases in Groups 1 and 4, whereas the increases were smaller in the other two groups. In

223 per 100 000 population. In contrast, the number of physicians per 100 000 healthcare demand-adjusted

the raw population, all groups (including the rural areas) exhibited increases in the number of physicians

- 224 population was observed to decrease in all groups except Group 4.

226 Discussion

We conducted a longitudinal examination of the geographic distribution of physicians in Japan that accounted for changes in age-dependent healthcare demand in accordance with the changing age structure of the Japanese population. Our study produced two major findings: First, the equity in physician geographic distribution for the demand-adjusted population had worsened throughout the study period when analysing the time-based trends of both Gini coefficient and the number of SMAs

BMJ Open

2
3
4
5
4 5 6 7
7
<i>'</i>
8
9
10
11
12
13
14
14
15
16
17
18
20
21
22
~~ 22
23
24
25
26
27
28
29
20
30
31
32
32 33 34 35 36 37 38 39 40
34
35
36
37
20
30
39
40
41
42
43
44
45
46
47
48
49
50
51
52
51 52 53 54
5/
55
55
56
57
58
59
60

with a low physician supply. Second, the number of physicians per 100 000 healthcare demand-adjusted
population decreased in all types of areas except for urban areas with a lower initial physician supply.
Although the number of physicians per population has been widely used as an indicator of physician

supply, it does not account for intra-population variations in healthcare demand. Healthcare demand
differs among the age strata because elderly people tend to utilize more health care. As Japan is
undergoing unprecedented population ageing, changes in age structure and healthcare demand should be
considered when examining the geographic distribution of physicians.

240

241 Notably, the changes in the number of physicians per raw population in each group were markedly 242 different from the changes in the demand-adjusted population. The number of physicians per 100 000 243 raw population had seemingly increased in all types of areas, especially in the urban groups: there was an 244 increase of 22.9% in Group 1 and 34.5% in Group 4. However, after adjusting healthcare demand, the 245 number decreased by 1.3% in Group 1, and increased by 3.5% in Group 4. Furthermore, decreases were 246 also observed in the rural groups, where the number decreased by 4.4% in Group 2 and by 7.6% in Group 247 3. The disparity in results indicates that it is necessary to adjust healthcare demand when analysing 248 physician supply. Furthermore, this adjustment will become increasingly important in the future as the 249 age structure of the Japanese population continues to change.

250

251 Despite the consistent nationwide increase in the absolute number of physicians, this was not 252 accompanied by improved equity in physician distribution. It has been previously proposed that 253 increasing the overall number of physicians may resolve uneven physician distribution as competitive forces play a major role in determining distribution patterns ¹⁹²⁰. However, studies in Japan have reported 254 255 that increases in overall physician numbers have not been able to improve the regional disparity in physician supply ^{4 9 21}. Similarly, our results indicate that this disparity has not been resolved in recent 256 257 years. In fact, the problem appears to have worsened when physician supply was analysed in the 258 healthcare demand-adjusted population. We surmise that equity in physician supply will continue to 259 worsen without the prompt development and implementation of appropriate measures. 260

261 The number of SMAs with a low physician supply had appeared to decrease throughout the study period

BMJ Open: first published as 10.1136/bmjopen-2016-013922 on 14 March 2017. Downloaded from http://bmjopen.bmj.com/ on April 26, 2024 by guest. Protected by copyright

in the raw population, but adjusting for age-dependent healthcare demand revealed that these SMAs had actually increased. We posit that these conflicting results may be attributed to the higher increase rate of the demand-adjusted population relative to the increase rate of physicians. An earlier study found that physician supply had increased in SMAs with small populations due to the larger effects of reductions in population size⁴. However, our study was able to detect reductions in the number of physicians in SMAs with similarly small populations when healthcare demand was adjusted. Although population numbers have been decreasing in rural areas, their demand for health care is growing due to the rising proportion of elderly persons.

Although physician supply had appeared to increase in Group 1 (urban SMAs with a higher initial physician supply), our study showed that the supply had actually decreased after healthcare demand was adjusted. This discovery is interesting in that it contradicts the convention that physician supply tends to increase in urban areas, and indicates that healthcare demand has rapidly increased in these regions. Many countries are experiencing population ageing; the OECD has reported an increase of 23.8% in elderly populations in urban areas from 2001 to 2011, whereas the increase was lower in rural areas at 18.2%²². It is therefore evident that physician shortages are not limited to rural areas, and should also be actively addressed as an urban issue. On the other hand, our study also found that physician supply had increased in Group 4 (urban SMAs with lower initial physician supply) after adjusting healthcare demand. Many SMAs in Group 4 are composed of suburban areas with large populations and relatively small numbers of physicians. Despite the increase in physician supply in Group 4, the number of physicians per 100 000 demand-adjusted population was almost half that of Group 1 in 2014.

Our findings are also important in the context of the study setting: Japan has gained worldwide attention as it addresses the challenges of a super-aged society²³. Although the adjustment methodology itself may have international applications, our results are not generalisable to other countries in their current form. Nevertheless, these results have substantial implications on the importance of demand adjustment on physician supply. Due to the lengthy physician training periods and declining birth rate in Japan, it will be difficult to quickly increase the number of physicians if needed. We therefore propose that there is a need for major reform of the healthcare delivery system that does not rely on increasing physician numbers. Possible measures include establishing and enhancing the roles of medical teams to improve

BMJ Open

physician productivity or promoting the utilization of information and communications technology, such as telemedicine. Since 2007, the Japanese government has implemented several measures aimed at improving the geographic distribution and availability of physicians in rural areas. For example, all prefectures in Japan have established a regional medical support center tasked with resolving the inequities in physician geographic distribution and incentivizing the move of physicians to less urban areas. These centers usually provide banking services and career development support for young physicians working in areas with an insufficient physician supply. In addition, the government has expanded the "Chiikiwaku" system, which sets regional quotas for medical school students and grants scholarships with stipulations on future rural practice. These efforts are fairly recent, and their effects on physician supply remain unclear 24. Several studies have previously attempted to account for healthcare demand through the use of variables such as patient age, sex, and health status ^{11 12 25}. In this study, we elected to use health expenditure per capita as the adjustment coefficient to represent healthcare demand. This indicator was chosen based on the assumption that expenditure per capita is reflective of the general workload of healthcare providers across regions and provider types¹¹. The Nuffield Trust—a charitable trust in the UK that also predicts future health expenditure—has reported a relationship between healthcare demand and health expenditure ²⁶. In addition, Japan's healthcare system is characterised by universal health coverage, and hospital reimbursements for medical services are uniform throughout the nation ²⁷. Hence, health expenditure provides a standardised indicator that reflects the vast majority of healthcare services (with the exception of cosmetic, advanced, or experimental care not covered under insurance), and generally indicates the same workload regardless of where patients receive healthcare services. Furthermore, we consider that medical health expenditure per capita more accurately reflects the degree of workload than medical consultation rates because the former accounts for variations in patient health status. These findings should be interpreted in the context of several limitations. First, this was a retrospective study and, as such, does not provide estimates on future physician supply and healthcare demand. Although future physician supply estimates are beyond the scope of this study, they should be addressed

BMJ Open: first published as 10.1136/bmjopen-2016-013922 on 14 March 2017. Downloaded from http://bmjopen.bmj.com/ on April 26, 2024 by guest. Protected by copyright.

1 2
2
1
- - 5
2 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 3 4 5 6 7 8 9 10 112 3 3 4 5 6 7 8 9 10 112 3 3 4 5 6 7 8 9 10 112 3 3 4 5 6 7 8 9 10 112 3 3 4 5 8 9 10 112 3 3 4 5 6 7 8 9 10 112 3 3 4 5 8 9 10 112 3 3 4 5 6 7 8 9 1 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
7
/ Q
0 0
9 10
10
12
12
17
14
16
17
18
10
20
20 21
∠ı 22
22
23
24
20
20
20
20
29
21
32
32 22
24
25
36
27
20
30
40
40 41
41
43
43 44
45
46
40 47
48
49
50
51
52
53
54
55
56
57
58
59
60
00

1

322	in future research. Second, it is possible that a small number of physicians who work in Japanese clinics
323	and hospitals do not participate in the National Physician Census, which may introduce a degree of
324	sampling bias. However, because all physicians in Japan are legally required to participate in the census,
325	the number of non-participating physicians is likely to be too small to have a discernible effect on our
326	results. Third, it is possible that individual health expenditure may not reflect the degree of physician
327	workload. On the other hand, at a macro level, using health expenditure is better than medical
328	consultation rates because the latter are unadjusted and therefore completely unweighted for physician
329	workload. Fourth, SMAs may be divided into groups using various other criteria. In this study, we
330	adopted a simple approach based on an earlier study ¹⁴ , and were able to obtain distinctly different results
331	among the groups. Fifth, the long-term generalizability of our adjustment coefficient may be susceptible
332	to changes in population structure. However, our study showed that the coefficient remained essentially
333	unchanged from 2000 to 2014, and it is not likely to undergo major changes in the near future. Finally,
334	the adjustment coefficient in its current form cannot be applied to studies in other countries, but the
335	adjustment method may have applications outside of Japan.
336	
337	Conclusions
337 338	Conclusions The number of physicians per 100 000 raw population had seemingly increased in both urban and rural
338	The number of physicians per 100 000 raw population had seemingly increased in both urban and rural
338 339	The number of physicians per 100 000 raw population had seemingly increased in both urban and rural areas in Japan. After healthcare demand was adjusted, however, physician supply was observed to
338 339 340	The number of physicians per 100 000 raw population had seemingly increased in both urban and rural areas in Japan. After healthcare demand was adjusted, however, physician supply was observed to decrease in all types of areas except for urban areas with lower initial physician supply. In addition,
338339340341	The number of physicians per 100 000 raw population had seemingly increased in both urban and rural areas in Japan. After healthcare demand was adjusted, however, physician supply was observed to decrease in all types of areas except for urban areas with lower initial physician supply. In addition, physician distribution had consistently become less equitable in recent years. These results indicate that failure to adjust healthcare demand will produce misleading results when examining physician supply, and that there is a need for major reform of Japan's healthcare system.
 338 339 340 341 342 	The number of physicians per 100 000 raw population had seemingly increased in both urban and rural areas in Japan. After healthcare demand was adjusted, however, physician supply was observed to decrease in all types of areas except for urban areas with lower initial physician supply. In addition, physician distribution had consistently become less equitable in recent years. These results indicate that failure to adjust healthcare demand will produce misleading results when examining physician supply, and that there is a need for major reform of Japan's healthcare system.
 338 339 340 341 342 343 	The number of physicians per 100 000 raw population had seemingly increased in both urban and rural areas in Japan. After healthcare demand was adjusted, however, physician supply was observed to decrease in all types of areas except for urban areas with lower initial physician supply. In addition, physician distribution had consistently become less equitable in recent years. These results indicate that failure to adjust healthcare demand will produce misleading results when examining physician supply,
 338 339 340 341 342 343 344 	The number of physicians per 100 000 raw population had seemingly increased in both urban and rural areas in Japan. After healthcare demand was adjusted, however, physician supply was observed to decrease in all types of areas except for urban areas with lower initial physician supply. In addition, physician distribution had consistently become less equitable in recent years. These results indicate that failure to adjust healthcare demand will produce misleading results when examining physician supply, and that there is a need for major reform of Japan's healthcare system.
 338 339 340 341 342 343 344 345 	The number of physicians per 100 000 raw population had seemingly increased in both urban and rural areas in Japan. After healthcare demand was adjusted, however, physician supply was observed to decrease in all types of areas except for urban areas with lower initial physician supply. In addition, physician distribution had consistently become less equitable in recent years. These results indicate that failure to adjust healthcare demand will produce misleading results when examining physician supply, and that there is a need for major reform of Japan's healthcare system.
 338 339 340 341 342 343 344 345 346 	The number of physicians per 100 000 raw population had seemingly increased in both urban and rural areas in Japan. After healthcare demand was adjusted, however, physician supply was observed to decrease in all types of areas except for urban areas with lower initial physician supply. In addition, physician distribution had consistently become less equitable in recent years. These results indicate that failure to adjust healthcare demand will produce misleading results when examining physician supply, and that there is a need for major reform of Japan's healthcare system. List of abbreviations MHLW, Ministry of Health, Labour and Welfare
 338 339 340 341 342 343 344 345 346 347 	The number of physicians per 100 000 raw population had seemingly increased in both urban and rural areas in Japan. After healthcare demand was adjusted, however, physician supply was observed to decrease in all types of areas except for urban areas with lower initial physician supply. In addition, physician distribution had consistently become less equitable in recent years. These results indicate that failure to adjust healthcare demand will produce misleading results when examining physician supply, and that there is a need for major reform of Japan's healthcare system. List of abbreviations MHLW, Ministry of Health, Labour and Welfare
 338 339 340 341 342 343 344 345 346 347 348 	The number of physicians per 100 000 raw population had seemingly increased in both urban and rural areas in Japan. After healthcare demand was adjusted, however, physician supply was observed to decrease in all types of areas except for urban areas with lower initial physician supply. In addition, physician distribution had consistently become less equitable in recent years. These results indicate that failure to adjust healthcare demand will produce misleading results when examining physician supply, and that there is a need for major reform of Japan's healthcare system. List of abbreviations MHLW, Ministry of Health, Labour and Welfare SMA, secondary medical area
 338 339 340 341 342 343 344 345 346 347 348 349 	The number of physicians per 100 000 raw population had seemingly increased in both urban and rural areas in Japan. After healthcare demand was adjusted, however, physician supply was observed to decrease in all types of areas except for urban areas with lower initial physician supply. In addition, physician distribution had consistently become less equitable in recent years. These results indicate that failure to adjust healthcare demand will produce misleading results when examining physician supply, and that there is a need for major reform of Japan's healthcare system. List of abbreviations MHLW, Ministry of Health, Labour and Welfare SMA, secondary medical area

BMJ Open

352	
353	Competing interests
354	The authors declare that they have no competing interests.
355	
356	Funding
357	This work was supported in part by a Health Sciences Research Grant from the Ministry of Health,
358	Labour and Welfare of Japan (Grant number: H27-iryo-ippan-001) and a Grant-in-Aid for Scientific
359	Research from the Japan Society for the Promotion of Science (Grant number: [A]16H02634).
360	
361	Contributors
362	KH contributed to the study conception and design, data collection, analysis, interpretation, and drafting
363	the manuscript. TO and SK contributed to the data collection and data management. YI contributed to the
364	study design, data acquisition, and interpretation. All authors critically revised the manuscript, and
365	approved the final version.
366	
367	Ethics approval
368	Ethics committee approval was waived for this study because all of the data are publicly available online
369	and comprise only aggregate values without any personally identifiable information.
370	
371	Consent for publication
372	Not applicable
373	
374	Data sharing
375	No additional data
376	Reference
377	1. Horev T, Pesis-Katz I, Mukamel DB. Trends in geographic disparities in allocation of health care
378	resources in the US. <i>Health Policy</i> 2004;68(2):223-32. doi:
379	10.1016/j.healthpol.2003.09.011
380	2. Isabel C, Paula V. Geographic distribution of physicians in Portugal. European Journal of Health
381	Economics 2010;11(4):383-93. doi: 10.1007/s10198-009-0208-8
	13

BMJ Open

382	3. Anand S, Fan VY, Zhang J, et al. China's human resources for health: quantity, quality, and
383	distribution. Lancet 2008;372(9651):1774-81. doi: 10.1016/s0140-6736(08)61363-x
384	4. Tanihara S, Kobayashi Y, Une H, et al. Urbanization and physician maldistribution: a
385	longitudinal study in Japan. BMC Health Serv Res 2011;11:260. doi:
386	10.1186/1472-6963-11-260
387	5. Pitblado JR, and Raymond W. Pong. Geographic distribution of physicians in Canada. Sudbury,
388	Ontario, Canada: Centre for Rural and Northern Health Research, Laurentian University
389	1999.
390	6. WHO. World report on ageing and health 2015 [Available from:
391	http://apps.who.int/iris/bitstream/10665/186463/1/9789240694811_eng.pdf
392	accessed 12 Feb 2016.
393	7. National Institute of Population and Social Security Research. Population statistics book 2015
394	[Available from:
395	http://www.ipss.go.jp/syoushika/tohkei/Popular/P_Detail2015.asp?fname=T02-18.htm
396	accessed 12 Feb 2016.
397	8. National Institute of Population and Social Security Research. population projection for
398	Japan:2011-2060 2012 [Available from:
399	http://www.ipss.go.jp/syoushika/tohkei/newest04/gh2401.pdf accessed 29 Feb 2016.
400	9. Kobayashi Y, Takaki H. Geographic distribution of physicians in Japan. Lancet
401	1992;340(8832):1391-3.
402	10. Asano N, Kobayashi Y, Kano K. Issues of intervention aimed at preventing prospective surplus
403	of physicians in Japan. <i>Med Educ</i> 2001;35(5):488-94.
404	11. Gravelle H, Sutton M. Inequality in the geographical distribution of general practitioners in
405	England and Wales 1974-1995. J Health Serv Res Policy 2001;6(1):6-13.
406	12. Hann M, Gravelle H. The maldistribution of general practitioners in England and Wales:
407	1974-2003. Br J Gen Pract 2004;54(509):894-8.
408	13. Toyabe S. Trend in geographic distribution of physicians in Japan. Int J Equity Health 2009;8:5.
409	doi: 10.1186/1475-9276-8-5
410	14. Sasaki H, Otsubo T, Imanaka Y. Widening disparity in the geographic distribution of
411	pediatricians in Japan. Hum Resour Health 2013;11:59. doi: 10.1186/1478-4491-11-59
	14

BMJ Open: first published as 10.1136/bmjopen-2016-013922 on 14 March 2017. Downloaded from http://bmjopen.bmj.com/ on April 26, 2024 by guest. Protected by copyright.

BMJ Open

412	15. Shinjo D, Aramaki T. Geographic distribution of healthcare resources, healthcare service
413	provision, and patient flow in Japan: a cross sectional study. Soc Sci Med
414	2012;75(11):1954-63. doi: 10.1016/j.socscimed.2012.07.032
415	16. Munga MA, Maestad O. Measuring inequalities in the distribution of health workers: the case
416	of Tanzania. Human Resources for Health 2009;7:12. doi: 10.1186/1478-4491-7-4
417	17. Theodorakis PN, Mantzavinis GD. Inequalities in the distribution of rural primary care
418	physicians in two remote neighboring prefectures of Greece and Albania. Rural Remote
419	Health 2005;5(3):457.
420	18. Kanchanachitra C, Lindelow M, Johnston T, et al. Human resources for health in southeast
421	Asia: shortages, distributional challenges, and international trade in health services.
422	Lancet 2011;377(9767):769-81. doi: 10.1016/s0140-6736(10)62035-1
423	19. Newhouse JP, Williams AP, Bennett BW, et al. Where have all the doctors gone? Jama
424	1982;247(17):2392-6.
425	20. Schwartz WB, Newhouse JP, Bennett BW, et al. The changing geographic distribution of
426	board-certified physicians. N Engl J Med 1980;303(18):1032-8. doi:
427	10.1056/nejm198010303031803
428	21. Matsumoto M, Inoue K, Bowman R, et al. Geographical distributions of physicians in Japan and
429	US: Impact of healthcare system on physician dispersal pattern. Health Policy
430	2010;96(3):255-61. doi: 10.1016/j.healthpol.2010.02.012
431	22. OECD. Ageing in Cities. Paris: OECD Publishing 2015.
432	23. McCurry J. Japan will be model for future super-ageing societies. Lancet
433	2015;386(10003):1523-23.
434	24. Matsumoto M, Takeuchi K, Tanaka J, et al. Follow-up study of the regional quota system of
435	Japanese medical schools and prefecture scholarship programmes: a study protocol. BMJ
436	<i>Open</i> 2016;6(4):e011165. doi: 10.1136/bmjopen-2016-011165
437	25. Kephart G, Asada Y. Need-based resource allocation: different need indicators, different
438	results? BMC Health Serv Res 2009;9:122. doi: 10.1186/1472-6963-9-122
439	26. Nuffield Trust. Person Based Resource Allocation - Predictive Risk 2016 [Available from:
440	http://www.nuffieldtrust.org.uk/our-work/projects/person-based-resource-allocation-
441	pbra accessed 20 Oct 2016.
	15

BMJ Open

442	27. Ikegami N, Yoo BK, Hashimoto H, et al. Japanese universal health coverage: evolution,
443	achievements, and challenges. Lancet 2011;378(9796):1106-15. doi:
444	10.1016/s0140-6736(11)60828-3
445	
446	Figure titles
447	Figure 1 Temporal changes in Gini coefficients of the number of physicians per 100 000 population in
448	secondary medical areas
449	Figure 2 Temporal changes in the proportion of secondary medical areas with a low physician supply
450	
451	Figure legend
452	Figure2
453	Secondary medical areas (SMAs) with a low physician supply were defined as those in the first quartile
454	according to the number of physicians per 100 000 population in 2000; the y-axis shows the proportion
455	of SMAs defined according to this criterion to all 349 SMAs.
456	
457	
	of SMAs defined according to this criterion to all 349 SMAs.

Page 17 of 25

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ç
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	l
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1
$\begin{array}{cccc} 33 & 70 - \\ 34 & \\ 35 & 75 - \\ 36 & \\ 37 & \underline{} \geq \\ \end{array}$	-1
35 75- 36 37≥8	_
37 <u>></u> 8	_
	3
38 39 40 41 42 43 44 45 46 47 48	ſ

10

Table 1 Adjustment coefficients of healthcare demand by age group based on health expenditure per capita

A	Expenditure per	Adjustment
Age group	capita (US dollars*)	coefficient
All Patients	1881.7	Reference
0–4 years	1532.5	0.81
5–9 years	629.2	0.33
10–14 years	505.8	0.27
15–19 years	411.7	0.22
20–24 years	423.3	0.22
25–29 years	556.7	0.30
30–34 years	661.7	0.35
35–39 years	725.0	0.39
40-44 years	825.8	0.44
45–49 years	1031.7	0.55
50-54 years	1329.2	0.71
55–59 years	1726.7	0.92
60–64 years	2260.8	1.20
65–69 years	2892.5	1.54
70–74 years	3821.7	2.03
75–79 years	4777.5	2.54
≥80 years	6266.0	3.33

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Year	2000	2002	2004	2006	2008	2010	2012	2014
Number of physicians	243 201	249 574	256 668	263 540	271 897	280 431	288 850	296 845
	(100)	(102.6)	(105.5)	(108.4)	(111.8)	(115.3)	(118.8)	(122.1)
Raw population	126 071 305	126 478 672	126 824 166	127 055 025	127 066 178	127 057 860	126 659 683	126 434 634
	(100)	(100.3)	(100.6)	(100.8)	(100.8)	(100.8)	(100.5)	(100.3)
Demand-adjusted population*	102 426 743	106 236 098	110 121 313	113 627 296	117 265 790	120 684 904	123 445 680	125 991 667
	(100)	(103.7)	(107.5)	(110.9)	(114.5)	(117.8)	(120.5)	(123.0)

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 3 Descriptive statistics of the secondary medical areas (n=349)

1	•		/							
Year			2000					2014		
	Min	Median	Max	Mean	SD	Min	Median	Max	Mean	SD
Number of physicians	27.0	333.0	7527.0	696.9	967.2	27.0	374.0	9841.0	850.6	1237.4
Population										
Raw population	25 527.0	232 582.0	2 471 100.0	361 235.8	366 575.6	21 204	215 770	2 551 482	362 276.9	390 804.1
Demand-adjusted population	28 133.4	200 105.6	2 023 140.0	293 486.4	277 230.4	27 965.9	227 926.4	2 467 691	361 007.6	362 612.6
Area (km ²)	41.9	261.0	3908.0	350.0	322.8	41.9	261.0	3908.0	350.0	322.8
Population density (per km ²)	51.4	757.6	15 609.5	1638.9	2468.8	46.9	703.6	16 582.0	1679.5	2685.8
SD, standard deviation										

SD, standard deviation

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Urban / Rural	Urba	n	Rur	al
Group	Group 1	Group 4	Group 2	Group 3
	Mean(SD)	Mean(SD)	Mean(SD)	Mean(SD)
umber of physicians	1 536(1 409.7)	613(433.9)	351.6(293.3)	174.3(127.6)
opulation				
Raw population	621 865.5(458 098.5)	485 630.2(341 335.1)	181 059.2(124 327.1)	140 232.9(100 955.2)
Demand-adjusted population	496 662.1(352 362.3)	369 774.9(244 619.1)	166 237.4(103 118.1)	126 864.8(85 236)
rea (km ²)	311.5(221.5)	242.1(140.5)	370.8(252.1)	454.8(485.6)
opulation density (per km ²)	3 023.7(3 403.4)	2 567.2(2 502.6)	510.2(144.9)	391.9(184)

⊿0

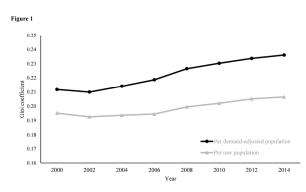
1	
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	
3	-
4	
5	-
6	
7	
8	
g	
10	
14	
11	
12	
13	-
14	
15	
16	
17	
18	
19	
20	
20	
21	
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
23	
24	
25	
26	
27	
28	
20	
29	
30	-
31	
32	
33	
34	
32 33 34 35 36 37 38 39	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40	

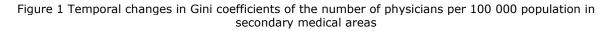
10

Table 5 Temporal changes in physician numbers for the four groups of secondary medical areas

Year	2000	2014	Increase rate (%)
Absolute nu	umber of physi	cians	
Group 1	153 602	188 842	22.9
Group 2	26 367	28 331	7.4
Group 3	17 260	17 823	3.3
Group 4	45 972	61 849	34.5
Physicians ₁	per 100 000 rav	w populatio	n
Group 1	247.0	297.9	20.6
Group 2	194.2	225.6	16.2
Group 3	124.3	142.0	14.2
Group 4	126.2	163.0	29.1
Physicians ₁	per 100 000 de	mand-adjus	ted population
Group 1	309.3	305.1	-1.3
Group 2	211.5	202.1	-4.4
Group 3	137.4	127.0	-7.6
Group 4	165.8	171.6	3.5
Group 1: Urb	an areas with hig	her initial phy	ysician supply, Group 2: I
a b b	1 .1 1		

Group 3: Rural areas with lower initial physician supply, Group 4: Urban areas with lower initial physician supply


21


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 22 of 25

BMJ Open: first published as 10.1136/bmjopen-2016-013922 on 14 March 2017. Downloaded from http://bmjopen.bmj.com/ on April 26, 2024 by guest. Protected by copyright.

BMJ Open

209x148mm (300 x 300 DPI)

Page 23 of 25

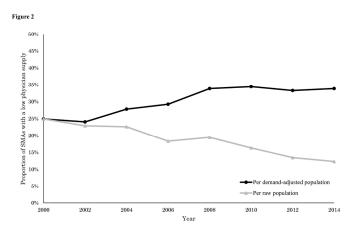


Figure 2 Temporal changes in the proportion of secondary medical areas with a low physician supply

BMJ Open: first published as 10.1136/bmjopen-2016-013922 on 14 March 2017. Downloaded from http://bmjopen.bmj.com/ on April 26, 2024 by guest. Protected by copyright.

209x148mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2016-013922 on 14 March 2017. Downloaded from http://bmjopen.bmj.com/ on April 26, 2024 by guest. Protected by copyright.

	Item No	Recommendation
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract -p2
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found – p_2
Introduction		A
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported -p3-4
Objectives	3	State specific objectives, including any prespecified hypotheses – p4
Methods		
Study design	4	Present key elements of study design early in the paper – p6-7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
Seving	U	exposure, follow-up, and data collection –p4-5
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of
		selection of participants. Describe methods of follow-up
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of
		case ascertainment and control selection. Give the rationale for the choice of cases
		and controls
		Cross-sectional study—Give the eligibility criteria, and the sources and methods of
		selection of participants $-p4-6$
		(b) Cohort study—For matched studies, give matching criteria and number of
		exposed and unexposed
		<i>Case-control study</i> —For matched studies, give matching criteria and the number of
		controls per case
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
v unuoros	,	modifiers. Give diagnostic criteria, if applicable – p5-7
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement	0	assessment (measurement). Describe comparability of assessment methods if there
measurement		is more than one group –p4-7
Bias	9	Describe any efforts to address potential sources of bias –p12
Study size	10	Explain how the study size was arrived at $-p5$
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
Qualification (all actions		describe which groupings were chosen and why – p5-7
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding
Statistical methods	12	-not applicable
		(b) Describe any methods used to examine subgroups and interactions –p6-7
		(c) Explain how missing data were addressed –not applicable
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was addressed
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of sampling strategy, not applicable
		sampling strategy –not applicable
		(\underline{e}) Describe any sensitivity analyses –not applicable
Continued on next page		

BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially eligible,
		examined for eligibility, confirmed eligible, included in the study, completing follow-up, and
		analysed –p7, Table 2,4
		(b) Give reasons for non-participation at each stage -not applicable
		(c) Consider use of a flow diagram – no use
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information
data		on exposures and potential confounders –Table 3
		(b) Indicate number of participants with missing data for each variable of interest -not
		applicable
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time
		Case-control study—Report numbers in each exposure category, or summary measures of
		exposure
		Cross-sectional study-Report numbers of outcome events or summary measures -p7-8
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and
		why they were included –not applicable
		(b) Report category boundaries when continuous variables were categorized -not applicable
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful
		time period – not applicable
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity
		analyses –p8
Discussion		
		Commencies have not the solid or former to start a birsting of
Key results	18	Summarise key results with reference to study objectives – p8
Key results Limitations	18 19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.
-		
-		Discuss limitations of the study, taking into account sources of potential bias or imprecision.
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias –p11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias –p11 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity
Limitations Interpretation Generalisability	19 20 21	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias –p11 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence –p8-11
Limitations	19 20 21	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias –p11 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence –p8-11

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.