BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>editorial.bmjopen@bmj.com</u>

BMJ Open

Sex-specific interactions between education and income in relation to obesity: evidence from South Korea

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-014276
Article Type:	Research
Date Submitted by the Author:	13-Oct-2016
Complete List of Authors:	Chung, Woojin; Yonsei University Graduate School of Public Health, Department of Health Policy; Institute of Health Services Research, Yonsei University Lim, Seung-ji; National Health Insurance Service, Health Insurance Policy Research Institute Lee, Sunmi; National Health Insurance Service, Health Insurance Policy Research Institute Kim, Jaeyeun; National Health Insurance Service, Health Insurance Policy Research Institute; Graduate School, Yonsei University, Department of Public Health
Primary Subject Heading :	Public health
Secondary Subject Heading:	Sociology
Keywords:	Obesity, Education, Income, Sex, South Korea

Sex-specific interactions between education and income in relation to obesity: evidence from South Korea

Woojin Chung,^{1,2} Seung-ji Lim,³ Sunmi Lee,³ Jaeyeun Kim,^{3,4*}

¹ Department of Health Policy, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea

² Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea

³ Health Insurance Policy Research Institute, National Health Insurance Service, Wonju,

Republic of Korea

⁴ Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

*Corresponding author

Department of Public Health, Graduate School, Yonsei University 50-1 yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea E-mail: jaeyeunk@yuhs.ac

Cellular phone: +82-10-3466-7746

Word count: 3,778 (excluding title page, abstract, references, figures and tables)

Keywords: Obesity, Education, Income, Sex, South Korea

1 ABSTRACT

Objectives

- 4 To examine whether a well-known, negative association between socioeconomic status and
- 5 obesity in developed countries remains valid, when a full set of interaction effects are

6 included.

7 Design

- 8 A cross-sectional study. Education and income levels were chosen as socioeconomic status
- 9 indicators. Socio-demographics, lifestyles and medical conditions were used as covariates in
- 10 multivariate logistic regression models. Adjusted odds ratios and predicted probabilities of
- 11 obesity were computed and adjusted for a complex survey design.

12 Setting

- 13 Data were obtained from a secondary source, the Fifth Korea National Health and Nutrition
- 14 Examination Survey (2010-2012).

Participants

- 16 The sample included 7,337 male and 9,908 female participants aged 19 years or older.
- **Outcome measure**
- 18 Obesity defined as body mass index of 25 or more, according to a guideline for Asians.
- **Results**
- 20 In models with no interaction effect, only education showed a significant association with
- 21 obesity in men, but in women both income and education were significant. In models with
- 22 interaction effects, however, income was significant in men but education was significant in
- 23 women. An interaction effect between income and education was significant in men but not

in women. Participants having the highest predicted probability of obesity over educational
and income levels differed between the two models, and between men and women. Though
caution is necessary, the findings of the predicted probabilities of obesity suggest that a
policy providing all men with the highest level of formal education would, counter-intuitively,

29 Conclusions

raise their rate of obesity by as much as 26%.

The well-known association between socioeconomic status and obesity may not be valid when interaction effects are included. Ignoring these effects and their sex differences may result in targeting the wrong population for reducing obesity prevalence and its resultant socioeconomic gradients. Further research is needed to examine whether these findings are valid in other sociocultural settings.

36 Article summary

37 Strengths and limitations of this study

- 1. This is the first study to investigate the association of socioeconomic status with
- 39 obesity while fully considering both main effects and interaction effects.
- 40 2. This study analyzed data from sample of nationally representative South Korean
- 41 adults, providing abundant information about anthropometric measures, socio-
- 42 demographic characteristics, lifestyle behaviors, and medical conditions.
- 43 3. This study shows by means of a quantified prediction what would happen if policies
- 44 to reduce obesity prevalence did not consider complex interactions among
- 45 characteristics of individuals.
- 46 4. The cross-sectional study design used in this study precludes causal inferences about
- 47 the relationship between socioeconomic status and obesity.

INTRODUCTION

Numerous studies have investigated various factors related to obesity and have found associations between socioeconomic status and obesity: socioeconomic status and obesity are negatively correlated in both men and women in developed countries, although this is more consistent in women than in men.¹⁻³ However, because empirical studies of obesity have ignored the interaction effects among various characteristics, these studies have failed to detect sophisticated associations between different levels of socioeconomic status in relation to obesity, and to explain differences among different population groups regarding mechanisms through which socioeconomic status becomes associated with obesity. For example, when the interaction effects among various characteristics are considered, such studies have not answered the question as to whether the above-mentioned, well-known associations between socioeconomic status and obesity remain valid. Moreover, they have seldom explored why an socioeconomic status indicator sometimes interacts with another socioeconomic status indicator with regard to obesity, and whether interaction differs by sex; whether the likelihood of being obese with regard to some levels of socioeconomic status remains the same before and after consideration of the interaction effects; and whether government can reduce the prevalence of obesity and change the socioeconomic gradient in the prevalence of this condition by providing all individuals with the highest level of socioeconomic status possible. Attempting to fill the gap between previous findings and the unanswered questions, this study chose education and income levels as socioeconomic status indicators because these two indicators complement each other: educational level is established in early adulthood and tends to remain unchanged later in life, while income level may change

throughout adult life. In particular, this study used data from South Korea, which has
industrialized rapidly and is now categorized as one of the ten largest advanced economies in
the world.⁴ Nevertheless, South Korea is still noted for pronounced sex inequality almost
everywhere, especially in labor markets.⁵⁶

This study considered two models for each sex: one included only the main-effect term of each variable, and the other included the two-way interaction-effect terms between variables, as well as the main-effect term of each variable. Considering the complex survey design, this study used multivariate logistic regression analyses to compute the odds ratios of obesity and to predict the probability that a man or woman would be obese if he or she had a particular set of education and income levels.

2.6

36 MATERIALS AND METHODS

37 Data source and study sample

This study was based on the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010–2012, which used a stratified multistage clustered probability sampling design to collect data on the non-institutionalized, civilian population of South Korea on behalf of the Korean Centers for Disease Control and Prevention.⁷ This research was composed of a health interview and a nutrition survey conducted at participants' homes as well a physical examination by conducted by physicians at designated examination centers. Detailed information about the survey design and characteristics is available at https://knhanes.cdc.go.kr.

For KNHANES V, this study accessed data from a pool of 25,534 individuals (8,958
in 2010, 8,518 in 2011, and 8,058 in 2012). Of this group, 24,173 had participated in the

BMJ Open

interviews, and 18,571 individuals aged 19 years or older received physical examinations. A
total of 17,245 (92.86%) participants (7,337 men, 9,908 women) were included in this study
because they had the required information in their files. The ethical review board of the
educational institution where the research was conducted approved this study.

53 Measures and variables

The obesity status of each participant was determined anthropometrically using data from the physical examination. Height was measured using a portable stadiometer, and body weight was measured using a calibrated balance-beam scale, and the body mass index was calculated from these height and weight measurements. According to the guidelines proposed by the World Health Organization indicating that Asians have a lower average body mass index,⁸ this study defined general obesity as a body mass index of at least 25.

Levels of education and income were chosen as socioeconomic status indicators.
Education was defined as the highest level of formal education completed as of the date of
the interview. This study categorized education into four levels: elementary school or less,
junior high school, senior high school, and college or more. For income, this study used an
equivalized monthly household income calculation ([monthly overall household income]
[household size]^{-0.5}) and divided participants into four quartiles.

Nine sociodemographic characteristics, including sex, were incorporated as
covariates. Age was treated as a continuous variable, and marital status was categorized into
married, formerly married, and never married. Residential area was divided into metropolitan
urban area, non-metropolitan urban area, and rural area. Occupation was grouped into
unemployed, office worker, and manual worker. Housing status was coded in terms of

whether a participant was a renter or a home owner. Participants' status with regard to the
universal health insurance program was divided according to whether they were enrolled in
National Health Insurance for regular-income individuals or Medical Care Aid for lowincome individuals. Status with regard to private health insurance was coded according to
whether participants had insurance of this type. Survey year was added to control for any
fixed time effect.

This study also incorporated ten characteristics about lifestyle and medical conditions. Participants were grouped in terms of the following categories: 1) smoking, 2) excessive alcohol consumption (at high risk due to drinking according to the sex-specific guidelines of the World Health Organization),⁹ 3) routinely exercising (physical activity as defined as participation in moderate or vigorous exercise for a respective frequency and duration),¹⁰ 4) daily sleep duration (sleeping less than 7 h per day was defined as sleeping for a short duration),¹¹ 5) daily energy intake (moderate energy intake was defined as total energy intake within 1.25× of participants' estimated daily energy requirement),¹² 6) self-perceived stress, 7) self-perceived health, 8) hypertension, 9) dyslipidemia, and 10) diabetes. The presence of the last three chronic diseases was determined by a prior physician diagnosis at the pre-surgery interview.

90 Analytic procedures

A six-fold analysis was performed. First, this study tested differences in the distributions of variables among men and women using the *t*-test for continuous variables and the χ^2 test for categorical variables. Second, this study tested the association of each variable with obesity by sex using the χ^2 test. Third, sex interaction effects were examined, for which simple

logistic regression models were constructed with main effects for sex and the variable of
interest as well as the interaction effects of the two variables. Due to the results, the
remaining analyses were stratified by sex.

Fourth, to fit multivariate logistic regression models, this study continued to recategorize each of the variables and defined each variable's reference category differently until no strong multicollinearity was found for the main-effect models and no evidence of a lack of goodness-of-fit was found in each model. The values for the variance inflation factor were less than 3.65, and p-values based on the Hosmer–Lemeshow statistic were higher than 0.26.

Fifth, this study estimated the adjusted odds ratios (ORs) of obesity and their 95% confidence intervals (CIs) after fully adjusting for covariates. Two models were considered for each sex: Model 1 included only the main-effect term of every variable, and Model 2 included the main-effect terms for each variable as well the two-way interaction-effect terms between variables.

Finally, to assess the association of each level of a socioeconomic status indicator with obesity and to compare these associations across categories for both socioeconomic status indicators, this study predicted the probability of a participant being obese (and its 95% confidence intervals) if he or she had a certain educational and income level. These probabilities, which were calculated by sex, denote the average of all participants' probabilities if each participant belonged to a certain education and income level, while

115 maintaining participant characteristics for the other variables constant.

All analyses and tests were conducted considering the sampling design of the survey.

- 117 However, for convenience, the descriptive statistics are shown as unweighted. P-values <
- 118 0.05 were considered statistically significance. The SAS 9.2 software (SAS Institute, Cary,

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

119	NC, USA) and STATA 12 software (StataCorp, College Station, TX, USA) were used to
120	perform all statistical analyses.
121	
122	RESULTS
123	Descriptive statistics
124	The rate of obesity was significantly higher in men (34.96%) than in women (29.67%), as
125	indicated in the significantly higher body mass index in men than women (Table 1). All
126	characteristics differed significantly by sex except residential area, housing status, enrollment

in a private health insurance plan, survey year, daily sleep duration, and diabetes status.

Table 1 Sample characteristics and their associations with obesity by sex: the Fifth Korea National Health and Nutrition Examination Survey

130 (KNHANES V), 2010-2012, South Korea

		Distribution, N (%)					Obesity, %			
	M	en	Wa	omen	p Value†	Men	Women	p Value¶		
Body mass index, kg m ⁻² *	23.97	(3.13)	23.43	(3.55)	< 0.001					
Obesity	2565	(34.96)	2940	(29.67)	< 0.001					
Age, years*	50.79	(16.39)	50.48	(16.59)	< 0.001	35.08‡	34.68‡	< 0.001		
Marital status					< 0.001	<0.001§	<0.001§	< 0.001		
Married	5848	(79.71)	6887	(69.51)		36.01	30.54			
Formerly married	339	(4.62)	1803	(18.20)		30.09	37.38			
Never-married	1150	(15.67)	1218	(12.29)		31.04	13.38			
Residential area					0.446	0.259§	<0.001§	< 0.001		
Metro urban	3240	(44.16)	4404	(44.45)		35.15	27.00			
Non-metro urban	2523	(34.39)	3471	(35.03)		36.62	29.16			
Rural	1574	(21.45)	2033	(20.52)		31.89	36.35			
Education					< 0.001	<0.001§	<0.001§	< 0.001		
Elementary school or less	1294	(17.64)	3168	(31.97)		26.58	40.18			
Junior high school	867	(11.82)	1024	(10.34)		36.10	38.57			
Senior high school	2617	(35.67)	3136	(31.65)		34.47	27.10			
College or more	2559	(34.87)	2580	(26.04)		39.31	16.36			
Income, quartiles					< 0.001	0.002§	<0.001§	< 0.001		
Lowest	1694	(23.09)	2641	(26.66)		28.39	36.80			
2nd lowest	1924	(26.22)	2514	(25.37)		36.49	31.74			
3rd lowest	1739	(23.70)	2177	(21.97)		34.91	27.97			

BMJ Open: first published as 10.1136/bm/open-201604/425609/58/946466/2013/LB09/1924666/01/20/0414/20/0414/20/04

Page	12	of	35
------	----	----	----

TT-1	1000	(2 (0))	2576	(2 (0))		20.14	21.70	
Highest	1980	(26.99)	25/6	(26.00)	<0.001	39.14	21.78	<0.001
Occupation	10-0				< 0.001	<0.001§	<0.001§	< 0.001
Unemployed	1878		5208	(52.56)		28.65	31.07	
Office worker	1965	(26.78)	1586	(16.01)		42.09	17.47	
Manual worker	3494	(47.62)	3114	(31.43)		34.34	33.56	
Housing status					0.158	0.945§	0.843§	0.838
Renter	5606	(76.41)	7280	(73.48)		35.07	29.52	
Home owner	1731	(23.59)	2628	(26.52)		34.60	30.10	
Universal health insurance					< 0.001	0.020§	0.004§	< 0.001
National Health Insurance	7204	(98.19)	9609	(96.98)		35.15	29.36	
Medical Care Aid	133	(1.81)	299	(3.02)		24.81	39.80	
Private health insurance					0.181	<0.001§	< 0.001§	< 0.001
Non-holder	2258	(30.78)	2898	(29.25)		29.27	34.89	
Holder	5079	(69.22)	7010	(70.75)		37.49	27.52	
Survey year					0.831	0.695§	0.133§	0.162
2010	2592	(35.33)	3364	(33.95)		35.22	28.27	
2011	2494	(33.99)	3380	(34.12)		34.60	30.36	
2012	2251	(30.68)	3164	(31.93)		35.05	30.44	
Current smoking status					< 0.001	0.375§	0.936§	0.729
Non-smoker	4336	(59.10)	9359	(94.46)		36.12	29.82	
Smoker	3001	(40.90)	549	(5.54)		33.29	27.14	
Alcohol consumption					< 0.001	<0.001§	0.064§	< 0.001
Not excessive	4950	(67.47)	8689	(87.70)		31.49	30.08	
Excessive	2387	(32.53)	1219	(12.30)		42.14	26.74	
Routine physical exercise	/	× ,	-		< 0.001	0.838§	<0.001§	0.012
1 2						0	0	

BMJ Open: first published as 10.1136/pmjopen-20162609186/Pmpger66/2013/LBownloge

BMJ C	Dpen
-------	------

Physically active	1552	(21.15)	1620	(16.35)		35.63	32.84	
Physically inactive	5785	(78.85)	8288	(83.65)		34.78	29.05	
Daily sleep duration					0.992	0.150§	<0.001§	0.007
Non-short	4291	(58.48)	5717	(57.70)		34.21	27.41	
Short	3046	(41.52)	4191	(42.30)		36.01	32.76	
Daily energy intake					< 0.001	0.818§	<0.001§	< 0.00
Not moderate	5859	(79.86)	8306	(83.83)		34.85	27.97	
Moderate	1478	(20.14)	1602	(16.17)		35.39	38.51	
Self-perceived stress					< 0.001	0.969§	0.031§	0.236
Not very high	7087	(96.59)	9421	(95.08)		35.05	29.49	
Very high	250	(3.41)	487	(4.92)		32.40	33.26	
Self-perceived health					< 0.001	0.362§	<0.001§	0.002
Not very bad	7159	(97.57)	9467	(95.55)		35.23	29.08	
Very bad	178	(2.43)	441	(4.45)		24.16	42.40	
Hypertension					< 0.001	<0.001§	<0.001§	< 0.00
No	5764	(78.56)	7713	(77.85)		32.62	24.32	
Yes	1573	(21.44)	2195	(22.15)		43.55	48.47	
Dyslipidemia					< 0.001	<0.001§	<0.001§	0.137
No	6859	(93.49)	9065	(91.49)		33.87	27.80	
Yes	478	(6.51)	843	(8.51)		50.63	49.82	
Diabetes					0.099	0.858§	<0.001§	< 0.00
No	6661	(90.79)	9219	(93.05)		34.84	28.13	
Yes	676	(9.21)	689	(6.95)		36.09	50.36	
Number of participants		7337		9908		7337	9908	

N, number; All P-values were estimated by considering a stratified cluster sampling design.

BMJ Open: first published as 10.1136/bmjopen-201604487669ij68iPersetice by Copyrighter (Application and the copyright) (Applic

*Mean (standard deviation).

[†]P-value was estimated by using the t-test for continuous variables and χ^2 tests for categorical variables.

For the continuous age variable, the proportion of obesity was obtained from people aged 50-59 years to which median age for each sex belonged. §P-value was estimated by χ^2 tests for each sex.

P-value was estimated from the interaction effects terms between sex and each characteristic by using the logistic analysis.

132	Characteristics associated with obesity and sex differences
133	Among men, the rate of obesity was significantly higher in participants who were married,
134	had at least a college education, had incomes in the highest quartile, had an office job, were
135	National Health Insurance beneficiaries, had a private health insurance plan, consumed
136	excessive alcohol, suffered from hypertension, and had dyslipidemia (Table 1).
137	Among women, a significantly higher rate of obesity was found in participants who
138	were formerly married, lived in a rural area, did not go beyond elementary school, had
139	incomes in the lowest quartile, were manual workers, were Medical Care Aid beneficiaries,
140	had no private health insurance plan, were physically active, lacked adequate sleep, had
141	moderate energy intake, reported very high levels of stress, had very poor self-perceived
142	health, suffered from hypertension, had dyslipidemia, and were diabetic. The rate of obesity
143	differed significantly by sex with regard to all variables except housing status, survey year,
144	current smoking status, self-perceived stress, and suffering from dyslipidemia.
144 145	current smoking status, self-perceived stress, and suffering from dyslipidemia.
	current smoking status, self-perceived stress, and suffering from dyslipidemia. Adjusted associations of obesity with education and income
145	
145 146	Adjusted associations of obesity with education and income
145 146 147	Adjusted associations of obesity with education and income Among men, according to the model with only main–effect terms (Model 1), the OR of
145 146 147 148	Adjusted associations of obesity with education and income Among men, according to the model with only main–effect terms (Model 1), the OR of obesity was 1.41 (95% CI = $1.12-1.77$) in those with at least a college education compared
145 146 147 148 149	Adjusted associations of obesity with education and income Among men, according to the model with only main–effect terms (Model 1), the OR of obesity was 1.41 (95% CI = $1.12-1.77$) in those with at least a college education compared with their counterparts who did not go beyond elementary school (Table 2). Conversely,
145 146 147 148 149 150	Adjusted associations of obesity with education and income Among men, according to the model with only main–effect terms (Model 1), the OR of obesity was 1.41 (95% CI = $1.12-1.77$) in those with at least a college education compared with their counterparts who did not go beyond elementary school (Table 2). Conversely, according to the model with interaction–effect terms (Model 2), the OR was 0.05 (95% CI =
145 146 147 148 149 150 151	Adjusted associations of obesity with education and income Among men, according to the model with only main–effect terms (Model 1), the OR of obesity was 1.41 (95% CI = $1.12-1.77$) in those with at least a college education compared with their counterparts who did not go beyond elementary school (Table 2). Conversely, according to the model with interaction–effect terms (Model 2), the OR was 0.05 (95% CI = 0.01-0.32) among those with incomes in the highest quartile compared with those with
145 146 147 148 149 150 151 152	Adjusted associations of obesity with education and income Among men, according to the model with only main–effect terms (Model 1), the OR of obesity was 1.41 (95% CI = $1.12-1.77$) in those with at least a college education compared with their counterparts who did not go beyond elementary school (Table 2). Conversely, according to the model with interaction–effect terms (Model 2), the OR was 0.05 (95% CI = 0.01-0.32) among those with incomes in the highest quartile compared with those with incomes in the lowest quartile. Education alone was not significant. In terms of their

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 2 Adjusted associations of education and income with obesity by sex: the Fifth Korea National Health and Nutrition Examination

157 Survey (KNHANES V), 2010-2012, South Korea

		Men (N	N=7337)			Women	(N=9908	8)
	Model 1†		Μ	odel 2‡	M	odel 1†	Model 2‡	
	OR	(95% CI)	OR	(95% CI)	OR	(95% CI)	OR	(95% CI)
Main effects								
Education								
Elementary school or less (EDU1)	1.00		1.00		1.00		1.00	
Junior high school (EDU2)	1.41**	(1.10-1.82)	0.61	(0.06-6.56)	1.19	(0.98-1.44)	0.16*	(0.03-0.89)
Senior high school (EDU3)	1.27*	(1.03-1.58)	0.57	(0.08-4.25)	0.89	(0.72-1.09)	0.13**	(0.03-0.58)
College or more (EDU4)	1.41**	(1.12-1.77)	1.45	(0.16-13.04)	0.59***	(0.46-0.75)	0.13*	(0.02-0.89)
Income, quartiles								
Lowest (INC1)	1.00		1.00		1.00		1.00	
2nd lowest (INC2)	1.13	(0.91-1.39)	0.11*	(0.02-0.64)	0.99	(0.84-1.16)	1.13	(0.26-4.98)
3rd lowest (INC3)	1.01	(0.81-1.28)	0.18	(0.03-1.11)	0.93	(0.77-1.11)	1.16	(0.22-6.20)
Highest (INC4)	1.10	(0.87-1.39)	0.05**	(0.01-0.32)	0.73**	(0.60-0.89)	1.58	(0.30-8.38)
Interaction effects								
Education x Income								
EDU2 × INC2			1.91	(0.91-4.04)			0.77	(0.44-1.33)
EDU2 × INC3			1.88	(0.81-4.34)			1.11	(0.60-2.06)

Hosmer-Lemeshow test, p V	/alue 0.967		0.530	0.304		0.471
EDU4 x INC4		2.65*	(1.04-6.78)		0.66	(0.27-1.58
EDU4 x INC3		3.00*	(1.27-7.12)		0.87	(0.38-2.00
EDU4 x INC2		2.74*	(1.14-6.56)		1.08	(0.49-2.39
EDU3 x INC4		1.52	(0.67-3.44)		1.23	(0.67-2.24
EDU3 x INC3		2.17*	(1.05-4.47)		1.34	(0.73-2.47
EDU3 x INC2		2.30*	(1.17-4.52)		1.58	(0.90-2.75
EDU2 x INC4		1.72	(0.65-4.59)		0.51	(0.26-1.01

N, number; OR, odds ratio; CI, confidence interval; All models were adjusted for age, marital status, residential area, occupation, housing status, universal health insurance, private health insurance, survey year, smoking, alcohol consumption, routine physical exercise, daily sleep duration, daily energy intake, self-perceived stress, self-perceived health, hypertension, dyslipidemia, and diabetes; All estimates were obtained by considering a stratified cluster sampling design.

P* < 0.05, *P*< 0.01, ****P*< 0.001.

†Models 1 included only main effects terms for all variables.

‡Models 2 included both main effects terms and two-way interaction effects terms for all variables.

158	Among women, according to Model 1, the OR was $0.59 (95\% \text{ CI} = 0.46-0.75)$ in
159	participants who had at least a college education compared with those who did not go beyond
160	elementary school, and the OR was 0.73 (95% CI = 0.60–0.89) among those with incomes in
161	highest quartile compared with those with incomes in the lowest quartile. In contrast,
162	according to Model 2, the OR was 0.13 (95% CI = $0.02-0.89$) among participants with at
163	least a college education compared with participants who did not go beyond elementary
164	school. Income alone was not significant. In terms of an interaction effect, one combination
165	of educational and income levels was marginally significant relative to the reference
166	combination ($p = 0.053$).
167	
168	Predicted probability of being obese
169	The predicted probabilities for a participant to be obese were obtained from Model 1 and
170	from Model 2; these results are displayed graphically in Figure 1 for men and in Figure 2 for
171	women.
172	
173	Figure 1 Predicted probabilities of being obese (and their 95% confidence intervals)
174	by education for each income level in men in a model with only main effects (A) and a model
175	with both main and interaction effects (B): the Fifth Korea National Health and Nutrition
176	Examination Survey (KNHANES V), 2010–2012, South Korea
177	
178	Figure 2 Predicted probabilities of being obese (and their 95% confidence intervals)
179	by education for each income level in women in a model with only main effects (A) and a
180	model with both main and interaction effects (B): the Fifth Korea National Health and
181	Nutrition Examination Survey (KNHANES V), 2010–2012, South Korea
	18

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

183	The predicted probabilities of being obese differed for Models 1 and 2. The pattern of
184	the changes in the predicted probability for each income level was uniform across educational
185	levels according to Model 1 (the left panel in each figure), but it was very erratic according to
186	Model 2 (the right panel in each figure). Additionally, there were clear sex differences in
187	these patterns in Models 1 and 2.
188	Findings among men can be summarized as follows: 1) Although men in two income
189	categories had the highest and the lowest predicted probabilities across all educational levels
190	in Model 1, no income level had these distinctions with respect to all educational levels in
191	Model 2. 2) The group with the highest predicted probability according to Model 1 and 2
192	differed: it was junior high school graduates with incomes in the second lowest quartile in
193	Model 1 (predicted probability = 0.392), but it was junior high school graduates with incomes
194	in the lowest quartile in Model 2 (predicted probability = 0.414). 3) The group with the
195	lowest predicted probability also differed between Models 1 and 2: it was participants who
196	did not go beyond elementary and who had incomes in the lowest quartile in Model 1
197	(predicted probability = 0.292), but it was those did not go beyond elementary school and
198	who had incomes in second highest quartile in Model 2 (predicted probability = 0.243). 4)
199	The gradient (or range) between the highest and lowest predicted probabilities was 0.099 in
200	Model 1 but 0.172 in Model 2.
201	Likewise, findings among women can be summarized as follows. 1) Although
202	women in two income levels had the highest and the lowest predicted probabilities across all

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

group with the highest predicted probability differed between Models 1 and 2: it was junior

educational levels in Model 1, no income level had these distinctions in Model 2. 2) The

MJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

205	high school graduates with incomes in the lowest quartile in Model 1 (predicted probability =
206	0.370), but it was participants who did not go beyond elementary school and who had
207	incomes in the lowest quartile in Model 2 (predicted probability = 0.487). 3) The group with
208	the lowest predicted probability was the same in Models 1 and 2: it was those with at least a
209	college education with incomes in the highest quartile in Model 1 (predicted probability =
210	0.183) and Model 2 (predicted probability = 0.218). 4) The gradient in the predicted
211	probability was 0.187 in Model 1 and 0.269 in Model 2.

DISCUSSION

214 Comparison to previous studies

As shown in previous papers,¹⁻³ most studies of the relationship between socioeconomic status and obesity have focused on main rather than interaction effects. Those studies showed that socioeconomic status and obesity are negatively correlated in both men and women in developed countries. However, this study found that the associations of income with obesity were very erratic across education levels in models incorporating interaction-effect terms (Model 2) in comparison with models including only main-effect terms (Model 1), and sex differences in the associations were much clearer in Model 2 compared with Model 1. Among men, although only education was significant in Model 1, the main effect of income and the interaction effects between income and education were significant in Model 2. Among women, although both education and income were significant in Model 1, only income (but no interaction effect) was significant in Model 2. Moreover, in case of the predicted probabilities of being obese, they differed more across educational levels in Model 2 than in Model 1. Furthermore, participants with the highest predicted probability differed between

BMJ Open

Models 1 and 2. This suggests that the aforementioned well-known negative association
between socioeconomic status and obesity may not be valid in models incorporating
interaction-effect terms among various characteristics. This study obtained similar results
with regard to abdominal obesity as this study did here with regard to general obesity (these
results are available on request).

234 Plausible mechanisms

Based on these results, this study sought to answer the following two questions. First, with regard to its association with obesity, why does education sometimes interact with income and why does the interaction differ by sex? This study believes that two different factors may be involved in this issue. More education may discourage obesity insofar as it promotes a more efficient use of health-related services and products^{13 14} and an enhanced sense of control and empowerment.^{15 16} In addition, and less directly, more education may help people earn a higher income, and a higher income may discourage obesity by increasing access to higher quality food and better medical care.^{13 14} However, in a subgroup of people (e.g., men with certain sociocultural characteristics), a higher income may be positively associated with obesity even though more education leads to higher income. Thus, more education and a higher income may lead to a higher likelihood of being obese among this subgroup of people. It is generally known that women with a high level of education tend to be more worried about weight control than men with the same level of education.¹⁷ This may be because obese women they may be more penalized with regard to employment opportunities,¹⁸ wage equality,¹⁹ and finding marriage partners than obese men.²⁰ On the other hand, even men with a high income tend to feel more comfortable being overweight than do women in the same income group.²¹ This can be explained in part by the notion of

habitus and Bourdieu's theory saying that the body has symbolic value in size and shape for
people but valuations of the body differ by sex.^{22 23}

Even in a developed society such as South Korea, men have more political and economic influence and are the primary wage earners for families, and most jobs tend to be awarded first to men. Sex differences in body image are also pronounced in South Korea: according to an international study of body image and weight control in young, educated adults, the age-adjusted prevalence of feeling overweight was the second lowest in Korean men (14%) compared with in men in the other 22 countries, but the prevalence of seeing oneself as overweight was the highest in Korean women (77%).²¹ Thus, local culture and norms put greater pressure on women than on men to lose weight, as indicated in previous studies.^{21 24 25}

As a second question to be raised from the results of this study, after including the interaction-effect terms in this study, why did the predicted probabilities of being obese follow erratic rather than uniform patterns for both education and income levels, and why were there sex differences in this regard? One reason for the erratic patterns in the predicted probabilities might be that education or income may interact with some other covariate(s). For example, the association between obesity and income may be influenced by stress level in men²⁶ and health behaviors caused by a high level of stress, such as smoking cigarettes and drinking alcohol, thereby contributing to the positive association between socioeconomic status and obesity in men.^{27 28} Another reason may be that, although education or income interacts with a covariate, different combinations between levels of education or income and categories of the covariate may be differently associated with being obese.

As for the sex differences in the predicted probabilities of being obese for both education and income levels, there are three potential reasons. First, these sex differences

BMJ Open

partly derive from sex differences in the covariates that interact with education or income. For example, in the present study, men's educational level showed significant interaction effects with residential area, excessive alcohol consumption, self-perceived stress, self-perceived health, and survey year, whereas women's educational level interacted significantly with age, marital status, housing status, having hypertension, and being diabetic (results are not shown). Second, although a covariate interacts with education or income in both men and women, the magnitude of the interactions between the categories of the covariate and levels of education or income might differ by sex. Previous studies showed that, unlike the case in women, an increase in income does not result in an equivalent adaptation to a healthier behavior in men.²⁹ Finally, there may be sex differences in the reverse causation between education or income and obesity. For example, in certain patriarchal societies, girls with a health problem may be less likely to have a high level of education than their male counterparts.³⁰

Public health implications

From a policy perspective, it is of interest whether as a government attempts to provide people with the highest level of education, its actions can lead to a reduction in the prevalence of obesity and the socioeconomic gradient in such prevalence. Though caution is required when making policy predictions based on findings from cross-sectional data, according to the findings of this study, the answer might be "no." An enhanced governmental educational policy that enables all men to complete the highest level of formal education would reduce the gradient in the predicted probability of being obese by 53%, from 0.130 to 0.061, but it would raise the average predicted probability by 26%, from 0.287 to 0.362. Conversely, in women, the same enhanced educational policy would raise the gradient in the

300	predicted probability by 77%, from 0.071 to 0.126, but it would lower the average predicted
301	probability by 36%, from 0.440 to 0.283. This suggests that, to meet both goals (low
302	prevalence of obesity and reduced gradient by socioeconomic status), educational policies
303	should be implemented in combination with other social policies, and these governmental
304	efforts should be differentiated by sex. These results may elicit a new debate about whether
305	educational policies should consider health consequences. ^{31 32}
306	
307	Strengths and limitations
308	This study analyzed data from sample of nationally representative South Korean adults,
309	providing abundant information about anthropometric measures, socio-demographic
310	characteristics, lifestyle behaviors, and medical conditions. This study shows by means of a
311	quantified prediction what would happen if policies to reduce obesity prevalence did not
312	consider complex interactions among characteristics of individuals. Above all, this study is
313	the first to address the association of socioeconomic status with obesity while fully
314	considering both main effects and interaction effects.
315	This study has several limitations. The cross-sectional study design precludes causal
316	inferences about the relationship between socioeconomic status and obesity. Moreover, the
317	data were collected a self-report survey, which may have resulted in measurement error and
318	recall bias. Other potential covariates, such as genetics, social network, and parental obesity,
319	were not included in analyses because such information was not available. Unobserved

factors, such discount rate and risk aversion, may have influenced both socioeconomic status
 and body weight.^{33 34}

323 CONCLUSIONS

This is the first study to investigate the association of socioeconomic status with obesity while fully considering both main effects and interaction effects. This study highlights the importance of interaction effects in studies of associations of socioeconomic status with obesity. According to the results, moving from models evaluating only main effects to models evaluating both main and interaction effects may change the association of socioeconomic status with obesity, the group with the highest likelihood of obesity, the gradient in the likelihood of obesity by socioeconomic status, and sex differences in the associations of socioeconomic status with obesity. These results suggest that studies of the association between socioeconomic status and obesity should include interaction-effect terms for all characteristics and consider sex differences, and that policy efforts to reduce obesity and the resulting socioeconomic gradients should be established from the results of those in-depth studies. Moreover, further research is needed to examine whether these findings are valid in other sociocultural settings.

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Acknowledgements

The authors thank Professors Mark Montgomery, Warren Sanderson, Han Joong Kim, and Woo Hyun Cho for their help.

Contributors

WC conceived and designed the study, conducting the literature review and the statistical analysis, writing the paper. JK collected and managed the data. JK, SJL and SL participated in reviewing the literature and writing the paper.

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests

None declared.

Ethics approval

Institutional Review Board of Yonsei University Graduate School of Public Health.

Provenance and peer review

Not commissioned; externally peer reviewed.

Data sharing statement

The data used in this study are available from the Korean Centers for Disease Control and

For beer terien only

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

REFERENCES

- Sobal J, Stunkard AJ. Socioeconomic status and obesity: a review of the literature. *Psychol Bull* 1989;105:260-75.
- 2. McLaren L. Socioeconomic Status and Obesity. *Epidemiol Rev* 2007;29:29-48.
- 3. Monteiro CA, Conde WL, Lu B, *et al.* Obesity and inequities in health in the developing world. *Int J Obes* 2004;28:1181-6.
- International Monetary Fund. Gross domestic product, current prices & Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP. World Economic Outlook Database. October 2015 ed2015.
- 5. Zveglich Jr JE, van der Meulen Rodgers Y. Occupational segregation and the gender wage gap in a dynamic East Asian economy. *South Econ J* 2004:850-75.
- 6. Seguino S. Gender wage inequality and export-led growth in South Korea. *J Dev Stud* 1997;34:102-32.
- Korea Centers for Disease Control and Prevention. The Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010–2012. Korea Centers for Disease Control and Prevention 2014. http://knhanes.cdc.go.kr (accessed 8 Dec 2014).
- 8. International Association for the Study of Obesity Task Force. *The Asia-Pacific perspective: redefining obesity and its treatment*. Sydney, Australia: World Health Organization Western Pacific Region 2000.
- 9. World Health Organization. *International guide for monitoring alcohol consumption and related harm.* Geneva, Switzerland: World Health Organization, 2000.
- Haskell WL, Lee IM, Pate R, *et al.* Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. *Med Sci Sports Exerc* 2007;39:1423-34.
- Buxton OM, Marcelli E. Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular disease among adults in the United States. *Soc Sci Med* 2010;71:1027-36.
- Korea Ministry of Health and Welfare, Korea Center for Disease Control and Prevention. *Report on 2012 Korea National Health and Nutrition Examination Survey*. Seoul: Korea Center for Disease Control and Prevention, 2014.
- Chandola T, Clarke P, Morris J, *et al.* Pathways between education and health: a 28

BMJ Open

	causal modelling approach. Journal of the Royal Statistical Society: Series A
	<i>(Statistics in Society)</i> 2006;169:337-59.
14.	Cutler D, Lleras-Muney A. Education and health: evaluating theories and evidence.
	Cambridge, MA: National Bureau of Economic Research, 2006.
15.	Mirowsky J, Ross CE. Education, social status, and health. New York: Aldine de
	Gruyter, 2003.
16.	Cutler D, Glaeser E, Shapiro J. Why have Americans become more obese?
	Cambridge, MA: National Bureau of Economic Research, 2003.
17.	Seubsman S, Lim LL, Banwell C, et al. Socioeconomic status, sex, and obesity in a
	large national cohort of 15-87-year-old open university students in Thailand. J
	<i>Epidemiol</i> 2010;20:13-20.
18.	Han E, Norton EC, Stearns SC. Weight and wages: fat versus lean paychecks. Health
	<i>Econ</i> 2009;18:535-48.
9.	Baum CL, Ford WF. The wage effects of obesity: a longitudinal study. Health Econ
	2004;13:885-99.
20.	Mukhopadhyay S. Do women value marriage more? The effect of obesity on
	cohabitation and marriage in the USA. Rev Econ Househ 2008;6:111-26.
21.	Wardle J, Haase AM, Steptoe A. Body image and weight control in young adults:
	international comparisons in university students from 22 countries. Int J Obes
	2006;30:644-51.
22.	Power EM. An introduction to Pierre Bourdieu's key theoretical concepts. J Study
	Food Soc 1999;3:48-52.
23.	Bourdieu P. The forms of capital. In: Richardson J, ed. Handbook of theory and
	research for the sociology of education. New York: Greenwood, 1986:241–58.
24.	McLaren L, Godley J, MacNairn IA. Social class, gender, and time use: implications
	for the social determinants of body weight? <i>Health Rep</i> 2009;20:65-73.
25.	Regidor E, Gutiérrez Fisac JL, Banegas JR, et al. Obesity and socioeconomic position
	measured at three stages of the life course in the elderly. Eur J Clin Nutr
	2004;58:488-94.
26.	Currie J, Hyson R. Is the impact of health shocks cushioned by socioeconomic status?
	: the case of low birthweight. Cambridge, MA: National Bureau of Economic

Research, 1999.

- 27. Laitinen J, Ek E, Sovio U. Stress-related eating and drinking behavior and body mass index and predictors of this behavior. *Prev Med* 2002;34:29-39.
- 28. Ali SM, Lindström M. Socioeconomic, psychosocial, behavioural, and psychological determinants of BMI among young women: differing patterns for underweight and overweight/obesity. *Eur J Public Health* 2006;16:325-31.
- 29. Zhang Q, Wang Y. Socioeconomic inequality of obesity in the United States: do gender, age, and ethnicity matter? *Soc Sci Med* 2004;58:1171-80.
- Chung W, Das Gupta M. The decline of son preference in South Korea: The roles of development and public policy. *Popul Dev Rev* 2007;33:757-83.
- 31. Low MD, Low BJ, Baumler ER, *et al.* Can education policy be health policy? Implications of research on the social determinants of health. *J Health Polit Policy Law* 2005;30:1131-62.
- 32. Woolf SH, Johnson RE, Phillips RL, *et al.* Giving everyone the health of the educated: an examination of whether social change would save more lives than medical advances. *Am J Public Health* 2007;97:679-83.
- Smith PK, Bogin B, Bishai D. Are time preference and body mass index associated? Evidence from the National Longitudinal Survey of Youth. *Econ Hum Biol* 2005;3:259-70.
- Borghans L, Golsteyn BH. Time discounting and the body mass index. Evidence from the Netherlands. *Econ Hum Biol* 2006;4:39-61.

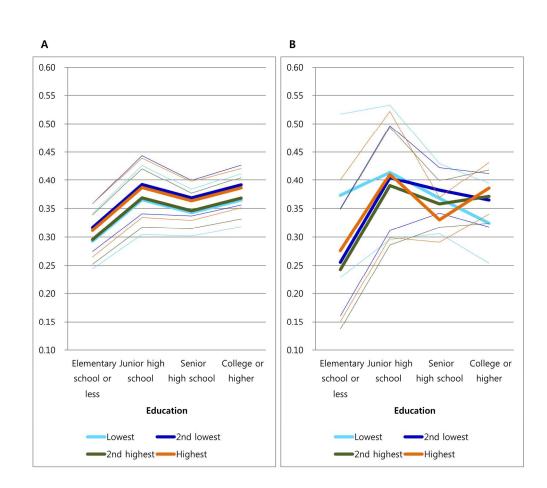


Figure 1 Predicted probabilities of being obese (and their 95% confidence intervals) by education for each income level in men in a model with only main effects (A) and a model with both main and interaction effects (B): the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010–2012, South Korea

198x171mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Page 32 0 f 35

MJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

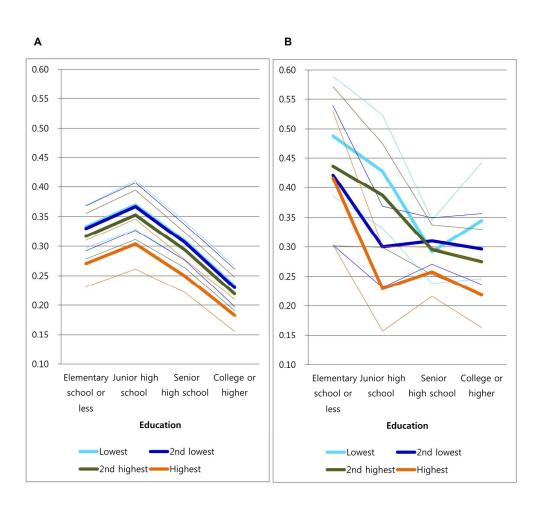


Figure 2 Predicted probabilities of being obese (and their 95% confidence intervals) by education for each income level in women in a model with only main effects (A) and a model with both main and interaction effects (B): the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010–2012, South Korea

196x179mm (300 x 300 DPI)

BMJ Open

	Item No	Recommendation
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the
		abstract
		\rightarrow We indicated it in the design part of the abstract (page 2).
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found
		\rightarrow We provided it in the abstract (pages 2-3).
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
-		\rightarrow We explained them in the introduction (pages 5-6).
Objectives	3	State specific objectives, including any prespecified hypotheses
0		\rightarrow We stated them in the introduction (pages 5-6)
Methods		
Study design	4	Present key elements of study design early in the paper
, ,		\rightarrow We presented them in the measures and variables section of the materials and
		methods (pages 7-8).
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
6		exposure, follow-up, and data collection
		\rightarrow We described them in the data source and study sample sections of the materials
		and methods (pages 6-7).
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of
1		selection of participants. Describe methods of follow-up
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of
		case ascertainment and control selection. Give the rationale for the choice of cases
		and controls
		Cross-sectional study—Give the eligibility criteria, and the sources and methods of
		selection of participants
		\rightarrow We presented them in the data source and study sample sections of the materials
		and methods (pages 6-7).
		(b) Cohort study—For matched studies, give matching criteria and number of
		exposed and unexposed
		Case-control study—For matched studies, give matching criteria and the number of
		controls per case
		\rightarrow N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and
		effect modifiers. Give diagnostic criteria, if applicable
		\rightarrow We clearly defined them in the measures and variables section of the materials
		and methods (pages 7-8).
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there
		is more than one group.
		\rightarrow We indicated them in the materials and methods (pages 6-8).
Bias	9	Describe any efforts to address potential sources of bias

י ר	
2 3 4 5 6 7 8 9 1	
3	
4	
5	
6	
7	
1	
8	
9	
1	0
1	1
1	1
1	2
1	3
1	4
1	5
4	6
1	0
1	1
1	8
1	1 2 3 4 5 6 7 8 9
2	ñ
~	01234567890123456789
2	1
2	2
2	3
2	4
2	5
2	0
2	6
2	7
2	8
2	a
2	0
3	0
3	1
3	2
3	3
2	1
0	4
3	5
3	6
3	7
2	R
3	0
3	9
4	0
4	1
4	
4	
4	
4	5
4	6
4	
4	
4	9
5	0
5	1
5	ว
0	2
5	3
5	4
_	5
-5	<u>о</u>
5	0 6
5	6
5	6 7
5 5 5	6 7 8
5	6 7 8
5 5 5 5	6 7 8

		\rightarrow We described them in the strengths and limitations section of the discussion (page 24).
Study size		10 Explain how the study size was arrived at
Study Size		\rightarrow We explained the study size in the data source and study sample section of the
		materials and methods (pages 6-7).
Quantitative variabl	es	11 Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why
		\rightarrow We explained quantitative variables' handling in the measures and variables
		section of the materials and methods (pages 7-8).
Statistical methods		12 (a) Describe all statistical methods, including those used to control for confounding
		\rightarrow We described statistical methods in the analytic procedures section of the
		materials and methods (pages 8-10).
		(b) Describe any methods used to examine subgroups and interactions
		\rightarrow We described statistical methods in the analytic procedures section of the
		materials and methods (pages 8-10).
		(c) Explain how missing data were addressed
		\rightarrow N/A
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed
		Case-control study—If applicable, explain how matching of cases and controls was
		addressed
		Cross-sectional study—If applicable, describe analytical methods taking account of
		sampling strategy
		\rightarrow We described them in the analytic procedures section of the materials and
		methods (pages 8-10).
		(e) Describe any sensitivity analyses
		\rightarrow N/A
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible,
		examined for eligibility, confirmed eligible, included in the study, completing follow-up, and
		analysed
		\rightarrow We reported them in the data source and study sample section of the materials and
		methods and in the table (pages 6-7, 11-13).
		(b) Give reasons for non-participation at each stage \rightarrow N/A
		(c) Consider use of a flow diagram
		\rightarrow N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
		information on exposures and potential confounders
		\rightarrow We described them in the data source and study sample section of the materials and
		methods and in the table (pages 6-7, 11-13).
		(b) Indicate number of participants with missing data for each variable of interest \rightarrow N/A
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)
		\rightarrow N/A
0 1 1	15*	Cohort study—Report numbers of outcome events or summary measures over time
Outcome data	-	

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

		<u>Cross-sectional study</u> —Report numbers of outcome events or summary measures
		\rightarrow We reported them in the table (pages 11-13; Table 1).
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for
		and why they were included
		\rightarrow We indicated them in the results and the table (pages 15-18, Table 2)
		(b) Report category boundaries when continuous variables were categorized
		\rightarrow We reported them in the measures and variables section of the materials and methods
		(pages 7-8).
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		meaningful time period
		\rightarrow N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity
		analyses
		\rightarrow N/A
Discussion		·
Key results	18	Summarise key results with reference to study objectives
		\rightarrow We indicated them in the comparison to previous studies section of the discussion (page
		20-21).
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision
		Discuss both direction and magnitude of any potential bias
		\rightarrow We discussed them in the strengths and limitations section of the discussion (page 24).
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,
		multiplicity of analyses, results from similar studies, and other relevant evidence
		\rightarrow We discussed them in the discussion (pages 20-24).
Generalisability	21	Discuss the generalisability (external validity) of the study results
		\rightarrow We discussed it in the public health implications section of the discussion and in the
		conclusion (pages 23-25).
Other informatio	n	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable
		for the original study on which the present article is based
		\rightarrow This research received no specific grant from any funding agency in the public,
		commercial or not-for-profit sectors.

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Gender-specific interactions between education and income in relation to obesity: a cross-sectional analysis of the Fifth Korean National Health and Nutrition Examination Survey (KNHANES V)

Journal:	BMJ Open				
Manuscript ID	bmjopen-2016-014276.R1				
Article Type:	Research				
Date Submitted by the Author:	06-May-2017				
Complete List of Authors:	Chung, Woojin; Yonsei University Graduate School of Public Health, Department of Health Policy; Institute of Health Services Research, Yonsei University Lim, Seung-ji; National Health Insurance Service, Health Insurance Policy Research Institute Lee, Sunmi; National Health Insurance Service, Health Insurance Policy Research Institute Kim, Roeul; Korea Worker's Compensation and Welfare Service, Labor Welfare Research Institute Kim, Jaeyeun; National Health Insurance Service, Health Insurance Policy Research Institute Kim, Jaeyeun; National Health Insurance Service, Health Insurance Policy Research Institute; Graduate School, Yonsei University, Department of Public Health				
Primary Subject Heading :	Public health				
Secondary Subject Heading:	Sociology				
Keywords:	Obesity, Education, Income, Gender, South Korea				

SCHOLARONE[™] Manuscripts

BMJ Open

Gender-specific interactions between education and income in relation to obesity: a cross-sectional analysis of the Fifth Korean National Health and Nutrition Examination Survey (KNHANES V)

Woojin Chung,^{1,2} Seung-ji Lim,³ Sunmi Lee,³ Roeul Kim,⁴ Jaeyeun Kim,^{3,5*}

¹ Department of Health Policy, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea

² Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea

³ Health Insurance Policy Research Institute, National Health Insurance Service, Wonju,

Republic of Korea

⁴Labor Welfare Research Institute, Korea Worker's Compensation and Welfare Service, Seoul,

Republic of Korea

⁵ Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea

*Corresponding author

Department of Public Health, Graduate School, Yonsei University 50-1 yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea E-mail: jaeyeunk@yuhs.ac

Cellular phone: +82-10-3466-7746

Word count: 5,445 (excluding title page, abstract, references, figures and tables)

MJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Keywords: Obesity, Education, Income, Gender, South Korea

1
2
3
4
2 3 4 5 6 7
6
7 8 9 10
8
9
10
11
12
12
1/
14
10
10
1/
10
19
20
21
22
11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 20 31
24
25
26
27
28
29
30
31
32
32 33
34
34 35 36 37 38
36
37
38
39
40
40 41
42
42 43
43 44
44 45
46
47
48
49
50
51
52
53
54
55
56
57 58
58
59
60

1 ABSTRACT

2	
3	Objectives
4	To examine whether the well-known negative association between socioeconomic status and
5	obesity in developed countries remains valid upon including when the interaction-effect
6	terms of all studied variables.
7	Design
8	A cross-sectional study. Education and income levels were chosen as socioeconomic status
9	indicators. Socio-demographics, lifestyles and medical conditions were used as covariates in
10	multivariate logistic regression models. Adjusted odds ratios and predicted probabilities of
11	obesity were computed and adjusted for a complex survey design.
12	Setting
13	Data were obtained from the Fifth Korea National Health and Nutrition Examination Survey
14	(2010-2012).
15	Participants
16	The sample included 7,337 male and 9,908 female participants aged 19 years or older.
17	Outcome measure
18	Obesity was defined as body mass index of 25 or more, according to a guideline for Asians.
19	Results
20	In models with no interaction-effect terms, only education was a significantly associated with
21	obesity in men, but both income and education were significant in women. However, in
22	models with the interaction-effect terms, income was significant in men but education was
23	significant in women. The interaction effect between income and education was significant in

men but not in women. Participants having the highest predicted probability of obesity over
educational and income levels differed between the two models, and between men and
women. Though caution is necessary when interpreting the findings, the predicted
probabilities of obesity suggest that a policy providing all men with the highest level of
formal education would counter-intuitively increase their rate of obesity by as much as 26%. **Conclusions**The well-known association between socioeconomic status and obesity may not be valid

when interaction effects are included. Ignoring these effects and their gender differences may result in the targeting of wrong populations for reducing obesity prevalence and its resultant socioeconomic gradients. Further research is needed to examine whether these findings are valid in other sociocultural settings.

36 Article summary

- 37 Strengths and limitations of this study
- This is the first study to investigate the association of socioeconomic status with
 obesity while considering both main effects and interaction effects.
 - 2. This study analyzed data from a nationally representative sample of South Korean
- 41 adults, providing abundant information about anthropometric measures, socio-
- 42 demographic characteristics, lifestyle behaviors, and medical conditions.
- 43 3. This study shows by means of a quantified prediction what would happen if policies
- 44 to reduce obesity prevalence did not consider complex interactions among
- 45 characteristics of individuals.
- 46 4. The cross-sectional study design used in this study precludes causal inferences about
 47 the relationship between socioeconomic status and obesity.

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

1 INTRODUCTION

3	Numerous studies have investigated various factors related to obesity, and have identified
4	associations between socioeconomic status and obesity, which are negatively correlated in
5	both men and women in developed countries, although this is more consistent in women than
6	in men. ¹⁻³ However, because most empirical studies of obesity have ignored the interaction
7	effects among various characteristics, these studies have failed to detect complex associations
8	between different levels of socioeconomic status in relation to obesity; moreover, they have
9	failed to explain differences among different population groups regarding the mechanisms
10	through which socioeconomic status becomes associated with obesity.
11	For example, when the interaction effects among various characteristics are
12	considered, previous studies have not answered the question as to whether the above-
13	mentioned, well-known associations between socioeconomic status and obesity remain valid.
14	Moreover, they have seldom explored why a socioeconomic status indicator sometimes
15	interacts with another socioeconomic status indicator with regard to obesity, and whether the
16	interaction differs by gender; whether the likelihood of being obese with regard to some
17	levels of socioeconomic status remains the same before and after consideration of the
18	interaction effects; and whether government can reduce the prevalence of obesity and change
19	the socioeconomic gradient in the prevalence of this condition by providing all individuals
20	with the highest level of socioeconomic status possible.
21	Attempting to fill the gap between previous findings and the unanswered questions,
22	this study chose education and income levels as socioeconomic status indicators because they
23	complement each other: educational level is established in early adulthood and tends to
24	remain unchanged later in life, while income level may change throughout adult life. In 6

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

particular, this study used data from South Korea, which has industrialized rapidly and is now
categorized as one of the ten largest advanced economies in the world.⁴ Nevertheless, South
Korea is still noted for pronounced gender inequality almost everywhere, especially in the
labor markets.⁵⁶

This study considered two models for each gender: one that included only the maineffect term of each variable, and the other included the two-way interaction-effect terms between variables, as well as the main-effect term of each variable. Considering the complex survey design, this study used multivariate logistic regression analyses to compute the odds ratios of obesity and to predict the probability that a man or woman would be obese if he or she had a particular set of education and income levels. BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

36 MATERIALS AND METHODS

37 Data source and study sample

This study was based on the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010–2012, which used a stratified multistage clustered probability sampling design to collect data on the non-institutionalized, civilian population of South Korea on behalf of the Korean Centers for Disease Control and Prevention.⁷ This survey was composed of a health interview and a nutrition survey conducted at the participants' homes, as well a physical examination conducted by physicians at designated examination centers. Detailed information about the survey design and characteristics is available at the KNHANES website.⁷ From KNHANES V, this study accessed data from a pool of 25,534 individuals

47 (8,958 in 2010, 8,518 in 2011, and 8,058 in 2012). Of this group, 24,173 had participated in

the interviews, and 18,571 individuals aged 19 years or older underwent physical
examinations. A total of 17,245 (92.86%) participants (7,337 men, 9,908 women) were
included in this study because they had the required information in their files. The ethical
review board of the educational institution where the research was conducted approved this
study.

54 Measures and variables

The obesity status of each participant was determined anthropometrically using data from the physical examination. Height was measured using a portable stadiometer, and body weight was measured using a calibrated balance-beam scale, and the body mass index (BMI) was calculated from these height and weight measurements. According to the guidelines proposed by the World Health Organization indicating that Asians have a lower average BMI,⁸ this study defined general obesity as a BMI of at least 25. Also, because the percentage of participants with BMI of less than 18.5 in the sample was very small (4.5%, 781 participants), we combined participants with BMI of less than 18.5 and those with BMI between 18.5 to 25 into a single group. Therefore, a dichotomous outcome variable was constructed with a value of 1 (obesity, BMI of 25 or higher) and 0 (non-obesity, BMI of less than 25.9-11

Levels of education and income were chosen as socioeconomic status indicators. Education was defined as the highest level of formal education completed as of the date of the interview. This study categorized education into four levels: elementary school or less, junior high school, senior high school, and college or more. For income, this study used an equivalized monthly household income calculation ([monthly overall household income] [household size]^{-0.5}) and divided the participants into four quartiles.

71	Nine sociodemographic characteristics, including gender, were incorporated as
72	covariates. Age was treated as a continuous variable, and marital status was categorized into
73	married, formerly married, and never married. Residential area was divided into metropolitan
74	urban area, non-metropolitan urban area, and rural area. Occupation was grouped into
75	unemployed, office worker, and manual worker. Housing status was coded in terms of
76	whether a participant was a renter or a home owner. Participants were categorized according
77	to whether they were enrolled in National Health Insurance or Medical Care Aid for regular
78	or low-income individuals, respectively, with regard to the universal health insurance
79	program. Participants with private health insurance were also noted. Survey year was added
80	to control for any fixed time effect.
81	This study also incorporated ten characteristics about lifestyle and medical conditions.
82	Participants were grouped in terms of the following categories: 1) smoking, 2) excessive

alcohol consumption (at high risk due to drinking according to the gender-specific guidelines of the World Health Organization),¹² 3) routinely exercising (physical activity as defined as the participation in moderate or vigorous exercise for a respective frequency and duration),¹³ 4) daily sleep duration (sleeping less than 7 h per day was defined as sleeping for a short duration),¹⁴ 5) daily energy intake (moderate energy intake was defined as total energy intake within $1.25 \times$ of participants' estimated daily energy requirement), ¹⁵ 6) self-perceived stress, 7) self-perceived health, 8) hypertension, 9) dyslipidemia, and 10) diabetes. The presence of the last three chronic diseases was determined by a prior physician diagnosis at the pre-surgery interview.

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

93 Analytic procedures

94 A six-fold analysis was performed. First, this study tested differences in the distributions of

13. Page 10 MJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

> variables among men and women using the *t*-test for continuous variables and the χ^2 test for categorical variables. Second, this study tested the association of each variable with obesity by gender using the χ^2 test. Third, gender interaction effects were examined, for which simple logistic regression models were constructed with main effects for gender and the variable of interest as well as the interaction effects of the two variables. Due to the results, the remaining analyses were stratified by gender.

Fourth, to fit the multivariate logistic regression models, this study continued to recategorize each of the variables and defined each variable's reference category differently until no strong multicollinearity was found for the main-effect models and no evidence of a lack of goodness-of-fit was found in each model. The values for the variance inflation factor were less than 3.65, and p-values based on the Hosmer-Lemeshow statistic were higher than 0.26.

Fifth, this study estimated the adjusted odds ratios (ORs) of obesity and their 95% confidence intervals (CIs) after fully adjusting for covariates. Two models were considered for each gender: Model 1 included only the main-effect term of every variable, and Model 2 included the main-effect terms for each variable as well the two-way interaction-effect terms between the variables.

Finally, to assess the association of each level of a socioeconomic status indicator with obesity and to compare these associations across categories for both socioeconomic status indicators, this study predicted the probability of a participant being obese (and its 95% confidence intervals) if he or she had a particular set of education and income levels. These probabilities, which were calculated by gender, denote the average of all participants' probabilities if each participant belonged to a particular set of education and income levels, while maintaining participant characteristics for the other variables constant.

1 2	
2 3 4	
4 5	
6	
7 8	
9 10	
11	
12 13	
14	
15 16	
12 13 14 15 16 17 18 19 20 21 22	
19	
20 21	
22	
23 24	
25 26	
27	
27 28 29	
30	
31 32	
33 34	
35	
36 37	
38 39	
40	
41 42	
43	
44 45	
46 47	
48	
49 50	
51	
52 53	
54 55	
56	
57 58	
59 60	
00	

119	All analyses and tests were conducted considering the sampling design of the survey
120	However, for convenience, the descriptive statistics are shown as unweighted. P-values <
121	0.05 were considered statistically significance. The SAS 9.2 software (SAS Institute, Cary,
122	NC, USA) and STATA 12 software (StataCorp, College Station, TX, USA) were used to
123	perform all statistical analyses.
124	
125	RESULTS
126	Descriptive statistics

- 127 The rate of obesity was significantly higher in men (34.96%) than in women (29.67%), as
- 128 indicated by the significantly higher BMI in men than in women (Table 1). All characteristics
- 129 differed significantly by gender except for residential area, housing status, enrollment in a
- reb 130 private health insurance plan, survey year, daily sleep duration, and diabetes status.

Table 1 Sample characteristics and their associations with obesity by gender: the Fifth Korea National Health and Nutrition Examination

133 Survey (KNHANES V), 2010-2012, South Korea

		Distril	bution,	Obesity, %				
	Men		Wo	omen	p Value†	Men	Women	p Value¶
Body mass index, kg m ⁻² *	23.97 (3	3.1)	23.43	(3.6)	< 0.001			
Obesity	2565 (3	35.0)	2940	(29.7)	< 0.001			
Age, years*	50.79 (1	6.4)	50.48	(16.6)	< 0.001	35.1‡	34.7‡	< 0.001
Marital status					< 0.001	<0.001§	<0.001§	< 0.001
Married	5848 (7	79.7)	6887	(69.5)		36.0	30.5	
Formerly married	339 (4	1.6)	1803	(18.2)		30.1	37.4	
Never-married	1150 (1	15.7)	1218	(12.3)		31.0	13.4	
Residential area					0.446	0.259§	<0.001§	< 0.001
Metro urban	3240 (4	14.2)	4404	(44.5)		35.2	27.0	
Non-metro urban	2523 (3	34.4)	3471	(35.0)		36.6	29.2	
Rural	1574 (2	21.4)	2033	(20.5)		31.9	36.4	
Education					< 0.001	<0.001§	<0.001§	< 0.001
Elementary school or less	1294 (1	17.6)	3168	(32.0)		26.6	40.2	
Junior high school	867 (1	1.8)	1024	(10.3)		36.1	38.6	
Senior high school	2617 (3	35.7)	3136	(31.7)		34.5	27.1	
College or more	2559 (3	34.9)	2580	(26.0)		39.3	16.4	
Income, quartiles					< 0.001	0.002§	<0.001§	< 0.001
Lowest	1694 (2	23.1)	2641	(26.6)		28.4	36.8	
2nd lowest	1924 (2	26.2)	2514	(25.4)		36.5	31.7	
3rd lowest	1739 (2	23.7)	2177	(22.0)		34.9	28.0	

BMJ Open: first published as 10.1136/pmjopen-201604425609669915/Benefeed by copyrighter the third of the provided of the provided by copyright.

 BMJ Open

	TT 1 /	1000	(27 , 0)	2576			20.1	21.0	
	Highest	1980	(27.0)	2576	(26.0)	.0.001	39.1	21.8	.0.001
	Occupation		(a a b)			< 0.001	<0.001§	<0.001§	< 0.001
	Unemployed	1878	(25.6)	5208	(52.6)		28.7	31.1	
)	Office worker	1965	(26.8)	1586	(16.0)		42.1	17.5	
	Manual worker	3494	(47.6)	3114	(31.4)		34.3	33.6	
	Housing status					0.158	0.945§	0.843§	0.838
	Renter	5606	(76.4)	7280	(73.5)		35.1	29.5	
	Home owner	1731	(23.6)	2628	(26.5)		34.6	30.1	
i	Universal health insurance					< 0.001	0.020§	0.004§	< 0.001
,	National Health Insurance	7204	(98.2)	9609	(97.0)		35.2	29.4	
	Medical Care Aid	133	(1.8)	299	(3.0)		24.8	39.8	
	Private health insurance					0.181	<0.001§	<0.001§	< 0.001
	Non-holder	2258	(30.8)	2898	(29.3)		29.3	34.9	
	Holder	5079	(69.2)	7010	(70.7)		37.5	27.5	
	Survey year					0.831	0.695§	0.133§	0.162
	2010	2592	(35.3)	3364	(34.0)		35.2	28.3	
, ,	2011	2494	(34.0)	3380	(34.1)		34.6	30.4	
1	2012	2251	(30.7)	3164	(31.9)		35.1	30.4	
)	Current smoking status					< 0.001	0.375§	0.936§	0.729
	Non-smoker	4336	(59.1)	9359	(94.5)		36.1	29.8	
	Smoker	3001	(40.9)	549	(5.5)		33.3	27.1	
	Alcohol consumption					< 0.001	<0.001§	0.064§	< 0.001
•	Not excessive	4950	(67.5)	8689	(87.7)		31.5	30.1	
	Excessive	2387	(32.5)	1219	(12.3)		42.1	26.7	
	Routine physical exercise					< 0.001	0.838§	<0.001§	0.012
	* *			12	1		-	ũ	

BMJ Open: first published as 10.1136/pmjopen-2016. Protected by Scheder 2013/ Dewnloade by Copyright (1991) (1991) (1992) 2024 by guest. Protected by copyright.

Physically active	
Physically inactive	
Daily sleep duration	
Non-short	
Short	
Daily energy intake	
Not moderate	
Moderate	
Self-perceived stress	
Not very high	

Physically active	1552	(21.2)	1620	(16.4)		35.6	32.8	
Physically inactive	5785		8288	(83.6)		34.8	29.1	
Daily sleep duration					0.992	0.150§	<0.001§	0.007
Non-short	4291	(58.5)	5717	(57.7)		34.2	27.4	
Short	3046	(41.5)	4191	(42.3)		36.0	32.8	
Daily energy intake					< 0.001	0.818§	<0.001§	< 0.001
Not moderate	5859	(79.9)	8306	(83.8)		34.9	28.0	
Moderate	1478	(20.1)	1602	(16.2)		35.4	38.5	
Self-perceived stress					< 0.001	0.969§	0.031§	0.236
Not very high	7087	(96.6)	9421	(95.1)		35.1	29.5	
Very high	250	(3.4)	487	(4.9)		32.4	33.3	
Self-perceived health					< 0.001	0.362§	<0.001§	0.002
Not very bad	7159	(97.6)	9467	(95.5)		35.2	29.1	
Very bad	178	(2.4)	441	(4.5)		24.2	42.4	
Hypertension					< 0.001	<0.001§	<0.001§	< 0.001
No	5764	(78.6)	7713	(77.8)		32.6	24.3	
Yes	1573	(21.4)	2195	(22.2)		43.6	48.5	
Dyslipidemia					< 0.001	<0.001§	<0.001§	0.137
No	6859	(93.5)	9065	(91.5)		33.9	27.8	
Yes	478	(6.5)	843	(8.5)		50.6	49.8	
Diabetes					0.099	0.858§	<0.001§	< 0.001
No	6661	(90.8)	9219	(93.0)		34.8	28.1	
Yes	676	(9.2)	689	(7.0)		36.1	50.4	
Number of participants		7337		9908		7337	9908	

N, number; All P-values were estimated by considering a stratified cluster sampling design.

BMJ Open: first published as 10.1136/bmjopen-2016. Portes and served and the served by the served by copyright and the served by copyright.

*Mean (standard deviation).

[†]P-value was estimated by using the t-test for continuous variables and χ^2 tests for categorical variables.

. continuous variables and γ^2 tes. , ontion of obesity was obtained from p. . ateraction effects terms between gender and each ch. For the continuous age variable, the proportion of obesity was obtained from people aged 50-59 years to which median age for each gender belonged. §P-value was estimated by χ^2 tests for each gender.

P-value was estimated from the interaction effects terms between gender and each characteristic by using the logistic analysis.

BMJ Open: titet published as 10.1136/pmjopen-20164748 660138 iPercender 2013/uBowingedede to individe the total and the

135	Characteristics associated with obesity and gender differences
136	Among men, the rate of obesity was significantly higher in participants who were married,
137	had at least a college education, had an income in the highest quartile, had an office job, were
138	National Health Insurance beneficiaries, had a private health insurance plan, consumed
139	excessive alcohol, had hypertension, and had dyslipidemia (Table 1).
140	Among women, a significantly higher rate of obesity was observed in participants
141	who were formerly married, lived in a rural area, did not go beyond elementary school, had
142	incomes in the lowest quartile, were manual workers, were Medical Care Aid beneficiaries,
143	had no private health insurance plan, were physically active, lacked adequate sleep, had
144	moderate energy intake, reported very high levels of stress, had very poor self-perceived
145	health, had hypertension, had dyslipidemia, and were diabetic. The rate of obesity differed
146	significantly by gender with regard to all variables except for housing status, survey year,
147	current smoking status, self-perceived stress, and had dyslipidemia.
148	
149	Adjusted associations of obesity with education and income
150	Among men, according to the model with only main-effect terms (Model 1), the OR of
151	obesity was 1.41 (95% CI = $1.12-1.77$) in those with at least a college education compared
152	with their counterparts who did not go beyond elementary school (Table 2). Conversely,
153	according to the model with interaction-effect terms (Model 2), the OR was 0.05 (95% CI =
154	0.01–0.32) among those with incomes in the highest quartile compared with those with
155	incomes in the lowest quartile. Education alone was not significant. In terms of their
156	association with obesity, education and income were found to interact with each other, as five
157	combinations of educational and income levels were significant compared with their
158	respective reference combinations.

BMJ Open

Table 2 Adjusted associations of education and income with obesity by gender: the Fifth Korea National Health and Nutrition Examination

160 Survey (KNHANES V), 2010-2012, South Korea

		Men (N=7337)			Women	(N=9908	8)	
	Model 1 ⁺		Μ	Model 2‡		Model 1†		Model 2‡	
	OR	(95% CI)	OR	(95% CI)	OR	(95% CI)	OR	(95% CI)	
Main effects									
Education									
Elementary school or less (EDU1)	1.00		1.00		1.00		1.00		
Junior high school (EDU2)	1.41**	(1.10-1.82)	0.61	(0.06-6.56)	1.19	(0.98-1.44)	0.16*	(0.03-0.89)	
Senior high school (EDU3)	1.27*	(1.03-1.58)	0.57	(0.08-4.25)	0.89	(0.72-1.09)	0.13**	(0.03-0.58)	
College or more (EDU4)	1.41**	(1.12-1.77)	1.45	(0.16-13.04)	0.59***	(0.46-0.75)	0.13*	(0.02-0.89)	
Income, quartiles									
Lowest (INC1)	1.00		1.00		1.00		1.00		
2nd lowest (INC2)	1.13	(0.91-1.39)	0.11*	(0.02-0.64)	0.99	(0.84-1.16)	1.13	(0.26-4.98)	
3rd lowest (INC3)	1.01	(0.81-1.28)	0.18	(0.03-1.11)	0.93	(0.77-1.11)	1.16	(0.22-6.20)	
Highest (INC4)	1.10	(0.87-1.39)	0.05**	(0.01-0.32)	0.73**	(0.60-0.89)	1.58	(0.30-8.38)	
Interaction effects									
Education x Income									
EDU2 × INC2			1.91	(0.91-4.04)			0.77	(0.44-1.33)	
EDU2 × INC3			1.88	(0.81-4.34)			1.11	(0.60-2.06)	

EDU2 x INC4	1.72	(0.65-4.59)	0.5	1 (0.26-1.01)
EDU3 × INC2	2.30*	(1.17-4.52)	1.5	8 (0.90-2.75)
EDU3 × INC3	2.17*	(1.05-4.47)	1.3	4 (0.73-2.47)
EDU3 × INC4	1.52	(0.67-3.44)	1.2	3 (0.67-2.24)
EDU4 x INC2	2.74*	(1.14-6.56)	1.0	8 (0.49-2.39)
EDU4 × INC3	3.00*	(1.27-7.12)	0.8	7 (0.38-2.00)
EDU4 × INC4	2.65*	(1.04-6.78)	0.6	6 (0.27-1.58)
Hosmer-Lemeshow test, p Value	0.967	0.530	0.304	0.471

N, number; OR, odds ratio; CI, confidence interval; All models were adjusted for age, marital status, residential area, occupation, housing status, universal health insurance, private health insurance, survey year, smoking, alcohol consumption, routine physical exercise, daily sleep duration, daily energy intake, self-perceived stress, self-perceived health, hypertension, dyslipidemia, and diabetes; All estimates were obtained by considering a stratified cluster sampling design.

P* < 0.05, *P*< 0.01, ****P*< 0.001.

 †Models 1 included only main effects terms for all variables.

‡Models 2 included both main effects terms and two-way interaction effects terms for all variables.

BMJ Open

161	Among women, according to Model 1, the OR was $0.59 (95\% \text{ CI} = 0.46-0.75)$ in
162	participants who had at least a college education compared with those who did not go beyond
163	elementary school, and 0.73 (95% CI = 0.60–0.89) among those with incomes in the highest
164	quartile compared with those with incomes in the lowest quartile. In contrast, according to
165	Model 2, the OR was 0.13 (95% CI = $0.02-0.89$) among participants with at least a college
166	education compared with participants who did not go beyond elementary school. Income
167	alone was not significant. In terms of an interaction effect, one combination of educational
168	and income levels was marginally significant relative to the reference combination
169	(p = 0.053).
170	
171	Predicted probability of being obese
172	The predicted probabilities for a participant to be obese if he or she had a particular set of

172 The predicted probabilities for a participant to be obese if he or she had a particular set of 173 education and income levels were obtained from the model with only the main-effect term of 174 every studied variable (Model 1) and from the model with both the main-effect term of every 175 studied variable as well as the interaction-effect terms between all studied variables (Model 176 2); these results are displayed graphically in Figures 1 and 2 for men and women, respectively. 175 Figure 1 Predicted probabilities of being obese (and their 95% confidence intervals)

Figure 1 Predicted probabilities of being obese (and their 95% confidence intervals)
by education for each income level in men in a model with only main effects (A) and a model
with both main and interaction effects (B): the Fifth Korea National Health and Nutrition
Examination Survey (KNHANES V), 2010–2012, South Korea

Figure 2 Predicted probabilities of being obese (and their 95% confidence intervals)
by education for each income level in women in a model with only main effects (A) and a

1	
2	
3	
2 3 4 5	
5	
6	
7	
2 2	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
$egin{array}{c} 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 13 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 21 \\ 22 \\ 24 \\ 25 \\ 27 \\ 28 \\ 20 \\ 31 \\ 23 \\ 34 \\ 35 \\ 37 \\ 38 \\ 37 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38$	
21	
22	
23	
20	
24	
20	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42 43	
43 44	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57 58	
58 59	
60	

model with both main and interaction effects (B): the Fifth Korea National Health and
Nutrition Examination Survey (KNHANES V), 2010–2012, South Korea

187

188 According to Figures 1 and 2, the predicted probabilities of being obese differed 189 greatly between Models 1 and 2 for each gender. Whether for men or for women, the pattern 190 of the changes in the predicted probability for each income level was uniform across 191 educational levels in Model 1 (the left panel in each figure), suggesting that the income 192 differences in obesity are constant towards higher education. However, according to Model 2 193 for each gender (the right panel in each figure), the pattern became very different from that in 194 Model 1 for each gender and showed clear gender differences. For example, for men, the 195 income difference in obesity was the largest in participants who did not go beyond 196 elementary school (0.130) and the smallest in junior high school graduates (0.024), whereas 197 for women, the income difference in obesity was the largest in junior high school graduates 198 (0.199), the second largest in participants who had at least a college education (0.126) and the 199 smallest in senior high school graduates (0.052). This suggests cautiously that unlike in 200 women, the income differences in obesity decreases towards higher education in men. 201 Meanwhile, with respect to the education difference in obesity, it was the largest in 202 participants who had income in the second lowest quartile (0.148), the second largest in those 203 with income in the third lowest quartile (0.147), and the smallest in participants who had 204 income in the lowest quartile (0.090); but for women, it was the largest in participants who 205 had income in the highest quartile (0.198), the second largest in participants who had income 206 in the lowest quartile (0.196), and the smallest in those with income in the second lowest quartile (0.125). This suggests cautiously that the education differences in obesity show an 207

inverse U-shape with higher income in men, in a sharp contrast with women having a U-shape.

The Findings in men can be summarized as follows: 1) Although men in two income categories (the second lowest quartile and the lowest quartile) had the highest and the lowest predicted probabilities across all educational levels in Model 1 respectively, no income level had these distinctions with respect to all educational levels in Model 2. 2) The education-income group with the highest predicted probability according to Model 1 and 2 differed: it was junior high school graduates with incomes in the second lowest quartile in Model 1 (predicted probability = 0.392), but it was junior high school graduates with incomes in the lowest quartile in Model 2 (predicted probability = 0.414). 3) The education-income group with the lowest predicted probability also differed between Models 1 and 2: it was participants who did not go beyond elementary school and who had incomes in the lowest quartile in Model 1 (predicted probability = 0.292), but it was those did not go beyond elementary school and who had incomes in third lowest quartile in Model 2 (predicted probability = 0.243). 4) The gradient (or range) between the highest and lowest predicted probabilities was 0.099 in Model 1 but 0.172 in Model 2.

Likewise, the findings in women can be summarized as follows. 1) Although women in two income levels (the lowest quartile and the highest quartile) had the highest and the lowest predicted probabilities across all educational levels in Model 1 respectively, no income level had these distinctions in Model 2. 2) The education-income group with the highest predicted probability differed between Models 1 and 2: it was junior high school graduates with incomes in the lowest quartile in Model 1 (predicted probability = 0.370), but it was participants who did not go beyond elementary school and who had incomes in the lowest quartile in Model 2 (predicted probability = 0.487). 3) The education-income group

with the lowest predicted probability was the same in Models 1 and 2: it was those with at
least a college education with incomes in the highest quartile in Model 1 (predicted
probability = 0.183) and Model 2 (predicted probability = 0.218). 4) The gradient in the
predicted probability was 0.187 in Model 1 and 0.269 in Model 2.

DISCUSSION

238 Comparison to previous studies

As shown in previous papers,¹⁻³ most studies on the relationship between socioeconomic status and obesity focused on the main-effect terms of variables, rather than both the maineffect terms of variables and the interaction-effect terms between variables. Most of those studies showed that socioeconomic status and obesity are negatively correlated in both men and women in developed countries.

Meanwhile, the results of our study warn researchers considering only the maineffect terms in studies of the associations of education and income with obesity to be very careful about interpreting their results. The reasons are: 1) studies considering only the main-effect terms may come to incorrect conclusions about the roles of education and income; 2) those studies may lack information on how differently either education or income is associated with obesity; 3) those studies may lack information on how the income differences in obesity differ across education levels (or how the education differences in obesity differ across income levels); and 4) those studies may result in the incorrect identification of the education-income group having the highest risk of obesity.

According to the results of comparison between the results in models including only main-effect term of every studied variable (Models 1) and those in models adding the

Page 23 of 48

BMJ Open

255	interaction-effect terms between all studied variables to Models 1 (Models 2) in our study,
256	first, regarding the roles of education and income, in Models 1, only the main-effect term of
257	education was significant in men and the main-effect terms of both education and income
258	were significant in women. Alternatively, in Models 2, the main-effect of income as well as
259	the interaction-effect term between education and income was significant in men and only the
260	main-effect term of education was significant in women. Second, the results of Models 2
261	provided specific information that in men, income played a role in its association with obesity
262	on its own as well as through its interaction with education, whereas education played a role
263	only through its interaction with income. In women, however, education played a role on its
264	own. Third, as for the question as to how the income differences in obesity differ across
265	education levels, the income differences in obesity were uniform across education levels in
266	Models 1 (the left panels in figures). However, according to the results of Models 2 (the right
267	panels in figures), the income differences in obesity were very different between education
268	levels and their gender differences were very clear. Finally, the sub-population of those with
269	the particular set of education and income levels with the highest (or lowest) risk of obesity
270	differed according to gender in both Models 1 and 2, as shown in each figure.
271	These findings suggest that the aforementioned well-known negative association
272	between socioeconomic status and obesity should be re-examined using models incorporating
273	interaction-effect terms among various characteristics. Similar results were obtained with
274	regard to abdominal obesity as those reported here for general obesity (these results are
275	available on request).
276	L /
277	Plausible mechanisms
211	

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

278 Based on these results, this study aimed to answer the following three questions. First, who

are the participants belonging to the particular set of education and income levels showing the highest and lowest values of the predicted probabilities of being obese for each gender and why social positioning leads women to show strong educational differences in models accounting for joint income effects, whereas men show strong income differences alone and in combination with education? To examine this, we provided Supplementary Tables 1 and 2, which show the distributions of sample characteristics by education and income for men and women, respectively. For men, as shown in the right panel of Figure 1, the highest predicted probability of being obese was shown in junior high school graduates with incomes in the lowest quartile (predicted probability = 0.414), whereas the lowest predicted probability in participants those who did not go beyond elementary school and who had incomes in third lowest quartile (predicted probability = 0.243). Relative to the education-income group showing the lowest predicted probability of being obese, the group showing the highest predicted probability tended to have more than twice as high as proportion in participants who were formerly married, participants who were never-married, residents in non-metro urban areas, manual workers, participants surveyed in 2010, current smokers, participants

who had energy intake at a moderate level, participants who reported that their health was
very bad, participants having hypertension, and participants having diabetes (Supplementary
Table 1).

Likewise, for women, as shown in the right panel of Figure 2, the highest predicted probability of being obese was shown in participants who did not go beyond elementary school and who had incomes in the lowest quartile (predicted probability = 0.487), whereas the lowest predicted probability in participants with at least a college education with incomes in the highest quartile (predicted probability = 0.218). Compared to the education-income

group showing the lowest predicted probability of being obese, the group showing the highest
predicted probability tended to have more than twice as high as proportion in participant who
were formerly married, residents in rural areas, participants who were unemployed,
participants whose daily sleep duration were short, participants who reported that their stress
was very high, participants who reported that their health was very bad, participants having
hypertension, participants having dyslipidemia, and participants having diabetes

309 (Supplementary Table 2).

This comparison suggests that a participant's belonging to a particular one of different education-income groups (that is, a social position) is associated with a particular risk of obesity. A variety of studies on social position have shown that one's social position may be determined by either exogenously or endogenously.¹⁶¹⁷ An individual can be placed in a social position (or social status) within a society before or at birth. This is called ascribed status. Ascribed statuses, which differ across societies, exist in all societies. Ascribed statuses depend on genetics, gender, age, race, or family characteristics. Alternately, an individual can achieve his or her social position by his or her own efforts, which is called achieved status. Achieved statuses are social position which he or she acquires after his or her birth as consequences of the exercise of knowledge, ability and skill, personal perseverance, and active interactions with others. Both education and income provides examples of social position that may be either ascribed or achieved status. Meanwhile, when comparing men and women, if education is more of an ascribed status rather than an achieved status, compared to the income, then education is more likely to make a positive contribution to income in women compared to that in men. Then the role of education on obesity may overtake that of income on obesity in women compared to men. Meanwhile, income in combination with education rather than education alone may influence the risk of obesity in men. It seems

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

definite that further research is necessary to evaluate the relationship between social position and obesity. Second, with regard to its association with obesity, why does education sometimes interact with income and why does the interaction differ by gender? This study believes that two different factors may be involved in this issue. More education may discourage obesity insofar as it promotes a more efficient use of health-related services and products^{18 19} and an enhanced sense of control and empowerment.²⁰²¹ In addition, and less directly, more education may contribute to a higher income, which may discourage obesity by increasing access to higher quality food and better medical care.^{18 19} However, in a subgroup of people (e.g., men with certain sociocultural characteristics), a higher income may be positively associated with obesity even though more education leads to higher income. Thus, more education and a higher income may lead to a higher likelihood of being obese among this subgroup of people. Meanwhile, it is interesting to note that gender may modify the effects of education and income on one's health. Previous research has suggested that gender.²² race.²³ place^{23 24} and their intersections^{25 26} alter the effects of education and income on health. A recent study compared race-gender groups to examine the effects of baseline education and income on sustained health problems in five domains (depressive symptoms, insomnia, physical inactivity, BMI, and self-rated health) using the Health and Retirement Study in the US.²⁵ This study found that the interaction of race and gender changed the protective effects of social determinants on sustained health problems such as insomnia, physical inactivity, and BMI. Another study showed that gender modifies the effects of education and income on psychosocial well-being of patients with chronic conditions.²² It is generally known that women with a high level of education tend to be more worried about weight control than men with the same level of education.²⁷ This may be

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

because obese women may be more penalized with regard to employment opportunities,²⁸ wage equality,²⁹ and finding marriage partners than obese men.³⁰ On the other hand, even men with a high income tend to feel more comfortable being overweight than do women in the same income group.³¹ This can be explained in part by the notion of habitus and Bourdieu's theory, which states that the body has a symbolic value in size and shape for people, but that valuations of the body differ by gender.^{32 33}

Even in a developed society such as South Korea, men have more political and economic influence and are the primary wage earners for families, and most jobs tend to be awarded first to men. Gender differences in body image are also pronounced in South Korea: according to an international study of body image and weight control in young, educated adults, the age-adjusted prevalence of feeling overweight was the second lowest in Korean men (14%) compared with that in men in the other 22 countries, but the prevalence of seeing oneself as overweight was the highest in Korean women (77%).³¹ Thus, local culture and norms put greater pressure on women than on men to lose weight, as indicated in previous studies.^{31 34 35}

As a third question to be raised from the results of this study, after including the interaction-effect terms in this study, why did the predicted probabilities of being obese follow erratic rather than uniform patterns for both education and income levels, and why were there gender differences in this regard? One reason for the erratic patterns in the predicted probabilities might be that education or income may interact with some other covariate(s). For example, the association between obesity and income may be influenced by stress level in men³⁶ and health behaviors caused by a high level of stress, such as smoking cigarettes and drinking alcohol, thereby contributing to the positive association between socioeconomic status and obesity in men.^{37 38} Meanwhile, previous studies investigated the

1
2
3
4
2 3 4 5 6
6
1
8
a
10
10
11
12
8 9 10 11 12 13 14 15
14
15
16 17
17
18
10
20
2U 04
21
22
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 89 20
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
46
40 47
47 48
49
50
51
52
53
54
55
56
50 57
57 F0
58
59
60

1

relationship among contextual factors (e.g. gender, race, class, and place), psychosocial 375 factors and obesity factors (e.g. obesity and BMI).^{39 40 41 42 43} Using data from the Health and 376 Retirement Study in the US, a study showed that the association between sustained health 377 problems such as depression and obesity are not universal across race and gender groups.⁴⁰ 378 This suggests that culture connected to race and gender may influence cognitive and 379 380 emotional elements that are essential for the perception of obesity and associated weight management behaviors.44 381

382 Another reason may be that, although education or income interacts with a covariate, different combinations between levels of education or income and covariate categories may 383 384 be differently associated with being obese.

There are three potential reasons for the gender differences in the predicted 385 386 probabilities of being obese for both education and income levels. First, these gender 387 differences partly derive from gender differences in the covariates that interact with education 388 or income. For example, in the present study, educational level showed significant interaction 389 effects with residential area, excessive alcohol consumption, self-perceived stress, self-390 perceived health, and survey year in men, whereas women's educational level interacted 391 significantly with age, marital status, housing status, hypertension, and diabetes (results not 392 shown). Second, although covariates interact with education or income in both men and 393 women, the magnitude of the interactions between the covariate categories and levels of education or income might differ by gender. Previous studies showed that, unlike in women, 394 increased income does not result in an equivalent adaptation to healthier behaviors in men.⁴⁵ 395 Finally, there may be gender differences in the reverse causation between education or 396 397 income and obesity. For example, in certain patriarchal societies, girls with a health problem may be less likely to have a high level of education than their male counterparts.⁴⁶ 398

200	
399	
400	Strengths and limitations
401	This study analyzed data from a nationally representative sample of South Korean adults,
402	providing abundant information about anthropometric measures, socio-demographic
403	characteristics, lifestyle behaviors, and medical conditions. Using a quantified prediction, this
404	study shows what would happen if policies to reduce obesity prevalence did not consider
405	complex interactions among the characteristics of individuals. Above all, this study is the first
406	to address the association of socioeconomic status with obesity while considering both the
407	main-effect term of every studied variable and the interaction-effect terms between all studied
408	variables.
409	This study has several limitations. The cross-sectional study design precludes causal
410	inferences about the relationship between socioeconomic status and obesity. Moreover, the
411	data were collected a self-report survey, which may have resulted in measurement error and
412	recall bias. Other potential covariates, such as genetics, social network, and parental obesity,
413	were not included in analyses because these data were not available. Unobserved factors,
414	such discount rate and risk aversion, may have influenced both socioeconomic status and
415	body weight. ^{47 48} Finally, we also could not incorporate race and ethnicity into our analysis
416	because the KNHANES did not include these data, and moreover, because the absolute
417	majority of the population is of Korean ethnicity. ^{49 50}
418	
419	Public health implications
420	From a policy perspective, it is of interest whether as a government attempts to
421	provide people with the highest level of education, its actions can lead to a reduction in the
422	prevalence of obesity and the socioeconomic gradient in such prevalence. Though caution is

423	required when making policy predictions based on findings from cross-sectional data,
424	according to the findings of this study, the answer might be "no." An enhanced governmental
425	educational policy that enables all men to complete the highest level of formal education
426	would reduce the gradient in the predicted probability of being obese by 53%, from 0.130 to
427	0.061, but would also increase the average predicted probability by 26%, from 0.287 to 0.362.
428	Conversely, the same enhanced educational policy in women would raise the gradient in the
429	predicted probability by 77%, from 0.071 to 0.126, but would lower the average predicted
430	probability by 36%, from 0.440 to 0.283. This suggests that, in order to meet both goals (low
431	prevalence of obesity and reduced gradient by socioeconomic status), educational policies
432	should be implemented in combination with other social policies, and these governmental
433	efforts should be differentiated by gender. These results may elicit a new debate about
434	whether educational policies should consider health consequences. ^{51 52} Meanwhile, some
435	cross-country studies have shown that the determinants of health particularly the effects of
436	social determinants are specific to countries and have emphasized the need for local studies
437	that inform local policies and programs. ^{24 53 54}

439 CONCLUSIONS

This is the first study to investigate the association of socioeconomic status with obesity while considering both the main-effect term of every studied variable and the interactioneffect terms between all studied variables. This study highlights the importance of interaction effects in studies of the associations of socioeconomic status with obesity. According to the results, moving from models evaluating only main effects to models evaluating both main and interaction effects may change the association of socioeconomic status with obesity, the

group with the highest likelihood of obesity, the gradient in the likelihood of obesity by socioeconomic status, and gender differences in the associations of socioeconomic status with obesity. These results suggest that studies on the association between socioeconomic status and obesity should include interaction-effect terms for all characteristics and consider gender differences, and that policy efforts to reduce obesity and the resulting socioeconomic gradients should be established based on the results of those in-depth studies. Moreover, further research is needed to examine whether these findings are valid in other sociocultural settings.

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Acknowledgements

The authors thank Professors Mark Montgomery, Warren Sanderson, Han Joong Kim, and Woo Hyun Cho for their help.

Contributors

WC conceived and designed the study, conducting the literature review and the statistical analysis, writing the paper. JK collected and managed the data. JK, SJL, SL, and RK participated in reviewing the literature and writing the paper.

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests

None declared.

Ethics approval

Institutional Review Board of Yonsei University Graduate School of Public Health.

Provenance and peer review

Not commissioned; externally peer reviewed.

Data sharing statement

The data used in this study are available from the Korean Centers for Disease Control and

REFERENCES

- Sobal J, Stunkard AJ. Socioeconomic status and obesity: a review of the literature. *Psychol Bull* 1989;105:260-75.
- 2. McLaren L. Socioeconomic Status and Obesity. *Epidemiol Rev* 2007;29:29-48.
- 3. Monteiro CA, Conde WL, Lu B, *et al.* Obesity and inequities in health in the developing world. *Int J Obes* 2004;28:1181-6.
- International Monetary Fund. Gross domestic product, current prices & Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP. World Economic Outlook Database. October 2015 ed2015.
- 5. Zveglich Jr JE, van der Meulen Rodgers Y. Occupational segregation and the gender wage gap in a dynamic East Asian economy. *South Econ J* 2004:850-75.
- 6. Seguino S. Gender wage inequality and export-led growth in South Korea. *J Dev Stud* 1997;34:102-32.
- Korea Centers for Disease Control and Prevention. The Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010–2012. Korea Centers for Disease Control and Prevention 2014. http://knhanes.cdc.go.kr (accessed 8 Dec 2014).
- International Association for the Study of Obesity Task Force. *The Asia-Pacific perspective: redefining obesity and its treatment*. Sydney, Australia: World Health Organization Western Pacific Region 2000.
- Elgar FJ, Stewart JM. Validity of self-report screening for overweight and obesity. Evidence from the Canadian Community Health Survey. *Can J Public Health* 2008;99:423-7.
- 10. Litton JK, Gonzalez-Angulo AM, Warneke CL, et al. Relationship between obesity

BMJ Open

	and pathologic response to neoadjuvant chemotherapy among women with operable
	breast cancer. J Clin Oncol 2008;26:4072-7.
11.	Prieto-Alhambra D, Premaor MO, Fina Aviles F, et al. The association between
	fracture and obesity is site-dependent: a population-based study in postmenopausal
	women. J Bone Miner Res 2012;27:294-300.
12.	World Health Organization. International guide for monitoring alcohol consumption
	and related harm. Geneva, Switzerland: World Health Organization, 2000.
13.	Haskell WL, Lee IM, Pate R, et al. Physical activity and public health: updated
	recommendation for adults from the American College of Sports Medicine and the
	American Heart Association. Med Sci Sports Exerc 2007;39:1423-34.
14.	Buxton OM, Marcelli E. Short and long sleep are positively associated with obesity,
	diabetes, hypertension, and cardiovascular disease among adults in the United States.
	Soc Sci Med 2010;71:1027-36.
15.	Korea Ministry of Health and Welfare, Korea Center for Disease Control and
	Prevention. Report on 2012 Korea National Health and Nutrition Examination
	Survey. Seoul: Korea Center for Disease Control and Prevention, 2014.
16.	Sobal J. Obesity and socioeconomic status: a framework for examining relationships
	between physical and social variables. Med Anthropol 1991;13:231-47.
17.	Foladare IS. A Clarification of "Ascribed Status' and "Achieved Status". Sociol Q
	1969;10:53-61.
18.	Chandola T, Clarke P, Morris J, et al. Pathways between education and health: a
	causal modelling approach. Journal of the Royal Statistical Society: Series A
	(Statistics in Society) 2006;169:337-59.
19.	Cutler D, Lleras-Muney A. <i>Education and health: evaluating theories and evidence</i> . 35

Cambridge, MA: National Bureau of Economic Research, 2006. 20. Mirowsky J, Ross CE. Education, social status, and health. New York: Aldine de Gruyter, 2003. 21. Cutler D, Glaeser E, Shapiro J. Why have Americans become more obese? Cambridge, MA: National Bureau of Economic Research, 2003. 22. Assari S, Moghani Lankarani M, Kazemi Saleh D, et al. Gender modifies the effects of education and income on sleep quality of the patients with coronary artery disease. Int Cardiovasc Res J 2013;7:141-6. 23. Assari S, Lankarani MM. Race and Urbanity Alter the Protective Effect of Education but not Income on Mortality. Front Public Health 2016;4:100. 24. Assari S. Cross-Country Differences in the Additive Effects of Socioeconomics, Health Behaviors and Medical Comorbidities on Disability among Older Adults with Heart Disease. J Tehran Heart Cent 2015;10:24-33. 25. Assari S, Nikahd A, Malekahmadi MR, et al. Race by Gender Group Differences in the Protective Effects of Socioeconomic Factors Against Sustained Health Problems Across Five Domains. J Racial Ethn Health Disparities 2016; doi:10.1007/s40615-016-0291-3. 26. Assari S. Combined Racial and Gender Differences in the Long-Term Predictive Role of Education on Depressive Symptoms and Chronic Medical Conditions. J Racial Ethn Health Disparities 2016; doi:10.1007/s40615-016-0239-7. 27. Seubsman S, Lim LL, Banwell C, et al. Socioeconomic status, sex, and obesity in a large national cohort of 15-87-year-old open university students in Thailand. J *Epidemiol* 2010;20:13-20. 28. Han E, Norton EC, Stearns SC. Weight and wages: fat versus lean paychecks. Health

BMJ Open

	<i>Econ</i> 2009;18:535-48.
29.	Baum CL, Ford WF. The wage effects of obesity: a longitudinal study. Health Econ
	2004;13:885-99.
30.	Mukhopadhyay S. Do women value marriage more? The effect of obesity on
	cohabitation and marriage in the USA. Rev Econ Househ 2008;6:111-26.
31.	Wardle J, Haase AM, Steptoe A. Body image and weight control in young adults:
	international comparisons in university students from 22 countries. Int J Obes
	2006;30:644-51.
32.	Power EM. An introduction to Pierre Bourdieu's key theoretical concepts. J Study
	Food Soc 1999;3:48-52.
33.	Bourdieu P. The forms of capital. In: Richardson J, ed. Handbook of theory and
	research for the sociology of education. New York: Greenwood, 1986:241-58.
34.	McLaren L, Godley J, MacNairn IA. Social class, gender, and time use: implications
	for the social determinants of body weight? Health Rep 2009;20:65-73.
35.	Regidor E, Gutiérrez Fisac JL, Banegas JR, et al. Obesity and socioeconomic position
	measured at three stages of the life course in the elderly. Eur J Clin Nutr
	2004;58:488-94.
36.	Currie J, Hyson R. Is the impact of health shocks cushioned by socioeconomic status?
	: the case of low birthweight. Cambridge, MA: National Bureau of Economic
	Research, 1999.
37.	Laitinen J, Ek E, Sovio U. Stress-related eating and drinking behavior and body mass
	index and predictors of this behavior. Prev Med 2002;34:29-39.
38.	Ali SM, Lindström M. Socioeconomic, psychosocial, behavioural, and psychological
	determinants of BMI among young women: differing patterns for underweight and 37

overweight/obesity. Eur J Public Health 2006;16:325-31.

- 39. Assari S. The link between mental health and obesity: role of individual and contextual factors. *Int J Prev Med* 2014;5:247-9.
- 40. Carter JD, Assari S. Sustained Obesity and Depressive Symptoms over 6 Years: Race by Gender Differences in the Health and Retirement Study. *Front Aging Neurosci* 2016;8:312.
- 41. Assari S, Caldwell CH. Gender and Ethnic Differences in the Association Between
 Obesity and Depression Among Black Adolescents. *J Racial Ethn Health Disparities* 2015;2:481-93.
- 42. Assari S. Psychosocial Correlates of Body Mass Index in the United States: Intersection of Race, Gender and Age. *Iran J Psychiatry Behav Sci* 2016;10:e3458.
- 43. Hicken MT, Lee H, Mezuk B, *et al.* Racial and ethnic differences in the association between obesity and depression in women. *J Womens Health (Larchmt)* 2013;22:445-52.
- 44. Assari S, Lankarani MM. Mediating Effect of Perceived Overweight on the Association between Actual Obesity and Intention for Weight Control; Role of Race, Ethnicity, and Gender. *Int J Prev Med* 2015;6:102.
- 45. Zhang Q, Wang Y. Socioeconomic inequality of obesity in the United States: do gender, age, and ethnicity matter? *Soc Sci Med* 2004;58:1171-80.
- Chung W, Das Gupta M. The decline of son preference in South Korea: The roles of development and public policy. *Popul Dev Rev* 2007;33:757-83.
- 47. Smith PK, Bogin B, Bishai D. Are time preference and body mass index associated? Evidence from the National Longitudinal Survey of Youth. *Econ Hum Biol* 2005;3:259-70.

BMJ Open

2	48.	Borghans L, Golsteyn BH. Time discounting and the body mass index. Evidence from
		the Netherlands. Econ Hum Biol 2006;4:39-61.
2	49.	Alesina A, Devleeschauwer A, Easterly W, et al. Fractionalization. J Econ Growth
		2003;8:155-94.
:	50.	Kim SY, Park JH, Kim SG, et al. Disparities in utilization of high-volume hospitals
		for cancer surgery: results of a Korean population-based study. Ann Surg Oncol
		2010;17:2806-15.
	51.	Low MD, Low BJ, Baumler ER, et al. Can education policy be health policy?
		Implications of research on the social determinants of health. J Health Polit Policy
		Law 2005;30:1131-62.
:	52.	Woolf SH, Johnson RE, Phillips RL, et al. Giving everyone the health of the
		educated: an examination of whether social change would save more lives than
		medical advances. Am J Public Health 2007;97:679-83.
:	53.	Assari S. Cross-country variation in additive effects of socio-economics, health
		behaviors, and comorbidities on subjective health of patients with diabetes. J Diabetes
		Metab Disord 2014;13:36.
:	54.	Assari S, Lankarani MM. Does Multi-morbidity Mediate the Effect of
		Socioeconomics on Self-rated Health? Cross-country Differences. Int J Prev Med
		2015;6:85.
		39

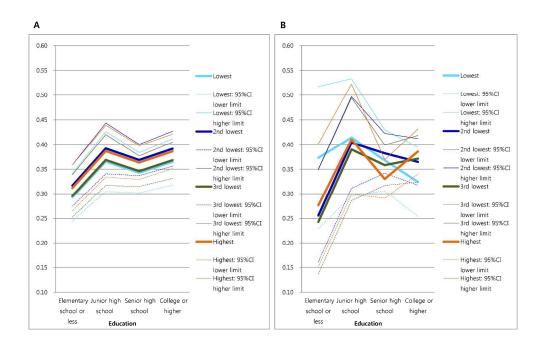


Figure 1 Predicted probabilities of being obese (and their 95% confidence intervals) by education for each income level in men in a model with only main effects (A) and a model with both main and interaction effects (B): the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010–2012, South Korea

297x210mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

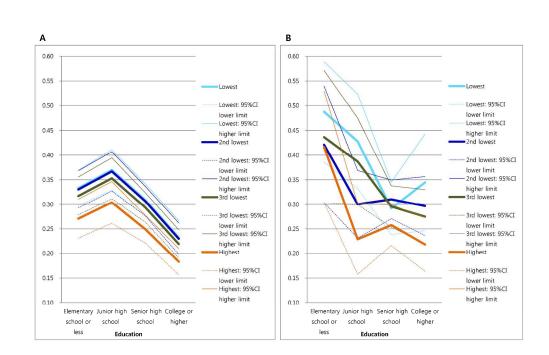


Figure 2 Predicted probabilities of being obese (and their 95% confidence intervals) by education for each income level in women in a model with only main effects (A) and a model with both main and interaction effects (B): the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010–2012, South Korea

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

297x210mm (300 x 300 DPI)

5	South Korea															Dece							
6 7				Elemer	ntary sch	ool or les	s		Jun	ior high	school			Sen	ior high	scherol			C	ollege or	more		
8 9	Characteristic	Overall	Low	2nd low	3rd low	High	(Sum)	Low	2nd low	3rd low	High	(Sum)	Low	2nd low	3rd low	₩ 182gh	(Sum)	Low	2nd low	3rd low	High	(Sum)	(Total)
10	Age, years *	50.8	70.5	64.4	62.3	61.8	(67.2)	63.8	58.0	57.2	61.8	59.6	53.0	44.9	45.1	61.8 0	46.4	48.7	42.9	42.4	61.8	44.0	
11 12	Marital status															own							
13	Married	79.7	10.6	4.9	2.7	1.7	(19.9)	4.3	3.9	2.7	2.2	(13.1)	5.6	9.6	8.4	0 8.7	(32.3)	2.3	8.0	10.0	14.4	(34.8)	(100.0)
14 15	Formerly married	4.6	22.7	8.9	1.8	2.1	(35.4)	11.2	4.1	2.1	2.4	(19.8)	11.5	7.1	4.7	led ^{3.5}	(26.8)	5.3	3.8	4.1	4.7	(18.0)	(100.0)
16	Never-married	15.7	0.5	0.4	0.1	0.0	(1.0)	1.0	0.9	0.5	0.5	(2.9)	9.7	16.2	14.0	₹5.8	(55.7)	5.7	8.3	11.7	14.8	(40.5)	(100.0)
17 18	Residential area															nttp:/							
19	Metro urban	44.2	6.1	3.5	1.8	1.0	(12.4)	2.9	3.5	2.4	2.1	(10.9)	6.6	10.9	8.9	6 9.7	(36.0)	3.6	8.1	11.3	17.8	(40.8)	(100.0)
20 21	Non-metro urban	34.4	7.1	3.7	1.7	1.4	(14.0)	4.0	3.0	2.0	1.6	(10.6)	6.0	10.7	10.9	0.2	(37.8)	2.6	9.8	11.4	14.0	(37.7)	(100.0)
22	Rural	21.4	20.5	7.3	4.3	2.4	(34.4)	6.5	4.1	2.9	2.4	(15.8)	7.2	9.5	6.6		(31.5)	2.3	4.5	5.2	6.4	(18.3)	(100.0)
23 24	Occupation,															j.cor							
25	Unemployed	25.6	9.8	6.5	3.6	2.1	(22.0)	4.4	5.2	3.8	3.1	(16.6)	6.1	13.7	10.9	₽ 1.9	(42.5)	1.8	5.1	5.5	6.6	(18.9)	(100.0)
26 27	Office worker	26.8	0.3	0.1	0.3	0.3	(0.9)	0.4	0.3	0.5	0.8	(1.8)	1.7	6.0	6.5	Apri-	(22.0)	3.5	14.8	21.9	35.1	(75.3)	(100.0)
28	Manual worker	47.6	18.7	5.0	2.0	1.4	(27.0)	7.3	3.5	1.5	1.1	(13.5)	12.5	9.4	8.4	از 17.0 19	(37.2)	4.6	5.9	6.0	5.8	(22.3)	(100.0)
29 30	Housing status, home owner	76.4	9.9	4.9	2.7	1.7	(19.2)	3.9	3.4	2.5	2.2	(12.0)	5.1	9.5	9.1	.6	(34.3)	2.2	7.0	10.1	15.3	(34.6)	(100.0)
31	Universal health insurance, NHI	98.2	9.1	4.4	2.3	1.4	(17.2)	3.9	3.4	2.4	2.0	(11.7)	6.3	10.6	9.2	24°9.7	(35.8)	2.8	8.0	10.2	14.3	(35.3)	(100.0)
32 33	Private health insurance, holder	69.2	3.2	3.0	2.1	1.5	(9.7)	2.0	3.4	2.6	2.3	(10.2)	4.1	11.1	10.7	9 <u>9</u> 2.0	(37.9)	2.3	9.2	12.7	18.1	(42.2)	(100.0)
34	Survey year															est.							
35 36	2010	35.3	9.7	4.4	2.2	1.4	(17.6)	4.4	3.1	2.5	2.3	(12.3)	6.3	11.7	9.2	Prof.8	(35.0)	3.4	8.3	10.9	12.4	(35.1)	(100.0)
30 37	2011	34.0	9.6	4.2	2.1	1.6	(17.5)	3.7	4.2	2.2	2.0	(12.0)	5.9	10.0	8.9	60.8	(35.6)	2.5	8.2	9.0	15.2	(34.8)	(100.0)
38																by							
39 40											1					сор)							
41																copyright.							
42 43																.+							
44					For	noor	oviow	only ht	to.//b.	nione	n hm:	oomlaid	halahau4	auida	lines	vhim	I						
45					FOL	heer	eview	only - ht	h.//bl	njope	n.vmj	com/sh	เล่าสมุดกา	yuide	Fimes	.xnuni	I						

 BMJ Open
 Page 42 of

 Table S1 Disribution (%) of sample characteristics in men by education and income (quartiles): the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010-2012,

 South Korea

Page 43 of 48									BMJ	Open	I				n-2016-014276							
1 2															014276 on							
3 4 ²⁰¹²	30.7	9.3	4.6	2.6	1.2	(17.8)	4.1	3.0	2.3	1.6	(11.0)	7.5	9.8	9.1	22 0.2	(36.5)	2.9	7.0	10.1	14.6	(34.7)	(100.0)
5 Current smoking status, smoker	40.9	8.1	3.7	1.7	1.4	(14.9)	3.9	3.5	2.2	1.7	(11.3)	6.9	12.7	9.1	0 0.2	(38.9)	2.8	8.6	10.6	12.9	(34.9)	(100.0)
6 7 Alcohol consumption, excessive	32.5	3.9	2.8	1.5	0.9	(9.1)	2.2	2.7	1.4	1.8	(8.0)	5.2	13.0	10.1	1 1 1 1 2.1	(40.4)	3.0	9.5	13.0	17.1	(42.6)	(100.0)
8 Routine physical exercise, inactive	78.8	10.5	4.6	2.3	1.4	(18.9)	4.2	3.4	2.4	1.9	(11.9)	6.8	10.0	8.9	er ≥8.6	(34.3)	2.9	7.9	10.5	13.6	(35.0)	(100.0)
9 10 Daily sleep duration, short	41.5	10.1	5.0	2.3	1.4	(18.8)	4.1	2.8	2.0	2.2	(11.2)	6.4	9.2	9.4	.* 8.9	(34.0)	2.8	7.4	10.2	15.6	(36.1)	(100.0)
11 Daily energy intake, moderate	20.1	11.2	5.1	2.0	1.7	(20.0)	4.6	3.4	2.2	2.3	(12.5)	6.4	9.8	8.8	D 9.0	(34.0)	2.6	7.6	9.9	13.5	(33.5)	(100.0)
12 13 Self-perceived stress, very high	3.4	8.4	6.0	2.8	3.2	(20.4)	3.2	4.8	1.6	1.2	(10.8)	6.8	10.4	7.2	nloade5.6	(33.2)	5.2	5.2	8.0	17.2	(35.6)	(100.0)
14 Self-perceived health, very bad	2.4	37.6	6.7	4.5	2.3	(51.1)	9.6	5.6	1.7	2.8	(19.7)	6.7	7.3	1.7		(21.4)	3.9	1.7	1.1	1.1	(7.9)	(100.0)
15 Having hypertension	21.4	16.9	7.1	2.9	2.2	(29.1)	6.9	5.0	3.4	2.4	(17.7)	8.9	7.6	7.6	from.4	(31.5)	3.1	4.6	4.8	9.1	(21.6)	(100.0)
17 Having dyslipidemia	6.5	9.2	5.9	3.4	1.7	(20.1)	6.1	5.0	3.4	2.5	(17.0)	8.4	7.7	7.3	1 9.6	(33.1)	2.9	6.3	6.7	14.0	(29.9)	(100.0)
18 Having diabetes19	32.5	16.9	6.2	2.8	2.1	(28.0)	8.1	4.3	3.7	3.9	(20.0)	8.7	7.3	7.4		(31.7)	3.0	3.1	5.2	9.2	(20.4)	(100.0)
20 21 Number of participants		700	322	167	105	1294	299	252	171	145	867	479	772	666		2617	216	578	735	1030	2559	7337
22 N, number; Low, Lowest; High, High 23 *Mean. 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	nest; NHI, .	National 1	Health In		beer r	eview	only - htt	:p://bn		2		te/about		elines.	bmj.com/ on April 19, 2024 by guest. Protected by copyright.							

4 5

71			Elemer	tary scho	ool or les	s		Junio	or high so	chool			Sen	ior high	senool G			Co	llege or	more		
Characteristic	Overall	Low	2nd low	3rd low	High	(Sum)	Low	2nd low	3rd low	High	(Sum)	Low	2nd low	3rd low	NHigh	(Sum)	Low	2nd low	3rd low	High	(Sum)	(Tota
Age, years *	50.5	69.3	64.2	63.4	64.9	(67.0)	59.6	55.4	54.9	54.6	(56.2)	43.7	41.4	42.9	.7 _{43.0}	(42.6)	38.5	35.9	36.2	39.1	(37.5)	
Marital status															own							
Married	69.5	13.6	6.8	4.0	3.0	(27.3)	2.6	3.6	3.1	2.8	(12.1)	3.6	10.5	9.3	0ad 10.5	(33.9)	1.2	5.9	7.8	11.8	(26.7)	(100.
Formerly married	18.2	45.2	12.0	6.8	6.9	(71.0)	3.9	2.9	1.6	1.4	(9.8)	6.3	4.2	2.1	ed 2.2	(14.9)	1.3	0.9	1.1	1.0	(4.3)	(100.
Never-married	12.3	0.3	0.1	0.0	0.2	(0.6)	0.5	0.3	0.2	0.1	(1.1)	8.7	12.0	9.4	O 13.6	(43.7)	3.9	12.7	15.8	22.3	(54.7)	(100.
Residential area															nttp:/							
Metro urban	44.5	12.2	5.8	3.6	2.6	(24.3)	2.5	3.0	2.4	2.4	(10.3)	5.3	9.9	8.0	b 10.9	(34.1)	1.7	6.5	8.8	14.2	(31.3)	(100.
Non-metro urban	35.0	13.9	6.3	3.7	3.0	(26.8)	2.8	2.9	2.5	2.2	(10.4)	4.9	10.9	9.6	9.6	(35.0)	1.8	6.4	8.6	11.0	(27.8)	(100.
Rural	20.5	36.3	10.2	5.5	5.4	(57.4)	2.5	3.5	2.5	1.8	(10.3)	3.4	6.5	5.1	5.7	(20.7)	0.7	3.5	3.0	4.4	(11.6)	(100.
Decupation,															j.cor							
Unemployed	52.6	20.8	9.5	5.5	5.0	(40.8)	2.9	4.8	4.5	4.1	(16.2)	5.0	10.8	8.9	or 9.2	(33.9)	0.8	2.5	2.3	3.6	(9.2)	(100.
Office worker	16.0	0.4	0.3	0.1	0.2	(1.0)	0.4	0.9	0.2	0.5	(2.0)	2.6	7.0	8.3	P 10.5	(28.4)	2.4	11.8	21.1	33.4	(68.6)	(100.
Manual worker	31.4	21.2	7.3	4.3	3.3	(36.2)	3.1	2.7	2.0	1.6	(9.3)	5.3	9.6	7.3	≓i 199.1	(31.3)	1.8	6.1	6.6	8.8	(23.2)	(100.
Housing status, home owner	73.5	16.0	7.8	4.7	4.0	(32.5)	2.3	3.1	2.9	2.6	(10.8)	3.2	8.5	8.3	N10.8	(30.8)	1.2	5.2	7.3	12.2	(25.9)	(100.
Universal health insurance, NHI	97.0	16.6	7.0	4.1	3.4	(31.1)	2.5	3.1	2.5	2.3	(10.4)	4.3	9.7	8.2	24 by	(31.8)	1.6	6.0	7.8	11.4	(26.7)	(100.
Private health insurance, holder	70.7	7.7	5.2	3.4	2.9	(19.2)	1.9	3.3	2.8	2.8	(10.7)	4.3	11.1	9.9	gu 12.1	(37.5)	1.6	7.1	9.6	14.4	(32.6)	(100.0
Survey year															est. F							
2010	34.0	17.1	7.3	4.3	3.4	(32.0)	2.4	2.8	2.4	2.3	(9.9)	4.9	10.5	7.9	rote 8.2	(31.5)	1.6	6.0	8.2	10.8	(26.6)	(100.0
2011	34.1	18.1	7.1	3.6	3.4	(32.2)	2.4	3.5	2.4	2.3	(10.6)	4.3	8.6	8.1	či 10.6	(31.6)	1.4	5.7	7.2	11.4	(25.7)	(100.
]						by copyright.							
															right							
															Γ.							
				Ear -		view or	by bee	o.//b.wo	ioner	h mi e	o m /o :t.				la funa l							

 BMJ Open
 Page 44 of

 Table S2 Disribution (%) of sample characteristics in women by education and income (quartiles): the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010-2012,

 South Korea

 South Korea

Page	e 45 of 48									BMJ C	Open				n-2016-014276							
1 2															14276 on							
3 4	2012	31.9	18.1	6.2	4.1	3.2	(31.7)	3.0	2.9	2.6	2.1	(10.5)	5.2	9.5	7.9 28 9.3	3 (31.9)	1.7	5.9	7.2	11.1	(25.9)	(100.0)
5	Current smoking status, smoker	5.5	14.8	5.8	2.0	1.6	(24.2)	3.6	5.3	2.0	1.1	(12.0)	11.5	15.5	9.3 g 6.9	9 (43.2)	1.5	4.4	6.6	8.2	(20.6)	(100.0)
6 7	Alcohol consumption, excessive	12.3	4.0	2.9	1.3	1.6	(9.8)	2.3	2.3	1.3	1.8	(7.7)	8.9	13.3	12.2 8 13.5	5 (47.9)	1.8	7.7	11.1	14.0	(34.5)	(100.0)
8	Routine physical exercise, inactive	83.6	18.4	7.0	3.9	3.3	(32.5)	2.5	3.1	2.4	2.0	(10.0)	4.9	9.5	7.8 Er 8.1	7 (30.9)	1.6	6.1	7.9	11.1	(26.7)	(100.0)
9 10	Daily sleep duration, short	42.3	22.9	8.1	5.3	4.1	(40.5)	3.1	3.6	2.4	2.2	(11.3)	4.6	8.5	6.5 7 8.5	5 (28.1)	1.0	4.1	5.6	9.5	(20.1)	(100.0)
11	Daily energy intake, moderate	16.2	15.4	7.2	4.3	3.4	(30.3)	2.4	3.1	3.0	2.1	(10.7)	5.2	11.2	8.6 Q 9.4	4 (34.5)	1.4	6.1	7.3	9.8	(24.5)	(100.0)
12 13	Self-perceived stress, very high	4.9	19.7	9.7	4.1	3.5	(37.0)	3.9	1.9	2.3	1.6	(9.7)	6.0	9.2	8.6 Da 6.0	6 (30.4)	2.3	4.7	6.4	9.7	(23.0)	(100.0)
14	Self-perceived health, very bad	4.5	49.9	15.4	5.9	4.3	(75.5)	3.9	1.8	2.0	2.0	(9.7)	3.0	2.7	8.6 0 6.0 2.7 d 2.3	3 (10.7)	0.9	1.4	0.2	1.6	(4.1)	(100.0)
15 16	Having hypertension	22.2	40.9	13.2	7.6	6.4	(68.1)	4.0	3.5	3.1	2.4	(13.0)	3.1	4.5	3.5 from 4.0) (15.1)	0.4	0.7	1.1	1.6	(3.9)	(100.0)
17	Having dyslipidemia	8.5	30.6	12.0	7.4	5.5	(55.4)	5.1	4.6	3.4	2.7	(15.9)	3.3	5.8	5.3 t 7.4	4 (21.8)	0.6	1.0	1.8	3.6	(6.9)	(100.0)
18 19	Having diabetes	7.0	43.0	14.1	7.1	5.5	(69.7)	5.1	3.5	2.3	1.6	(12.5)	2.6	5.1	3.5 😽 2.0	5 (13.8)	0.3	1.0	1.2	1.6	(4.1)	(100.0)
20															mjope							
21 22	Number of participants		1758	683	397	330	3168	257	304	244	219	1024	471	947	790 9 28	3 3136	155	580	746	1099	2580	9908
23	N, number; Low, Lowest; High, High [*] Mean.	est; NHI,	National	Health In	surance;						P		h		nj.cc							
24 25															nj.com/ on April 19, 2024 by guest.							
26															n Ap							
27 28															oril 1							
29															9, 2(
30 31															024 b							
32															D XG							
33 34															uest.							
35															Protected by copyright.							
36 37															tecte							
38															id by							
39 40										2	,				cop							
40 41															yrigl							
42															rt.							
43 44					_																	
45					For p	eer re	eview onl	y - http	o://bm	jopen.	bmj.c	om/site	e/about/g	guidel	ines.xhtml							
46 47																						

		BMJ Open	Page 46
STROBE Statement	-check	list of items that should be included in reports of observational studies	
	Item	Decommondation	
Title and abstract	<u>No</u> 1	Recommendation (a) Indicate the study's design with a commonly used term in the title or the abstract	_
		\rightarrow We indicated it in the title and the abstract (page 1 and 3).	_
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	
		\rightarrow We provided them in the abstract (pages 3-4).	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	
0		\rightarrow We explained them in the introduction (pages 6-7).	_
Objectives	3	State specific objectives, including any prespecified hypotheses	
		\rightarrow We stated them in the introduction (pages 6-7)	_
Methods			_
Study design	4	Present key elements of study design early in the paper	
		\rightarrow We presented them in the measures and variables section of the materials and	
		methods (pages 8-9).	
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,	
		exposure, follow-up, and data collection	
		\rightarrow We described them in the data source and study sample sections of the materials	
		and methods (pages 7-8).	_
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of	
		selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of	
		case ascertainment and control selection. Give the rationale for the choice of cases	
		and controls	
		<u>Cross-sectional study</u> —Give the eligibility criteria, and the sources and methods of	
		selection of participants	
		\rightarrow We presented them in the data source and study sample sections of the materials and methods (mass 7.8)	
		and methods (pages 7-8).(b) Cohort study—For matched studies, give matching criteria and number of	_
		(b) Conort study—For matched studies, give matching criteria and number of exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the number of	
		controls per case	
		\rightarrow N/A	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	
v arrautes	/	effect modifiers. Give diagnostic criteria, if applicable	(
		\rightarrow We clearly defined them in the measures and variables section of the materials	
		\rightarrow we clearly defined them in the measures and variables section of the materials and methods (pages 8-9).	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	_
measurement	0	assessment (measurement). Describe comparability of assessment methods if there	
mousurement		is more than one group.	
		\rightarrow We indicated them in the materials and methods (pages 7-11).	-
Bias	9	\rightarrow we indicated them in the materials and methods (pages 7-11). Describe any efforts to address potential sources of bias	

BMJ Open

	m
	Ξ
	C
	0
	D 0
	pen:
	⇒
	ŝ
	÷
	ĭ
	₿
	ŝ
	ĕ
	0
	SE
	2
	; 10.1136/bmjopen-2016-014276 on 28 December 2017
	1
	ω
	2
	Ч
•	÷
	ğ
	θD
	Ň
	õ
	6
	ď
	ž
	₿
	Ž
	0,0
	ĭ
	Ŋ
	8
	Q Q
	č
	P
	Ъ
	Φ
	Ň
	2
	7
	—
	8
	-
	≥
	nlc
	vnloa
	wnloade
	wnloaded
	wnloaded fro
	wnloaded from
	wnloaded from h
	wnloaded from http
	wnloaded from http:/
	wnloaded from http://b
	BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bm
	wnloaded from http://bmjo
	wnloaded from http://bmjope
	wnloaded from http://bmjopen.
	wnloaded from http://bmjopen.br
	wnloaded from http://bmjopen.bmj.
•	wnloaded from http://bmjopen.bmj.cc
	wnloaded from http://bmjopen.bmj.com
	wnloaded from http://bmjopen.bmj.com/
	wnloaded from http://bmjopen.bmj.com/ or
	wnloaded from http://bmjopen.bmj.com/ on /
	wnloaded from http://bmjopen.bmj.com/ on Ap
	wnloaded from http://bmjopen.bmj.com/ on April
	wnloaded from http://bmjopen.bmj.com/ on April 1:
	wnloaded from http://bmjopen.bmj.com/ on April 19,
-	wnloaded from http://bmjopen.bmj.com/ on April 19, 20
-	wnloaded from http://bmjopen.bmj.com/ on April 19, 202
	wnloaded from http://bmjopen.bmj.com/ on April 19, 2024
-	wnloaded from http://bmjopen.bmj.com/ on April 19, 2024 by
	wnloaded from http://bmjopen.bmj.com/ on April 19, 2024 by g
	wnloaded from http://bmjopen.bmj.com/ on April 19, 2024 by gue
-	wnloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest
-	njopen.bmj.com/ on April 19, 2024 by guest.
	wnloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Pr
	njopen.bmj.com/ on April 19, 2024 by guest.
-	njopen.bmj.com/ on April 19, 2024 by guest.
	njopen.bmj.com/ on April 19, 2024 by guest.
	njopen.bmj.com/ on April 19, 2024 by guest.
	njopen.bmj.com/ on April 19, 2024 by guest.
-	njopen.bmj.com/ on April 19, 2024 by guest.
-	njopen.bmj.com/ on April 19, 2024 by guest.
	njopen.bmj.com/ on April 19, 2024 by guest.
	njopen.bmj.com/ on April 19, 2024 by guest.
	njopen.bmj.com/ on April 19, 2024 by guest.

			We described them in the strengthe and limitations section of the discussion
			\rightarrow We described them in the strengths and limitations section of the discussion (near 20)
Study size		10	(page 29). Explain how the study size was arrived at
Study Size		10	
			\rightarrow We explained the study size in the data source and study sample section of the materials and methods (masse 7.8)
	.1	11	materials and methods (pages 7-8).
Quantitative variab	bles	11	Explain how quantitative variables were handled in the analyses. If applicable,
			describe which groupings were chosen and why
			\rightarrow We explained quantitative variables' handling in the measures and variables
		10	section of the materials and methods (pages 8-9).
Statistical methods	8	12	(a) Describe all statistical methods, including those used to control for confounding
			\rightarrow We described statistical methods in the analytic procedures section of the
			materials and methods (pages 9-11).
			(b) Describe any methods used to examine subgroups and interactions
			\rightarrow We described statistical methods in the analytic procedures section of the
			materials and methods (pages 9-11).
			(c) Explain how missing data were addressed
			\rightarrow N/A
			(d) Cohort study—If applicable, explain how loss to follow-up was addressed
			Case-control study—If applicable, explain how matching of cases and controls was
			addressed
			Cross-sectional study—If applicable, describe analytical methods taking account of
			sampling strategy
			\rightarrow We described them in the analytic procedures section of the materials and
			methods (pages 9-11).
			(e) Describe any sensitivity analyses
			\rightarrow N/A
Results			
Participants	13*	(a) Rep	port numbers of individuals at each stage of study—eg numbers potentially eligible,
		examin	ed for eligibility, confirmed eligible, included in the study, completing follow-up, and
		analyse	
		•	reported them in the data source and study sample section of the materials and
			Is and in the table (pages 7-8, 12-15).
			re reasons for non-participation at each stage
		\rightarrow N/A	
		-	nsider use of a flow diagram
		\rightarrow N/A	
Deceminations data	1.4*		
Descriptive data	14*		e characteristics of study participants (eg demographic, clinical, social) and
			ation on exposures and potential confounders
			described them in the data source and study sample section of the materials and
		-	Is and in the table (pages 7-8, 12-15).
			icate number of participants with missing data for each variable of interest
		\rightarrow N/A	
		(c) Coh	nort study—Summarise follow-up time (eg, average and total amount)
		\rightarrow N/A	<u> </u>
Outcome data	15*	Cohort	study—Report numbers of outcome events or summary measures over time
		Case-c	ontrol study-Report numbers in each exposure category, or summary measures of
		exposu	re
		-	

1	
2	
3	
4	
3 4 5	
6 7 8	
7	
0	
0	
9	
1	0
1	1
1	2
1	3
1	1
1	5
1	0
1	6
1	7
1	8
1	9
2	0
9 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3	1
2	ו ר
2	2
2	3
2	4
2	5
2	6
2	7
2	<i>'</i>
2	8
2	9
3	0
3	1
R	2
2	2
3	J ⊿
3	4
3	5
3	6
3	7
3	8
3	9
1	0
4	
	_
	2
4	3
4	
4	5
4	
4	
4	
4	
	0
5	1
5	
5	2
	4
5	
5	6
5	7
5 5	8
5	9
6	0

1

		Cross-sectional study — Report numbers of outcome events or summary measures
		\rightarrow We reported them in the table (pages 12-15; Table 1).
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for
		and why they were included
		\rightarrow We indicated them in the results and the table (pages 16-22, Table 2)
		(b) Report category boundaries when continuous variables were categorized
		\rightarrow We reported them in the measures and variables section of the materials and methods
		(pages 8-9).
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		meaningful time period
		\rightarrow N/A
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity
		analyses
		\rightarrow N/A
Discussion		·
Key results	18	Summarise key results with reference to study objectives
		\rightarrow We indicated them in the comparison to previous studies section of the discussion (pages
		22-23).
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.
		Discuss both direction and magnitude of any potential bias
		\rightarrow We discussed them in the strengths and limitations section of the discussion (page 29).
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,
		multiplicity of analyses, results from similar studies, and other relevant evidence
		\rightarrow We discussed them in the discussion (pages 22-30).
Generalisability	21	Discuss the generalisability (external validity) of the study results
		\rightarrow We discussed it in the public health implications section of the discussion and in the
		conclusion (pages 29-30).
Other informatio	n	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable,
		for the original study on which the present article is based
		\rightarrow This research received no specific grant from any funding agency in the public,
		commercial or not-for-profit sectors.

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Gender-specific interactions between education and income in relation to obesity: a cross-sectional analysis of the Fifth Korean National Health and Nutrition Examination Survey (KNHANES V)

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-014276.R2
Article Type:	Research
Date Submitted by the Author:	06-Jul-2017
Complete List of Authors:	Chung, Woojin; Yonsei University Graduate School of Public Health, Department of Health Policy; Institute of Health Services Research, Yonsei University Lim, Seung-ji; National Health Insurance Service, Health Insurance Policy Research Institute Lee, Sunmi; National Health Insurance Service, Health Insurance Policy Research Institute Kim, Roeul; Korea Worker's Compensation and Welfare Service, Labor Welfare Research Institute Kim, Jaeyeun; National Health Insurance Service, Health Insurance Policy Research Institute Kim, Jaeyeun; National Health Insurance Service, Health Insurance Policy Research Institute; Graduate School, Yonsei University, Department of Public Health
Primary Subject Heading :	Public health
Secondary Subject Heading:	Sociology
Keywords:	Obesity, Education, Income, Gender, South Korea

SCHOLARONE[™] Manuscripts

BMJ Open

Gender-specific interactions between education and income in relation to obesity: a cross-sectional analysis of the Fifth Korean National Health and Nutrition Examination Survey (KNHANES V)

Woojin Chung,^{1,2} Seung-ji Lim,³ Sunmi Lee,³ Roeul Kim,⁴ Jaeyeun Kim,^{3,5*}

¹ Department of Health Policy, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea

² Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea

³ Health Insurance Policy Research Institute, National Health Insurance Service, Wonju,

Republic of Korea

⁴Labor Welfare Research Institute, Korea Worker's Compensation and Welfare Service, Seoul,

Republic of Korea

⁵ Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea

*Corresponding author

Department of Public Health, Graduate School, Yonsei University 50-1 yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea E-mail: jaeyeunk@yuhs.ac

Cellular phone: +82-10-3466-7746

Word count: 5,766 (excluding title page, abstract, references, figures and tables)

MJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Keywords: Obesity, Education, Income, Gender, South Korea

ABSTRACT

Objectives

- 4 To identify gender-specific associations between education and income in relation to obesity
- 5 in developed countries by considering both the interaction-effect terms and the main-effect

6 terms.

7 Design

- 8 A cross-sectional study. Education and income levels were chosen as socioeconomic status
- 9 indicators. Socio-demographics, lifestyles and medical conditions were used as covariates in
- 10 multivariable logistic regression models. Adjusted odds ratios and predicted probabilities of
- 11 obesity were computed and adjusted for a complex survey design.

12 Setting

13 Data were obtained from the Fifth Korea National Health and Nutrition Examination Survey

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

14 (2010-2012).

Participants

- 16 The sample included 7,337 male and 9,908 female participants aged 19 years or older.
- **Outcome measure**
- 18 Obesity was defined as body mass index of 25 or more, according to a guideline for Asians.
- **Results**
- 20 In models with no interaction-effect terms, only education was a significantly associated with
- 21 obesity in men, but both income and education were significant in women. However, in
- 22 models with the interaction-effect terms, income was significant in men but education was
- 23 significant in women. The interaction effect between income and education was significant in

men but not in women. Participants having the highest predicted probability of obesity over
educational and income levels differed between the two models, and between men and
women. The results of the predicted probabilities of obesity demonstrated that the highest
level of formal education for all men was associated with an increase in their predicted

28 probabilities of obesity by as much as 26%.

29 Conclusions

The well-known association between socioeconomic status and obesity may not be valid when interaction effects are included. Ignoring these effects and their gender differences may result in the targeting of wrong populations for reducing obesity prevalence and its resultant socioeconomic gradients. Further research is needed to examine whether these findings are valid in other sociocultural settings.

36 Article summary

- 37 Strengths and limitations of this study
- This is the first study to investigate the association of socioeconomic status with
 obesity while considering both main effects and interaction effects.
 - 2. This study analyzed data from a nationally representative sample of South Korean
- 41 adults, providing abundant information about anthropometric measures, socio-
- 42 demographic characteristics, lifestyle behaviors, and medical conditions.
- 43 3. This study shows by means of a quantified prediction what would happen if policies
- 44 to reduce obesity prevalence did not consider complex interactions among
- 45 characteristics of individuals.
- 46 4. The cross-sectional study design used in this study precludes causal inferences about
 47 the relationship between socioeconomic status and obesity.

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

INTRODUCTION

-	
3	Numerous studies have investigated various factors related to obesity, and have identified
4	associations between socioeconomic status and obesity, which are negatively correlated in
5	both men and women in developed countries, although this is more consistent in women than
6	in men. ¹⁻³ However, because most empirical studies of obesity have ignored the interaction
7	effects among various characteristics, these studies have failed to detect complex associations
8	between different levels of socioeconomic status in relation to obesity; moreover, they have
9	failed to explain differences among different population groups regarding the mechanisms
10	through which socioeconomic status becomes associated with obesity.
11	For example, when the interaction effects among various characteristics are
12	considered, previous studies have not answered the question as to whether the above-
13	mentioned, well-known associations between socioeconomic status and obesity remain valid.
14	Moreover, they have seldom explored why a socioeconomic status indicator sometimes
15	interacts with another socioeconomic status indicator with regard to obesity, and whether the
16	interaction differs by gender; whether the likelihood of being obese with regard to some
17	levels of socioeconomic status remains the same before and after consideration of the
18	interaction effects; and whether government can reduce the prevalence of obesity and change
19	the socioeconomic gradient in the prevalence of this condition by providing all individuals
20	with the highest level of socioeconomic status possible.
21	Attempting to fill the gap between previous findings and the unanswered questions,
22	this study chose education and income levels as socioeconomic status indicators because they
23	complement each other: educational level is established in early adulthood and tends to
24	remain unchanged later in life, while income level may change throughout adult life. In 6

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

particular, this study used data from South Korea, which has industrialized rapidly and is now
categorized as one of the ten largest advanced economies in the world.⁴ Nevertheless, South
Korea is still noted for pronounced gender inequality almost everywhere, especially in the
labor markets.⁵⁶

This study considered two models for each gender: one that included only the maineffect term of each variable, and the other included the two-way interaction-effect terms between variables, as well as the main-effect term of each variable. Considering the complex survey design, this study used multivariable logistic regression analyses to compute the odds ratios of obesity and to predict the probability that a man or woman would be obese if he or she had a particular set of education and income levels. BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

-

36 MATERIALS AND METHODS

37 Data source and study sample

This study was based on the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010–2012, which used a stratified multistage clustered probability sampling design to collect data on the non-institutionalized, civilian population of South Korea on behalf of the Korean Centers for Disease Control and Prevention.⁷ This survey was composed of a health interview and a nutrition survey conducted at the participants' homes, as well a physical examination conducted by physicians at designated examination centers. Detailed information about the survey design and characteristics is available at the KNHANES website.⁷ From KNHANES V, this study accessed data from a pool of 25,534 individuals

47 (8,958 in 2010, 8,518 in 2011, and 8,058 in 2012). Of this group, 24,173 had participated in

the interviews, and 18,571 individuals aged 19 years or older underwent physical
examinations. A total of 17,245 (92.86%) participants (7,337 men, 9,908 women) were
included in this study because they had the required information in their files. The ethical
review board of the educational institution where the research was conducted approved this
study.

54 Measures and variables

The obesity status of each participant was determined anthropometrically using data from the physical examination. Height was measured using a portable stadiometer, and body weight was measured using a calibrated balance-beam scale, and the body mass index (BMI) was calculated from these height and weight measurements. According to the guidelines proposed by the World Health Organization indicating that Asians have a lower average BMI,⁸ this study defined general obesity as a BMI of at least 25. Also, because the percentage of participants with BMI of less than 18.5 in the sample was very small (4.5%, 781 participants), we combined participants with BMI of less than 18.5 and those with BMI between 18.5 to 25 into a single group. Therefore, a dichotomous outcome variable was constructed with a value of 1 (obesity, BMI of 25 or higher) and 0 (non-obesity, BMI of less than 25.9-11

Levels of education and income were chosen as socioeconomic status indicators. Education was defined as the highest level of formal education completed as of the date of the interview. This study categorized education into four levels: elementary school or less, junior high school, senior high school, and college or more. For income, this study used an equivalized monthly household income calculation ([monthly overall household income] [household size]^{-0.5}) and divided the participants into four quartiles.

71	Nine sociodemographic characteristics, including gender, were incorporated as
72	covariates. Age was treated as a continuous variable, and marital status was categorized into
73	married, formerly married, and never married. Residential area was divided into metropolitan
74	urban area, non-metropolitan urban area, and rural area. Occupation was grouped into
75	unemployed, office worker, and manual worker. Housing status was coded in terms of
76	whether a participant was a renter or a home owner. Participants were categorized according
77	to whether they were enrolled in National Health Insurance or Medical Care Aid for regular
78	or low-income individuals, respectively, with regard to the universal health insurance
79	program. Participants with private health insurance were also noted. Survey year was added
80	to control for any fixed time effect.
81	This study also incorporated ten characteristics about lifestyle and medical conditions.
82	Participants were grouped in terms of the following categories: 1) smoking, 2) excessive
83	alcohol consumption (at high risk due to drinking according to the gender-specific guidelines
84	of the World Health Organization), ¹² 3) routinely exercising (physical activity as defined as

the participation in moderate or vigorous exercise for a respective frequency and duration),¹³
4) daily sleep duration (sleeping less than 7 h per day was defined as sleeping for a short

duration),¹⁴ 5) daily energy intake (moderate energy intake was defined as total energy intake within $1.25 \times$ of participants' estimated daily energy requirement),¹⁵ 6) self-perceived stress, 7)

self-perceived health, 8) hypertension, 9) dyslipidemia, and 10) diabetes. The presence of the

90 last three chronic diseases was determined by a prior physician diagnosis at the pre-surgery
91 interview.

93 Analytic procedures

94 A six-fold analysis was performed. First, this study tested differences in the distributions of

variables among men and women using the *t*-test for continuous variables and the χ^2 test for categorical variables. Second, this study tested the association of each variable with obesity by gender using the χ^2 test. Third, gender interaction effects were examined, for which simple logistic regression models were constructed with main effects for gender and the variable of interest as well as the interaction effects of the two variables. Due to the results, the remaining analyses were stratified by gender.

Fourth, to fit the multivariable logistic regression models, this study continued to re-categorize each of the variables and defined each variable's reference category differently until no strong multicollinearity was found for the main-effect models and no evidence of a lack of goodness-of-fit was found in each model. The values for the variance inflation factor were less than 3.65, and p-values based on the Hosmer-Lemeshow statistic were higher than 0.26.

Fifth, this study estimated the adjusted odds ratios (ORs) of obesity and their 95% confidence intervals (CIs) after fully adjusting for covariates. Two models were considered for each gender: Model 1 included only the main-effect term of every variable, and Model 2 included the main-effect terms for each variable as well the two-way interaction-effect terms between the variables. For the two-way interaction-effect terms between the variables, we included interaction-effect terms between each pair of independent variables including income, education, and 9 socio-demographic covariates. We considered not only the interaction-effect terms between education and income, but also the interaction-effect terms of each of the other independent variables. In order to identify a purer interaction-effect between education and income in relation to obesity, we needed to control for other possible variables that could influence obesity including 1) main effects of each independent variable, 2) interaction-effect terms between education and each of the 9 socio-demographic covariates.

3) interaction-effect terms between income and each of the 9 socio-demographic covariates, and 4) interaction-effect terms between each two of all 9 socio-demographic covariates. In addition, the reasons why we considered the two-way interaction-effect terms between the variables, rather than the three-way or greater interaction-effect terms, were: (1) as we included three-way or greater interaction-effect terms, we had more difficulty having a sufficient number of observations for the analyses in combined categories of independent variables associated with the interactions, and (2) two-way interactions were sufficient to emphasize the importance of gender-specific interactions between education and income in relation to obesity. Finally, to assess the association of each level of a socioeconomic status indicator with obesity and to compare these associations across categories for both socioeconomic status indicators, this study predicted the probability of a participant being obese (and its 95%) confidence intervals) if he or she had a particular set of education and income levels. These probabilities, which were calculated by gender, denote the average of all participants' probabilities if each participant belonged to a particular set of education and income levels, while maintaining participant characteristics for the other variables constant. All analyses and tests were conducted considering the sampling design of the survey. However, for convenience, the descriptive statistics are shown as unweighted. P-values < 0.05 were considered statistically significance. The SAS 9.2 software (SAS Institute, Cary, NC, USA) and STATA 12 software (StataCorp, College Station, TX, USA) were used to perform all statistical analyses. RESULTS

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Descriptive statistics

143	The rate of obesity	was significantly	y higher in men	(34.96%) than	in women (29.67%), as
-----	---------------------	-------------------	-----------------	---------------	-----------------------

- indicated by the significantly higher BMI in men than in women (Table 1). All characteristics
- 145 differed significantly by gender except for residential area, housing status, enrollment in a
- 146 private health insurance plan, survey year, daily sleep duration, and diabetes status.

Page 13 of 49

BMJ Open

Table 1 Sample characteristics and their associations with obesity by gender: the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010-2012, South Korea

		Dis	tribution,		Obesity, %			
	Me	en	Wo	omen	p Value†	Men	Women	p Value¶
Body mass index, kg m ⁻² *	23.97	(3.1)	23.43	(3.6)	< 0.001			
Obesity	2565	(35.0)	2940	(29.7)	< 0.001			
Age, years*	50.79	(16.4)	50.48	(16.6)	< 0.001	35.1‡	34.7‡	< 0.001
Marital status					< 0.001	<0.001§	<0.001§	< 0.001
Married	5848	(79.7)	6887	(69.5)		36.0	30.5	
Formerly married	339	(4.6)	1803	(18.2)		30.1	37.4	
Never-married	1150	(15.7)	1218	(12.3)		31.0	13.4	
Residential area					0.446	0.259§	<0.001§	< 0.001
Metro urban	3240	(44.2)	4404	(44.5)		35.2	27.0	
Non-metro urban	2523	(34.4)	3471	(35.0)		36.6	29.2	
Rural	1574	(21.4)	2033	(20.5)		31.9	36.4	
Education					< 0.001	<0.001§	<0.001§	< 0.001
Elementary school or less	1294	(17.6)	3168	(32.0)		26.6	40.2	
Junior high school	867	(11.8)	1024	(10.3)		36.1	38.6	
Senior high school	2617	(35.7)	3136	(31.7)		34.5	27.1	
College or more	2559	(34.9)	2580	(26.0)		39.3	16.4	
Income, quartiles					< 0.001	0.002§	<0.001§	< 0.001
Lowest	1694	(23.1)	2641	(26.6)		28.4	36.8	
2nd lowest	1924	(26.2)	2514	(25.4)		36.5	31.7	
3rd lowest	1739	(23.7)	2177	(22.0)		34.9	28.0	

BMJ Open: first published as 10.1136/pmjopen-2016.014256.0168 Perference 2013/Devriver and the converted by copyright.

Page	14	of	49
------	----	----	----

Highest	1980	(27.0)	2576	(26.0)		39.1	21.8	
Occupation					< 0.001	<0.001§	<0.001§	< 0.001
Unemployed	1878	(25.6)	5208	(52.6)		28.7	31.1	
Office worker	1965	(26.8)	1586	(16.0)		42.1	17.5	
Manual worker	3494	(47.6)	3114	(31.4)		34.3	33.6	
Housing status					0.158	0.945§	0.843§	0.838
Renter	5606	(76.4)	7280	(73.5)		35.1	29.5	
Home owner	1731	(23.6)	2628	(26.5)		34.6	30.1	
Universal health insurance					< 0.001	0.020§	0.004§	< 0.001
National Health Insurance	7204	(98.2)	9609	(97.0)		35.2	29.4	
Medical Care Aid	133	(1.8)	299	(3.0)		24.8	39.8	
Private health insurance					0.181	<0.001§	<0.001§	< 0.001
Non-holder	2258	(30.8)	2898	(29.3)		29.3	34.9	
Holder	5079	(69.2)	7010	(70.7)		37.5	27.5	
Survey year					0.831	0.695§	0.133§	0.162
2010	2592	(35.3)	3364	(34.0)		35.2	28.3	
2011	2494	(34.0)	3380	(34.1)		34.6	30.4	
2012	2251	(30.7)	3164	(31.9)		35.1	30.4	
Current smoking status					< 0.001	0.375§	0.936§	0.729
Non-smoker	4336	(59.1)	9359	(94.5)		36.1	29.8	
Smoker	3001	(40.9)	549	(5.5)		33.3	27.1	
Alcohol consumption					< 0.001	<0.001§	0.064§	< 0.001
Not excessive	4950	(67.5)	8689	(87.7)		31.5	30.1	
Excessive	2387	(32.5)	1219	(12.3)		42.1	26.7	
Routine physical exercise					< 0.001	0.838§	<0.001§	0.012

Physically active	1552	(21.2)	1620	(16.4)		35.6	32.8	
Physically inactive	5785	(78.8)	8288	(83.6)		34.8	29.1	
Daily sleep duration					0.992	0.150§	<0.001§	0.007
Non-short	4291	(58.5)	5717	(57.7)		34.2	27.4	
Short	3046	(41.5)	4191	(42.3)		36.0	32.8	
Daily energy intake					< 0.001	0.818§	<0.001§	< 0.00
Not moderate	5859	(79.9)	8306	(83.8)		34.9	28.0	
Moderate	1478	(20.1)	1602	(16.2)		35.4	38.5	
Self-perceived stress					< 0.001	0.969§	0.031§	0.236
Not very high	7087	(96.6)	9421	(95.1)		35.1	29.5	
Very high	250	(3.4)	487	(4.9)		32.4	33.3	
Self-perceived health					< 0.001	0.362§	<0.001§	0.002
Not very bad	7159	(97.6)	9467	(95.5)		35.2	29.1	
Very bad	178	(2.4)	441	(4.5)		24.2	42.4	
Hypertension					< 0.001	<0.001§	<0.001§	< 0.00
No	5764	(78.6)	7713	(77.8)		32.6	24.3	
Yes	1573	(21.4)	2195	(22.2)		43.6	48.5	
Dyslipidemia					< 0.001	<0.001§	<0.001§	0.137
No	6859	(93.5)	9065	(91.5)		33.9	27.8	
Yes	478	(6.5)	843	(8.5)		50.6	49.8	
Diabetes					0.099	0.858§	<0.001§	< 0.00
No	6661	(90.8)	9219	(93.0)		34.8	28.1	
Yes	676	(9.2)	689	(7.0)		36.1	50.4	
Number of participants		7337		9908		7337	9908	

N, number; All P-values were estimated by considering a stratified cluster sampling design.

*Mean (standard deviation).

[†]P-value was estimated by using the t-test for continuous variables and χ^2 tests for categorical variables.

Antinuous variables and y^2 tests. a gender: a con effects terms between gender and each charac. For the continuous age variable, the proportion of obesity was obtained from people aged 50-59 years to which median age for each gender belonged. §P-value was estimated by χ^2 tests for each gender.

P-value was estimated from the interaction effects terms between gender and each characteristic by using the logistic analysis.

151	Characteristics associated with obesity and gender differences
152	Among men, the rate of obesity was significantly higher in participants who were married,
153	had at least a college education, had an income in the highest quartile, had an office job, were
154	National Health Insurance beneficiaries, had a private health insurance plan, consumed
155	excessive alcohol, had hypertension, and had dyslipidemia (Table 1).
156	Among women, a significantly higher rate of obesity was observed in participants
157	who were formerly married, lived in a rural area, did not go beyond elementary school, had
158	incomes in the lowest quartile, were manual workers, were Medical Care Aid beneficiaries,
159	had no private health insurance plan, were physically active, lacked adequate sleep, had
160	moderate energy intake, reported very high levels of stress, had very poor self-perceived
161	health, had hypertension, had dyslipidemia, and were diabetic. The rate of obesity differed
162	significantly by gender with regard to all variables except for housing status, survey year,
163	current smoking status, self-perceived stress, and had dyslipidemia.
164	
165	Adjusted associations of obesity with education and income
166	Among men, according to the model with only main-effect terms (Model 1), the OR of
167	obesity was 1.41 (95% CI = $1.12-1.77$) in those with at least a college education compared
168	with their counterparts who did not go beyond elementary school (Table 2). Conversely,
169	according to the model with interaction-effect terms (Model 2), the OR was 0.05 (95% CI =
170	0.01–0.32) among those with incomes in the highest quartile compared with those with
171	incomes in the lowest quartile. Education alone was not significant. In terms of their
172	association with obesity, education and income were found to interact with each other, as five
173	combinations of educational and income levels were significant compared with their
174	respective reference combinations.
	17

Table 2 Adjusted associations of education and income with obesity by gender: the Fifth Korea National Health and Nutrition Examination

176 Survey (KNHANES V), 2010-2012, South Korea

	Men (N=7337)				Women (N=9908)			
	Model 1†		Μ	Model 2‡		Model 1 ⁺		Iodel 2‡
	OR	(95% CI)	OR	(95% CI)	OR	(95% CI)	OR	(95% CI)
Main effects								
Education								
Elementary school or less (EDU1)	1.00		1.00		1.00		1.00	
Junior high school (EDU2)	1.41**	(1.10-1.82)	0.61	(0.06-6.56)	1.19	(0.98-1.44)	0.16*	(0.03-0.89)
Senior high school (EDU3)	1.27*	(1.03-1.58)	0.57	(0.08-4.25)	0.89	(0.72-1.09)	0.13**	(0.03-0.58)
College or more (EDU4)	1.41**	(1.12-1.77)	1.45	(0.16-13.04)	0.59***	(0.46-0.75)	0.13*	(0.02-0.89)
Income, quartiles								
Lowest (INC1)	1.00		1.00		1.00		1.00	
2nd lowest (INC2)	1.13	(0.91-1.39)	0.11*	(0.02-0.64)	0.99	(0.84-1.16)	1.13	(0.26-4.98)
3rd lowest (INC3)	1.01	(0.81-1.28)	0.18	(0.03-1.11)	0.93	(0.77-1.11)	1.16	(0.22-6.20)
Highest (INC4)	1.10	(0.87-1.39)	0.05**	(0.01-0.32)	0.73**	(0.60-0.89)	1.58	(0.30-8.38)
Interaction effects								
Education x Income								
EDU2 × INC2			1.91	(0.91-4.04)			0.77	(0.44-1.33)
EDU2 × INC3			1.88	(0.81-4.34)			1.11	(0.60-2.06)
EDUZ X INCS			1.00	(0.01-4.34)			1.11	(0.00-2.00

BMJ Open: first published as 10.1136/bm/open-201604/425609/58/946466/2013/LB09/1924666/01/20/0414/20/0414/20/04

47 48 10

$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ \end{array} $	EDU2 × INC4 EDU3 × INC2 EDU3 × INC3 EDU3 × INC4 EDU4 × INC2 EDU4 × INC2 EDU4 × INC3 EDU4 × INC4 Hosmer-Lemeshow test, p Value N, number; OR, odds ratio; CI, confidence universal health insurance, private health in energy intake, self-perceived stress, self-pe stratified cluster sampling design. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$. †Models 1 included only main effects terms ‡Models 2 included both main effects terms	2.30* 2.17* 1.52 2.74* 3.00* 2.65* 0.967 interval; All models were adjusted for ag isurance, survey year, smoking, alcohol of precived health, hypertension, dyslipidem s for all variables.	consumption, routi ia, and diabetes; A	0.304 residential area, occupation, housing ine physical exercise, daily sleep d	 (0.90-2.75) (0.73-2.47) (0.67-2.24) (0.49-2.39) (0.38-2.00) (0.27-1.58) 0.471 g status, uration, daily
22 23	stratified cluster sampling design. * <i>P</i> < 0.05, ** <i>P</i> < 0.01, *** <i>P</i> < 0.001.	(Q)		the estimates were obtained by cons	succing a
25			õr all variables.		
28 29 30					
31 32 33					

19

BMJ Open: first published as 10.1136/pmjopen-2016. Protected by copyright and copyright and copyright and copyright.

1	
2	
3 4 5 6 7 8	
4	
5	
6	
7	
0	
0	
9	
10	
9 10 11 12 13 14 15 16	
12	
13	
14	
15	
16	
10	
17	
18	
19	
19 20 21 22 23 24 25 26 27	
21	
22	
22	
23	
24	
25	
26	
27	
28	
20	
23	
24 25 26 27 28 29 30 31	
31	
32	
33	
30 31 32 33 34 35 36 37 38 39	
35	
26	
20	
37	
38	
39	
40	
41	
42	
43	
45	
46	
47	
48	
49	
5 0	
52	
53	
54	
55	
56	
57	
1 D	
58	
59	

1

177	Among women, according to Model 1, the OR was $0.59 (95\% \text{ CI} = 0.46-0.75)$ in
178	participants who had at least a college education compared with those who did not go beyond
179	elementary school, and 0.73 (95% CI = $0.60-0.89$) among those with incomes in the highest
180	quartile compared with those with incomes in the lowest quartile. In contrast, according to
181	Model 2, the OR was 0.13 (95% CI = $0.02-0.89$) among participants with at least a college
182	education compared with participants who did not go beyond elementary school. Income
183	alone was not significant. In terms of an interaction effect, one combination of educational
184	and income levels was marginally significant relative to the reference combination
185	(p = 0.053).
186	
187	Predicted probability of being obese

The predicted probabilities for a participant to be obese if he or she had a particular set of 188 189 education and income levels were obtained from the model with only the main-effect term of 190 each independent variable (Model 1) and from the model with both the main-effect term of 191 each independent variable as well as the two-way interaction-effect terms between 192 independent variables (Model 2); these results are displayed graphically in Figures 1 and 2 193 for men and women, respectively. 194 195 Figure 1 Predicted probabilities of being obese (and their 95% confidence intervals) by education for each income level in men in a model with only main effects (A) and a model 196

197 with both main and interaction effects (B): the Fifth Korea National Health and Nutrition

198 Examination Survey (KNHANES V), 2010–2012, South Korea

199

200

Figure 2 Predicted probabilities of being obese (and their 95% confidence intervals)

BMJ Open

201	by education for each income level in women in a model with only main effects (A) and a
202	model with both main and interaction effects (B): the Fifth Korea National Health and
203	Nutrition Examination Survey (KNHANES V), 2010–2012, South Korea

According to Figures 1 and 2, the predicted probabilities of being obese differed greatly between Models 1 and 2 for each gender. Whether for men or for women, the pattern of the changes in the predicted probability for each income level was uniform across educational levels in Model 1 (the left panel in each figure), suggesting that the income differences in obesity are constant towards higher education. However, according to Model 2 for each gender (the right panel in each figure), the pattern became very different from that in Model 1 for each gender and showed clear gender differences. For example, for men, the income difference in obesity was the largest in participants who did not go beyond elementary school (0.130) and the smallest in junior high school graduates (0.024), whereas for women, the income difference in obesity was the largest in junior high school graduates (0.199), the second largest in participants who had at least a college education (0.126) and the smallest in senior high school graduates (0.052). This suggests cautiously that unlike in women, the income differences in obesity decreases towards higher education in men. Meanwhile, with respect to the education difference in obesity, it was the largest in participants who had income in the second lowest quartile (0.148), the second largest in those with income in the third lowest quartile (0.147), and the smallest in participants who had income in the lowest quartile (0.090); but for women, it was the largest in participants who had income in the highest quartile (0.198), the second largest in participants who had income in the lowest quartile (0.196), and the smallest in those with income in the second lowest quartile (0.125). This suggests cautiously that the education differences in obesity show an

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

inverse U-shape with higher income in men, in a sharp contrast with women having a U-shape.

The Findings in men can be summarized as follows: 1) Although men in two income categories (the second lowest quartile and the lowest quartile) had the highest and the lowest predicted probabilities across all educational levels in Model 1 respectively, no income level had these distinctions with respect to all educational levels in Model 2. 2) The education-income group with the highest predicted probability according to Model 1 and 2 differed: it was junior high school graduates with incomes in the second lowest quartile in Model 1 (predicted probability = 0.392), but it was junior high school graduates with incomes in the lowest quartile in Model 2 (predicted probability = 0.414). 3) The education-income group with the lowest predicted probability also differed between Models 1 and 2: it was participants who did not go beyond elementary school and who had incomes in the lowest quartile in Model 1 (predicted probability = 0.292), but it was those did not go beyond elementary school and who had incomes in third lowest quartile in Model 2 (predicted probability = 0.243). 4) The gradient (or range) between the highest and lowest predicted probabilities was 0.099 in Model 1 but 0.172 in Model 2.

Likewise, the findings in women can be summarized as follows. 1) Although women in two income levels (the lowest quartile and the highest quartile) had the highest and the lowest predicted probabilities across all educational levels in Model 1 respectively, no income level had these distinctions in Model 2. 2) The education-income group with the highest predicted probability differed between Models 1 and 2: it was junior high school graduates with incomes in the lowest quartile in Model 1 (predicted probability = 0.370), but it was participants who did not go beyond elementary school and who had incomes in the lowest quartile in Model 2 (predicted probability = 0.487). 3) The education-income group

BMJ Open

2	
2	
3	
4	
3 4 5	
õ	
6	
7	
8	
9	
10	
9 10 11 12	
11	
12	
13	
13 14	
15	
16	
17	
18	
19	
20	
20 24	
20 21	
22 23 24	
23	
24	
25 26 27	
20	
26	
27	
28 29 30	
29	
20	
30	
31	
32	
33	
31	
25	
30	
33 34 35 36 37 38	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

with the lowest predicted probability was the same in Models 1 and 2: it was those with at 249 250 least a college education with incomes in the highest quartile in Model 1 (predicted 251 probability = 0.183) and Model 2 (predicted probability = 0.218). 4) The gradient in the 252 predicted probability was 0.187 in Model 1 and 0.269 in Model 2. 253 DISCUSSION 254 255 **Comparison to previous studies** As shown in previous papers, 1^{-3} most studies on the relationship between socioeconomic 256 status and obesity focused on the main-effect terms of independent variables, rather than both 257 258 the main-effect terms of the variables and the interaction-effect terms between the variables. 259 Most of those studies indicated that socioeconomic status and obesity are negatively 260 correlated in both men and women in developed countries. 261 However, our study suggests that in certain developed countries like South Korea, 262 education and income, which are major socioeconomic status indicators, may not have 263 negative associations with obesity in either men or women and they may have somewhat 264 complex relationships with obesity. This suggestion is depicted clearly in both Table 2 and Figures. Comparing the 265 266 results shown in Table 2, first, we may be informed about the different roles of education and 267 income in relations to obesity between the models, including only main-effect term of all 268 independent variables considered in this study (Models 1) and models adding the two-way 269 interaction-effect terms between the independent variables to Models 1 (Models 2). In 270 Models 1, only the main-effect term of education was significant in men and the main-effect terms of both education and income were significant in women. By contrast, in Models 2, the 271 23

1 2 3 4
5 6 7 8 9
10 11 12 13 14
23456789101234567891012345678901123456789011234567890112334567890112334567890112334567890132334567890122324256789001323345567890123345678901233456789012334567890123345678901232345678901233456789012323456789012334567890123234567890123345678901232345678901233456789012323456789012323456789012323456789012323456789012323456789012334567890123234567890123234567890123234567890123234567890123234567890123234567890123234567890123345678901232345678901233456789012323456789012334567890123234567890123234567890123345678901232345678901233456789012323456789012334567890123234567890123234567890123234567890123234567890123234567890123234567890123234567890123234567890123234567890123234567890012323456789000000000000000000000000000000000000
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
39 40
41 42 43 44 45
46 47 48 49 50
51 52 53 54 55
56 57 58 59 60

272	main-effect of income as well as the interaction-effect term between education and income
273	was significant in men, but only the main-effect term of education was significant in women.
274	If we interpret the results of Models 2, it seems that in men, education plays a role only
275	through its interaction with income, whereas income plays a role in its association with
276	obesity on its own as well as through its interaction with education; in women, however,
277	education plays a role in its association with obesity on its own, despite no role of income.
278	Complex relationships between each of education and income with obesity could be
279	displayed through Figures 1 and 2. As for a question as to how the income differences in
280	obesity differ across education levels, the income differences in obesity were uniform across
281	education levels in Models 1 (the left panels in figures). However, in Models 2 (the right
282	panels in figures), the income differences in obesity were very clearly different between
283	education levels and their gender differences. In addition, as shown in each figure, the sub-
284	population of those with a particular set of education and income levels with the highest (or
285	lowest) risk of obesity differed according to gender in both Models 1 and 2.
286	Therefore, the results of our study may caution researchers considering only the
287	main-effect terms in studies of the associations of education and income with obesity to be
288	very careful about interpreting their results. The reasons are: 1) studies considering only the
289	main-effect terms may come to incorrect conclusions about the roles of education and income;
290	2) those studies may lack information on how differently either education or income is
291	associated with obesity; 3) those studies may lack information on how the income differences
292	in obesity differ across education levels (or how the education differences in obesity differ
293	across income levels); and 4) those studies may result in the incorrect identification of the
294	education-income group having the highest risk of obesity.
295	In addition, according to the results of our study, the aforementioned well-known 24

1	
2	
3	
4	
5	
5	
6	
7	
8	
9	
3	
10	
10 11	
12	
13	
10	
14	
15	
16	
17	
10	
14 15 16 17 18 19	
19	
20	
20 21 22 23 24 25 26	
22	
22	
23	
24	
25	
26	
27	
26 27 27 28	
28	
29	
30	
31	
22	
32 33 34 35	
33	
34	
35	
36	
20	
37	
38 39	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
52 53	
54	
55	
22	
56	
57	
58	
59	
79	

60

negative association between socioeconomic status and obesity should be re-examined using
models incorporating interaction-effect terms among various characteristics. Similar results
were obtained with regard to abdominal obesity as those reported here for general obesity
(these results are available on request).

300

301 Plausible mechanisms

Based on these results, this study aimed to answer the following three questions. First, who are the participants belonging to the particular set of education and income levels showing the highest and lowest values of the predicted probabilities of being obese for each gender and why social positioning leads women to show strong educational differences in models accounting for joint income effects, whereas men show strong income differences alone and in combination with education? BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

308 To examine this, we provided Supplementary Tables 1 and 2, which show the 309 distributions of sample characteristics by education and income for men and women, 310 respectively. For men, as shown in the right panel of Figure 1, the highest predicted 311 probability of being obese was shown in junior high school graduates with incomes in the 312 lowest quartile (predicted probability = 0.414), whereas the lowest predicted probability in 313 participants those who did not go beyond elementary school and who had incomes in third lowest quartile (predicted probability = 0.243). Relative to the education-income group 314 showing the lowest predicted probability of being obese, the group showing the highest 315 predicted probability tended to have more than twice as high as proportion in participants 316 317 who were formerly married, participants who were never-married, residents in non-metro 318 urban areas, manual workers, participants surveyed in 2010, current smokers, participants 319 who had energy intake at a moderate level, participants who reported that their health was

very bad, participants having hypertension, and participants having diabetes (Supplementary Table 1).

Likewise, for women, as shown in the right panel of Figure 2, the highest predicted probability of being obese was shown in participants who did not go beyond elementary school and who had incomes in the lowest quartile (predicted probability = 0.487), whereas the lowest predicted probability in participants with at least a college education with incomes in the highest quartile (predicted probability = 0.218). Compared to the education-income group showing the lowest predicted probability of being obese, the group showing the highest predicted probability tended to have more than twice as high as proportion in participant who were formerly married, residents in rural areas, participants who were unemployed, participants whose daily sleep duration were short, participants who reported that their stress was very high, participants who reported that their health was very bad, participants having hypertension, participants having dyslipidemia, and participants having diabetes (Supplementary Table 2). This comparison suggests that a participant's belonging to a particular one of different education-income groups (that is, a social position) is associated with a particular risk of obesity. A variety of studies on social position have shown that one's social position may be determined exogenously or endogenously.¹⁶¹⁷ An individual can be placed in a social position (or social status) within a society before or at birth. This is called ascribed status. Ascribed statuses, which differ across societies, exist in all societies. Ascribed statuses depend on genetics, gender, age, race, or family characteristics. Alternately, an individual can achieve his or her social position by his or her own efforts, which is called achieved status. Achieved statuses are social position which he or she acquires after his or her birth as consequences of the exercise of knowledge, ability and skill, personal perseverance, and

BMJ Open

active interactions with others. Both education and income provides examples of social position that may be either ascribed or achieved status. Meanwhile, when comparing men and women, if education is more of an ascribed status rather than an achieved status, compared to the income, then education is more likely to make a positive contribution to income in women compared to that in men. Then the role of education on obesity may overtake that of income on obesity in women compared to men. Meanwhile, income in combination with education rather than education alone may influence the risk of obesity in men. It seems definite that further research is necessary to evaluate the relationship between social position and obesity.

Second, with regard to its association with obesity, why does education sometimes interact with income and why does the interaction differ by gender? This study believes that two different factors may be involved in this issue. More education may discourage obesity insofar as it promotes a more efficient use of health-related services and products^{18 19} and an enhanced sense of control and empowerment.^{20 21} In addition, and less directly, more education may contribute to a higher income, which may discourage obesity by increasing access to higher quality food and better medical care.^{18 19} However, in a subgroup of people (e.g., men with certain sociocultural characteristics), a higher income may be positively associated with obesity even though more education leads to higher income. Thus, more education and a higher income may lead to a higher likelihood of being obese among this subgroup of people. Meanwhile, it is interesting to note that gender may modify the effects of education and income on one's health. Previous research has suggested that gender,²² race,²³ place^{23 24} and their intersections^{25 26} alter the effects of education and income on health. A recent study compared race-gender groups to examine the effects of baseline education and income on sustained health problems in five domains (depressive symptoms, insomnia,

physical inactivity, BMI, and self-rated health) using the Health and Retirement Study in the US.²⁵ This study found that the interaction of race and gender changed the protective effects of social determinants on sustained health problems such as insomnia, physical inactivity, and BMI. Another study showed that gender modifies the effects of education and income on psychosocial well-being of patients with chronic conditions.²² It is generally known that women with a high level of education tend to be more worried about weight control than men with the same level of education.²⁷ This may be because obese women may be more penalized with regard to employment opportunities,²⁸ wage equality.²⁹ and finding marriage partners than obese men.³⁰ On the other hand, even men with a high income tend to feel more comfortable being overweight than do women in the same income group.³¹ This can be explained in part by the notion of habitus and Bourdieu's theory, which states that the body has a symbolic value in size and shape for people, but that valuations of the body differ by gender.^{32 33} Even in a developed society such as South Korea, men have more political and economic influence and are the primary wage earners for families, and most jobs tend to be awarded first to men. Gender differences in body image are also pronounced in South Korea: according to an international study of body image and weight control in young, educated adults, the age-adjusted prevalence of feeling overweight was the second lowest in Korean men (14%) compared with that in men in the other 22 countries, but the prevalence of seeing oneself as overweight was the highest in Korean women (77%).³¹ Thus, local culture and norms put greater pressure on women than on men to lose weight, as indicated in previous studies.^{31 34 35} As a third question to be raised from the results of this study, after including the

interaction-effect terms in this study, why did the predicted probabilities of being obese 28

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

392	follow erratic rather than uniform patterns for both education and income levels, and why
393	were there gender differences in this regard? One reason for the erratic patterns in the
394	predicted probabilities might be that education or income may interact with some other
395	covariate(s). For example, the association between obesity and income may be influenced by
396	stress level in men ³⁶ and health behaviors caused by a high level of stress, such as smoking
397	cigarettes and drinking alcohol, thereby contributing to the positive association between
398	socioeconomic status and obesity in men. ^{37 38} Meanwhile, previous studies investigated the
399	relationship among contextual factors (e.g. gender, race, class, and place), psychosocial
400	factors and obesity factors (e.g. obesity and BMI). ^{39 40 41 42 43} Using data from the Health and
401	Retirement Study in the US, a study showed that the association between sustained health
402	problems such as depression and obesity are not universal across race and gender groups. ⁴⁰
403	This suggests that culture connected to race and gender may influence cognitive and
404	emotional elements that are essential for the perception of obesity and associated weight
405	management behaviors. ⁴⁴
406	Another reason may be that, although education or income interacts with a covariate,
407	different combinations between levels of education or income and covariate categories may
408	be differently associated with being obese.
409	There are three potential reasons for the gender differences in the predicted
410	probabilities of being obese for both education and income levels. First, these gender
411	differences partly derive from gender differences in the covariates that interact with education
412	or income. For example, in the present study, educational level showed significant interaction
413	effects with residential area, excessive alcohol consumption, self-perceived stress, self-
414	perceived health, and survey year in men, whereas women's educational level interacted
415	significantly with age, marital status, housing status, hypertension, and diabetes (results not 29

416	shown). Second, although covariates interact with education or income in both men and
417	women, the magnitude of the interactions between the covariate categories and levels of
418	education or income might differ by gender. Previous studies showed that, unlike in women,
419	increased income does not result in an equivalent adaptation to healthier behaviors in men. ⁴⁵
420	Finally, there may be gender differences in the reverse causation between education or
421	income and obesity. For example, in certain patriarchal societies, girls with a health problem
422	may be less likely to have a high level of education than their male counterparts. ⁴⁶
423	
424	Strengths and limitations

This study analyzed data from a nationally representative sample of South Korean adults, providing abundant information about anthropometric measures, socio-demographic characteristics, lifestyle behaviors, and medical conditions. Using a quantified prediction, this study shows what would happen if policies to reduce obesity prevalence did not consider complex interactions among the characteristics of individuals. Above all, this study is the first to address the association of socioeconomic status with obesity while considering both the main-effect term of each independent variable and the two-way interaction-effect terms between independent variables.

This study has several limitations. The cross-sectional study design precludes causal inferences about the relationship between socioeconomic status and obesity. Moreover, the data were collected by a self-report survey, which may have resulted in measurement error and recall bias. Although it is beyond the scope of this study, it would be of great interest to explore gender-specific interactions among education, income and other socioeconomic status indicators like occupation, home-ownership and marital status. Other potential covariates, such as genetics, social network, and parental obesity, were not included in

2	
3	
1	
3 4 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 13 14 5 6 7 8 9 10 11 2 13 14 5 6 7 8 9 10 11 2 15 6 7 8 9 10 11 2 11 2 11 11 11 11 11 11 11 11 11 11	
5	
6	
0	
7	
Q	
0	
9	
10	
11	
12	
10	
13	
14	
15	
15	
16	
17	
40	
18	
19	
20	
∠0	
21	
າງ	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	
23	
24	
27	
25	
26	
27	
21	
28	
20	
29	
30	
31	
51	
32	
33	
24	
34	
35	
26	
30	
37	
20	
30	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
5U	
51	
52	
52	
53	
54	
55	
56	
57	
58	
58 50	
58 59 60	

analyses because these data were not available. Unobserved factors, such discount rate and
risk aversion, may have influenced both socioeconomic status and body weight.^{47 48} Finally,
we also could not incorporate race and ethnicity into our analysis because the KNHANES did
not include these data, and moreover, because the absolute majority of the population is of
Korean ethnicity.^{49 50}

445

446 **Public health implications**

From a policy perspective, it is of interest whether as a government attempts to 447 448 provide people with the highest level of education, its actions can lead to a reduction in the 449 prevalence of obesity and the socioeconomic gradient in such prevalence. Though caution is required when making policy predictions based on findings from cross-sectional data, 450 according to the findings of this study, the answer might be "no." An enhanced governmental 451 452 educational policy that enables all men to complete the highest level of formal education 453 would reduce the gradient in the predicted probability of being obese by 53%, from 0.130 to 454 0.061, but would also increase the average predicted probability by 26%, from 0.287 to 0.362. Conversely, the same enhanced educational policy in women would raise the gradient in the 455 456 predicted probability by 77%, from 0.071 to 0.126, but would lower the average predicted probability by 36%, from 0.440 to 0.283. This suggests that, in order to meet both goals (low 457 458 prevalence of obesity and reduced gradient by socioeconomic status), educational policies 459 should be implemented in combination with other social policies, and these governmental 460 efforts should be differentiated by gender. These results may elicit a new debate about whether educational policies should consider health consequences.^{51 52} Meanwhile, some 461 462 cross-country studies have shown that the determinants of health particularly the effects of 463 social determinants are specific to countries and have emphasized the need for local studies 31

that inform local policies and programs. ^{24 53 54}

CONCLUSIONS

This is the first study to investigate the association of socioeconomic status with obesity while considering both the main-effect term of each independent variable and the two-way interaction- effect terms between independent variables. This study highlights the importance of interaction effects in studies of the associations of socioeconomic status with obesity. According to the results, moving from models evaluating only main effects to models evaluating both main and interaction effects may change the association of socioeconomic status with obesity, the group with the highest likelihood of obesity, the gradient in the likelihood of obesity by socioeconomic status, and gender differences in the associations of socioeconomic status with obesity. These results suggest that studies on the association between socioeconomic status and obesity should include interaction-effect terms for all characteristics and consider gender differences, and that policy efforts to reduce obesity and the resulting socioeconomic gradients should be established based on the results of those in-depth studies. Moreover, further research is needed to examine whether these findings are valid in other sociocultural settings.

Acknowledgements

The authors thank Professors Mark Montgomery, Warren Sanderson, Han Joong Kim, and Woo Hyun Cho for their help. The authors also thank Drs. Hemali Bedi, Annalijn Conklin, Laurene Rehman, and Shervin Assari for their invaluable comments.

Contributors

WC conceived and designed the study, conducting the literature review and the statistical analysis, writing the paper. JK collected and managed the data. JK, SJL, SL, and RK participated in reviewing the literature and writing the paper.

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests

None declared.

Ethics approval

Institutional Review Board of Yonsei University Graduate School of Public Health.

Provenance and peer review

Not commissioned; externally peer reviewed.

Data sharing statement

<text>

REFERENCES

- Sobal J, Stunkard AJ. Socioeconomic status and obesity: a review of the literature. *Psychol Bull* 1989;105:260-75.
- 2. McLaren L. Socioeconomic Status and Obesity. *Epidemiol Rev* 2007;29:29-48.
- 3. Monteiro CA, Conde WL, Lu B, *et al.* Obesity and inequities in health in the developing world. *Int J Obes* 2004;28:1181-6.
- International Monetary Fund. Gross domestic product, current prices & Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP. World Economic Outlook Database. October 2015 ed2015.
- 5. Zveglich Jr JE, van der Meulen Rodgers Y. Occupational segregation and the gender wage gap in a dynamic East Asian economy. *South Econ J* 2004:850-75.
- Seguino S. Gender wage inequality and export-led growth in South Korea. J Dev Stud 1997;34:102-32.
- Korea Centers for Disease Control and Prevention. The Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010–2012. Korea Centers for Disease Control and Prevention 2014. http://knhanes.cdc.go.kr (accessed 8 Dec 2014).
- International Association for the Study of Obesity Task Force. *The Asia-Pacific perspective: redefining obesity and its treatment*. Sydney, Australia: World Health Organization Western Pacific Region 2000.
- Elgar FJ, Stewart JM. Validity of self-report screening for overweight and obesity. Evidence from the Canadian Community Health Survey. *Can J Public Health* 2008;99:423-7.

 Litton JK, Gonzalez-Angulo AM, Warneke CL, *et al.* Relationship between obesity and pathologic response to neoadjuvant chemotherapy among women with operable breast cancer. *J Clin Oncol* 2008;26:4072-7.

- Prieto-Alhambra D, Premaor MO, Fina Aviles F, *et al.* The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. *J Bone Miner Res* 2012;27:294-300.
- 12. World Health Organization. *International guide for monitoring alcohol consumption and related harm*. Geneva, Switzerland: World Health Organization, 2000.
- Haskell WL, Lee IM, Pate R, *et al.* Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. *Med Sci Sports Exerc* 2007;39:1423-34.
- Buxton OM, Marcelli E. Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular disease among adults in the United States. *Soc Sci Med* 2010;71:1027-36.
- Korea Ministry of Health and Welfare, Korea Center for Disease Control and Prevention. *Report on 2012 Korea National Health and Nutrition Examination Survey*. Seoul: Korea Center for Disease Control and Prevention, 2014.
- 16. Sobal J. Obesity and socioeconomic status: a framework for examining relationships between physical and social variables. *Med Anthropol* 1991;13:231-47.
- 17. Foladare IS. A Clarification of "Ascribed Status" and "Achieved Status". Sociol Q 1969;10:53-61.
- Chandola T, Clarke P, Morris J, et al. Pathways between education and health: a causal modelling approach. *Journal of the Royal Statistical Society: Series A (Statistics in Society)* 2006;169:337-59.

Page 37 of 49

BMJ Open

19.	Cutler D, Lleras-Muney A. Education and health: evaluating theories and evidence.
	Cambridge, MA: National Bureau of Economic Research, 2006.
20.	Mirowsky J, Ross CE. Education, social status, and health. New York: Aldine de
	Gruyter, 2003.
21.	Cutler D, Glaeser E, Shapiro J. Why have Americans become more obese?
	Cambridge, MA: National Bureau of Economic Research, 2003.
22.	Assari S, Moghani Lankarani M, Kazemi Saleh D, et al. Gender modifies the effects
	of education and income on sleep quality of the patients with coronary artery disease.
	Int Cardiovasc Res J 2013;7:141-6.
23.	Assari S, Lankarani MM. Race and Urbanity Alter the Protective Effect of Education
	but not Income on Mortality. Front Public Health 2016;4:100.
24.	Assari S. Cross-Country Differences in the Additive Effects of Socioeconomics,
	Health Behaviors and Medical Comorbidities on Disability among Older Adults with
	Heart Disease. J Tehran Heart Cent 2015;10:24-33.
25.	Assari S, Nikahd A, Malekahmadi MR, et al. Race by Gender Group Differences in
	the Protective Effects of Socioeconomic Factors Against Sustained Health Problems
	Across Five Domains. J Racial Ethn Health Disparities 2016; doi:10.1007/s40615-
	016-0291-3.
26.	Assari S. Combined Racial and Gender Differences in the Long-Term Predictive Role
	of Education on Depressive Symptoms and Chronic Medical Conditions. J Racial
	Ethn Health Disparities 2016; doi:10.1007/s40615-016-0239-7.
27.	Seubsman S, Lim LL, Banwell C, et al. Socioeconomic status, sex, and obesity in a
	large national cohort of 15-87-year-old open university students in Thailand. J
	<i>Epidemiol</i> 2010;20:13-20.
	37

28.	Han E, Norton EC, Stearns SC. Weight and wages: fat versus lean paychecks. Health
	<i>Econ</i> 2009;18:535-48.
29.	Baum CL, Ford WF. The wage effects of obesity: a longitudinal study. Health Econ
	2004;13:885-99.
30.	Mukhopadhyay S. Do women value marriage more? The effect of obesity on
	cohabitation and marriage in the USA. Rev Econ Househ 2008;6:111-26.
31.	Wardle J, Haase AM, Steptoe A. Body image and weight control in young adults:
	international comparisons in university students from 22 countries. Int J Obes
	2006;30:644-51.
32.	Power EM. An introduction to Pierre Bourdieu's key theoretical concepts. J Study
	Food Soc 1999;3:48-52.
33.	Bourdieu P. The forms of capital. In: Richardson J, ed. Handbook of theory and
	research for the sociology of education. New York: Greenwood, 1986:241-58.
34.	McLaren L, Godley J, MacNairn IA. Social class, gender, and time use: implications
	for the social determinants of body weight? Health Rep 2009;20:65-73.
35.	Regidor E, Gutiérrez Fisac JL, Banegas JR, et al. Obesity and socioeconomic position
	measured at three stages of the life course in the elderly. Eur J Clin Nutr
	2004;58:488-94.
36.	Currie J, Hyson R. Is the impact of health shocks cushioned by socioeconomic status?
	: the case of low birthweight. Cambridge, MA: National Bureau of Economic
	Research, 1999.
37.	Laitinen J, Ek E, Sovio U. Stress-related eating and drinking behavior and body mass
	index and predictors of this behavior. Prev Med 2002;34:29-39.
38.	Ali SM, Lindström M. Socioeconomic, psychosocial, behavioural, and psychological 38

BMJ Open

	determinants of BMI among young women: differing patterns for underweigh
	overweight/obesity. Eur J Public Health 2006;16:325-31.
39.	Assari S. The link between mental health and obesity: role of individual and
	contextual factors. Int J Prev Med 2014;5:247-9.
40.	Carter JD, Assari S. Sustained Obesity and Depressive Symptoms over 6 Yea
	by Gender Differences in the Health and Retirement Study. Front Aging Neu.
	2016;8:312.
41.	Assari S, Caldwell CH. Gender and Ethnic Differences in the Association Be
	Obesity and Depression Among Black Adolescents. J Racial Ethn Health Dis
	2015;2:481-93.
42.	Assari S. Psychosocial Correlates of Body Mass Index in the United States:
	Intersection of Race, Gender and Age. Iran J Psychiatry Behav Sci 2016;10:6
43.	Hicken MT, Lee H, Mezuk B, et al. Racial and ethnic differences in the assoc
	between obesity and depression in women. J Womens Health (Larchmt) 2013
	52.
44.	Assari S, Lankarani MM. Mediating Effect of Perceived Overweight on the
	Association between Actual Obesity and Intention for Weight Control; Role
	Ethnicity, and Gender. Int J Prev Med 2015;6:102.
45.	Zhang Q, Wang Y. Socioeconomic inequality of obesity in the United States:
	gender, age, and ethnicity matter? Soc Sci Med 2004;58:1171-80.
46.	Chung W, Das Gupta M. The decline of son preference in South Korea: The
	development and public policy. Popul Dev Rev 2007;33:757-83.
47.	Smith PK, Bogin B, Bishai D. Are time preference and body mass index asso
	Evidence from the National Longitudinal Survey of Youth. <i>Econ Hum Biol</i> 39

2005;3:259-70.

- Borghans L, Golsteyn BH. Time discounting and the body mass index. Evidence from the Netherlands. *Econ Hum Biol* 2006;4:39-61.
- Alesina A, Devleeschauwer A, Easterly W, et al. Fractionalization. J Econ Growth 2003;8:155-94.
- Kim SY, Park JH, Kim SG, *et al.* Disparities in utilization of high-volume hospitals for cancer surgery: results of a Korean population-based study. *Ann Surg Oncol* 2010;17:2806-15.
- 51. Low MD, Low BJ, Baumler ER, *et al.* Can education policy be health policy?
 Implications of research on the social determinants of health. *J Health Polit Policy Law* 2005;30:1131-62.
- 52. Woolf SH, Johnson RE, Phillips RL, *et al.* Giving everyone the health of the educated: an examination of whether social change would save more lives than medical advances. *Am J Public Health* 2007;97:679-83.
- Assari S. Cross-country variation in additive effects of socio-economics, health behaviors, and comorbidities on subjective health of patients with diabetes. *J Diabetes Metab Disord* 2014;13:36.
- Assari S, Lankarani MM. Does Multi-morbidity Mediate the Effect of Socioeconomics on Self-rated Health? Cross-country Differences. *Int J Prev Med* 2015;6:85.

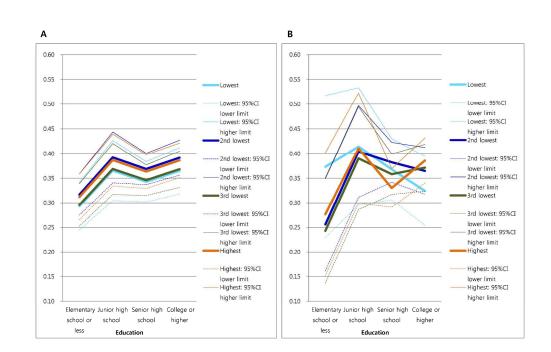


Figure 1 Predicted probabilities of being obese (and their 95% confidence intervals) by education for each income level in men in a model with only main effects (A) and a model with both main and interaction effects (B): the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010–2012, South Korea

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

297x210mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

MJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

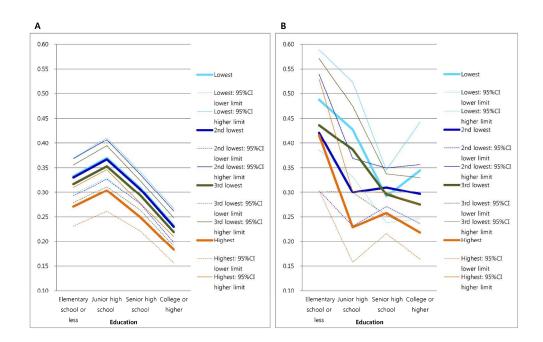


Figure 2 Predicted probabilities of being obese (and their 95% confidence intervals) by education for each income level in women in a model with only main effects (A) and a model with both main and interaction effects (B): the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010–2012, South Korea

297x210mm (300 x 300 DPI)

45 46 47

BMJ Open

Page 43 of 49							BMJ Open								n-2016-014276								
1 2 3 4 5	Table S1 Disribution (%) o South Korea	f sample	characte	eristics	in mer	ı by ed	ucation	and incom	ne (qua	artiles):	the Fi	fth Kore	a Nationa	al Heal	th and	9	on Exan	nination	Survey	(KNH	ANES	V), 201	10-2012,
6 - 7				Element	tary scho	ool or les	s		Jun	ior high s	school			school			College or more						
8 9	Characteristic	Overall	Low	2nd low	3rd low	High	(Sum)	Low	2nd low	3rd low	High	(Sum)	Low	2nd low	3rd low	n <u>er</u> Pægh	(Sum)	Low	2nd low	3rd low	High	(Sum)	(Total)
10	Age, years *	50.8	70.5	64.4	62.3	61.8	(67.2)	63.8	58.0	57.2	61.8	59.6	53.0	44.9	45.1	7.8 D	46.4	48.7	42.9	42.4	61.8	44.0	
11 12	Marital status															Ŏ							
13	Married	79.7	10.6	4.9	2.7	1.7	(19.9)	4.3	3.9	2.7	2.2	(13.1)	5.6	9.6	8.4	nload.7	(32.3)	2.3	8.0	10.0	14.4	(34.8)	(100.0)
14 15	Formerly married	4.6	22.7	8.9	1.8	2.1	(35.4)	11.2	4.1	2.1	2.4	(19.8)	11.5	7.1	4.7	led ^{3.5}	(26.8)	5.3	3.8	4.1	4.7	(18.0)	(100.0)
16	Never-married	15.7	0.5	0.4	0.1	0.0	(1.0)	1.0	0.9	0.5	0.5	(2.9)	9.7	16.2	14.0	∃ 5.8	(55.7)	5.7	8.3	11.7	14.8	(40.5)	(100.0)
17 18	Residential area															http:/							
19	Metro urban	44.2	6.1	3.5	1.8	1.0	(12.4)	2.9	3.5	2.4	2.1	(10.9)	6.6	10.9	8.9	b 9.7	(36.0)	3.6	8.1	11.3	17.8	(40.8)	(100.0)
20 21	Non-metro urban	34.4	7.1	3.7	1.7	1.4	(14.0)	4.0	3.0	2.0	1.6	(10.6)	6.0	10.7	10.9	0.2	(37.8)	2.6	9.8	11.4	14.0	(37.7)	(100.0)
22	Rural	21.4	20.5	7.3	4.3	2.4	(34.4)	6.5	4.1	2.9	2.4	(15.8)	7.2	9.5	6.6	1. 1. 1. 1. 1. 1.	(31.5)	2.3	4.5	5.2	6.4	(18.3)	(100.0)
23 24	Occupation,															j.cor							
25	Unemployed	25.6	9.8	6.5	3.6	2.1	(22.0)	4.4	5.2	3.8	3.1	(16.6)	6.1	13.7	10.9	<mark>д</mark> 1.9	(42.5)	1.8	5.1	5.5	6.6	(18.9)	(100.0)
26 27	Office worker	26.8	0.3	0.1	0.3	0.3	(0.9)	0.4	0.3	0.5	0.8	(1.8)	1.7	6.0	6.5	April	(22.0)	3.5	14.8	21.9	35.1	(75.3)	(100.0)
28	Manual worker	47.6	18.7	5.0	2.0	1.4	(27.0)	7.3	3.5	1.5	1.1	(13.5)	12.5	9.4	8.4	ii 77.0 19	(37.2)	4.6	5.9	6.0	5.8	(22.3)	(100.0)
29 30	Housing status, home owner	76.4	9.9	4.9	2.7	1.7	(19.2)	3.9	3.4	2.5	2.2	(12.0)	5.1	9.5	9.1	- 20.6	(34.3)	2.2	7.0	10.1	15.3	(34.6)	(100.0)
31	Universal health insurance, NHI	98.2	9.1	4.4	2.3	1.4	(17.2)	3.9	3.4	2.4	2.0	(11.7)	6.3	10.6	9.2	24 ⁹ .7	(35.8)	2.8	8.0	10.2	14.3	(35.3)	(100.0)
32 33	Private health insurance, holder	69.2	3.2	3.0	2.1	1.5	(9.7)	2.0	3.4	2.6	2.3	(10.2)	4.1	11.1	10.7	gg2.0	(37.9)	2.3	9.2	12.7	18.1	(42.2)	(100.0)
	Survey year															est. P							
35 36	2010	35.3	9.7	4.4	2.2	1.4	(17.6)	4.4	3.1	2.5	2.3	(12.3)	6.3	11.7	9.2	rote	(35.0)	3.4	8.3	10.9	12.4	(35.1)	(100.0)
37	2011	34.0	9.6	4.2	2.1	1.6	(17.5)	3.7	4.2	2.2	2.0	(12.0)	5.9	10.0	8.9	<u>č</u> 60.8	(35.6)	2.5	8.2	9.0	15.2	(34.8)	(100.0)
38 39 40 41 42 43 44 45					For	peer r	review	only - ht	tp://br	njopel	1 n.bmj.	com/sit	te/about	/guide	elines.	by copyright.							

										BMJ	Oper	1				n-2016-014276						Ρ	age 44 of
1 2																14276 on							
3 4	2012	30.7	9.3	4.6	2.6	1.2	(17.8)	4.1	3.0	2.3	1.6	(11.0)	7.5	9.8	9.1		(36.5)	2.9	7.0	10.1	14.6	(34.7)	(100.0)
5	Current smoking status, smoker	40.9	8.1	3.7	1.7	1.4	(14.9)	3.9	3.5	2.2	1.7	(11.3)	6.9	12.7	9.1		(38.9)	2.8	8.6	10.6	12.9	(34.9)	(100.0)
6 7	Alcohol consumption, excessive	32.5	3.9	2.8	1.5	0.9	(9.1)	2.2	2.7	1.4	1.8	(8.0)	5.2	13.0	10.1	0	(40.4)	3.0	9.5	13.0	17.1	(42.6)	(100.0)
8	Routine physical exercise, inactive	78.8	10.5	4.6	2.3	1.4	(18.9)	4.2	3.4	2.4	1.9	(11.9)	6.8	10.0	8.9	er_28.6	(34.3)	2.9	7.9	10.5	13.6	(35.0)	(100.0)
9 10	Daily sleep duration, short	41.5	10.1	5.0	2.3	1.4	(18.8)	4.1	2.8	2.0	2.2	(11.2)	6.4	9.2	9.4	.* 8.9	(34.0)	2.8	7.4	10.2	15.6	(36.1)	(100.0)
11	Daily energy intake, moderate	20.1	11.2	5.1	2.0	1.7	(20.0)	4.6	3.4	2.2	2.3	(12.5)	6.4	9.8	8.8	>	(34.0)	2.6	7.6	9.9	13.5	(33.5)	(100.0)
12 13	Self-perceived stress, very high	3.4	8.4	6.0	2.8	3.2	(20.4)	3.2	4.8	1.6	1.2	(10.8)	6.8	10.4	7.2	–	(33.2)	5.2	5.2	8.0	17.2	(35.6)	(100.0)
14	Self-perceived health, very bad	2.4	37.6	6.7	4.5	2.3	(51.1)	9.6	5.6	1.7	2.8	(19.7)	6.7	7.3	1.7	0 0 0 5.6	(21.4)	3.9	1.7	1.1	1.1	(7.9)	(100.0)
15 16	Having hypertension	21.4	16.9	7.1	2.9	2.2	(29.1)	6.9	5.0	3.4	2.4	(17.7)	8.9	7.6	7.6	Ť	(31.5)	3.1	4.6	4.8	9.1	(21.6)	(100.0)
17	Having dyslipidemia	6.5	9.2	5.9	3.4	1.7	(20.1)	6.1	5.0	3.4	2.5	(17.0)	8.4	7.7	7.3	-	(33.1)	2.9	6.3	6.7	14.0	(29.9)	(100.0)
18 19	Having diabetes	32.5	16.9	6.2	2.8	2.1	(28.0)	8.1	4.3	3.7	3.9	(20.0)	8.7	7.3	7.4	3	(31.7)	3.0	3.1	5.2	9.2	(20.4)	(100.0)
20 21	Number of participants		700	322	167	105	1294	299	252	171	145	867	479	772	666		2617	216	578	735	1030	2559	7337
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	N, number; Low, Lowest; High, High *Mean.	hest; NHI,	National	Health Ir	isurance;						2	16	4	Ċ		bmj.com/ on April 19, 2024 by guest. Protected by copyright.							
42 43 44 45					For	oeer r	eview o	nly - ht	tp://br	njoper	n.bmj.	.com/si	te/about	t/guide	elines								

45 46 47

BMJ Open

	Elementary school or less					Junior high school					Senior high senool					College or more						
Characteristic	Overall	Low	2nd low	3rd low	High	(Sum)	Low	2nd low	3rd low	High	(Sum)	Low	2nd low	3rd low	ligh	(Sum)	Low	2nd low	3rd low	High	(Sum)	- (Tota
Age, years *	50.5	69.3	64.2	63.4	64.9	(67.0)	59.6	55.4	54.9	54.6	(56.2)	43.7	41.4		43.0	(42.6)	38.5	35.9	36.2	39.1	(37.5)	
Marital status														lown								
Married	69.5	13.6	6.8	4.0	3.0	(27.3)	2.6	3.6	3.1	2.8	(12.1)	3.6	10.5	9.3 load	10.5	(33.9)	1.2	5.9	7.8	11.8	(26.7)	(100
Formerly married	18.2	45.2	12.0	6.8	6.9	(71.0)	3.9	2.9	1.6	1.4	(9.8)	6.3	4.2	2.1 ed	2.2	(14.9)	1.3	0.9	1.1	1.0	(4.3)	(100.
Never-married	12.3	0.3	0.1	0.0	0.2	(0.6)	0.5	0.3	0.2	0.1	(1.1)	8.7	12.0	9.4 D	13.6	(43.7)	3.9	12.7	15.8	22.3	(54.7)	(100.
Residential area														nttp:/								
Metro urban	44.5	12.2	5.8	3.6	2.6	(24.3)	2.5	3.0	2.4	2.4	(10.3)	5.3	9.9	8.0 M	10.9	(34.1)	1.7	6.5	8.8	14.2	(31.3)	(100
Non-metro urban	35.0	13.9	6.3	3.7	3.0	(26.8)	2.8	2.9	2.5	2.2	(10.4)	4.9	10.9	9.6	9.6	(35.0)	1.8	6.4	8.6	11.0	(27.8)	(100
Rural	20.5	36.3	10.2	5.5	5.4	(57.4)	2.5	3.5	2.5	1.8	(10.3)	3.4	6.5	5.1 b	5.7	(20.7)	0.7	3.5	3.0	4.4	(11.6)	(100
Occupation,														ij.cor								
Unemployed	52.6	20.8	9.5	5.5	5.0	(40.8)	2.9	4.8	4.5	4.1	(16.2)	5.0	10.8	8.9 or	9.2	(33.9)	0.8	2.5	2.3	3.6	(9.2)	(100.
Office worker	16.0	0.4	0.3	0.1	0.2	(1.0)	0.4	0.9	0.2	0.5	(2.0)	2.6	7.0	8.3 Ap	10.5	(28.4)	2.4	11.8	21.1	33.4	(68.6)	(100.
Manual worker	31.4	21.2	7.3	4.3	3.3	(36.2)	3.1	2.7	2.0	1.6	(9.3)	5.3	9.6	7.3 <u>1</u> 9	9.1	(31.3)	1.8	6.1	6.6	8.8	(23.2)	(100.
Housing status, home owner	73.5	16.0	7.8	4.7	4.0	(32.5)	2.3	3.1	2.9	2.6	(10.8)	3.2	8.5	8.3 20	10.8	(30.8)	1.2	5.2	7.3	12.2	(25.9)	(100.
Universal health insurance, NHI	97.0	16.6	7.0	4.1	3.4	(31.1)	2.5	3.1	2.5	2.3	(10.4)	4.3	9.7	8.2 b	9.6	(31.8)	1.6	6.0	7.8	11.4	(26.7)	(100.
Private health insurance, holder	70.7	7.7	5.2	3.4	2.9	(19.2)	1.9	3.3	2.8	2.8	(10.7)	4.3	11.1	9.9 gu	12.1	(37.5)	1.6	7.1	9.6	14.4	(32.6)	(100.
Survey year														est.								
2010	34.0	17.1	7.3	4.3	3.4	(32.0)	2.4	2.8	2.4	2.3	(9.9)	4.9	10.5	7.9 Prote	8.2	(31.5)	1.6	6.0	8.2	10.8	(26.6)	(100.
2011	34.1	18.1	7.1	3.6	3.4	(32.2)	2.4	3.5	2.4	2.3	(10.6)	4.3	8.6	8.1 e	10.6	(31.6)	1.4	5.7	7.2	11.4	(25.7)	(100
														by								
									1	1				copyright.								

n-2016-014276 on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

										BMJ C	Open				n-2016-014276						Pag	je 46 of 49
1 2 3															14276 on							
3 4	2012	31.9	18.1	6.2	4.1	3.2	(31.7)	3.0	2.9	2.6	2.1	(10.5)	5.2	9.5	7.9 웒 9.3	(31.9)	1.7	5.9	7.2	11.1	(25.9)	(100.0)
5	Current smoking status, smoker	5.5	14.8	5.8	2.0	1.6	(24.2)	3.6	5.3	2.0	1.1	(12.0)	11.5	15.5	9.3 D 6.9	(43.2)	1.5	4.4	6.6	8.2	(20.6)	(100.0)
6 7	Alcohol consumption, excessive	12.3	4.0	2.9	1.3	1.6	(9.8)	2.3	2.3	1.3	1.8	(7.7)	8.9	13.3	12.2 B 13.5	(47.9)	1.8	7.7	11.1	14.0	(34.5)	(100.0)
8	Routine physical exercise, inactive	83.6	18.4	7.0	3.9	3.3	(32.5)	2.5	3.1	2.4	2.0	(10.0)	4.9	9.5	7.8 Pr 8.7	(30.9)	1.6	6.1	7.9	11.1	(26.7)	(100.0)
9 10	Daily sleep duration, short	42.3	22.9	8.1	5.3	4.1	(40.5)	3.1	3.6	2.4	2.2	(11.3)	4.6	8.5	6.5 7 8.5	(28.1)	1.0	4.1	5.6	9.5	(20.1)	(100.0)
11	Daily energy intake, moderate	16.2	15.4	7.2	4.3	3.4	(30.3)	2.4	3.1	3.0	2.1	(10.7)	5.2	11.2	8.6 V 9.4	(34.5)	1.4	6.1	7.3	9.8	(24.5)	(100.0)
12 13	Self-perceived stress, very high	4.9	19.7	9.7	4.1	3.5	(37.0)	3.9	1.9	2.3	1.6	(9.7)	6.0	9.2	8.6 nlo a 6.6	(30.4)	2.3	4.7	6.4	9.7	(23.0)	(100.0)
14	Self-perceived health, very bad	4.5	49.9	15.4	5.9	4.3	(75.5)	3.9	1.8	2.0	2.0	(9.7)	3.0	2.7	2.7 de 2.3	(10.7)	0.9	1.4	0.2	1.6	(4.1)	(100.0)
15 16	Having hypertension	22.2	40.9	13.2	7.6	6.4	(68.1)	4.0	3.5	3.1	2.4	(13.0)	3.1	4.5	3.5 from 4.0	(15.1)	0.4	0.7	1.1	1.6	(3.9)	(100.0)
17	Having dyslipidemia	8.5	30.6	12.0	7.4	5.5	(55.4)	5.1	4.6	3.4	2.7	(15.9)	3.3	5.8	5.3 5.4	(21.8)	0.6	1.0	1.8	3.6	(6.9)	(100.0)
18 19	Having diabetes	7.0	43.0	14.1	7.1	5.5	(69.7)	5.1	3.5	2.3	1.6	(12.5)	2.6	5.1		(13.8)	0.3	1.0	1.2	1.6	(4.1)	(100.0)
19 20															njop							
21 22	Number of participants		1758	683	397	330	3168	257	304	244	219	1024	471	947	3.5 bmjopen. b 928	3136	155	580	746	1099	2580	9908
23 24 25 26	N, number; Low, Lowest; High, Highe [*] Mean.	est; NHI, I	Vational 1	Health In	surance;							6	h		nj.com/ on April 19, 2024 by guest.							
27 28															pril 1							
29															9, 2							
30 31															024							
31															by g							
33															uest							
34 35															σ							
36															rotected by copyright							
37															ted							
38 39										2)				by c							
40										2					ору							
41															righ							
42															.+							
43 44																						
44 45					For p	eer re	view on	ly - http	o://bmj	open.	.bmj.c	om/site	e/about/g	guidel	ines.xhtml							
46																						

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the
		abstract
		\rightarrow We indicated it in the title and the abstract (page 1 and 3).
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found
		\rightarrow We provided them in the abstract (pages 3-4).
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
		\rightarrow We explained them in the introduction (pages 6-7).
Objectives	3	State specific objectives, including any prespecified hypotheses
		\rightarrow We stated them in the introduction (pages 6-7)
Methods		
Study design	4	Present key elements of study design early in the paper
		\rightarrow We presented them in the measures and variables section of the materials and
		methods (pages 8-9).
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment
		exposure, follow-up, and data collection
		\rightarrow We described them in the data source and study sample sections of the materials
		and methods (pages 7-8).
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of
		selection of participants. Describe methods of follow-up
		Case-control study—Give the eligibility criteria, and the sources and methods of
		case ascertainment and control selection. Give the rationale for the choice of cases
		and controls
		Cross-sectional study—Give the eligibility criteria, and the sources and methods o
		selection of participants
		\rightarrow We presented them in the data source and study sample sections of the materials
		and methods (pages 7-8).
		(b) Cohort study—For matched studies, give matching criteria and number of
		exposed and unexposed
		Case-control study—For matched studies, give matching criteria and the number of
		controls per case
		\rightarrow N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and
		effect modifiers. Give diagnostic criteria, if applicable
		\rightarrow We clearly defined them in the measures and variables section of the materials
		and methods (pages 8-9).
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there
		is more than one group.
		\rightarrow We indicated them in the materials and methods (pages 7-11).
Bias	9	Describe any efforts to address potential sources of bias

י ר	
2 3 4 5 6 7 8 9 1	
3	
4	
5	
6	
7	
1	
8	
9	
1	0
1	1
1	1
1	2
1	3
1	4
1	5
4	6
1	0
1	1
1	8
1	1 2 3 4 5 6 7 8 9
2	ñ
~	01234567890123456789
2	1
2	2
2	3
2	4
2	5
2	0
2	6
2	7
2	8
2	a
~	9
3	0
3	1
3	2
3	3
2	1
0	4
3	5
3	6
3	7
2	R
3	0
3	9
4	0
4	1
4	
4	
4	
4	5
4	6
4	
4	
4	9
5	0
5	1
5	2
J	4
	2
5	3
5	4
5 5	4 5
5 5	4 5
5 5 5	4 5 6
5 5 5 5	4 5 6 7
5 5 5 5 5	4 5 6 7 8
5 5 5 5	4 5 6 7 8
5 5 5 5 5 5 5	4 5 6 7 8

		\rightarrow We described them in the strengths and limitations section of the discussion (page 29).
Study size		10 Explain how the study size was arrived at \rightarrow We explained the study size in the data source and study sample section of the
Quantitative variables	5	 materials and methods (pages 7-8). 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why
		\rightarrow We explained quantitative variables' handling in the measures and variables section of the materials and methods (pages 8-9).
Statistical methods		 (a) Describe all statistical methods, including those used to control for confounding → We described statistical methods in the analytic procedures section of the materials and methods (pages 9-11).
		(b) Describe any methods used to examine subgroups and interactions
		\rightarrow We described statistical methods in the analytic procedures section of the
		materials and methods (pages 9-11).
		(c) Explain how missing data were addressed
		\rightarrow N/A (d) Cohort study—If applicable, explain how loss to follow-up was addressed
		<i>Case-control study</i> —If applicable, explain how most to follow-up was addressed
		addressed
		Cross-sectional study—If applicable, describe analytical methods taking account o
		sampling strategy
		\rightarrow We described them in the analytic procedures section of the materials and
		methods (pages 9-11).
		(<u>e</u>) Describe any sensitivity analyses
		\rightarrow N/A
Results	2*	
Participants 1		(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed
		\rightarrow We reported them in the data source and study sample section of the materials and
	_	methods and in the table (pages 7-8, 12-15).
		(b) Give reasons for non-participation at each stage \rightarrow N/A
		(c) Consider use of a flow diagram $\rightarrow N/A$
Descriptive data 1	4*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
		information on exposures and potential confounders
		\rightarrow We described them in the data source and study sample section of the materials and
	-	methods and in the table (pages 7-8, 12-15).
		(b) Indicate number of participants with missing data for each variable of interest $\rightarrow N/A$
		(c) Cohort study—Summarise follow-up time (eg, average and total amount) $\rightarrow N/A$
Outcome data 1	5*	Cohort study-Report numbers of outcome events or summary measures over time
		<i>Case-control study</i> —Report numbers in each exposure category, or summary measures of exposure

BMJ Open

		\rightarrow We reported them in the table (pages 12-15; Table 1).
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
	10	precision (eg, 95% confidence interval). Make clear which confounders were adjusted for
		and why they were included
		\rightarrow We indicated them in the results and the table (pages 16-22, Table 2)
		(b) Report category boundaries when continuous variables were categorized
		\rightarrow We reported them in the measures and variables section of the materials and methods
		(pages 8-9).
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		meaningful time period
		\rightarrow N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity
Other unaryses	17	analyses
		\rightarrow N/A
Discussion		
Key results	18	Summarise key results with reference to study objectives
ney results	10	\rightarrow We indicated them in the comparison to previous studies section of the discussion (page
		22-23).
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision
		Discuss both direction and magnitude of any potential bias
		\rightarrow We discussed them in the strengths and limitations section of the discussion (page 29).
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,
1		multiplicity of analyses, results from similar studies, and other relevant evidence
		\rightarrow We discussed them in the discussion (pages 22-30).
Generalisability	21	Discuss the generalisability (external validity) of the study results
5		\rightarrow We discussed it in the public health implications section of the discussion and in the
		conclusion (pages 29-30).
Other informatio	n	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicab
-		for the original study on which the present article is based
		\rightarrow This research received no specific grant from any funding agency in the public,
		commercial or not-for-profit sectors.

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Gender-specific interactions between education and income in relation to obesity: a cross-sectional analysis of the Fifth Korean National Health and Nutrition Examination Survey (KNHANES V)

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-014276.R3
Article Type:	Research
Date Submitted by the Author:	19-Aug-2017
Complete List of Authors:	Chung, Woojin; Yonsei University Graduate School of Public Health, Department of Health Policy; Institute of Health Services Research, Yonsei University Lim, Seung-ji; National Health Insurance Service, Health Insurance Policy Research Institute Lee, Sunmi; National Health Insurance Service, Health Insurance Policy Research Institute Kim, Roeul; Korea Worker's Compensation and Welfare Service, Labor Welfare Research Institute Kim, Jaeyeun; National Health Insurance Service, Health Insurance Policy Research Institute Kim, Jaeyeun; National Health Insurance Service, Health Insurance Policy Research Institute; Graduate School, Yonsei University, Department of Public Health
Primary Subject Heading :	Public health
Secondary Subject Heading:	Sociology
Keywords:	Obesity, Education, Income, Gender, South Korea

SCHOLARONE[™] Manuscripts

BMJ Open

Gender-specific interactions between education and income in relation to obesity: a cross-sectional analysis of the Fifth Korean National Health and Nutrition Examination Survey (KNHANES V)

Woojin Chung,^{1,2} Seung-ji Lim,³ Sunmi Lee,³ Roeul Kim,⁴ Jaeyeun Kim,^{3,5*}

¹ Department of Health Policy, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea

² Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea

³ Health Insurance Policy Research Institute, National Health Insurance Service, Wonju,

Republic of Korea

⁴Labor Welfare Research Institute, Korea Worker's Compensation and Welfare Service, Seoul,

Republic of Korea

⁵ Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea

*Corresponding author

Department of Public Health, Graduate School, Yonsei University 50-1 yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea E-mail: <u>jaeyeunk@yuhs.ac</u>

Cellular phone: +82-10-3466-7746

Word count: 6,704 (excluding title page, abstract, references, figures and tables)

MJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Keywords: Obesity, Education, Income, Gender, South Korea

1
2
3
2 3 4 5 6 7
5
6
7
7 8 9 10
9
10
11
12
13
14
15
16
17
11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 20 31
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
34 35 36 37 38
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57 58
58
59
60

ABSTRACT 1

3	Objectives
4	To identify gender-specific associations between education and income in relation to obesity
5	in developed countries by considering both the interaction-effect terms of the independent
6	variables and their main-effect terms.
7	Design
8	A cross-sectional study. Education and income levels were chosen as socioeconomic status
9	indicators. Socio-demographics, lifestyles and medical conditions were used as covariates in
10	multivariable logistic regression models. Adjusted odds ratios and predicted probabilities of
11	being obese were computed and adjusted for a complex survey design.
12	Setting
13	Data were obtained from the Fifth Korea National Health and Nutrition Examination Survey
14	(2010-2012).
15	Participants
16	The sample included 7,337 male and 9,908 female participants aged 19 years or older.
17	Outcome measure
18	Obesity was defined as body mass index of 25 or more, according to a guideline for Asians.
19	Results
20	In models with no interaction-effect terms of independent variables, education was
21	significantly associated with obesity in both men and women, but income was significant
22	only in women. However, in models with the interaction-effect terms, education was
23	significant only in women, but income was significant only in men. The interaction effect
	3

between income and education was significant in men but not in women. Participants having the highest predicted probability of being obese over educational and income levels differed between the two types of models, and between men and women. A prediction using the models with the interaction-effect terms demonstrated that for all men, the highest level of formal education was associated with an increase in their probability of being obese by as much as 26%.

30 Conclusions

31 The well-known, negative association between socioeconomic status and obesity in

32 developed countries may not be valid when interaction effects are included. Ignoring these

- effects and their gender differences may result in the targeting of wrong populations for
- 34 reducing obesity prevalence and its resultant socioeconomic gradients.

35 Article summary

- 36 Strengths and limitations of this study
 - 1. The study included a nationally representative sample of South Korean adults.
 - 2. The study is the first to investigate the associations of education and income with
- obesity while considering both the main-effect terms of all independent variables and
 their interaction-effect terms.
 - The study compared the predicted probabilities of being obese among various sets of education and income levels for each gender.

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

4. The causal inferences could not be examined due to the cross-sectional design.

1	INTRODUCTION
-	

> Numerous studies have investigated various factors related to obesity, and have identified the relationship between socioeconomic status and obesity.¹⁻³ Despite strong inconsistencies regarding the relationship between socioeconomic status and obesity either in a gender or between genders, most literature indicated that in developed countries, socioeconomic status is negatively correlated with obesity in both men and women, being more consistent in women than in men.¹²⁴⁻⁷ However, because empirical studies of obesity have often ignored the interaction effects among various characteristics, these studies have failed to detect complex associations between different levels of socioeconomic status in relation to obesity; moreover, they have failed to explain differences among different population groups regarding the mechanisms through which socioeconomic status becomes associated with obesity. To put it concretely, when the interaction effects among various characteristics are considered, previous studies have not answered the question as to whether the abovementioned, well-known associations between socioeconomic status and obesity remain valid in developed countries. Moreover, they have seldom explored why a socioeconomic status indicator sometimes interacts with another socioeconomic status indicator with regard to obesity, and whether the interaction differs by gender; whether the likelihood of being obese with regard to some levels of socioeconomic status remains the same before and after consideration of the interaction effects; and whether government can reduce the prevalence of obesity and change the socioeconomic gradient in the prevalence of this condition by providing all individuals with the highest level of socioeconomic status possible. Attempting to fill the gap between previous findings and the unanswered questions,

this study chose education and income levels as socioeconomic status indicators because they
complement each other: educational level is established in early adulthood and tends to
remain unchanged later in life, while income level may change throughout adult life. In
particular, this study used data from South Korea, which has industrialized rapidly and is now
categorized as one of the ten largest advanced economies in the world.⁸ Nevertheless, South
Korea is still noted for pronounced gender inequality almost everywhere, especially in the

This study considered two models for each gender: one included only the maineffect terms of all independent variables, and the other included the two-way interactioneffect terms between the independent variables, as well as their main-effect terms. Considering the complex survey design, this study used multivariable logistic regression analyses to compute the odds ratios of obesity and to predict the probability that a man or woman would be obese if he or she had a particular set of education and income levels.

39 MATERIALS AND METHODS

40 Data source and study sample

41 This study was based on the Fifth Korea National Health and Nutrition Examination Survey

- 42 (KNHANES V), 2010–2012, which used a stratified multistage clustered probability
- 43 sampling design to collect data on the non-institutionalized, civilian population of South
- 44 Korea on behalf of the Korean Centers for Disease Control and Prevention.¹¹ This survey was
- 45 composed of a health interview and a nutrition survey conducted at the participants' homes,
- 46 as well a physical examination conducted by physicians at designated examination centers.

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Detailed information about the survey design and characteristics is available at the

KNHANES website.¹¹ From KNHANES V, this study accessed data from a pool of 25,534 individuals (8,958 in 2010, 8,518 in 2011, and 8,058 in 2012). Of this group, 24,173 had participated in the interviews, and 18,571 individuals aged 19 years or older underwent physical examinations. A total of 17,245 (92.86%) participants (7,337 men, 9,908 women) were included in this study because they had the required information in their files. The ethical review board of the educational institution where the research was conducted approved this CPP. study. Measures and variables The obesity status of each participant was determined anthropometrically using data from the physical examination. Height was measured using a portable stadiometer, and body weight was measured using a calibrated balance-beam scale, and the body mass index (BMI) was calculated from these height and weight measurements. According to the guidelines proposed by the World Health Organization indicating that Asians have a lower average BMI,¹² this study defined general obesity as a BMI of at least 25. Also, because the percentage of participants with BMI of less than 18.5 in the sample was very small (4.5%, 781 participants), we combined participants with BMI of less than 18.5 and those with BMI between 18.5 to 25 into a single group. Therefore, a dichotomous outcome variable was constructed with a value of 1 (obesity, BMI of 25 or higher) and 0 (non-obesity, BMI of less than 25).¹³⁻¹⁵ Levels of education and income were chosen as socioeconomic status indicators.

Education was defined as the highest level of formal education completed as of the date of

70	the interview. This study categorized education into four levels: elementary school or less,
71	junior high school, senior high school, and college or more. For income, this study used an
72	equivalized monthly household income calculation ([monthly overall household income]
73	[household size] $^{-0.5}$) and divided the participants into four quartiles.
74	Nine sociodemographic characteristics, including gender, were incorporated as
75	covariates. Age was treated as a continuous variable, and marital status was categorized into
76	married, formerly married, and never married. Residential area was divided into metropolitan
77	urban area, non-metropolitan urban area, and rural area. Occupation was grouped into
78	unemployed, office worker, and manual worker. Housing status was coded in terms of
79	whether a participant was a renter or a home owner. Participants were categorized according
80	to whether they were enrolled in National Health Insurance or Medical Care Aid for regular
81	or low-income individuals, respectively, with regard to the universal health insurance
82	program. Participants with private health insurance were also noted. Survey year was added
83	to control for any fixed time effect.
84	This study also incorporated ten characteristics about lifestyle and medical conditions.
85	Participants were grouped in terms of the following categories: 1) smoking, 2) excessive
86	alcohol consumption (at high risk due to drinking according to the gender-specific guidelines
87	of the World Health Organization), ¹⁶ 3) routinely exercising (physical activity as defined as
88	the participation in moderate or vigorous exercise for a respective frequency and duration), ¹⁷
89	4) daily sleep duration (sleeping less than 7 h per day was defined as sleeping for a short
90	duration), ¹⁸ 5) daily energy intake (moderate energy intake was defined as total energy intake
91	within $1.25 \times \text{ of participants' estimated daily energy requirement}$, ¹⁹ 6) self-perceived stress, 7)
92	self-perceived health, 8) hypertension, 9) dyslipidemia, and 10) diabetes. The presence of the
93	last three chronic diseases was determined by a prior physician diagnosis at the pre-surgery 9

	94	interview.
	95	
	96	Analytic procedures
) 	97	A six-fold analysis was performed. First, this study tested differences in the distributions of
2 3	98	variables among men and women using the <i>t</i> -test for continuous variables and the χ^2 test for
+ 5 3	99	categorical variables. Second, this study tested the association of each variable with obesity
, 7 }	100	by gender using the χ^2 test. Third, gender interaction effects were examined, for which simple
)	101	logistic regression models were constructed with main effects for gender and the variable of
2	102	interest as well as the interaction effects of the two variables. Due to the results, the
3 1 5	103	remaining analyses were stratified by gender.
5 5 7	104	Fourth, to fit the multivariable logistic regression models, this study continued to re-
3	105	categorize each of the variables and defined each variable's reference category differently
)	106	until no strong multicollinearity was found for the main-effect models and no evidence of a
2 3	107	lack of goodness-of-fit was found in each model. The reference groups for each categorical
+ 5 6	108	variable analyzed were: married for marital status, metro urban for residential area,
, , }	109	elementary school or less for education, the lowest quartile for income, manual workers for
)	110	occupation, home owner for housing status, National Health Insurance for universal health
 <u>2</u>	111	insurance, non-holder for private health insurance, year 2010 for survey year, non-smoker for
3 1 5	112	current smoking status, not excessive for alcohol consumption, physically active for routine
5	113	physical exercise, non-short for daily sleep duration, not moderate for daily energy intake, not
3	114	very high for self-perceived stress, not very bad for self-perceived health, no for hypertension,
)	115	no for dyslipidemia, and no for diabetes. Therefore, the values for the variance inflation
<u>/</u> 3	116	factor became less than 3.65, and p-values based on the Hosmer-Lemeshow statistic became
+ 5 8	117	higher than 0.26.
7		10

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 11 of 59

BMJ Open

118	Fifth, this study estimated the adjusted odds ratios (ORs) of obesity and their 95%
119	confidence intervals (CIs) after fully adjusting for covariates. Two models were considered
120	for each gender: Model 1 included only the main-effect term of every variable, and Model 2
121	included the main-effect terms for each variable as well the two-way interaction-effect terms
122	between the variables. For the two-way interaction-effect terms between the variables, we
123	included interaction-effect terms between each pair of independent variables including
124	income, education, and 9 socio-demographic covariates. We considered not only the
125	interaction-effect terms between education and income, but also the interaction-effect terms
126	of each of the other independent variables. In order to identify a purer interaction-effect
127	between education and income in relation to obesity, we needed to control for other possible
128	variables that could influence obesity including 1) main effects of each independent variable,
129	2) interaction-effect terms between education and each of the 9 socio-demographic covariates,
130	3) interaction-effect terms between income and each of the 9 socio-demographic covariates,
131	and 4) interaction-effect terms between each two of all 9 socio-demographic covariates. In
132	addition, the reasons why we considered the two-way interaction-effect terms between the
133	variables, rather than the three-way or greater interaction-effect terms, were: (1) as we
134	included three-way or greater interaction-effect terms, we had more difficulty having a
135	sufficient number of observations for the analyses in combined categories of independent
136	variables associated with the interactions, and (2) two-way interactions were sufficient to
137	emphasize the importance of gender-specific interactions between education and income in
138	relation to obesity.
139	Finally, to assess the association of each level of a socioeconomic status indicator
140	with obesity and to compare these associations across categories for both socioeconomic
141	status indicators, this study predicted the probability of a participant being obese (and its 95%

Page 12 pf 59 MJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

142	confidence intervals) if he or she had a particular set of education and income levels. These
143	probabilities, which were calculated by gender, denote the average of all participants'
144	probabilities if each participant belonged to a particular set of education and income levels,
145	while maintaining participant characteristics for the other variables constant.
146	All analyses and tests were conducted considering the sampling design of the survey.
147	However, for convenience, the descriptive statistics are shown as unweighted. P-values <
148	0.05 were considered statistically significance. The SAS 9.2 software (SAS Institute, Cary,
149	NC, USA) and STATA 12 software (StataCorp, College Station, TX, USA) were used to
150	perform all statistical analyses.
151	
152	RESULTS

Descriptive statistics

154 The rate of obesity was significantly higher in men (34.96%) than in women (29.67%), as

- indicated by the significantly higher BMI in men than in women (Table 1). All characteristics
- 156 differed significantly by gender except for residential area, housing status, enrollment in a
- 157 private health insurance plan, survey year, daily sleep duration, and diabetes status.

Table 1 Sample characteristics and their associations with obesity by gender: the Fifth Korea National Health and Nutrition ExaminationSurvey (KNHANES V), 2010-2012, South Korea

		Di	stribution,	N (%)			Obesity, %	
	Me			omen	p Value†	Men	Women	p Value ⁶
Body mass index, kg m ⁻² *	23.97	(3.1)	23.43	(3.6)	< 0.001			_
Obesity	2565	(35.0)	2940	(29.7)	< 0.001			
Age, years*	50.79	(16.4)	50.48	(16.6)	< 0.001	35.1‡	34.7‡	< 0.001
Marital status					< 0.001	<0.001§	<0.001§	< 0.001
Married	5848	(79.7)	6887	(69.5)		36.0	30.5	
Formerly married	339	(4.6)	1803	(18.2)		30.1	37.4	
Never-married	1150	(15.7)	1218	(12.3)		31.0	13.4	
Residential area					0.446	0.259§	<0.001§	< 0.001
Metro urban	3240	(44.2)	4404	(44.5)		35.2	27.0	
Non-metro urban	2523	(34.4)	3471	(35.0)		36.6	29.2	
Rural	1574	(21.4)	2033	(20.5)		31.9	36.4	
Education					< 0.001	<0.001§	<0.001§	< 0.001
Elementary school or less	1294	(17.6)	3168	(32.0)		26.6	40.2	
Junior high school	867	(11.8)	1024	(10.3)		36.1	38.6	
Senior high school	2617	(35.7)	3136	(31.7)		34.5	27.1	
College or more	2559	(34.9)	2580	(26.0)		39.3	16.4	
Income, quartiles					< 0.001	0.002§	<0.001§	< 0.001
Lowest	1694	(23.1)	2641	(26.6)		28.4	36.8	
2nd lowest	1924	(26.2)	2514	(25.4)		36.5	31.7	
3rd lowest	1739	(23.7)	2177	(22.0)		34.9	28.0	
Highest	1980	(27.0)	2576	(26.0)		39.1	21.8	
Occupation					< 0.001	< 0.001§	<0.001§	< 0.001
Unemployed	1878	(25.6)	5208	(52.6)		28.7	31.1	
Office worker	1965	(26.8)	1586	(16.0)		42.1	17.5	
Manual worker	3494	(47.6)	3114	(31.4)		34.3	33.6	
			13	3				

BMJ Open: first published as 10.1136/bm/open-201604/425609/58/946466/2013/LB09/1924666/01/20/0414/20/0414/20/04

				0.158	0.945§	0.843§	0.838
5606	(76.4)	7280	(73.5)		35.1	29.5	
1731	(23.6)	2628	(26.5)		34.6	30.1	
				< 0.001	0.020§	0.004§	< 0.001
7204	(98.2)	9609	(97.0)		35.2	29.4	
133	(1.8)	299	(3.0)		24.8	39.8	
				0.181	<0.001§	<0.001§	< 0.001
2258	(30.8)	2898	(29.3)		29.3	34.9	
<u>50</u> 79	(69.2)	7010	(70.7)		37.5	27.5	
				0.831	0.695§	0.133§	0.162
2592	(35.3)	3364	(34.0)		35.2	28.3	
2494	(34.0)	3380	(34.1)		34.6	30.4	
2251	(30.7)	3164	(31.9)		35.1	30.4	
				< 0.001	0.375§	0.936§	0.729
4336	(59.1)	9359	(94.5)		36.1	29.8	
3001	(40.9)	549	(5.5)		33.3	27.1	
				< 0.001	< 0.001§	0.064§	< 0.001
4950	(67.5)	8689	(87.7)		31.5	30.1	
2387	(32.5)	1219	(12.3)		42.1	26.7	
				< 0.001	0.838§	< 0.001§	0.012
1552	(21.2)	1620	(16.4)		35.6	32.8	
5785	(78.8)	8288	(83.6)		34.8	29.1	
			. ,	0.992	■ 0.150§	< 0.001§	0.007
4291	(58.5)	5717	(57.7)		34.2	27.4	
3046	· ,	4191	(42.3)		36.0	32.8	
				< 0.001	0.818§	<0.001§	< 0.001
5859	(79.9)	8306	(83.8)			28.0	
1478	· · ·		· /			38.5	
	× /		× /	< 0.001			0.236
7087	(96.6)	9421	(95.1)		35.1	29.5	
		1.	1				
	 1731 7204 133 2258 5079 2592 2494 2251 4336 3001 4950 2387 1552 5785 4291 3046 5859 1478 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1731 (23.6) 2628 7204 (98.2) 9609 133 (1.8) 299 2258 (30.8) 2898 5079 (69.2) 7010 2592 (35.3) 3364 2494 (34.0) 3380 2251 (30.7) 3164 4336 (59.1) 9359 3001 (40.9) 549 4950 (67.5) 8689 2387 (32.5) 1219 1552 (21.2) 1620 5785 (78.8) 8288 4291 (58.5) 5717 3046 (41.5) 4191 5859 (79.9) 8306 1478 (20.1) 1602 7087 (96.6) 9421	1731 (23.6) 2628 (26.5) 7204 (98.2) 9609 (97.0) 133 (1.8) 299 (3.0) 2258 (30.8) 2898 (29.3) 5079 (69.2) 7010 (70.7) 2592 (35.3) 3364 (34.0) 2494 (34.0) 3380 (34.1) 2251 (30.7) 3164 (31.9) 4336 (59.1) 9359 (94.5) 3001 (40.9) 549 (5.5) 4950 (67.5) 8689 (87.7) 2387 (32.5) 1219 (12.3) 1552 (21.2) 1620 (16.4) 5785 (78.8) 8288 (83.6) 4291 (58.5) 5717 (57.7) 3046 (41.5) 4191 (42.3) 5859 (79.9) 8306 (83.8) 1478 (20.1) 1602 (16.2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

BMJ Open: first published as 10.1136/pmjopen-2016. Popper 2015 Popper 2013 Powniesded Bowniesded Bownies

BMJ Open

Very high	250	(3.4)	487	(4.9)		32.4	33.3	
Self-perceived health					< 0.001	0.362§	<0.001§	0.002
Not very bad		(97.6)		(95.5)		35.2	29.1	
Very bad	178	(2.4)	441	(4.5)		24.2	42.4	
Hypertension					< 0.001	<0.001§	<0.001§	< 0.001
No	5764	(78.6)	7713	(77.8)		32.6	24.3	
Yes	1573	(21.4)	2195	(22.2)		43.6	48.5	
Dyslipidemia					< 0.001	<0.001§	<0.001§	0.137
No	6859	(93.5)	9065	(91.5)		33.9	27.8	
Yes	478	(6.5)	843	(8.5)		50.6	49.8	
Diabetes					0.099	0.858§	<0.001§	< 0.00
No	6661	(90.8)	9219	(93.0)		34.8	28.1	
Yes	676	(9.2)	689	(7.0)		36.1	50.4	
Number of participants		7337		9908		7337	9908	

N, number; All P-values were estimated by considering a stratified cluster sampling design.

*Mean (standard deviation).

 \dagger P-value was estimated by using the t-test for continuous variables and χ^2 tests for categorical variables.

[‡]For the continuous age variable, the proportion of obesity was obtained from people aged 50-59 years to which median age for each gender belonged. §P-value was estimated by χ^2 tests for each gender. ¶P-value was estimated from the interaction effects terms between gender and each characteristic by using the logistic analysis.

158	Characteristics associated with obesity and gender differences
159	Among men, the rate of obesity was significantly higher in participants who were married,
160	had at least a college education, had an income in the highest quartile, had an office job, were
161	National Health Insurance beneficiaries, had a private health insurance plan, consumed
162	excessive alcohol, had hypertension, and had dyslipidemia (Table 1).
163	Among women, a significantly higher rate of obesity was observed in participants
164	who were formerly married, lived in a rural area, did not go beyond elementary school, had
165	incomes in the lowest quartile, were manual workers, were Medical Care Aid beneficiaries,
166	had no private health insurance plan, were physically active, lacked adequate sleep, had
167	moderate energy intake, reported very high levels of stress, had very poor self-perceived
168	health, had hypertension, had dyslipidemia, and were diabetic. The rate of obesity differed
169	significantly by gender with regard to all variables except for housing status, survey year,
170	current smoking status, self-perceived stress, and had dyslipidemia.
171	
172	Adjusted associations of obesity with education and income
173	Among men, according to the model with only main-effect terms (Model 1), the OR of
174	obesity was 1.41 (95% CI = $1.12-1.77$) in those with at least a college education compared
175	with their counterparts who did not go beyond elementary school (Table 2). Conversely,
176	according to the model with interaction-effect terms (Model 2), the OR was 0.05 (95% CI =
177	0.01–0.32) among those with incomes in the highest quartile compared with those with
178	incomes in the lowest quartile. Education alone was not significant. In terms of their
179	association with obesity, education and income were found to interact with each other, as five
180	combinations of educational and income levels were significant compared with their
181	respective reference combinations. 16

Table 2 Adjusted associations of education and income with obesity by gender: the Fifth Korea National Health and Nutrition ExaminationSurvey (KNHANES V), 2010-2012, South Korea

		Men (1	N=7337)			Women	(N=9908	B)
	Model 1†		Model 2‡		Model 1†		Model 2‡	
	OR	(95% CI)	OR	(95% CI)	OR	(95% CI)	OR	(95% CI)
Main effects								
Education								
Elementary school or less (EDU1)	1.00		1.00		1.00		1.00	
Junior high school (EDU2)	1.41**	(1.10-1.82)	0.61	(0.06-6.56)	1.19	(0.98-1.44)	0.16*	(0.03-0.89)
Senior high school (EDU3)	1.27*	(1.03-1.58)	0.57	(0.08-4.25)	0.89	(0.72-1.09)	0.13**	(0.03-0.58)
College or more (EDU4)	1.41**	(1.12-1.77)	1.45	(0.16-13.04)	0.59***	(0.46-0.75)	0.13*	(0.02-0.89)
Income, quartiles								
Lowest (INC1)	1.00		1.00		1.00		1.00	
2nd lowest (INC2)	1.13	(0.91-1.39)	0.11*	(0.02-0.64)	0.99	(0.84-1.16)	1.13	(0.26-4.98)
3rd lowest (INC3)	1.01	(0.81-1.28)	0.18	(0.03-1.11)	0.93	(0.77-1.11)	1.16	(0.22-6.20)
Highest (INC4)	1.10	(0.87-1.39)	0.05**	(0.01-0.32)	0.73**	(0.60-0.89)	1.58	(0.30-8.38)
Interaction effects								
Education x Income								
EDU2 × INC2			1.91	(0.91-4.04)			0.77	(0.44-1.33)
EDU2 × INC3			1.88	(0.81-4.34)			1.11	(0.60-2.06)
			1.00	(0.01 ⁻ 7)			1.11	(0.00-2.00)

BMJ Open: first published as 10.1136/bm/open-201601425609168694666913/Bowileade66913/Bowileade6601660

EDU2 x INC4	1.72	(0.65-4.59)	0.5	51 (0.26-1.01)
EDU3 × INC2	2.30*	(1.17-4.52)	1.5	58 (0.90-2.75)
EDU3 × INC3	2.17*	(1.05-4.47)	1.3	34 (0.73-2.47)
EDU3 × INC4	1.52	(0.67-3.44)	1.2	23 (0.67-2.24)
EDU4 x INC2	2.74*	(1.14-6.56)	1.0	08 (0.49-2.39)
EDU4 × INC3	3.00*	(1.27-7.12)	0.8	87 (0.38-2.00)
EDU4 x INC4	2.65*	(1.04-6.78)	0.6	66 (0.27-1.58)
Hosmer-Lemeshow test, p Value	0.967	0.530	0.304	0.471

N, number; OR, odds ratio; CI, confidence interval; All models were adjusted for age, marital status, residential area, occupation, housing status, universal health insurance, private health insurance, survey year, smoking, alcohol consumption, routine physical exercise, daily sleep duration, daily energy intake, self-perceived stress, self-perceived health, hypertension, dyslipidemia, and diabetes; All estimates were obtained by considering a stratified cluster sampling design.

P* < 0.05, *P*< 0.01, ****P*< 0.001.

†Models 1 included only main effects terms for all variables.

‡Models 2 included both main effects terms and two-way interaction effects terms for all variables.

BMJ Open

Among women, according to Model 1, the OR was 0.59 (95% CI = 0.46-0.75) in participants who had at least a college education compared with those who did not go beyond elementary school, and 0.73 (95% CI = 0.60–0.89) among those with incomes in the highest quartile compared with those with incomes in the lowest quartile. In contrast, according to Model 2, the OR was 0.13 (95% CI = 0.02–0.89) among participants with at least a college education compared with participants who did not go beyond elementary school. Income alone was not significant. In terms of an interaction effect, one combination of educational and income levels was marginally significant relative to the reference combination (p = 0.053).Predicted probability of being obese The predicted probabilities for a participant to be obese if he or she had a particular set of

education and income levels were obtained from the model with only the main-effect term of
each independent variable (Model 1) and from the model with both the main-effect term of
each independent variable as well as the two-way interaction-effect terms between
independent variables (Model 2); these results are displayed graphically in Figures 1 and 2
for men and women, respectively.

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Figure 1 Predicted probabilities of being obese (and their 95% confidence intervals) by education for each income level in men in a model with only main effects (A) and a model with both main and interaction effects (B): the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010–2012, South Korea

Figure 2 Predicted probabilities of being obese (and their 95% confidence intervals)

by education for each income level in women in a model with only main effects (A) and a
model with both main and interaction effects (B): the Fifth Korea National Health and
Nutrition Examination Survey (KNHANES V), 2010–2012, South Korea

According to Figures 1 and 2, the predicted probabilities of being obese differed greatly between Models 1 and 2 for each gender. Whether for men or for women, the pattern of the changes in the predicted probability for each income level was uniform across educational levels in Model 1 (the left panel in each figure), suggesting that the income differences in obesity are constant towards higher education. However, according to Model 2 for each gender (the right panel in each figure), the pattern became very different from that in Model 1 for each gender and showed clear gender differences. For example, for men, the income difference in obesity was the largest in participants who did not go beyond elementary school (0.130) and the smallest in junior high school graduates (0.024), whereas for women, the income difference in obesity was the largest in junior high school graduates (0.199), the second largest in participants who had at least a college education (0.126) and the smallest in senior high school graduates (0.052). This suggests cautiously that unlike in women, the income differences in obesity decreases towards higher education in men. Meanwhile, with respect to the education difference in obesity, it was the largest in participants who had income in the second lowest quartile (0.148), the second largest in those with income in the third lowest quartile (0.147), and the smallest in participants who had income in the lowest quartile (0.090); but for women, it was the largest in participants who had income in the highest quartile (0.198), the second largest in participants who had income in the lowest quartile (0.196), and the smallest in those with income in the second lowest quartile (0.125). This suggests cautiously that the education differences in obesity show an

230	inverse U-shape with higher income in men, in a sharp contrast with women having a U-
231	shape.

232	The Findings in men can be summarized as follows: 1) Although men in two income
233	categories (the second lowest quartile and the lowest quartile) had the highest and the lowest
234	predicted probabilities across all educational levels in Model 1 respectively, no income level
235	had these distinctions with respect to all educational levels in Model 2. 2) The education-
236	income group with the highest predicted probability according to Model 1 and 2 differed: it
237	was junior high school graduates with incomes in the second lowest quartile in Model 1
238	(predicted probability = 0.392), but it was junior high school graduates with incomes in the
239	lowest quartile in Model 2 (predicted probability = 0.414). 3) The education-income group
240	with the lowest predicted probability also differed between Models 1 and 2: it was
241	participants who did not go beyond elementary school and who had incomes in the lowest
242	quartile in Model 1 (predicted probability = 0.292), but it was those did not go beyond
243	elementary school and who had incomes in third lowest quartile in Model 2 (predicted
244	probability = 0.243). 4) The gradient (or range) between the highest and lowest predicted
245	probabilities was 0.099 in Model 1 but 0.172 in Model 2.

Likewise, the findings in women can be summarized as follows. 1) Although women in two income levels (the lowest quartile and the highest quartile) had the highest and the lowest predicted probabilities across all educational levels in Model 1 respectively, no income level had these distinctions in Model 2. 2) The education-income group with the highest predicted probability differed between Models 1 and 2: it was junior high school graduates with incomes in the lowest quartile in Model 1 (predicted probability = 0.370), but it was participants who did not go beyond elementary school and who had incomes in the lowest quartile in Model 2 (predicted probability = 0.487). 3) The education-income group

2	
3	
3 4 5	
5	
5	
6	
7	
8 9 10	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
11 12 13 14 15 16 17 18 19 20 21 22 23	
21	
22	
22 23 24 25 26	
24	
25	
20	
26	
27 28 29 30	
28	
29	
30	
21	
31	
32	
32 33 34 35	
34	
35	
36 37 38	
37	
20	
30	
39	
40	
41	
42	
43	
44	
44	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

with the lowest predicted probability was the same in Models 1 and 2: it was those with at
least a college education with incomes in the highest quartile in Model 1 (predicted
probability = 0.183) and Model 2 (predicted probability = 0.218). 4) The gradient in the
predicted probability was 0.187 in Model 1 and 0.269 in Model 2.

258

259 **DISCUSSION**

260 **Comparison to previous studies**

Although socioeconomic status has often been shown to be a significant predictor of obesity, previous studies on the relationship between socioeconomic status and obesity focused on the main-effect terms of independent variables, rather than both the main-effect terms of the variables and their interaction-effect terms.¹⁻³

265 Under this study limitation of including only the main-effect terms of independent 266 variables, the literature has shown various inconsistencies regarding the relationship between a socioeconomic status indicator and obesity in either gender or between genders. The results 267 of the previous studies were inconsistent mainly according to whether the relationship 268 269 between the socioeconomic status indicator and obesity was found to be positive, negative, or insignificant for each gender. As for education, for example, the relationship between 270 education and obesity was found to be: positive in both men and women in Finland²⁰ and 271 India;²¹ positive in men but negative in women in the USA²² and Iran;²³ positive in men but 272 insignificant in women in the USA²⁴ and Peru;²⁵ insignificant in men but negative in women 273 in the USA²⁶ and Italy;²⁷ and insignificant in both men and women in the Netherlands²⁸ and 274 Finland.²⁹ 275

276 A

As for income, the relationship between income and obesity was found to be:

Page 23 of 59

BMJ Open

277	positive in both men and women in the USA ³⁰ and Sri Lanka; ³¹ positive in men but
278	insignificant in women in the USA ³² and South Korea; ³³ insignificant in men but negative in
279	women in Singapore ³⁴ and Canada; ³⁵ and insignificant in both men and women in the USA, ²⁶
280	Canada, ³⁵ Greece, ³⁶ and China. ³⁷
281	In particular, many studies indicated that socioeconomic status and obesity are
282	negatively correlated in both men and women in developed countries, ¹² being consistent for
283	both education and income, as shown in France ⁴ and the USA ⁵ for education; and in
284	Australia ⁶ and the USA ⁷ for income.
285	Considering the interaction-effect terms between independent variables, however, th
286	results of our study suggest that in certain developed countries like South Korea, education
287	and income may not have negative associations with obesity in either men or women and
288	they may have somewhat complex relationships with obesity because of the interaction
289	effects between independent variables.
290	This suggestion is depicted clearly in both Table 2 and Figures. In models including
291	the main-effect terms of all independent variables considered in this study and their two-way
292	interaction-effect terms in Table 2, the main-effect of income as well as the interaction-effec
293	term between education and income was significant in men, but only the main-effect term of
294	education was significant in women. It seems that in men, income plays a role in its
295	association with obesity on its own as well as through its interaction with education, wherea
296	education plays a role only through its interaction with income; in women, however,
297	education plays a role in its association with obesity on its own, despite no role for income.
298	Further, complex relationships between each of the education and income levels with
299	obesity are suggested in Figures 1 and 2. In models including main-effect terms of all
300	independent variables and their two-way interaction-effect terms (as shown in the right pane 23

Page 24 0 f 59 MJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

denoted as B in figures), the differences in the predicted probability of being obese between
income levels at a certain education level varied markedly between education levels, and their
gender differences were very evident. Furthermore, people with a particular set of education
and income levels showing the highest (or lowest) risk of obesity, in terms of the predicted
probability of being obese, changed after including the two-way interaction-effect terms for
each gender.

Therefore, the results of our study may caution researchers considering only the main-effect terms in studies of the associations of education and income with obesity to be very careful about interpreting their results. The reasons are as follows: 1) studies considering only the main-effect terms may come to incorrect conclusions about the roles of education and income; 2) those studies may fail to explore how the income differences in obesity at an education level are different from those at another education level (or how the education differences in obesity at an income level are different from those at another income level); and 3) those studies may result in the incorrect identification of the education-income group having the highest (or lowest) risk of obesity.

In addition, according to the results of our study of South Korea, the aforementioned well-known negative association between socioeconomic status and obesity in developed countries should be re-examined using models incorporating interaction-effect terms among various characteristics. Similar results were obtained with regard to abdominal obesity as those reported here for general obesity (these results are available on request).

322 Plausible mechanisms

Based on these results, this study aimed to answer the following three questions. First, who

324 are the participants belonging to the particular set of education and income levels showing the

Page 25 of 59

BMJ Open

highest and lowest values of the predicted probabilities of being obese for each gender and why social positioning leads women to show strong educational differences in models accounting for joint income effects, whereas men show strong income differences alone and in combination with education? To examine this, we provided Supplementary Tables 1 and 2, which show the distributions of sample characteristics by education and income for men and women, respectively. For men, as shown in the right panel of Figure 1, the highest predicted probability of being obese was shown in junior high school graduates with incomes in the lowest quartile (predicted probability = 0.414), whereas the lowest predicted probability in participants those who did not go beyond elementary school and who had incomes in third lowest quartile (predicted probability = 0.243). Relative to the education-income group showing the lowest predicted probability of being obese, the group showing the highest predicted probability tended to have more than twice as high as proportion in participants who were formerly married, participants who were never-married, residents in non-metro urban areas, manual workers, participants surveyed in 2010, current smokers, participants who had energy intake at a moderate level, participants who reported that their health was very bad, participants having hypertension, and participants having diabetes (Supplementary Table 1).

Likewise, for women, as shown in the right panel of Figure 2, the highest predicted probability of being obese was shown in participants who did not go beyond elementary school and who had incomes in the lowest quartile (predicted probability = 0.487), whereas the lowest predicted probability in participants with at least a college education with incomes in the highest quartile (predicted probability = 0.218). Compared to the education-income group showing the lowest predicted probability of being obese, the group showing the highest

predicted probability tended to have more than twice as high as proportion in participant who were formerly married, residents in rural areas, participants who were unemployed, participants whose daily sleep duration were short, participants who reported that their stress was very high, participants who reported that their health was very bad, participants having hypertension, participants having dyslipidemia, and participants having diabetes (Supplementary Table 2). This comparison suggests that a participant's belonging to a particular one of different education-income groups (that is, a social position) is associated with a particular risk of obesity. A variety of studies on social position have shown that one's social position may be determined exogenously or endogenously.^{38 39} An individual can be placed in a social position (or social status) within a society before or at birth. This is called ascribed status.

Ascribed statuses, which differ across societies, exist in all societies. Ascribed statuses

depend on genetics, gender, age, race, or family characteristics. Alternately, an individual can

achieve his or her social position by his or her own efforts, which is called achieved status.

363 Achieved statuses are social position which he or she acquires after his or her birth as

364 consequences of the exercise of knowledge, ability and skill, personal perseverance, and

active interactions with others. Both education and income provides examples of social

366 position that may be either ascribed or achieved status. Meanwhile, when comparing men and

367 women, if education is more of an ascribed status rather than an achieved status, compared to

the income, then education is more likely to make a positive contribution to income in

369 women compared to that in men. Then the role of education on obesity may overtake that of

- income on obesity in women compared to men. Meanwhile, income in combination with
- 371 education rather than education alone may influence the risk of obesity in men. It seems

definite that further research is necessary to evaluate the relationship between social position

and obesity.

BMJ Open

0,0	
374	Second, with regard to its association with obesity, why does education sometimes
375	interact with income and why does the interaction differ by gender? This study believes that
376	two different factors may be involved in this issue. More education may discourage obesity
377	insofar as it promotes a more efficient use of health-related services and products ^{40 41} and an
378	enhanced sense of control and empowerment. ^{42 43} In addition, and less directly, more
379	education may contribute to a higher income, which may discourage obesity by increasing
380	access to higher quality food and better medical care. ^{40 41} However, in a subgroup of people
381	(e.g., men with certain sociocultural characteristics), a higher income may be positively
382	associated with obesity even though more education leads to higher income. Thus, more
383	education and a higher income may lead to a higher likelihood of being obese among this
384	subgroup of people. Meanwhile, it is interesting to note that gender may modify the effects of
385	education and income on one's health. Previous research has suggested that gender, ⁴⁴ race, ⁴⁵
386	place ^{45 46} and their intersections ^{47 48} alter the effects of education and income on health. A
387	recent study compared race-gender groups to examine the effects of baseline education and
388	income on sustained health problems in five domains (depressive symptoms, insomnia,
389	physical inactivity, BMI, and self-rated health) using the Health and Retirement Study in the
390	US. ⁴⁷ This study found that the interaction of race and gender changed the protective effects
391	of social determinants on sustained health problems such as insomnia, physical inactivity, and
392	BMI. Another study showed that gender modifies the effects of education and income on
393	psychosocial well-being of patients with chronic conditions. ⁴⁴
394	It is generally known that women with a high level of education tend to be more
395	worried about weight control than men with the same level of education. ⁴⁹ This may be

because obese women may be more penalized with regard to employment opportunities,⁵⁰

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

wage equality,⁵¹ and finding marriage partners than obese men.⁵² On the other hand, even men with a high income tend to feel more comfortable being overweight than do women in the same income group.⁵³ This can be explained in part by the notion of habitus and Bourdieu's theory, which states that the body has a symbolic value in size and shape for people, but that valuations of the body differ by gender.^{54,55}

Even in a developed society such as South Korea, men have more political and economic influence and are the primary wage earners for families, and most jobs tend to be awarded first to men. Gender differences in body image are also pronounced in South Korea: according to an international study of body image and weight control in young, educated adults, the age-adjusted prevalence of feeling overweight was the second lowest in Korean men (14%) compared with that in men in the other 22 countries, but the prevalence of seeing oneself as overweight was the highest in Korean women (77%).⁵³ Thus, local culture and norms put greater pressure on women than on men to lose weight, as indicated in previous studies.^{53 56 57}

As a third question to be raised from the results of this study, after including the interaction-effect terms in this study, why did the predicted probabilities of being obese follow erratic rather than uniform patterns for both education and income levels, and why were there gender differences in this regard? One reason for the erratic patterns in the predicted probabilities might be that education or income may interact with some other covariate(s). For example, the association between obesity and income may be influenced by stress level in men⁵⁸ and health behaviors caused by a high level of stress, such as smoking cigarettes and drinking alcohol, thereby contributing to the positive association between socioeconomic status and obesity in men.^{59 60} Meanwhile, previous studies investigated the relationship among contextual factors (e.g. gender, race, class, and place), psychosocial

I	
2	
3	
4	
5	
6	
7	
,	
8	
9	
10	
9 10 11 12 13 14 15	
11	
12	
13	
11	
14	
15	
16	
17	
10	
18	
19	
20	
 16 17 18 19 20 21 22 23 24 25 	
21	
22	
23	
21	
24	
25	
26	
27	
20	
28	
29	
30	
31	
32	
33	
31	
34 35 36 37 38 39	
35	
36	
37	
201	
38	
39	
40	
41	
42	
43	
44	
4-	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54	
55	
56	
57	
59	

60

factors and obesity factors (e.g. obesity and BMI).^{61 62 63 64 65} Using data from the Health and 421 422 Retirement Study in the US, a study showed that the association between sustained health problems such as depression and obesity are not universal across race and gender groups.⁶² 423 424 This suggests that culture connected to race and gender may influence cognitive and 425 emotional elements that are essential for the perception of obesity and associated weight management behaviors.⁶⁶ 426 427 Another reason may be that, although education or income interacts with a covariate, 428 different combinations between levels of education or income and covariate categories may 429 be differently associated with being obese. 430 There are three potential reasons for the gender differences in the predicted 431 probabilities of being obese for both education and income levels. First, these gender 432 differences partly derive from gender differences in the covariates that interact with education 433 or income. For example, in the present study, educational level showed significant interaction 434 effects with residential area, excessive alcohol consumption, self-perceived stress, self-435 perceived health, and survey year in men, whereas women's educational level interacted 436 significantly with age, marital status, housing status, hypertension, and diabetes (results not 437 shown). Second, although covariates interact with education or income in both men and 438 women, the magnitude of the interactions between the covariate categories and levels of 439 education or income might differ by gender. Previous studies showed that, unlike in women, increased income does not result in an equivalent adaptation to healthier behaviors in men.³² 440 441 Finally, there may be gender differences in the reverse causation between education or 442 income and obesity. For example, in certain patriarchal societies, girls with a health problem may be less likely to have a high level of education than their male counterparts.⁶⁷ 443 444

MJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

1
2
3
4
3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10
7
0
0
9 10
10
10
12
17
14
16
10
10
10
20
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
∠ I 22
22
20
24
20
20
20
20
29
31
32
32 33 34 35 36 37 38 39
3/
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1

445 An extended study of women

446 Unlike men, because women may be subject to the effects of pregnancy and breastfeeding, it 447 would be worthwhile to take women-specific characteristics into consideration and construct a new sample of women, and compare their results with the results obtained from the men's 448 449 sample. Therefore, we extended our study with a special consideration of women as follows: 450 1) to construct a new sample of women, we excluded pregnant women (n=120) or breastfeeding women (n=188) from the analysis, because their bodyweight can be affected by 451 452 childbearing; 2) we further categorized women according to their menopausal status and 453 included that status as an additional covariate (where not-menopausal was the reference group), because menopause may be associated with obesity;⁶⁸ with the new sample of 9,692 454 455 women, we conducted all the analytic procedures included in the materials and methods 456 chapter; and, finally, we provided the results in Supplementary Tables 3 and 4 and 457 Supplementary Figure 1. 458 According to the results, the differences in the proportion and the obesity rate among 459 all characteristics were very similar between the prior sample of women and the new sample 460 (Table 1 and Supplementary Table 3). Regarding menopausal status in the new sample, in 461 comparison with women who were not menopausal, menopausal women were higher in their 462 proportion (57.0% vs. 48.0%) and showed a significant, higher rate of obesity (37.6% vs. 463 21.6%). 464 In the model with only main-effect terms (Model 1), the OR of obesity was 0.60 (95%)

465 CI = 0.46-0.77) in those with at least a college education compared with their counterparts

466 who did not go beyond elementary school; and the OR was 0.73 (95% CI = 0.59-0.89)

467 among those with incomes in the highest quartile compared with those with incomes in the

468 lowest quartile (Supplementary Table 4). These results were also very similar to those

1		
2 3		
4 5	469	obtained from the prior sample (Table 2).
6 7	470	Meanwhile, according to the mode
8 9	471	education alone nor income alone was sign
10 11	472	to interact with each other in relation to ob
12 13	473	income levels were significant when comp
14 15 16	474	These results are different from those obta
17 18	475	sample, education alone was significant, w
19 20	476	effect term between education and income
21 22	477	The pattern of the changes in the p
23 24 25	478	income level across educational levels in M
25 26 27	479	appears very similar to those obtained from
28 29	480	the predicted probabilities of being obese
30 31	481	the highest predicted probability of being
32 33	482	beyond elementary school and who had in
34 35 36	483	sample and the new sample, but the predic
30 37 38	484	0.488 in the new sample.
39 40	485	In summary, the extended study of
41 42	486	women in the studies of obesity considers
43 44	487	related to obesity, these studies need to inc
45 46 47	488	variables to explore precisely the associati
48 49	489	obesity.
50 51	490	
52 53	491	Public health implications
54 55 56	492	From a policy perspective, it is of interest
50 57 58		
59		
60		

Meanwhile, according to the model with interaction-effect terms (Model 2), neither	
education alone nor income alone was significant. Instead, education and income were found	
o interact with each other in relation to obesity, as the two combinations of educational and	
ncome levels were significant when compared with their respective reference combinations.	
These results are different from those obtained from the prior sample (Table 2): in that	
sample, education alone was significant, whereas neither income alone nor any interaction-	
effect term between education and income was significant.	
The pattern of the changes in the predicted probability of being obese for each	
ncome level across educational levels in Model 1 and Model 2 (Supplementary Figure 1)	
appears very similar to those obtained from the prior sample (Figure 2). In details, however,	
he predicted probabilities of being obese changed slightly in the new sample: for example,	
he highest predicted probability of being obese was shown in participants who did not go	
beyond elementary school and who had incomes in the lowest quartile in both the prior	
sample and the new sample, but the predicted probability was 0.487 in the prior sample and	
0.488 in the new sample.	
In summary, the extended study of women suggests that whether or not the sample of	
women in the studies of obesity considers women-specific characteristics which may be	
elated to obesity, these studies need to include the interaction effects of independent	
variables to explore precisely the associations between education and income in relation to	

nplications

erspective, it is of interest whether as a government attempts to provide

Page 32 pf 59 MJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

493	people with the highest level of education, its actions can lead to a reduction in the
494	prevalence of obesity and the socioeconomic gradient in such prevalence. Though caution is
495	required when making policy predictions based on findings from cross-sectional data,
496	according to the findings of this study, the answer might be "no." An enhanced governmental
497	educational policy that enables all men to complete the highest level of formal education
498	would reduce the gradient in the predicted probability of being obese by 53%, from 0.130 to
499	0.061, but would also increase the average predicted probability by 26%, from 0.287 to 0.362.
500	Conversely, the same enhanced educational policy in women would raise the gradient in the
501	predicted probability by 77%, from 0.071 to 0.126, but would lower the average predicted
502	probability by 36%, from 0.440 to 0.283. This suggests that, in order to meet both goals (low
503	prevalence of obesity and reduced gradient by socioeconomic status), educational policies
504	should be implemented in combination with other social policies, and these governmental
505	efforts should be differentiated by gender. These results may elicit a new debate about
506	whether educational policies should consider health consequences. ⁶⁹⁷⁰ Meanwhile, some
507	cross-country studies have shown that the determinants of health particularly the effects of
508	social determinants are specific to countries and have emphasized the need for local studies
509	that inform local policies and programs. ^{46 71 72}
F10	

511 Strengths and limitations

- 512 This study analyzed data from a nationally representative sample of South Korean adults,
- 513 providing abundant information about anthropometric measures, socio-demographic
- 514 characteristics, lifestyle behaviors, and medical conditions. Using a quantified prediction, this
- 515 study shows what would happen if policies to reduce obesity prevalence did not consider
- 516 complex interactions among the characteristics of individuals. Above all, this study is the first

BMJ Open

517	to address the association of socioeconomic status with obesity while considering both the
518	main-effect term of each independent variable and the two-way interaction-effect terms
519	between independent variables. We believe that our research findings can be generalizable to
520	settings other than those in South Korea because: our research included a broad range of
521	participants from a nationally representative sample of the South Korean population through
522	the KNHANES; the nature and level of education, income, and covariates can be comparable;
523	and the definition of general obesity can be relevant to other settings or countries.
524	However, this study has several limitations. The cross-sectional study design
525	precludes causal inferences about the relationship between socioeconomic status and obesity.
526	Moreover, the data were collected by a self-report survey, which may have resulted in
527	measurement error and recall bias. Although it is beyond the scope of this study, it would be
528	of great interest to explore gender-specific interactions among education, income and other
529	socioeconomic status indicators like occupation, home-ownership and marital status. Other
530	potential covariates, such as genetics, social network, parity, and parental obesity, were not
531	included in analyses because these data were not available. Unobserved factors, such discount
532	rate and risk aversion, may have influenced both socioeconomic status and body weight. ^{73 74}
533	Finally, we also could not incorporate race and ethnicity into our analysis because the
534	KNHANES did not include these data, and moreover, because the absolute majority of the
535	population is of Korean ethnicity. ^{75 76}
536	

537 CONCLUSIONS

This is the first study to investigate the association of socioeconomic status with obesity
while considering both the main-effect term of each independent variable and the two-way

Page 3400 f 59 MJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

> interaction- effect terms between independent variables. This study highlights the importance of interaction effects in studies of the associations of socioeconomic status with obesity. According to the results, moving from models evaluating only main effects to models evaluating both main and interaction effects may change the association of socioeconomic status with obesity, the group with the highest likelihood of obesity, the gradient in the likelihood of obesity by socioeconomic status, and gender differences in the associations of socioeconomic status with obesity. These results suggest that studies on the association between socioeconomic status and obesity should include interaction-effect terms for all characteristics and consider gender differences, and that policy efforts to reduce obesity and the resulting socioeconomic gradients should be established based on the results of those in-depth studies. Moreover, further research is needed to examine whether these findings are valid in other sociocultural settings.

Acknowledgements

The authors thank Drs. Hemali Bedi, Annalijn Conklin, Laurene Rehman, and Shervin Assari for their invaluable comments. The authors also thank Professors Mark Montgomery, Warren Sanderson, Han Joong Kim, and Woo Hyun Cho for their help.

Contributors

WC conceived and designed the study, conducting the literature review and the statistical analysis, writing the paper. JK collected and managed the data. JK, SJL, SL, and RK participated in reviewing the literature and writing the paper.

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Competing interests

None declared.

Ethics approval

Institutional Review Board of Yonsei University Graduate School of Public Health.

Provenance and peer review

Not commissioned; externally peer reviewed.

Data sharing statement

The data used in this study are available from the Korean Centers for Disease Control and Prevention database.

REFERENCES

1.	Sobal J, Stunkard AJ. Socioeconomic status and obesity: a review of the literature
	Psychol Bull 1989;105:260-75.

- 2. McLaren L. Socioeconomic Status and Obesity. *Epidemiol Rev* 2007;29:29-48.
- 3. Monteiro CA, Conde WL, Lu B, *et al.* Obesity and inequities in health in the developing world. *Int J Obes* 2004;28:1181-6.
- 4. Scali J, Siari S, Grosclaude P, *et al.* Dietary and socio-economic factors associated with overweight and obesity in a southern French population. *Public Health Nutr* 2004;7:513-22.
- 5. Zhang Q, Wang Y. Trends in the association between obesity and socioeconomic status in U.S. adults: 1971 to 2000. *Obes Res* 2004;12:1622-32.
- Jorm AF, Korten AE, Christensen H, *et al.* Association of obesity with anxiety, depression and emotional well-being: a community survey. *Aust N Z J Public Health* 2003;27:434-40.

BMJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

- Lauderdale DS, Rathouz PJ. Body mass index in a US national sample of Asian Americans: effects of nativity, years since immigration and socioeconomic status. *Int J Obes* 2000;24:1188-94.
- International Monetary Fund. Gross domestic product, current prices & Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP. World Economic Outlook Database. October 2015 ed2015.
- 9. Zveglich Jr JE, van der Meulen Rodgers Y. Occupational segregation and the gender wage gap in a dynamic East Asian economy. *South Econ J* 2004:850-75.
- 10. Seguino S. Gender wage inequality and export-led growth in South Korea. J Dev Stud

1997;34:102-32.

- Korea Centers for Disease Control and Prevention. The Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010–2012. Korea Centers for Disease Control and Prevention 2014. http://knhanes.cdc.go.kr (accessed 8 Dec 2014).
- 12. International Association for the Study of Obesity Task Force. *The Asia-Pacific perspective: redefining obesity and its treatment*. Sydney, Australia: World Health Organization Western Pacific Region 2000.
- Elgar FJ, Stewart JM. Validity of self-report screening for overweight and obesity.
 Evidence from the Canadian Community Health Survey. *Can J Public Health* 2008;99:423-7.
- Litton JK, Gonzalez-Angulo AM, Warneke CL, *et al.* Relationship between obesity and pathologic response to neoadjuvant chemotherapy among women with operable breast cancer. *J Clin Oncol* 2008;26:4072-7.
- 15. Prieto-Alhambra D, Premaor MO, Fina Aviles F, *et al.* The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. *J Bone Miner Res* 2012;27:294-300.
- 16. World Health Organization. *International guide for monitoring alcohol consumption and related harm.* Geneva, Switzerland: World Health Organization, 2000.
- Haskell WL, Lee IM, Pate R, *et al.* Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. *Med Sci Sports Exerc* 2007;39:1423-34.
- Buxton OM, Marcelli E. Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular disease among adults in the United States. *Soc Sci Med* 2010;71:1027-36.

Page 39 of 59

BMJ Open

19.	Korea Ministry of Health and Welfare, Korea Center for Disease Control and
	Prevention. Report on 2012 Korea National Health and Nutrition Examination
	Survey. Seoul: Korea Center for Disease Control and Prevention, 2014.
20.	Sarlio Lähteenkorva S, Silventoinen K, Jousilahti P, et al. The association between
	thinness and socio-economic disadvantage, health indicators, and adverse health
	behaviour: a study of 28 000 Finnish men and women. Int J Obes 2004;28:568-73.
•	Subramanian SV, Kawachi I, Smith GD. Income inequality and the double burden of
	under- and overnutrition in India. J Epidemiol Community Health 2007;61:802-9.
2.	Sobal J, Rauschenbach BS, Frongillo EA. Marital status, fatness and obesity. Soc Sci
	Med 1992;35:915-23.
3.	Maddah M, Eshraghian MR, Djazayery A, et al. Association of body mass index with
	educational level in Iranian men and women. Eur J Clin Nutr 2003;57:819-23.
ŀ.	Van Horn LV, Ballew C, Liu K, et al. Diet, body size, and plasma lipids-lipoproteins
	in young adults: differences by race and sex. The Coronary Artery Risk Development
	in Young Adults (CARDIA) study. Am J Epidemiol 1991;133:9-23.
	Jacoby E, Goldstein J, López A, et al. Social class, family, and life-style factors
	associated with overweight and obesity among adults in Peruvian cities. Prev Med
	2003;37:396-405.
5.	Robert SA, Reither EN. A multilevel analysis of race, community disadvantage, and
	body mass index among adults in the US. Soc Sci Med 2004;59:2421-34.
	Tavani A, Negri E, La Vecchia C. Determinants of body mass index: a study from
	northern Italy. Int J Obes 1994;18:497-502.
8.	Merkus MP, Mathus Vliegen LM, Broekhoff C, et al. Extreme obesity:
	sociodemographic, familial and behavioural correlates in The Netherlands. J 39

Epidemiol Community Health 1995;49:22-7. 29. Laaksonen M, Sarlio Lähteenkorva S, Lahelma E. Multiple dimensions of socioeconomic position and obesity among employees: The Helsinki Health Study. Obes Res 2004;12:1851-8. 30. Shankar S, Nanda JP, Bonney G, et al. Obesity differences between African-American men and women. J Natl Med Assoc 2000;92:22-8. 31. De Silva AP, De Silva SHP, Haniffa R, et al. A cross sectional survey on social, cultural and economic determinants of obesity in a low middle income setting. Int J *Equity Health* 2015;14:6. 32. Zhang Q, Wang Y. Socioeconomic inequality of obesity in the United States: do gender, age, and ethnicity matter? Soc Sci Med 2004;58:1171-80. 33. Yoon YS, Oh SW, Park HS. Socioeconomic status in relation to obesity and abdominal obesity in Korean adults: a focus on sex differences. Obesity (Silver Spring) 2006;14:909-19. 34. Sabanayagam C, Shankar A, Wong TY, et al. Socioeconomic status and overweight/obesity in an adult Chinese population in Singapore. J Epidemiol 2007;17:161-8. 35. Huot I, Paradis G, Ledoux M. Factors associated with overweight and obesity in Quebec adults. Int J Obes 2004;28:766-74. 36. Panagiotakos DB, Pitsavos C, Chrysohoou C, et al. Epidemiology of overweight and

obesity in a Greek adult population: the ATTICA Study. *Obes Res* 2004;12:1914-20.

- 37. Hu G, Pekkarinen H, Hänninen O, *et al.* Comparison of dietary and non-dietary risk factors in overweight and normal-weight Chinese adults. *Br J Nutr* 2002;88:91-7.
- Sobal J. Obesity and socioeconomic status: a framework for examining relationships

BMJ Open

	between physical and social variables. Med Anthropol 1991;13:231-47.
39.	Foladare IS. A Clarification of "Ascribed Status' and "Achieved Status". Sociol Q
	1969;10:53-61.
40.	Chandola T, Clarke P, Morris J, et al. Pathways between education and health: a
	causal modelling approach. Journal of the Royal Statistical Society: Series A
	(Statistics in Society) 2006;169:337-59.
41.	Cutler D, Lleras-Muney A. Education and health: evaluating theories and evidence.
	Cambridge, MA: National Bureau of Economic Research, 2006.
42.	Mirowsky J, Ross CE. Education, social status, and health. New York: Aldine de
	Gruyter, 2003.
43.	Cutler D, Glaeser E, Shapiro J. Why have Americans become more obese?
	Cambridge, MA: National Bureau of Economic Research, 2003.
44.	Assari S, Moghani Lankarani M, Kazemi Saleh D, et al. Gender modifies the effects
	of education and income on sleep quality of the patients with coronary artery disease.
	Int Cardiovasc Res J 2013;7:141-6.
45.	Assari S, Lankarani MM. Race and Urbanity Alter the Protective Effect of Education
	but not Income on Mortality. Front Public Health 2016;4:100.
46.	Assari S. Cross-Country Differences in the Additive Effects of Socioeconomics,
	Health Behaviors and Medical Comorbidities on Disability among Older Adults with
	Heart Disease. J Tehran Heart Cent 2015;10:24-33.
47.	Assari S, Nikahd A, Malekahmadi MR, et al. Race by Gender Group Differences in
	the Protective Effects of Socioeconomic Factors Against Sustained Health Problems
	Across Five Domains. J Racial Ethn Health Disparities 2016; doi:10.1007/s40615-
	016-0291-3.
	41

48.	Assari S. Combined Racial and Gender Differences in the Long-Term Predictive Role
	of Education on Depressive Symptoms and Chronic Medical Conditions. J Racial
	Ethn Health Disparities 2016; doi:10.1007/s40615-016-0239-7.
49.	Seubsman S, Lim LL, Banwell C, et al. Socioeconomic status, sex, and obesity in a
	large national cohort of 15-87-year-old open university students in Thailand. J
	<i>Epidemiol</i> 2010;20:13-20.
50.	Han E, Norton EC, Stearns SC. Weight and wages: fat versus lean paychecks. Health
	<i>Econ</i> 2009;18:535-48.
51.	Baum CL, Ford WF. The wage effects of obesity: a longitudinal study. Health Econ
	2004;13:885-99.
52.	Mukhopadhyay S. Do women value marriage more? The effect of obesity on
	cohabitation and marriage in the USA. Rev Econ Househ 2008;6:111-26.
53.	Wardle J, Haase AM, Steptoe A. Body image and weight control in young adults:
	international comparisons in university students from 22 countries. Int J Obes
	2006;30:644-51.
54.	Power EM. An introduction to Pierre Bourdieu's key theoretical concepts. J Study
	Food Soc 1999;3:48-52.
55.	Bourdieu P. The forms of capital. In: Richardson J, ed. Handbook of theory and
	research for the sociology of education. New York: Greenwood, 1986:241–58.
56.	McLaren L, Godley J, MacNairn IA. Social class, gender, and time use: implications
	for the social determinants of body weight? Health Rep 2009;20:65-73.
57.	Regidor E, Gutiérrez Fisac JL, Banegas JR, et al. Obesity and socioeconomic position
	measured at three stages of the life course in the elderly. Eur J Clin Nutr
	2004;58:488-94.
	42

BMJ Open

58.	Currie J, Hyson R. Is the impact of health shocks cushioned by socioeconomic sta
	: the case of low birthweight. Cambridge, MA: National Bureau of Economic
	Research, 1999.
59.	Laitinen J, Ek E, Sovio U. Stress-related eating and drinking behavior and body
	index and predictors of this behavior. Prev Med 2002;34:29-39.
60.	Ali SM, Lindström M. Socioeconomic, psychosocial, behavioural, and psycholog
	determinants of BMI among young women: differing patterns for underweight an
	overweight/obesity. Eur J Public Health 2006;16:325-31.
61.	Assari S. The link between mental health and obesity: role of individual and
	contextual factors. Int J Prev Med 2014;5:247-9.
62.	Carter JD, Assari S. Sustained Obesity and Depressive Symptoms over 6 Years:
	by Gender Differences in the Health and Retirement Study. Front Aging Neurosc
	2016;8:312.
63.	Assari S, Caldwell CH. Gender and Ethnic Differences in the Association Betwe
	Obesity and Depression Among Black Adolescents. J Racial Ethn Health Dispar
	2015;2:481-93.
64.	Assari S. Psychosocial Correlates of Body Mass Index in the United States:
	Intersection of Race, Gender and Age. Iran J Psychiatry Behav Sci 2016;10:e345
65.	Hicken MT, Lee H, Mezuk B, et al. Racial and ethnic differences in the associati
	between obesity and depression in women. J Womens Health (Larchmt) 2013;22
	52.
66.	Assari S, Lankarani MM. Mediating Effect of Perceived Overweight on the
	Association between Actual Obesity and Intention for Weight Control; Role of R
	Ethnicity, and Gender. Int J Prev Med 2015;6:102. 43

BMJ Open

67.	Chung W, Das Gupta M. The decline of son preference in South Korea: The roles of
	development and public policy. Popul Dev Rev 2007;33:757-83.
68.	Al-Safi ZA, Polotsky AJ. Obesity and menopause. Best Pract Res Clin Obstet
	<i>Gynaecol</i> 2015;29:548-53.
69.	Low MD, Low BJ, Baumler ER, et al. Can education policy be health policy?
	Implications of research on the social determinants of health. J Health Polit Policy
	Law 2005;30:1131-62.
70.	Woolf SH, Johnson RE, Phillips RL, et al. Giving everyone the health of the
	educated: an examination of whether social change would save more lives than
	medical advances. Am J Public Health 2007;97:679-83.
71.	Assari S. Cross-country variation in additive effects of socio-economics, health
	behaviors, and comorbidities on subjective health of patients with diabetes. J Diabetes
	Metab Disord 2014;13:36.
72.	Assari S, Lankarani MM. Does Multi-morbidity Mediate the Effect of
	Socioeconomics on Self-rated Health? Cross-country Differences. Int J Prev Med
	2015;6:85.
73.	Smith PK, Bogin B, Bishai D. Are time preference and body mass index associated?
	Evidence from the National Longitudinal Survey of Youth. Econ Hum Biol
	2005;3:259-70.
74.	Borghans L, Golsteyn BH. Time discounting and the body mass index. Evidence from
	the Netherlands. Econ Hum Biol 2006;4:39-61.
75.	Alesina A, Devleeschauwer A, Easterly W, et al. Fractionalization. J Econ Growth
	2003;8:155-94.
76.	Kim SY, Park JH, Kim SG, et al. Disparities in utilization of high-volume hospitals 44
	For near raview only - http://hmignen.hmi.com/site/shout/guidelines.yhtml

BMJ Open

1	
2	
3 4	for cancer surgery: results of a Korean population-based study. Ann Surg Oncol
5	for earlier surgery. results of a rescal population based study. That surge one of
6 7	2010;17:2806-15.
8	
9	
10 11	
12	
13 14	
15	
16	
17 18	
19	
20 21	
22	
23 24	
24 25	
26	
27 28	
29	
30	
31 32	
33	
34 35	
36	
37	
38 39	
40	
41 42	
43	
44 45	
46	
47 48	
49	
50	
51 52	
53	
54 55	
56	15
57	45
58 59	
60	

MJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

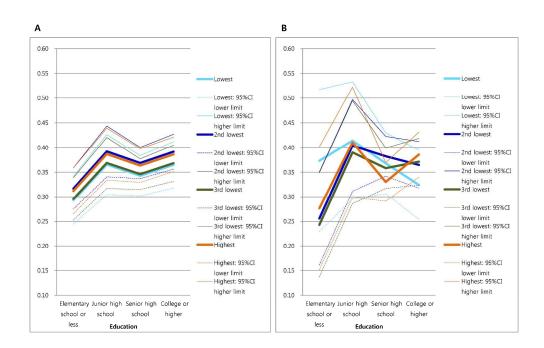


Figure 1 Predicted probabilities of being obese (and their 95% confidence intervals) by education for each income level in men in a model with only main effects (A) and a model with both main and interaction effects (B): the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010–2012, South Korea

297x210mm (300 x 300 DPI)

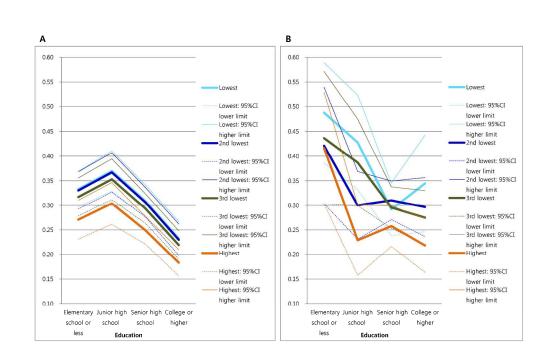


Figure 2 Predicted probabilities of being obese (and their 95% confidence intervals) by education for each income level in women in a model with only main effects (A) and a model with both main and interaction effects (B): the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010–2012, South Korea

297x210mm (300 x 300 DPI)

5	South Korea															Dece							
6 - 7				Elemer	ntary sch	ool or les	S		Jun	ior high	school			Sen	ior high	scheol			C	ollege or	more		
8 9	Characteristic	Overall	Low	2nd low	3rd low	High	(Sum)	Low	2nd low	3rd low	High	(Sum)	Low	2nd low	3rd low	₩ 182gh	(Sum)	Low	2nd low	3rd low	High	(Sum)	(Total)
10	Age, years *	50.8	70.5	64.4	62.3	61.8	(67.2)	63.8	58.0	57.2	61.8	59.6	53.0	44.9	45.1	61.8 0	46.4	48.7	42.9	42.4	61.8	44.0	
11 12	Marital status															own							
13	Married	79.7	10.6	4.9	2.7	1.7	(19.9)	4.3	3.9	2.7	2.2	(13.1)	5.6	9.6	8.4	loa8.7	(32.3)	2.3	8.0	10.0	14.4	(34.8)	(100.0)
14 15	Formerly married	4.6	22.7	8.9	1.8	2.1	(35.4)	11.2	4.1	2.1	2.4	(19.8)	11.5	7.1	4.7	ed 3.5	(26.8)	5.3	3.8	4.1	4.7	(18.0)	(100.0)
16	Never-married	15.7	0.5	0.4	0.1	0.0	(1.0)	1.0	0.9	0.5	0.5	(2.9)	9.7	16.2	14.0	6 ₩5.8	(55.7)	5.7	8.3	11.7	14.8	(40.5)	(100.0)
17 18	Residential area															http:/							
18	Metro urban	44.2	6.1	3.5	1.8	1.0	(12.4)	2.9	3.5	2.4	2.1	(10.9)	6.6	10.9	8.9	b 9.7	(36.0)	3.6	8.1	11.3	17.8	(40.8)	(100.0)
20	Non-metro urban	34.4	7.1	3.7	1.7	1.4	(14.0)	4.0	3.0	2.0	1.6	(10.6)	6.0	10.7	10.9	0.2	(37.8)	2.6	9.8	11.4	14.0	(37.7)	(100.0)
21 22	Rural	21.4	20.5	7.3	4.3	2.4	(34.4)	6.5	4.1	2.9	2.4	(15.8)	7.2	9.5	6.6	5 8.1	(31.5)	2.3	4.5	5.2	6.4	(18.3)	(100.0)
23	Occupation,															nj.co							
24 25	Unemployed	25.6	9.8	6.5	3.6	2.1	(22.0)	4.4	5.2	3.8	3.1	(16.6)	6.1	13.7	10.9	∄ ⊎1.9	(42.5)	1.8	5.1	5.5	6.6	(18.9)	(100.0)
26	Office worker	26.8	0.3	0.1	0.3	0.3	(0.9)	0.4	0.3	0.5	0.8	(1.8)	1.7	6.0	6.5	n April	(22.0)	3.5	14.8	21.9	35.1	(75.3)	(100.0)
27 28	Manual worker	47.6	18.7	5.0	2.0	1.4	(27.0)	7.3	3.5	1.5	1.1	(13.5)	12.5	9.4	8.4	oril 7.0 19	(37.2)	4.6	5.9	6.0	5.8	(22.3)	(100.0)
29	Housing status, home owner	76.4	9.9	4.9	2.7	1.7	(19.2)	3.9	3.4	2.5	2.2	(12.0)	5.1	9.5	9.1	ي کی).6	(34.3)	2.2	7.0	10.1	15.3	(34.6)	(100.0)
30 31	Universal health insurance, NHI	98.2	9.1	4.4	2.3	1.4	(17.2)	3.9	3.4	2.4	2.0	(11.7)	6.3	10.6	9.2)24 ⁹ .7	(35.8)	2.8	8.0	10.2	14.3	(35.3)	(100.0)
32	Private health insurance, holder	69.2	3.2	3.0	2.1	1.5	(9.7)	2.0	3.4	2.6	2.3	(10.2)	4.1	11.1	10.7	9¥ 9₽2.0	(37.9)	2.3	9.2	12.7	18.1		(100.0)
33 34	Survey year															Jest.	. ,					· · /	
35	2010	35.3	9.7	4.4	2.2	1.4	(17.6)	4.4	3.1	2.5	2.3	(12.3)	6.3	11.7	9.2	Pro7.8	(35.0)	3.4	8.3	10.9	12.4	(35.1)	(100.0)
36 37	2011	34.0	9.6	4.2	2.1	1.6	(17.5)	3.7	4.2	2.2	2.0	(12.0)	5.9	10.0	8.9	tected.8	(35.6)	2.5	8.2	9.0	15.2	(34.8)	(100.0)
38	2011	51.0	9.0	1.2	2.1	1.0	(17.5)	5.7	1.2	2.2	2.0	(12.0)	5.9	10.0	0.9	ed by	(55.0)	2.5	0.2	2.0	15.2	(31.0)	(100.0)
39 40											1												
40 41																copyright.							
42																ht.							
43 44																							
45		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml																					

 BMJ Open
 Page 48 o

 Table S1 Disribution (%) of sample characteristics in men by education and income (quartiles): the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010-2012,

 South Korea

Pa	ge 49 of 59									BMJ	Open	I				n-2016-014276							
1 2																014276 on							
3 4	2012	30.7	9.3	4.6	2.6	1.2	(17.8)	4.1	3.0	2.3	1.6	(11.0)	7.5	9.8	9.1	22 0.2	(36.5)	2.9	7.0	10.1	14.6	(34.7)	(100.0)
5	Current smoking status, smoker	40.9	8.1	3.7	1.7	1.4	(14.9)	3.9	3.5	2.2	1.7	(11.3)	6.9	12.7	9.1	0 .2	(38.9)	2.8	8.6	10.6	12.9	(34.9)	(100.0)
6 7	Alcohol consumption, excessive	32.5	3.9	2.8	1.5	0.9	(9.1)	2.2	2.7	1.4	1.8	(8.0)	5.2	13.0	10.1	1 <u>1</u> <u>2</u> .1	(40.4)	3.0	9.5	13.0	17.1	(42.6)	(100.0)
8	Routine physical exercise, inactive	78.8	10.5	4.6	2.3	1.4	(18.9)	4.2	3.4	2.4	1.9	(11.9)	6.8	10.0	8.9	er 20.6	(34.3)	2.9	7.9	10.5	13.6	(35.0)	(100.0)
9 10	Daily sleep duration, short	41.5	10.1	5.0	2.3	1.4	(18.8)	4.1	2.8	2.0	2.2	(11.2)	6.4	9.2	9.4	8.9	(34.0)	2.8	7.4	10.2	15.6	(36.1)	(100.0)
11	Daily energy intake, moderate	20.1	11.2	5.1	2.0	1.7	(20.0)	4.6	3.4	2.2	2.3	(12.5)	6.4	9.8	8.8	₽9.0	(34.0)	2.6	7.6	9.9	13.5	(33.5)	(100.0)
12 13	Self-perceived stress, very high	3.4	8.4	6.0	2.8	3.2	(20.4)	3.2	4.8	1.6	1.2	(10.8)	6.8	10.4	7.2	nloade5.6	(33.2)	5.2	5.2	8.0	17.2	(35.6)	(100.0)
14	Self-perceived health, very bad	2.4	37.6	6.7	4.5	2.3	(51.1)	9.6	5.6	1.7	2.8	(19.7)	6.7	7.3	1.7		(21.4)	3.9	1.7	1.1	1.1	(7.9)	(100.0)
15 16	Having hypertension	21.4	16.9	7.1	2.9	2.2	(29.1)	6.9	5.0	3.4	2.4	(17.7)	8.9	7.6	7.6	from.4	(31.5)	3.1	4.6	4.8	9.1	(21.6)	(100.0)
17	Having dyslipidemia	6.5	9.2	5.9	3.4	1.7	(20.1)	6.1	5.0	3.4	2.5	(17.0)	8.4	7.7	7.3	1 9.6	(33.1)	2.9	6.3	6.7	14.0	(29.9)	(100.0)
18 19	Having diabetes	32.5	16.9	6.2	2.8	2.1	(28.0)	8.1	4.3	3.7	3.9	(20.0)	8.7	7.3	7.4		(31.7)	3.0	3.1	5.2	9.2	(20.4)	(100.0)
20 21	Number of participants		700	322	167	105	1294	299	252	171	145	867	479	772	666		2617	216	578	735	1030	2559	7337
22 23	N, number; Low, Lowest; High, High *Mean.	nest; NHI,	National	Health In	surance;					C			h			bmj.com/ on April 19, 2024 by guest.							
24																com							
25																on /							
26 27																Apri							
28																19,							
29 30																202							
31																4 by							
32 33																gue							
34																τ							
35 36																rotected by copyright.							
37																cted							
38 39											2					by c							
40											2					зору							
41 42																right							
42																·							
44					For r	beer i	eview	only - htt	p://bn	nioper	ı.bmi.	com/si	te/about	/quide	elines.	xhtml							
45 46					r					1-0-01	,												
47																							

3 4 5

> 46 47

			Elemer	tary scho	ool or les	s		Junio	or high so	chool			Sen	nior high	senool			Co	llege or	more		
Characteristic	Overall	Low	2nd low	3rd low	High	(Sum)	Low	2nd low	3rd low	High	(Sum)	Low	2nd low	3rd low	SHigh	(Sum)	Low	2nd low	3rd low	High	(Sum)	(Tota
Age, years *	50.5	69.3	64.2	63.4	64.9	(67.0)	59.6	55.4	54.9	54.6	(56.2)	43.7	41.4	42.9	.7 _{43.0}	(42.6)	38.5	35.9	36.2	39.1	(37.5)	
Marital status															own							
Married	69.5	13.6	6.8	4.0	3.0	(27.3)	2.6	3.6	3.1	2.8	(12.1)	3.6	10.5	9.3	0a 10.5	(33.9)	1.2	5.9	7.8	11.8	(26.7)	(100.
Formerly married	18.2	45.2	12.0	6.8	6.9	(71.0)	3.9	2.9	1.6	1.4	(9.8)	6.3	4.2	2.1	ed fr	(14.9)	1.3	0.9	1.1	1.0	(4.3)	(100.
Never-married	12.3	0.3	0.1	0.0	0.2	(0.6)	0.5	0.3	0.2	0.1	(1.1)	8.7	12.0	9.4	M 13.6	(43.7)	3.9	12.7	15.8	22.3	(54.7)	(100.
Residential area															nttp:/							
Metro urban	44.5	12.2	5.8	3.6	2.6	(24.3)	2.5	3.0	2.4	2.4	(10.3)	5.3	9.9	8.0	10.9	(34.1)	1.7	6.5	8.8	14.2	(31.3)	(100.
Non-metro urban	35.0	13.9	6.3	3.7	3.0	(26.8)	2.8	2.9	2.5	2.2	(10.4)	4.9	10.9	9.6	9.6	(35.0)	1.8	6.4	8.6	11.0	(27.8)	(100.
Rural	20.5	36.3	10.2	5.5	5.4	(57.4)	2.5	3.5	2.5	1.8	(10.3)	3.4	6.5	5.1	5.7	(20.7)	0.7	3.5	3.0	4.4	(11.6)	(100.
Occupation,															j.con							
Unemployed	52.6	20.8	9.5	5.5	5.0	(40.8)	2.9	4.8	4.5	4.1	(16.2)	5.0	10.8	8.9	P 9.2	(33.9)	0.8	2.5	2.3	3.6	(9.2)	(100.
Office worker	16.0	0.4	0.3	0.1	0.2	(1.0)	0.4	0.9	0.2	0.5	(2.0)	2.6	7.0	8.3	Ap 10.5	(28.4)	2.4	11.8	21.1	33.4	(68.6)	(100.
Manual worker	31.4	21.2	7.3	4.3	3.3	(36.2)	3.1	2.7	2.0	1.6	(9.3)	5.3	9.6	7.3	ii 199.1 199	(31.3)	1.8	6.1	6.6	8.8	(23.2)	(100.
Housing status, home owner	73.5	16.0	7.8	4.7	4.0	(32.5)	2.3	3.1	2.9	2.6	(10.8)	3.2	8.5	8.3	, N10.8	(30.8)	1.2	5.2	7.3	12.2	(25.9)	(100.
Universal health insurance, NHI	97.0	16.6	7.0	4.1	3.4	(31.1)	2.5	3.1	2.5	2.3	(10.4)	4.3	9.7	8.2	<u>94 by</u>	(31.8)	1.6	6.0	7.8	11.4	(26.7)	(100.
Private health insurance, holder	70.7	7.7	5.2	3.4	2.9	(19.2)	1.9	3.3	2.8	2.8	(10.7)	4.3	11.1	9.9	gu 12.1	(37.5)	1.6	7.1	9.6	14.4	(32.6)	(100.0
Survey year															est. F							
2010	34.0	17.1	7.3	4.3	3.4	(32.0)	2.4	2.8	2.4	2.3	(9.9)	4.9	10.5	7.9	rote 8.2	(31.5)	1.6	6.0	8.2	10.8	(26.6)	(100.0
2011	34.1	18.1	7.1	3.6	3.4	(32.2)	2.4	3.5	2.4	2.3	(10.6)	4.3	8.6	8.1	čted 10.6	(31.6)	1.4	5.7	7.2	11.4	(25.7)	(100.
]	L					by copyright.							
															right							
															•							
				For n	eer re	view or	ly - htt	o·//bm	ionen	bmi c	om/site	e/about/	auidel	ines	-							

 BMJ Open
 Page 50 of

 Table S2 Disribution (%) of sample characteristics in women by education and income (quartiles): the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010-2012,

 South Korea

 South Korea

Page	age 51 of 59									BMJ C	Open				n-2016-014276							
1 2)14276 on							
3 4	2012	31.9	18.1	6.2	4.1	3.2	(31.7)	3.0	2.9	2.6	2.1	(10.5)	5.2	9.5	7.9 28 9.3	(31.9)	1.7	5.9	7.2	11.1	(25.9)	(100.0)
5	Current smoking status, smoker	5.5	14.8	5.8	2.0	1.6	(24.2)	3.6	5.3	2.0	1.1	(12.0)	11.5	15.5	9.3 g 6.9	(43.2)	1.5	4.4	6.6	8.2	(20.6)	(100.0)
6 7	Alcohol consumption, excessive	12.3	4.0	2.9	1.3	1.6	(9.8)	2.3	2.3	1.3	1.8	(7.7)	8.9	13.3	12.2 13.5	(47.9)	1.8	7.7	11.1	14.0	(34.5)	(100.0)
8	Routine physical exercise, inactive	83.6	18.4	7.0	3.9	3.3	(32.5)	2.5	3.1	2.4	2.0	(10.0)	4.9	9.5	7.8 P 8.7	(30.9)	1.6	6.1	7.9	11.1	(26.7)	(100.0)
9 10	Daily sleep duration, short	42.3	22.9	8.1	5.3	4.1	(40.5)	3.1	3.6	2.4	2.2	(11.3)	4.6	8.5	6.5 7 8.5	(28.1)	1.0	4.1	5.6	9.5	(20.1)	(100.0)
11	Daily energy intake, moderate	16.2	15.4	7.2	4.3	3.4	(30.3)	2.4	3.1	3.0	2.1	(10.7)	5.2	11.2	8.6 Q 9.4	(34.5)	1.4	6.1	7.3	9.8	(24.5)	(100.0)
12 13	Self-perceived stress, very high	4.9	19.7	9.7	4.1	3.5	(37.0)	3.9	1.9	2.3	1.6	(9.7)	6.0	9.2	8.6 load 6.6 2.7 de 2.3	(30.4)	2.3	4.7	6.4	9.7	(23.0)	(100.0)
14	Self-perceived health, very bad	4.5	49.9	15.4	5.9	4.3	(75.5)	3.9	1.8	2.0	2.0	(9.7)	3.0	2.7		(10.7)	0.9	1.4	0.2	1.6	(4.1)	(100.0)
15 16	Having hypertension	22.2	40.9	13.2	7.6	6.4	(68.1)	4.0	3.5	3.1	2.4	(13.0)	3.1	4.5	3.5 from 4.0	(15.1)	0.4	0.7	1.1	1.6	(3.9)	(100.0)
17	Having dyslipidemia	8.5	30.6	12.0	7.4	5.5	(55.4)	5.1	4.6	3.4	2.7	(15.9)	3.3	5.8	5.3 🙀 7.4	(21.8)	0.6	1.0	1.8	3.6	(6.9)	(100.0)
18 19	Having diabetes	7.0	43.0	14.1	7.1	5.5	(69.7)	5.1	3.5	2.3	1.6	(12.5)	2.6	5.1	3.5 2.6	(13.8)	0.3	1.0	1.2	1.6	(4.1)	(100.0)
20															3.5 bmjope							
21 22	Number of participants		1758	683	397	330	3168	257	304	244	219	1024	471	947	790 br 928	3136	155	580	746	1099	2580	9908
23	N, number; Low, Lowest; High, High [*] Mean.	est; NHI,	National	Health In	surance;								h		nj.com/ on April 19, 2024 by guest.							
24 25															m o							
26															n Ap							
27 28															oril 1:							
29															9, 20							
30 31)24 b							
32															y gr							
33 34															lest.							
35															Protected by copyright.							
36 37															ecte							
38															d by							
39 40										2	,				сор							
41															yrigł							
42 43																						
44					Farm			v 644-	s	lanar	la ma ti c	om/=:+-	lah cut l		naa yhteel							
45 46					For p	eer re	view onl	y - nttp	o://om	jopen.	ມເກ].C	om/Site	y/JUOQB\	Juidel	ines.xhtml							
40 47																						

]	Distribution,	N (%)		nbei	Obesity, %	
	Me	en	We	omen	p Value†	No Men	Women	p Value¶
Body mass index, kg m ⁻² *	23.97	(3.1)	23.50	(3.5)	< 0.001	17.		
Obesity	2565	(35.0)	2896	(29.9)	< 0.001	Down05.1:		
Age, years*	50.79	(16.4)	50.90	(16.5)	< 0.001	a.1‡	34.7‡	< 0.001
Marital status					< 0.001	\$0.001	<0.001§	< 0.001
Married	5848	(79.7)	6672	(68.8)		ଟ୍ରି 6.0	30.9	
Formerly married	339	(4.6)	1803	(18.6)		<u>3</u>0.1	37.4	
Never-married	1150	(15.7)	1217	(12.6)		§1.0	13.4	
Residential area					0.387	₫ .259§	<0.001§	< 0.001
Metro urban	3240	(44.2)	4315	(44.5)		3 5.2	27.2	
Non-metro urban	2523	(34.4)	3378	(34.9)		<u>3</u> 6.6	29.5	
Rural	1574	(21.4)	1999	(20.6)		§ 1.9	36.5	
Education					< 0.001	≩0.001§	<0.001§	< 0.001
Elementary school or less	1294	(17.6)	3167	(32.7)		<u>₽</u> 6.6	40.2	
Junior high school	867	(11.8)	1020	(10.5)		3 6.1	38.6	
Senior high school	2617	(35.7)	3071	(31.7)		84.5	27.1	
College or more	2559	(34.9)	2434	(25.1)		39.3	16.3	
Income, quartiles					< 0.001	9.002§ 28.4	<0.001§	< 0.001
Lowest	1694	(23.1)	2621	(27.1)		2 8.4	37.0	
2nd lowest	1924	(26.2)	2427	(25.0)		ਤ <u>ੋ</u> 6.5	32.2	
3rd lowest	1739	(23.7)	2112	(21.8)		P6.5 664.9 699.1	28.0	
Highest	1980	(27.0)	2532	(26.1)		§ 9.1	21.9	
Occupation					< 0.001	80.001§ 18.7	<0.001§	< 0.001
Unemployed	1878	(25.6)	5047	(52.1)		<u>گ</u> 8.7	31.4	

 BMJ Open
 BMJ Open

 Table S3 Sample characteristics and their associations with obesity by gender: the Fifth Korea Nationage Health and Nutrition Examination

 Dec Survey (KNHANES V), 2010-2012, South Korea

ge 53 of 59				BMJ Op	ben		n-2016-014276		
							014276 (
	Office worker	1965	(26.8)	1542	(15.9)		9 않2.1	17.6	
	Manual worker	3494	(47.6)	3103	(32.0)		8 4.3	33.6	
	Housing status		. ,		. ,	0.321	₽ .945§	0.594§	0.648
	Home owner	5606	(76.4)	7148	(73.8)		a.1	29.6	
	Renter	1731	(23.6)	2544	(26.2)		₹4.6	30.6	
	Universal health insurance					< 0.001	9 .020§	0.005§	< 0.001
	National Health Insurance	7204	(98.2)	9393	(96.9)		5.2	29.6	
	Medical Care Aid	133	(1.8)	299	(3.1)		2 4.8	39.8	
	Private health insurance					0.066	ă ₹0.001§	<0.001§	< 0.001
	Non-holder	2258	(30.8)	2881	(29.7)		2 9.3	35.1	
	Holder	5079	(69.2)	6811	(70.3)		37.5	27.7	
	Survey year					0.843	9 .695§	0.232§	0.265
	2010	2592	(35.3)	3285	(33.9)		8 5.2	28.7	
	2011	2494	(34.0)	3308	(34.1)		§ 4.6	30.4	
	2012	2251	(30.7)	3099	(32.0)		3 5.1	30.6	
	Current smoking status					< 0.001	0 .375§	0.714§	0.932
	Non-smoker	4336	(59.1)	9148	(94.4)		<u>≩</u> 6.1	30.1	
	Smoker	3001	(40.9)	544	(5.6)		<u>3</u> 3.3	26.8	
	Alcohol consumption					<0.001	.001§	0.052§	< 0.001
	Not excessive	4950	(67.5)	8488	(87.6)		₩1.5	30.3	
	Excessive	2387	(32.5)	1204	(12.4)		§2.1	26.8	
	Routine physical exercise					< 0.001	@ .838§	<0.001§	0.019
	Physically active	1552	(21.2)	1600	(16.5)		35.6	32.9	
	Physically inactive	5785	(78.8)	8092	(83.5)		375.6 184.8 19508	29.3	
	Daily sleep duration					0.731	<mark>@</mark> .150§	<0.001§	0.009
	Non-short	4291	(58.5)	5562	(57.4)		ğ4.2	27.7	
	Short	3046	(41.5)	4130	(42.6)		<u>9</u> 6.0	32.9	
	Daily energy intake					0.001	34.2 36.0 ₽.818§	<0.001§	< 0.001

			BMJ Op	pen		n-2016-014276 on			Page (
						-014			
						276 (
Not moderate	5859	(79.9)	8116	(83.7)		s \$4.9	28.2		
Moderate	1478	(20.1)	1576	(16.3)		§ 5.4	38.6		
Self-perceived stress					< 0.001	∰.969§	0.052§	0.285	
Not very high	7087	(96.6)	9211	(95.0)		5.1 12.4	29.7		
Very high	250	(3.4)	481	(5.0)		32.4	33.1		
Self-perceived health					< 0.001	9 .362§	<0.001§	0.002	
Not very bad	7159	(97.6)	9252	(95.5)		₹5.2	29.3		
Very bad	178	(2.4)	440	(4.5)		\$4.2 ₹0.001§	42.5		
Hypertension					< 0.001	ਕੇ ਤ ੍ਰ0.001§	<0.001§	< 0.001	
No	5764	(78.6)	7497	(77.4)		32.6	24.4		
Yes	1573	(21.4)	2195	(22.6)		4 3.6	48.5		
Dyslipidemia					< 0.001	<u>₹</u> 0.001§	<0.001§	0.156	
No	6859	(93.5)	8850	(91.3)		3 3.9	28.0		
Yes	478	(6.5)	842	(8.7)		§ 0.6	49.8		
Diabetes					0.200	<mark>`@</mark> .858§	<0.001§	< 0.001	
No	6661	(90.8)	9003	(92.9)		3 4.8	28.3		
Yes	676	(9.2)	689	(7.1)		<u>\$</u> 6.1	50.4		
Menopause						4.8 36.1 19, 2024 by 337	<0.001§		
No			4655	(48.0)		9, 20	21.6		
Yes			5037	(52.0)		024 t	37.6		
Number of participants		7337		9692		3337	9692		

N, number; All P-values were estimated by considering a stratified cluster sampling design.

N, number; All P-values were estimated by considering a stratified cluster sampling design. *Mean (standard deviation). †P-value was estimated by using the t-test for continuous variables and χ^2 tests for categorical variables. ‡For the continuous age variable, the proportion of obesity was obtained from people aged 50-59 years to which median age for each gender belonged. \$P-value was estimated by χ^2 tests for each gender §P-value was estimated by χ^2 tests for each gender.

P-value was estimated by χ^2 tests for each gender. P-value was estimated from the interaction effects terms between gender and each characteristic by using the bigistic analysis.

3

5

BMJ Open

Table S4 Adjusted associations of education and income with obesity by gender: the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010-2012, South Korea

		Women	(N=969	2)
	Μ	odel 1†		Model 2‡
	OR	(95% CI)	OR	(95% CI)
Main effects				
Education	1.00		1.00	
Elementary school or less (EDU1)	1.00		1.00	
Junior high school (EDU2)	1.19	(0.98-1.44)	0.17	(0.03-1.06)
Senior high school (EDU3)	0.90	(0.73-1.11)	0.21	(0.04-1.08)
College or more (EDU4)	0.60***	(0.46-0.77)	0.18	(0.02-1.83)
Income, quartiles				
Lowest (INC1)	1.00		1.00	
2nd lowest (INC2)	1.00	(0.85-1.19)	1.77	(0.36-8.58)
3rd lowest (INC3)	0.91	(0.75-1.09)	0.89	(0.15-5.16)
Highest (INC4)	0.73**	(0.59-0.89)	2.19	(0.38-12.77)
Interaction effects				
Education x Income				
EDU2 x INC2			0.77	(0.44-1.36)
EDU2 x INC3			1.09	(0.59-2.04)
EDU2 x INC4			0.49*	(0.25-0.96)
EDU3 x INC2			1.78*	(1.01-3.14)
EDU3 x INC3			1.44	(0.78-2.66)
EDU3 x INC4			1.35	(0.73-2.51)
EDU4 x INC2			1.34	(0.58-3.10)
EDU4 x INC3			0.96	(0.41-2.26)
EDU4 x INC4			0.73	(0.30-1.82)
Hosmer-Lemeshow test, p Value		0.479		0.374

N, number; OR, odds ratio; CI, confidence interval; All models were adjusted for age, marital status, residential area, occupation, housing status, universal health insurance, private health insurance, survey year, smoking, alcohol consumption, routine physical exercise, daily sleep duration, daily energy intake, self-perceived stress, self-perceived health, hypertension, dyslipidemia, diabetes, and menopausal status; All estimates were obtained by considering a stratified cluster sampling design.

P* < 0.05, *P*< 0.01, ****P*< 0.001.

[†]Models 1 included only main effects terms for all variables.

‡Models 2 included both main effects terms and two-way interaction effects terms for all variables.

MJ Open: first published as 10.1136/bmjopen-2016-014276 on 28 December 2017. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

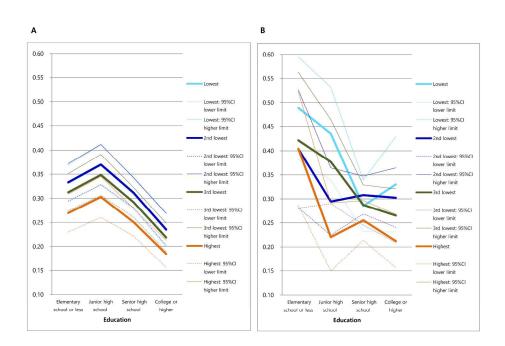


Figure S1 Predicted probabilities of being obese (and their 95% confidence intervals) by education for each income level in women in a model with only main effects (A) and a model with both main and interaction effects (B): the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V), 2010–2012, South Korea

297x210mm (300 x 300 DPI)

BMJ Open

	Item No	Recommendation
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the
		abstract
		\rightarrow We indicated it in the title and the abstract (page 1 and 3).
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found
		\rightarrow We provided them in the abstract (pages 3-4).
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
		\rightarrow We explained them in the introduction (pages 6-7).
Objectives	3	State specific objectives, including any prespecified hypotheses
		\rightarrow We stated them in the introduction (pages 6-7)
Methods		
Study design	4	Present key elements of study design early in the paper
		\rightarrow We presented them in the measures and variables section of the materials and
		methods (pages 8-9).
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment
		exposure, follow-up, and data collection
		\rightarrow We described them in the data source and study sample sections of the materials
		and methods (pages 7-8).
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of
		selection of participants. Describe methods of follow-up
		Case-control study—Give the eligibility criteria, and the sources and methods of
		case ascertainment and control selection. Give the rationale for the choice of cases
		and controls
		Cross-sectional study—Give the eligibility criteria, and the sources and methods o
		selection of participants
		\rightarrow We presented them in the data source and study sample sections of the materials
		and methods (pages 7-8).
		(b) Cohort study—For matched studies, give matching criteria and number of
		exposed and unexposed
		Case-control study—For matched studies, give matching criteria and the number of
		controls per case
		\rightarrow N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and
		effect modifiers. Give diagnostic criteria, if applicable
		\rightarrow We clearly defined them in the measures and variables section of the materials
		and methods (pages 8-9).
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there
		is more than one group.
		\rightarrow We indicated them in the materials and methods (pages 7-11).
Bias	9	Describe any efforts to address potential sources of bias

י ר	
2 3 4 5 6 7 8 9 1	
3	
4	
5	
6	
7	
1	
8	
9	
1	0
1	1
1	1
1	2
1	3
1	4
1	5
4	6
1	0
1	1
1	8
1	1 2 3 4 5 6 7 8 9
2	ñ
~	01234567890123456789
2	1
2	2
2	3
2	4
2	5
2	0
2	6
2	7
2	8
2	a
~	9
3	0
3	1
3	2
3	3
2	1
0	4
3	5
3	6
3	7
2	R
3	0
3	9
4	0
4	1
4	
4	
4	
4	5
4	6
4	
4	
4	9
5	0
5	1
5	ว
0	2
5	3
5	4
	_
-5	5
5	5 6
5	6
5	6 7
5 5 5	6 7 8
5	6 7 8
5 5 5 5	6 7 8

	\rightarrow We described them in the strengths and limitations section of the discussion (page 29).
	10 Explain how the study size was arrived at
	$\rightarrow \text{We explained the study size in the data source and study sample section of the}$
	materials and methods (pages 7-8).
es	11 Explain how quantitative variables were handled in the analyses. If applicable,
	describe which groupings were chosen and why
	\rightarrow We explained quantitative variables' handling in the measures and variables
	section of the materials and methods (pages 8-9).
	12 (a) Describe all statistical methods, including those used to control for confounding
	\rightarrow We described statistical methods in the analytic procedures section of the
	materials and methods (pages 9-11).
	(b) Describe any methods used to examine subgroups and interactions
	\bigcirc \rightarrow We described statistical methods in the analytic procedures section of the
	materials and methods (pages 9-11).
	(c) Explain how missing data were addressed
	\rightarrow N/A
	(d) Cohort study—If applicable, explain how loss to follow-up was addressed
	Case-control study—If applicable, explain how matching of cases and controls was
	addressed
	Cross-sectional study—If applicable, describe analytical methods taking account of
	sampling strategy
	\rightarrow We described them in the analytic procedures section of the materials and
	methods (pages 9-11).
	(<u>e</u>) Describe any sensitivity analyses
	\rightarrow N/A
13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible,
	examined for eligibility, confirmed eligible, included in the study, completing follow-up, and
	analysed
	\rightarrow We reported them in the data source and study sample section of the materials and
	methods and in the table (pages 7-8, 12-15).
	(b) Give reasons for non-participation at each stage \rightarrow N/A
	(c) Consider use of a flow diagram
	\rightarrow N/A
14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
	information on exposures and potential confounders
	\rightarrow We described them in the data source and study sample section of the materials and
	methods and in the table (pages 7-8, 12-15).
	(b) Indicate number of participants with missing data for each variable of interest $\rightarrow N/A$
	(c) Cohort study—Summarise follow-up time (eg, average and total amount)
	\rightarrow N/A
15*	Cohort study—Report numbers of outcome events or summary measures over time Case-control study—Report numbers in each exposure category, or summary measures of
	-

BMJ Open

Main results16Main results16Image: Second stress16Other analyses17Discussion17Key results18Limitations19Interpretation20Generalisability21	 → We reported them in the table (pages 12-15; Table 1). (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included → We indicated them in the results and the table (pages 16-22, Table 2) (b) Report category boundaries when continuous variables were categorized → We reported them in the measures and variables section of the materials and methods (pages 8-9). (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period → N/A Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses → N/A Summarise key results with reference to study objectives → We indicated them in the comparison to previous studies section of the discussion (pages 22-23).
Other analyses 17 Discussion 18 Key results 18 Limitations 19 Interpretation 20	precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included \rightarrow We indicated them in the results and the table (pages 16-22, Table 2) (b) Report category boundaries when continuous variables were categorized \rightarrow We reported them in the measures and variables section of the materials and methods (pages 8-9). (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period \rightarrow N/A Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses \rightarrow N/A Summarise key results with reference to study objectives \rightarrow We indicated them in the comparison to previous studies section of the discussion (pages
Discussion Key results 18 Limitations 19 Interpretation 20	and why they were included \rightarrow We indicated them in the results and the table (pages 16-22, Table 2) (b) Report category boundaries when continuous variables were categorized \rightarrow We reported them in the measures and variables section of the materials and methods (pages 8-9). (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period \rightarrow N/A Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses \rightarrow N/A Summarise key results with reference to study objectives \rightarrow We indicated them in the comparison to previous studies section of the discussion (pages
Discussion Key results 18 Limitations 19 Interpretation 20	 → We indicated them in the results and the table (pages 16-22, Table 2) (b) Report category boundaries when continuous variables were categorized → We reported them in the measures and variables section of the materials and methods (pages 8-9). (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period → N/A Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses → N/A Summarise key results with reference to study objectives → We indicated them in the comparison to previous studies section of the discussion (pages
Discussion Key results 18 Limitations 19 Interpretation 20	 (b) Report category boundaries when continuous variables were categorized → We reported them in the measures and variables section of the materials and methods (pages 8-9). (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period → N/A Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses → N/A Summarise key results with reference to study objectives → We indicated them in the comparison to previous studies section of the discussion (pages
Discussion Key results 18 Limitations 19 Interpretation 20	 → We reported them in the measures and variables section of the materials and methods (pages 8-9). (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period → N/A Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses → N/A Summarise key results with reference to study objectives → We indicated them in the comparison to previous studies section of the discussion (pages
Discussion Key results 18 Limitations 19 Interpretation 20	(pages 8-9). (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period $\rightarrow N/A$ Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses $\rightarrow N/A$ Summarise key results with reference to study objectives \rightarrow We indicated them in the comparison to previous studies section of the discussion (pages
Discussion Key results 18 Limitations 19 Interpretation 20	 (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period → N/A Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses → N/A Summarise key results with reference to study objectives → We indicated them in the comparison to previous studies section of the discussion (pages)
Discussion Key results 18 Limitations 19 Interpretation 20	meaningful time period $\rightarrow N/A$ Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses $\rightarrow N/A$ Summarise key results with reference to study objectives \rightarrow We indicated them in the comparison to previous studies section of the discussion (pages
Discussion Key results 18 Limitations 19 Interpretation 20	 → N/A Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses → N/A Summarise key results with reference to study objectives → We indicated them in the comparison to previous studies section of the discussion (pages)
Discussion Key results 18 Limitations 19 Interpretation 20	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses $\rightarrow N/A$ Summarise key results with reference to study objectives \rightarrow We indicated them in the comparison to previous studies section of the discussion (pages
Discussion Key results 18 Limitations 19 Interpretation 20	analyses \rightarrow N/A Summarise key results with reference to study objectives \rightarrow We indicated them in the comparison to previous studies section of the discussion (pages
Key results18Limitations19Interpretation20	→ N/A Summarise key results with reference to study objectives → We indicated them in the comparison to previous studies section of the discussion (pages
Key results18Limitations19Interpretation20	Summarise key results with reference to study objectives \rightarrow We indicated them in the comparison to previous studies section of the discussion (pages
Key results18Limitations19Interpretation20	\rightarrow We indicated them in the comparison to previous studies section of the discussion (pages
Limitations 19 Interpretation 20	\rightarrow We indicated them in the comparison to previous studies section of the discussion (pages
Interpretation 20	
Interpretation 20	22-23).
Interpretation 20	
·	Discuss limitations of the study, taking into account sources of potential bias or imprecision.
·	Discuss both direction and magnitude of any potential bias
·	\rightarrow We discussed them in the strengths and limitations section of the discussion (page 29).
Generalisability 21	Give a cautious overall interpretation of results considering objectives, limitations,
Generalisability 21	multiplicity of analyses, results from similar studies, and other relevant evidence
Generalisability 21	\rightarrow We discussed them in the discussion (pages 22-30).
	Discuss the generalisability (external validity) of the study results
	\rightarrow We discussed it in the public health implications section of the discussion and in the
	conclusion (pages 29-30).
Other information	
Funding 22	Give the source of funding and the role of the funders for the present study and, if applicable
	for the original study on which the present article is based
	\rightarrow This research received no specific grant from any funding agency in the public,
	\rightarrow This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.