BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>editorial.bmjopen@bmj.com</u>

BMJ Open

Long-Term Mortality Hazard Associated with Persistent Smoking in Survivors of Acute Coronary Syndromes

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-016874
Article Type:	Research
Date Submitted by the Author:	17-Mar-2017
Complete List of Authors:	Yudi, Matias; Austin Health, Cardiology Farouque, Omar; Austin Health Andrianopoulos, Nick; Monash University, Centre for Research Excellence in Patient Safety Ajani, Andrew; Royal Melbourne Hospital Kalten, Katie; Austin Health Brennan, Angela; Monash University, Department of Epidemiology and Preventive Medicine Lefkovits, Jeffrey; Royal Melbourne Hospital, Hiew, Chin; Barwon Health Oqueli, Ernesto; Ballarat Base Hospital Reid, Christopher; Monash University, Department of Epidemiology and Preventive Medicine Lofkovits, Jeffrey; Royal Melbourne Hospital Outify, Stephen; Alfred Hospital Clark, David; Austin Health
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Smoking and tobacco, Public health
Keywords:	smoking, secondary prevention, acute coronary syndromes, long-term mortality, percutaneous coronary intervention

SCHOLARONE[™] Manuscripts

Long-Term Mortality Hazard Associated with Persistent Smoking in Survivors of Acute Coronary Syndromes

Matias B Yudi, MBBS,^{1,2*} Omar Farouque MBBS, PhD,^{1,2} Nick Andrianopoulos, MBBS, MBiostat,³ Andrew E Ajani, MBBS, MD,^{2,3,4} Katie Kalten, RN,¹ Angela Brennan, RN,³ Jeffrey Lefkovits, MBBS,^{3,4} Chin Hiew, MBBS,⁵ Ernesto Oqueli, MBBS,⁶ Christopher M Reid, BA, MSc, PhD,^{3,7} Stephen J Duffy, MBBS, PhD,^{3,8} David J Clark, MBBS, DMedSci,^{1,2} on behalf of the Melbourne Interventional Group.

¹Department of Cardiology, Austin Health, Melbourne, Australia, ²Department of Medicine, University of Melbourne, Melbourne, Australia, ³Centre of Cardiovascular Research and Education in Therapeutics (CCRE), Monash University, Melbourne, Australia, ⁴Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia, ⁵Department of Cardiology, Barwon Health, Geelong, Australia, ⁶Department of Cardiology, Ballarat Base Hospital, Ballarat, Australia, ⁷School of Public Health, Curtin University, Perth, Western Australia, ⁸Department of Cardiovascular Medicine, Alfred Hospital, Melbourne, Australia.

*Corresponding author:

ellow Dr Matias B Yudi Interventional Cardiology and Research Fellow Austin Health 145 Studley Road Heidelberg, Victoria 3084 Phone: 03 9496 5527 03 9459 0971 Fax: Email: matiasyudi@gmail.com

Word Count: 2,286

Keywords: smoking; secondary prevention; acute coronary syndromes; longterm mortality; percutaneous coronary intervention

BMJ Open: first published as 10.1136/bmjopen-2017-016874 on 6 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

STRUCTURED ABSTRACT

Objective:

We aim ascertain the relative risk of death in patients who persist with smoking and the benefit associated with smoking cessation after an acute coronary syndrome (ACS) in the era of percutaneous coronary intervention (PCI) and optimal secondary prevention pharmacotherapy.

Methods:

Consecutive patients with ACS as the indication for their index PCI from the Melbourne Interventional Group registry (2005-2013) who were alive at 30days were included in our observational cohort study. Patients were divided into four categories based on their smoking status: non-smoker; ex-smoker (quit >1 month before ACS); recent quitter (smoker at presentation but quit by 30-days); and persistent smoker (smoker at presentation and at 30-days). The primary endpoint was long-term mortality through Australian National Death Index linkage.

Results:

Of the 9,375 patients included, 2,728 (29.1%) never smoked, 3,712 (39.6%) were ex-smokers, 1,612 (17.2%) were recent quitters and 1,323 (14.1%) were persistent smokers. Multivariate analysis revealed, compared to those who had never smoked, that persistent smoking (OR 1.78, 95% CI 1.36-2.32, p<0.001) was an independent predictor of long-term mortality (mean follow-up 3.9±2.2 years) while being a recent quitter (OR 1.27, 95% CI 0.96-1.68, p=0.10) or an ex-smoker (OR 1.03, 95% CI 0.87-1.22, p=0.72) was not.

Conclusions:

In a contemporary cohort of patients with ACS, those who continued to smoke had a nearly two-fold higher risk of death while those who quit had comparable survival to lifelong non-smokers. This underscores the importance of smoking cessation in secondary prevention despite the improvement in management of ACS with PCI and pharmacotherapy.

Keywords: smoking; secondary prevention; acute coronary syndromes; long-term mortality; percutaneous coronary intervention

ARTICLE SUMMARY

Article Focus

This article examines the risk of death associated with ongoing smoking in patients who receive optimal management of their acute coronary syndrome.

Key Messages

- Smoking cessation rates post-acute coronary syndromes (ACS) remain suboptimal.
- Despite optimal contemporary ACS management, persistent smoking is associated with a near two-fold increase in all-cause mortality compared to non-smokers. Long-term survival in patients who quit smoking after ACS approaches the level of life-long non-smokers.

Strengths and limitations of this study

- The main strength of this study is the assessment of smoking cessation in a contemporary patient population receiving optimal medical therapy; something which has not been explored.
- Patients' smoking habits can change over time and thus our study is limited by the assessment of smoking status at only one time point.

BACKGROUND

Smoking is a well-recognized risk factor for coronary heart disease and accounts for 11% of cardiovascular deaths worldwide.¹ Smoking cessation has been consistently associated with a mortality benefit in both stable coronary artery disease and post acute coronary syndromes (ACS).²⁻⁴ Consequently, smoking cessation is one of the cornerstones of secondary prevention.⁵

However, the mortality hazard of persistent smoking post ACS in contemporary cardiology has not been described. Systematic reviews and meta-analysis have predominantly included studies from the pre-percutaneous coronary intervention era. ²⁻⁴ More recent studies assessing the impact of smoking post ACS have focused primarily on younger (<35 years)⁶ or older populations (>65 years),⁷ have had low rates of revascularization,⁶⁻⁹ had suboptimal medical management¹⁰ or did not assess the impact of smoking cessation.^{7 11 12}

Thus we aimed to assess the impact of persistent smoking or cessation at 30days compared to non-smokers, on long-term mortality in patients treated with percutaneous coronary intervention (PCI) and optimal secondary prevention pharmacotherapy.

BMJ Open

METHODS

The study cohort included consecutive patients enrolled in the Melbourne Interventional Group (MIG) registry who underwent their index PCI for management of ACS between January 2005 and November 2013.

The MIG registry is a multicentre PCI registry and has been previously described in detail.¹³ Briefly, demographic, clinical, procedural and in-hospital outcome data are prospectively recorded on case-report forms using standardized definitions for all fields with follow up performed at 30 days and 12 months.¹⁴

The registry is coordinated by the Centre of Cardiovascular Research and Education in Therapeutics; an independent research body within the School of Public Health and Preventive Medicine at Monash University (Melbourne, Australia). An audit of a number of verifiable fields from 5% of randomly selected procedures at each institution is undertaken periodically.¹⁵ In the most recent audit, 27 fields were assessed with data accuracy of 98%. This compares favorably to audits from other large registries.¹⁶ The ethics committee in each participating hospital has approved the MIG registry, including the use of "optout" consent. This means that consent is presumed unless the patient "opts out" after giving each patient a "Patient Information Sheet". If a patient informs a staff member that they do not wish to participate, the patient's data are not collected.

Patients who underwent PCI for acute coronary syndrome (ACS) and survived to 30-days were included. ACS encompasses the spectrum of ST-elevation myocardial infarction (STEMI), non-ST-elevation myocardial infarction (NSTEMI) and unstable angina. STEMI was defined as ECG changes (new STsegment elevation at the J-point or development of Q-waves in two or more contiguous leads) with confirmed myocardial necrosis (elevation in troponin T or I or CK-MB on at least one occasion within 24 hours from the index event). NSTEMI was defined as biomarker elevation consistent with myocardial necrosis and one of: either ST-segment depression or T-wave abnormality on ECG; or

ischaemic symptoms. Unstable angina is defined by clinical history suggestive of progressive, unstable ischaemic symptoms without cardiac biomarker elevation.

Acute management of all patients including interventional strategy, stent selection and antithrombotic therapy were left at the discretion of the operator in all procedures. Optimal secondary prevention pharmacotherapy was encouraged according to guidelines. No records were made of contraindications to medications or decisions regarding use/omission of particular guidelinedirected therapies.

Patients were divided into four groups based on their smoking status at 30-days. Those who never smoked tobacco were included in the non-smoker group. Those who had quit smoking more than one month prior to ACS were classified as ex-smokers. Recent quitters were smokers at baseline but had quit by 30days. Persistent smokers were smokers at baseline and were still smoking 30days post ACS.

The primary outcome was long-term all-cause mortality. Long-term mortality data were obtained by linkage to the Australian National Death Index (NDI). The Australian NDI is a database housed at the Australian Institute of Health and Welfare, which contains records of all deaths occurring in Australia since 1980. Data are obtained from the registries of births, deaths, and marriages in each state and territory. The following variables for each deceased patient were identified: name, date of birth (or estimated year of birth), age at death, gender, date of death, state/territory of registration, and registration number. Successful matching of patients through this linkage process was achieved in 99.4% of patients in the MIG registry.

Secondary outcomes were 12-month mortality, myocardial infarction, stroke and major adverse cardiovascular events (MACCE). 12-month MACCE was defined as the combination of mortality, myocardial infarction (MI), stroke and target vessel revascularization. MI was defined as: an increase in creatine kinase or creatine kinase-MB ≥3 times the upper limit of normal; and/or a significant ST-

BMJ Open

segment change, development of new Q waves in ≥2 contiguous electrocardiographic leads, or new left branch bundle block pattern in the context of new clinical symptoms.

Statistical Analysis

Continuous variables are expressed as mean ± standard deviation (SD), and categorical data are expressed as numbers/percentages. Continuous variables were compared using Kruskal-Wallis equality-of-populations rank test. Categorical variables were compared using Fisher's exact or Pearson's chi-square tests as appropriate. Variables were tested for linear trends across the years 2005-2013 using Stata's *nptrend* command. This is a nonparametric test for trend across ordered groups that is an extension of the Wilcoxon rank-sum test. A Cox-proportional hazards model was used to estimate the adjusted hazard ratio and 95% confidence interval (CI) for long-term mortality. Univariate variables with p<0.10 were included for stepwise removal for the final multivariate model.

All statistical analyses were performed using Stata 13.1, StataCorp LP, College Station, TX, USA. P-values < 0.05 were considered to be statistically significant.

Patient Involvement

The design of the study was inspired by patients' desire to quantify the benefit of the smoking cessation after ACS. Patients were not involved in the conduct of the study. Results will be disseminated through usual scientific channels but not directly to study participants.

RESULTS

Of the 9,375 survivors following PCI for ACS at 30 days, 2,728 (29.1%) had never smoked, 3,712 (39.6%) were ex-smokers, 1,612 (17.2%) were recent quitters (smokers at the time of ACS but quit by 30-days) and 1,323 (14.1%) were persistent smokers. The smoking cessation rate at 30-days post ACS was 54.9%. Of the patients alive at 12-months, 23% of quitters had relapsed and 71% of persistent smokers continued to smoke (Figure 1).

Trends in smoking status

Figure 2 depicts the trends in smoking status over the 9-year period from 2005 to 2013. The percentage of non-smokers presenting with ACS increased over the time period while the rate of ex-smokers has decreased (p-value for trend =0.02). There has been no significant change in the trend of smokers presenting with ACS.

Clinical characteristics

Baseline clinical characteristics stratified by smoking status at 30-days are shown in Table 1. It is evident smokers at the time of ACS (subsequent quitters and persistent smokers) were younger, had less co-morbidities but a higher rate of a family history of premature CAD. Compared to quitters, persistent smokers were more likely to have had previously documented CAD (high rates of previous MI/PCI/CABG), peripheral vascular disease and stroke.

ACS presentation type, angiographic characteristics and acute outcomes are shown in Table 2. Smokers at time of ACS were more likely to present with STEMI, have single vessel CAD and receive a bare-metal stent. They also had earlier discharge from hospital. The use of secondary prevention pharmacotherapy across all groups is depicted in Table 3.

Clinical Outcomes

Unadjusted long-term mortality at mean follow-up of 3.9±2.2 years showed quitters had lower death rates than persistent smokers, non-smokers or ex-

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

smokers (5.3% vs. 8.2% vs. 9.6% vs. 12.1%, respectively; p<0.001). The full . uru. . analysis be . A. 1.27, 95% CI 0.5 . by risk compared to not. . sociated with increased mort. . d Figure 3). details of 12-month clinical outcomes and long-term mortality are shown in

BMJ Open: first published as 10.1136/bmjopen-2017-016874 on 6 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

DISCUSSION

In a contemporary cohort of patients presenting with ACS and treated with PCI and optimal secondary prevention pharmacotherapy, only 54% of patients stopped smoking by 30-days. Persistent smokers at 30 days post PCI experienced an almost two-fold increase in long-term mortality. Patients who quit smoking had a survival rate at 4 years that was similar to that of a life-long non-smoker.

Cigarette smoking is a well-established cardiovascular risk factor and continues to be a major preventable cause of death. Ezzati *et al* estimated 11% (1.62 million) of all global cardiovascular deaths in 2000 were attributable to smoking.¹ Although the prevalence of smoking in the general population has decreased over the past 50 years in the United States, in our study the proportion of current smokers at time of ACS did not change significantly over 9 years.¹⁷ This emphasizes the malignant pathophysiological effects of smoking, namely endothelial dysfunction, thrombogenicity and coronary vasoconstriction, which predispose patients to ACS events.¹⁸ Indeed, the significant role of smoking in the pathogenesis of ACS is further highlighted by the fact smokers were younger and lower rates of diabetes, hypertension and hypercholesterolaemia.

Smoking cessation is difficult, even after life-threatening events such as acute coronary syndromes. Systematic reviews have reported smoking cessation rates averaging around 50% in patients with coronary heart disease; this is consistent with the rates observed in our study.²⁻⁴ In addition we found 23% of those who quit smoking at 30-days had relapsed at 12-months highlighting the difficulty of long-term abstinence. The severity of presentation may be a strong trigger to quit as a smoking cessation rate of 74% was reported in one study with STEMI patients alone.¹⁰ We also observed this in our study as patients presenting with STEMI were more likely to quit compared to those presenting with NSTEMI or unstable angina. Implementation of smoking cessation strategies is crucial and the index hospitalization provides a perfect opportunity for this. Indeed a

Cochrane review showed that smoking cessation rates were higher if counseling and pharmacotherapy were initiated during hospital admission.¹⁹

The "smoker's paradox" in patients with acute coronary syndromes suggests there could be potential survival benefit seen in smokers.²⁰ In our study, smokers had lower unadjusted mortality rates at 12-months and long-term. However, when accounting for baseline differences in age and co-morbidities, smoking status was no longer associated with improved survival, thus suggesting debunking of the "smoker's paradox". This is supported by a systematic review showing only studies in the pre-thrombolytic and thrombolytic era supporting the paradox, while none of the contemporary studies do.²⁰

The cardiovascular risk associated with smoking appears to dissipate within 3 years of cessation.^{21 22} Systematic reviews have shown smoking cessation to be associated with a 35% relative risk reduction in patients with coronary heart disease and up to 46% in those with a myocardial infarction.²⁻⁴ A limitation of these reviews is the inclusion of a significant proportion of patients from an era preceding percutaneous coronary intervention and optimal secondary prevention pharmacotherapy. More recent studies assessing the impact of smoking status following ACS have had suboptimal rates of revascularization or medical management.⁶⁻¹⁰ Other studies did not assess the hazard of persistent smoking.^{7 11 12} In our study, persistent smoking after ACS was associated with an increased relative mortality risk of 78% at 4 years. The mortality hazard in our study was lower than the one described in a study of STEMI patients by Kinjo et al (HR 1.78 vs. 2.27). Although their revascularization rate was high (>85%), only 30% of patients received statin therapy. Thus, it could be hypothesized that our higher rate of statin therapy may be responsible for our lower long-term mortality risk. What is unquestionable, as observed in our study, is that a substantial residual mortality risk remains in patients who persist with smoking despite optimal contemporary management with PCI and optimal secondary prevention pharmacotherapy. This increased risk is of similar magnitude to those seen from earlier cardiology eras.²⁻⁴

BMJ Open: first published as 10.1136/bmjopen-2017-016874 on 6 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Encouragingly, smoking cessation is beneficial and by 4 years our cohort of quitters had a mortality hazard approaching that of life-long non-smokers. This is theoretically plausible as the deleterious hazards of smoking appear to be reversed within this time frame and cardiac risk has been shown to return to baseline.¹⁸ ²¹ ²² Although complete smoking abstinence is difficult, as previously discussed, Gerber *et al* showed that even a five cigarette a day reduction is associated with an 18% decline in mortality.⁸ Again this highlights the importance of smoking cessation or even smoking reduction in secondary prevention.

Our study has a number of limitations. Firstly, inherent to all studies assessing the impact of persistent smoking and cessation, the associations described in our study could be attributed, at least partly, to unaccounted or unmeasured variables. In particular, we did not account for the participation in cardiac rehabilitation programs or for smoking cessation strategies utilized. Secondly, we have measured smoking status at one time point and even at 12-months there were a significant number of patients who changed their smoking habits and thus were initially misclassified. We chose smoking cessation at 30-days to assess the impact of the admission with ACS and early medical intervention. Thirdly, we ascertained smoking status by self-report. Although it has been shown to correlate with biochemical assessment in a meta-analysis, there is always a potential for misclassification.²³ Lastly, we do not collect a detailed smoking history and thus we could not quantify the mortality hazard based on the quantity of cigarettes smoked over a lifetime, nor could we quantify the benefit of cessation based on the time since the last cigarette was smoked.

CONCLUSION

Patients who continued to smoke after an ACS had a nearly two-fold mortality hazard while those who quit had comparable survival to a non-smoker. This underscores the importance of smoking cessation in secondary prevention, despite the improvement in management of ACS with percutaneous coronary intervention and optimal medical therapy.

Figure 1. Smokers at Baseline, 30-days and 12-months

<text>

$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ \end{array}$	rigure 2. Trends in Smoking Status in ACS Survivors at 30-days
55 56	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 3. Cox Proportional Hazard Regression Survival Curve

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

				D	
	Non-	Ex-	Recent	Persistent	Ρ
	Smoker	Smoker	Quitter	Smoker	
	(N=2,728)	(N=3,712)	(N=1,612)	(N=1,323)	
Age (mean±SD years)	67.0±12.3	67.0±11.5	56.1±10.2	56.7±10.6	< 0.001
Age >75 years	857 (31.4)	1,093 (29.5)	74 (4.6)	82 (6.2)	< 0.001
Male	1,753 (64.3)	3,038 (81.8)	1,310 (81.3)	1,028 (77.7)	< 0.001
BMI (mean±SD kg/m ²)	28.0±5.3	28.4±5.1	28.4±5.3	28.2±5.6	0.004
Hypertension	1,738 (63.7)	2,628 (70.8)	752 (46.7)	701 (53.0)	< 0.001
Hypercholesterolaemia	1,665 (61.1)	2,627 (70.8)	895 (55.6)	806 (61.1)	< 0.001
Diabetes Mellitus	630 (23.1)	1,014 (27.3)	216 (13.4)	244 (18.4)	< 0.001
Family History of CAD	964 (35.5)	1,412 (38.3)	704 (44.1)	554 (42.2)	< 0.001
Previous MI	444 (16.3)	1,043 (28.1)	183 (11.4)	249 (18.8)	< 0.001
Previous PCI	445 (16.3)	884 (23.8)	168 (10.4)	222 (16.8)	< 0.001
Previous CABG	159 (5.8)	378 (10.2)	29 (1.8)	43 (3.3)	< 0.001
Congestive Heart	83 (3.0)	167 (4.5)	12 (0.8)	30 (2.3)	< 0.001
Failure					
PVD	92 (3.4)	313 (8.4)	55 (3.4)	83 (6.3)	< 0.001
Stroke	157 (5.8)	293 (7.9)	46 (2.9)	61 (4.6)	< 0.001
Chronic Lung Disease	166 (6.1)	516 (13.9)	118 (7.3)	170 (12.9)	< 0.001
$eGFR \ge 60 ml/min/1.73 m^2$	1,970 (74.3)	2,726 (74.9)	1,384 (89.4)	1,135 (88.9)	< 0.001
Ejection Fraction	1,791 (72.2)	2,311 (70.5)	1,077 (71.9)	846 (70.6)	0.61
>45%					

Table 1. Baseline clinical characteristics N(%) stratified by smoking status at 30-days

SD = standard deviation. BMI = body mass index. CAD = coronary artery disease. MI = myocardial infarction. PCI = percutaneous coronary intervention. CABG = coronary artery bypass graft surgery. PVD = peripheral vascular disease. eGFR = estimated glomerular filtration rate.

00 00 00)1)1		
00)1)1		
00 4	1		
2 1 00			
00)1)1		

Table 2. ACS presentation, angiographic characteristics and acute
outcomes N(%) by smoking status at 30-days

	Non-	Ex-	Recent	Persistent	Р
	Smoker (N=2,728)	Smoker (N=3,712)	Quitter (N=1,612)	Smoker (N=1,323)	
STEMI	1243 (45.6)	1430 (38.5)	971 (60.2)	615 (46.5)	
NSTEMI	1100 (40.3)	1591 (42.9)	547 (33.9)	559 (42.3)	
Unstable Angina	385(14.1)	691 (18.6)	94 (5.8)	149 (11.3)	< 0.001
Multivessel CAD	1507 (55.3)	2291 (61.8)	806 (50.2)	655 (49.7)	<0.001
Left main disease	21 (0.8)	55 (1.5)	3 (0.2)	4 (0.3)	< 0.001
Balloon angioplasty only	162 (5.9)	236 (6.4)	66 (4.1)	50 (3.8)	< 0.001
Bare Metal Stent	1356 (49.7)	1949 (52.5)	918 (57.0)	781 (59.0)	
Drug Eluting Stent	1210 (44.4)	1527 (41.1)	628 (39.0)	492 (37.2)	< 0.001
Number of stents inserted (mean±SD)	1.2±0.6	1.2±0.6	1.2±0.6	1.2±0.6	0.44
Successful PCI	2728 (100)	3711 (100)	1612 (100)	1322 (99.9)	0.42
New Renal impairment	34 (1.3)	35 (0.9)	10 (0.6)	4 (0.3)	0.01
New Heart Failure	130 (4.8)	151 (4.1)	53 (3.3)	26 (2.0)	< 0.001
Length of stay (mean±SD days)	5.2±5.2	5.2±5.5	4.5±4.1	4.1±3.4	<0.001

STEMI = ST-segment elevation myocardial infarction. NSTEMI = non- STsegment elevation myocardial infarction. CAD = coronary artery disease. SD = standard deviation. PCI = percutaneous coronary intervention.

Table 3. Cardiovascular pharmacotherapy N(%) at 30-days by smoking
status at 30-days

	Non- Smoker	Ex- Smoker	Recent Quitter	Persistent Smoker	Р
	(N=2,728)	(N=3,712)	(N=1,612)	(N=1,323)	
Aspirin	2665 (97.7)	3620 (97.5)	1593 (98.8)	1299 (98.2)	0.02
P2Y12 inhibitor	2409 (88.3)	3301 (88.9)	1423 (88.3)	1204 (91.0)	0.06
Statin	2610 (95.7)	3523 (94.9)	1583 (98.2)	1279 (96.7)	< 0.001
Beta-blocker	2328 (85.3)	3019 (81.3)	1380 (85.6)	1120 (84.7)	<0.001
ACE-I/ARB	2313 (84.8)	3105 (83.7)	1381 (85.7)	1070 (80.9)	0.002
Warfarin	259 (9.5)	295 (8.0)	111 (6.9)	84 (6.4)	0.001
Spironolactone	66 (2.4)	96 (2.6)	11 (0.7)	29 (2.2)	<0.001
Eplerenone	60 (2.2)	67 (1.8)	38 (2.4)	30 (2.3)	0.49
Ezetimibe	82 (3.0)	219 (5.9)	34 (2.1)	32 (2.4)	<0.001
Fibrate	27 (1.0)	62 (1.7)	16 (1.0)	20 (1.5)	0.06

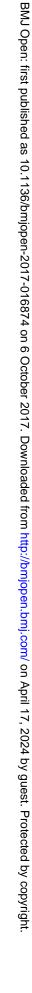
ACE-I = Angiotensin converting enzyme inhibitor. ARB = angiotensin receptor blocker.

1		
2 3		
4 5		
6 7		
2 3 4 5 6 7 8 9		
10		
11 12 13		
13 14 15		
16		
17 18		
19 20		
21 22		
23 24		
25 26		
27 28		
29		
30 31		
32 33 34		
35		
36 37		
38 39		
40 41		
42 43		
44 45		
46		
47 48		
49 50		
51 52		
53 54		
55 56		
57		

Table 4. Clinical outcomes N(%) by smoking status at 30-days

	Non- Smoker (N=2,728)	Ex- Smoker (N=3,712)	Recent Quitter (N=1,612)	Persistent Smoker (N=1,323)	Р
Long-term Mortality	262 (9.6)	450 (12.1)	86 (5.3)	108 (8.2)	<0.001
12-month Mortality	50 (1.9)	100 (2.8)	13 (0.9)	18 (1.4)	<0.001
12-month MI	122 (4.7)	222 (6.2)	51 (3.3)	56 (4.5)	<0.001
12-month Stroke	28 (1.1)	37 (1.0)	9 (0.6)	9 (0.7)	0.3
12-month TVR	182 (7.0)	272 (7.6)	118 (7.7)	65 (5.2)	0.03
12-month MACCE	309 (11.9)	488 (13.7)	157 (10.2)	117 (9.3)	<0.001

MI = myocardial infarction. TVR = target-vessel revascularization. MACCE = major adverse cardiovascular events.


disease

predictors of long-ter	predictors of long-term mortality using Cox-proportional hazards analysis				
	Hazard Ratio	95% Confidence Interval	p-value		
Unadjusted					
Non-smoker	Reference	-	-		
Ex-smoker	1.21	1.03 - 1.40	0.02		
Recent Quitter	0.51	0.40 - 0.65	< 0.001		
Persistent Smoker	0.82	0.65 - 1.03	0.08		
Multivariate analysis					
Non-smoker	Reference	-	-		
Ex-smoker	1.03	0.87 - 1.22	0.72		
Quitter	1.27	0.96 - 1.68	0.10		
Persistent Smoker	1.78	1.36 - 2.32	< 0.001		
Age (per year)	1.07	1.06 - 1.08	< 0.001		
Multivessel CAD	1.43	1.21 - 1.69	< 0.001		
Drug-eluting stent	0.78	0.67-0.92	0.002		
$eGFR \ge 60 \text{ ml/min/1.73m}^2$	Reference	-	-		
eGFR 30-59ml/min/1.73m ²	1.47	1.24 - 1.73	< 0.001		
$eGFR < 30 \text{ ml/min/1.73m}^2$	3.83	2.96 - 4.94	< 0.001		
EF > 45%	Reference	-	-		
EF 30-45%	1.55	1.33 - 1.80	< 0.001		
EF <30%	1.60	1.12 – 2.29	0.010		
Diabetes Mellitus	1.51	1.29 – 1.77	< 0.001		
Peri-procedural MI	1.33	1.13 – 1.56	< 0.001		
Peripheral vascular	1.65	1.35 - 2.02	< 0.001		

Table 5. Estimates of hazard ratio and 95% confidence interval of predictors of long-term mortality using Cox-proportional hazards analysis

CAD = coronary artery disease. eGFR = estimated glomerular filtration rate. EF = ejection fraction. MI = myocardial infarction.

Chronic lung disease 1.73 1.44 – 2.08

< 0.001

Melbourne Interventional Group Investigators

MIG Data Management Centre, CCRE, Monash University:

Professor Chris Reid, Dr Nick Andrianopoulos, Ms Angela Brennan, Ms Vibhasha Chand, Dr Diem Dinh.

MIG Steering Committee:

 Professor Chris Reid, A/Professor Andrew Ajani, Dr Stephen Duffy, Dr David Clark, Professor Gishel New, Dr Melanie Freeman, Dr Chin Hiew, Dr Nick Andrianopoulos, Dr Ernesto Oqueli, Ms Angela Brennan.

The following Investigators, Data Managers and Institutions participated in the MIG Database:

Alfred Hospital: SJ Duffy, JA Shaw, A Walton, A Dart, A Broughton, J Federman, C Keighley, C Hengel, KH Peter, D Stub, W Chan, J O'Brien, L Selkrig, K Rankin, R Vandernet, R Huntington, S Pally;

Austin Hospital: DJ Clark, O Farouque, M Horrigan, J Johns, L Oliver, J Brennan, R Chan, G Proimos, T Dortimer, B Chan, V Nadurata, R Huq, D Fernando, A Al-Fiadh, M Yudi, H Sugumar, J Ramchand, H Han. S Picardo, L Brown;

Ballarat Base Hospital: E Oqueli, C Hengel, A Sharma, B Zhu, N Ryan, T Harrison;

Box Hill Hospital: G New, L Roberts, M Freeman, M Rowe, G Proimos, Y Cheong, C Goods, D Fernando, A Teh, S Parfrey, J Ramzy, A Koshy, P Venkataraman, D Flannery;

Geelong Hospital: C Hiew, M Sebastian, T Yip, Michael Mok, C Jaworski, A Hutchinson, C Cimenkaya, P Ngu, B Khialani, H Salehi, M Turner, J Dyson, B McDonald, D Van Den Nouwelant, K Halliburton;

Monash University: H Krum, C Reid, N Andrianopoulos, AL Brennan, V Chand, D Dinh, BP Yan;

Royal Melbourne Hospital: AE Ajani, R Warren, D Eccleston, J Lefkovits, R Iyer, R Gurvitch, W Wilson, M Brooks, S Biswas, J Yeoh.

Acknowledgements:

The Melbourne Interventional Group acknowledges and thanks all patients who have been involved in the registry.

Dr. Yudi is supported by a combined National Health and Medical Research Council Postgraduate Scholarship (APP 1115163) and a National Heart Foundation Health Professional Scholarship (Award ID 101130).

Professor Duffy's & Professor Reid's work is funded by National Health and Medical Research Council of Australia Grants.

Funding Statement: The Melbourne Interventional Group acknowledges unrestricted educational grant funding from: Abbott Vascular, Astra-Zeneca, Medtronic, MSD, Pfizer, Servier, and The Medicines Company. These companies

do not have access to the data, and do not have the right to review manuscripts before publication

Competing Interests: None

Disclosures: None.

Data Sharing Statement: No additional data available.

Contributorship Statement: MY, OF, DC developed the project concept and research hypothesis. MY, DC drafted the manuscript. NA, AB, CR provided statistical support. OF, AA, KK, JL, CH, EO, SD critically revised the manuscript for intellectual content. All authors read and approved the final document.

Transparency Declaration: The lead author, Associate Professor David Clark, affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

BMJ Open: first published as 10.1136/bmjopen-2017-016874 on 6 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

REFERENCES:

- 1. Ezzati M, Henley SJ, Thun MJ, et al. Role of smoking in global and regional cardiovascular mortality. Circulation 2005;**112**(4):489-97.
- Critchley JA, Capewell S. Mortality risk reduction associated with smoking cessation in patients with coronary heart disease: a systematic review. Jama 2003;290(1):86-97.
- 3. Wilson K, Gibson N, Willan A, et al. Effect of smoking cessation on mortality after myocardial infarction: meta-analysis of cohort studies. Archives of internal medicine 2000;**160**(7):939-44.
- 4. van Berkel TF, Boersma H, Roos-Hesselink JW, et al. Impact of smoking cessation and smoking interventions in patients with coronary heart disease. European heart journal 1999;**20**(24):1773-82.
- 5. Smith SC, Jr., Benjamin EJ, Bonow RO, et al. AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation endorsed by the World Heart Federation and the Preventive Cardiovascular Nurses Association. Journal of the American College of Cardiology 2011;**58**(23):2432-46.
- 6. Rallidis LS, Sakadakis EA, Tympas K, et al. The impact of smoking on long-term outcome of patients with premature (</=35years) ST-segment elevation acute myocardial infarction. American heart journal 2015;**169**(3):356-62.
- 7. Bucholz EM, Beckman AL, Kiefe CI, et al. Smoking status and life expectancy after acute myocardial infarction in the elderly. Heart 2016;**102**(2):133-9.
- 8. Gerber Y, Rosen LJ, Goldbourt U, et al. Smoking status and long-term survival after first acute myocardial infarction a population-based cohort study. Journal of the American College of Cardiology 2009;**54**(25):2382-7.
- 9. Shah AM, Pfeffer MA, Hartley LH, et al. Risk of all-cause mortality, recurrent myocardial infarction, and heart failure hospitalization associated with smoking status following myocardial infarction with left ventricular dysfunction. The American journal of cardiology 2010;**106**(7):911-6.
- 10. Kinjo K, Sato H, Sakata Y, et al. Impact of smoking status on long-term mortality in patients with acute myocardial infarction. Circ J 2005;**69**(1):7-12.
- 11. Weisz G, Cox DA, Garcia E, et al. Impact of smoking status on outcomes of primary coronary intervention for acute myocardial infarction--the smoker's paradox revisited. American heart journal 2005;**150**(2):358-64.
- 12. Shen L, Peterson ED, Li S, et al. The association between smoking and longterm outcomes after non-ST-segment elevation myocardial infarction in older patients. American heart journal 2013;**166**(6):1056-62.
- 13. Ajani AE, Szto G, Duffy SJ, et al. The foundation and launch of the Melbourne Interventional Group: a collaborative interventional cardiology project. Heart, lung & circulation 2006;**15**(1):44-7.
- 14. Chan W, Clark DJ, Ajani AE, et al. Progress towards a National Cardiac Procedure Database--development of the Australasian Society of Cardiac and Thoracic Surgeons (ASCTS) and Melbourne Interventional Group (MIG) registries. Heart, lung & circulation 2011;**20**(1):10-8.

BMJ Open

- BMJ Open: first published as 10.1136/bmjopen-2017-016874 on 6 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright
- 15. Andrianopoulos N, Dinh D, Duffy SJ, et al. Quality control activities associated with registries in interventional cardiology and surgery. Heart, lung & circulation 2011;20(3):180-6.
- 16. Lagerqvist B, James SK, Stenestrand U, et al. Long-term outcomes with drugeluting stents versus bare-metal stents in Sweden. The New England journal of medicine 2007;356(10):1009-19.
- 17. Thun MJ, Carter BD, Feskanich D, et al. 50-year trends in smoking-related mortality in the United States. The New England journal of medicine 2013;368(4):351-64.
- 18. Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update. Journal of the American College of Cardiology 2004;43(10):1731-7.
- 19. Rigotti NA, Clair C, Munafo MR, et al. Interventions for smoking cessation in hospitalised patients. The Cochrane database of systematic reviews 2012;5:CD001837.
- 20. Aune E, Roislien J, Mathisen M, et al. The "smoker's paradox" in patients with acute coronary syndrome: a systematic review. BMC Med 2011;9:97.
- 21. Rosenberg L, Palmer JR, Shapiro S. Decline in the risk of myocardial infarction among women who stop smoking. The New England journal of medicine 1990;322(4):213-7.
- 22. Rosenberg L, Kaufman DW, Helmrich SP, et al. The risk of myocardial infarction after quitting smoking in men under 55 years of age. The New England journal of medicine 1985;313(24):1511-4.
- 23. Patrick DL, Cheadle A, Thompson DC, et al. The validity of self-reported smoking: a review and meta-analysis. Am J Public Health 1994;**84**(7):1086-93.

STROBE Statement-checklist of items that should be included in reports of observational studies

		BMJ Open	Page 26 (ਧੁ
STROBE Statement	-check	klist of items that should be included in reports of observational studies	ipen: tir
	Item No	Recommendation	BMJ Open: tirst published as 10.1136/bmJopen-2017-016874 on 6 October 2017. Downloaded from http://b
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	Isne
	1	 Evident in Methods section of Abstract (Page 2) 	ä
		(b) Provide in the abstract an informative and balanced summary of what was done	
		and what was found – Evident in Abstract (Page 2)	
Introduction		and what was found Evident in Abstract (Fage 2)	- 30/0
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported –	- mjo
Duekground/rationale	2	Evident in Background (Page 4)	per
Objectives	3	State specific objectives, including any prespecified hypotheses - Evident in	
	5	Background (Page 4)	
Mathada	\mathbf{O}	Surigi ound (1 ngo 1)	
Methods Study design	1	Present key elements of study design early in the paper - Evident in Matheda (Dece	- - +
Study design	4	Present key elements of study design early in the paper – Evident in Methods (Page 5-7)	
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,	
		exposure, follow-up, and data collection - Evident in Methods (Page 5)	-
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of	
		selection of participants. Describe methods of follow-up - Evident in Methods	
		(Page 5-7)	5
		Case-control study-Give the eligibility criteria, and the sources and methods of	WITH
		case ascertainment and control selection. Give the rationale for the choice of cases	Jau
		and controls – N/A	eq
		Cross-sectional study—Give the eligibility criteria, and the sources and methods of	
		selection of participants – N/A	
		(b) Cohort study—For matched studies, give matching criteria and number of	p.//c
		exposed and unexposed – N/A	
		Case-control study—For matched studies, give matching criteria and the number of	per
		controls per case – N/A	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect	, ij.c
		modifiers. Give diagnostic criteria, if applicable - Evident in Methods (Page 5-7)	- 11
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	
measurement		assessment (measurement). Describe comparability of assessment methods if there is	Ч
		more than one group – Evident in Methods (Page 5-7)	
Bias	9	Describe any efforts to address potential sources of bias – Evident in Methods	,
		(Page 5-7) including details of multivariate analysis	
Study size	10	Explain how the study size was arrived at – it was based on a study period, not a	UY C
.		particular sample size as described in Methods (Page 5-7)	-
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	injopen.prnj.com/ on April 17, 2024 by guest. Protected by copyright.
~		describe which groupings were chosen and why – Described in Methods (Page 6)	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	SCIE
		- Described in Methods (Page 7)	
		(b) Describe any methods used to examine subgroups and interactions - N/A	- 0
		(c) Explain how missing data were addressed – N/A (consecutive patients	руп
		included)	Q

BMJ Open

	linkage to the Australian National Death Index allowed complete follow-up of
	patients. Described in Methods (Page 6)
	Case-control study-If applicable, explain how matching of cases and controls was
	addressed – N/A
	Cross-sectional study-If applicable, describe analytical methods taking account of
	sampling strategy – N/A
	(\underline{e}) Describe any sensitivity analyses – N/A
Continued on next page	

For peer review only - http://bmjopen?bmj.com/site/about/guidelines.xhtml

Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially eligible,
-		examined for eligibility, confirmed eligible, included in the study, completing follow-up, and
		analysed – All consecutive patients alive at 30-days were included. They were linked to
		the Australian National Death Index
		(b) Give reasons for non-participation at each stage – N/A
		(c) Consider use of a flow diagram
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information
data		on exposures and potential confounders - Evident in Tables 1, 2 and 3. Table 3 (Pages 17-
		19)
		(b) Indicate number of participants with missing data for each variable of interest - Evident
		Tables 1, 2 and 3. Table 3 (Pages 17-19)
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount) – Evident in
		Results (Page 8)
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time – Eviden
		in Tables 4 (Pages 20)
		Case-control study-Report numbers in each exposure category, or summary measures of
		exposure – N/A
		Cross-sectional study—Report numbers of outcome events or summary measures
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for an
		why they were included. Evident in Tables 4 and 5 (Pages 20-21)
		(b) Report category boundaries when continuous variables were categorized - DONE
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningf
		time period
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity
		analyses
Discussion		
Key results	18	Summarise key results with reference to study objectives – Evident in Discussion (Page 9)
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.
		Discuss both direction and magnitude of any potential bias - Evident in Discussion (Page 12
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicit
		of analyses, results from similar studies, and other relevant evidence - Evident in Conclusio
		(Page 13)
Generalisability	21	Discuss the generalisability (external validity) of the study results – Evident throughout
		Discussion section (Pages 10-12)
Other information	on	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable
		for the original study on which the present article is based – There was no funding for the
		study.

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely

BMJ Open

 available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

The Prognostic Significance of Smoking Cessation After Acute Coronary Syndromes: An Observational, Multicentre Study from the Melbourne Interventional Group Registry

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-016874.R1
Article Type:	Research
Date Submitted by the Author:	11-Aug-2017
Complete List of Authors:	Yudi, Matias; Austin Health, Cardiology Farouque, Omar; Austin Health Andrianopoulos, Nick; Monash University, Centre for Research Excellence in Patient Safety Ajani, Andrew; Royal Melbourne Hospital Kalten, Katie; Austin Health Brennan, Angela; Monash University, Department of Epidemiology and Preventive Medicine Lefkovits, Jeffrey; Royal Melbourne Hospital, Hiew, Chin; Barwon Health Oqueli, Ernesto; Ballarat Base Hospital Reid, Christopher; Monash University, Department of Epidemiology and Preventive Medicine University, Department of Epidemiology and Preventive Medicine Duffy, Stephen; Alfred Hospital Clark, David; Austin Health
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Smoking and tobacco, Public health
Keywords:	smoking, secondary prevention, acute coronary syndromes, long-term mortality, percutaneous coronary intervention

SCHOLARONE[™] Manuscripts

The Prognostic Significance of Smoking Cessation After Acute Coronary Syndromes: An Observational, Multicentre Study from the Melbourne Interventional Group Registry

Matias B Yudi, MBBS,^{1,2*} Omar Farouque MBBS, PhD,^{1,2} Nick Andrianopoulos, MBBS, MBiostat,³ Andrew E Ajani, MBBS, MD,^{2,3,4} Katie Kalten, RN,¹ Angela Brennan, RN,³ Jeffrey Lefkovits, MBBS,^{3,4} Chin Hiew, MBBS,⁵ Ernesto Oqueli, MBBS,⁶ Christopher M Reid, BA, MSc, PhD,^{3,7} Stephen J Duffy, MBBS, PhD,^{3,8} David J Clark, MBBS, DMedSci,^{1,2} on behalf of the Melbourne Interventional Group.

¹Department of Cardiology, Austin Health, Melbourne, Australia, ²Department of Medicine, University of Melbourne, Melbourne, Australia, ³Centre of Cardiovascular Research and Education in Therapeutics (CCRE), Monash University, Melbourne, Australia, ⁴Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia, ⁵Department of Cardiology, Barwon Health, Geelong, Australia, ⁶Department of Cardiology, Ballarat Base Hospital, Ballarat, Australia, ⁷School of Public Health, Curtin University, Perth, Western Australia, ⁸Department of Cardiovascular Medicine, Alfred Hospital, Melbourne, Australia.

*Corresponding author:

Dr Matias B Yudi Interventional Cardiology and Research Fellow Austin Health 145 Studley Road Heidelberg, Victoria 3084 Phone: 03 9496 5527 Fax: 03 9459 0971 Email: matiasyudi@gmail.com

Word Count: 2,286

Keywords: smoking; secondary prevention; acute coronary syndromes; long-term mortality; percutaneous coronary intervention

BMJ Open: first published as 10.1136/bmjopen-2017-016874 on 6 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

STRUCTURED ABSTRACT

Objective:

We aim to ascertain the prognostic significance of persistent smoking and smoking cessation after an acute coronary syndrome (ACS) in the era of percutaneous coronary intervention (PCI) and optimal secondary prevention pharmacotherapy.

Methods:

Consecutive patients from the Melbourne Interventional Group registry (2005-2013) who were alive at 30-days post-ACS presentation were included in our observational cohort study. Patients were divided into four categories based on their smoking status: non-smoker; ex-smoker (quit >1 month before ACS); recent quitter (smoker at presentation but quit by 30-days); and persistent smoker (smoker at presentation and at 30-days). The primary endpoint was survival ascertained through the Australian National Death Index linkage. A Coxproportional hazards model was used to estimate the adjusted hazard ratio and 95% confidence interval (CI) for survival.

Results:

Of the 9,375 patients included, 2,728 (29.1%) never smoked, 3,712 (39.6%) were ex-smokers, 1,612 (17.2%) were recent quitters and 1,323 (14.1%) were persistent smokers. Cox-proportional hazard modelling revealed, compared to those who had never smoked, that persistent smoking (HR 1.78, 95% CI 1.36-2.32, p<0.001) was an independent predictor of increased hazard (mean follow-up 3.9±2.2 years) while being a recent quitter (HR 1.27, 95% CI 0.96-1.68, p=0.10) or an ex-smoker (HR 1.03, 95% CI 0.87-1.22, p=0.72) were not.

Conclusions:

In a contemporary cohort of patients with ACS, those who continued to smoke had an 80% risk of lower survival while those who quit had comparable survival to lifelong non-smokers. This underscores the importance of smoking cessation in secondary prevention despite the improvement in management of ACS with PCI and pharmacotherapy.

- The main strength of this study is the assessment of smoking cessation in a large contemporary population who were treated with PCI and optimal medical therapy; something which has not been explored.
- Patients' smoking habits can change over time and thus our study is limited by the assessment of smoking status at only one time point.

BACKGROUND

Smoking is a well-recognized risk factor for coronary heart disease and accounts for 11% of cardiovascular deaths worldwide.¹ Smoking cessation has been consistently associated with a mortality benefit in both stable coronary artery disease and post acute coronary syndromes (ACS).²⁻⁴ Consequently, smoking cessation is one of the cornerstones of secondary prevention.⁵

However, the hazard of persistent smoking post ACS in contemporary cardiology has not been described. Systematic reviews and meta-analysis have predominantly included studies from the pre-percutaneous coronary intervention era. ²⁻⁴ More recent studies assessing the impact of smoking post ACS have focused primarily on younger (<35 years)⁶ or older populations (>65 years),⁷ have had low rates of revascularization,⁶⁻⁹ had suboptimal medical management¹⁰ or did not assess the impact of smoking cessation.^{7 11 12}

Thus we aimed to assess the impact of persistent smoking or cessation at 30days compared to non-smokers, on survival in patients treated with percutaneous coronary intervention (PCI) and optimal secondary prevention pharmacotherapy.

BMJ Open

METHODS

The study cohort included consecutive patients enrolled in the Melbourne Interventional Group (MIG) registry who underwent their index PCI for management of ACS between January 2005 and November 2013.

The MIG registry is a multicentre PCI registry and has been previously described in detail.¹³ Briefly, demographic, clinical, procedural and in-hospital outcome data are prospectively recorded on case-report forms using standardized definitions for all fields with follow up performed at 30 days and 12 months.¹⁴

The registry is coordinated by the Centre of Cardiovascular Research and Education in Therapeutics; an independent research body within the School of Public Health and Preventive Medicine at Monash University (Melbourne, Australia). An audit of a number of verifiable fields from 5% of randomly selected procedures at each institution is undertaken periodically.¹⁵ In the most recent audit, 27 fields were assessed with data accuracy of 98%. This compares favorably to audits from other large registries.¹⁶ The ethics committee in each participating hospital has approved the MIG registry, including the use of "optout" consent. This means that consent is presumed unless the patient "opts out" after giving each patient a "Patient Information Sheet". If a patient informs a staff member that they do not wish to participate, the patient's data are not collected.

Patients who underwent PCI for acute coronary syndrome (ACS) and survived to 30-days were included. ACS encompasses the spectrum of ST-elevation myocardial infarction (STEMI), non-ST-elevation myocardial infarction (NSTEMI) and unstable angina. STEMI was defined as ECG changes (new STsegment elevation at the J-point or development of Q-waves in two or more contiguous leads) with confirmed myocardial necrosis (elevation in troponin T or I or CK-MB on at least one occasion within 24 hours from the index event). NSTEMI was defined as biomarker elevation consistent with myocardial necrosis and one of: either ST-segment depression or T-wave abnormality on ECG; or

BMJ Open

ischaemic symptoms. Unstable angina is defined by clinical history suggestive of progressive, unstable ischaemic symptoms without cardiac biomarker elevation.

Acute management of all patients including interventional strategy, stent selection and antithrombotic therapy were left at the discretion of the operator in all procedures. Optimal secondary prevention pharmacotherapy was encouraged according to guidelines. No records were made of contraindications to medications or decisions regarding use/omission of particular guidelinedirected therapies.

Patients were divided into four groups based on their smoking status at 30-days. Those who never smoked tobacco were included in the non-smoker group. Those who had quit smoking more than one month prior to ACS were classified as ex-smokers. Recent quitters were smokers at baseline but had quit by 30days. Persistent smokers were smokers at baseline and were still smoking 30days post ACS.

The primary outcome was subsequent survival in those patients who were alive at 30 days post ACS. Survival status was obtained by linkage to the Australian National Death Index (NDI). The Australian NDI is a database housed at the Australian Institute of Health and Welfare, which contains records of all deaths occurring in Australia since 1980. Data are obtained from the registries of births, deaths, and marriages in each state and territory. The following variables for each deceased patient were identified: name, date of birth (or estimated year of birth), age at death, gender, date of death, state/territory of registration, and registration number. Successful matching of patients through this linkage process was achieved in 99.4% of patients in the MIG registry.

Secondary outcomes were 12-month mortality, myocardial infarction, stroke and major adverse cardiovascular events (MACCE). 12-month MACCE was defined as the combination of mortality, myocardial infarction (MI), stroke and target vessel revascularization. MI was defined as: an increase in creatine kinase or creatine kinase-MB ≥3 times the upper limit of normal; and/or a significant ST-

BMJ Open

segment change, development of new Q waves in ≥2 contiguous electrocardiographic leads, or new left branch bundle block pattern in the context of new clinical symptoms.

Statistical Analysis

Continuous variables are expressed as mean \pm standard deviation (SD), and categorical data are expressed as numbers/percentages. Continuous variables were compared using Kruskal-Wallis equality-of-populations rank test. Categorical variables were compared using Fisher's exact or Pearson's chisquare tests as appropriate. Variables were tested for linear trends across the years 2005-2013 using Stata's *nptrend* command. This is a nonparametric test for trend across ordered groups that is an extension of the Wilcoxon rank-sum test. Cumulative incidence of mortality was estimated by the Kaplan-Meier method and the log-rank test was used to evaluate differences between groups. Cox-proportional hazards regression was used to estimate the adjusted hazard ratio and 95% confidence interval (CI) for survival. Univariate variables with p<0.10 were included for stepwise removal for the final multivariate model. The variables considered were: smoking status, age, sex, eGFR, hypertension, diabetes, hypercholesterolaemia, family history of coronary disease, previous MI, previous PCI, previous CABG, heart failure, peripheral vascular disease, cerebrovascular disease, left ventricular ejection fraction, multi-vessel CAD, angina type, chronic lung disease, cardiogenic shock, glycoprotein IIb/IIIa use, drug-eluting stent use and treated left main lesion.

All statistical analyses were performed using Stata 13.1, StataCorp LP, College Station, TX, USA. P-values < 0.05 were considered to be statistically significant.

RESULTS

 Of the 9,375 survivors following PCI for ACS at 30 days, 2,728 (29.1%) had never smoked, 3,712 (39.6%) were ex-smokers, 1,612 (17.2%) were recent quitters (smokers at the time of ACS but quit by 30-days) and 1,323 (14.1%) were persistent smokers. The smoking cessation rate at 30-days post ACS was 54.9%. Of the patients alive at 12-months, 23% of quitters had relapsed and 71% of persistent smokers continued to smoke (Figure 1).

Trends in smoking status

Figure 2 depicts the trends in smoking status over the 9-year period from 2005 to 2013. The percentage of non-smokers presenting with ACS increased over the time period while the rate of ex-smokers has decreased (p-value for trend =0.02). There has been no significant change in the trend of smokers presenting with ACS.

Clinical characteristics

Baseline clinical characteristics stratified by smoking status at 30-days are shown in Table 1. It is evident smokers at the time of ACS (subsequent quitters and persistent smokers) were younger, had less co-morbidities but a higher rate of a family history of premature CAD. Compared to quitters, persistent smokers were more likely to have had previously documented CAD (high rates of previous MI/PCI/CABG), peripheral vascular disease and stroke.

ACS presentation type, angiographic characteristics and acute outcomes are shown in Table 2. Smokers at time of ACS were more likely to present with STEMI, have single vessel CAD and receive a bare-metal stent. They also had earlier discharge from hospital. The use of secondary prevention pharmacotherapy across all groups is depicted in Table 3.

Clinical Outcomes

Unadjusted survival at mean follow-up of 3.9±2.2 years showed quitters had lower death rates than persistent smokers, non-smokers or ex-smokers (5.3%

BMJ Open

vs. 8.2% vs. 9.6% vs. 12.1%, respectively; p<0.001). The full details of 12-month clinical outcomes and survival are shown in Table 4. On multivariate analysis being an ex-smoker (HR 1.03, 95% CI 0.87-1.22) or a quitter (HR 1.27, 95% CI 0.96–1.67) was not associated with an increased hazard compared to nonsmokers but being a persistent smoker was associated with increased hazard (HR 1.78, 95% CI 1.36 – 2.32) (Table 5 and Figure 3). There was no evidence of any violation of the proportional hazards assumption as based on Schoenfeld residuals with a global test of chi2=8.34 with 14 degrees of freedom, p=0.784.

BMJ Open: first published as 10.1136/bmjopen-2017-016874 on 6 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

DISCUSSION

In a contemporary cohort of patients presenting with ACS and treated with PCI and optimal secondary prevention pharmacotherapy, only 54% of patients stopped smoking by 30-days. Persistent smokers at 30 days post PCI experienced an almost two-fold increase in long-term mortality. Patients who quit smoking had a survival rate at 4 years that was similar to that of a life-long non-smoker.

Cigarette smoking is a well-established cardiovascular risk factor and continues to be a major preventable cause of death. Ezzati *et al* estimated 11% (1.62 million) of all global cardiovascular deaths in 2000 were attributable to smoking.¹ Although the prevalence of smoking in the general population has decreased over the past 50 years in the United States, in our study the proportion of current smokers at time of ACS did not change significantly over 9 years.¹⁷ This emphasizes the malignant pathophysiological effects of smoking, namely endothelial dysfunction, thrombogenicity and coronary vasoconstriction, which predispose patients to ACS events.¹⁸ Indeed, the significant role of smoking in the pathogenesis of ACS is further highlighted by the fact smokers were younger and lower rates of diabetes, hypertension and hypercholesterolaemia.

Smoking cessation is difficult, even after life-threatening events such as acute coronary syndromes. Systematic reviews have reported smoking cessation rates averaging around 50% in patients with coronary heart disease; this is consistent with the rates observed in our study.²⁻⁴ In addition we found 23% of those who quit smoking at 30-days had relapsed at 12-months highlighting the difficulty of long-term abstinence. The severity of presentation may be a strong trigger to quit as a smoking cessation rate of 74% was reported in one study with STEMI patients alone.¹⁰ We also observed this in our study as patients presenting with STEMI were more likely to quit compared to those presenting with NSTEMI or unstable angina. Implementation of smoking cessation strategies is crucial and the index hospitalization provides a perfect opportunity for this. Indeed a

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml 10

BMJ Open

Cochrane review showed that smoking cessation rates were higher if counseling and pharmacotherapy were initiated during hospital admission.¹⁹

The "smoker's paradox" in patients with acute coronary syndromes suggests there could be potential survival benefit seen in smokers.²⁰ In our study, smokers had lower unadjusted mortality rates at 12-months and long-term. However, when accounting for baseline differences in age and co-morbidities, smoking status was no longer associated with improved survival, thus suggesting debunking of the "smoker's paradox". This is supported by a systematic review showing only studies in the pre-thrombolytic and thrombolytic era supporting the paradox, while none of the contemporary studies do.²⁰

The cardiovascular risk associated with smoking appears to dissipate within 3 years of cessation.^{21 22} Systematic reviews have shown smoking cessation to be associated with a 35% relative risk reduction in patients with coronary heart disease and up to 46% in those with a myocardial infarction.²⁻⁴ A limitation of these reviews is the inclusion of a significant proportion of patients from an era preceding percutaneous coronary intervention and optimal secondary prevention pharmacotherapy. More recent studies assessing the impact of smoking status following ACS have had suboptimal rates of revascularization or medical management.⁶⁻¹⁰ Other studies did not assess the hazard of persistent smoking.^{7 11 12} In our study, persistent smoking after ACS was associated with an increased relative mortality risk of 78% at 4 years. The mortality hazard in our study was lower than the one described in a study of STEMI patients by Kinjo et al (HR 1.78 vs. 2.27). Although their revascularization rate was high (>85%), only 30% of patients received statin therapy. Thus, it could be hypothesized that our higher rate of statin therapy may be responsible for our lower long-term mortality risk. What is unquestionable, as observed in our study, is that a substantial residual mortality risk remains in patients who persist with smoking despite optimal contemporary management with PCI and optimal secondary prevention pharmacotherapy. This increased risk is of similar magnitude to those seen from earlier cardiology eras.²⁻⁴

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2017-016874 on 6 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Encouragingly, smoking cessation is beneficial and by 4 years our cohort of quitters had a mortality hazard approaching that of life-long non-smokers. This is theoretically plausible as the deleterious hazards of smoking appear to be reversed within this time frame and cardiac risk has been shown to return to baseline.¹⁸ ²¹ ²² Although complete smoking abstinence is difficult, as previously discussed, Gerber *et al* showed that even a five cigarette a day reduction is associated with an 18% decline in mortality.⁸ Again this highlights the importance of smoking cessation or even smoking reduction in secondary prevention.

Our study has a number of limitations. Firstly, inherent to all studies assessing the impact of persistent smoking and cessation, the associations described in our study could be attributed, at least partly, to unaccounted or unmeasured variables. In particular, we did not account for the participation in cardiac rehabilitation programs or for smoking cessation strategies utilized. Secondly, we have measured smoking status at one time point and even at 12-months there were a significant number of patients who changed their smoking habits and thus were initially misclassified. We chose smoking cessation at 30-days to assess the impact of the admission with ACS and early medical intervention. Thirdly, we ascertained smoking status by self-report. Although it has been shown to correlate with biochemical assessment in a meta-analysis, there is always a potential for misclassification.²³ Lastly, we do not collect a detailed smoking history and thus we could not quantify the mortality hazard based on the quantity of cigarettes smoked over a lifetime, nor could we quantify the benefit of cessation based on the time since the last cigarette was smoked.

CONCLUSION

Patients who continued to smoke after an ACS had a nearly two-fold mortality hazard while those who quit had comparable survival to a non-smoker. This underscores the importance of smoking cessation in secondary prevention, despite the improvement in management of ACS with percutaneous coronary intervention and optimal medical therapy.

Figure 1. Smokers at Baseline, 30-days and 12-months

* Includes only those patients alive at 12 months.

Recent quitters were smokers at baseline but had quit by 30 days. Persistent smokers were smokers at baseline and were still smoking 30 days and 12 months post ACS. Relapsed smokers were smoking at 12 months although they temporarily quit at 30 days.

1 2 3 Fi 3 Fi 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	gure 2. Trends in Smoking Status in ACS Survivors at 30-days

Figure 3. Cox Proportional Hazard Regression Survival Curve

	Non-	Ex-	Recent	Persistent	Р
	Smoker	Smoker	Quitter	Smoker	Г
	(N=2,728)	(N=3,712)	(N=1,612)	(N=1,323)	
Age (mean±SD years)	67.0±12.3	67.0±11.5	56.1±10.2	56.7±10.6	< 0.001
Age >75 years	857 (31.4)	1,093 (29.5)	74 (4.6)	82 (6.2)	< 0.001
Male	1,753 (64.3)	3,038 (81.8)	1,310 (81.3)	1,028 (77.7)	< 0.001
BMI (mean±SD kg/m ²)	28.0±5.3	28.4±5.1	28.4±5.3	28.2±5.6	0.004
Hypertension	1,738 (63.7)	2,628 (70.8)	752 (46.7)	701 (53.0)	< 0.001
Hypercholesterolaemia	1,665 (61.1)	2,627 (70.8)	895 (55.6)	806 (61.1)	< 0.001
Diabetes Mellitus	630 (23.1)	1,014 (27.3)	216 (13.4)	244 (18.4)	< 0.001
Family History of CAD	964 (35.5)	1,412 (38.3)	704 (44.1)	554 (42.2)	< 0.001
Previous MI	444 (16.3)	1,043 (28.1)	183 (11.4)	249 (18.8)	< 0.001
Previous PCI	445 (16.3)	884 (23.8)	168 (10.4)	222 (16.8)	< 0.001
Previous CABG	159 (5.8)	378 (10.2)	29 (1.8)	43 (3.3)	< 0.001
Congestive Heart Failure	83 (3.0)	167 (4.5)	12 (0.8)	30 (2.3)	< 0.001
PVD	92 (3.4)	313 (8.4)	55 (3.4)	83 (6.3)	< 0.001
Stroke	157 (5.8)	293 (7.9)	46 (2.9)	61 (4.6)	< 0.001
Chronic Lung Disease	166 (6.1)	516 (13.9)	118 (7.3)	170 (12.9)	< 0.001
$eGFR \ge 60 ml/min/1.73 m^2$	1,970 (74.3)	2,726 (74.9)	1,384 (89.4)	1,135 (88.9)	< 0.001
Ejection Fraction >45%	1,791 (72.2)	2,311 (70.5)	1,077 (71.9)	846 (70.6)	0.61

Table 1. Baseline clinical characteristics N(%) stratified by smoking status at 30-days

SD = standard deviation. BMI = body mass index. CAD = coronary artery disease. MI = myocardial infarction. PCI = percutaneous coronary intervention. CABG = coronary artery bypass graft surgery. PVD = peripheral vascular disease. eGFR = estimated glomerular filtration rate.

Recent

Quitter

971 (60.2)

(N=1,612)

P

Persistent

(N=1,323)

Smoker

615 (46.5)

graphic ch 1s at 30-da	la ay
Ex- Smoker (N=3,712) 1430 (38.5) 1591 (42.9) 691 (18.6) 2291 (61.8) 55 (1.5) 236 (6.4) 1949 (52.5) 1527 (41.1) 1.2±0.6)
3711 (100) 35 (0.9) 151 (4.1) 5.2±5.5	
rction. CAD	

Table 2. ACS presentation, angiographic characteristics and acute
outcomes N(%) by smoking status at 30-days

Non-

STEMI

Smoker

(N=2,728)

1243 (45.6)

NSTEMI	1100 (40.3)	1591 (42.9)	547 (33.9)	559 (42.3)	
Unstable Angina	385(14.1)	691 (18.6)	94 (5.8)	149 (11.3)	< 0.001
Multivessel CAD	1507 (55.3)	2291 (61.8)	806 (50.2)	655 (49.7)	<0.001
Left main disease	21 (0.8)	55 (1.5)	3 (0.2)	4 (0.3)	< 0.001
Balloon angioplasty only	162 (5.9)	236 (6.4)	66 (4.1)	50 (3.8)	<0.001
Bare Metal Stent	1356 (49.7)	1949 (52.5)	918 (57.0)	781 (59.0)	
Drug Eluting Stent	1210 (44.4)	1527 (41.1)	628 (39.0)	492 (37.2)	< 0.001
Number of stents inserted	1.2±0.6	1.2±0.6	1.2±0.6	1.2±0.6	0.44
(mean±SD)					
Successful PCI	2728 (100)	3711 (100)	1612 (100)	1322 (99.9)	0.42
New Renal impairment	34 (1.3)	35 (0.9)	10 (0.6)	4 (0.3)	0.01
New Heart Failure	130 (4.8)	151 (4.1)	53 (3.3)	26 (2.0)	< 0.001
Length of stay (mean±SD	5.2±5.2	5.2±5.5	4.5±4.1	4.1±3.4	< 0.001
days)					

STEMI = ST-segment elevation myocardi arction. NSTEMI = non- STsegment elevation myocardial infarction. = coronary artery disease. SD = standard deviation. PCI = percutaneous of ary intervention.

Table 3. Cardiovascular pharmacotherapy N(%) at 30-days by smoking
status at 30-days

	Non- Smoker	Ex- Smoker	Recent Quitter	Persistent Smoker	Р
	(N=2,728)	(N=3,712)	(N=1,612)	(N=1,323)	
Aspirin	2665 (97.7)	3620 (97.5)	1593 (98.8)	1299 (98.2)	0.02
P2Y12 inhibitor	2409 (88.3)	3301 (88.9)	1423 (88.3)	1204 (91.0)	0.06
Statin	2610 (95.7)	3523 (94.9)	1583 (98.2)	1279 (96.7)	< 0.001
Beta-blocker	2328 (85.3)	3019 (81.3)	1380 (85.6)	1120 (84.7)	<0.001
ACE-I/ARB	2313 (84.8)	3105 (83.7)	1381 (85.7)	1070 (80.9)	0.002
Warfarin	259 (9.5)	295 (8.0)	111 (6.9)	84 (6.4)	0.001
Spironolactone	66 (2.4)	96 (2.6)	11 (0.7)	29 (2.2)	<0.001
Eplerenone	60 (2.2)	67 (1.8)	38 (2.4)	30 (2.3)	0.49
Ezetimibe	82 (3.0)	219 (5.9)	34 (2.1)	32 (2.4)	<0.001
Fibrate	27 (1.0)	62 (1.7)	16 (1.0)	20 (1.5)	0.06

ACE-I = Angiotensin converting enzyme inhibitor. ARB = angiotensin receptor blocker.

Ę	
Q	
en:	
fire	
MJ Open: first published as 10.1136/bmjopen-2017-016874 on 6 October 2017. Downloaded from h	
ľď	
ish	
ed	
as	
10.	
113	
36/b	
<u>m</u> i	
ope	
ů,	
201	
7-0	
16	
874	
- or	
6	
O C C	
tob	
<u>e</u> N	
201	
7. [
Q	
vnlo	
load	
ded from http://bmjo	
fro	
Ш	
ŧ	
b	
bmjopen.br	
ppe	
n.b	
<u>, 3</u> .	
g	
n/ c	
n v	
Apr	
, 7 2	
02	
40	
уg	
ues	
÷ T	
řot	
ect	
ed	
by	
cop	
yyri	
ght.	
-	

Table 4. Clinical outcomes N(%) by smoking status at 30-days
--

	Non- Smoker (N=2,728)	Ex- Smoker (N=3,712)	Recent Quitter (N=1,612)	Persistent Smoker (N=1,323)	Р
Long-term Mortality	262 (9.6)	450 (12.1)	86 (5.3)	108 (8.2)	<0.001
12-month Mortality	50 (1.9)	100 (2.8)	13 (0.9)	18 (1.4)	< 0.001
12-month MI	122 (4.7)	222 (6.2)	51 (3.3)	56 (4.5)	< 0.001
12-month Stroke	28 (1.1)	37 (1.0)	9 (0.6)	9 (0.7)	0.3
12-month TVR	182 (7.0)	272 (7.6)	118 (7.7)	65 (5.2)	0.03
12-month MACCE	309 (11.9)	488 (13.7)	157 (10.2)	117 (9.3)	<0.001

MI = myocardial infarction. TVR = target-vessel revascularization. MACCE = major adverse cardiovascular events.

 Recent Quitter

Multivariate

Non-smoker

Age (per year)

Multivessel CAD

Drug-eluting stent

 $eGFR \ge 60 ml/min/1.73 m^2$

eGFR 30-59ml/min/1.73m²

 $eGFR < 30 \text{ ml/min}/1.73 \text{m}^2$

Diabetes Mellitus

Peri-procedural MI

Peripheral vascular

Ex-smoker

analysis

Ouitter

EF > 45%

EF <30%

disease

EF 30-45%

Persistent Smoker

Persistent Smoker

60

predictors of long-term mortality using Cox-proportional hazards analysis					
	Hazard Ratio	95% Confidence Interval	p-value		
Unadjusted					
Non-smoker	Reference	-	-		
Ex-smoker	1.21	1.03 - 1.40	0.02		

0.40 - 0.65

0.65 - 1.03

0.87 - 1.22

0.96 - 1.68

1.36 - 2.32

1.06 - 1.08

1.21 - 1.69

0.67-0.92

1.24 - 1.73

2.96 - 4.94

1.33 - 1.80

1.12 - 2.29

1.29 - 1.77

1.13 - 1.56

1.35 - 2.02

< 0.001

0.08

_

0.72

0.10

< 0.001

< 0.001

< 0.001

0.002

_

< 0.001

< 0.001

-

< 0.001

0.010

< 0.001

< 0.001

< 0.001

0.51

0.82

Reference

1.03

1.27

1.78

1.07

1.43

0.78

Reference

1.47

3.83

Reference

1.55

1.60

1.51

1.33

1.65

Chronic lung disease	1.73	1.44 -	2.08	< 0.001	
CAD = coronary artery disease. eGFR = estimated glomerular filtration rate. EF =					
ejection fraction. MI = n	nyocardial infarc	tion.			

BMJ Open: first published as 10.1136/bmjopen-2017-016874 on 6 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Melbourne Interventional Group Investigators

MIG Data Management Centre, CCRE, Monash University:

Professor Chris Reid, Dr Nick Andrianopoulos, Ms Angela Brennan, Ms Vibhasha Chand. Dr Diem Dinh.

MIG Steering Committee:

Professor Chris Reid, A/Professor Andrew Ajani, Dr Stephen Duffy, Dr David Clark, Professor Gishel New, Dr Melanie Freeman, Dr Chin Hiew, Dr Nick Andrianopoulos, Dr Ernesto Oqueli, Ms Angela Brennan.

The following Investigators, Data Managers and Institutions participated in the MIG Database:

Alfred Hospital: SJ Duffy, JA Shaw, A Walton, A Dart, A Broughton, J Federman, C Keighley, C Hengel, KH Peter, D Stub, W Chan, J O'Brien, L Selkrig, K Rankin, R Vandernet, R Huntington, S Pally;

Austin Hospital: DJ Clark, O Farouque, M Horrigan, J Johns, L Oliver, J Brennan, R Chan, G Proimos, T Dortimer, B Chan, V Nadurata, R Huq, D Fernando, A Al-Fiadh, M Yudi, H Sugumar, J Ramchand, H Han. S Picardo, L Brown;

Ballarat Base Hospital: E Oqueli, C Hengel, A Sharma, B Zhu, N Ryan, T Harrison:

Box Hill Hospital: G New, L Roberts, M Freeman, M Rowe, G Proimos, Y Cheong, C Goods, D Fernando, A Teh, S Parfrey, J Ramzy, A Koshy, P Venkataraman, D Flannery:

Geelong Hospital: C Hiew, M Sebastian, T Yip, Michael Mok, C Jaworski, A Hutchinson, C Cimenkaya, P Ngu, B Khialani, H Salehi, M Turner, J Dyson, B McDonald, D Van Den Nouwelant, K Halliburton;

Monash University: H Krum, C Reid, N Andrianopoulos, AL Brennan, V Chand, D Dinh, BP Yan;

Royal Melbourne Hospital: AE Ajani, R Warren, D Eccleston, J Lefkovits, R Iyer, R Gurvitch, W Wilson, M Brooks, S Biswas, J Yeoh.

Acknowledgements:

The Melbourne Interventional Group acknowledges and thanks all patients who have been involved in the registry.

Dr. Yudi is supported by a combined National Health and Medical Research Council Postgraduate Scholarship (APP 1115163) and a National Heart Foundation Health Professional Scholarship (Award ID 101130).

Professor Duffy's & Professor Reid's work is funded by National Health and Medical Research Council of Australia Grants.

Funding Statement: The Melbourne Interventional Group acknowledges unrestricted educational grant funding from: Abbott Vascular, Astra-Zeneca, Medtronic, MSD, Pfizer, Servier, and The Medicines Company. These companies do not have access to the data, and do not have the right to review manuscripts before publication

Competing Interests: None

Disclosures: None.

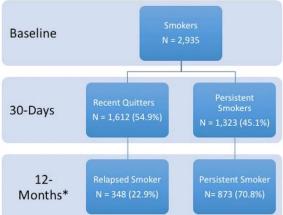
Data Sharing Statement: No additional data available.

Contributorship Statement: MY, OF, DC developed the project concept and research hypothesis. MY, DC drafted the manuscript. NA, AB, CR provided statistical support. OF, AA, KK, JL, CH, EO, SD critically revised the manuscript for intellectual content. All authors read and approved the final document.

Transparency Declaration: The lead author, Associate Professor David Clark, affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

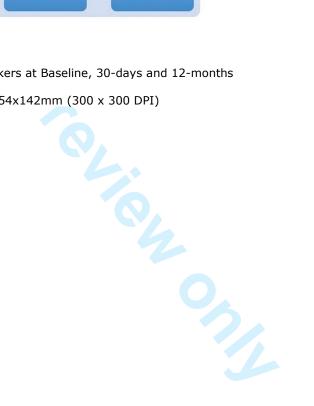
BMJ Open: first published as 10.1136/bmjopen-2017-016874 on 6 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml 23


REFERENCES:

- 1. Ezzati M, Henley SJ, Thun MJ, et al. Role of smoking in global and regional cardiovascular mortality. Circulation 2005;**112**(4):489-97.
- 2. Critchley JA, Capewell S. Mortality risk reduction associated with smoking cessation in patients with coronary heart disease: a systematic review. Jama 2003;**290**(1):86-97.
- 3. Wilson K, Gibson N, Willan A, et al. Effect of smoking cessation on mortality after myocardial infarction: meta-analysis of cohort studies. Archives of internal medicine 2000;**160**(7):939-44.
- 4. van Berkel TF, Boersma H, Roos-Hesselink JW, et al. Impact of smoking cessation and smoking interventions in patients with coronary heart disease. European heart journal 1999;**20**(24):1773-82.
- 5. Smith SC, Jr., Benjamin EJ, Bonow RO, et al. AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation endorsed by the World Heart Federation and the Preventive Cardiovascular Nurses Association. Journal of the American College of Cardiology 2011;58(23):2432-46.
- 6. Rallidis LS, Sakadakis EA, Tympas K, et al. The impact of smoking on long-term outcome of patients with premature (</=35years) ST-segment elevation acute myocardial infarction. American heart journal 2015;**169**(3):356-62.
- 7. Bucholz EM, Beckman AL, Kiefe CI, et al. Smoking status and life expectancy after acute myocardial infarction in the elderly. Heart 2016;**102**(2):133-9.
- 8. Gerber Y, Rosen LJ, Goldbourt U, et al. Smoking status and long-term survival after first acute myocardial infarction a population-based cohort study. Journal of the American College of Cardiology 2009;**54**(25):2382-7.
- 9. Shah AM, Pfeffer MA, Hartley LH, et al. Risk of all-cause mortality, recurrent myocardial infarction, and heart failure hospitalization associated with smoking status following myocardial infarction with left ventricular dysfunction. The American journal of cardiology 2010;**106**(7):911-6.
- 10. Kinjo K, Sato H, Sakata Y, et al. Impact of smoking status on long-term mortality in patients with acute myocardial infarction. Circ J 2005;**69**(1):7-12.
- 11. Weisz G, Cox DA, Garcia E, et al. Impact of smoking status on outcomes of primary coronary intervention for acute myocardial infarction--the smoker's paradox revisited. American heart journal 2005;**150**(2):358-64.
- 12. Shen L, Peterson ED, Li S, et al. The association between smoking and longterm outcomes after non-ST-segment elevation myocardial infarction in older patients. American heart journal 2013;**166**(6):1056-62.
- 13. Ajani AE, Szto G, Duffy SJ, et al. The foundation and launch of the Melbourne Interventional Group: a collaborative interventional cardiology project. Heart, lung & circulation 2006;**15**(1):44-7.
- 14. Chan W, Clark DJ, Ajani AE, et al. Progress towards a National Cardiac Procedure Database--development of the Australasian Society of Cardiac and Thoracic Surgeons (ASCTS) and Melbourne Interventional Group (MIG) registries. Heart, lung & circulation 2011;**20**(1):10-8.

BMJ Open


15. Andrianopoulos N, Dinh D, Duffy SJ, et al. Quality control activities associated
with registries in interventional cardiology and surgery. Heart, lung &
circulation 2011; 20 (3):180-6.

- 16. Lagerqvist B, James SK, Stenestrand U, et al. Long-term outcomes with drugeluting stents versus bare-metal stents in Sweden. The New England journal of medicine 2007;**356**(10):1009-19.
- 17. Thun MJ, Carter BD, Feskanich D, et al. 50-year trends in smoking-related mortality in the United States. The New England journal of medicine 2013;**368**(4):351-64.
- 18. Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update. Journal of the American College of Cardiology 2004;**43**(10):1731-7.
- 19. Rigotti NA, Clair C, Munafo MR, et al. Interventions for smoking cessation in hospitalised patients. The Cochrane database of systematic reviews 2012;5:CD001837.
- 20. Aune E, Roislien J, Mathisen M, et al. The "smoker's paradox" in patients with acute coronary syndrome: a systematic review. BMC Med 2011;**9**:97.
- 21. Rosenberg L, Palmer JR, Shapiro S. Decline in the risk of myocardial infarction among women who stop smoking. The New England journal of medicine 1990;**322**(4):213-7.
- 22. Rosenberg L, Kaufman DW, Helmrich SP, et al. The risk of myocardial infarction after quitting smoking in men under 55 years of age. The New England journal of medicine 1985;**313**(24):1511-4.
- 23. Patrick DL, Cheadle A, Thompson DC, et al. The validity of self-reported smoking: a review and meta-analysis. Am J Public Health 1994;**84**(7):1086-93.

Figure 1. Smokers at Baseline, 30-days and 12-months

254x142mm (300 x 300 DPI)

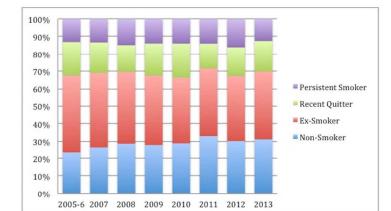
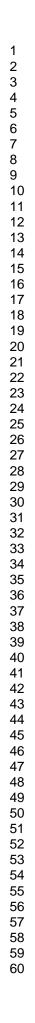
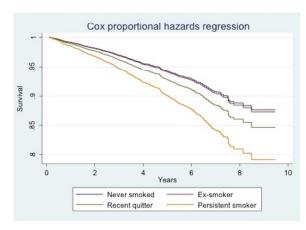
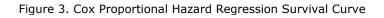





Figure 2. Trends in Smoking Status in ACS Survivors at 30-days

254x142mm (300 x 300 DPI) n .

254x142mm (300 x 300 DPI)

BMJ Open

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract
		– Evident in the title (page 1, line 2)
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found – Evident in Abstract (Page 2)
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported -
		Evident in Background (Page 4, line 6-26)
Objectives	3	State specific objectives, including any prespecified hypotheses - Evident in
		Background (Page 4, line 30-35)
Methods	\mathbf{O}	
Study design	4	Present key elements of study design early in the paper – Evident in Methods (Page
stady design	•	5, line 6-10)
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
betting	2	exposure, follow-up, and data collection - Evident in Methods (Page 5, line 22-27)
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of
i urticipulits	0	selection of participants. Describe methods of follow-up - Evident in Methods
		(Page 5, line 42-56)
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of
		case ascertainment and control selection. Give the rationale for the choice of cases
		and controls $- N/A$
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of
		selection of participants – N/A
		(b) Cohort study—For matched studies, give matching criteria and number of
		exposed and unexposed – N/A
		<i>Case-control study</i> —For matched studies, give matching criteria and the number of
		controls per case – N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable - Evident in Methods (Page 6, line
		32-40)
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there is
		more than one group – Evident in Methods (Page 7, line 11-29)
Bias	9	Describe any efforts to address potential sources of bias – Evident in Methods
		(Page 7, line 24-29) including details of multivariate analysis
Study size	10	Explain how the study size was arrived at – it was based on a study period, not a
		particular sample size as described in Methods (Page 5, line 6-10)
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why – Described in Methods (Page 7 ,
		line 11-18)
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		– Described in Methods (Page 7, line 12-29)
		(b) Describe any methods used to examine subgroups and interactions - N/A
		(c) Explain how missing data were addressed – N/A (consecutive patients

included)

(d) Cohort study—If applicable, explain how loss to follow-up was addressed –

 Image

 Subservice

 Subservice

 Subservice

 Subservice

 Operative any sensitivity ana.

 linkage to the Australian National Death Index allowed complete follow-up of patients. Described in Methods (Page 6, line 32-48)

Continued on next page

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible,
		examined for eligibility, confirmed eligible, included in the study, completing follow-up, and
		analysed – (page 8, line 7-8) All consecutive patients alive at 30-days were included. They
		were linked to the Australian National Death Index
		(b) Give reasons for non-participation at each stage $- N/A$
		(c) Consider use of a flow diagram
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and informatio
data		on exposures and potential confounders – Evident in Tables 1, 2 and 3. (Pages 17-19)
		(b) Indicate number of participants with missing data for each variable of interest – Evident in
		Tables 1, 2 and 3. (Pages 17-19)
		(c) Cohort study—Summarise follow-up time (eg, average and total amount) – Evident in
		Results (Page 8, line 56-57)
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time – Evident
		in Tables 4 (Pages 20)
		Case-control study-Report numbers in each exposure category, or summary measures of
		exposure – N/A
		Cross-sectional study—Report numbers of outcome events or summary measures
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and
		why they were included. Evident in Methods (page 7, line 15-20). Tables 4 and 5 (Pages 20)
		21)
		(b) Report category boundaries when continuous variables were categorized – Evident in
		Tables 1-3
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningfu
		time period
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity
		analyses
Discussion		
Key results	18	Summarise key results with reference to study objectives - Evident in Discussion (Page 10,
		line 6-16)
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.
		Discuss both direction and magnitude of any potential bias - Evident in Discussion (Page 12
		line 22-44)
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicit
-		of analyses, results from similar studies, and other relevant evidence - Evident in Conclusion
		(Page 13, line 7-14)
Generalisability	21	Discuss the generalisability (external validity) of the study results – Evident throughout
5		Discussion section (Pages 10-12)
Other information	on	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable,
-		for the original study on which the present article is based – There was no funding for the
		study.

BMJ Open: first published as 10.1136/bmjopen-2017-016874 on 6 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

BMJ Open

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

BMJ Open

The Prognostic Significance of Smoking Cessation After Acute Coronary Syndromes: An Observational, Multicentre Study from the Melbourne Interventional Group Registry

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-016874.R2
Article Type:	Research
Date Submitted by the Author:	31-Aug-2017
Complete List of Authors:	Yudi, Matias; Austin Health, Cardiology Farouque, Omar; Austin Health Andrianopoulos, Nick; Monash University, Centre for Research Excellence in Patient Safety Ajani, Andrew; Royal Melbourne Hospital Kalten, Katie; Austin Health Brennan, Angela; Monash University, Department of Epidemiology and Preventive Medicine Lefkovits, Jeffrey; Royal Melbourne Hospital, Hiew, Chin; Barwon Health Oqueli, Ernesto; Ballarat Base Hospital Reid, Christopher; Monash University, Department of Epidemiology and Preventive Medicine University, Department of Epidemiology and Preventive Medicine Duffy, Stephen; Alfred Hospital Clark, David; Austin Health
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Smoking and tobacco, Public health
Keywords:	smoking, secondary prevention, acute coronary syndromes, long-term mortality, percutaneous coronary intervention

SCHOLARONE[™] Manuscripts

BMJ Open

The Prognostic Significance of Smoking Cessation After Acute Coronary Syndromes: An Observational, Multicentre Study from the Melbourne Interventional Group Registry

Matias B Yudi, MBBS,^{1,2*} Omar Farouque MBBS, PhD,^{1,2} Nick Andrianopoulos, MBBS, MBiostat,³ Andrew E Ajani, MBBS, MD,^{2,3,4} Katie Kalten, RN,¹ Angela Brennan, RN,³ Jeffrey Lefkovits, MBBS,^{3,4} Chin Hiew, MBBS,⁵ Ernesto Oqueli, MBBS,⁶ Christopher M Reid, BA, MSc, PhD,^{3,7} Stephen J Duffy, MBBS, PhD,^{3,8} David J Clark, MBBS, DMedSci,^{1,2} on behalf of the Melbourne Interventional Group.

¹Department of Cardiology, Austin Health, Melbourne, Australia, ²Department of Medicine, University of Melbourne, Melbourne, Australia, ³Centre of Cardiovascular Research and Education in Therapeutics (CCRE), Monash University, Melbourne, Australia, ⁴Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia, ⁵Department of Cardiology, Barwon Health, Geelong, Australia, ⁶Department of Cardiology, Ballarat Base Hospital, Ballarat, Australia, ⁷School of Public Health, Curtin University, Perth, Western Australia, ⁸Department of Cardiovascular Medicine, Alfred Hospital, Melbourne, Australia.

*Corresponding author:

Dr Matias B Yudi Interventional Cardiology and Research Fellow Austin Health 145 Studley Road Heidelberg, Victoria 3084 Phone: 03 9496 5527 Fax: 03 9459 0971 Email: matiasyudi@gmail.com

Word Count: 2,286

Keywords: smoking; secondary prevention; acute coronary syndromes; long-term mortality; percutaneous coronary intervention

BMJ Open: first published as 10.1136/bmjopen-2017-016874 on 6 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

STRUCTURED ABSTRACT

Objective:

We aim to ascertain the prognostic significance of persistent smoking and smoking cessation after an acute coronary syndrome (ACS) in the era of percutaneous coronary intervention (PCI) and optimal secondary prevention pharmacotherapy.

Methods:

Consecutive patients from the Melbourne Interventional Group registry (2005-2013) who were alive at 30-days post-ACS presentation were included in our observational cohort study. Patients were divided into four categories based on their smoking status: non-smoker; ex-smoker (quit >1 month before ACS); recent quitter (smoker at presentation but quit by 30-days); and persistent smoker (smoker at presentation and at 30-days). The primary endpoint was survival ascertained through the Australian National Death Index linkage. A Coxproportional hazards model was used to estimate the adjusted hazard ratio and 95% confidence interval (CI) for survival.

Results:

Of the 9,375 patients included, 2,728 (29.1%) never smoked, 3,712 (39.6%) were ex-smokers, 1,612 (17.2%) were recent quitters and 1,323 (14.1%) were persistent smokers. Cox-proportional hazard modelling revealed, compared to those who had never smoked, that persistent smoking (HR 1.78, 95% CI 1.36-2.32, p<0.001) was an independent predictor of increased hazard (mean follow-up 3.9±2.2 years) while being a recent quitter (HR 1.27, 95% CI 0.96-1.68, p=0.10) or an ex-smoker (HR 1.03, 95% CI 0.87-1.22, p=0.72) were not.

Conclusions:

In a contemporary cohort of patients with ACS, those who continued to smoke had an 80% risk of lower survival while those who quit had comparable survival to lifelong non-smokers. This underscores the importance of smoking cessation in secondary prevention despite the improvement in management of ACS with PCI and pharmacotherapy.

- The main strength of this study is the assessment of smoking cessation in a large contemporary population who were treated with PCI and optimal medical therapy; something which has not been explored.
- Patients' smoking habits can change over time and thus our study is limited by the assessment of smoking status at only one time point.

BACKGROUND

Smoking is a well-recognized risk factor for coronary heart disease and accounts for 11% of cardiovascular deaths worldwide.¹ Smoking cessation has been consistently associated with a mortality benefit in both stable coronary artery disease and post acute coronary syndromes (ACS).²⁻⁴ Consequently, smoking cessation is one of the cornerstones of secondary prevention.⁵

However, the hazard of persistent smoking post ACS in contemporary cardiology has not been described. Systematic reviews and meta-analysis have predominantly included studies from the pre-percutaneous coronary intervention era. ²⁻⁴ More recent studies assessing the impact of smoking post ACS have focused primarily on younger (<35 years)⁶ or older populations (>65 years),⁷ have had low rates of revascularization,⁶⁻⁹ had suboptimal medical management¹⁰ or did not assess the impact of smoking cessation.^{7 11 12}

Thus we aimed to assess the impact of persistent smoking or cessation at 30days compared to non-smokers, on survival in patients treated with percutaneous coronary intervention (PCI) and optimal secondary prevention pharmacotherapy.

BMJ Open

METHODS

The study cohort included consecutive patients enrolled in the Melbourne Interventional Group (MIG) registry who underwent their index PCI for management of ACS between January 2005 and November 2013.

The MIG registry is a multicentre PCI registry and has been previously described in detail.¹³ Briefly, demographic, clinical, procedural and in-hospital outcome data are prospectively recorded on case-report forms using standardized definitions for all fields with follow up performed at 30 days and 12 months.¹⁴

The registry is coordinated by the Centre of Cardiovascular Research and Education in Therapeutics; an independent research body within the School of Public Health and Preventive Medicine at Monash University (Melbourne, Australia). An audit of a number of verifiable fields from 5% of randomly selected procedures at each institution is undertaken periodically.¹⁵ In the most recent audit, 27 fields were assessed with data accuracy of 98%. This compares favorably to audits from other large registries.¹⁶ The ethics committee in each participating hospital has approved the MIG registry, including the use of "optout" consent. This means that consent is presumed unless the patient "opts out" after giving each patient a "Patient Information Sheet". If a patient informs a staff member that they do not wish to participate, the patient's data are not collected.

Patients who underwent PCI for acute coronary syndrome (ACS) and survived to 30-days were included. ACS encompasses the spectrum of ST-elevation myocardial infarction (STEMI), non-ST-elevation myocardial infarction (NSTEMI) and unstable angina. STEMI was defined as ECG changes (new STsegment elevation at the J-point or development of Q-waves in two or more contiguous leads) with confirmed myocardial necrosis (elevation in troponin T or I or CK-MB on at least one occasion within 24 hours from the index event). NSTEMI was defined as biomarker elevation consistent with myocardial necrosis and one of: either ST-segment depression or T-wave abnormality on ECG; or

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2017-016874 on 6 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

ischaemic symptoms. Unstable angina is defined by clinical history suggestive of progressive, unstable ischaemic symptoms without cardiac biomarker elevation.

Acute management of all patients including interventional strategy, stent selection and antithrombotic therapy were left at the discretion of the operator in all procedures. Optimal secondary prevention pharmacotherapy was encouraged according to guidelines. No records were made of contraindications to medications or decisions regarding use/omission of particular guidelinedirected therapies.

Patients were divided into four groups based on their smoking status at 30-days. Those who never smoked tobacco were included in the non-smoker group. Those who had quit smoking more than one month prior to ACS were classified as ex-smokers. Recent quitters were smokers at baseline but had quit by 30days. Persistent smokers were smokers at baseline and were still smoking 30days post ACS.

The primary outcome was subsequent survival in those patients who were alive at 30 days post ACS. Survival status was obtained by linkage to the Australian National Death Index (NDI). The Australian NDI is a database housed at the Australian Institute of Health and Welfare, which contains records of all deaths occurring in Australia since 1980. Data are obtained from the registries of births, deaths, and marriages in each state and territory. The following variables for each deceased patient were identified: name, date of birth (or estimated year of birth), age at death, gender, date of death, state/territory of registration, and registration number. Successful matching of patients through this linkage process was achieved in 99.4% of patients in the MIG registry.

Secondary outcomes were 12-month mortality, myocardial infarction, stroke and major adverse cardiovascular events (MACCE). 12-month MACCE was defined as the combination of mortality, myocardial infarction (MI), stroke and target vessel revascularization. MI was defined as: an increase in creatine kinase or creatine kinase-MB ≥3 times the upper limit of normal; and/or a significant ST-

BMJ Open

segment change, development of new Q waves in ≥2 contiguous electrocardiographic leads, or new left branch bundle block pattern in the context of new clinical symptoms.

Statistical Analysis

Continuous variables are expressed as mean \pm standard deviation (SD), and categorical data are expressed as numbers/percentages. Continuous variables were compared using Kruskal-Wallis equality-of-populations rank test. Categorical variables were compared using Fisher's exact or Pearson's chisquare tests as appropriate. Variables were tested for linear trends across the years 2005-2013 using Stata's *nptrend* command. This is a nonparametric test for trend across ordered groups that is an extension of the Wilcoxon rank-sum test. Cumulative incidence of mortality was estimated by the Kaplan-Meier method and the log-rank test was used to evaluate differences between groups. Cox-proportional hazards regression was used to estimate the adjusted hazard ratio and 95% confidence interval (CI) for survival. Univariate variables with p<0.10 were included for stepwise removal for the final multivariate model. The variables considered were: smoking status, age, sex, eGFR, hypertension, diabetes, hypercholesterolaemia, family history of coronary disease, previous MI, previous PCI, previous CABG, heart failure, peripheral vascular disease, cerebrovascular disease, left ventricular ejection fraction, multi-vessel CAD, angina type, chronic lung disease, cardiogenic shock, glycoprotein IIb/IIIa use, drug-eluting stent use and treated left main lesion.

All statistical analyses were performed using Stata 13.1, StataCorp LP, College Station, TX, USA. P-values < 0.05 were considered to be statistically significant.

RESULTS

Of the 9,375 survivors following PCI for ACS at 30 days, 2,728 (29.1%) had never smoked, 3,712 (39.6%) were ex-smokers, 1,612 (17.2%) were recent quitters (smokers at the time of ACS but quit by 30-days) and 1,323 (14.1%) were persistent smokers. The smoking cessation rate at 30-days post ACS was 54.9%. Of the patients alive at 12-months, 23% of quitters had relapsed and 71% of persistent smokers continued to smoke (Figure 1).

Trends in smoking status

Figure 2 depicts the trends in smoking status over the 9-year period from 2005 to 2013. The percentage of non-smokers presenting with ACS increased over the time period while the rate of ex-smokers has decreased (p-value for trend =0.02). There has been no significant change in the trend of smokers presenting with ACS.

Clinical characteristics

Baseline clinical characteristics stratified by smoking status at 30-days are shown in Table 1. It is evident smokers at the time of ACS (subsequent quitters and persistent smokers) were younger, had less co-morbidities but a higher rate of a family history of premature CAD. Compared to quitters, persistent smokers were more likely to have had previously documented CAD (high rates of previous MI/PCI/CABG), peripheral vascular disease and stroke.

ACS presentation type, angiographic characteristics and acute outcomes are shown in Table 2. Smokers at time of ACS were more likely to present with STEMI, have single vessel CAD and receive a bare-metal stent. They also had earlier discharge from hospital. The use of secondary prevention pharmacotherapy across all groups is depicted in Table 3.

Clinical Outcomes

Unadjusted survival at mean follow-up of 3.9±2.2 years showed quitters had lower death rates than persistent smokers, non-smokers or ex-smokers (5.3%

BMJ Open

vs. 8.2% vs. 9.6% vs. 12.1%, respectively; p<0.001). The full details of 12-month clinical outcomes and survival are shown in Table 4. On multivariate analysis being an ex-smoker (HR 1.03, 95% CI 0.87-1.22) or a quitter (HR 1.27, 95% CI 0.96–1.67) was not associated with an increased hazard compared to nonsmokers but being a persistent smoker was associated with increased hazard (HR 1.78, 95% CI 1.36 – 2.32) (Table 5 and Figure 3). There was no evidence of any violation of the proportional hazards assumption as based on Schoenfeld residuals with a global test of chi2=8.34 with 14 degrees of freedom, p=0.784.

, ,9, γ inter with it is the streat marker is a proportional hazards ass in a global test of chi2=8.34 with 1.

BMJ Open: first published as 10.1136/bmjopen-2017-016874 on 6 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

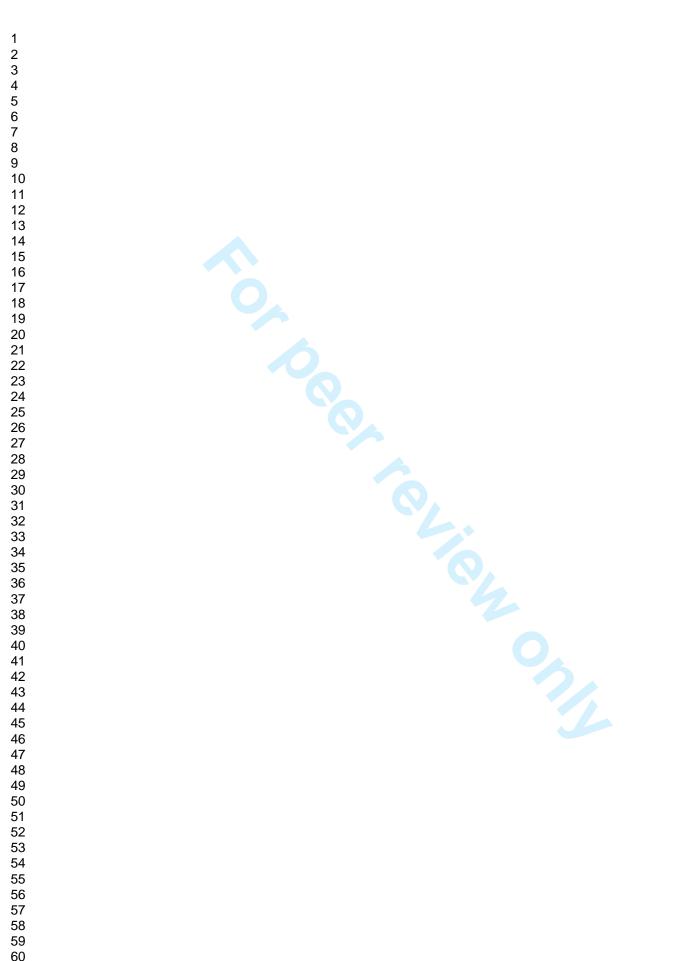
DISCUSSION

 In a contemporary cohort of patients presenting with ACS and treated with PCI and optimal secondary prevention pharmacotherapy, only 54% of patients stopped smoking by 30-days. Persistent smokers at 30 days post PCI experienced an almost two-fold increase in long-term mortality. Patients who quit smoking had a survival rate at 4 years that was similar to that of a life-long non-smoker.

Cigarette smoking is a well-established cardiovascular risk factor and continues to be a major preventable cause of death. Ezzati *et al* estimated 11% (1.62 million) of all global cardiovascular deaths in 2000 were attributable to smoking.¹ Although the prevalence of smoking in the general population has decreased over the past 50 years in the United States, in our study the proportion of current smokers at time of ACS did not change significantly over 9 years.¹⁷ This emphasizes the malignant pathophysiological effects of smoking, namely endothelial dysfunction, thrombogenicity and coronary vasoconstriction, which predispose patients to ACS events.¹⁸ Indeed, the significant role of smoking in the pathogenesis of ACS is further highlighted by the fact smokers were younger and lower rates of diabetes, hypertension and hypercholesterolaemia.

Smoking cessation is difficult, even after life-threatening events such as acute coronary syndromes. Systematic reviews have reported smoking cessation rates averaging around 50% in patients with coronary heart disease; this is consistent with the rates observed in our study.²⁻⁴ In addition we found 23% of those who quit smoking at 30-days had relapsed at 12-months highlighting the difficulty of long-term abstinence. The severity of presentation may be a strong trigger to quit as a smoking cessation rate of 74% was reported in one study with STEMI patients alone.¹⁰ We also observed this in our study as patients presenting with STEMI were more likely to quit compared to those presenting with NSTEMI or unstable angina. Implementation of smoking cessation strategies is crucial and the index hospitalization provides a perfect opportunity for this. Indeed a

Cochrane review showed that smoking cessation rates were higher if counseling and pharmacotherapy were initiated during hospital admission.¹⁹


The "smoker's paradox" in patients with acute coronary syndromes suggests there could be potential survival benefit seen in smokers.²⁰ In our study, smokers had lower unadjusted mortality rates at 12-months and long-term. However, when accounting for baseline differences in age and co-morbidities, smoking status was no longer associated with improved survival, thus suggesting debunking of the "smoker's paradox". This is supported by a systematic review showing only studies in the pre-thrombolytic and thrombolytic era supporting the paradox, while none of the contemporary studies do.²⁰

The cardiovascular risk associated with smoking appears to dissipate within 3 years of cessation.^{21 22} Systematic reviews have shown smoking cessation to be associated with a 35% relative risk reduction in patients with coronary heart disease and up to 46% in those with a myocardial infarction.²⁻⁴ A limitation of these reviews is the inclusion of a significant proportion of patients from an era preceding percutaneous coronary intervention and optimal secondary prevention pharmacotherapy. More recent studies assessing the impact of smoking status following ACS have had suboptimal rates of revascularization or medical management.⁶⁻¹⁰ Other studies did not assess the hazard of persistent smoking.^{7 11 12} In our study, persistent smoking after ACS was associated with an increased relative mortality risk of 78% at 4 years. The mortality hazard in our study was lower than the one described in a study of STEMI patients by Kinjo et al (HR 1.78 vs. 2.27). Although their revascularization rate was high (>85%), only 30% of patients received statin therapy. Thus, it could be hypothesized that our higher rate of statin therapy may be responsible for our lower long-term mortality risk. What is unquestionable, as observed in our study, is that a substantial residual mortality risk remains in patients who persist with smoking despite optimal contemporary management with PCI and optimal secondary prevention pharmacotherapy. This increased risk is of similar magnitude to those seen from earlier cardiology eras.²⁻⁴

BMJ Open: first published as 10.1136/bmjopen-2017-016874 on 6 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Encouragingly, smoking cessation is beneficial and by 4 years our cohort of quitters had a mortality hazard approaching that of life-long non-smokers. This is theoretically plausible as the deleterious hazards of smoking appear to be reversed within this time frame and cardiac risk has been shown to return to baseline.¹⁸ ²¹ ²² Although complete smoking abstinence is difficult, as previously discussed, Gerber *et al* showed that even a five cigarette a day reduction is associated with an 18% decline in mortality.⁸ Again this highlights the importance of smoking cessation or even smoking reduction in secondary prevention.

Our study has a number of limitations. First, inherent to all studies assessing the impact of persistent smoking and cessation, the associations described in our study could be attributed, at least partly, to unaccounted or unmeasured variables. In particular, we did not account for the participation in cardiac rehabilitation programs or for smoking cessation strategies utilized. Second, we have measured smoking status at one time point and even at 12-months there were a significant number of patients who changed their smoking habits and thus were initially misclassified. We chose smoking cessation at 30-days to assess the impact of the admission with ACS and early medical intervention. Third, we ascertained smoking status by self-report. Although it has been shown to correlate with biochemical assessment in a meta-analysis, there is always a potential for misclassification.²³ Fourth, we have only included ACS patients treated with PCI which limits the generalizability of our results to this patient population. Fifth, we included repeated admissions as separate cases which raises the possibility of multiple counting. Lastly, we do not collect a detailed smoking history and thus we could not quantify the mortality hazard based on the quantity of cigarettes smoked over a lifetime, nor could we quantify the benefit of cessation based on the time since the last cigarette was smoked. Future research should focus on collecting and analyzing this data to more accurately quantify the effect of smoking post ACS.

CONCLUSION

Patients who continued to smoke after an ACS had a nearly two-fold mortality hazard while those who quit had comparable survival to a non-smoker. This underscores the importance of smoking cessation in secondary prevention, despite the improvement in management of ACS with percutaneous coronary intervention and optimal medical therapy.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml 14

Figure 1. Smokers at Baseline, 30-days and 12-months

* Includes only those patients alive at 12 months.

Recent quitters were smokers at baseline but had quit by 30 days. Persistent smokers were smokers at baseline and were still smoking 30 days and 12 months post ACS. Relapsed smokers were smoking at 12 months although they temporarily quit at 30 days.

BMJ Open: first published as 10.1136/bmjopen-2017-016874 on 6 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

Figure 2. Trends in Smoking Status in ACS Survivors at 30-days

1 2 3 Fig 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	gure 3. Cox Proportional Hazard Regression Survival Curve
	i or peer review only - nitp.//binjopen.binj.com/site/about/guide

1 2	
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 9\\ 22\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	
4 5	
6 7	
8	
9 10	
11 12	
13 14	
15	
16 17	
18 19	
20 21	
21 22	
23 24	
25	
26 27	
28 29	
30 31	
32	
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	
35 36	
37	
39	
40 41	
42 43	
44 45	
46	
47 48	
49 50	
50 51 52 53 54 55 56 57 58	
53	
54 55	
56 57	
58 59	
59 60	

	Non-	Ex-	Recent	Persistent	Р
	Smoker	Smoker	Quitter	Smoker	
	(N=2,728)	(N=3,712)	(N=1,612)	(N=1,323)	
Age (mean±SD years)	67.0±12.3	67.0±11.5	56.1±10.2	56.7±10.6	< 0.001
Age >75 years	857 (31.4)	1,093 (29.5)	74 (4.6)	82 (6.2)	< 0.001
Male	1,753 (64.3)	3,038 (81.8)	1,310 (81.3)	1,028 (77.7)	< 0.001
BMI (mean±SD kg/m ²)	28.0±5.3	28.4±5.1	28.4±5.3	28.2±5.6	0.004
Hypertension	1,738 (63.7)	2,628 (70.8)	752 (46.7)	701 (53.0)	< 0.001
Hypercholesterolaemia	1,665 (61.1)	2,627 (70.8)	895 (55.6)	806 (61.1)	< 0.001
Diabetes Mellitus	630 (23.1)	1,014 (27.3)	216 (13.4)	244 (18.4)	< 0.001
Family History of CAD	964 (35.5)	1,412 (38.3)	704 (44.1)	554 (42.2)	< 0.001
Previous MI	444 (16.3)	1,043 (28.1)	183 (11.4)	249 (18.8)	< 0.001
Previous PCI	445 (16.3)	884 (23.8)	168 (10.4)	222 (16.8)	< 0.001
Previous CABG	159 (5.8)	378 (10.2)	29 (1.8)	43 (3.3)	< 0.001
Congestive Heart	83 (3.0)	167 (4.5)	12 (0.8)	30 (2.3)	< 0.001
Failure					
PVD	92 (3.4)	313 (8.4)	55 (3.4)	83 (6.3)	< 0.001
Stroke	157 (5.8)	293 (7.9)	46 (2.9)	61 (4.6)	< 0.001
Chronic Lung Disease	166 (6.1)	516 (13.9)	118 (7.3)	170 (12.9)	< 0.001
$eGFR \ge 60 ml/min/1.73 m^2$	1,970 (74.3)	2,726 (74.9)	1,384 (89.4)	1,135 (88.9)	< 0.001
Ejection Fraction	1,791 (72.2)	2,311 (70.5)	1,077 (71.9)	846 (70.6)	0.61
>45%					

Table 1. Baseline clinical characteristics N(%) stratified by smoking status at 30-days

SD = standard deviation. BMI = body mass index. CAD = coronary artery disease. MI = myocardial infarction. PCI = percutaneous coronary intervention. CABG = coronary artery bypass graft surgery. PVD = peripheral vascular disease. eGFR = estimated glomerular filtration rate.

Table 2. ACS presentation, angiographic characteristics and acute
outcomes N(%) by smoking status at 30-days

	Non-	Ex-	Recent	Persistent	Р
	Smoker	Smoker	Quitter	Smoker	
	(N=2,728)	(N=3,712)	(N=1,612)	(N=1,323)	
STEMI	1243 (45.6)	1430 (38.5)	971 (60.2)	615 (46.5)	
NSTEMI	1100 (40.3)	1591 (42.9)	547 (33.9)	559 (42.3)	
Unstable Angina	385(14.1)	691 (18.6)	94 (5.8)	149 (11.3)	<0.001
Multivessel CAD	1507 (55.3)	2291 (61.8)	806 (50.2)	655 (49.7)	<0.001
Left main disease	21 (0.8)	55 (1.5)	3 (0.2)	4 (0.3)	<0.001
Balloon angioplasty only	162 (5.9)	236 (6.4)	66 (4.1)	50 (3.8)	< 0.001
Bare Metal Stent	1356 (49.7)	1949 (52.5)	918 (57.0)	781 (59.0)	
Drug Eluting Stent	1210 (44.4)	1527 (41.1)	628 (39.0)	492 (37.2)	< 0.001
Number of stents inserted (mean±SD)	1.2±0.6	1.2±0.6	1.2±0.6	1.2±0.6	0.44
Successful PCI	2728 (100)	3711 (100)	1612 (100)	1322 (99.9)	0.42
New Renal impairment	34 (1.3)	35 (0.9)	10 (0.6)	4 (0.3)	0.01
New Heart Failure	130 (4.8)	151 (4.1)	53 (3.3)	26 (2.0)	< 0.001
Length of stay (mean±SD days)	5.2±5.2	5.2±5.5	4.5±4.1	4.1±3.4	<0.001

STEMI = ST-segment elevation myocardial infarction. NSTEMI = non- STsegment elevation myocardial infarction. CAD = coronary artery disease. SD = standard deviation. PCI = percutaneous coronary intervention.

2
2
3
4
5
6
0
1
8
9
10
14
11
12
13
14
15
10
16
17
18
19
20
20
21
22
$\begin{array}{c} 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 9\\ 20\\ 12\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 30\\ 13\\ 23\\ 34\\ 56\\ 37\\ 38\\ 39\\ 39\\ 39\\ 39\\ 39\\ 39\\ 39\\ 39\\ 39\\ 39$
24
27
25
26
27
28
20
29
30
31
32
33
24
34
35
36
37
20
30
39
40
41
42
43
44
45
46
47
40
48
49 50 51 52 53
50
51
52
52
53
54
55
56
50
54 55 56 57 58 59 60
58
59
60
~~

Table 3. Cardiovascular pharmacotherapy N(%) at 30-days by smoking
status at 30-days

	Non-	Ex-	Recent	Persistent	Р
	Smoker	Smoker	Quitter	Smoker	
	(N=2,728)	(N=3,712)	(N=1,612)	(N=1,323)	
Aspirin	2665 (97.7)	3620 (97.5)	1593 (98.8)	1299 (98.2)	0.02
P2Y12 inhibitor	2409 (88.3)	3301 (88.9)	1423 (88.3)	1204 (91.0)	0.06
Statin	2610 (95.7)	3523 (94.9)	1583 (98.2)	1279 (96.7)	< 0.001
Beta-blocker	2328 (85.3)	3019 (81.3)	1380 (85.6)	1120 (84.7)	<0.001
ACE-I/ARB	2313 (84.8)	3105 (83.7)	1381 (85.7)	1070 (80.9)	0.002
Warfarin	259 (9.5)	295 (8.0)	111 (6.9)	84 (6.4)	0.001
Spironolactone	66 (2.4)	96 (2.6)	11 (0.7)	29 (2.2)	<0.001
Eplerenone	60 (2.2)	67 (1.8)	38 (2.4)	30 (2.3)	0.49
Ezetimibe	82 (3.0)	219 (5.9)	34 (2.1)	32 (2.4)	<0.001
Fibrate	27 (1.0)	62 (1.7)	16 (1.0)	20 (1.5)	0.06
ACE-I = Angiotensin	converting en	nzyme inhibit	or. ARB = ang	iotensin rece	otor
blocker.		-			

20

Table 4. Clinical outcomes N(%) by smoking status at 30-days

	Non- Smoker (N=2,728)	Ex- Smoker (N=3,712)	Recent Quitter (N=1,612)	Persistent Smoker (N=1,323)	Р
Long-term Mortality	262 (9.6)	450 (12.1)	86 (5.3)	108 (8.2)	<0.001
12-month Mortality	50 (1.9)	100 (2.8)	13 (0.9)	18 (1.4)	<0.001
12-month MI	122 (4.7)	222 (6.2)	51 (3.3)	56 (4.5)	<0.001
12-month Stroke	28 (1.1)	37 (1.0)	9 (0.6)	9 (0.7)	0.3
12-month TVR	182 (7.0)	272 (7.6)	118 (7.7)	65 (5.2)	0.03
12-month MACCE	309 (11.9)	488 (13.7)	157 (10.2)	117 (9.3)	<0.001

MI = myocardial infarction. TVR = target-vessel revascularization. MACCE = major adverse cardiovascular events.

3MJ Open: first published as 10.1136/bmjopen-2017-016874 on 6 October 2017. Downloaded from http://bmjopen.
0
per
ר: fi
rst
put
olis
hec
as
10
36
/brr
j
en.
-20
17-
<u>0</u>
387
40
ň
Ő
ctol
öer
20
17.
0
Ňn
loa
dec
fro
В
h#
0://
<u> </u>
8
en.l
<u>ă</u>
8
Э
on
Ap
<u></u>
7,
202
4 0
Š
ue
st. F
ro
teci
ted
by
ŝ
yri
ght

	Hazard Ratio	95% Confidence Interval	p-value
Unadjusted			
Non-smoker	Reference	-	-
Ex-smoker	1.21	1.03 - 1.40	0.02
Recent Quitter	0.51	0.40 - 0.65	< 0.001
Persistent Smoker	0.82	0.65 – 1.03	0.08
Multivariate			
analysis			
Non-smoker	Reference	-	-
Ex-smoker	1.03	0.87 – 1.22	0.72
Quitter	1.27	0.96 - 1.68	0.10
Persistent Smoker	1.78	1.36 - 2.32	< 0.001
Age (per year)	1.07	1.06 - 1.08	< 0.001
Multivessel CAD	1.43	1.21 – 1.69	< 0.001
Drug-eluting stent	0.78	0.67-0.92	0.002
$eGFR \ge 60 ml/min/1.73 m^2$	Reference	-	-
eGFR 30-59ml/min/1.73m ²	1.47	1.24 – 1.73	< 0.001
eGFR <30 ml/min/1.73m ²	3.83	2.96 - 4.94	< 0.001
EF > 45%	Reference	-	
EF 30-45%	1.55	1.33 – 1.80	< 0.001
EF <30%	1.60	1.12 – 2.29	0.010
Diabetes Mellitus	1.51	1.29 – 1.77	< 0.001
Peri-procedural MI	1.33	1.13 – 1.56	< 0.001
Peripheral vascular	1.65	1.35 - 2.02	< 0.001
disease			
Chronic lung disease	1.73	1.44 - 2.08	< 0.001

Table 5. Estimates of hazard ratio and 95% confidence interval ofpredictors of long-term mortality using Cox-proportional hazards analysis

CAD = coronary artery disease. eGFR = estimated glomerular filtration rate. EF = ejection fraction. MI = myocardial infarction.

1 2 3 4 5	
6 7 8 9 10	MIG Data Professor Chand, Di
11 12 13 14 15 16	MIG Stee Professor Clark, Pro Andriano
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	The follo the MIG I Alfred He Keighley, Vanderne Austin H Chan, G P M Yudi, H Ballarat Harrison; Box Hill I C Goods, I Flannery; Geelong Hutchinse McDonalo Dinh, BP Royal Me
42 43 44 45 46	The Melb have beer
47 48 49 50	Dr. Yudi i Council P Foundatio
51 52 53	Professor Medical F
54 55 56 57 58 59	Funding unrestric Medtroni
60	Form

Melbourne Interventional Group Investigators

MIG Data Management Centre, CCRE, Monash University:

Professor Chris Reid, Dr Nick Andrianopoulos, Ms Angela Brennan, Ms Vibhasha Chand, Dr Diem Dinh.

MIG Steering Committee:

Professor Chris Reid, A/Professor Andrew Ajani, Dr Stephen Duffy, Dr David Clark, Professor Gishel New, Dr Melanie Freeman, Dr Chin Hiew, Dr Nick Andrianopoulos, Dr Ernesto Oqueli, Ms Angela Brennan.

The following Investigators, Data Managers and Institutions participated in the MIG Database:

Alfred Hospital: SJ Duffy, JA Shaw, A Walton, A Dart, A Broughton, J Federman, C Keighley, C Hengel, KH Peter, D Stub, W Chan, J O'Brien, L Selkrig, K Rankin, R Vandernet, R Huntington, S Pally;

Austin Hospital: DJ Clark, O Farouque, M Horrigan, J Johns, L Oliver, J Brennan, R Chan, G Proimos, T Dortimer, B Chan, V Nadurata, R Huq, D Fernando, A Al-Fiadh, M Yudi, H Sugumar, J Ramchand, H Han. S Picardo, L Brown;

Ballarat Base Hospital: E Oqueli, C Hengel, A Sharma, B Zhu, N Ryan, T Harrison;

Box Hill Hospital: G New, L Roberts, M Freeman, M Rowe, G Proimos, Y Cheong, C Goods, D Fernando, A Teh, S Parfrey, J Ramzy, A Koshy, P Venkataraman, D Flannery;

Geelong Hospital: C Hiew, M Sebastian, T Yip, Michael Mok, C Jaworski, A Hutchinson, C Cimenkaya, P Ngu, B Khialani, H Salehi, M Turner, J Dyson, B McDonald, D Van Den Nouwelant, K Halliburton;

Monash University: H Krum, C Reid, N Andrianopoulos, AL Brennan, V Chand, D Dinh, BP Yan;

Royal Melbourne Hospital: AE Ajani, R Warren, D Eccleston, J Lefkovits, R Iyer, R Gurvitch, W Wilson, M Brooks, S Biswas, J Yeoh.

Acknowledgements:

The Melbourne Interventional Group acknowledges and thanks all patients who have been involved in the registry.

Dr. Yudi is supported by a combined National Health and Medical Research Council Postgraduate Scholarship (APP 1115163) and a National Heart Foundation Health Professional Scholarship (Award ID 101130).

Professor Duffy's & Professor Reid's work is funded by National Health and Medical Research Council of Australia Grants.

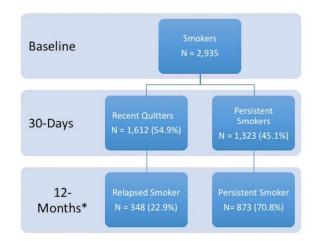
Funding Statement: The Melbourne Interventional Group acknowledges unrestricted educational grant funding from: Abbott Vascular, Astra-Zeneca, Medtronic, MSD, Pfizer, Servier, and The Medicines Company. These companies do not have access to the data, and do not have the right to review manuscripts before publication

Competing Interests: None

Disclosures: None.

Data Sharing Statement: No additional data available.

Contributorship Statement: MY, OF, DC developed the project concept and research hypothesis. MY, DC drafted the manuscript. NA, AB, CR provided statistical support. OF, AA, KK, JL, CH, EO, SD critically revised the manuscript for intellectual content. All authors read and approved the final document.


Transparency Declaration: The lead author, Associate Professor David Clark, affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

REFERENCES:

- 1. Ezzati M, Henley SJ, Thun MJ, et al. Role of smoking in global and regional cardiovascular mortality. Circulation 2005;**112**(4):489-97.
- Critchley JA, Capewell S. Mortality risk reduction associated with smoking cessation in patients with coronary heart disease: a systematic review. Jama 2003;290(1):86-97.
- 3. Wilson K, Gibson N, Willan A, et al. Effect of smoking cessation on mortality after myocardial infarction: meta-analysis of cohort studies. Archives of internal medicine 2000;**160**(7):939-44.
- 4. van Berkel TF, Boersma H, Roos-Hesselink JW, et al. Impact of smoking cessation and smoking interventions in patients with coronary heart disease. European heart journal 1999;**20**(24):1773-82.
- 5. Smith SC, Jr., Benjamin EJ, Bonow RO, et al. AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation endorsed by the World Heart Federation and the Preventive Cardiovascular Nurses Association. Journal of the American College of Cardiology 2011;**58**(23):2432-46.
- 6. Rallidis LS, Sakadakis EA, Tympas K, et al. The impact of smoking on long-term outcome of patients with premature (</=35years) ST-segment elevation acute myocardial infarction. American heart journal 2015;**169**(3):356-62.
- 7. Bucholz EM, Beckman AL, Kiefe CI, et al. Smoking status and life expectancy after acute myocardial infarction in the elderly. Heart 2016;**102**(2):133-9.
- 8. Gerber Y, Rosen LJ, Goldbourt U, et al. Smoking status and long-term survival after first acute myocardial infarction a population-based cohort study. Journal of the American College of Cardiology 2009;**54**(25):2382-7.
- 9. Shah AM, Pfeffer MA, Hartley LH, et al. Risk of all-cause mortality, recurrent myocardial infarction, and heart failure hospitalization associated with smoking status following myocardial infarction with left ventricular dysfunction. The American journal of cardiology 2010;**106**(7):911-6.
- 10. Kinjo K, Sato H, Sakata Y, et al. Impact of smoking status on long-term mortality in patients with acute myocardial infarction. Circ J 2005;**69**(1):7-12.
- 11. Weisz G, Cox DA, Garcia E, et al. Impact of smoking status on outcomes of primary coronary intervention for acute myocardial infarction--the smoker's paradox revisited. American heart journal 2005;**150**(2):358-64.
- 12. Shen L, Peterson ED, Li S, et al. The association between smoking and longterm outcomes after non-ST-segment elevation myocardial infarction in older patients. American heart journal 2013;**166**(6):1056-62.
- 13. Ajani AE, Szto G, Duffy SJ, et al. The foundation and launch of the Melbourne Interventional Group: a collaborative interventional cardiology project. Heart, lung & circulation 2006;**15**(1):44-7.
- 14. Chan W, Clark DJ, Ajani AE, et al. Progress towards a National Cardiac Procedure Database--development of the Australasian Society of Cardiac and Thoracic Surgeons (ASCTS) and Melbourne Interventional Group (MIG) registries. Heart, lung & circulation 2011;20(1):10-8.

- 15. Andrianopoulos N, Dinh D, Duffy SJ, et al. Quality control activities associated with registries in interventional cardiology and surgery. Heart, lung & circulation 2011;**20**(3):180-6.
- 16. Lagerqvist B, James SK, Stenestrand U, et al. Long-term outcomes with drugeluting stents versus bare-metal stents in Sweden. The New England journal of medicine 2007;**356**(10):1009-19.
- 17. Thun MJ, Carter BD, Feskanich D, et al. 50-year trends in smoking-related mortality in the United States. The New England journal of medicine 2013;**368**(4):351-64.
- 18. Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update. Journal of the American College of Cardiology 2004;**43**(10):1731-7.
- 19. Rigotti NA, Clair C, Munafo MR, et al. Interventions for smoking cessation in hospitalised patients. The Cochrane database of systematic reviews 2012;5:CD001837.
- 20. Aune E, Roislien J, Mathisen M, et al. The "smoker's paradox" in patients with acute coronary syndrome: a systematic review. BMC Med 2011;**9**:97.
- 21. Rosenberg L, Palmer JR, Shapiro S. Decline in the risk of myocardial infarction among women who stop smoking. The New England journal of medicine 1990;**322**(4):213-7.
- 22. Rosenberg L, Kaufman DW, Helmrich SP, et al. The risk of myocardial infarction after quitting smoking in men under 55 years of age. The New England journal of medicine 1985;**313**(24):1511-4.
- 23. Patrick DL, Cheadle A, Thompson DC, et al. The validity of self-reported smoking: a review and meta-analysis. Am J Public Health 1994;**84**(7):1086-93.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

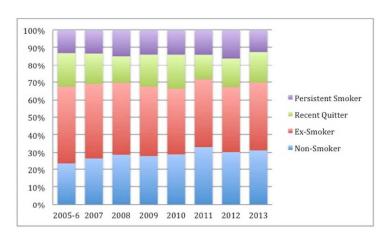
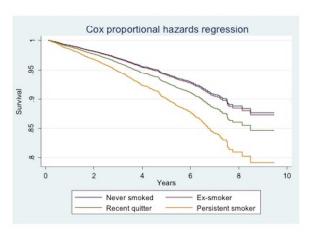


Figure 1. Smokers at Baseline, 30-days and 12-months

254x142mm (300 x 300 DPI)


BMJ Open: first published as 10.1136/bmjopen-2017-016874 on 6 October 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

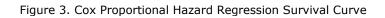


Figure 2. Trends in Smoking Status in ACS Survivors at 30-days

254x142mm (300 x 300 DPI)

254x142mm (300 x 300 DPI)

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract
		– Evident in the title (page 1, line 2)
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found – Evident in Abstract (Page 2)
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported -
Buengroundrationare		Evident in Background (Page 4, line 6-26)
Objectives	3	State specific objectives, including any prespecified hypotheses - Evident in
objectives	3	Background (Page 4, line 30-35)
Mathada	\mathbf{O}	
Methods Study design	4	Present low elements of study design early in the paper. Exident in Matheds (Desc
Study design	4	Present key elements of study design early in the paper – Evident in Methods (Page 5, line 6-10)
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
Setting	5	exposure, follow-up, and data collection - Evident in Methods (Page 5, line 22-27)
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of
Participants	0	selection of participants. Describe methods of follow-up - Evident in Methods
		(Page 5, line 42-56)
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of
		case ascertainment and control selection. Give the rationale for the choice of cases
		and controls $- N/A$
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of
		selection of participants – N/A
		(b) Cohort study—For matched studies, give matching criteria and number of
		exposed and unexposed $- N/A$
		<i>Case-control study</i> —For matched studies, give matching criteria and the number of
		controls per case $- N/A$
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
(unueros		modifiers. Give diagnostic criteria, if applicable - Evident in Methods (Page 6, line
		32-40)
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement	0	assessment (measurement). Describe comparability of assessment methods if there is
		more than one group – Evident in Methods (Page 7, line 11-29)
Bias	9	Describe any efforts to address potential sources of bias – Evident in Methods
		(Page 7, line 24-29) including details of multivariate analysis
Study size	10	Explain how the study size was arrived at – it was based on a study period, not a
5		particular sample size as described in Methods (Page 5, line 6-10)
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why – Described in Methods (Page 7,
		line 11-18)
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding
		- Described in Methods (Page 7, line 12-29)
		(b) Describe any methods used to examine subgroups and interactions - N/A
		(c) Explain how missing data were addressed – N/A (consecutive patients

included	D -

(d) Cohort study—If applicable, explain how loss to follow-up was addressed –

 μ

 Bran:

 -control study—I:

 Jarsed = NA

 Control study = State

 Operation and State

 I operation and State

 linkage to the Australian National Death Index allowed complete follow-up of

Continued on next page

2	
3	
3 4 5 6 7 8	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
9 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 20 31	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
27	
20	
38	
39	
30 31 32 33 34 35 36 37 38 39 40	
41	
42	
43	
44	
45	
40	
46 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Results				
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed – (page 8, line 7-8) All consecutive patients alive at 30-days were included. They were linked to the Australian National Death Index		
		(b) Give reasons for non-participation at each stage – N/A		
		(c) Consider use of a flow diagram		
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information		
data		on exposures and potential confounders – Evident in Tables 1, 2 and 3. (Pages 17-19)		
		(b) Indicate number of participants with missing data for each variable of interest – Evident in Tables 1, 2 and 3. (Pages 17-19)		
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount) – Evident in Results (Page 8, line 56-57)		
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time – Evident in Tables 4 (Pages 20)		
		Case-control study—Report numbers in each exposure category, or summary measures of exposure $- N/A$		
		Cross-sectional study-Report numbers of outcome events or summary measures		
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their		
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and		
		why they were included. Evident in Methods (page 7, line 15-20). Tables 4 and 5 (Pages 20 21)		
		(<i>b</i>) Report category boundaries when continuous variables were categorized – Evident in Tables 1-3		
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period		
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses		
Discussion				
Key results	18	Summarise key results with reference to study objectives – Evident in Discussion (Page 10, line 6-16)		
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias - Evident in Discussion (Page 12, line 22-44)		
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplic of analyses, results from similar studies, and other relevant evidence - Evident in Conclusio (Page 13, line 7-14)		
Generalisability	21	Discuss the generalisability (external validity) of the study results – Evident in Limitations section (Pages 12)		
Other informati	on			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based – There was no funding for the study .		

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

BMJ Open

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.