
BMJ Open

Hematological and electrophoretic characterization of β -thalassemia in Yunnan province of Southwestern China

^	1
Journal:	BMJ Open
Manuscript ID	bmjopen-2016-013367
Article Type:	Research
Date Submitted by the Author:	08-Jul-2016
Complete List of Authors:	Zhang, Jie; the First People's Hospital of Yunnan Province, Kunming 650032, People's Republic of China, Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases; Kunming University of Science Technology, Kunming 650032, People's Republic of China, Genetics Department He, Jing; the First People's Hospital of Yunnan Province, Kunming 650032, People's Republic of China, Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases; Kunming University of Science and Technology, Kunming 650032, People's Republic of China, Genetics Department Mao, Xiaoqin ; the First People's Hospital of Yunnan Province, Kunming 650032, People's Republic of China, Department of Clinical Laboratory Zeng, Xiaohong; the First People's Hospital of Yunnan Province, Kunming, People's Republic of China, Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases; Kunming University of Science and Technology, Kunming, People's Republic of China, Genetics Department Chen, Hong; the First People's Hospital of Yunnan Province, Kunming, People's Republic of China, Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases; Kunming University of Science and Technology, Kunming, People's Republic of China, Genetics Department Chen, Hong; the First People's Hospital of Yunnan Province, Kunming, People's Republic of China, Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases; Kunming University of Science and Technology, Kunming, People's Republic of China, Genetics Department Su, Jie; the First People's Hospital of Yunnan Province, Kunming, People's Republic of China, Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases; Kunming University of Science and Technology, Kunming, People's Republic of China, Genetics Department Zhu, Baosheng; the First People's Hospital of Yunnan Province, Kunming, People's Republi
Primary Subject Heading :	Genetics and genomics
Secondary Subject Heading:	Haematology (incl blood transfusion), Diagnostics
Keywords:	thalassemia, capillary electrophoresis, hematological and biochemical parameter values, mutation, cut-off value

Hematological and electrophoretic characterization of β -thalassemia in Yunnan province of Southwestern China

Jie Zhang,^{1,2} Jing He,^{1,2} Xiaoqin Mao,³ Xiaohong Zeng,^{1,2} Hong Chen,^{1,2} Jie Su,^{1,2} Baosheng Zhu^{1,2}

¹Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases, the First People's Hospital of Yunnan Province, Kunming, People's Republic of China

²Genetics Department, Kunming University of Science and Technology, Kunming, People's Republic of China

³Department of Clinical Laboratory, the First People's Hospital of Yunnan Province,

Kunming, People's Republic of China

Correspondence to Baosheng Zhu, Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, 157 Jinbi road, Kunming 650032, Republic of China; Tel.: +86-871-63638248; Fax: +86 871 63638368; E-mail: bszhu@sohu.com.

Keywords: thalassemia, capillary electrophoresis, hematological and biochemical parameter values, mutation, cut-off value

Word count: 4,328

ABSTRACT

Objectives: β -thalassemia is widely distributed in Southwestern China. Characterization of β -thalassemia can improve screening and prenatal diagnosis for at-risk populations.

Design: In this study, the levels of Hb A_2 and Hb A was analysed by gender for a total of 15,067 subjects screened by capillary electrophoresis. Cut-off value with the highest accuracy was established to identify β -thalassemia in 723 suspected β -thalassemia patients. Hematological and electrophoretic characterization of 8 types of common β -thalassemias were analyzed in 486 β -thalassemia subjects.

Setting: Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases, the First People's Hospital of Yunnan Province, Kunming 650032, Republic of China.

Results: Hb A levels was significantly higher in males than females, but there was no significant difference in Hb A₂ levels. A new cut-off (Hb A₂ \geq 4.0%) with the highest accuracy is proposed for the studied population. Hb was significantly higher in males compared to females (*p* <0.05), whereas no statistically significant differences was found for MCV, MCH, Hb A, and Hb A₂ values. The Hb E group showed comparatively higher values of hematological indices (Hb, MCV, and MCH) than those of other genotype of heterozygous β-thalassemia groups. And -28 (A>G) (HBB:c.-78A>C) had significantly higher Hb A₂ values compared to other

β-thalassemia.

Conclusions: Ethnic groups have diverse β -globin gene mutations and considerable hematologic variations. Our study will lay the foundation for screening programs and clinical management of thalassemia in Southwestern China.

Strengths and limitations of this study

- First study to estimate the characterization of β-thalassemia in Yunnan province, which may be useful for improve screening and prenatal diagnosis in Southwestern China.
- A higher cut-off point of Hb A₂ levels 4.0% (Hb A₂ ≥4.0%) was recommended for the β-thalassemia screening in Yunnan province.
- Participants used for cut-off value calculation and characterization of β-thalassemias were not collected at the same time.

INTRODUCTION

β-thalassemia is an inherited anemia resulting from genome variants in β-globin chains, and Africa, ¹ Asia, ² Mediterranean³ and the Middle-East⁴ have the greatest prevalence for this disease. Quantification of hemoglobin A₂ (Hb A₂) percent by capillary electrophoresis and routine blood tests is currently a common technique for screening thalassemia and hemoglobinopathies.⁵ Low mean cell hemoglobin (MCH) and low mean cell volume (MCV) with a Hb A₂ values exceeding 3.5% is a hallmark of β-thalassemia carriers, and knowing the hemoglobin concentration (Hb) and Hb A₂

range in a population offers a critical screening tool for thalassemia. ⁶⁻⁷ However, there was few report on the reference intervals of β -thalassemia established by Chinese. So it is important to determine values considered appropriate for cut-off points and reference to accommodate the need for screening and control of β -thalassemia.

More than 800 different β -globin gene mutations have been elucidated worldwide. Two subtypes are defined by totally absent (β^0) or partially reduce (β^+) production of normal β -chains, respectively. β -thalassemia severity varies according to the thalassemia mutation, ranging from asymptomatic anemia to severe transfusion-dependent disorder. Populations in different regions have diverse β -globin gene mutations⁸ and the ability to identify and characterize these β -thalassemia mutations can assist genetic counseling and prenatal diagnoses.⁹ In this study, we established a Hb A₂ dataset for testing β -thalassemia patients of Southwestern China, and we correlated these data to hematological and biochemical values.

MATERIALS AND METHODS

Participants

A total of 15,067 subjects (3,678 men and 11,389 women, 18–45 years-of-age) who sought thalassemia screening at The First Peoples' Hospital of Yunnan Province, during September 2011 to July 2014 were enrolled for capillary electrophoresis. Individuals (n=723) with suspected β -thalassemia (Hb A₂ \geq 3.5%) or abnormal hemoglobin variants were randomly selected from October 2010 to April 2014 (210 BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

men and 513 women, 18–45 years-of-age) for cut-off value calculation. Unrelated β -thalassemia heterozygous patients (n=486) from June 2009 to April 2013 (151 males and 335 females, 19–58 years-of-age), were included in the study to analyze hematological and biochemical parameter values (not the same group used for cut-off value mentioned above).

Capillary electrophoresis

After written and informed consent were obtained from the patients, complete blood counts were measured by an automated cell counter (Sysmex, Tokyo, Japan) for 15,067 subjects. Hemoglobin analysis was performed using capillary electrophoresis (Sebia, Paris, France). Internal quality control was performed by analyzing the control materials provided by the manufacturer. Means comparisons were made among Hb A₂ and Hb A by gender (in three groups: 18–45; 20–29; and 30–39 years-of-age).

Cut-off value calculation

Detection of 17 known β -globin gene mutations (97.3% of known β -thalassemic alleles) in Chinese populations was performed by PCR-reverse dot-blot method as previously described¹⁰ for 723 individuals. Samples without detected mutations were sequenced as previously described.¹⁰ Sensitivity, specificity, Youden's index (YI), likelihood ratio positive (LRP), and likelihood ratio negative (NRP) of Hb A₂ measurements within the interval of 3.5%–4.5% were evaluated. A receiver operating characteristic (ROC) analysis was performed to calculate the area under the curve

(AUC). In addition, we calculated the new cut-off value with the greatest accuracy to identify β -thalassemia in our population. All statistics were computed with SPSS version 16 for Windows.

Hematological and electrophoretic characterization of β-thalassemias

Histograms and tables of descriptive statistics of Hb, MCV, MCH, Hb A and Hb A₂ were generated and comparaed by gender (n > 15) for 486 unrelated β -thalassemia heterozygous patients. Also, Hb A, Hb A₂, MCV, MCH and Hb were compared among different genotypes of β -thalassemia (n >10). Continuous variables were compared using independent-sample analysis of variance (ANOVA). For multiple comparisons, a post hoc analysis was used when appropriate. All reported p-values are two-sided and were statistically significant if p < 0.05. TOL

RESULTS

Subjects screened by capillary electrophoresis

The distribution of the whole data of Hb A and Hb A₂ measurements performed in the study was shown in table 1. The mean Hb A among the subjects was 96.83% (95% CI for mean: 96.81%–96.84%) while the mean Hb A_2 was 2.91% (95% CI for mean: 2.90%–2.92%). Of these subjects, 337 cases (2.24%, 337/15,067) had Hb A_2 levels <2.4%, the majority had Hb A₂ levels ranging from 2.4% to 3.5% (95.45%, 14,382/15,067), while 348 cases (2.31%, 348/15,067) had Hb A₂ levels >3.5%. Six subjects without Hb A band and five subjects without Hb A2 band were found in this

study. Hb F band was only present in 4,381 subjects (29.08%, 4,381/15,067) with the mean 1.17% (95% CI for mean: 1.02%–1.33%), which was not suitable for the description of mean \pm SD. There was no significant differences in Hb A₂ levels in all three age groups (figure 1). However, Hb A levels was significantly higher in males than females in three age groups (p < 0.01) (figure 1).

Cut-off value calculation

Among a total of 723 specimens investigated for β -globin gene mutations, twenty two different mutations were found in 566 cases (78.28%, 566/723) with Hb A₂ levels ranging from 1.8 to 7.9%, including a total of 563 β -thalassemia heterozygotes, one Hb E homozygosity, and two compound heterozygote (table 2). While β -globin mutation was not detected in the remaining 237 subjects. Among β -thalassemia heterozygotes, Hb A₂ values ranged from 1.8% to 4.0% in 69 of 566 subjects (69/566, 12.19%), while the majority (497/566, 87.81%) had Hb A₂ values \geq 4.0%. The sensitivity, specificity, YI, LRP and NRP of each selected cut-off point in screening for β -thalassemia were summarized (table 3). As for hematologic parameters, Hb A₂ at the new cut-off value 4.0% (Hb A₂ \geq 4.0%) yielded high values (0.898, 95% CI: 0.874 to 0.919) of AUC and YI (0.75). The new cut-off with the highest accuracy, the point that sum of sensitivity (85.16%) and specificity (89.81%), was a suitable discriminator indice which can be considered in the screening of β -thalassemia for the studied population, while the old cut-off (Hb A₂ \geq 3.5%) only yielded sensitivity and specificity of 96.64% and 6.37%, respectively.

BMJ Open

Hematological and electrophoretic characterization of β-thalassemia mutation As shown in table 4 and table 5, hematological and molecular characteristics of 486 unrelated heterozygous β-thalassemia mutations were demonstrated, including CD 17 (A>T) (HBB:c.52A>T) (n=125), CD 41-42 (-TCTT) (HBB:c.126 129delCTTT) (n=108), (HBB:c.-78A>C) -28 (A > G)(n=11), IVS-II-654 (C>T)(HBB:c.316-197C>T) (n=51), Hb E (CD 26, G>A) (HBB:c.79G>A) (n=178), CD 27/28 (+C) (HBB:c.84 85insC) (n=5), CD 71/72 (+A) (HBB:c.216 217insA) (n=5), IVS-I-1 (G>T) (HBB:c.92+1G>T) (n=3). The mean values of hematological and electrophoretic indices (Hb A, Hb A₂, Hb, MCV, MCH) among participants with different genotypes of thalassemia were analysed. Significant difference between gender was observed in Hb (n > 15), with males having higher Hb compared to females (p < 0.05) (figure 2), whereas no statistical significant differences was found for MCV, MCH, Hb A, and Hb A₂ values between different genders (figure 2 and 3). The Hb E group showed comparatively higher values of hematological indices (Hb, MCV, and MCH) than those of other four genotype of heterozygous β -thalassemia groups (table 5). And -28 (A>G) (HBB:c.-78A>C) had significantly higher Hb A_2 values compared to other β -thalassemia (table 5).

DISCUSSION

 β -thalassemia is one of the most common genetic disorders worldwide and each ethnic group has a mutation set of considerable hematologic variations. Clinical

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

features and hematological presentations of β -thalassemia patients are unique due to race, lifestyle, and altitude. In China, CD 17 (A>T) (HBB:c.52A>T), CD 41-42 (-TCTT) (HBB:c.126_129delCTTT), -28 (A>G) (HBB:c.-78A>C), IVS-II-654 (C>T) (HBB:c.316-197C>T), Hb E (CD 26, G>A) (HBB:c.79G>A) and CD 71/72 (+A) (HBB:c.216_217insA) mutations accounted for more than 90% of all β -thalassemia mutations in the Chinese population.¹¹ Characterization and screening of these mutations offers a data basis for prevention and control of thalassemia. However, until now, few studies exist regarding detection and quantification of electrophoretic and hematological parameters for screening thalassemia in Southwestern China. Thus, our report is the first characterization of β -thalassemia mutations as a hematological reference for people in this region.

Women are prone to refer for prenatal diagnosis and genetic counseling in China, so the majority of individuals screened in this study were female. Six subjects without the Hb A band and five subjects without the Hb A₂ band were identified. Among these subjects, four were Hb E homozygous, one was β -thalassemia/Hb E compound heterozygous, and one had hemoglobin variant mutation. Hb A levels was significantly higher in male than female subjects in three age groups (figure 1). However, no significant difference was observed in Hb A₂ in all age groups. In our study, most of the subjects (95.45%, 14,382/15,067) had Hb A₂ within a narrow range (2.4%–3.5%), which agrees with previous observations in Nigeria.¹²

Identification of β -thalassemia carriers is characterized by increased Hb A₂ values. Of the 723 subjects analyzed, the β -globin gene defect was identified in 78.28%

of cases (566/723; range 1.8%–7.9%). One case without the β -globin mutation had the highest Hb A₂ value (7.9%), which may be due to a hemoglobin variant co-eluting with Hb A₂ peak.¹³ Few major β -thalassemia (only one case) was found in this study, which was mainly resulted from the fact that children was excluded from this study, and the majority of severe β -thalassemia died before the age of 5.¹⁴

Hb A₂ greater than 3.5% (Hb A₂ \geq 3.5%) is the diagnostic criterion for the β-thalassemia trait,¹⁵ and values greater than 4.0% (Hb A₂ \geq 4.0%) are also used to identify β-thalassemia carriers in some regions.¹⁶ In this study, the higher cut-off point of Hb A₂ levels 4.0% (Hb A₂ \geq 4.0%) determined by ROC curves displayed more accurate to identify β-thalassemia carriers. This result was somewhat different from previously report, which may be explained by the reason: different population has its own region-wise spectrum and cut-off point of β-thalassemia mutations.¹⁷⁻¹⁸ In our study, most β-thalassemia mutations (497/566, 87.81%) had a Hb A₂ exceeding 4.0% (Hb A₂ \geq 4.0%). And silent β-thalassemia mutations with borderline Hb A₂ values (3.5%–4.0%) were rare in our population.¹⁹ So, the diagnostic thresholds may be increased. Electrophoretic screening criteria for β-thalassemia should be higher than 4.0% (Hb A₂ \geq 4.0%) or individuals with abnormal bands for the population in this study.

Subjects with a β -globin mutation usually had less Hb and erythrocyte indices compared to those without an identifiable mutation.²⁰ The clinical and hematological parameters in patients of β -thalassemia varied widely.²¹ This study was conducted in Kunming, the capital of Yunnan province (elevation: 1,895 meters), and high altitudes

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

elevate Hb. Males had high Hb values in all five genotype groups compared to females, whereas, no statistical sex-based significant differences were observed for MCV, MCH, Hb A, and Hb A₂ values. These results were similar to previously reported data.²² Hb E (CD 26, G>A) (HBB:c.79G>A) is clinically asymptomatic with minimal erythrocyte morphological abnormalities in a heterozygote form and this type had the highest MCV, MCH, and Hb values in this study. In Yunnan, Hb E (CD 26, G>A) (HBB:c.79G>A), an abnormal hemoglobin, is the most prevalent β -globin gene mutation (with a frequency of 30.5%)²³ with comparatively lower Hb A₂ values. The mean Hb A₂ of Hb E (%) was 3.87 ± 0.44 in this study (table 5), which was similar to the results of Americans.²⁴ Subjects with the -28 (A>G) (HBB:c.-78A>C) mutation $(\beta^+$ -thalassemia), a mutation in the TATA box of the proximal promoter region had higher MCH, MCV, and Hb A_2 values compared to other β -thalassemia types (CD 17) (A>T) (HBB:c.52A>T), CD 41-42 (-TCTT) (HBB:c.126 129delCTTT), IVS-II-654 (C>T) (HBB:c.316-197C>T)). The -28 (A>G) (HBB:c.-78A>C) phenotype is similar to other β -globin gene promoter mutations.²⁵

In conclusion, we offer a retrospective analysis of β -thalassemia that can be used for prenatal diagnosis, genetic counseling, thalassemia control and screening. Characterization of β -thalassemia and diagnostic thresholds for β -thalassemia can be used to identify patients more precisely.

Author affiliations

¹Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and

Genetic Diseases, the First People's Hospital of Yunnan Province, Kunming 650032, People's Republic of China

²Genetics Department, Kunming University of Science and Technology, Kunming 650032, People's Republic of China

³Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, Kunming 650032, People's Republic of China

Contributors JZ and BSZ designed the experiments. JZ, XQM, JH and XHZ performed the experiments. JZ, HC, JS and BSZ analyzed the data. JZ Wrote the paper. All authors critically revised and approved the final manuscript.

Funding This work was sponsored by National Natural Science Foundation (81260415), Natural Science Foundation of Yunnan Province (2011FB164), Great scientific research project of Yunnan provincal education department (2015Z029) and Natural Science Foundation of Yunnan Province (2011FB224). The authors declare no competing financial interests.

Competing interests None declared.

Ethics approval The protocol and information consent for this study were approved by the medical ethics committee of The First Peoples' Hospital of Yunnan Province in accordance with the Declaration of Helsinki. BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work noncommercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES

- 1. Atkinson SH, Uyoga SM, Nyatichi E, *et al.* Epistasis between the haptoglobin common variant and α^+ thalassemia influences risk of severe malaria in Kenyan children. *Blood* 2014;123:2008-16.
- Tang W, Zhang C, Lu F, *et al.* Spectrum of α-thalassemia and β-thalassemia mutations in the Guilin Region of southern China. *Clin Biochem* 2015;48:1068-72.
- Dell'Edera D, Epifania AA, Malvasi A, *et al.* Incidence of β-thalassemia carrier on 1495 couples in preconceptional period. *J Matern Fetal Neonatal Med* 2013;26:445-8.

BMJ Open

4.	Hadipour Dehshal M, Tabrizi Namini M, Ahmadvand A, et al. Evaluation of
	the national prevention program in iran, 2007-2009:
	the accomplishments and challenges with reflections on the path ahead.
	Hemoglobin 2014;38:179-87.
5.	Srivorakun H, Fucharoen G, Changtrakul Y, et al.
	Thalassemia and hemoglobinopathies in Southeast Asian newborns: diagnostic
	assessment using capillary electrophoresis system. Clin
	<i>Biochem</i> 2011;44:406-11.
6.	Nalbantoğlu B, Güzel S, Büyükyalçın V, et al. Indices used
	in differentiation of thalassemia trait from
	iron deficiency anemia in pediatric population: are they reliable? <i>Pediatr</i>
	Hematol Oncol 2012;29:472-8.
7.	Wang S, Zhang R, Xiang G, et al. Mutation screening for thalassaemia in the
	Jino ethnic minority population of Yunnan Province, Southwest China. BMJ
	<i>Open</i> 2015;5:e010047.
8.	Moatter T, Kausar T, Aban M, <i>et al</i> . Prenatal screening for β -thalassemia major
	reveals new and rare mutations in the Pakistani population. Int J
	Hematol 2012;95:394-8.
9.	Chen JJ, Tan JA, Chua KH, et al. Non-invasive prenatal diagnosis using fetal
	DNA in maternal plasma: a preliminary study for identification of
	paternally-inherited alleles using single nucleotide polymorphisms. BMJ
	<i>Open</i> 2015;5:e007648.
	14

ΒM
J Ope
en:
first
publ
ishe
d as
10.1
136
/bmj
oper
1-201
6-0
1336
7 on
t published as 10.1136/bmjopen-2016-013367 on 31 Ja
BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded fr
ary 2
017.
2017. Down
nload
ded
from
ded from http://bmjope
://bmjop
njop∈
en.br
nj.cc
m o
n Ap
pril 23, 2024 by g
3, 20
24 b
y gu
est. I
^o rote
)cted
by c
öpyr
ight.

10.	Zhang J, He J, Zeng XH, <i>et al.</i> Genetic heterogeneity of β -globin gene in
	various geographic populations of Yunnan, southwestern China. PLoS ONE
	2015;10:e0122956.

- Tang W, Zhang C, Lu F, *et al.* Spectrum of α-thalassemia and
 β-thalassemia mutations in the Guilin Region of southern China. *Clin Biochem* 2015;48:1068-72.
- Kotila TR, Adeyemo AA, Mewoyeka OO, *et al.* Beta thalassaemia trait in western Nigeria. *Afr Health Sci* 2009;9:46-8.
- 13. Theodoridou S, Vyzantiadis T, Theodoridis T. Compound heterozygosity
 for hemoglobin E-Saskatoon and β-thalassemia. *J Obstet Gynaecol Res* 2010;36:
 1148.
- 14. Pan HF, Long GF, Li Q, *et al.* Current status of thalassemia in minority populations in Guangxi, China. *Clin Genet* 2007;71:419-26.
- 15. Zheng CG, Liu M, Du J, *et al.* Molecular spectrum of α- and
 β-globin gene mutations detected in the population of Guangxi Zhuang
 Autonomous Region, People's Republic of China. *Hemoglobin* 2011;35:28-39.
- Mosca A, Paleari R, Ivaldi G, *et al.* The role of haemoglobin A(2) testing in the diagnosis of thalassaemias and related haemoglobinopathies. *J Clin Pathol* 2009;62:13–7.
- Mosca A, Paleari R, Galanello R, *et al.* New analytical tools and epidemiological data for the identification of Hb A₂ borderline subjects in the screening for beta-thalassemia. *Bioelectrochemistry* 2008;73:137-40.

BMJ Open

18.	Giambona A, Passarello C, Vinciguerra M, et al. Significance of borderline
	hemoglobin A ₂ values in an Italian population with a high prevalence of
	β-thalassemia. <i>Haematologica</i> 2008;93:380-4.
19.	Rangan A, Sharma P, Dadu T, et al. β-Thalassemia mutations in subjects with
	borderline HbA2 values: a pilot study in North India. Clin Chem Lab Med
	2011;49:2069-72.
20.	Bordbar E, Taghipour M, Zucconi BE.
	Reliability of different RBC indices and formulas in discriminating between
	β -thalassemia minor and other microcytic hypochromic cases. <i>Mediterr J</i>
	Hematol Infect Dis 2015;7:e2015022.
21.	Chen W, Zhang X, Shang X, et al. The molecular basis of beta-thalassemia
	intermedia in southern China: genotypic heterogeneity and phenotypic diversity.
	BMC Med Genet 2010;11:31.
22.	Wu X, Zhao M, Pan B, <i>et al</i> .
	Complete blood count reference intervals for healthy Han Chinese adults. PLoS
	One 2015;10: e0119669.
23.	Zhang J, Zhu BS, He J, <i>et al</i> . The spectrum of α - and β -thalassemia mutations
	in Yunnan Province of Southwestern China. Hemoglobin 2012;36:464-73.
24.	Mais DD, Gulbranson RD, Keren DF. The range of hemoglobin A_2 in
	hemoglobin E heterozygotes as determined by capillary electrophoresis. $Am J$
	<i>Clin Pathol</i> 2009;132:34-8.
25.	Al Zadjali S, Wali Y, Al Lawatiya F, <i>et al</i> . The β -globin promoter -71 C>T
	16
	For near review only - http://bmionen.hmi.com/site/about/guidelines.yhtml

.exmit allele. .

Page 19 of 26

BMJ Open

Parameters	Sex	Age	n	Mean (%)	SD (%)	95% CI for mean
Hb A	Male	18–45	3675	96.95	0.74	96.93%-96.97%
		20–29	1433	96.98	0.59	96.95%-97.01%
		30–39	2045	96.92	0.85	96.88%-96.96%
	Female	18–45	11386	96.79	1.01	96.77%-96.81%
		20–29	6408	96.79	1.02	96.77%-96.82%
		30–39	4574	96.78	1.01	96.75%-96.81%
	total	18–45	15061	96.83	0.96	96.81%-96.84%
Hb A ₂	Male	18–45	3676	2.91	0.42	2.90%-2.92%
		20–29	1433	2.90	0.34	2.88%-2.92%
		30–39	2046	2.92	0.44	2.90%-2.94%
	Female	18–45	11386	2.91	0.43	2.90%-2.92%
		20–29	6408	2.90	0.42	2.89%-2.91%
		30–39	4574	2.92	0.45	2.90%-2.93%
	total	18–45	15062	2.91	0.43	2.90%-2.92%

Table 1 Distribution of Hb A and Hb A₂ in a total of 15,067 subjects

SD: Standard Deviation; CI: confidence interval. Hb F was only detected in 29.08% (4,381/15,067) of the subjects, which was not suitable for the description of mean \pm SD.

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

Table 2 Number	of B-globin r	nutations	found i	n this study
Table 2 Number	or p-groom r	inutations	Iouna I	n uns siudy

Mutation	Туре	n	Number	Allele
			of Alleles	Frequency (%)
CD 17 (A>T) (HBB:c.52A>T)	β^0/β^A	166	166	29.04%
CD 41-42 (-TCTT) (HBB:c.126_129delCTTT)	β^0/β^A	145	146	26.26%
CD 26 (G>A) (HBB:c.79G>A)	$\beta^{+}\!/\beta^{A}$	107	110	19.13%
IVS-II-654 (C>T) (HBB:c.316-197C>T)	$\beta^{+}\!/\beta^{A}$	90	92	16.00%
-28 (A>G) (HBB:c78A>C)	$\beta^{+}\!/\beta^{A}$	20	20	3.48%
CD 71/72 (+A) (HBB:c.216_217insA)	β^0/β^A	12	12	2.09%
CD 27/28, +C (HBB:c.84_85insC)	β^0/β^A	7	7	1.22%
IVS-I-1 (G>T) (HBB:c.92+1G>T)	β^+/β^A	5	5	0.87%
IVS-I-5 (G>C) (HBB:c.92+5G>C)	β^+/β^A	1	1	0.17%
CD 5 (-CT) (HBB:c.17_18delCT)	β^0/β^A	1	1	0.17%
Hb Dieppe, CD 127 (A>G) (HBB:c.383A>G)	β^0/β^A	1	1	0.17%
Initiation CD (T>C) (HBB:c.2T>C)	β^0/β^A	1	1	0.17%
CD121 (G>T) (HBB:c.364G>T).	β^0/β^A	1	1	0.17%
-31 (A>C) (HBB:c81A>G)	$\beta^{+}\!/\beta^{A}$	1	1	0.17%

-29 (A>G) (HBB:c79A>G)	$\beta^{+}\!/\beta^{\rm A}$	1	1	0.17%
CD 43 (G>T) (HBB:c.130G>T)	$\beta^0\!/\beta^{\rm A}$	1	1	0.17%
CD 113 (T>A) (HBB:c.341T>A)	HbVar	1	1	0.17%
CD 22 (A>C) (HBB:c.68A>C)	HbVar	1	1	0.17%
CD 47 (G>A) (HBB:c.142G>A)	HbVar	1	1	0.17%
CD 41-42/IVS-II-654	β^0/β^0	1	-	-
IVS-II-654/CD 26	β^0/β^+	1	-	-
CD 26/CD 26	$\beta^{+}\!/\beta^{+}$	1	-	-
Total number of alleles	0,	566	569	100

 $β^0$: production of β-globin chain is entirely eliminated; $β^+$: production of β-globin

chain is reduced.

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

51 52 53 54 55 56 57 58 59 60	$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2$	012345678901234567890123456789012345678901234567890
48 49 50 51 52 53 54 55 56 57 58 59	4 4	5 6
51 52 53 54 55 56 57 58 59	4 4	8 9
	5 5 5 5 5 5 5 5 5 5	1 2 3 4 5 6 7 8 9

Table 3 Predictive value of evaluated indices of the ROC analysis for β -thalassemia									
Hb A ₂ (%)	A	В	С	D	LRP	NRP	SE	SP	YI
3.5	547	147	19	10	1.03	0.53	96.64	6.37	0.03
3.6	540	85	26	72	1.76	0.10	95.41	45.86	0.41
3.7	531	49	35	108	3.01	0.09	93.82	68.79	0.63
3.8	512	35	54	122	4.06	0.12	90.46	77.71	0.68
3.9	497	25	69	132	5.52	0.14	87.81	84.08	0.72
4.0	482	16	84	141	8.34	0.17	85.16	89.81	0.75
4.1	473	15	93	142	8.78	0.18	83.57	90.45	0.74
4.2	466	13	100	144	9.94	0.19	82.33	91.72	0.74
4.3	456	13	110	144	9.73	0.21	80.57	91.72	0.73
4.4	449	12	117	145	10.38	0.22	79.33	92.36	0.72
4.5	445	12	121	145	10.29	0.23	78.62	92.36	0.71

A: true positive; B: false positive; C: false negative; D: true negative; Likelihood Ratio positive (LRP): sensitivity \div (1 - Specificity), Likelihood Ratio Negative (NRP): (1 - Sensitivity)/specificity. Youden's index (YI), Sensitivity (SE): True positive \div (true positive + false negative), Specificity (SP): True negative \div (true negative + false positive).

BMJ Open

Table 4 Characterization of 7 types of β -thalassemia according to sex (mean±SD)						
Mutation	Sex (n)	Hb (g/L)	MCV (fl)	MCH (pg)	Hb A (%)	Hb A ₂ (%)
CD 17	F (87)	110.30±16.12	64.86±7.96	21.54±3.01	91.80±2.43	5.83±0.52
CD 17	M (38)	136.47±11.55	64.62±4.00	21.46±1.66	92.74±1.55	6.11±0.54
CD 41-42	F (89)	108.71±15.50	65.39±5.76	21.23±1.96	92.04±3.04	5.66±0.57
CD 41-42	M (35)	137.57±11.71	66.82±5.85	22.56±3.74	92.87±2.68	5.87±0.65
CD 26	F (124)	125.18±11.90	77.09±4.74	26.01±1.63	70.64±2.24	3.88±0.45
CD 26	M (54)	151.11±11.07	76.76±4.01	26.18±1.33	70.74±2.37	3.86±0.43
IVS-II-654	F (15)	107.47±14.23	65.35±4.21	21.26±1.13	92.85±1.74	5.53±0.42
IVS-II-654	M (36)	138.40±8.65	63.52±2.90	20.97±0.88	93.57±1.19	5.59±0.53
-28	F (10)	123.5±15.25	72.99±5.00	23.41±1.09	92.49±0.72	6.15±0.44
-28	M (1)*	-	- 9	-	-	-
CD 27-28	F (5)	106.00±18.61	68.54±2.26	22.22±0.59	88.56±5.09	5.28±0.56
CD 27-28	M (0)*	-	-	- 4	-	-
CD 71-72	F (4)	105.50±5.07	63.15±2.69	21.45±0.50	92.60±0.50	5.80±0.14
CD 71-72	M (1)*	-	-	-		-

*: mean and standard deviation (SD) can not be calculated (n < 3).

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

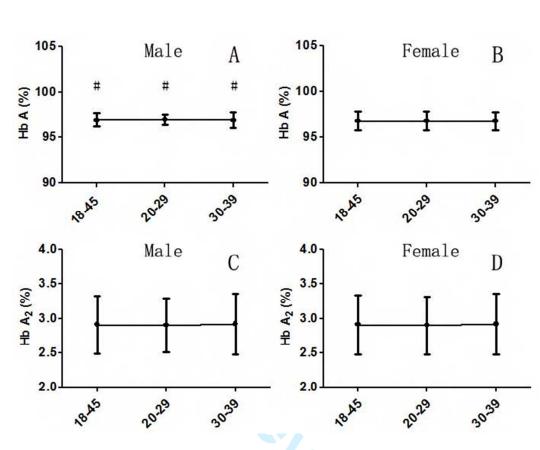
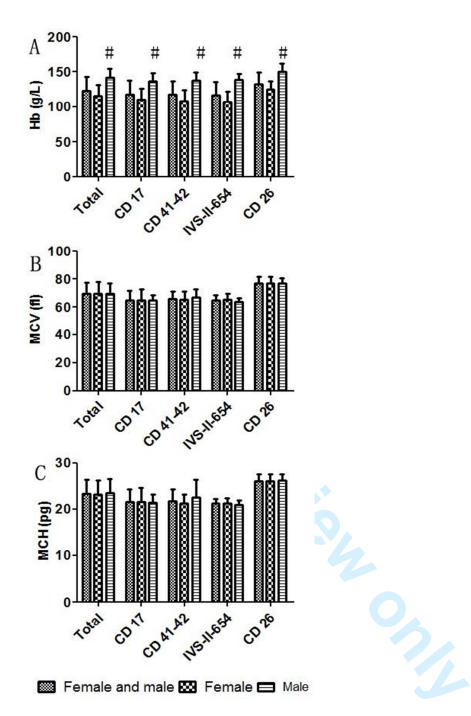

1
2
3
4
5
6
7
8
9 10
10
12
13
14
15
16
17
18
19
20
21
22
23 24
24 25
26
27
28
29
30
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
32
33
34
35
30
38
39
40
41
42
43
44
45
46
47 48
48
49 50
51
52
53
54
55
50 51 52 53 54 55 56 57 58
57
58
59 60
60

Table 5 Characterization of 8 types of β -thalassemia and comparasion (mean±SD)

Mutation (n)	Hb (g/L)	MCV (fl)	MCH (pg)	Hb A (%)	Hb A ₂ (%)
CD 17 ¹ (125)	118.26±19.14	64.78±6.98	21.52±2.67	92.08±2.24	5.91±0.54
CD 41-42 ² (108)	117.78±19.54	65.84±5.29	21.68±2.56	92.38±2.93	5.75±0.60
CD 26 ³ (178)	133.04±16.67	76.99±4.52	26.06±1.55	70.67±2.28	3.87±0.44
IVS-II-654 ⁴ (51)	116.57±19.11	64.81±3.93	21.17±1.06	93.06±1.62	5.55±0.45
-28 ⁵ (11)	125.64±16.11	73.45±4.97	23.61±1.23	92.49±0.68	6.22±0.47
CD 27-28 ⁶ (5)	106.00±18.61	68.54±2.26	22.22±0.59	88.56±5.09	5.28±0.56
CD 71-72 ⁷ (5)	108.80±8.58	64.64±2.60	21.14±0.82	92.76±0.56	5.92±0.29
IVS-I-1 ⁸ (3)	127.00±13.23	72.40±15.98	25.07±6.51	94.20±0.66	5.73±0.57
Comparisons	1 versus 3	1 versus 3	1 versus 3	1 versus 3	1 versus 2
(<i>p</i> <0.05)	2 versus 3	1 versus 5	1 versus 5	1 versus 4	1 versus 3
	3 versus 4	2 versus 3	2 versus 3	2 versus 3	1 versus 4
		2 versus 5	2 versus 5	3 versus 4	2 versus 3
		3 versus 4	3 versus 4	3 versus 5	2 versus 4
		3 versus 5	3 versus 5		2 versus 5
		4 versus 5	4 versus 5		3 versus 4
					3 versus 5
					4 versus 5


P value of signicant differences (p < 0.05) between various 5 types of β -thalassemia is

listed ($n \ge 10$). Non-listed comparisons are not significant.

Figure 1 Distribution of Hb A and Hb A_2 in all sample. # Males show significantly higher Hb A values (p < 0.05) than females in three age group. There was no significant differences in Hb A_2 levels in all three age groups.

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

Figure 2 Hematological characterization of β -thalassemia according to sex. # Males show significantly higher Hb values (p < 0.05) than females. No difference were observed between gender for MCV and MCH. Total: 486 unrelated heterozygous β -thalassemia.

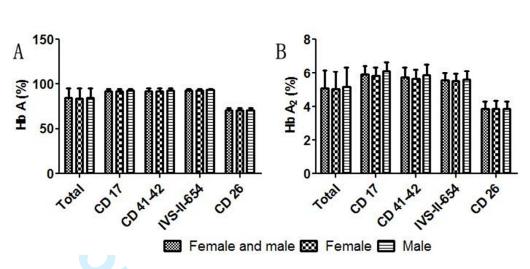
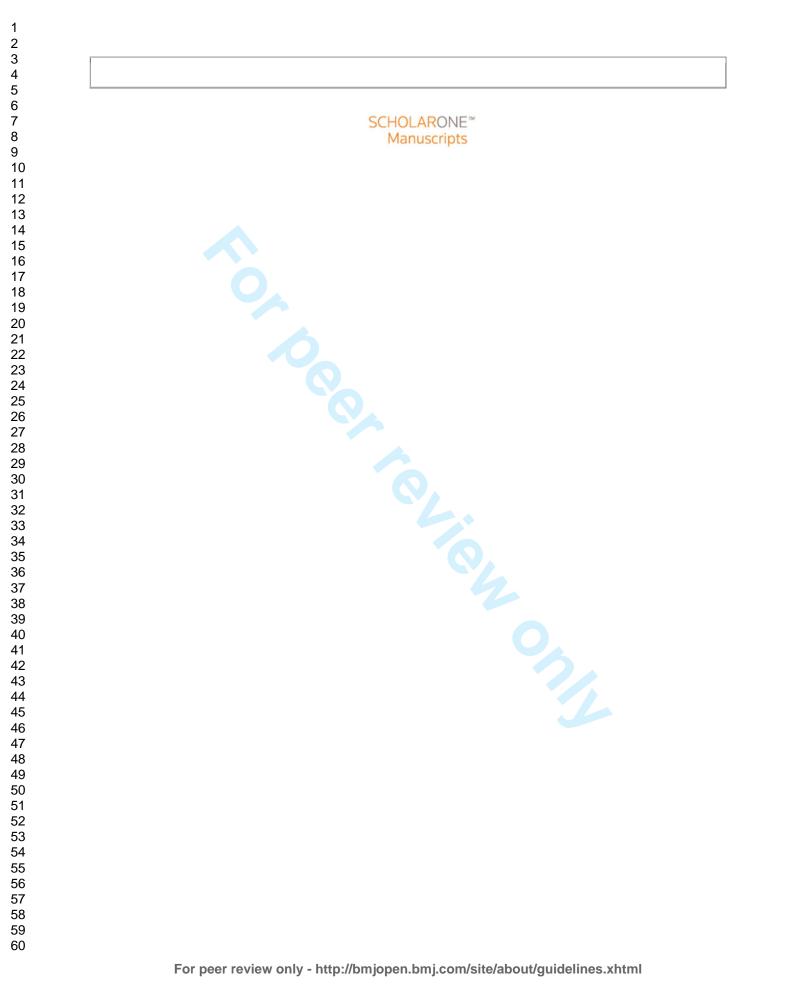



Figure 3 Electrophoretic characterization of β-thalassemia according to sex in the current study. No difference were observed between gender for Hb A and Hb A₂. Total: 486 unrelated heterozygous β-thalassemia.

BMJ Open

Hematological and electrophoretic characterization of β -thalassemia in Yunnan province of Southwestern China

	1		
Journal:	: BMJ Open		
Manuscript ID	bmjopen-2016-013367.R1		
Article Type:	Research		
Date Submitted by the Author:	12-Oct-2016		
Complete List of Authors:	12-Oct-2016 Zhang, Jie; the First People's Hospital of Yunnan Province, Kunming 650032, People's Republic of China, Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases; Kunming University of Science Technology, Kunming 650032, People's Republic of China, Genetics Department He, Jing; the First People's Hospital of Yunnan Province, Kunming 650032, People's Republic of China, Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases; Kunming University of Science and Technology, Kunming 650032, People's Republic of China, Genetics Department Mao, Xiaoqin ; the First People's Hospital of Yunnan Province, Kunming, 650032, People's Republic of China, Department of Clinical Laboratory Zeng, Xiaohong; the First People's Hospital of Yunnan Province, Kunming, People's Republic of China, Genetic Disgnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases; Kunming University of Science and Technology, Kunming, People's Republic of China, Genetics Department Chen, Hong; the First People's Hospital of Yunnan Province, Kunming, People's Republic of China, Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases; Kunming University of Science and Technology, Kunming, People's Republic of China, Genetics Department Chen, Hong; the First People's Hospital of Yunnan Province, Kunming, People's Republic of China, Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases; Kunming University of Science and Technology, Kunming, People's Republic of China, Genetics Department Su, Jie; the First People's Hospital of Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases; Kunming University of Science and Technology, Kunming, People's Republic of China, Genetics Department Zhu, Baosheng; the First People's Hospital of Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases; Kunming University of Science and Te		
Primary Subject Heading :			
Secondary Subject Heading:	Haematology (incl blood transfusion), Diagnostics		
Keywords:	thalassemia, capillary electrophoresis, hematological and biochemical parameter values, mutation, cut-off value		

Hematological and electrophoretic characterization of β -thalassemia in Yunnan province of Southwestern China

Jie Zhang,^{1,2} Jing He,^{1,2} Xiaoqin Mao,³ Xiaohong Zeng,^{1,2} Hong Chen,^{1,2} Jie Su,^{1,2} Baosheng Zhu^{1,2}

¹Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases, the First People's Hospital of Yunnan Province, Kunming, People's Republic of China

²Genetics Department, Kunming University of Science and Technology, Kunming,

People's Republic of China

³Department of Clinical Laboratory, the First People's Hospital of Yunnan Province,

Kunming, People's Republic of China

Correspondence to Baosheng Zhu, Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, 157 Jinbi road, Kunming 650032, Republic of China; Tel.: +86-871-63638248; Fax: +86 871 63638368; E-mail: bszhu@sohu.com.

BMJ Open

Keywords: thalassemia, capillary electrophoresis, hematological and biochemical parameter values, mutation, cut-off value

Word count: 4,245

ABSTRACT

Objectives: β -thalassemia is widely found in Southwestern China. Characterization of β -thalassemia can improve screening and prenatal diagnosis for at-risk populations. **Design:** A retrospective study.

Methods: In this study, the levels of HbA₂ and HbA were analyzed by gender for a total of 15,067 subjects screened by capillary electrophoresis. The cut-off value with the highest accuracy was established to identify β -thalassemia in 723 patients suspected to have this disease. Hematological and electrophoretic characterization of 8 common types of β -thalassemia were analyzed in 486 β -thalassemia subjects.

Results: HbA levels were significantly higher in males than in females, but there was no significant difference on HbA₂ levels. A new cut-off value for the diagnosis of β thalassemia (HbA₂ ≥4.0%) with the highest accuracy was proposed for the studied populations. Hb was significantly higher in males compared to females (*p* <0.05), whereas no statistically significant differences were found for MCV, MCH, HbA, and

HbA₂. The HbE group showed comparatively higher values for hematological indices (Hb, MCV, and MCH) than the other genotypes in heterozygous β -thalassemia groups (p < 0.05), and -28 (A>G) (HBB:c.-78A>C) had significantly higher HbA₂ values compared to other β -thalassemia.

Conclusions: Ethnic groups have diversified β -globin gene mutations and considerable hematologic variations. Our study will lay the foundation for screening programs and clinical management of thalassemia in Southwestern China.

Strengths and limitations of this study

- Ours is the first study to characterize β-thalassemia in the Yunnan province, which may be useful to improve screening and prenatal diagnosis in Southwestern China.
- Our study determined that a higher cut-off point of HbA₂ levels (HbA₂ \geq 4.0%) should be used for β -thalassemia screening, rather the current value of 3.5%.
- Samples for participants used for capillary electrophoresis, cut-off value calculation and characterization of β-thalassemia were not collected at the same time.

INTRODUCTION

 β -thalassemia is an inherited anemia resulting from genome variants in β -globin chains. This disease is most prevalent in Africa, ¹ Asia, ² Mediterranean³ and the

Middle-East.⁴ Quantification of hemoglobin A₂ (HbA₂) percentage by capillary electrophoresis and routine hematology testing are the existing methods for screening thalassemia and hemoglobinopathies.⁵ An HbA₂ value exceeding 3.5% combined with a low mean cell volume (MCV) and mean cell hemoglobin (MCH) are the current diagnostic criteria for β-thalassemia carriers. Determination of the hemoglobin concentration (Hb) and HbA₂ range in a population offers a critical screening tool for thalassemia.⁶⁻⁷ However, there are very few reports on the clinical reference intervals for β-thalassemia patients in China. Therefore, it is important to determine appropriate diagnostic cut-off points and supplement the existing references to improve the screening and control of β-thalassemia.

More than 800 different β -globin gene mutations have been discovered worldwide. Two subtypes are defined by totally absent (β^0) or partially reduced (β^+) production of normal β -chains, respectively. The severity of β -thalassemia varies with the thalassemia mutation, ranging from asymptomatic anemia to a severe transfusiondependent disorder. Populations in different regions have diversified β -globin gene mutations⁸ and the ability to identify and characterize these β -thalassemia mutations can assist in genetic counseling and prenatal diagnoses. ⁹ In this study, we established an HbA₂ dataset for screening β -thalassemia in people of Southwestern China, and correlated these data to hematological and biochemical values to better understand

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

thalassemia and to improve its control and prevention.

MATERIALS AND METHODS

Study design

In this study, we performed a retrospective analysis using capillary electrophoresis to determine the HbA₂ dataset, calculated the diagnostic criteria for β -thalassemia and analyzed hematologic parameters to provide an additional characterization of this disease. There were three independent studies conducted during different time periods. The study design is shown in Figure 1.

Setting

This study was conducted in The First Peoples' Hospital of Yunnan Province. This hospital is located in the Jinbi road of Kunming city. It is a general hospital whose annual clinic amount exceeds 1.6 million people with 2000 beds.

Participants

Participants for three independent studies were collected during three different time periods. (1) A total of 15,067 subjects (3,678 men and 11,389 women, 18–45 years-of-age) who sought thalassemia screening during September 2011 to July 2014 had

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

capillary electrophoresis performed. (2) Individuals (n=723) with suspected β thalassemia (HbA₂ \geq 3.5%) or abnormal hemoglobin variants were randomly selected from October 2010 to April 2014 (210 men and 513 women, 18–45 years-of-age) for cut-off value calculation. (3) Unrelated heterozygous β -thalassemia patients (n=486: 151 males and 335 females, 19–58 years-of-age), were included in the study to analyze hematological and biochemical parameters between June 2009 to April 2013. Written and informed consent were obtained from the patients. The information consent and protocol for these studies were approved by the medical ethics committee of The First Peoples' Hospital of Yunnan Province, PRC. The exclusion criteria were: (1) incomplete information, (2) consanguinity, (3) lack of informed consent, and (4) children (below the age of 18 years).

Capillary electrophoresis

Venous blood samples were collected from subjects (n=15,067) in tubes containing EDTA. Hemoglobin analysis was performed using capillary electrophoresis (Sebia, Paris, France). Internal quality control was performed by analyzing the control materials provided by the manufacturer. Mean comparisons were made among HbA₂ and HbA by gender, comparing male vs. female in each of three age groups: 18–45, 20–29, and 30–39 years using independent-sample analysis of variance (ANOVA).

DNA extraction and detection of β-globin mutations

DNA was extracted from whole blood using the Blood DNA Extraction System (Tianlong Bioscience Shenzhen Ltd., Xian, China). Detection of 17 known β -globin gene mutations (97.3% of known β -thalassemia alleles in Chinese populations) for 723 individuals with suspected β -thalassemia or abnormal hemoglobin variants were performed by PCR-reverse dot-blot method as previously described.¹⁰ These 17 β -globin mutations are as follows: CD 41-42 (–TCTT), IVS-II-654 (C>T), -28 (A>G), CD 71/72 (+A), CD 17 (A>T), HbE (CD 26, G>A), CD 31 (–C), CD 27/28 (+C), CD 43 (G>T), -32 (C>A), -29 (A>G), 30 (T>C), CD 14/15 (+G), Cap +40 to +43 (– AAAC), Initiation CD (T>G), IVS-I-1 (G>T) and IVS-I-5 (G>T). Samples without detected mutations were sequenced on an ABI 3700 automated sequencer using primers that flanked the entire β -globin gene, as previously described.¹⁰

Cut-off value calculation

Sensitivity, specificity, Youden's index (YI), likelihood ratio positive (LRP), and likelihood ratio negative (NRP) of HbA₂ measurements within the interval of 3.5%– 4.5% were evaluated. A receiver operating characteristic (ROC) analysis was performed to calculate the area under the curve (AUC). In addition, we calculated the

BMJ Open

cut-off value with the greatest accuracy to identify β -thalassemia in our population.

Characterization of β-thalassemias

Complete blood counts were performed on 486 unrelated β -thalassemia heterozygous patients that were diagnosed in our center using an automated cell counter (Sysmex, Tokyo, Japan). Histograms and tables of descriptive statistics of Hb, MCV, MCH, HbA and HbA₂ were generated and compared by gender (n >15). Also, HbA, HbA₂, MCV, MCH and Hb were compared among different genotypes of β -thalassemia (n >10). Continuous variables were compared using ANOVA. For multiple comparisons, a *post hoc* analysis was used when appropriate. All reported *P*-values are two-sided and were statistically significant if *p* <0.05. All statistics in this study were computed with SPSS version 16 for Windows.

RESULTS

Subjects screened by capillary electrophoresis

The data distribution of HbA and HbA₂ measurements performed in the study is shown in Figure S1 and Table S1. The mean HbA among the subjects was 96.83% (95% CI for mean: 96.81%–96.84%), while the mean HbA₂ was 2.91% (95% CI for mean: 2.90%–2.92%). Out of these subjects, the majority had HbA₂ levels ranging

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

from 2.4 to 3.5% (95.45%, 14,382/15,067, while 337 cases (2.24%, 337/15,067) had HbA₂ levels <2.4%, and 348 cases (2.31%, 348/15,067) had HbA₂ levels >3.5%. Six subjects lacking an HbA band and five subjects without an HbA₂ band were identified. The HbF band was present in 4,381 subjects (29.08%, 4,381/15,067) with a mean percentage of 1.17% (95% CI for mean: 1.02%–1.33%). There were no significant differences in HbA₂ levels between the three age groups (18-45, 20-29 and 30-39) (Figure S1). However, HbA levels were significantly higher in males than in females in all three age groups (18-45, 20-29 and 30-39) (p <0.01) (Figure S1).

Cut-off value calculation

Among the total 723 specimens investigated for β -globin gene mutations, twenty-two different mutations were found in 566 cases (78.28%, 566/723), with HbA₂ levels ranging from 1.8 to 7.9%. These included a total of 563 β -thalassemia heterozygotes, one HbE homozygosity, and two compound heterozygotes (Table 1). β -globin mutations were not detected in the remaining 237 subjects. Among β -thalassemia heterozygotes, HbA₂ values ranged from 1.8% to 4.0% in 69 of 566 subjects (69/566, 12.19%), while the majority (497/566, 87.81%) had HbA₂ values \geq 4.0%. The sensitivity, specificity, YI, LRP and NRP of each selected cut-off point in screening for β -thalassemia are summarized in Table 2. Regarding hematologic parameters,

BMJ Open

HbA₂ at the new cut-off value of 4.0% yielded high values (0.898, 95% CI: 0.874 to 0.919) for AUC and YI (0.75) (Figure S2). The new cut-off had the highest accuracy, with a sensitivity of 85.16% and a specificity of 89.81%, and is therefore a suitable discriminator for screening of β -thalassemia in this population. Using the currently established cut-off (HbA₂ ≥3.5%) only yielded sensitivity and specificity values of 96.64% and 6.37%, respectively.

As shown in Tables 3 and S2, hematological and molecular characteristics of 486 unrelated heterozygous β -thalassemia mutations were demonstrated. The mean values for hematological and electrophoretic indices (HbA, HbA₂, Hb, MCV, and MCH) among participants with different genotypes of thalassemia are shown in Table 3. A significant difference between genders was observed for Hb, with males having higher Hb compared to the females (*p* <0.05), whereas no statistically significant differences

Hematological and electrophoretic characterization of β -thalassemia mutation

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

were found for MCV, MCH, HbA, and HbA₂ values between the two genders (Figures 2 and 3). The HbE group showed comparatively higher values of hematological indices (Hb, MCV, and MCH) than the other four genotypes of heterozygous β -thalassemia groups, and -28 (A>G) (HBB:c.-78A>C) had significantly higher HbA₂ values compared to other β -thalassemias (Table 3).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

DISCUSSION

β-thalassemia is one of the most common genetic disorders worldwide, and each ethnic group has a mutation set with considerable hematologic variations. Clinical features and hematological parameters in β -thalassemia patients vary with race, lifestyle, and altitude. In China, CD 17 (A>T) (HBB:c.52A>T), CD 41-42 (-TCTT) (HBB:c.126 129delCTTT), -28 (A>G) (HBB:c.-78A>C), IVS-II-654 (C>T) (HBB:c.316-197C>T), HbE (CD 26, G>A) (HBB:c.79G>A) and CD 71/72 (+A) (HBB:c.216_217insA) mutations account for more than 90% of all β -thalassemia mutations in the Chinese population.¹¹ Characterization and screening of these mutations provides a database to aid in the prevention and control of thalassemia. There are very few studies describing the detection and quantification of electrophoretic and hematological parameters for screening thalassemia in the Chinese population. Thus, our report is the first characterization of β -thalassemia mutations in people of Southwestern China and will serve as a key reference for this population.

The majority of individuals screened in this study were female, since patients seeking prenatal diagnosis and genetic counseling represent a large portion of the study participants. Six subjects lacking an HbA band and five subjects without an

HbA₂ band were identified. Among these subjects, four were HbE homozygous, one was β -thalassemia/HbE compound heterozygous, and one had a hemoglobin variant mutation. HbA levels were significantly higher in male than female subjects in the three age groups (Figure S1). However, no significant difference was observed in HbA₂ in all age groups. In our study, most of the subjects (95.45%, 14,382/15,067) had HbA₂ levels that were within a narrow range (2.4%–3.5%), similar to previous observations in Nigerian patients.¹²

Carriers of β -thalassemia have increased HbA₂ values. Of the 723 subjects analyzed, the β -globin gene defect was identified in 78.28% of cases (566/723; range 1.8%–7.9%). One case without the β -globin mutation had the highest HbA₂ value (7.9%), which may be due to a hemoglobin variant co-eluting with HbA₂ peak.¹³ Only one case of major β -thalassemia was found in this study, which was due to the fact that children were excluded. The majority of severe β -thalassemia carriers die before reaching the age of 5.¹⁴ BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

Having an HbA₂ level greater than 3.5% is the current diagnostic criterion for the β -thalassemia trait,¹⁵ while values greater than 4.0% are also used to identify β -thalassemia carriers in some regions.¹⁶ In this study, a higher cut-off point of HbA₂ levels (HbA₂ ≥4.0%) determined by ROC curves had the highest accuracy in identifying β -thalassemia carriers. This result differed from previous reports,¹⁷⁻¹⁹

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

which may be explained by regional differences in the spectrum and cut-off values for β -thalassemia mutations. In our study, most β -thalassemia mutations (497/566, 87.81%) had a mean HbA₂ exceeding 4.0%, while silent β -thalassemia mutations with near normal hematological indices and borderline HbA₂ values (3.5%–4.0%) were rare in our population. Therefore, the diagnostic thresholds should be increased for this population.

The cut-off point was established for all samples, including those from β thalassemia patients and those having abnormal hemoglobins. And Hb variant fraction could be easily screened by abnormal band for capillary electrophoresis.²⁰ In Yunnan, HbE (CD 26, G>A) (HBB:c.79G>A), an abnormal hemoglobin, is the most prevalent β -globin gene mutation (with a frequency of 30.5%),²¹ with comparatively lower HbA₂ values. Here, the mean percentage of HbA₂ in patients with HbE was 3.87±0.44, which was similar to that reported for Americans.²² HbE and other abnormal hemoglobins, such as CD 22 (A>C) (HBB:c.68A>C) (HbG-Coushatta), have been reported to decrease the expression of HbA₂.²³ In this study, most β -thalassemia were characterized by increased HbA₂ values ranging from 4.3% to 6.6% (93.86%, 428/456).

Subjects with a β -globin mutation usually have lower Hb and erythrocyte indices compared to those without an identifiable mutation²⁴ and the clinical and

hematological parameters in patients having β-thalassemia are widely variable.²⁵ This study was conducted in Kunming, the capital of Yunnan province, which has an altitude of 1,895 meters. Regional altitude differences are a contributing factor in the variation of these parameters, as high altitudes are known to elevate Hb values. Males had higher Hb values in all five genotype groups compared to females, whereas, no statistical sex-based significant differences were observed for MCV, MCH, HbA, and HbA₂ values. These results were similar to previously reported data.²⁶ HbE (CD 26, G>A) (HBB:c.79G>A) is clinically asymptomatic with minimal erythrocyte morphological abnormalities in heterozygous individuals; this type had the highest MCV, MCH, and Hb values in this study. Subjects with the -28 (A>G) (HBB:c.-78A>C) mutation (β^+ -thalassemia), a mutation in the TATA box of the proximal promoter region, had higher MCH, MCV, and HbA₂ values compared to other β thalassemia types (CD 17 (A>T) (HBB:c.52A>T), CD 41-42 (-TCTT) (HBB:c.126 129delCTTT), IVS-II-654 (C>T) (HBB:c.316-197C>T)). The -28 (A>G)

In conclusion, we offered a retrospective analysis of β -thalassemia that can be used for prenatal diagnosis, genetic counseling, thalassemia control and screening. Characterization of β -thalassemia and diagnostic thresholds for β -thalassemia can be used to identify patients more precisely.

(HBB:c.-78A>C) phenotype is similar to other β -globin gene promoter mutations.²⁷

¹Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases, the First People's Hospital of Yunnan Province, Kunming 650032, Republic of China

²Genetics Department, Kunming University of Science and Technology
³Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, Kunming 650032, Republic of China

Contributors JZ and BSZ designed the experiments. JZ, XQM, JH and XHZ performed the experiments. JZ, HC, JS and BSZ analyzed the data. JZ Wrote the paper. All authors critically revised and approved the final manuscript.

Funding This work was sponsored by National Natural Science Foundation

(81260415), Natural Science Foundation of Yunnan Province (2011FB164), Great scientific research project of Yunnan provincal education department (2015Z029) and Natural Science Foundation of Yunnan Province (2011FB224). The authors declare no competing financial interests.

Competing interests None declared.

Ethics approval The protocol and information consent for this study were approved by the medical ethics committee of The First Peoples' Hospital of Yunnan Province in

accordance with the Declaration of Helsinki.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work noncommercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http:// creativecommons.org/licenses/by-nc/4.0/.

REFERENCES

- 1. Atkinson SH, Uyoga SM, Nyatichi E, *et al.* Epistasis between the haptoglobin common variant and α^+ thalassemia influences risk of severe malaria in Kenyan children. *Blood* 2014;123:2008-16.
- Tang W, Zhang C, Lu F, *et al.* Spectrum of α-thalassemia and βthalassemia mutations in the Guilin Region of southern China. *Clin Biochem* 2015;48:1068-72.
- Dell'Edera D, Epifania AA, Malvasi A, *et al.* Incidence of β-thalassemia carrier on 1495 couples in preconceptional period. *J Matern Fetal Neonatal Med* 2013;26:445-8.

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

4.	Hadipour Dehshal M, Tabrizi Namini M, Ahmadvand A, et al. Evaluation of
	the national prevention program in iran, 2007-2009:
	the accomplishments and challenges with reflections on the path ahead.
	Hemoglobin 2014;38:179-87.
5.	Srivorakun H, Fucharoen G, Changtrakul Y, et al.
	Thalassemia and hemoglobinopathies in Southeast Asian newborns: diagnostic
	assessment using capillary electrophoresis system. Clin Biochem 2011;44:406-
	11.
6.	Nalbantoğlu B, Güzel S, Büyükyalçın V, et al. Indices used
	in differentiation of thalassemia trait from
	iron deficiency anemia in pediatric population: are they reliable? Pediatr
	Hematol Oncol 2012;29:472-8.
7.	Wang S, Zhang R, Xiang G, et al. Mutation screening for thalassaemia in the
	Jino ethnic minority population of Yunnan Province, Southwest China. BMJ
	<i>Open</i> 2015;5:e010047.
8.	Moatter T, Kausar T, Aban M, et al. Prenatal screening for β-thalassemia major
	reveals new and rare mutations in the Pakistani population. Int J
	Hematol 2012;95:394-8.
9.	Chen JJ, Tan JA, Chua KH, et al. Non-invasive prenatal diagnosis using fetal

$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$		
54 55		

DNA in maternal plasma: a preliminary study for identification of paternallyinherited alleles using single nucleotide polymorphisms. *BMJ Open* 2015;5:e007648.

- Zhang J, He J, Zeng XH, *et al.* Genetic heterogeneity of β-globin gene in various geographic populations of Yunnan, southwestern China. PLoS ONE 2015;10:e0122956.
- 11. Tang W, Zhang C, Lu F, *et al.* Spectrum of α-thalassemia and βthalassemia mutations in the Guilin Region of southern China. *Clin Biochem*2015;48:1068-72.
- Kotila TR, Adeyemo AA, Mewoyeka OO, *et al.* Beta thalassaemia trait in western Nigeria. *Afr Health Sci* 2009;9:46-8.
- 13. Theodoridou S, Vyzantiadis T, Theodoridis T. Compound heterozygosity
 for hemoglobin E-Saskatoon and β-thalassemia. *J Obstet Gynaecol Res* 2010;36:
 1148.
- Pan HF, Long GF, Li Q, *et al.* Current status of thalassemia in minority populations in Guangxi, China. *Clin Genet* 2007;71:419-26.
- 15. Zheng CG, Liu M, Du J, *et al.* Molecular spectrum of α- and βglobin gene mutations detected in the population of Guangxi Zhuang
 Autonomous Region, People's Republic of China. *Hemoglobin* 2011;35:28-39.

- Mosca A, Paleari R, Ivaldi G, *et al.* The role of haemoglobin A(2) testing in the diagnosis of thalassaemias and related haemoglobinopathies. *J Clin Pathol* 2009;62:13–7.
- Mosca A, Paleari R, Galanello R, *et al.* New analytical tools and epidemiological data for the identification of HbA₂ borderline subjects in the screening for beta-thalassemia. *Bioelectrochemistry* 2008;73:137-40.
- Giambona A, Passarello C, Vinciguerra M, *et al.* Significance of borderline hemoglobin A₂ values in an Italian population with a high prevalence of βthalassemia. *Haematologica* 2008;93:380-4.
- Rangan A, Sharma P, Dadu T, *et al.* β-Thalassemia mutations in subjects with borderline HbA₂ values: a pilot study in North India. *Clin Chem Lab Med* 2011;49:2069-72.
- Sae-ung N, Srivorakun H, Fucharoen G, *et al.* Phenotypic expression of hemoglobins A₂, E and F in various hemoglobin E related disorders. *Blood Cells Mol Dis* 2012;48:11-6.
- 21. Zhang J, Zhu BS, He J, *et al.* The spectrum of α and β -thalassemia mutations in Yunnan Province of Southwestern China. *Hemoglobin* 2012;36:464-73.

BMJ Open

1 2		
3 4 5	22.	Mais DD, Gulbranson RD, Keren DF. The range of hemoglobin A_2 in
6 7 8		hemoglobin E heterozygotes as determined by capillary electrophoresis. $Am J$
9 10 11		<i>Clin Pathol</i> 2009;132:34-8.
12 13 14	23.	Traeger-Synodinos J, Harteveld CL.
15 16 17		Advances in technologies for screening and diagnosis of hemoglobinopathies.
18 19		Biomark Med 2014;8:119-31.
20 21 22	24.	Bordbar E, Taghipour M, Zucconi BE.
23 24 25		Reliability of different RBC indices and formulas in discriminating between β -
26 27 28		thalassemia minor and other microcytic hypochromic cases. Mediterr J Hematol
29 30 31		Infect Dis 2015;7:e2015022.
32 33 34	25.	Chen W, Zhang X, Shang X, et al. The molecular basis of beta-thalassemia
35 36 37		intermedia in southern China: genotypic heterogeneity and phenotypic diversity.
38 39		BMC Med Genet 2010;11:31.
40 41 42	26.	Wu X, Zhao M, Pan B, <i>et al</i> .
43 44 45		Complete blood count reference intervals for healthy Han Chinese adults. PLoS
46 47 48		One 2015;10: e0119669.
49 50 51	27.	Al Zadjali S, Wali Y, Al Lawatiya F, <i>et al</i> . The β-globin promoter -71 C>T
52 53 54		mutation is a β + thalassemic allele. <i>Eur J Haematol</i> 2011;87:457-60.
55 56		
57 58		

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

2
2
3
4
5
6
7
8
0
9
10
11
12
13
14
15
16
10
17
- 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 8 9 20 21 22 32 4 25 6 7 8 9 30 31 22 33 34 35 6 37 38 39 40
19
20
21
22
23
20
24
25
26
27
28
29
30
21
31
32
33
34
35
36
37
20
30
39
41
42
43
44
45
43 46
47
48
49
50
51
52
51 52 53
55
54
54 55 56
56
57
58
59
60
00

1

Mutation	Туре	n	Number	Allele
			of Alleles	Frequency (%)
CD 17 (A>T) (HBB:c.52A>T)	$\beta^0\!/\beta^A$	166	166	29.04%
CD 41-42 (-TCTT) (HBB:c.126_129delCTTT)	$\beta^0\!/\beta^A$	145	146	26.26%
CD 26 (G>A) (HBB:c.79G>A)	$\beta^{+}\!/\beta^{A}$	107	110	19.13%
IVS-II-654 (C>T) (HBB:c.316-197C>T)	$\beta^{+}\!/\beta^{A}$	90	92	16.00%
–28 (A>G) (HBB:c78A>C)	$\beta^{+}\!/\beta^{A}$	20	20	3.48%
CD 71/72 (+A) (HBB:c.216_217insA)	$\beta^0\!/\beta^A$	12	12	2.09%
CD 27/28, +C (HBB:c.84_85insC)	β^0/β^A	7	7	1.22%
IVS-I-1 (G>T) (HBB:c.92+1G>T)	β^+/β^A	5	5	0.87%
IVS-I-5 (G>C) (HBB:c.92+5G>C)	β^+/β^A	1	1	0.17%
CD 5 (-CT) (HBB:c.17_18delCT)	β^0/β^A	1	1	0.17%
Hb Dieppe, CD 127 (A>G) (HBB:c.383A>G)	$\beta^0\!/\beta^A$	1	1	0.17%
Initiation CD (T>C) (HBB:c.2T>C)	$\beta^0\!/\beta^A$	1	1	0.17%
CD121 (G>T) (HBB:c.364G>T).	$\beta^0\!/\beta^A$	1	1	0.17%
-31 (A>C) (HBB:c81A>G)	$\beta^{+}\!/\beta^{A}$	1	1	0.17%
-29 (A>G) (HBB:c79A>G)	$\beta^{+}\!/\beta^{A}$	1	1	0.17%
CD 43 (G>T) (HBB:c.130G>T)	$\beta^0\!/\!\beta^A$	1	1	0.17%

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

CD 113 (T>A) (HBB:c.341T>A)	HbVar	1	1	0.17%
CD 22 (A>C) (HBB:c.68A>C)	HbVar	1	1	0.17%
CD 47 (G>A) (HBB:c.142G>A)	HbVar	1	1	0.17%
CD 41-42/IVS-II-654	β^0/β^0	1	-	-
IVS-II-654/CD 26	$\beta^0\!/\beta^+$	1	-	-
CD 26/CD 26	$\beta^+\!/\beta^+$	1	-	-
Total number of alleles	-	566	569	100

 β^0 : production of β -globin chain is entirely eliminated; β^+ : production of β -globin

chain is reduced; HbVar: hemoglobin variant.

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

$\begin{smallmatrix} 2&3&4&5&6&7&8\\ 9&1&1&1&2&1&1&1\\ 1&1&1&1&1&1&2&2&2&2&2&2&2&2&2&2&2&2&2&2$	1 2 3	
39 40 41 42 43 44 50 51 52 53 55 55 57 58 59	4 5 6	
39 40 41 42 43 44 50 51 52 53 55 55 57 58 59	7 8 9	
39 40 41 42 43 44 50 51 52 53 55 55 57 58 59	1 1 1	0 1 2
39 40 41 42 43 44 50 51 52 53 55 55 57 58 59	' 1 1 1	4 5 6
39 40 41 42 43 44 50 51 52 53 55 55 57 58 59	1 1 1	7 8 9
39 40 41 42 43 44 50 51 52 53 55 55 57 58 59	2 2 2 2	0 1 2 3
39 40 41 42 43 44 50 51 52 53 55 55 57 58 59	2 2 2 2	5 4 5 6
39 40 41 42 43 44 50 51 52 53 55 55 57 58 59	2 2 2	7 8 9
39 40 41 42 43 44 50 51 52 53 55 55 57 58 59	3 3 3 3	0 1 2 3
39 40 41 42 43 44 50 51 52 53 55 55 57 58 59	3 3 3	4 5 6
$\begin{array}{c} 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 556\\ 57\\ 58\\ 59\end{array}$	3	9
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	4 4 4	1 2 3
48 49 50 51 52 53 54 55 56 57 58 59	4 4	5 6
51 52 53 54 55 56 57 58 59	4 4	8 9
55 56 57 58 59	5 5 5	1 2 3
59	5	5 6
	5	9

14010 2 1 1	culetive	, vurue	or evan	autou III		le noe u	11419515 101	p manusse	
HbA ₂ (%)	TP	FN	FP	TN	LRP	NRP	Sn	Sp	YI
3.5	547	147	19	10	1.03	0.53	96.64	6.37	0.03
3.6	540	85	26	72	1.76	0.10	95.41	45.86	0.41
3.7	531	49	35	108	3.01	0.09	93.82	68.79	0.63
3.8	512	35	54	122	4.06	0.12	90.46	77.71	0.68
3.9	497	25	69	132	5.52	0.14	87.81	84.08	0.72
4.0	482	16	84	141	8.34	0.17	85.16	89.81	0.75
4.1	473	15	93	142	8.78	0.18	83.57	90.45	0.74
4.2	466	13	100	144	9.94	0.19	82.33	91.72	0.74
4.3	456	13	110	144	9.73	0.21	80.57	91.72	0.73
4.4	449	12	117	145	10.38	0.22	79.33	92.36	0.72
4.5	445	12	121	145	10.29	0.23	78.62	92.36	0.71

Table 2 Predictive value of evaluated indices of the ROC analysis for β -thalassemia.

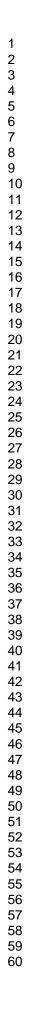

TP: true positive; FP: false positive; FN: false negative; TN: true negative; Likelihood Ratio positive (LRP): sensitivity \div (1 - Specificity), Likelihood Ratio Negative (NRP): (1 - Sensitivity)/specificity. Youden's index (YI), Sensitivity (Sn): True positive \div (true positive + false negative), Specificity (Sp): True negative \div (true negative + false positive).

Table 3 Characterization of 8 types of β -thalassemia and comparison (mean ± SD)								
Mutation (<i>n</i>)	Hb (g/L)	MCV (fl)	MCH (pg)	HbA (%)	HbA ₂ (%)			
CD 17 ¹ (125)	118.26±19.14	64.78±6.98	21.52±2.67	92.08±2.24	5.91±0.54			
CD 41-42 ² (108)	117.78±19.54	65.84±5.29	21.68±2.56	92.38±2.93	5.75±0.60			
CD 26 ³ (178)	133.04±16.67	76.99±4.52	26.06±1.55	70.67±2.28	3.87±0.44			
IVS-II-654 ⁴ (51)	116.57±19.11	64.81±3.93	21.17±1.06	93.06±1.62	5.55±0.45			
-28 ⁵ (11)	125.64±16.11	73.45±4.97	23.61±1.23	92.49±0.68	6.22±0.47			
CD 27-28 ⁶ (5)	106.00±18.61	68.54±2.26	22.22±0.59	88.56±5.09	5.28±0.56			
CD 71-72 7 (5)	108.80±8.58	64.64±2.60	21.14±0.82	92.76±0.56	5.92±0.29			
IVS-I- 1^{8} (3)	127.00±13.23	72.40±15.98	25.07±6.51	94.20±0.66	5.73±0.57			
Comparisons	1 versus 3	1 versus 3	1 versus 3	1 versus 3	1 versus 2			
(<i>p</i> <0.05)	2 versus 3	1 versus 5	1 versus 5	1 versus 4	1 versus 3			
	3 versus 4	2 versus 3	2 versus 3	2 versus 3	1 versus 4			
		2 versus 5	2 versus 5	3 versus 4	2 versus 3			
		3 versus 4	3 versus 4	3 versus 5	2 versus 4			
		3 versus 5	3 versus 5		2 versus 5			
		4 versus 5	4 versus 5		3 versus 4			
					3 versus 5			
				1	4 versus 5			

P value of significant differences (p < 0.05) between various 5 types of β -thalassemia

is listed ($n \ge 10$). Non-listed comparisons are not significant.

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

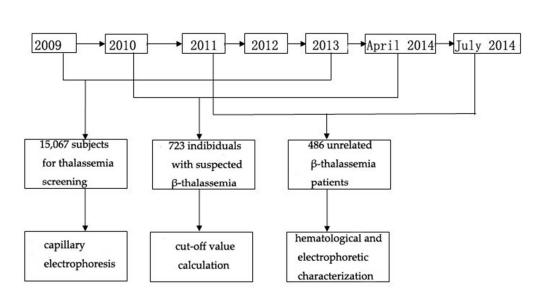


Figure 1 Flow diagram and participant numbers in this study. Capillary electrophoresis, cut-off value calculation, hematological and electrophoretic characterization of β -thalassemia mutation were three independent studies conducted during different time periods.

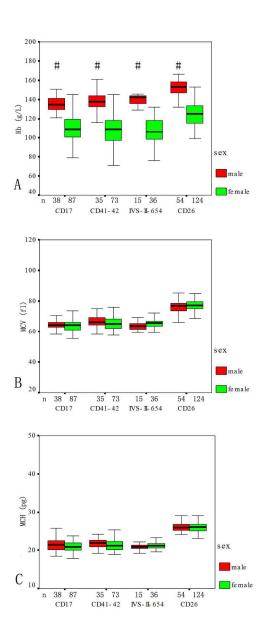
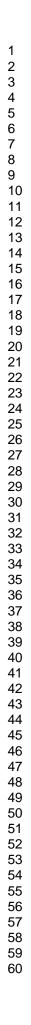



Figure 2 Hematological characterization of β -thalassemia according to sex. # Males have significantly higher Hb values (P < 0.05) than females. No differences were observed between genders for MCV and MCH. (n=486 total unrelated heterozygous β -thalassemia cases).

280x659mm (96 x 96 DPI)

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

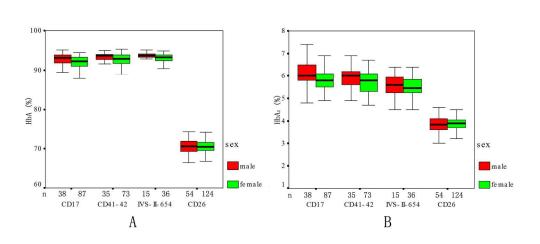
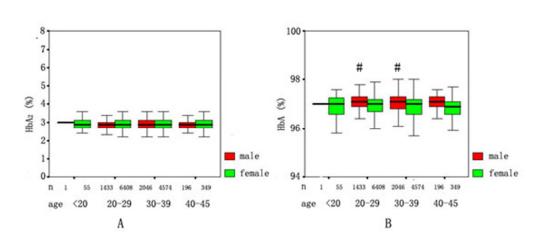
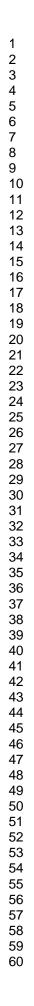
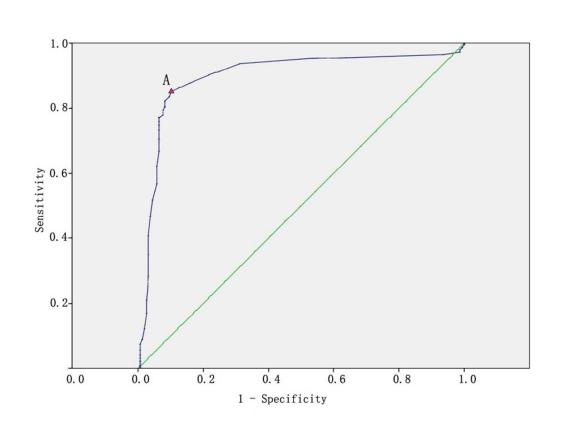
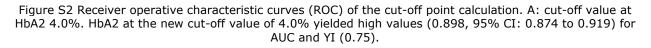


Figure 3 Electrophoretic characterization of β -thalassemia according to sex in the current study. No differences were observed between genders for Hb A and Hb A2. (n= 486 total unrelated heterozygous β -thalassemia).

532x227mm (96 x 96 DPI)


Figure S1 Distribution of HbA2 (A) and HbA (B) in all samples. The data distribution of HbA and HbA2 were measured according to age. # Males show significantly higher Hb A values (p <0.05) than females in three age group (18–45, 20–29, and 30–39 years). There was no significant differences in Hb A2 levels in all three age groups. The sample size of the other two age categories (<20, 40-45) were small, which was not suitable to compare.

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

282x222mm (72 x 72 DPI)

1 2

BMJ Open

Parameters	Sex	Age	n	Mean (%)	SD (%)	95% CI for r
HbA	Male	18–45	3675	96.95	0.74	96.93%-96.9
		<20	1	-	-	-
		20–29	1433	96.98	0.59	96.95%–97.0
		30–39	2045	96.92	0.85	96.88%–96.9
		40-45	196	97.02	0.50	96.95%–97.
	Female	18–45	11386	96.79	1.01	96.77%–96.
		<20	55	96.92	0.55	96.77-97.07
		20–29	6408	96.79	1.02	96.77%–96.
		30–39	4574	96.78	1.01	96.75%–96.
		40-45	349	96.71	0.95	96.61%–96.
	total	18–45	15061	96.83	0.96	96.81%–96.
HbA ₂	Male	18–45	3676	2.91	0.42	2.90%-2.92
		<20	1	- 0	-	-
		20–29	1433	2.90	0.34	2.88%-2.92
		30–39	2046	2.92	0.44	2.90%-2.94
		40-45	196	2.89	0.38	2.84%-2.95
	Female	18–45	11386	2.91	0.43	2.90%-2.92
		<20	55	2.91	0.42	2.89-2.91%
		20–29	6408	2.90	0.42	2.89%-2.91
		30–39	4574	2.92	0.45	2.90%-2.93
		40-45	349	2.95	0.47	2.90%-2.96
	total	18–45	15062	2.91	0.43	2.90%-2.92

SD: Standard Deviation; CI: confidence interval. Hb F was only detected in 29.08%

1

1 2 3	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 10	
8 9 10	
11 12 13 14	
15 16 17	
18 19 20 21 22	
21 22 23 24	
22 23 24 25 26 27 28	
28 29 30 31	
32 33 34	
32 33 34 35 36 37	
38 39 40 41	
42 43 44	
45 46 47 48	
48 49 50 51	
52 53 54	
55 56 57	
58 59 60	

Table S2 Characterization of 7 types of β -thalassemia according to sex (mean \pm SD)

Mutation	Sex (<i>n</i>)	Hb (g/L)	MCV (fl)	MCH (pg)	HbA (%)	HbA ₂ (%
CD 17	F (87)	110.30±16.12	64.86±7.96	21.54±3.01	91.80±2.43	5.83±0.5
CD 17	M (38)	136.47±11.55	64.62±4.00	21.46±1.66	92.74±1.55	6.11±0.5
CD 41-42	F (73)	108.71±15.50	65.39±5.76	21.23±1.96	92.04±3.04	5.66±0.5
CD 41-42	M (35)	137.57±11.71	66.82±5.85	22.56±3.74	92.87±2.68	5.87±0.6
CD 26	F (124)	125.18±11.90	77.09 ±4.74	26.01±1.63	70.64±2.24	3.88±0.4
CD 26	M (54)	151.11±11.07	76.76±4.01	26.18±1.33	70.74±2.37	3.86±0.4
IVS-II-654	F (15)	107.47±14.23	65.35±4.21	21.26±1.13	92.85 ± 1.74	5.53±0.4
IVS-II-654	M (36)	138.40±8.65	63.52±2.90	20.97±0.88	93.57±1.19	5.59±0.5
-28	F (10)	123.5±15.25	72.99±5.00	23.41 ± 1.09	92.49±0.72	6.15±0.4
-28	M (1)*	-		-	-	-
CD 27-28	F (5)	106.00±18.61	68.54±2.26	22.22±0.59	88.56±5.09	5.28±0.5
CD 27-28	M (0)*	-	- 7	-	-	-
CD 71-72	F (4)	105.50±5.07	63.15±2.69	21.45±0.50	92.60±0.50	5.80±0.1
CD 71-72	M (1)*	-	-		-	-

26 *: mean and standard deviation (SD) cannot be calculated (n < 3).

27	
28	
29	
30	
31	
32	
33	
34	

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No.	Recommendation	Page No.	Relevant text from manuscript
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2	
		(b) Provide in the abstract an informative and balanced summary of what was done and what was	2	
		found		
Introduction		O A		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3	
Objectives	3	State specific objectives, including any prespecified hypotheses	4	
Methods				
Study design	4	Present key elements of study design early in the paper	5	
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure,	5	
		follow-up, and data collection		
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of	5-6	
		participants. Describe methods of follow-up		
		Case-control study—Give the eligibility criteria, and the sources and methods of case		
		ascertainment and control selection. Give the rationale for the choice of cases and controls		
		Cross-sectional study-Give the eligibility criteria, and the sources and methods of selection of		
		participants		
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and	NA	
		unexposed		
		Case-control study—For matched studies, give matching criteria and the number of controls per		
		case		
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers.	NA	
		Give diagnostic criteria, if applicable		
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment	6-8	
measurement		(measurement). Describe comparability of assessment methods if there is more than one group		
Bias	9	Describe any efforts to address potential sources of bias	NA	
Study size	10	Explain how the study size was arrived at	5-6	
Continued on next page				
		1		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines	s xhtml	

 BMJ Open

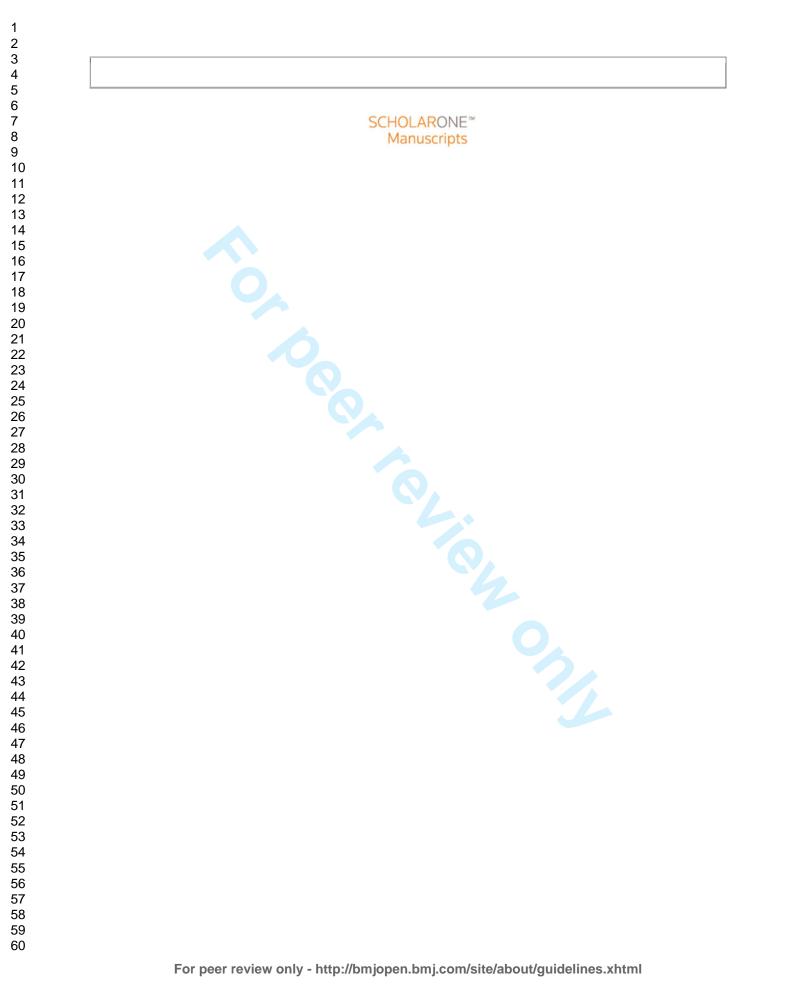
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6-8
Statistical	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	6-8
methods		(b) Describe any methods used to examine subgroups and interactions	6-8
		(c) Explain how missing data were addressed	NA
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	6-7
		Case-control study—If applicable, explain how matching of cases and controls was addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	7-8
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	8-9
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	25
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on	8-9
Ĩ		exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	NA
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	NA
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	NA
		Case-control study-Report numbers in each exposure category, or summary measures of exposure	NA
		Cross-sectional study—Report numbers of outcome events or summary measures	8-10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision	8-9
		(eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	NA
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Continued on next pag	ge		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

⊿0

Discussion		Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	8-10
Key results	18	Summarise key results with reference to study objectives	11-14
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss	12-13
		both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of	11
		analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	11
Other informat	tion		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the	15
		original study on which the present article is based	
		and Elaboration article discusses each checklist item and gives methodological background and published n conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmec /, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at w	licine.org/, Annals of Internal Medicine at
		n conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmec /, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at w	licine.org/, Annals of Internal Medicine at


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

BMJ Open

Hematological and electrophoretic characterization of β -thalassemia in Yunnan province of Southwestern China

·	
Journal:	BMJ Open
Manuscript ID	bmjopen-2016-013367.R2
Article Type:	Research
Date Submitted by the Author:	02-Dec-2016
Complete List of Authors:	Zhang, Jie; the First People's Hospital of Yunnan Province, Kunming 650032, People's Republic of China, Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases; Kunming University of Science Technology, Kunming 650032, People's Republic of China, Genetics Department He, Jing; the First People's Hospital of Yunnan Province, Kunming 650032, People's Republic of China, Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases; Kunming University of Science and Technology, Kunming 650032, People's Republic of China, Genetics Department Mao, Xiaoqin ; the First People's Hospital of Yunnan Province, Kunming 650032, People's Republic of China, Department of Clinical Laboratory Zeng, Xiaohong; the First People's Hospital of Yunnan Province, Kunming, People's Republic of China, Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases; Kunming University of Science and Technology, Kunming, People's Republic of China, Genetics Department Chen, Hong; the First People's Hospital of Yunnan Province, Kunming, People's Republic of China, Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases; Kunming University of Science and Technology, Kunming, People's Republic of China, Genetics Department Chen, Hong; the First People's Hospital of Yunnan Province, Kunming, People's Republic of China, Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases; Kunming University of Science and Technology, Kunming, People's Republic of China, Genetics Department Su, Jie; the First People's Hospital of Yunnan Province, Kunming, People's Republic of China, Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases; Kunming University of Science and Technology, Kunming, People's Republic of China, Genetics Department Zhu, Baosheng; the First People's Hospital of Yunnan Province, Kunming, People's Republi
Primary Subject Heading :	Genetics and genomics
Secondary Subject Heading:	Haematology (incl blood transfusion), Diagnostics
Keywords:	thalassemia, capillary electrophoresis, hematological and biochemical parameter values, mutation, cut-off value

Hematological and electrophoretic characterization of β -thalassemia in Yunnan province of Southwestern China

Jie Zhang,^{1,2} Jing He,^{1,2} Xiaoqin Mao,³ Xiaohong Zeng,^{1,2} Hong Chen,^{1,2} Jie Su,^{1,2}

Baosheng Zhu^{1,2}

ABSTRACT

Objectives: β -thalassemia is widely found in Southwestern China. Characterization of β -thalassemia can improve screening and prenatal diagnosis for at-risk populations. **Design:** A retrospective study.

Methods: In this study, the levels of HbA₂ and HbA were analyzed by gender for a total of 15,067 subjects screened by capillary electrophoresis. The cut-off value with the highest accuracy was established to identify β -thalassemia in 723 patients suspected to have this disease. Hematological and electrophoretic characterization of 8 common types of β -thalassemia were analyzed in 486 β -thalassemia subjects.

Results: HbA levels were significantly higher in males than in females, but there was no significant difference on HbA₂ levels. A new cut-off value for the diagnosis of β thalassemia (HbA₂ ≥4.0%) with the highest accuracy was proposed for the studied populations. Hb was significantly higher in males compared to females (p <0.05),

BMJ Open

whereas no statistically significant differences were found for MCV, MCH, HbA, and HbA₂. The HbE group showed comparatively higher values for hematological indices (Hb, MCV, and MCH) than the other genotypes in heterozygous β -thalassemia groups (p <0.05), and -28 (A>G) (HBB:c.-78A>C) had significantly higher HbA₂ values compared to other β -thalassemia.

Conclusions: Ethnic groups have diversified β -globin gene mutations and considerable hematologic variations. Our study will lay the foundation for screening programs and clinical management of thalassemia in Southwestern China.

Strengths and limitations of this study

- Ours is the first study to characterize β-thalassemia in the Yunnan province, which may be useful to improve screening and prenatal diagnosis in Southwestern China.
- Our study determined that a higher cut-off point of HbA₂ levels (HbA₂ \geq 4.0%) should be used for β -thalassemia screening, rather the current value of 3.5%.
- Samples for participants used for capillary electrophoresis, cut-off value calculation and characterization of β-thalassemia were not collected at the same time.

INTRODUCTION

 β -thalassemia is an inherited anemia resulting from genome variants in β -globin

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

chains. This disease is most prevalent in Africa, ¹ Asia, ² Mediterranean³ and the Middle-East.⁴ Quantification of hemoglobin A₂ (HbA₂) percentage by capillary electrophoresis and routine hematology testing are the existing methods for screening thalassemia and hemoglobinopathies.⁵ An HbA₂ value exceeding 3.5% combined with a low mean cell volume (MCV) and mean cell hemoglobin (MCH) are the current diagnostic criteria for β -thalassemia carriers. Determination of the hemoglobin concentration (Hb) and HbA₂ range in a population offers a critical screening tool for thalassemia.⁶⁻⁷ However, there are very few reports on the clinical reference intervals for β -thalassemia patients in China. Therefore, it is important to determine appropriate diagnostic cut-off points and supplement the existing references to improve the screening and control of β -thalassemia.

More than 800 different β -globin gene mutations have been discovered worldwide. Two subtypes are defined by totally absent (β^0) or partially reduced (β^+) production of normal β -chains, respectively. The severity of β -thalassemia varies with the thalassemia mutation, ranging from asymptomatic anemia to a severe transfusiondependent disorder. Populations in different regions have diversified β -globin gene mutations⁸ and the ability to identify and characterize these β -thalassemia mutations can assist in genetic counseling and prenatal diagnoses.⁹ In this study, we established an HbA₂ dataset for screening β -thalassemia in people of Southwestern China, and

BMJ Open

correlated these data to hematological and biochemical values to better understand thalassemia and to improve its control and prevention.

MATERIALS AND METHODS

Study design

In this study, we performed a retrospective analysis using capillary electrophoresis to determine the HbA₂ dataset, calculated the diagnostic criteria for β thalassemia and analyzed hematologic parameters to provide an additional characterization of this disease. There were three independent studies conducted during different time periods. The study design is shown in Figure 1.

Setting

This study was conducted in The First Peoples' Hospital of Yunnan Province. This hospital is located in the Jinbi road of Kunming city. It is a general hospital whose annual clinic amount exceeds 1.6 million people with 2000 beds.

Participants

Participants for three independent studies were collected during three different time periods. (1) A total of 15,067 subjects (3,678 men and 11,389 women, 18–45

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

years-of-age) who sought thalassemia screening during September 2011 to July 2014 had capillary electrophoresis performed. (2) Individuals (n=723) with suspected β thalassemia (HbA₂ \geq 3.5%) or abnormal hemoglobin variants were randomly selected from October 2010 to April 2014 (210 men and 513 women, 18–45 years-of-age) for cut-off value calculation. (3) Unrelated heterozygous β -thalassemia patients (n=486: 151 males and 335 females, 19–58 years-of-age), were included in the study to analyze hematological and biochemical parameters between June 2009 to April 2013. Written and informed consent were obtained from the patients. The information consent and protocol for these studies were approved by the medical ethics committee of The First Peoples' Hospital of Yunnan Province, PRC. The exclusion criteria were: (1) incomplete information, (2) consanguinity, (3) lack of informed consent, and (4) children (below the age of 18 years).

Capillary electrophoresis

Venous blood samples were collected from subjects (n=15,067) in tubes containing EDTA. Hemoglobin analysis was performed using capillary electrophoresis (Sebia, Paris, France). Internal quality control was performed by analyzing the control materials provided by the manufacturer. Mean comparisons were made among HbA₂ and HbA by gender, comparing male vs. female in each of three age groups: 18–45,

DNA extraction and detection of β-globin mutations

DNA was extracted from whole blood using the Blood DNA Extraction System (Tianlong Bioscience Shenzhen Ltd., Xian, China). Detection of 17 known β -globin gene mutations (97.3% of known β -thalassemia alleles in Chinese populations) for 723 individuals with suspected β -thalassemia or abnormal hemoglobin variants were performed by PCR-reverse dot-blot method as previously described.¹⁰ These 17 β -globin mutations are as follows: CD 41-42 (–TCTT), IVS-II-654 (C>T), -28 (A>G), CD 71/72 (+A), CD 17 (A>T), HbE (CD 26, G>A), CD 31 (–C), CD 27/28 (+C), CD 43 (G>T), -32 (C>A), -29 (A>G), 30 (T>C), CD 14/15 (+G), Cap +40 to +43 (– AAAC), Initiation CD (T>G), IVS-I-1 (G>T) and IVS-I-5 (G>T). Samples without detected mutations were sequenced on an ABI 3700 automated sequencer using primers that flanked the entire β -globin gene, as previously described.¹⁰

Cut-off value calculation

Sensitivity, specificity, Youden's index (YI), likelihood ratio positive (LRP), and likelihood ratio negative (NRP) of HbA₂ measurements within the interval of 3.5%–4.5% were evaluated. A receiver operating characteristic (ROC) analysis was

performed to calculate the area under the curve (AUC). In addition, we calculated the cut-off value with the greatest accuracy to identify β -thalassemia in our population.

Characterization of β-thalassemias

Complete blood counts were performed on 486 unrelated β -thalassemia heterozygous patients that were diagnosed in our center using an automated cell counter (Sysmex, Tokyo, Japan). Histograms and tables of descriptive statistics of Hb, MCV, MCH, HbA and HbA₂ were generated and compared by gender (n >15). Also, HbA, HbA₂, MCV, MCH and Hb were compared among different genotypes of β -thalassemia (n >10). Continuous variables were compared using ANOVA. For multiple comparisons, a *post hoc* analysis was used when appropriate. Duncan's multiple range test was used to decrease type I error rates. All reported p-values are two-sided and were statistically significant if p <0.05. All statistics in this study were computed with SPSS version 16 for Windows.

RESULTS

Subjects screened by capillary electrophoresis

The data distribution of HbA and HbA₂ measurements performed in the study is shown in Figure S1 and Table S1. The mean HbA among the subjects was 96.83%

(95% CI for mean: 96.81%–96.84%), while the mean HbA₂ was 2.91% (95% CI for mean: 2.90%–2.92%). Out of these subjects, the majority had HbA₂ levels ranging from 2.4 to 3.5% (95.45%, 14,382/15,067, while 337 cases (2.24%, 337/15,067) had HbA₂ levels <2.4%, and 348 cases (2.31%, 348/15,067) had HbA₂ levels >3.5%. Six subjects lacking an HbA band and five subjects without an HbA₂ band were identified. The HbF band was present in 4,381 subjects (29.08%, 4,381/15,067) with a mean percentage of 1.17% (95% CI for mean: 1.02%–1.33%). There were no significant differences in HbA₂ levels between male and female in each three age groups (18-45, 20-29 and 30-39) (Figure S1). However, HbA levels were significantly higher in males than in females in all three age groups (18-45, 20-29 and 30-39) (p <0.01) (Figure S1).

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright

Cut-off value calculation

Among the total 723 specimens investigated for β -globin gene mutations, twenty-two different mutations were found in 566 cases (78.28%, 566/723), with HbA₂ levels ranging from 1.8 to 7.9%. These included a total of 563 β -thalassemia heterozygotes, one HbE homozygosity, and two compound heterozygotes (Table 1). β -globin mutations were not detected in the remaining 237 subjects. Among β -thalassemia heterozygotes, HbA₂ values ranged from 1.8% to 4.0% in 69 of 566 subjects (69/566,

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

12.19%), while the majority (497/566, 87.81%) had HbA₂ values \geq 4.0%. The sensitivity, specificity, YI, LRP and NRP of each selected cut-off point in screening for β -thalassemia are summarized in Table 2. Regarding hematologic parameters, HbA₂ at the new cut-off value of 4.0% yielded high values (0.898, 95% CI: 0.874 to 0.919) for AUC and YI (0.75) (Figure S2). The new cut-off had the highest accuracy, with a sensitivity of 85.16% and a specificity of 89.81%, and is therefore a suitable discriminator for screening of β -thalassemia in this population. Using the currently established cut-off (HbA₂ \geq 3.5%) only yielded sensitivity and specificity values of 96.64% and 6.37%, respectively.

Hematological and electrophoretic characterization of β -thalassemia mutation

As shown in Tables 3 and S2, hematological and molecular characteristics of 486 unrelated heterozygous β -thalassemia mutations were demonstrated. The mean values for hematological and electrophoretic indices (HbA, HbA₂, Hb, MCV, and MCH) among participants with different genotypes of thalassemia are shown in Table 3. A significant difference between genders was observed for Hb, with males having higher Hb compared to the females (p <0.05), whereas no statistically significant differences were found for MCV, MCH, HbA, and HbA₂ values between the two genders (Figures 2 and 3). The HbE group showed comparatively higher values of hematological

BMJ Open

indices (Hb, MCV, and MCH) than the other four genotypes of heterozygous β -thalassemia groups, and -28 (A>G) (HBB:c.-78A>C) had significantly higher HbA₂ values compared to other β -thalassemias (Table 3).

DISCUSSION

 β -thalassemia is one of the most common genetic disorders worldwide, and each ethnic group has a mutation set with considerable hematologic variations. Clinical features and hematological parameters in β-thalassemia patients vary with race, lifestyle, and altitude. In China, CD 17 (A>T) (HBB:c.52A>T), CD 41-42 (-TCTT) (HBB:c.126_129delCTTT), -28 (A>G) (HBB:c.-78A>C), IVS-II-654 (C>T) (HBB:c.316-197C>T), HbE (CD 26, G>A) (HBB:c.79G>A) and CD 71/72 (+A) (HBB:c.216 217insA) mutations account for more than 90% of all β -thalassemia mutations in the Chinese population.¹¹ Characterization and screening of these mutations provides a database to aid in the prevention and control of thalassemia. Samples for participants used for capillary electrophoresis, cut-off value calculation and characterization of β -thalassemia were not collected at the same time and this is a limitation of this study. There are very few studies describing the detection and quantification of electrophoretic and hematological parameters for screening thalassemia in the Chinese population. Thus, our report is the first characterization of

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

 β -thalassemia mutations in people of Southwestern China and will serve as a key reference for this population.

The majority of individuals screened in this study were female, since patients seeking prenatal diagnosis and genetic counseling represent a large portion of the study participants. Six subjects lacking an HbA band and five subjects without an HbA₂ band were identified. Among these subjects, four were HbE homozygous, one was β -thalassemia/HbE compound heterozygous, and one had a hemoglobin variant mutation. HbA levels were significantly higher in male than female subjects in the three age groups (Figure S1). However, no significant difference was observed in HbA₂ in all age groups. In our study, most of the subjects (95.45%, 14,382/15,067) had HbA₂ levels that were within a narrow range (2,4%–3.5%), similar to previous observations in Nigerian patients.¹²

Carriers of β -thalassemia have increased HbA₂ values. Of the 723 subjects analyzed, the β -globin gene defect was identified in 78.28% of cases (566/723; range 1.8%–7.9%). One case without the β -globin mutation had the highest HbA₂ value (7.9%), which may be due to a hemoglobin variant co-eluting with HbA₂ peak.¹³ Only one case of β -thalassemia major was found in this study, which was due to the fact that children were excluded. The majority of β -thalassemia major patients die before reaching the age of 5.¹⁴

BMJ Open

Having an HbA₂ level greater than 3.5% is the current diagnostic criterion for the β -thalassemia trait,¹⁵ while values greater than 4.0% are also used to identify β -thalassemia carriers in some regions.¹⁶ In this study, a higher cut-off point of HbA₂ levels (HbA₂ \geq 4.0%) determined by ROC curves had the highest accuracy in identifying β -thalassemia carriers. This result differed from previous reports,¹⁷⁻¹⁹ which may be explained by regional differences in the spectrum and cut-off values for β -thalassemia mutations. In our study, most β -thalassemia mutations (497/566, 87.81%) had a mean HbA₂ exceeding 4.0%, while silent β -thalassemia mutations with near normal hematological indices and borderline HbA₂ values (3.5%–4.0%) were rare in our population. Therefore, the diagnostic thresholds should be increased for this population.

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

The cut-off point was established for all samples, including those from β thalassemia patients and those having abnormal hemoglobins. And Hb variant fraction could be easily screened by abnormal band for capillary electrophoresis.²⁰ In Yunnan, HbE (CD 26, G>A) (HBB:c.79G>A), an abnormal hemoglobin, is the most prevalent β -globin gene mutation (with a frequency of 30.5%),²¹ with comparatively lower HbA₂ values. Here, the mean percentage of HbA₂ in patients with HbE was 3.87±0.44, which was similar to that reported for Americans.²² HbE and other abnormal hemoglobins, such as CD 22 (A>C) (HBB:c.68A>C) (HbG-Coushatta), have been

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

reported to decrease the expression of HbA₂.²³ In this study, most β -thalassemia were characterized by increased HbA₂ values ranging from 4.3% to 6.6% (93.86%, 428/456).

Subjects with a β -globin mutation usually have lower Hb and erythrocyte indices compared to those without an identifiable mutation²⁴ and the clinical and hematological parameters in patients having β -thalassemia are widely variable.²⁵ This study was conducted in Kunming, the capital of Yunnan province, which has an altitude of 1,895 meters. Regional altitude differences are a contributing factor in the variation of these parameters, as high altitudes are known to elevate Hb values. Males had higher Hb values in all five genotype groups compared to females, whereas, no statistical sex-based significant differences were observed for MCV, MCH, HbA, and HbA₂ values. These results were similar to previously reported data.²⁶ HbE (CD 26, G>A) (HBB:c.79G>A) is clinically asymptomatic with minimal erythrocyte morphological abnormalities in heterozygous individuals; this type had the highest MCV, MCH, and Hb values in this study. Subjects with the -28 (A>G) (HBB:c.-78A>C) mutation (β^+ -thalassemia), a mutation in the TATA box of the proximal promoter region, had higher MCH, MCV, and HbA₂ values compared to other βthalassemia types (CD 17 (A>T) (HBB:c.52A>T), CD 41-42 (-TCTT) (HBB:c.126 129delCTTT), IVS-II-654 (C>T) (HBB:c.316-197C>T)). The -28 (A>G)

(HBB:c.-78A>C) phenotype is similar to other β -globin gene promoter mutations.²⁷

In conclusion, we offered a retrospective analysis of β -thalassemia that can be used for prenatal diagnosis, genetic counseling, thalassemia control and screening. Characterization of β -thalassemia and diagnostic thresholds for β -thalassemia can be used to identify patients more precisely.

Author affiliations

¹Genetic Diagnosis Center, Yunnan Provincial Key Laboratory For Birth Defects and Genetic Diseases, the First People's Hospital of Yunnan Province, Kunming 650032, Republic of China

²Genetics Department, Kunming University of Science and Technology

³Department of Clinical Laboratory, the First People's Hospital of Yunnan Province,

Kunming 650032, Republic of China

Contributors JZ and BSZ designed the experiments. JZ, XQM, JH and XHZ performed the experiments. JZ, HC, JS and BSZ analyzed the data. JZ Wrote the paper. All authors critically revised and approved the final manuscript.

Funding This work was sponsored by National Natural Science Foundation

(81260415), Natural Science Foundation of Yunnan Province (2011FB164), Great

scientific research project of Yunnan provincal education department (2015Z029) and

Natural Science Foundation of Yunnan Province (2011FB224). The authors declare no competing financial interests.

Competing interests None declared.

Ethics approval The protocol and information consent for this study were approved by the medical ethics committee of The First Peoples' Hospital of Yunnan Province in accordance with the Declaration of Helsinki.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work noncommercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http:// creativecommons.org/licenses/by-nc/4.0/.

REFERENCES

- 1. Atkinson SH, Uyoga SM, Nyatichi E, *et al.* Epistasis between the haptoglobin common variant and α^+ thalassemia influences risk of severe malaria in Kenyan children. *Blood* 2014;123:2008-16.
- 2. Tang W, Zhang C, Lu F, *et al.* Spectrum of α -thalassemia and β -

BMJ Open

	thalassemia mutations in the Guilin Region of southern China. Clin
	Biochem 2015;48:1068-72.
3.	Dell'Edera D, Epifania AA, Malvasi A, <i>et al</i> . Incidence of β -thalassemia carrier
	on 1495 couples in preconceptional period. J Matern Fetal Neonatal Med
	2013;26:445-8.
4.	Hadipour Dehshal M, Tabrizi Namini M, Ahmadvand A, et al. Evaluation of
	the national prevention program in iran, 2007-2009:
	the accomplishments and challenges with reflections on the path ahead.
	Hemoglobin 2014;38:179-87.
5.	Srivorakun H, Fucharoen G, Changtrakul Y, et al.
	Thalassemia and hemoglobinopathies in Southeast Asian newborns: diagnostic
	assessment using capillary electrophoresis system. Clin Biochem 2011;44:406-
	11.
6.	Nalbantoğlu B, Güzel S, Büyükyalçın V, et al. Indices used
	in differentiation of thalassemia trait from
	iron deficiency anemia in pediatric population: are they reliable? Pediatr
	Hematol Oncol 2012;29:472-8.
7.	Wang S, Zhang R, Xiang G, et al. Mutation screening for thalassaemia in the
	Jino ethnic minority population of Yunnan Province, Southwest China. BMJ

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Moatter T, Kausar T, Aban M, *et al.* Prenatal screening for β -thalassemia major

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

8.

reveals new and rare mutations in the Pakistani population. Int J

Hematol 2012;95:394-8.

Open 2015;5:e010047.

9. Chen JJ, Tan JA, Chua KH, *et al.* Non-invasive prenatal diagnosis using fetal DNA in maternal plasma: a preliminary study for identification of paternally-inherited alleles using single nucleotide polymorphisms. *BMJ*

Open 2015;5:e007648.

- Zhang J, He J, Zeng XH, *et al.* Genetic heterogeneity of β-globin gene in various geographic populations of Yunnan, southwestern China. PLoS ONE 2015;10:e0122956.
- 11. Tang W, Zhang C, Lu F, *et al.* Spectrum of α-thalassemia and βthalassemia mutations in the Guilin Region of southern China. *Clin Biochem*2015;48:1068-72.
- 12. Kotila TR, Adeyemo AA, Mewoyeka OO, *et al.* Beta thalassaemia trait in western Nigeria. *Afr Health Sci* 2009;9:46-8.
- Theodoridou S, Vyzantiadis T, Theodoridis T. Compound heterozygosity
 for hemoglobin E-Saskatoon and β-thalassemia. *J Obstet Gynaecol Res* 2010;36:
 1148.

BMJ Open

2	
3	
4	
5	
5	
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 3 4 5 6 7 8 9 10 11 2 3 3 4 5 6 7 8 9 10 11 2 3 3 4 5 6 7 8 9 10 11 2 3 3 4 5 6 7 8 9 10 11 2 2 3 2 4 5 2 6 7 2 8 9 0 3 1 2 3 3 4 5 3 3 3 3 3 3 3 3 3 3 3 4 5 6 7 8 9 0 1 1 2 2 3 2 4 5 6 7 8 9 0 1 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
7	
8	
g	
10	
10	
11	
12	
13	
10	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
~~	
23	
24	
25	
26	
20	
21	
28	
29	
30	
24	
31	
32	
33	
34	
25	
30	
36	
37	
38	
20	
39	
40	
41	
42	
43	
40	
44	
45	
46	
47	
47	
49	
50	
51	
50	
52	
53	
54	
55	
56	
57	
58	
59	
60	

14. Pan HF, Long GF, Li Q, *et al.* Current status of thalassemia in minority populations in Guangxi, China. *Clin Genet* 2007;71:419-26.

15. Zheng CG, Liu M, Du J, *et al.* Molecular spectrum of α - and β -

globin gene mutations detected in the population of Guangxi Zhuang Autonomous Region, People's Republic of China. *Hemoglobin* 2011;35:28-39.

- Mosca A, Paleari R, Ivaldi G, *et al.* The role of haemoglobin A(2) testing in the diagnosis of thalassaemias and related haemoglobinopathies. *J Clin Pathol* 2009;62:13–7.
- Mosca A, Paleari R, Galanello R, *et al.* New analytical tools and epidemiological data for the identification of HbA₂ borderline subjects in the screening for beta-thalassemia. *Bioelectrochemistry* 2008;73:137-40.
- Giambona A, Passarello C, Vinciguerra M, *et al.* Significance of borderline hemoglobin A₂ values in an Italian population with a high prevalence of βthalassemia. *Haematologica* 2008;93:380-4.
- Rangan A, Sharma P, Dadu T, *et al.* β-Thalassemia mutations in subjects with borderline HbA₂ values: a pilot study in North India. *Clin Chem Lab Med* 2011;49:2069-72.
- 20. Sae-ung N, Srivorakun H, Fucharoen G, *et al.* Phenotypic expression of hemoglobins A₂, E and F in various hemoglobin E related disorders. *Blood Cells*

Mol Dis 2012;48:11-6.

- 21. Zhang J, Zhu BS, He J, *et al.* The spectrum of α and β -thalassemia mutations in Yunnan Province of Southwestern China. *Hemoglobin* 2012;36:464-73.
- Mais DD, Gulbranson RD, Keren DF. The range of hemoglobin A₂ in hemoglobin E heterozygotes as determined by capillary electrophoresis. *Am J Clin Pathol* 2009;132:34-8.
- 23. Traeger-Synodinos J, Harteveld CL.

Advances in technologies for screening and diagnosis of hemoglobinopathies. *Biomark Med* 2014;8:119-31.

24. Bordbar E, Taghipour M, Zucconi BE.

Reliability of different RBC indices and formulas in discriminating between βthalassemia minor and other microcytic hypochromic cases. *Mediterr J Hematol Infect Dis* 2015;7:e2015022.

- Chen W, Zhang X, Shang X, *et al.* The molecular basis of beta-thalassemia intermedia in southern China: genotypic heterogeneity and phenotypic diversity. *BMC Med Genet* 2010;11:31.
- 26. Wu X, Zhao M, Pan B, et al.

Complete blood count reference intervals for healthy Han Chinese adults. PLoS

One 2015;10: e0119669.

1 2			
3 4 5	27. Al Zadjali S, Wali Y	Y, Al Lawatiya F, <i>et al</i> . The β-glob	in promoter -71 C>T
6 7 8	mutation is a β + that	alassemic allele. Eur J Haematol 2	011;87:457-60.
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60		y - http://bmjopen.bmj.com/site/al	

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

2
2
3
4
3 4 5 6 7 8 9 10 11
6
7
1
8
9
10
11
11
12
13
14
15
16
10
17
18
19
20
21
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
22
23
24
25
20
26
27
28
29
20
30
31
32
33
31
04
35
36
37
38
20
39
40
41
42
43
44
44
45
46
47
48
40
49
50
51
52
52
23
54
55
56
49 50 51 52 53 54 55 56 57 58 59 60
57
58
59
60

1

Table 1 Number of β -globin mutations found in this study.

Mutation	Туре	n	Number	Allele
			of Alleles	Frequency (%)
CD 17 (A>T) (HBB:c.52A>T)	β^0/β^A	166	166	29.04%
CD 41-42 (-TCTT) (HBB:c.126_129delCTTT)	β^0/β^A	145	146	26.26%
CD 26 (G>A) (HBB:c.79G>A)	β^+/β^A	107	110	19.13%
IVS-II-654 (C>T) (HBB:c.316-197C>T)	β^+/β^A	90	92	16.00%
-28 (A>G) (HBB:c78A>C)	β^+/β^A	20	20	3.48%
CD 71/72 (+A) (HBB:c.216_217insA)	β^0/β^A	12	12	2.09%
CD 27/28, +C (HBB:c.84_85insC)	β ⁰ /β ^A	7	7	1.22%
IVS-I-1 (G>T) (HBB:c.92+1G>T)	β+/β ^A	5	5	0.87%
IVS-I-5 (G>C) (HBB:c.92+5G>C)	β ⁺ /β ^A	1	1	0.17%
CD 5 (-CT) (HBB:c.17_18delCT)	β^0/β^A	1	1	0.17%
Hb Dieppe, CD 127 (A>G) (HBB:c.383A>G)	β^0/β^A	1	1	0.17%
Initiation CD (T>C) (HBB:c.2T>C)	β^0/β^A	1	1	0.17%
CD121 (G>T) (HBB:c.364G>T).	β^0/β^A	1	1	0.17%
-31 (A>C) (HBB:c81A>G)	β^+/β^A	1	1	0.17%
-29 (A>G) (HBB:c79A>G)	β^+/β^A	1	1	0.17%
CD 43 (G>T) (HBB:c.130G>T)	β^0/β^A	1	1	0.17%

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

CD 113 (T>A) (HBB:c.341T>A)	HbVar	1	1	0.17%
CD 22 (A>C) (HBB:c.68A>C)	HbVar	1	1	0.17%
CD 47 (G>A) (HBB:c.142G>A)	HbVar	1	1	0.17%
CD 41-42/IVS-II-654	β⁰/β⁰	1	-	-
IVS-II-654/CD 26	β^0/β^+	1	-	-
CD 26/CD 26	β^+/β^+	1	-	-
Total number of alleles	-	566	569	100

 $β^0$: production of β-globin chain is entirely eliminated; $β^+$: production of β-globin

chain is reduced; HbVar: hemoglobin variant.

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

1 2 3	
4 5 6 7	
7 8 9 1	0
1 1 1	1 2 3 4
1 1 1	5 6 7 8
2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3	9 0 1
2 2 2 2	2 3 4 5
2 2 2 2	6 7 8 9
3 3 3 3	0 1 2 3
3 3 3 3	4 5 6 7
3 4	9 0
4 4 4	2 3 4
4 4 4	6 7
4 5 5 5	9 0 1
5 5 5	3 4 5
5 5 5 6	9
0	0

14,510 = 11	curcurv	e varae	or evan	aatea III		le noe u	iiui y 515 101	p inunusse	
HbA ₂ (%)	TP	FN	FP	TN	LRP	NRP	Sn	Sp	YI
3.5	547	147	19	10	1.03	0.53	96.64	6.37	0.03
3.6	540	85	26	72	1.76	0.10	95.41	45.86	0.41
3.7	531	49	35	108	3.01	0.09	93.82	68.79	0.63
3.8	512	35	54	122	4.06	0.12	90.46	77.71	0.68
3.9	497	25	69	132	5.52	0.14	87.81	84.08	0.72
4.0	482	16	84	141	8.34	0.17	85.16	89.81	0.75
4.1	473	15	93	142	8.78	0.18	83.57	90.45	0.74
4.2	466	13	100	144	9.94	0.19	82.33	91.72	0.74
4.3	456	13	110	144	9.73	0.21	80.57	91.72	0.73
4.4	449	12	117	145	10.38	0.22	79.33	92.36	0.72
4.5	445	12	121	145	10.29	0.23	78.62	92.36	0.71

Table 2 Predictive value of evaluated indices of the ROC analysis for β -thalassemia.

TP: true positive; FP: false positive; FN: false negative; TN: true negative; Likelihood Ratio positive (LRP): sensitivity \div (1 - Specificity), Likelihood Ratio Negative (NRP): (1 - Sensitivity)/specificity. Youden's index (YI), Sensitivity (Sn): True positive \div (true positive + false negative), Specificity (Sp): True negative \div (true negative + false positive).

Table 3 Chara	cterization of 8 ty	pes of β-thalass	emia and compa	arison (mean ± S	D)
Mutation (<i>n</i>)	Hb (g/L)	MCV (fl)	MCH (pg)	HbA (%)	HbA ₂ (%)
CD 17 ¹ (125)	118.26±19.14	64.78±6.98	21.52±2.67	92.08±2.24	5.91±0.54
CD 41-42 ² (108)	117.78±19.54	65.84±5.29	21.68±2.56	92.38±2.93	5.75±0.60
CD 26 ³ (178)	133.04±16.67	76.99±4.52	26.06±1.55	70.67±2.28	3.87±0.44
IVS-II-654 ⁴ (51)	116.57±19.11	64.81±3.93	21.17±1.06	93.06±1.62	5.55±0.45
$-28^{5}(11)$	125.64±16.11	73.45±4.97	23.61±1.23	92.49±0.68	6.22±0.47
CD 27-28 ⁶ (5)	106.00±18.61	68.54±2.26	22.22±0.59	88.56±5.09	5.28±0.56
$CD 71-72^7 (5)$	108.80±8.58	64.64±2.60	21.14±0.82	92.76±0.56	5.92±0.29
IVS-I-1 ⁸ (3)	127.00±13.23	72.40±15.98	25.07±6.51	94.20±0.66	5.73±0.57
Comparisons	1 versus 3	1 versus 3	1 versus 3	1 versus 3	1 versus 2
(p <0.05)	2 versus 3	1 versus 5	1 versus 5	1 versus 4	1 versus 3
	3 versus 4	2 versus 3	2 versus 3	2 versus 3	1 versus 4
		2 versus 5	2 versus 5	3 versus 4	2 versus 3
		3 versus 4	3 versus 4	3 versus 5	2 versus 4
		3 versus 5	3 versus 5		2 versus 5
		4 versus 5	4 versus 5		3 versus 4
					3 versus 5
					4 versus 5

P value of significant differences (p <0.05) between various 5 types of β -thalassemia

is listed (n > 10). Non-listed comparisons are not significant.

Figure legends

Figure 1 Flow diagram and participant numbers in this study. Capillary electrophoresis, cut-off value calculation, hematological and electrophoretic characterization of β -thalassemia mutation were three independent studies conducted during different time periods.

Figure 2 Hematological characterization of β -thalassemia according to sex. # Males have significantly higher Hb values (p < 0.05) than females. No differences were observed between genders for MCV and MCH. (n=486 total unrelated heterozygous β -thalassemia cases).

Figure 3 Electrophoretic characterization of β -thalassemia according to sex in the current study. No differences were observed between genders for Hb A and Hb A₂. (n= 486 total unrelated heterozygous β -thalassemia).

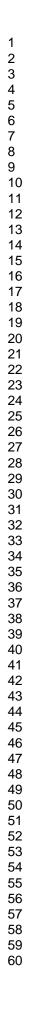

Figure S1 Distribution of HbA₂ (A) and HbA (B) in all samples. The data distribution of HbA and HbA₂ were measured according to age. # Males show significantly higher Hb A values (p <0.05) than females in three age group (18–45, 20–29, and 30–39 years). There was no significant differences in HbA₂ levels in all three age groups. The sample size of the other two age categories (<20, 40-45) were small, which was not suitable to compare.

Figure S2 Receiver operative characteristic curves (ROC) of the cut-off point

BMJ Open

calculation. A: cut-off value at HbA ₂ 4.0%. HbA ₂ at the new cut-off value of 4.0% yielded high values (0.898, 95% CI: 0.874 to 0.919) for AUC and YI (0.75).

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

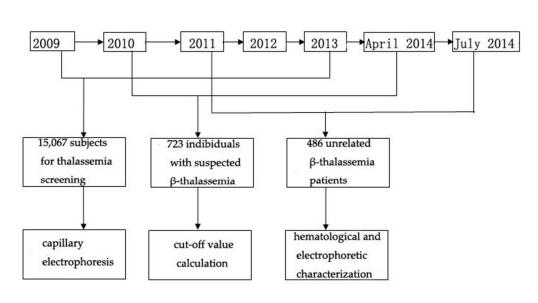


Figure 1 Flow diagram and participant numbers in this study. Capillary electrophoresis, cut-off value calculation, hematological and electrophoretic characterization of β -thalassemia mutation were three independent studies conducted during different time periods.

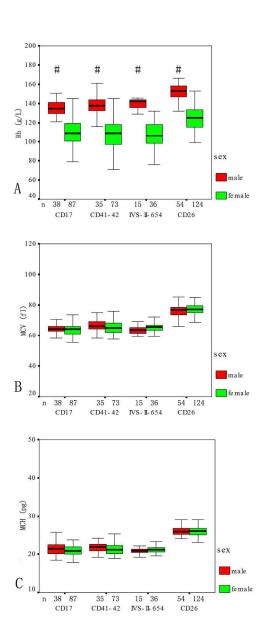
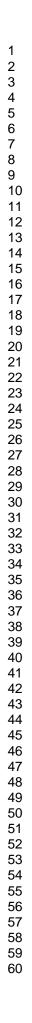



Figure 2 Hematological characterization of β -thalassemia according to sex. # Males have significantly higher Hb values (p < 0.05) than females. No differences were observed between genders for MCV and MCH. (n=486 total unrelated heterozygous β -thalassemia cases).

89x211mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

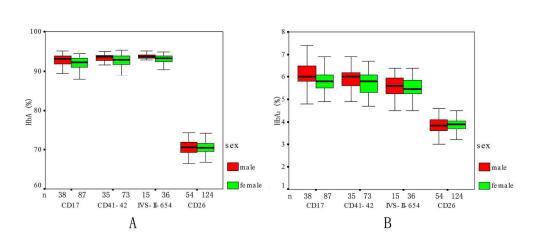


Figure 3 Electrophoretic characterization of β -thalassemia according to sex in the current study. No differences were observed between genders for Hb A and Hb A2. (n= 486 total unrelated heterozygous β -thalassemia).

170x72mm (300 x 300 DPI)

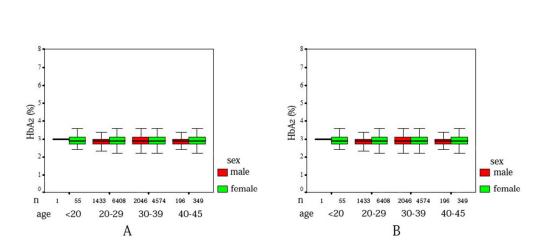
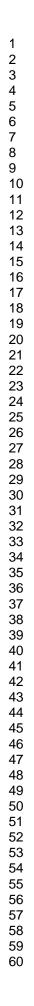
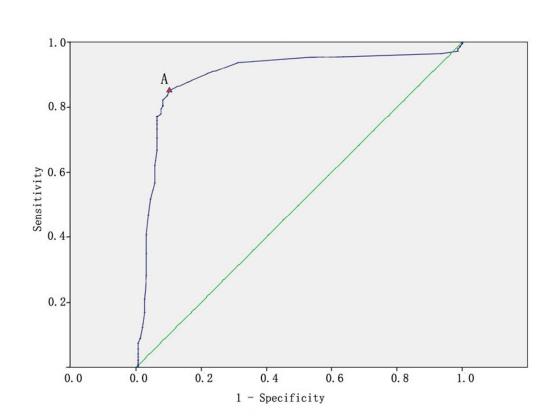
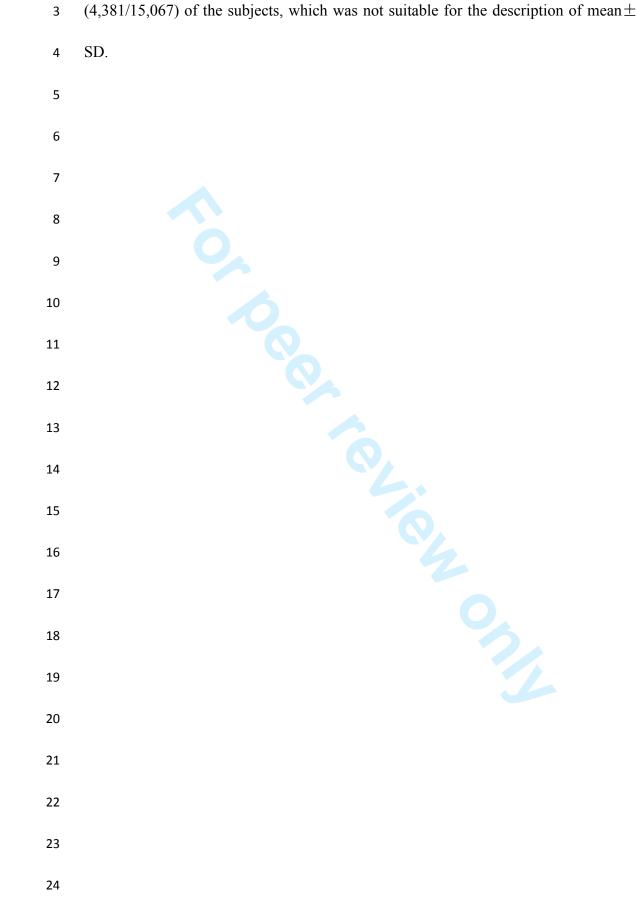





Figure S1 Distribution of HbA2 (A) and HbA (B) in all samples. The data distribution of HbA and HbA2 were measured according to age. # Males show significantly higher Hb A values (p <0.05) than females in three age group (18–45, 20–29, and 30–39 years). There was no significant differences in HbA2 levels in all three age groups. The sample size of the other two age categories (<20, 40-45) were small, which was not suitable to compare.

78x30mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.



67x53mm (300 x 300 DPI)

BMJ Open

Parameters	Sex	Age	n	Mean (%)	SD (%)	95% CI for n
HbA	Male	18–45	3675	96.95	0.74	96.93%-96.9
		<20	1	-	-	-
		20–29	1433	96.98	0.59	96.95%–97.0
		30–39	2045	96.92	0.85	96.88%–96.9
		40-45	196	97.02	0.50	96.95%–97.0
	Female	18–45	11386	96.79	1.01	96.77%–96.
		<20	55	96.92	0.55	96.77%-97.0
		20–29	6408	96.79	1.02	96.77%–96.
		30–39	4574	96.78	1.01	96.75%–96.8
		40-45	349	96.71	0.95	96.61%–96.8
	total	18–45	15061	96.83	0.96	96.81%-96.8
HbA ₂	Male	18–45	3676	2.91	0.42	2.90%-2.92
		<20	1	- 0	-	-
		20–29	1433	2.90	0.34	2.88%-2.92
		30–39	2046	2.92	0.44	2.90%-2.949
		40-45	196	2.89	0.38	2.84%-2.959
	Female	18–45	11386	2.91	0.43	2.90%-2.929
		<20	55	2.91	0.42	2.89%-2.91%
		20–29	6408	2.90	0.42	2.89%-2.919
		30–39	4574	2.92	0.45	2.90%-2.939
		40-45	349	2.95	0.47	2.90%-2.969
	total	18–45	15062	2.91	0.43	2.90%-2.92%

SD: Standard Deviation; CI: confidence interval. HbF was only detected in 29.08%

56 57 58

25	Table S2 Characterization	on of 7 types of β-thalassemi	a according to sex (mean \pm SD)
----	---------------------------	-------------------------------	------------------------------------

Mutation	Sex (n)	Hb (g/L)	MCV (fl)	MCH (pg)	HbA (%)	HbA ₂ (%)
CD 17	F (87)	110.30±16.12	64.86±7.96	21.54±3.01	91.80±2.43	5.83±0.52
CD 17	M (38)	136.47±11.55	64.62±4.00	21.46±1.66	92.74±1.55	6.11±0.54
CD 41-42	F (73)	108.71±15.50	65.39±5.76	21.23±1.96	92.04±3.04	5.66±0.57
CD 41-42	M (35)	137.57±11.71	66.82±5.85	22.56±3.74	92.87±2.68	5.87±0.65
CD 26	F (124)	125.18±11.90	77.09±4.74	26.01±1.63	70.64±2.24	3.88±0.45
CD 26	M (54)	151.11±11.07	76.76±4.01	26.18±1.33	70.74±2.37	3.86±0.43
IVS-II-654	F (15)	107.47±14.23	65.35±4.21	21.26±1.13	92.85±1.74	5.53±0.42
IVS-II-654	M (36)	138.40±8.65	63.52±2.90	20.97±0.88	93.57±1.19	5.59±0.53
-28	F (10)	123.5±15.25	72.99±5.00	23.41±1.09	92.49±0.72	6.15±0.44
-28	M (1)*	-	-	-	-	-
CD 27-28	F (5)	106.00±18.61	68.54±2.26	22.22±0.59	88.56±5.09	5.28±0.56
CD 27-28	M (0)*	-	- 72	-	-	-
CD 71-72	F (4)	105.50±5.07	63.15±2.69	21.45±0.50	92.60±0.50	5.80±0.14
CD 71-72	M (1)*	-	-	-2	-	-

*: mean and standard deviation (SD) cannot be calculated (n < 3).

27		
28		
29		
30		
31		
32		
33		
34		

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No.	Recommendation	Page No.	Relevant text from manuscript
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2	
		(b) Provide in the abstract an informative and balanced summary of what was done and what was	2	
		found		
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3	
Objectives	3	State specific objectives, including any prespecified hypotheses	4	
Methods				
Study design	4	Present key elements of study design early in the paper	5	
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure,	5	
		follow-up, and data collection		
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of	5-6	
		participants. Describe methods of follow-up		
		Case-control study—Give the eligibility criteria, and the sources and methods of case		
		ascertainment and control selection. Give the rationale for the choice of cases and controls		
		Cross-sectional study-Give the eligibility criteria, and the sources and methods of selection of		
		participants		
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and	NA	
		unexposed		
		Case-control study-For matched studies, give matching criteria and the number of controls per		
		case		
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers.	NA	
		Give diagnostic criteria, if applicable		
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment	6-8	
measurement		(measurement). Describe comparability of assessment methods if there is more than one group		
Bias	9	Describe any efforts to address potential sources of bias	NA	
Study size	10	Explain how the study size was arrived at	5-6	
Continued on next page				
		1		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines	s vhtml	

 BMJ Open

Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6-8
Statistical	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	6-8
methods		(b) Describe any methods used to examine subgroups and interactions	6-8
		(c) Explain how missing data were addressed	NA
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	6-7
		Case-control study—If applicable, explain how matching of cases and controls was addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	7-8
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	8-9
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	25
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on	8-9
-		exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	NA
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	NA
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	NA
		Case-control study-Report numbers in each exposure category, or summary measures of exposure	NA
		Cross-sectional study—Report numbers of outcome events or summary measures	8-10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision	8-9
		(eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were	
		included	
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time	NA
		period	
Continued on next pag	e		
		2	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	8-10
Discussion			
Key results	18	Summarise key results with reference to study objectives	11-14
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss	12-13
		both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of	11
		analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	11
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the	15
		original study on which the present article is based	
*Give informatio	n sep	arately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups	in cohort and cross-sectional studies.

checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Interna http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-013367 on 31 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.