BMJ Open

Case characteristics among Middle East Respiratory Syndrome Coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to 2015

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-011865
Article Type:	Research
Date Submitted by the Author:	12-Mar-2016
Complete List of Authors:	Alhamlan, fatimah; King Faisal Specialist Hospital and Research Center, Department of Infection and Immunity Majumder , Maimuna; Massachusetts Institute of Technology, Engineering Systems Division Brownstein, John; Children's Hospital Boston, CHIP Hawkins, Jared; Children\'s Hospital Boston, HealthMap Alabdely , Hail; Ministry of Health , Public Health Alzahrani, Abdulaziz; Ministry of Health , Public Health Obaid, Dalia; King Faisal Specialist Hospital and Research Center, Department of Infection and Immunity Al-Ahdal, Mohammed; king Faisal Specialist Hospital, Department of Infection and Immunity BinSaeed, Abdulaziz; Ministry of Health, Public Health
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Epidemiology, Global health, Public health
Keywords:	INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES, Respiratory infections < THORACIC MEDICINE

SCHOLARONE[™] Manuscripts Page 1 of 25

BMJ Open

1	Case characteristics among Middle East Respiratory Syndrome	
2	Coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to	
3	2015	
4	Alhamlan F.S., ^{1,2*} Majumder M.S., ^{3,4} Brownstein J.S., ⁴ Hawkins J., ⁴ Al-Abdely H.M, ⁵ Alzahrani	
5	A., ⁵ Obaid D.A., ¹ Al-Ahdal M.N., ^{1,2,6} BinSaeed A., ⁵	
6	¹ Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh,	
7	Saudi Arabia	
8	² College of Medicine, Alfaisal University, Riyadh, Saudi Arabia	
9	³ Engineering Systems Division, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA	
10	⁴ HealthMap, Boston Children's Hospital, Boston, Massachusetts, USA	
11	⁵ Public Health Division, Ministry of Health, Riyadh, Saudi Arabia	
12	⁶ Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center,	
13	Riyadh, Saudi Arabia	
14		
15	Riyadh, Saudi Arabia	
16	Running Title: MERS outbreak/non-outbreak cases in Saudi Arabia	
17	Keywords: Middle East Respiratory Syndrome, MERS-CoV, Emerging Infectious Disease,	
18	Saudi Arabia	
19	Word Count: 1908	
20		
	*Corresponding author. Tel.: 966 11 442 7865, Fax: 966 1 442 4519. Email address: <u>falhamlan@kfshrc.edu.sa</u> ; (Fatimah S. Alhamlan)	

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Abstract

Objectives: As of November 01, 2015, the Saudi Ministry of Health had reported 1273 cases of MERS; among these cases, which included nine outbreaks at several hospitals, 717 (56%) patients recovered, 14 (1%) remain hospitalized, and 543 (43%) died. This study aimed to determine the epidemiologic, demographic, and clinical characteristics that distinguished cases of MERS contracted during outbreaks from those contracted sporadically (i.e., non-outbreak) between 2012 and 2015 in Saudi Arabia. Design: Data from the Saudi Ministry of Health of confirmed outbreak and non-outbreak cases of MERS-CoV infections from September 2012 through October 2015 were abstracted and analysed. Univariate and descriptive statistical analyses were conducted, and the time between disease onset and confirmation, onset and notification, and onset and death were examined. Results: A total of 1250 patients (aged 0 to 109 years; mean, 50.825 years) were reported infected with MERS coronavirus (CoV). Approximately two-thirds of all MERS cases were diagnosed in men for both outbreak and non-outbreak cases. Healthcare workers comprised 22% of all MERS cases for both outbreak and non-outbreak cases. Nosocomial infections comprised one-third of all Saudi MERS cases; however, nosocomial infections occurred more frequently in outbreak than non-outbreak cases (p < .001). Patients contracting MERS during an outbreak were significantly more likely to die of MERS (p < 0.001). **Conclusions:** To date, nosocomial infections have fuelled MERS outbreaks. Given that the Kingdom of Saudi Arabia is a worldwide religious travel destination, localized outbreaks may have massive global implications and effective outbreak preventive measures are needed.

Strengths and limitations of this study

> Confirmed outbreak and non-outbreak cases of Middle East respiratory syndrome • (MERS) corona virus infections in Saudi Arabia from September 2012 through October 2015 reported to the Saudi Ministry of Health (MOH) were abstracted and analysed.

- This is the first report to retrieve the epidemiologic, demographic, and clinical characteristics of MERS data from this database and analyse these data using univariate and descriptive statistical analyses.
- However, major leadership changes in the Saudi MOH during the study period led to alterations in the data collection forms as well as the surveillance system.
- These alterations caused some inconsistencies in the data acquired from the Saudi MOH database.

BMJ Open

54	Introduction
55	Following the isolation of a previously unknown coronavirus (CoV) from the sputum of a 60-
56	year-old man in 2012, ¹ 1,618 laboratory-confirmed cases of Middle East respiratory syndrome
57	(MERS) have been reported throughout 26 countries, with 579 cases resulting in death. ² The vast
58	majority of these 26 countries reported MERS cases after experiencing an exportation event from
59	the Arabian Peninsula. ^{3, 4} Most cases to date have occurred in Saudi Arabia, followed by South
60	Korea, which experienced an outbreak of MERS after the return of an infected businessman who
61	had been traveling in Middle East. ⁵
62	The exact zoonotic source of MERS-CoV and its mode of transmission in humans remain
63	unclear. Although related sequences have been detected in several bat species, ⁶ MERS-CoV has
64	not been isolated from bats. However, MERS-CoV has been isolated from dromedary camels. A
65	high rate of seronositivity has been confirmed in the camels of the Arabian Peninsula, with no

high rate of seropositivity has been confirmed in the camels of the Arabian Peninsula, with no evidence of MERS-CoV infection detected in cows, goats, or sheep.⁷⁻¹⁰ One study isolated the full MERS-CoV genome sequences from a dromedary camel and from a patient who died of laboratory-confirmed MERS-CoV infection after close contact with camels; the two isolates were identical. According to serologic data, MERS-CoV had been circulating in the camel-but not in the patient-before human infection occurred, suggesting that MERS-CoV had been transmitted to the patient via the infected camel.¹¹

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Whether MERS-CoV is new to camel or human populations or whether it has been present but undetected for years remains unknown. Nonetheless, MERS-CoV was initially regarded primarily as a zoonotic pathogen, with only limited documentation of person-to-person transmission. However, MERS outbreaks of varying sizes have since occurred across Saudi

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

Arabia; additionally, apparent cases of sustained secondary transmission have occurred in family
 clusters^{12, 13} and healthcare facilities.^{14, 15}

Much remains unknown about MERS, including risk factors associated with MERS-CoV transmissions in both outbreak and non-outbreak settings. Here, we aimed to increase our understanding of the spread and mode of transmission of MERS-CoV by comparing the epidemiologic, demographic, and clinical characteristics of outbreak and non-outbreak MERS-CoV infections from September 2012 to October 2015 as reported to the Saudi Arabian Ministry of Health (MOH).

85 Materials and Methods

Demographic and clinical data were obtained through the use of standardized contact tracing forms populated by the public health database maintained by the MOH Command & Control Center (CCC). According to the CCC, a confirmed MERS-CoV case is defined as a suspected case with laboratory confirmation of MERS-CoV infection. A suspected case of MERS-CoV in adults (>14 years) is defined as follows: (I) acute respiratory illness with clinical or radiological evidence of pneumonia or acute respiratory distress syndrome; (II) a hospitalized patient with healthcare-associated pneumonia based on clinical and radiological evidence; (III) upper or lower respiratory illness within 2 weeks of exposure to a confirmed or probable case of MERS-CoV infection; or (IV) unexplained acute febrile illness ($\geq 38^{\circ}$ C) presenting with body aches, headache, diarrhoea, or nausea/vomiting, with or without respiratory symptoms, and with leucopenia.

99	Data and Statistical Analyses
100	All data collected were stored and analysed using SAS (version 9.4) software. Univariate and
101	descriptive statistics were conducted to estimate proportions. Associations between age and two
102	variables (gender and death) were assessed using a χ^2 test. Chi-square analysis using Yates'
103	correction was performed on the dataset to compare case characteristics among outbreak and
104	non-outbreak cases. Distributions of time between onset and confirmation, onset and notification,
105	and onset and death (among patients that died) were also determined for both outbreak and non-
106	outbreak cases. All reported p values are two-tailed and were considered to be statistically
107	significant at p < 0.05.
108	
109	Results
110	Distribution of Confirmed MERS-CoV Cases over Time in Saudi Arabia
111	The prevalence of MERS-CoV was highest in the Riyadh region with (46.91%) of the total
112	reported cases, followed by the Jeddah (21%), AlAhsa (5.69%), AlMadinah Almonowarah
113	(4.81%), Eastern (4.73%), AlTaif (4.33%), and Makkah (3.29%) regions. The remaining regions
114	comprised 9.14% of the total reported cases (Figure 1). More than 31% of all confirmed cases of
115	MERS-CoV in Saudi Arabia were reported in May and April of 2014. The highest number of
116	outbreaks was reported to have occurred in May and April of 2014, the second highest in
117	September 2015, and the third highest in February and March of 2015.
118	
119	Demographic Characteristics
120	During the study period, a total of 1250 patients from 0 to 109 years old were reported as
121	infected with MERS-CoV in Saudi Arabia. MERS-CoV was prevalent among individuals who
	5

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

122	were 30 years or older; by contrast, individuals who were 26 years or younger exhibited very low
123	incidence. The distribution of age for all reported cases was approximately normal, with a mean
124	of 50.825 years and a standard deviation of 19.494 years. MERS-CoV was more prevalent in
125	males (64.77% of total reported cases) than in females. Females had an average age of 48 years
126	(SD, 19 years), with a minimum of zero and maximum of 90 years. Males had an average age of
127	52 years (SD, 19 years), with a minimum of zero and a maximum of 109 years (Table 1). We
128	found a significant association between age and gender ($\chi^2 = 15.22$; p < 0.01) and between
129	gender and death for patients diagnosed with MERS-CoV ($\chi^2 = 12.75$; p < 0.01).

Table 1. Patient characteristics in Middle East respiratory syndrome infection cases reported in

Demographic characteristics (n)	Frequency	Percentage
Age in years (1244)		
0-10	41	3.30
11-25	63	8.36
26-39	292	31.83
40-109	848	68.17
Gender (1246)		
Female	439	35.23
Male	807	64.77
Occupational status (172)		
Employed	22	12.79
Unemployed	40	23.26
Retired	31	21.51
Private	37	18.02
Other	42	24.42
Main reason for testing (1247)		
Healthcare worker	249	19.97
Household	138	11.07
Suspect	860	68.97
Healthcare worker (1244)		
Yes	275	22.11
No	969	77.89
Does the patient raise camels? (205)		
Yes	29	14.15
No	176	85.85
During the 14 days before the patient became sick, did he/she travel inside Saudi Arabia? (205)	outside or	
Yes	195	95.12
No	10	4.88

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1				
2 3		No	37	8.22
4 5		Did the patient visit any healthcare facilities during the 14 days before onset of symptoms? (245)		
6 7 8		Yes No Unknown	98 109 38	40 44.49 15.51
9 10 11		Does the patient smoke? (205) Yes No	36 169	17.56 82.44
12 13		Is the patient diabetic? (278) Yes No	220 58	79.14 20.86
14 15		Did the patient die before October 2015? (1250) Yes No	535 715	42.80 57.20
16 17	132			
18 19 20	133			
21 22 23	134	Supplementary Table 1 presents the nationalities of patient	nts diagnose	d with MERS-CoV
23 24 25	135	in Saudi Arabia. Most patients were Saudi (66%), followed by Fi	ilipino (10.9	9%), Indian
26 27	136	(3.99%), and Yemeni (3.69%) nationalities.		
28 29 30	137			
30 31 32	138			
33 34	139	Univariate Analysis for Outbreak Versus Non-outbreak Case	es	
35 36 37	140	Univariate analysis revealed that older individuals—namely, the	se older than	the mean age of
38 39	141	50.825 years—represented a larger than expected fraction of out	oreak than of	f non-outbreak cases
40 41 42	142	($p < 0.001$; Table 2). The prevalence of MERS-CoV infections a	mong men w	vas comparable for
42 43 44	143	both outbreak and non-outbreak cases ($p = 0.239$; Table 2). Simi	larly, approx	imately two-thirds
45 46	144	of all Saudi MERS diagnoses occurred among Saudi nationals fo	r both outbro	eak and non-
47 48 49	145	outbreak cases ($p = 0.558$; Table 2). Healthcare workers comprise	ed 22% of a	ll confirmed Saudi
49 50 51	146	MERS cases for both outbreak and non-outbreak cases ($p = 0.92$)	0; Table 2).	However,
52 53	147	nosocomial infections, which comprised one-third of all confirme	ed Saudi ME	ERS cases, occurred
54 55 56 57 58	148	much more frequently among outbreak cases than among non-ou	tbreak cases	(p < 0.001).
58 59 60		7		

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

149 Patients that became infected during outbreaks were more likely to die of MERS than those

150 infected during non-outbreak conditions (p < 0.001).

151 Of the patients reporting data on camel exposure, 17% of the 123 non-outbreak cases and 152 10% of the 81 outbreak cases indicated that they owned or raised camels; this difference was not 153 statistically significant.

Table 2. Characteristics of patients with confirmed Middle East respiratory syndrome

155 coronavirus infection in the Kingdom of Saudi Arabia from 2012 to 2015 evaluated by outbreak

	Outbreak cases N = 485		Non-outbreak cases $N = 765$		χ^2	
	n	%	n	%		
Age (years)						
≥51	281	58	362	47	12.66	<0
<51	204	42	401	52	12.00	
unknown (UNK)	0	12	2	52		
	Ŭ					
Sex						
Male	323	67	484	63	1.39	0.
Female	160	33	279	36		
UNK	2		2			
Nationality						
Saudi	331	68	509	67	0.34	0.
Non-Saudi	153	32	255	33	0.34	0.
UNK	100	32	1	33		
UNK	1		1			
Healthcare worker (I	HCW)					
Yes	108	22	167	22	0.01	0
No	375	77	594	77		
UNK	2		4			
Patient hospitalized	prior to opport of N	EBS ourmateme (no	a a a a mial infactio	n)		
Yes	193	40	220	29	15.84	<(
No	292	40 60	545	71	13.04	~(
NU	292	00	545	/1		
Reason for testing (mode of transmiss	ion)				
Suspect	357	74	503	66	22.85	<(
HCŴ	99	20	150	20		
Household	27	6	110	14		
UNK	2		2			
Reason for testing (symptoms present	ed)				
Group 1	107	22	288	28	100.84	<0
Group 2	96	20	65	8	100.01	~(
Group 3	11	20	35	5		
Group 4	140	29	288	28		
Group 5	128	26	85	11		
Group 6	120	0	3	0		
UNK	2	v	1	0		
Outcome						
	045	E 1	290	38	18.76	<(
Deceased Alive	245 240	51 49	290 475	38 6%	18.70	<(

156 versus non-outbreak conditions

Yates' correction was used for all chi-square calculations.

Distributions of Time between Onset and the Confirmation, Notification, and Death Average time from onset to confirmation was 6.6 days for outbreak cases and 11.9 days for non-outbreak cases. For outbreak cases and non-outbreak cases, the average time from onset to notification was 5.3 days and 9.2 days, respectively. Among patients that died, the average time from onset to death was 15.6 days for outbreak cases and 19.5 days for non-outbreak cases. All three distributions were long-tailed, and non-outbreak cases were skewed further right (Figures 2-5). Discussion Using the Saudi MOH CCC public health dataset on MERS cases reported to have occurred from September 2012 to September 2015, we found three factors distinguishing outbreak and non-outbreak cases: (1) Patients older than the mean age of 51 years represented a larger than expected fraction of outbreak than of non-outbreak cases, (2) nosocomial infections occurred much more frequently among outbreak cases than among non-outbreak cases, and (3) patients infected during outbreaks were more likely to die of MERS-CoV infection than those infected during non-outbreak conditions (Table 2). Given that age was associated with death, it is worth noting that the third factor may be explained in part by the over-representation of older individuals among the outbreak cases. Although age was also associated with gender, we found that the proportion of male MERS-CoV infections was approximately two-thirds for both outbreak and non-outbreak cases (Table 2). However, the general over-representation of men is consistent with many previous studies showing predominantly male MERS-CoV patients.^{3, 16, 17}

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Our results also showed that healthcare workers comprised 22% of all Saudi MERS cases diagnosed up to October 2015 (Table 2). This percentage is in agreement with a 2014 World Health Organization (WHO) report stating that 109 of the 402 (approximately 25%) reported MERS-CoV infections in the Jeddah (Saudi Arabia) 2014 outbreak occurred in healthcare workers.¹⁶ Areas neighbouring Saudi Arabia, including the city of Al-Ain in the United Arab Emirates, also reported MERS-CoV infections in 16 healthcare workers out of 23 total cases.¹⁷ Additionally, during the large South Korean outbreak in 2015, 14% of the infected cases were in healthcare workers.⁵ Another 2014 WHO report stated that most person-to-person MERS-CoV infections likely occurred in healthcare settings.¹⁸ We found that nosocomial transmissions comprised one-third of all Saudi MERS-CoV cases reported to date. Importantly, these nosocomial infections

191 occurred more frequently in outbreak cases than in non-outbreak cases, suggesting that

nosocomial infections fuelled outbreaks (Table 2). The first outbreak in Al-Hasa, Saudi Arabia,
(2013) provided valuable information about MERS-CoV transmission in a healthcare setting.
The outbreak started in a haemodialysis unit of a private hospital in Al-Hasa, but subsequently
spread to three other hospitals. Phylogenetic analysis of the outbreak showed that only eight of
the epidemiologic transmissions were related, indicating multiple zoonotic introductions of

197 MERS-CoV.¹⁸

To date, MERS-CoV has been detected in camels from Saudi Arabia, Oman, Qatar,
Jordan, and Kenya,^{7, 8, 10, 19, 20} and it has been shown that humans can acquire MERS-CoV
directly from dromedary camels.²¹ Because camel exposure data (i.e., whether the patient owned
or raised camels) were gathered for only 204 of the 1250 cases in the database used by this study,
we did not include this information in Table 2. Nonetheless, we found that 17% of the 123 non-

Page 11 of 25

BMJ Open

outbreak cases and 10% of the 81 outbreak cases reporting data on camel exposure indicated that the patients owned or raised camels. Although this difference was not statistically significant, this result suggested that camel exposure, and thus zoonotic transmission, might be more common among sporadic, non-outbreak cases than among outbreak cases. A full analysis of this relationship will require more vigilant collection of camel exposure data. This study was limited by the information available in the Saudi MOH CCC public health dataset on MERS-CoV infections that were reported to have occurred between September 2012 and October 2015. The surveillance system and data collection forms were inconsistent over the years during which these data were acquired, likely due to major leadership changes in the MOH. The outbreak cases have thus far been confirmed faster than non-outbreak cases.

indicating that improved future surveillance may allow for faster identification of sporadic cases (Figure 5).

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Conclusions

Although it has been three years since MERS-CoV was first identified in humans, cases continue to occur in household and healthcare settings, though our results indicated that most person-to-person transmissions involved healthcare-associated infections. Nosocomial outbreaks likely begin when a primary patient seeks care and then escalate due to insufficient implementation of scalable infection control measures. Our results indicate that the best way to control MERS-CoV infections may be to block its spread by practicing rigorous infection control measures in hospitals. Therefore, strengthening of infection control measures in healthcare settings will be critical to the prevention of future outbreaks.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4	226	Footnotes
5 6	227	Acknowledgments: We are grateful to the Ministry of Health staff who helped in data
7 8 9 10 11 12 13 14 15 16	228	collection.
	229	Contributors: FA is the study PI and wrote the manuscript. MM developed the study design and
	230	conducted the analyses. JH interpreted the results. JB reviewed the study design. DO performed
	231	the statistical analyses. HA, AA, and ABS acquired patient demographic and clinical data from
17 18 10	232	the Saudi Ministry of Health database. MA participated in interpreting the clinical results and
19 20 21	233	reviewed the manuscript. All authors participated in critical revision of the manuscript and
22 23	234	approved the final version.
24 25 26	235	Funding: This study was supported in part by a grant from King Abdulaziz City for Science and
27 28 29 30 31 32 33 34 35	236	Technology (15/3171).
	237	Competing interests: None declared.
	238	Ethical approval: This study was approved by the Office of Research Affairs of King Faisal
	239	Specialist Hospital and Research Centre (KFSH&RC RAC #2130 033) and the Ministry of
36 37 29	240	Health in Riyadh, Saudi Arabia, and included a waiver of informed consent. Informed consent
38 39 40	241	was waived because this study involved a retrospective evaluation of publicly available data, the
41 42	242	data collection was anonymous, and no patient identity was revealed.
43 44 45	243	Data sharing: No additional data available.
46 47	244	
48 49	245	
50 51 52	246	
53 54	247	
55 56 57	248	
57 58 59		
60		12

1 2 3 4	249	References
5 6	250	1. Zaki AM, van Boheemen S, Bestebroer TM, et al. Isolation of a novel coronavirus from a man
7 8 9 10 11 12 13	251	with pneumonia in Saudi Arabia. <i>N Engl J Med</i> 2012;367:1814–20.
	252	2. World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV).
14 15	253	2015. www.who.int/emergencies/mers-cov/en/ (accessed 17 October 2015).
16 17	254	3. Bermingham A, Chand MA, Brown CS, et al. Severe respiratory illness caused by a novel
18 19	255	coronavirus, in a patient transferred to the United Kingdom from the Middle East,
20 21 22	256	September 2012. Euro Surveill 2012;17:20290.
23 24	257	4. Breban R, Riou J, Fontanet A. Interhuman transmissibility of Middle East respiratory
25 26	258	syndrome coronavirus: estimation of pandemic risk. Lancet 2013;382:694–9.
27 28 29 30 31 32 33 34 35 36	259	5. Majumder MS, Kluberg SA, Mekaru SR, et al. Mortality risk factors for Middle East
	260	respiratory syndrome outbreak, South Korea, 2015. Emerg Infect Dis 2015;21:2088–90.
	261	6. Memish ZA, Mishra N, Olival KJ, et al. Middle East respiratory syndrome coronavirus in
	262	bats, Saudi Arabia. Emerg Infect Dis 2013;19:1819–23.
37 38	263	7. Reusken CB, Haagmans BL, Muller MA, et al. Middle East respiratory syndrome coronavirus
39 40	264	neutralising serum antibodies in dromedary camels: a comparative serological study.
41 42 43	265	<i>Lancet Infect Dis</i> 2013;13:859–66.
44 45	266	8. Reusken CB, Ababneh M, Raj VS, et al. Middle East respiratory syndrome coronavirus
46 47 48	267	(MERS-CoV) serology in major livestock species in an affected region in Jordan, June to
48 49 50	268	September 2013. Euro Surveill 2013;18:20662.
50 51 52	269	9. Corman VM, Jores J, Meyer B, et al. Antibodies against MERS coronavirus in dromedary
53 54 55	270	camels, Kenya, 1992-2013. Emerg Infect Dis 2014;20:1319-22.
55 56 57		
58 59		
60		13

Page 14 of 25

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

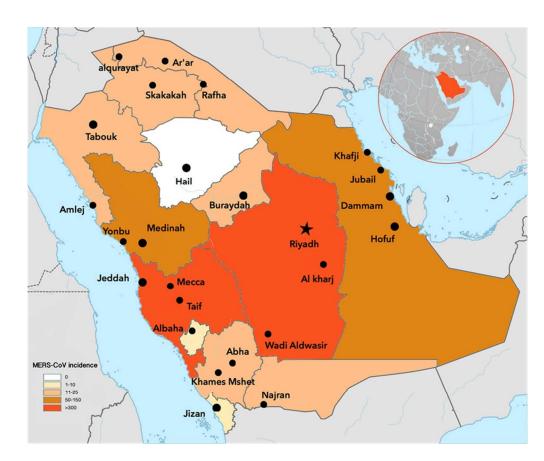
3 4	27
5 6 7	27
8 9	27
10 11	27
12 13 14	27
15 16	27
17 18 19	27
19 20 21	27
22 23	27
24 25 26	28
20 27 28	28
29 30	28
31 32 33	28
34 35	28
36 37	28
38 39 40	28
41 42	28
43 44 45	28
43 46 47	28
48 49	29
50 51 52	29
52 53 54	29
55 56	
57 58	
59 60	

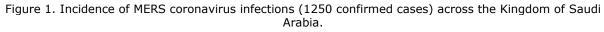
1 2

271	10. Meyer B, Muller MA, Corman VM, et al. Antibodies against MERS coronavirus in
272	dromedary camels, United Arab Emirates, 2003 and 2013. Emerg Infect Dis
273	2014;20:552–9.

274 11. Azhar EI, El-Kafrawy SA, Farraj SA, *et al.* Evidence for camel-to-human transmission of 275 MERS coronavirus. *N Engl J Med* 2014;370:2499–505.

- 12. Memish ZA, Zumla AI, Al-Hakeem RF, *et al.* Family cluster of Middle East respiratory
 syndrome coronavirus infections. *N Engl J Med* 2013;368:2487–94.
- 278 13. Omrani AS, Matin MA, Haddad Q, *et al.* A family cluster of Middle East respiratory
 279 syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild
 280 case. *Int J Infect Dis* 2013;17:e668–72.
- 281 14. Tsiodras S, Baka A, Mentis A, *et al.* A case of imported Middle East respiratory syndrome
 282 coronavirus infection and public health response, Greece, April 2014. *Euro Surveill* 283 2014;19:20782.


284 15. Hijawi B, Abdallat M, Sayaydeh A, *et al.* Novel coronavirus infections in Jordan, April 285 2012: epidemiological findings from a retrospective investigation. *East Mediterr Health J* 286 2013;19(Suppl 1):S12–8.


- 16. World Health Organization. WHO concludes MERS-CoV mission in Saudi Arabia. Geneva:
 World Health Organization. www.who.int/emergencies/mers-cov/en/2014 (accessed 20
 October 2015).
- 290 17. European Centre for Disease Prevention and Control. Severe respiratory disease associated
 291 with Middle East respiratory syndrome coronavirus (MERS-CoV) Stockholm: European
 292 Centre for Disease Prevention and Control. 2014.

293	18. Assiri A, McGeer A, Perl TM, et al. Hospital outbreak of Middle East respiratory syndrome
294	coronavirus. N Engl J Med 2013;369:407–16.
295	19. Hemida MG, Perera RA, Wang P, et al. Middle East respiratory syndrome (MERS)
296	coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013. Euro
297	Surveill 2013;18:20659.
298	20. Raj VS, Farag EA, Reusken CB, et al. Isolation of MERS coronavirus from a dromedary
299	camel, Qatar, 2014. Emerg Infect Dis 2014;20:1339-42.
300	21. Memish ZA, Cotten M, Meyer B, et al. Human infection with MERS coronavirus after
301	exposure to infected camels, Saudi Arabia, 2013. Emerg Infect Dis 2014;20:1012-5.
202	
302	
303	
304	
305	
306	
307	
308	
309	
505	
310	
311	
	15
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
	 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

1 2		
2 3 4 5	312	Figure legends
6 7	313	Figure 1. Incidence of MERS coronavirus infections (1250 confirmed cases) across the
8 9 10	314	Kingdom of Saudi Arabia.
11 12 13	315	Figure 2. Epidemiologic curve showing the number of cases of MERS-CoV infection and
14 15	316	various patient characteristics in the Kingdom of Saudi Arabia by month and year of
16 17 18	317	confirmation. HCW, healthcare worker.
19 20 21	318	Figure 3. Histogram of the time from disease onset to MERS-CoV confirmation for outbreak
22 23 24	319	and non-outbreak cases. Average time from onset to confirmation was 6.6 days for outbreak
25 26	320	cases and 11.9 days for non-outbreak cases.
27 28 29	321	Figure 4. Histogram of time from disease onset to notification for outbreak and non-outbreak
30 31	322	cases. Average time from onset to notification was 5.3 days for outbreak cases and 9.2 days for
32 33 34 35	323	non-outbreak cases.
36 37	324	Figure 5. Histogram of time from onset to death for outbreak and non-outbreak in those cases
38 39	325	ending in death. Average time from onset to death among patients that died was 15.6 days for
40 41 42	326	outbreak cases and 19.5 days for non-outbreak cases
43 44		outoreak cases and 17.5 days for non-outoreak cases
45 46		
47		
48 49		
49 50		
51		
52		
53 54		
54 55		
56		
57		
58 59		

60

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

86x72mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

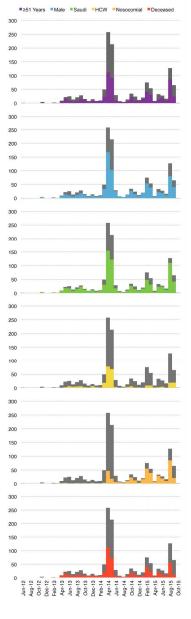


Figure 2. Epidemiologic curve showing the number of cases of MERS-CoV infection and various patient characteristics in the Kingdom of Saudi Arabia by month and year of confirmation. HCW, healthcare worker.

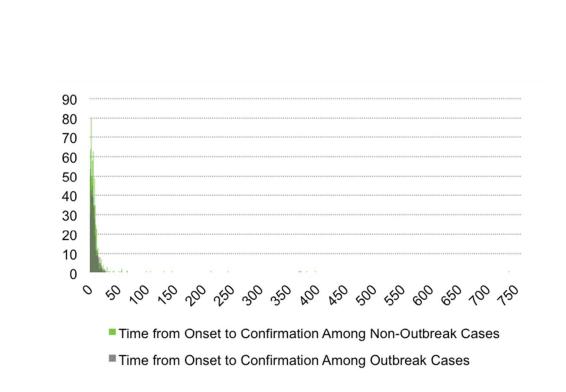


Figure 3. Histogram of the time from disease onset to MERS-CoV confirmation for outbreak and nonoutbreak cases. Average time from onset to confirmation was 6.6 days for outbreak cases and 11.9 days for non-outbreak cases.

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

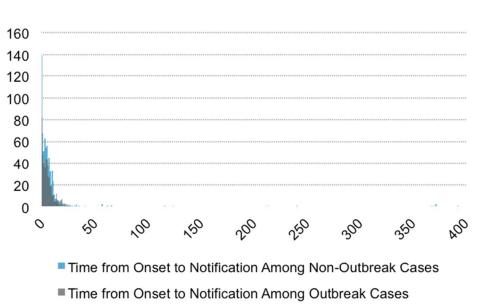
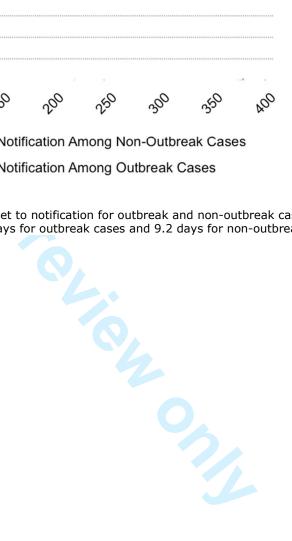



Figure 4. Histogram of time from disease onset to notification for outbreak and non-outbreak cases. Average time from onset to notification was 5.3 days for outbreak cases and 9.2 days for non-outbreak cases.

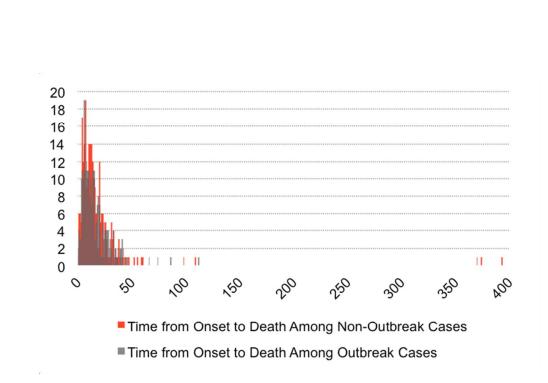


Figure 5. Histogram of time from onset to death for outbreak and non-outbreak in those cases ending in death. Average time from onset to death among patients that died was 15.6 days for outbreak cases and 19.5 days for non-outbreak cases

Supplementary Table1. Nationalities for patients who were diagnosed with MERS-CoV virus in Saudi Arabia

	Natio	onality		
Nationality	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Australia	1	0.08	1	0.08
Azerbaijan	1	0.08	2	0.17
Bangladesh	19	1.59	21	1.76
Chad	1	0.08	22	1.85
Egypt	33	2.77	55	4.61
Eritrea	3	0.25	58	4.87
Ethiopia	1	0.08	59	4.95
India	47	3.94	106	8.89
Indonesia	6	0.50	112	9.40
Jordan	7	0.59	119	9.98
Kuwait	1	0.08	120	10.07
Lebanon	4	0.34	124	10.40
Malaysia	6	0.50	130	10.91
Morocco	1	0.08	131	10.99
Myanmar	5	0.42	136	11.41
Pakistan	18	1.51	154	12.92
Palestine	18	1.51	172	14.43
Philippines	131	10.99	303	25.42
Saudi Arabia	788	66.11	1091	91.53
Somalia	2	0.17	1093	91.69
South Africa	3	0.25	1096	91.95
Sri Lanka	1	0.08	1097	92.03
Sudan	22	1.85	1119	93.88
Syrian Arab Republic	24	2.01	1143	95.89
Tunisia	1	0.08	<mark>1144</mark>	95.97
Turkey	1	0.08	<mark>1145</mark>	96.06
United Kingdom	1	0.08	1146	96.14
United States	2	0.17	1148	96.31
Yemen	44	3.69	1192	100.00
	Frequency	Missing =	68	

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Page #
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title	2
		or the abstract	
		(b) Provide in the abstract an informative and balanced summary of	2
		what was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation	3-4
-		being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4-5
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	4-5
1		methods of selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources	
		and methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	
		number of exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and	
		the number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	5-9
		confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of	4-5
measurement	0	methods of assessment (measurement). Describe comparability of	, .
		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	NA
Study size	10	Explain how the study size was arrived at	4-5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	4-5
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	4-5
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was	
		addressed	
		<i>Case-control study</i> —If applicable, explain how matching of cases and	
		controls was addressed	
		Cross-sectional study—If applicable, describe analytical methods	
		cross sectional stady in applicable, describe analytical methods	

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

 <page-header> (e) Describe any sensitivity analyses

For peer review only - http://bmjopen?bmj.com/site/about/guidelines.xhtml

Results			Page #
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	5
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	5-6
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	5-6
		Case-control study—Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study-Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	6-9
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	6-9
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	11-12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	12
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	9
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	12
Other informati	ion		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	12
c		applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Case characteristics among Middle East Respiratory Syndrome Coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to 2015

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-011865.R1
Article Type:	Research
Date Submitted by the Author:	29-May-2016
Complete List of Authors:	Alhamlan, fatimah; King Faisal Specialist Hospital and Research Center, Department of Infection and Immunity Majumder , Maimuna; Massachusetts Institute of Technology, Engineering Systems Division Brownstein, John; Children's Hospital Boston, CHIP Hawkins, Jared; Children\'s Hospital Boston, HealthMap Alabdely , Hail; Ministry of Health , Public Health Alzahrani, Abdulaziz; Ministry of Health , Public Health Obeid, Dalia; King Faisal Specialist Hospital and Research Center, Department of Infection and Immunity Al-Ahdal, Mohammed; king Faisal Specialist Hospital, Department of Infection and Immunity BinSaeed, Abdulaziz; Ministry of Health, Public Health
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Epidemiology, Global health, Public health
Keywords:	INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES, Respiratory infections < THORACIC MEDICINE

SCHOLARONE[™] Manuscripts

1 2		
2 3	1	Case characteristics among Middle East Respiratory Syndrome
4 5	-	Suse characteristics among tindule Lust Respiratory Synarome
6 7	2	Coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to
8 9 10	3	2015
10 11 12	4	
13 14		
15 16	5	Running Title: MERS outbreak/non-outbreak cases in Saudi Arabia
17 18 19	6	Keywords: Middle East Respiratory Syndrome, MERS-CoV, Emerging Infectious Disease,
20 21 22	7	Saudi Arabia
23		
24 25	8	Word Count: 1908
26		
27 28	9	
29		
30 31	10	
32 33		
34	11	
35 36		
37 38	12	
39		
40 41	13	
42		
43 44	14	
45 46		
47	15	
48 49		
50	16	
51 52		
53 54	17	
55		
56 57	18	
58		
59 60		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	19	Abstract
5 6	20	Background:
7 8	21	As of November 01, 2015, the Saudi Ministry of Health has reported 1273 cases of MERS;
9 10	22	among these cases, which include nine outbreaks at different hospitals, 717 (56%) patients have
11	23	recovered, 14 (1%) remain hospitalized, and 543 (43%) have died. Here, we determine the
12 13	24	epidemiologic, demographic, and clinical characteristics that distinguish cases of MERS
14 15	25	contracted during outbreaks from those contracted sporadically (i.e. non-outbreak) between 2012
16 17	26	and 2015 in Saudi Arabia.
18 19	27	Methods:
20	28	We abstracted and analyzed the data of confirmed outbreak and non-outbreak cases of MERS-
21 22	29	CoV infections from September 2012 through October 2015 using data acquired from the Saudi
23 24	30	Ministry of Health. Univariate and descriptive statistical analyses were conducted, and time
25 26	31	between disease onset and confirmation, onset and notification, and onset and death were
27	32	examined.
28 29	33	Results:
30 31	34	We determined that 1250 patients (aged 0 to 109 years; mean, 50.825 years) were reported
32 33	35	infected with MERS coronavirus (CoV). Approximately two-thirds of all MERS cases were
34 35	36	diagnosed in men for both outbreak and non-outbreak cases. Healthcare workers comprised 22%
36 37	37	of all MERS cases for both outbreak and non-outbreak cases. Nosocomial infections comprised
38	38	one-third of all Saudi MERS cases; however, nosocomial infections occurred more frequently in
39 40	39	outbreak than non-outbreak cases (p < .001). Patients contracting MERS during an outbreak
41 42	40	were significantly more likely to die of MERS ($p < 0.001$).
43 44	41	Conclusion:
45	42	To date, nosocomial infections have fueled MERS outbreaks. Given that the Kingdom of Saudi
46 47	43	Arabia is a worldwide religious travel destination, localized outbreaks may have massive global
48 49	44	implications and effective outbreak preventive measures are needed.
50 51	45	
52 53 54 55	46	
56 57 58 59	47	
60		2
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

48	Introduction
49	Following the isolation of a previously unknown coronavirus (CoV) from the sputum of a 60-
50	year-old man in 2012 [1], 1,618 laboratory-confirmed cases of Middle East respiratory syndrome
51	(MERS) have been reported throughout 26 countries, with 579 cases resulting in death [2]. The
52	vast majority of these 26 countries reported MERS cases after experiencing an exportation event
53	from the Arabian Peninsula [3,4]. Most cases to date have occurred in Saudi Arabia, followed by
54	South Korea, which experienced an outbreak of MERS after the return of an infected
55	businessman who had been traveling in Middle East [5].
56	The exact zoonotic source of MERS-CoV and its mode of transmission in humans remain
57	unclear. Although related sequences have been detected in several bat species [6], MERS-CoV
58	has not been isolated from bats. However, MERS-CoV has been isolated from dromedary
59	camels. A high rate of seropositivity has been confirmed in the camels of the Arabian Peninsula,
60	with no evidence of MERS-CoV infection detected in cows, goats, or sheep [7-10]. One study
61	isolated the full MERS-CoV genome sequences from a dromedary camel and from a patient who
62	died of laboratory-confirmed MERS-CoV infection after close contact with camels; the two
63	isolates were identical. According to serologic data, MERS-CoV had been circulating in the
64	camel—but not in the patient—before human infection occurred, suggesting that MERS-CoV
65	had been transmitted to the patient via the infected camel [11].
66	Whether MERS-CoV is new to camel or human populations or whether it has been
67	present but undetected for years remains unknown. Nonetheless, MERS-CoV was initially
68	regarded primarily as a zoonotic pathogen, with only limited documentation of person-to-person

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

69 transmission. However, MERS outbreaks of varying sizes have since occurred across Saudi

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

Arabia; additionally, apparent cases of sustained secondary transmission have occurred in family
clusters [12,13] and healthcare facilities [14,15].

Much remains unknown about MERS, including risk factors associated with MERS-CoV transmissions in both outbreak and non-outbreak settings. Here, we aimed to increase our understanding of the spread and mode of transmission of MERS-CoV by comparing the epidemiologic, demographic, and clinical characteristics of outbreak and non-outbreak MERS-CoV infections from September 2012 to October 2015 as reported to the Saudi Arabian Ministry of Health (MOH).

79 Materials and Methods

Demographic and clinical data were obtained through the use of standardized contact tracing forms populated by the public health database maintained by the MOH Command & Control Center (CCC). According to the CCC, a confirmed MERS-CoV case is defined as a suspected case with laboratory confirmation of MERS-CoV infection. A suspected case of MERS-CoV in adults (>14 years) is defined as follows: (I) acute respiratory illness with clinical or radiological evidence of pneumonia or acute respiratory distress syndrome; (II) a hospitalized patient with healthcare-associated pneumonia based on clinical and radiological evidence; (III) upper or lower respiratory illness within 2 weeks of exposure to a confirmed or probable case of MERS-CoV infection; or (IV) unexplained acute febrile illness ($\geq 38^{\circ}$ C) presenting with body aches, headache, diarrhea, or nausea/vomiting, with or without respiratory symptoms, and with leucopenia.

93	Data and Statistical Analyses
94	All data collected were stored and analyzed using SAS (version 9.4) software. Univariate and
95	descriptive statistics were conducted to estimate proportions. Associations between age and two
96	variables (gender and death) were assessed using a χ^2 test. Chi-square analysis using Yates'
97	correction was performed on the dataset to compare case characteristics among outbreak and
98	non-outbreak cases. Distributions of time between onset and confirmation, onset and notification,
99	and onset and death (among patients that died) were also determined for both outbreak and non-
100	outbreak cases. All reported p values are two-tailed and were considered to be statistically
101	significant at p < 0.05.
102	
103	Results
104	Distribution of Confirmed MERS-CoV Cases over Time in Saudi Arabia
105	The prevalence of MERS-CoV was highest in the Riyadh region with (46.91%) of the total
106	reported cases, followed by the Jeddah (21%), AlAhsa (5.69%), AlMadinah Almonowarah
107	(4.81%), Eastern (4.73%), AlTaif (4.33%), and Makkah (3.29%) regions. The remaining regions
108	comprised 9.14% of the total reported cases (Figure 1). More than 31% of all confirmed cases of
109	MERS-CoV in Saudi Arabia were reported in May and April of 2014. The highest number of
110	outbreaks was reported to have occurred in May and April of 2014, the second highest in
111	September 2015, and the third highest in February and March of 2015.
112	
113	Demographic Characteristics
114	During the study period, a total of 1250 patients from 0 to 109 years old were reported as
115	infected with MERS-CoV in Saudi Arabia. MERS-CoV was prevalent among individuals who
	5

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

116	were 30 years or older; by contrast, individuals who were 26 years or younger exhibited very low
117	incidence. The distribution of age for all reported cases was approximately normal, with a mean
118	of 50.825 years and a standard deviation of 19.494 years. MERS-CoV was more prevalent in
119	males (64.77% of total reported cases) than in females. Females had an average age of 48 years
120	(SD, 19 years), with a minimum of zero and maximum of 90 years. Males had an average age of
121	52 years (SD, 19 years), with a minimum of zero and a maximum of 109 years (Table 1). We
122	found a significant association between age and gender ($\chi^2 = 15.22$; p < 0.01) and between
123	gender and death for patients diagnosed with MERS-CoV ($\chi^2 = 12.75$; p < 0.01).

Table 1. Patient characteristics in Middle East respiratory syndrome infection cases reported in the Kingdom of Saudi Arabia from 2012 to 2015

Demographic characteristics (n)	Frequency	Percentage
Age in years (1244)		
0-10	41	3.30
11-25	63	8.36
26-39	292	31.83
40-109	41 63 292 848 439 807 22	68.17
Gender (1246)		
Female	439	35.23
Male	807	64.77
Occupational status (172)		
Employed	22	12.79
Unemployed	40	23.26
Retired	31	21.51
Private	37	18.02
Other	42	24.42
Main reason for testing (1247)		
Healthcare worker	249	19.97
Household	138	11.07
Suspect	860	68.97
Healthcare worker (1244)		
Yes	275	22.11
No	969	77.89
Does the patient raise camels? (205)		
Yes	29	14.15
No	176	85.85
During the 14 days before the patient became sick, did he/she travel or inside Saudi Arabia? (205)	utside or	
Yes	195	95.12
No	10	4.88
Was the patient hospitalized when a positive result was obtained? (450	0)	
Yes	413	91.78
6		

1								
2 3		No	37	8.22				
4 5		Did the patient visit any healthcare facilities during the 14 days before onset of						
6 7 8		symptoms? (245) Yes No Unknown	98 109 38	40 44.49 15.51				
9 10 11		Does the patient smoke? (205) Yes No	36 169	17.56 82.44				
12 13		Is the patient diabetic? (278) Yes No	220 58	79.14 20.86				
14 15		Did the patient die before October 2015? (1250) Yes No	535 715	42.80 57.20				
16 17	126		110	01.20				
18 19 20	127							
21 22 23	128	Supplementary Table 1 presents the nationalities of patients diagnosed with MERS-CoV						
23 24 25	129	in Saudi Arabia. Most patients were Saudi (66%), followed by Filipino (10.99%), Indian						
26 27	130	(3.99%), and Yemeni (3.69%) nationalities.						
28 29 30	131							
31 32	132							
33 34 35	133	Univariate Analysis for Outbreak Versus Non-outbreak Case	5					
36 37	134	Univariate analysis revealed that older individuals—namely, those older than the mean age of						
38 39	135	50.825 years—represented a larger than expected fraction of outbreak than of non-outbreak cases						
40 41 42	136	($p < 0.001$; Table 2). The prevalence of MERS-CoV infections among men was comparable for						
43 44	137	both outbreak and non-outbreak cases ($p = 0.239$; Table 2). Similarly, approximately two-thirds						
45 46 47	138	of all Saudi MERS diagnoses occurred among Saudi nationals for both outbreak and non-						
47 48 49	139	outbreak cases ($p = 0.558$; Table 2). Healthcare workers comprised 22% of all confirmed Saudi						
50 51	140	MERS cases for both outbreak and non-outbreak cases ($p = 0.920$; Table 2). However,						
52 53 54	141	nosocomial infections, which comprised one-third of all confirme	nosocomial infections, which comprised one-third of all confirmed Saudi MERS cases, occurred					
54 55 56 57 58 59	142	much more frequently among outbreak cases than among non-out	break cases	(p < 0.001).				
60		7						

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

143 Patients that became infected during outbreaks were more likely to die of MERS than those

144 infected during non-outbreak conditions (p < 0.001).

Of the patients reporting data on camel exposure, 17% of the 123 non-outbreak cases and 146 10% of the 81 outbreak cases indicated that they owned or raised camels; this difference was not 147 statistically significant.

Table 2. Characteristics of patients with confirmed Middle East respiratory syndrome

150 coronavirus infection in the Kingdom of Saudi Arabia from 2012 to 2015 evaluated by outbreak

151 versus non-outbreak conditions

	Outbreak cases N = 485		Non-outbreak cases N = 765		χ²	р
	n	%	n	%		
Age (years)						
≥51 [°]	281	58	362	47	12.66	< 0.001
<51	204	42	401	52		
unknown (UNK)	0		2			
Sex						
Male	323	67	484	-63	1.39	0.239
Female	160	33	279	36		
UNK	2		2			
Nationality						
Saudi	331	68	509	67	0.34	0.558
Non-Saudi	153	32	255	33		
UNK	1		1			
Healthcare worker	(HCW)					
Yes	108	22	167	22	0.01	0.920
No	375	77	594	77		
UNK	2		4			
Patient hospitalized	d prior to onse	t of MERS symp	otoms (nosocomial	l infection)		
Yes	193	40	220	29	15.84	< 0.001
No	292	60	545	71		
Reason for testing	(mode of trans	mission)				
Suspect	357	74	503	66	22.85	< 0.00
HCW	99	20	150	20		
Household	27	6	110	14		
UNK	2		2			
Reason for testing		esented)				
Group 1	107	22	288	28	100.84	< 0.001
Group 2	96	20	65	8		

Page 9 of 26					BMJ Ope	en	
1 2 3						_	
4		Group 3 Group 4	11 140	2 29	35 288	5	
5		Group 5	128	29	288 85	28 11	
6		Group 6	1	0	3	0	
7		UNK	2		1	Ŭ	
, 8 9 10 11		Outcome Deceased Alive	245 240	51 49	290 475	38 6%	
12	152	Yates' correction was used for all chi-square calculations.					
13 14					1		
15 16	153						
17 18 19	154						

Distributions of Time between Onset and the Confirmation, Notification, and Death

Average time from onset to confirmation was 6.6 days for outbreak cases and 11.9 days for non-outbreak cases. For outbreak cases and non-outbreak cases, the average time from onset to notification was 5.3 days and 9.2 days, respectively. Among patients that died, the average time from onset to death was 15.6 days for outbreak cases and 19.5 days for non-outbreak cases. All three distributions were long-tailed, and non-outbreak cases were skewed further right (Figures 2-5).

Discussion

Using the Saudi MOH CCC public health dataset on MERS cases reported to have occurred from September 2012 to September 2015, we found three factors distinguishing outbreak and non-outbreak cases: (1) Patients older than the mean age of 51 years represented a larger than expected fraction of outbreak than of non-outbreak cases, (2) nosocomial infections occurred much more frequently among outbreak cases than among non-outbreak cases, and (3) patients infected during outbreaks were more likely to die of MERS-CoV infection than those infected during non-outbreak conditions (Table 2).

18.76

< 0.001

Page 10 of 26

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open

Given that age was associated with death, it is worth noting that the third factor may be explained in part by the over-representation of older individuals among the outbreak cases. Although age was also associated with gender, we found that the proportion of male MERS-CoV infections was approximately two-thirds for both outbreak and non-outbreak cases (Table 2). However, the general over-representation of men is consistent with many previous studies showing predominantly male MERS-CoV patients [3,16,17]. Our results also showed that healthcare workers comprised 22% of all Saudi MERS cases diagnosed up to October 2015 (Table 2). This percentage is in agreement with a 2014 World Health Organization (WHO) report stating that 109 of the 402 (approximately 25%) reported MERS-CoV infections in the Jeddah (Saudi Arabia) 2014 outbreak occurred in healthcare workers [16]. Areas neighboring Saudi Arabia, including the city of Al-Ain in the United Arab Emirates, also reported MERS-CoV infections in 16 healthcare workers out of 23 total cases [17]. Additionally, during the large South Korean outbreak in 2015, 14% of the infected cases were in healthcare workers [5]. Another 2014 WHO report stated that most person-to-person MERS-CoV infections likely occurred in healthcare settings [18]. We found that nosocomial transmissions comprised

Another 2014 WHO report stated that most person-to-person MERS-CoV infections likely occurred in healthcare settings [18]. We found that nosocomial transmissions comprised one-third of all Saudi MERS-CoV cases reported to date. Importantly, these nosocomial infections occurred more frequently in outbreak cases than in non-outbreak cases, suggesting that nosocomial infections fueled outbreaks (Table 2). The first outbreak in Al-Hasa, Saudi Arabia, (2013) provided valuable information about MERS-CoV transmission in a healthcare setting. The outbreak started in a hemodialysis unit of a private hospital in Al-Hasa, but subsequently spread to three other hospitals. Phylogenetic analysis of the outbreak showed that only eight of

the epidemiologic transmissions were related, indicating multiple zoonotic introductions of
MERS-CoV [18].

To date, MERS-CoV has been detected in camels from Saudi Arabia, Oman, Qatar, Jordan, and Kenya [7,8,10,19,20], and it has been shown that humans can acquire MERS-CoV directly from dromedary camels [21]. Because camel exposure data (i.e., whether the patient owned or raised camels) were gathered for only 204 of the 1250 cases in the database used by this study, we did not include this information in Table 2. Nonetheless, we found that 17% of the 123 non-outbreak cases and 10% of the 81 outbreak cases reporting data on camel exposure indicated that the patients owned or raised camels. Although this difference was not statistically significant, this result suggested that camel exposure, and thus zoonotic transmission, might be more common among sporadic, non-outbreak cases than among outbreak cases. A full analysis of this relationship will require more vigilant collection of camel exposure data.

This study was limited by the information available in the Saudi MOH CCC public health dataset on MERS-CoV infections that were reported to have occurred between September 2012 and October 2015. The surveillance system and data collection forms were inconsistent over the years during which these data were acquired, likely due to major leadership changes in the MOH. The outbreak cases have thus far been confirmed faster than non-outbreak cases, indicating that improved future surveillance may allow for faster identification of sporadic cases BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

211 (Figure 5).

213 Conclusions

Although it has been three years since MERS-CoV was first identified in humans, cases continue
to occur in household and healthcare settings, though our results indicated that most person-to-

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

person transmissions involved healthcare-associated infections. Nosocomial outbreaks likely begin when a primary patient seeks care and then escalate due to insufficient implementation of scalable infection control measures. Our results indicate that the best way to control MERS-CoV infections may be to block its spread by practicing rigorous infection control measures in hospitals. Therefore, strengthening of infection control measures in healthcare settings will be critical to the prevention of future outbreaks. Acknowledgments We are grateful to the Ministry of Health staff who helped in data collection. Funding: This study was supported in part by a grant from King Abdulaziz City for Science and Technology (15/3171). Competing interests: None declared. Ethical approval: This study was approved by the Office of Research Affairs of King Faisal Specialist Hospital and Research Centre (KFSH&RC; RAC #2130 033) and the Ministry of Health in Rivadh, Saudi Arabia, and included a waiver of informed consent. Informed consent was waived because this study involved a retrospective evaluation of publicly available data, the data collection was anonymous, and no patient identity was revealed.

What is already known on this subject?

Middle East respiratory syndrome (MERS) has a firm foothold in the Kingdom of Saudi Arabia. As of November 01, 2015, the Saudi Ministry of Health has reported 1273 cases of MERS; among these cases, which include nine outbreaks at different hospitals, 717 (56%) patients have recovered, 14 (1%) remain hospitalized, and 543 (43%) have died.

What does this study add?

This is the first report to retrieve the epidemiologic, demographic, and clinical characteristics of Middle East respiratory syndrome (MERS) data in Saudi Arabia from September 2012 through October 2015 using univariate and descriptive statistical analyses. We determined that of 1250 patients nosocomial infections comprised one-third of all cases, but they occurred more frequently in outbreak than non-outbreak cases (p < 0.001), suggesting that nosocomial infections fueled MERS outbreaks.

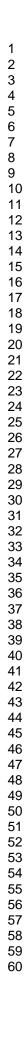
References

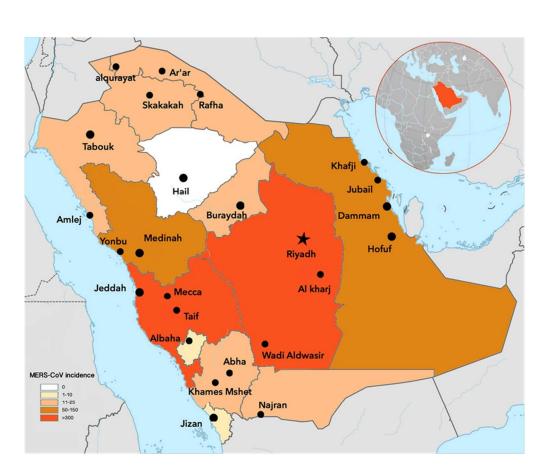
1. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367:1814-20. 2. World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV). 2015. [accessed 17 October 2015]. www.who.int/emergencies/mers-cov/en/ 3. Bermingham A, Chand MA, Brown CS, Aarons E, Tong C, Langrish C, et al. Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012. Euro Surveill. 2012;17:20290. 4. Breban R, Riou J, Fontanet A. Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk. Lancet. 2013;382:694-9. 5. Majumder MS, Kluberg SA, Mekaru SR, Brownstein JS. Mortality risk factors for Middle East respiratory syndrome outbreak, South Korea, 2015. Emerg Infect Dis. 2015;21:2088-90. 6. Memish ZA, Mishra N, Olival KJ, Fagbo SF, Kapoor V, Epstein JH, et al. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg Infect Dis. 2013;19:1819-23. 7. Reusken CB, Haagmans BL, Muller MA, Gutierrez C, Godeke GJ, Meyer B, et al. Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect Dis. 2013;13:859-66. 8. Reusken CB, Ababneh M, Raj VS, Meyer B, Eljarah A, Abutarbush S, et al. Middle East respiratory syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013. Euro Surveill. 2013;18:20662.

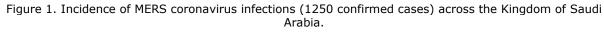
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2		
3 4	264	9. Corman VM, Jores J, Meyer B, Younan M, Liljander A, Said MY, et al. Antibodies against
5 6	265	MERS coronavirus in dromedary camels, Kenya, 1992-2013. Emerg Infect Dis.
7 8 9	266	2014;20:1319-22.
10 11	267	10. Meyer B, Muller MA, Corman VM, Reusken CB, Ritz D, Godeke, GJ, et al. Antibodies
12 13 14	268	against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013.
15 16	269	Emerg Infect Dis. 2014;20:552-9.
17 18	270	11. Azhar EI, El-Kafrawy SA, Farraj SA, Hassan AM, Al-Saeed MS, Hashem AM, et al.
19 20 21	271	Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med.
22 23	272	2014;370:2499-505.
24 25	273	12. Memish ZA, Zumla AI, Al-Hakeem RF, Al-Rabeeah AA, Stephens GM. Family cluster of
26 27 28	274	Middle East respiratory syndrome coronavirus infections. N Engl J Med. 2013;368:2487-
29 30	275	94.
31 32	276	13. Omrani AS, Matin MA, Haddad Q, Al-Nakhli D, Memish ZA, Albarrak AM. A family
33 34 35	277	cluster of Middle East respiratory syndrome coronavirus infections related to a likely
36 37	278	unrecognized asymptomatic or mild case. Int J Infect Dis. 2013;17:e668-72.
38 39	279	14. Tsiodras S, Baka A, Mentis A, Iliopoulos D, Dedoukou X, Papamavrou G, et al. A case of
40 41 42	280	imported Middle East respiratory syndrome coronavirus infection and public health
43 44	281	response, Greece, April 2014. Euro Surveill. 2014;19:20782.
45 46 47	282	15. Hijawi B, Abdallat M, Sayaydeh A, Alqasrawi S, Haddadin A, Jaarour N, et al. Novel
48 49	283	coronavirus infections in Jordan, April 2012: epidemiological findings from a
50 51 52	284	retrospective investigation. East Mediterr Health J. 2013;19(Suppl1):S12-8.
53 54		
55		
56 57		
58 59		
60		15


Page 16 of 26


BMJ Open


16. World Health Organizaiton. WHO concludes MERS-CoV mission in Saudi Arabia. Geneva: World Health Organization. 2014. [accessed 20 October 2015]. www.who.int/emergencies/mers-cov/en/ 17. European Centre for Disease Prevention and Control. Severe respiratory disease associated with Middle East respiratory syndrome coronavirus (MERS-CoV) Stockholm: European Centre for Disease Prevention and Control. 2014. 18. Assiri A, McGeer A, Perl TM, Price CS, Al Rabeeah AA, Cummings DA, et al. Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med. 2013;369:407-16. 19. Hemida MG, Perera RA, Wang P, Alhammadi MA, Siu LY, Li M, et al. Middle East respiratory syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013. Euro Surveill. 2013;18:20659. 20. Raj VS, Farag EA, Reusken CB, Lamers MM, Pas SD, Voermans J, et al. Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014. Emerg Infect Dis. 2014;20:1339-42. 21. Memish ZA, Cotten M, Meyer B, Watson SJ, Alsahafi AJ, Al Rabeeah AA, et al. Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013. Emerg Infect Dis. 2014;20:1012-5.

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

1 2		
3 4 5	307	Figure legends
6 7	308	Figure 1. Incidence of MERS coronavirus infections (1250 confirmed cases) across the
8 9 10 11	309	Kingdom of Saudi Arabia.
12 13	310	Figure 2. Epidemiologic curve showing the number of cases of MERS-CoV infection and
14 15	311	various patient characteristics in the Kingdom of Saudi Arabia by month and year of
16 17 18	312	confirmation. HCW, healthcare worker.
19 20 21	313	Figure 3. Histogram of the time from disease onset to MERS-CoV confirmation for outbreak
22 23	314	and non-outbreak cases. Average time from onset to confirmation was 6.6 days for outbreak
24 25 26 27	315	cases and 11.9 days for non-outbreak cases.
27 28 29	316	Figure 4. Histogram of time from disease onset to notification for outbreak and non-outbreak
30 31	317	cases. Average time from onset to notification was 5.3 days for outbreak cases and 9.2 days for
32 33 34	318	non-outbreak cases.
35 36 37	319	Figure 5. Histogram of time from onset to death for outbreak and non-outbreak in those cases
38 39	320	ending in death. Average time from onset to death among patients that died was 15.6 days for
40 41 42 43	321	outbreak cases and 19.5 days for non-outbreak cases
44 45		outbreak cases and 19.5 days for non-outbreak cases
46 47		
48 49		
50		
51 52		
53		
54 55		
56		
57 58		
59		17
60		1/

86x72mm (300 x 300 DPI)

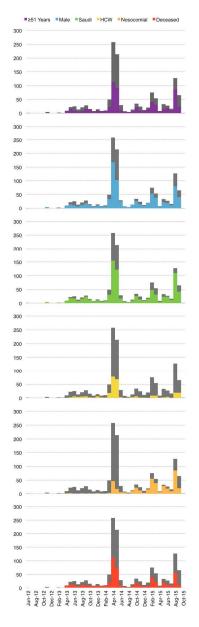


Figure 2. Epidemiologic curve showing the number of cases of MERS-CoV infection and various patient characteristics in the Kingdom of Saudi Arabia by month and year of confirmation. HCW, healthcare worker.

297x984mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

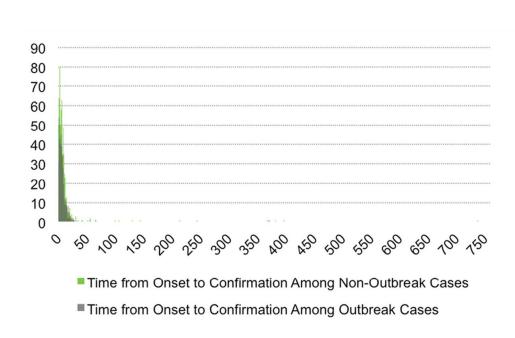
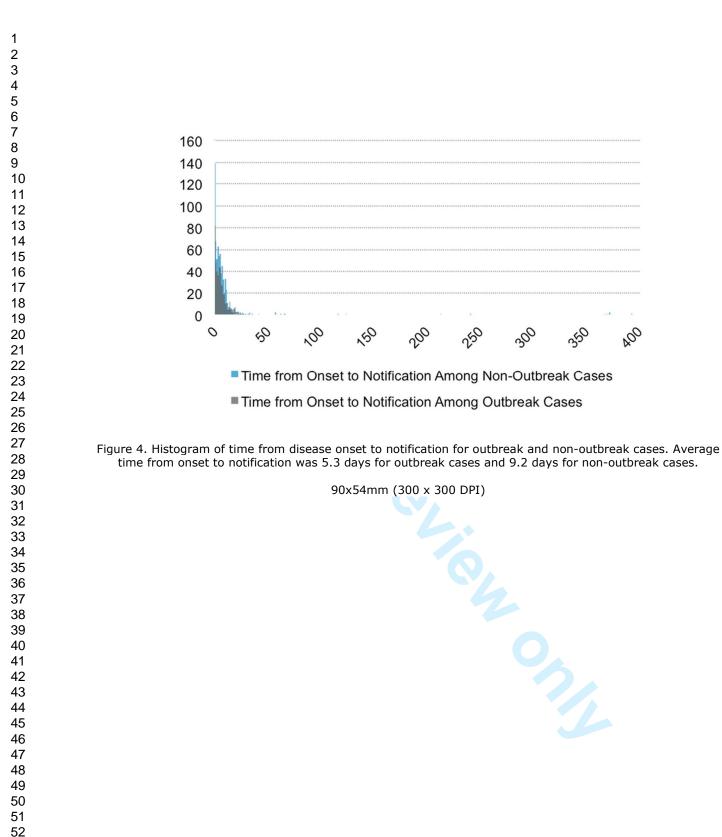



Figure 3. Histogram of the time from disease onset to MERS-CoV confirmation for outbreak and nonoutbreak cases. Average time from onset to confirmation was 6.6 days for outbreak cases and 11.9 days for non-outbreak cases.

90x54mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

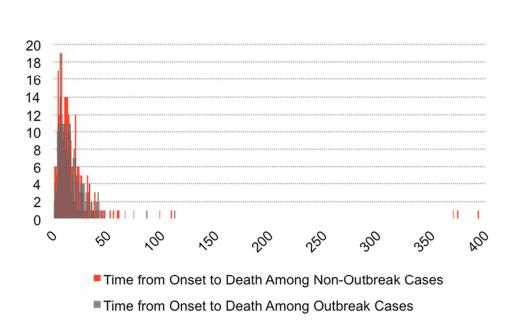
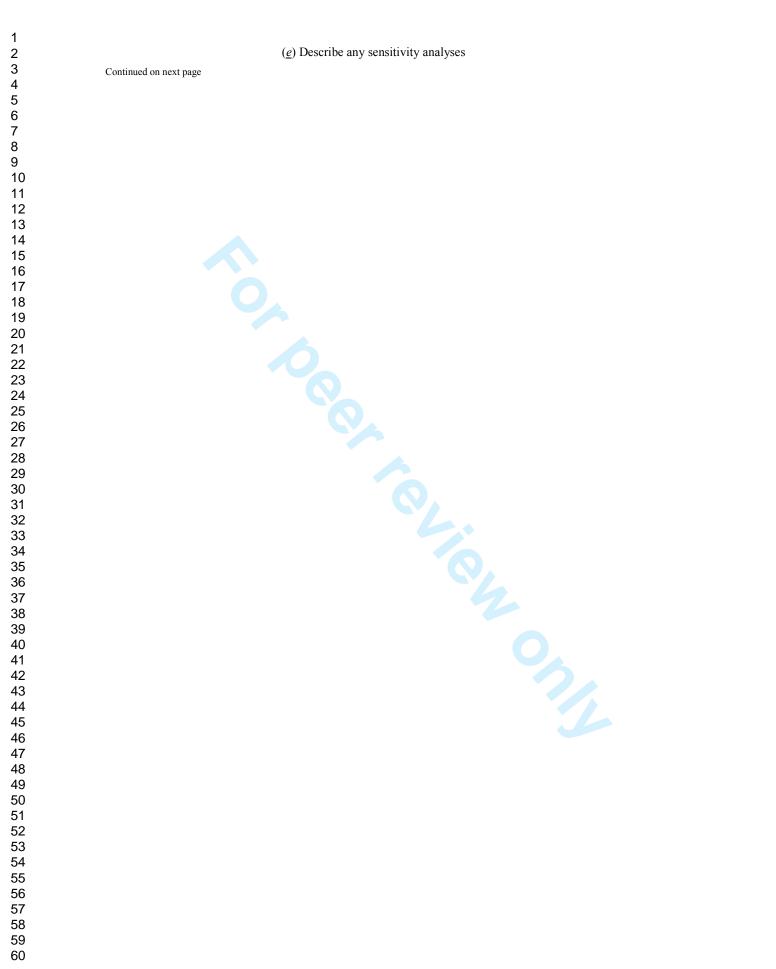


Figure 5. Histogram of time from onset to death for outbreak and non-outbreak in those cases ending in death. Average time from onset to death among patients that died was 15.6 days for outbreak cases and 19.5 days for non-outbreak cases

90x54mm (300 x 300 DPI)


Supplementary Table1. Nationalities for patients who were diagnosed with MERS-CoV virus in Saudi Arabia

	Natio	onality		
Nationality	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Australia	1	0.08	1	0.08
Azerbaijan	1	0.08	2	0.17
Bangladesh	19	1.59	21	1.76
Chad	1	0.08	22	1.85
Egypt	33	2.77	55	4.61
Eritrea	3	0.25	58	4.87
Ethiopia	1	0.08	59	4.95
India	47	3.94	106	8.89
Indonesia	6	0.50	112	9.40
Jordan	7	0.59	119	9.98
Kuwait	1	0.08	120	10.07
Lebanon	4	0.34	124	10.40
Malaysia	6	0.50	130	10.91
Morocco	1	0.08	131	10.99
Myanmar	5	0.42	136	11.41
Pakistan	18	1.51	154	12.92
Palestine	18	1.51	172	14.43
Philippines	131	10.99	303	25.42
Saudi Arabia	788	66.11	1091	91.53
Somalia	2	0.17	1093	91.69
South Africa	3	0.25	1096	91.95
Sri Lanka	1	0.08	1097	92.03
Sudan	22	1.85	1119	93.88
Syrian Arab Republic	24	2.01	1143	95.89
Tunisia	1	0.08	1144	95.97
Turkey	1	0.08	1145	96.06
United Kingdom	1	0.08	1146	96.14
United States	2	0.17	1148	96.31
Yemen	44	3.69	1192	100.00
	Frequency		1	

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

STROBE Statement-checklist of items that should be included in reports of observational studies	;S
---	----

	Item No	Recommendation	Page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title	2
		or the abstract	
		(b) Provide in the abstract an informative and balanced summary of	2
		what was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation	3-4
-		being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4-5
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	4-5
		methods of selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources	
		and methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	
		number of exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and	
		the number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	5-9
vulluolos	,	confounders, and effect modifiers. Give diagnostic criteria, if	5 9
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of	4-5
measurement	0	methods of assessment (measurement). Describe comparability of	10
measurement		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	NA
Study size	10	Explain how the study size was arrived at	4-5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	4-5
Quantitudi ve valiacies		applicable, describe which groupings were chosen and why	10
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	4-5
Statistical methods	12	confounding	15
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was	
		(a) Conort study—II applicable, explain now loss to follow-up was addressed	
		<i>Case-control study</i> —If applicable, explain how matching of cases and	
		controls was addressed	
		Cross-sectional study—If applicable, describe analytical methods	
		cross sectional stady in applicable, accentic analytical methods	

1
2
3
3 4 5 6 7 8
5
6
7
8
0
9
o 9 10 11 12
11
12
13
14
15
16
17
17
12 13 14 15 16 17 18 19
19
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
21
22
23
20
24
25
26
27
28
29
30
21
00
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
40 47
48
49
50
51
52
53
53 54
54 55
55
56
57
58
59
60
00

1

Results			Page #
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	5
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	5-6
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	5-6
		Case-control study—Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study-Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	6-9
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	6-9
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	11-12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	12
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	9
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	12
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	12
-		applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen?bmj.com/site/about/guidelines.xhtml

BMJ Open

Case characteristics among Middle East Respiratory Syndrome Coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to 2015

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-011865.R2
Article Type:	Research
Date Submitted by the Author:	08-Jul-2016
Complete List of Authors:	Alhamlan, fatimah; King Faisal Specialist Hospital and Research Center, Department of Infection and Immunity Majumder , Maimuna; Massachusetts Institute of Technology, Engineering Systems Division Brownstein, John; Children's Hospital Boston, CHIP Hawkins, Jared; Children\'s Hospital Boston, HealthMap Alabdely , Hail; Ministry of Health , Public Health Alzahrani, Abdulaziz; Ministry of Health , Public Health Obeid, Dalia; King Faisal Specialist Hospital and Research Center, Department of Infection and Immunity Al-Ahdal, Mohammed; king Faisal Specialist Hospital, Department of Infection and Immunity BinSaeed, Abdulaziz; Ministry of Health, Public Health
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Epidemiology, Global health, Public health
Keywords:	INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES, Respiratory infections < THORACIC MEDICINE

SCHOLARONE[™] Manuscripts Page 1 of 25

3 4

6

Ø

Ø

Z

Θ

6

8

BMJ Open

Case characteristics among Middle East Respiratory Syndrome
Coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to
2015
Alhamlan F.S., ^{1,2*} Majumder M.S., ^{3,4} Brownstein J.S., ⁴ Hawkins J., ⁴ Al-Abdely H.M, ⁵ Alzahrani
A., ⁵ Obaid D.A., ¹ Al-Ahdal M.N., ^{1,2,6} BinSaeed A., ⁵
¹ Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh,
Saudi Arabia
² College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
³ Engineering Systems Division, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
⁴ HealthMap, Boston Children's Hospital, Boston, Massachusetts, USA
⁵ Public Health Division, Ministry of Health, Riyadh, Saudi Arabia
⁶ Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center,
Riyadh, Saudi Arabia
Running Title: MERS outbreak/non-outbreak cases in Saudi Arabia
Keywords: Middle East Respiratory Syndrome, MERS-CoV, Emerging Infectious Disease,
Saudi Arabia
Word Count: 1908
*Corresponding author. Tel.: 966 11 442 7865, Fax: 966 1 442 4519. Email address: <u>falhamlan@kfshrc.edu.sa</u> ; (Fatimah S. Alhamlan)

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Ø Z Θ Ø θ

21 Abstract

Objectives: As of November 01, 2015, the Saudi Ministry of Health had reported 1273 cases of MERS; among these cases, which included nine outbreaks at several hospitals, 717 (56%) patients recovered, 14 (1%) remain hospitalized, and 543 (43%) died. This study aimed to determine the epidemiologic, demographic, and clinical characteristics that distinguished cases of MERS contracted during outbreaks from those contracted sporadically (i.e., non-outbreak) between 2012 and 2015 in Saudi Arabia. Design: Data from the Saudi Ministry of Health of confirmed outbreak and non-outbreak cases of MERS-CoV infections from September 2012 through October 2015 were abstracted and analysed. Univariate and descriptive statistical analyses were conducted, and the time between disease onset and confirmation, onset and notification, and onset and death were examined.

Results: A total of 1250 patients (aged 0 to 109 years; mean, 50.825 years) were reported

infected with MERS coronavirus (CoV). Approximately two-thirds of all MERS cases were

diagnosed in men for both outbreak and non-outbreak cases. Healthcare workers comprised 22%

of all MERS cases for both outbreak and non-outbreak cases. Nosocomial infections comprised

36 one-third of all Saudi MERS cases; however, nosocomial infections occurred more frequently in

outbreak than non-outbreak cases (p < .001). Patients contracting MERS during an outbreak

38 were significantly more likely to die of MERS (p < 0.001).

Conclusions: To date, nosocomial infections have fuelled MERS outbreaks. Given that the

40 Kingdom of Saudi Arabia is a worldwide religious travel destination, localized outbreaks may

41 have massive global implications and effective outbreak preventive measures are needed.

Strengths and limitations of this study

• Confirmed outbreak and non-outbreak cases of Middle East respiratory syndrome (MERS) corona virus infections in Saudi Arabia from September 2012 through November 2015 reported to the Saudi Ministry of Health (MOH) were abstracted and analysed.

• This is the first report to retrieve the epidemiologic, demographic, and clinical characteristics of MERS data from this database and analyse these data using univariate and descriptive statistical analyses.

• However, major leadership changes in the Saudi MOH during the study period led to alterations in the data collection forms as well as the surveillance system.

BMJ Open

• These alterations caused some inconsistencies in the data acquired from the Saudi MOH database.

56 Introduction

Following the isolation of a previously unknown coronavirus (CoV) from the sputum of a 60year-old man in 2012,¹ 1,618 laboratory-confirmed cases of Middle East respiratory syndrome
(MERS) have been reported throughout 26 countries, with 579 cases resulting in death.² The vast
majority of these 26 countries reported MERS cases after experiencing an exportation event from
the Arabian Peninsula.^{3, 4} Most cases to date have occurred in Saudi Arabia, followed by South
Korea, which experienced an outbreak of MERS after the return of an infected businessman who
had been traveling in Middle East.⁵

The exact zoonotic source of MERS-CoV and its mode of transmission in humans remain unclear. Although related sequences have been detected in several bat species,⁶ MERS-CoV has not been isolated from bats. However, MERS-CoV has been isolated from dromedary camels. A high rate of seropositivity has been confirmed in the camels of the Arabian Peninsula, with no evidence of MERS-CoV infection detected in cows, goats, or sheep.⁷⁻¹⁰ One study isolated the full MERS-CoV genome sequences from a dromedary camel and from a patient who died of laboratory-confirmed MERS-CoV infection after close contact with camels; the two isolates were identical. According to serologic data, MERS-CoV had been circulating in the camel—but not in the patient—before human infection occurred, suggesting that MERS-CoV had been transmitted to the patient via the infected camel.¹¹

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Whether MERS-CoV is new to camel or human populations or whether it has been
present but undetected for years remains unknown. Nonetheless, MERS-CoV was initially
regarded primarily as a zoonotic pathogen, with only limited documentation of person-to-person

Page 4 of 25

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Ø Z Θ

transmission. However, MERS outbreaks of varying sizes have since occurred across Saudi
Arabia; additionally, apparent cases of sustained secondary transmission have occurred in family
clusters^{12, 13} and healthcare facilities.^{14, 15}

BMJ Open

Much remains unknown about MERS, including risk factors associated with MERS-CoV transmissions in both outbreak and non-outbreak settings. Here, we aimed to increase our understanding of the spread and mode of transmission of MERS-CoV by comparing the epidemiologic, demographic, and clinical characteristics of outbreak and non-outbreak MERS-CoV infections from September 2012 to October 2015 as reported to the Saudi Arabian Ministry of Health (MOH).

7 Materials and Methods

Demographic and clinical data were obtained through the use of standardized contact tracing forms populated by the public health database maintained by the MOH Command & Control Center (CCC). According to the CCC, a confirmed MERS-CoV case is defined as a suspected case with laboratory confirmation of MERS-CoV infection. A suspected case of MERS-CoV in adults (>14 years) is defined as follows: (I) acute respiratory illness with clinical or radiological evidence of pneumonia or acute respiratory distress syndrome; (II) a hospitalized patient with healthcare-associated pneumonia based on clinical and radiological evidence; (III) upper or lower respiratory illness within 2 weeks of exposure to a confirmed or probable case of MERS-CoV infection; or (IV) unexplained acute febrile illness (\geq 38°C) presenting with body aches, headache, diarrhoea, or nausea/vomiting, with or without respiratory symptoms, and with leucopenia.

BMJ Open

100	
101	Data and Statistical Analyses
102	All data collected were stored and analysed using SAS (version 9.4) software. Univariate and
103	descriptive statistics were conducted to estimate proportions. Associations between age and two
104	variables (gender and death) were assessed using a χ^2 test. Chi-square analysis using Yates'
105	correction was performed on the dataset to compare case characteristics among outbreak and
106	non-outbreak cases. Distributions of time between onset and confirmation, onset and notification,
107	and onset and death (among patients that died) were also determined for both outbreak and non-
108	outbreak cases. All reported p values are two-tailed and were considered to be statistically
109	significant at p < 0.05.
110	
111	Results
112	Distribution of Confirmed MERS-CoV Cases over Time in Saudi Arabia
113	The prevalence of MERS-CoV was highest in the Riyadh region with (46.91%) of the total
114	reported cases, followed by the Jeddah (21%), AlAhsa (5.69%), AlMadinah Almonowarah
115	(4.81%), Eastern (4.73%), AlTaif (4.33%), and Makkah (3.29%) regions. The remaining regions
116	comprised 9.14% of the total reported cases (Figure 1). More than 31% of all confirmed cases of
117	MERS-CoV in Saudi Arabia were reported in May and April of 2014. The highest number of
118	outbreaks was reported to have occurred in May and April of 2014, the second highest in
119	September 2015, and the third highest in February and March of 2015.
120	
121	Demographic Characteristics
122	During the study period, a total of 1250 patients from 0 to 109 years old were reported as
	5

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

123	infected with MERS-CoV in Saudi Arabia. MERS-CoV was prevalent among individuals who
124	were 30 years or older; by contrast, individuals who were 26 years or younger exhibited very low
125	incidence. The distribution of age for all reported cases was approximately normal, with a mean
126	of 50.825 years and a standard deviation of 19.494 years. MERS-CoV was more prevalent in
127	males (64.77% of total reported cases) than in females. Females had an average age of 48 years
128	(SD, 19 years), with a minimum of zero and maximum of 90 years. Males had an average age of
129	52 years (SD, 19 years), with a minimum of zero and a maximum of 109 years (Table 1). We
130	found a significant association between age and gender ($\chi^2 = 15.22$; p < 0.01) and between
131	gender and death for patients diagnosed with MERS-CoV ($\chi^2 = 12.75$; p < 0.01).
132	Table 1. Patient characteristics in Middle East respiratory syndrome infection cases reported in

the Kingdom of Saudi Arabia from 2012 to 2015

Demographic characteristics (n)	Frequency	Percentage
Age in years (1244)		
0-10	41	3.30
11-25	63	8.36
26-39	292	31.83
40-109	848	68.17
Gender (1246)		
Female	439	35.23
Male	807	64.77
Occupational status (172)		
Employed	22	12.79
Unemployed	40	23.26
Retired	31	21.51
Private	37	18.02
Other	42	24.42
Main reason for testing (1247)		
Healthcare worker	249	19.97
Household	138	11.07
Suspect	860	68.97
Healthcare worker (1244)		
Yes	275	22.11
No	969	77.89
Does the patient raise camels? (205)		
Yes	29	14.15
No	176	85.85
During the 14 days before the patient became sic	k did he/she travel outside or	
inside Saudi Arabia? (205)		
Yes	195	95.12
No	10	4.88

	Yes No	413 37	91.78 8.22
	Did the patient visit any healthcare facilities during the 14 days before onset symptoms? (245)	of	
	Yes No	98 109	40 44.49
	Unknown Does the patient smoke? (205)	38	15.51
	Yes No Is the patient diabetic? (278)	36 169	17.56 82.44
	Yes No	220 58	79.14 20.86
	Did the patient die before October 2015? (1250) Yes	535	42.80
34	No	715	57.20
35			
36	Supplementary Table 1 presents the nationalities of pa	tients diagnose	d with MERS-CoV
37	in Saudi Arabia. Most patients were Saudi (66%), followed by	y Filipino (10.9	9%), Indian
20			
00	(3.99%), and Yemeni (3.69%) nationalities.		
38 39	(3.99%), and Yemeni (3.69%) nationalities.		
	(3.99%), and Yemeni (3.69%) nationalities.		
39 40	(3.99%), and Yemeni (3.69%) nationalities. Univariate Analysis for Outbreak Versus Non-outbreak C	ases	
39			n the mean age of
39 40 41 42	Univariate Analysis for Outbreak Versus Non-outbreak C	those older than	-
39 40 41	Univariate Analysis for Outbreak Versus Non-outbreak C Univariate analysis revealed that older individuals—namely,	those older than outbreak than o	f non-outbreak case
39 40 41 42 43	Univariate Analysis for Outbreak Versus Non-outbreak O Univariate analysis revealed that older individuals—namely, 50.825 years—represented a larger than expected fraction of o	those older than outbreak than o is among men v	f non-outbreak case vas comparable for
39 40 41 42 43 44	Univariate Analysis for Outbreak Versus Non-outbreak C Univariate analysis revealed that older individuals—namely, 1 50.825 years—represented a larger than expected fraction of c (p < 0.001; Table 2). The prevalence of MERS-CoV infection	those older than outbreak than o is among men v imilarly, approx	f non-outbreak case vas comparable for kimately two-thirds
39 40 41 42 43 44 45	Univariate Analysis for Outbreak Versus Non-outbreak C Univariate analysis revealed that older individuals—namely, to 50.825 years—represented a larger than expected fraction of c (p < 0.001; Table 2). The prevalence of MERS-CoV infection both outbreak and non-outbreak cases (p = 0.239; Table 2). Sin	those older than outbreak than o is among men v imilarly, approx s for both outbr	f non-outbreak case vas comparable for kimately two-thirds eak and non-
 39 40 41 42 43 44 45 46 47 	Univariate Analysis for Outbreak Versus Non-outbreak C Univariate analysis revealed that older individuals—namely, to 50.825 years—represented a larger than expected fraction of c (p < 0.001; Table 2). The prevalence of MERS-CoV infection both outbreak and non-outbreak cases (p = 0.239; Table 2). Si of all Saudi MERS diagnoses occurred among Saudi nationals	those older than outbreak than o is among men v imilarly, approx s for both outbro orised 22% of a	f non-outbreak case vas comparable for cimately two-thirds eak and non- ll confirmed Saudi
39 40 41 42 43 44 45 46	Univariate Analysis for Outbreak Versus Non-outbreak C Univariate analysis revealed that older individuals—namely, 1 50.825 years—represented a larger than expected fraction of c ($p < 0.001$; Table 2). The prevalence of MERS-CoV infection both outbreak and non-outbreak cases ($p = 0.239$; Table 2). Si of all Saudi MERS diagnoses occurred among Saudi nationals outbreak cases ($p = 0.558$; Table 2). Healthcare workers comp	those older than outbreak than of is among men v imilarly, approx s for both outbr orised 22% of a .920; Table 2).	f non-outbreak case vas comparable for kimately two-thirds eak and non- ll confirmed Saudi However,
 39 40 41 42 43 44 45 46 47 48 	Univariate Analysis for Outbreak Versus Non-outbreak C Univariate analysis revealed that older individuals—namely, 1 50.825 years—represented a larger than expected fraction of 0 ($p < 0.001$; Table 2). The prevalence of MERS-CoV infection both outbreak and non-outbreak cases ($p = 0.239$; Table 2). Si of all Saudi MERS diagnoses occurred among Saudi nationals outbreak cases ($p = 0.558$; Table 2). Healthcare workers comp MERS cases for both outbreak and non-outbreak cases ($p = 0$	those older than outbreak than of as among men v imilarly, approx s for both outbr orised 22% of a 920; Table 2). rmed Saudi MH	f non-outbreak case vas comparable for kimately two-thirds eak and non- ll confirmed Saudi However, ERS cases, occurrec

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

151 Patients that became infected during outbreaks were more likely to die of MERS than those

infected during non-outbreak conditions (p < 0.001).

Of the patients reporting data on camel exposure, 17% of the 123 non-outbreak cases and 10% of the 81 outbreak cases indicated that they owned or raised camels; this difference was not statistically significant.

Table 2. Characteristics of patients with confirmed Middle East respiratory syndrome

157 coronavirus infection in the Kingdom of Saudi Arabia from 2012 to 2015 evaluated by outbreak

	Outbreak cases N = 485		Non-outbreak cases N = 765		χ²	р
	n	%	n	%		
Age (years)						
≥51	281	58	362	47	12.66	< 0.001
<51	204	42	401	52	12.00	~0.001
unknown (UNK)	0	72	2	52		
Sex						
Male	323	67	484	63	1.39	0.239
Female	160	33	279	36		
UNK	2		2	50		
Nationality						
Saudi	331	68	509	67	0.34	0.558
Non-Saudi	153	32	255	33	0.5 .	0.000
UNK	1	02	1	35		
Healthcare worker (I	HCW)					
Yes	108	22	167	22	0.01	0.920
No	375	77	594	77		
UNK	2		4	,,,		
Patient hospitalized	prior to onset of M	IERS symptoms (no	socomial infection	n)		
Yes	193	40	220	29	15.84	< 0.001
No	292	60	545	71		
Reason for testing (mode of transmiss	ion)				
Suspect	357	74	503	66	22.85	< 0.00
HCW	99	20	150	20		
Household	27	6	110	14		
UNK	2	-	2			
Reason for testing (symptoms present	ed)				
Group 1	107	22	288	28	100.84	< 0.001
Group 2	96	20	65	8		
Group 3	11	2	35	5		
Group 4	140	29	288	28		
Group 5	128	26	85	11		
Group 6	1	0	3	0		
UNK	2	-	1	*		
Outcome						
Deceased	245	51	290	38	18.76	< 0.00
Alive	240	49	475	6%		

158 versus non-outbreak conditions

159 Yates' correction was used for all chi-square calculations.

Distributions of Time between Onset and the Confirmation, Notification, and Death Average time from onset to confirmation was 6.6 days for outbreak cases and 11.9 days for nonoutbreak cases. For outbreak cases and non-outbreak cases, the average time from onset to notification was 5.3 days and 9.2 days, respectively. Among patients that died, the average time from onset to death was 15.6 days for outbreak cases and 19.5 days for non-outbreak cases. All three distributions were long-tailed, and non-outbreak cases were skewed further right (Figures

166 2–5).

Discussion

Using the Saudi MOH CCC public health dataset on MERS cases reported to have occurred from September 2012 to September 2015, we found three factors distinguishing outbreak and nonoutbreak cases: (1) Patients older than the mean age of 51 years represented a larger than expected fraction of outbreak than of non-outbreak cases, (2) nosocomial infections occurred much more frequently among outbreak cases than among non-outbreak cases, and (3) patients infected during outbreaks were more likely to die of MERS-CoV infection than those infected during non-outbreak conditions (Table 2). BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Given that age was associated with death, it is worth noting that the third factor may be
explained in part by the over-representation of older individuals among the outbreak cases.
Although age was also associated with gender, we found that the proportion of male MERS-CoV
infections was approximately two-thirds for both outbreak and non-outbreak cases (Table 2).
However, the general over-representation of men is consistent with many previous studies

181 showing predominantly male MERS-CoV patients.^{3, 16, 17}

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Our results also showed that healthcare workers comprised 22% of all Saudi MERS cases diagnosed up to October 2015 (Table 2). This percentage is in agreement with a 2014 World Health Organization (WHO) report stating that 109 of the 402 (approximately 25%) reported MERS-CoV infections in the Jeddah (Saudi Arabia) 2014 outbreak occurred in healthcare workers.¹⁶ Areas neighbouring Saudi Arabia, including the city of Al-Ain in the United Arab Emirates, also reported MERS-CoV infections in 16 healthcare workers out of 23 total cases.¹⁷ Additionally, during the large South Korean outbreak in 2015, 14% of the infected cases were in healthcare workers.⁵

Another 2014 WHO report stated that most person-to-person MERS-CoV infections likely occurred in healthcare settings.¹⁸ We found that nosocomial transmissions comprised one-third of all Saudi MERS-CoV cases reported to date. Importantly, these nosocomial infections occurred more frequently in outbreak cases than in non-outbreak cases, suggesting that nosocomial infections fuelled outbreaks (Table 2). The first outbreak in Al-Hasa, Saudi Arabia, (2013) provided valuable information about MERS-CoV transmission in a healthcare setting. The outbreak started in a haemodialysis unit of a private hospital in Al-Hasa, but subsequently spread to three other hospitals. Phylogenetic analysis of the outbreak showed that only eight of the epidemiologic transmissions were related, indicating multiple zoonotic introductions of MERS-CoV.¹⁸

To date, MERS-CoV has been detected in camels from Saudi Arabia, Oman, Qatar, Jordan, and Kenya,^{7, 8, 10, 19, 20} and it has been shown that humans can acquire MERS-CoV directly from dromedary camels.²¹ Because camel exposure data (i.e., whether the patient owned or raised camels) were gathered for only 204 of the 1250 cases in the database used by this study, we did not include this information in Table 2. Nonetheless, we found that 17% of the 123 non

BMJ Open

outbreak cases and 10% of the 81 outbreak cases reporting data on camel exposure indicated that
the patients owned or raised camels. Although this difference was not statistically significant,
this result suggested that camel exposure, and thus zoonotic transmission, might be more
common among sporadic, non-outbreak cases than among outbreak cases. A full analysis of this
relationship will require more vigilant collection of camel exposure data.

This study was limited by the information available in the Saudi MOH CCC public health dataset on MERS-CoV infections that were reported to have occurred between September 2012 and October 2015. The surveillance system and data collection forms were inconsistent over the years during which these data were acquired, likely due to major leadership changes in the MOH. The outbreak cases have thus far been confirmed faster than non-outbreak cases, indicating that improved future surveillance may allow for faster identification of sporadic cases (Figure 5). BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

218 Conclusions

Although it has been three years since MERS-CoV was first identified in humans, cases continue to occur in household and healthcare settings, though our results indicated that most person-to-person transmissions involved healthcare-associated infections. Nosocomial outbreaks likely begin when a primary patient seeks care and then escalate due to insufficient implementation of scalable infection control measures. Our results indicate that the best way to control MERS-CoV infections may be to block its spread by practicing rigorous infection control measures in hospitals. Therefore, strengthening of infection control measures in healthcare settings will be critical to the prevention of future outbreaks.

2 3	228	Footnotes
4 5		
6 7	229	Acknowledgments: We are grateful to the Ministry of Health staff who helped in data
8 9	230	collection.
0 1	231	Contributors: FA is the study PI and wrote the manuscript. MM developed the study design and
2 3 4	232	conducted the analyses. JH interpreted the results. JB reviewed the study design. DO performed
	233	the statistical analyses. HA, AA, and ABS acquired patient demographic and clinical data from
5 6 7 8 9	234	the Saudi Ministry of Health database. MA participated in interpreting the clinical results and
9 Q 2	235	reviewed the manuscript. All authors participated in critical revision of the manuscript and
2 2 2 2	236	approved the final version.
8	237	Funding: This study was supported in part by a grant from King Abdulaziz City for Science and
0 Z 8	238	Technology (15/3171).
2 9 3 2 3	239	Competing interests: None declared.
3 2 2	240	Ethical approval: This study was approved by the Office of Research Affairs of King Faisal
3 8 5	241	Specialist Hospital and Research Centre (KFSH&RC RAC #2130 033) and the Ministry of
6 3	242	Health in Riyadh, Saudi Arabia, and included a waiver of informed consent. Informed consent
8 9 Ø	243	was waived because this study involved a retrospective evaluation of publicly available data, the
4 2	244	data collection was anonymous, and no patient identity was revealed.
33 4	245	Data sharing: No additional data available.
5 6 7	246	
# 8 9	247	
6 5	248	
2 5 5	249	
5 6 3 8	250	

9

6

BMJ Open

1 2 3 4	251	References
56789012345678922	252	1. Zaki AM, van Boheemen S, Bestebroer TM, et al. Isolation of a novel coronavirus from a man
	253	with pneumonia in Saudi Arabia. N Engl J Med 2012;367:1814–20.
	254	2. World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV).
	255	2015. www.who.int/emergencies/mers-cov/en/ (accessed 17 October 2015).
	256	3. Bermingham A, Chand MA, Brown CS, et al. Severe respiratory illness caused by a novel
	257	coronavirus, in a patient transferred to the United Kingdom from the Middle East,
	258	September 2012. Euro Surveill 2012;17:20290.
2 2) 2)	259	4. Breban R, Riou J, Fontanet A. Interhuman transmissibility of Middle East respiratory
8 Ø	260	syndrome coronavirus: estimation of pandemic risk. Lancet 2013;382:694–9.
Z 2 2 3 3 3 3 5 6 3 8 9 0 4 2 8 4 5 6 7 8 9 0 4 2 8 4 5 6 7 8 9 0 4 2 8 4 5 6 7 8 9 0 4 2 8 8 9 0 4 8 9 0 8 7 8 9 0 8 9 0 8 9 9 9 9 9 9 9 9 9 9 9 9 9	261	5. Majumder MS, Kluberg SA, Mekaru SR, et al. Mortality risk factors for Middle East
	262	respiratory syndrome outbreak, South Korea, 2015. Emerg Infect Dis 2015;21:2088–90.
	263	6. Memish ZA, Mishra N, Olival KJ, et al. Middle East respiratory syndrome coronavirus in
	264	bats, Saudi Arabia. Emerg Infect Dis 2013;19:1819–23.
	265	7. Reusken CB, Haagmans BL, Muller MA, et al. Middle East respiratory syndrome coronavirus
	266	neutralising serum antibodies in dromedary camels: a comparative serological study.
	267	Lancet Infect Dis 2013;13:859–66.
	268	8. Reusken CB, Ababneh M, Raj VS, et al. Middle East respiratory syndrome coronavirus
	269	(MERS-CoV) serology in major livestock species in an affected region in Jordan, June to
8 9 6	270	September 2013. Euro Surveill 2013;18:20662.
5 2	271	9. Corman VM, Jores J, Meyer B, et al. Antibodies against MERS coronavirus in dromedary
5 5	272	camels, Kenya, 1992-2013. Emerg Infect Dis 2014;20:1319-22.
6 3 8 9		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 14 of 25

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

3
-
4
-
5
-
6
7
'
8
-
9
0
1
2
-
3
4
5
6
1
a
8
9
Ø
_
2
2
2
2
2
2
~
2
6
0
Z
8
2
0
2
J
3
2
3
<u>a</u>
ø
5
6
3
8
9
-
-
0
-
0 4
0
0 4 2
0 4 2 3
0 4 2 3
0 4 2 3 4
0 4 2 3
0 4 2 3 4 5
9 4 2 3 4 5 6
9 4 2 3 4 5 6
0 4 2 3 4 5 6 4
9 4 2 3 4 5 6
0 4 2 3 4 5 6 7 8
0 4 2 3 4 5 6 4
9 4 2 3 4 5 6 7 8 9
0 4 2 3 4 5 6 7 8 9 6
0 4 2 3 4 5 6 7 8 9 6
0 4 2 3 4 5 6 7 8 9 5 5
0 4 2 3 4 5 6 7 8 9 6
0423456789652
04234567896525
04234567896525
042345678965255
042345678965255
0423456789052355
042345678965255
04234567896525556
042345678905235563
042345678905235563
9423456789652555638
9423456789652555638
0423456789652555678

1

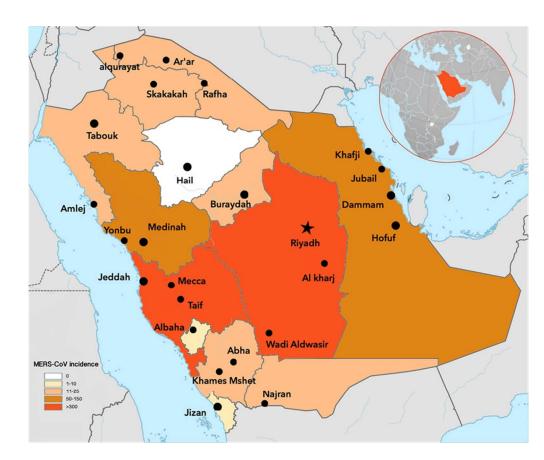
273	10. Meyer B, Muller MA, Corman VM, et al. Antibodies against MERS coronavirus in
274	dromedary camels, United Arab Emirates, 2003 and 2013. Emerg Infect Dis
275	2014;20:552–9.

11. Azhar EI, El-Kafrawy SA, Farraj SA, *et al.* Evidence for camel-to-human transmission of MERS coronavirus. *N Engl J Med* 2014;370:2499–505.

12. Memish ZA, Zumla AI, Al-Hakeem RF, *et al*. Family cluster of Middle East respiratory
syndrome coronavirus infections. *N Engl J Med* 2013;368:2487–94.

13. Omrani AS, Matin MA, Haddad Q, *et al*. A family cluster of Middle East respiratory
 syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild
 case. *Int J Infect Dis* 2013;17:e668–72.

- 14. Tsiodras S, Baka A, Mentis A, *et al.* A case of imported Middle East respiratory syndrome
 coronavirus infection and public health response, Greece, April 2014. *Euro Surveill*2014;19:20782.
- 15. Hijawi B, Abdallat M, Sayaydeh A, *et al.* Novel coronavirus infections in Jordan, April
 2012: epidemiological findings from a retrospective investigation. *East Mediterr Health J*2013;19(Suppl 1):S12–8.
- 16. World Health Organization. WHO concludes MERS-CoV mission in Saudi Arabia. Geneva:
 World Health Organization. www.who.int/emergencies/mers-cov/en/2014 (accessed 20
 October 2015).
- 292 17. European Centre for Disease Prevention and Control. Severe respiratory disease associated
 293 with Middle East respiratory syndrome coronavirus (MERS-CoV) Stockholm: European
 294 Centre for Disease Prevention and Control. 2014.


1	
2	
3 4	
4	
5	
6	
7	
7 8 9 0	
9	
0	
1	
2	
2 3 4 5	
4	
5	
6	
7	
8	
9	
Ø	
67890222225	
2	
2	
2	
8	
07	
Z	
2 8 9 0	
2	
Θ	
3	
2	
3	
8	
5	
6	
32335678	
8	
9	
0	
4	
2	
8	
4	
5	
6	
4	
8	
9	
6	
5 2	
5 ¤	
5	
5	
6 5	
ວ 8	
о 9	
9 0	
0	

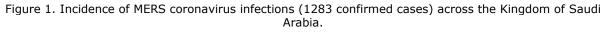

295	18. Assiri A, McGeer A, Perl TM, et al. Hospital outbreak of Middle East respiratory syndrome
296	coronavirus. N Engl J Med 2013;369:407–16.
297	19. Hemida MG, Perera RA, Wang P, et al. Middle East respiratory syndrome (MERS)
298	coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013. Euro
299	Surveill 2013;18:20659.
300	20. Raj VS, Farag EA, Reusken CB, et al. Isolation of MERS coronavirus from a dromedary
301	camel, Qatar, 2014. Emerg Infect Dis 2014;20:1339–42.
302	21. Memish ZA, Cotten M, Meyer B, et al. Human infection with MERS coronavirus after
303	exposure to infected camels, Saudi Arabia, 2013. Emerg Infect Dis 2014;20:1012-5.
304	
305	
306	
307	
308	
309	
310	
311	
312	
313	
	15

Figure legends Figure 1. Incidence of MERS coronavirus infections (1250 confirmed cases) across the Kingdom of Saudi Arabia. Figure 2. Epidemiologic curve showing the number of cases of MERS-CoV infection and various patient characteristics in the Kingdom of Saudi Arabia by month and year of confirmation. HCW, healthcare worker. Figure 3. Histogram of the time from disease onset to MERS-CoV confirmation for outbreak and non-outbreak cases. Average time from onset to confirmation was 6.6 days for outbreak cases and 11.9 days for non-outbreak cases. Figure 4. Histogram of time from disease onset to notification for outbreak and non-outbreak cases. Average time from onset to notification was 5.3 days for outbreak cases and 9.2 days for non-outbreak cases. Figure 5. Histogram of time from onset to death for outbreak and non-outbreak in those cases ending in death. Average time from onset to death among patients that died was 15.6 days for outbreak cases and 19.5 days for non-outbreak cases

Ø Z

Ø

86x72mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

■≥51 Years ■Male ■Saudi ■HCW ■Nosocomial ■De

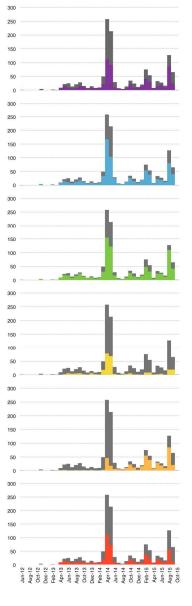


Figure 2. Epidemiologic curve showing the number of cases of MERS-CoV infection and various patient characteristics in the Kingdom of Saudi Arabia by month and year of confirmation. HCW, healthcare worker.

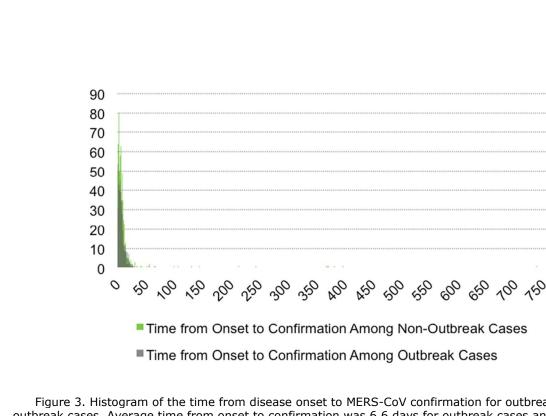
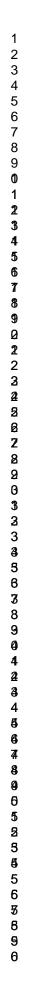



Figure 3. Histogram of the time from disease onset to MERS-CoV confirmation for outbreak and nonoutbreak cases. Average time from onset to confirmation was 6.6 days for outbreak cases and 11.9 days for non-outbreak cases.

Figure 4. Histogram of time from disease onset to notification for outbreak and non-outbreak cases. Average time from onset to notification was 5.3 days for outbreak cases and 9.2 days for non-outbreak cases.

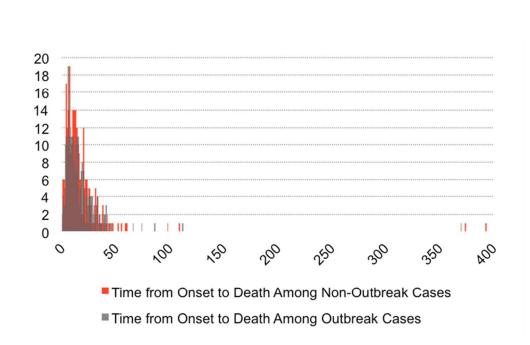


Figure 5. Histogram of time from onset to death for outbreak and non-outbreak in those cases ending in death. Average time from onset to death among patients that died was 15.6 days for outbreak cases and 19.5 days for non-outbreak cases

Page 22 of 25

6 Ø Ø Z Θ

Supplementary Table 1

Nationality	Frequency	Percent
Saudi Arabia	793	66.25
Philippines	131	10.94
India	47	3.93
Yemen	44	3.68
Egypt	33	2.76
Syrian Arab Republic	24	2.01
Sudan	22	1.84
Bangladesh	19	1.59
Pakistan	18	1.50
Palestine	18	1.50
Jordan	7	0.58
Indonesia	6	0.50
Malaysia	6	0.50
Myanmar	5	0.42
Lebanon	4	0.33
Eritrea	3	0.25
South Africa	3	0.25
Somalia	2	0.17
United States	2	0.17
Australia	1	0.08
Azerbaijan	1	0.08
Chad	1	0.08
Ethiopia	1	0.08
Kuwait	1	0.08
Morocco	1	0.08
Sri Lanka	1	0.08
Tunisia	1	0.08
Turkey	1	0.08
United Kingdom	1	0.08

	Item No	Recommendation	Page #
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title	2
		or the abstract	
		(b) Provide in the abstract an informative and balanced summary of	2
		what was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation	3-4
5		being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4-5
betting	5	recruitment, exposure, follow-up, and data collection	ч-3
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	4-5
i unicipanto	Ũ	methods of selection of participants. Describe methods of follow-up	1.5
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources	
		and methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	
		number of exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and	
		the number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	5-9
		confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of	4-5
measurement		methods of assessment (measurement). Describe comparability of	
		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	NA
Study size	10	Explain how the study size was arrived at	4-5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	4-5
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	4-5
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was	
		addressed	
		Case-control study—If applicable, explain how matching of cases and	
		controls was addressed	
		Cross-sectional study—If applicable, describe analytical methods	
		taking account of sampling strategy	

(e) Describe any sensitivity analyses

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Results			Page #
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	5
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	5-6
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	5-6
		Case-control study—Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study-Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	6-9
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	6-9
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	11-12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	12
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	9
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	12
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	12
		applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Case characteristics among Middle East Respiratory Syndrome Coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to 2015

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-011865.R3
Article Type:	Research
Date Submitted by the Author:	14-Sep-2016
Complete List of Authors:	Alhamlan, fatimah; King Faisal Specialist Hospital and Research Center, Department of Infection and Immunity Majumder , Maimuna; Massachusetts Institute of Technology, Engineering Systems Division Brownstein, John; Children's Hospital Boston, CHIP Hawkins, Jared; Children\'s Hospital Boston, HealthMap Alabdely , Hail; Ministry of Health , Public Health Alzahrani, Abdulaziz; Ministry of Health , Public Health Obeid, Dalia; King Faisal Specialist Hospital and Research Center, Department of Infection and Immunity Al-Ahdal, Mohammed; king Faisal Specialist Hospital, Department of Infection and Immunity BinSaeed, Abdulaziz; Ministry of Health, Public Health
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Epidemiology, Global health, Public health
Keywords:	INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES, Respiratory infections < THORACIC MEDICINE

SCHOLARONE[™] Manuscripts

BMJ Open

1	Case characteristics among Middle East Respiratory Syndrome
2	Coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to
3	2015
4	Alhamlan F.S., ^{1,2*} Majumder M.S., ^{3,4} Brownstein J.S., ⁴ Hawkins J., ⁴ Al-Abdely H.M, ⁵ Alzahrani
5	A., ⁵ Obaid D.A., ¹ Al-Ahdal M.N., ^{1,2,6} BinSaeed A., ⁵
6	¹ Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh,
7	Saudi Arabia
8	² College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
9	³ Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
10	⁴ Boston Children's Hospital, Boston, Massachusetts, USA
11	⁵ Public Health Deputy, Ministry of Health, Riyadh, Saudi Arabia
12	⁶ Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center,
13	Riyadh, Saudi Arabia
14	
15	Running Title: MERS outbreak/non-outbreak cases in Saudi Arabia
16	Keywords: Middle East Respiratory Syndrome, MERS-CoV, Emerging Infectious Disease,
17	Saudi Arabia
18	Word Count: 1908
19	
20	
21	

Ø ø Z Θ θ

22 Abstract

Objectives: As of November 01, 2015, the Saudi Ministry of Health had reported 1273 cases of MERS; among these cases, which included nine outbreaks at several hospitals, 717 (56%) patients recovered, 14 (1%) remain hospitalized, and 543 (43%) died. This study aimed to determine the epidemiologic, demographic, and clinical characteristics that distinguished cases of MERS contracted during outbreaks from those contracted sporadically (i.e., non-outbreak) between 2012 and 2015 in Saudi Arabia. Design: Data from the Saudi Ministry of Health of confirmed outbreak and non-outbreak cases of MERS-CoV infections from September 2012 through October 2015 were abstracted and

31 analysed. Univariate and descriptive statistical analyses were conducted, and the time between

32 disease onset and confirmation, onset and notification, and onset and death were examined.

Results: A total of 1250 patients (aged 0 to 109 years; mean, 50.825 years) were reported

34 infected with MERS coronavirus (CoV). Approximately two-thirds of all MERS cases were

diagnosed in men for both outbreak and non-outbreak cases. Healthcare workers comprised 22%

of all MERS cases for both outbreak and non-outbreak cases. Nosocomial infections comprised

one-third of all Saudi MERS cases; however, nosocomial infections occurred more frequently in

outbreak than non-outbreak cases (p < .001). Patients contracting MERS during an outbreak

39 were significantly more likely to die of MERS (p < 0.001).

Conclusions: To date, nosocomial infections have fuelled MERS outbreaks. Given that the

41 Kingdom of Saudi Arabia is a worldwide religious travel destination, localized outbreaks may

42 have massive global implications and effective outbreak preventive measures are needed.

44 Strengths and limitations of this study

 Confirmed outbreak and non-outbreak cases of Middle East respiratory syndrome (MERS) corona virus infections in Saudi Arabia from September 2012 through October 2015 reported to the Saudi Ministry of Health (MOH) were abstracted and analysed.
 This is the first report to retrieve the epidemiologic, demographic, and clinical

characteristics of MERS data from this database and analyse these data using univariate and descriptive statistical analyses.

• However, major leadership changes in the Saudi MOH during the study period led to alterations in the data collection forms as well as the surveillance system.

2∄

Ø

Ø

6) 8)

₿

BMJ Open

• These alterations caused some inconsistencies in the data acquired from the Saudi MOH database that may limit the interpretation of the study results.

56 Introduction

Following the isolation of a previously unknown coronavirus (CoV) from the sputum of a 60year-old man in 2012,¹ 1,618 laboratory-confirmed cases of Middle East respiratory syndrome
(MERS) have been reported throughout 26 countries, with 579 cases resulting in death.² The vast
majority of these 26 countries reported MERS cases after experiencing an exportation event from
the Arabian Peninsula.^{3, 4} Most cases to date have occurred in Saudi Arabia, followed by South
Korea, which experienced an outbreak of MERS after the return of an infected businessman who
had been traveling in Middle East.⁵

The exact zoonotic source of MERS-CoV and its mode of transmission in humans remain unclear. Although related sequences have been detected in several bat species,⁶ MERS-CoV has not been isolated from bats. However, MERS-CoV has been isolated from dromedary camels. A high rate of seropositivity has been confirmed in the camels of the Arabian Peninsula, with no evidence of MERS-CoV infection detected in cows, goats, or sheep.⁷⁻¹⁰ One study isolated the full MERS-CoV genome sequences from a dromedary camel and from a patient who died of laboratory-confirmed MERS-CoV infection after close contact with camels; the two isolates were identical. According to serologic data, MERS-CoV had been circulating in the camel—but not in the patient-before human infection occurred, suggesting that MERS-CoV had been transmitted to the patient via the infected camel.¹¹

Whether MERS-CoV is new to camel or human populations or whether it has been
present but undetected for years remains unknown. Nonetheless, MERS-CoV was initially
regarded primarily as a zoonotic pathogen, with only limited documentation of person-to-person

Page 4 of 26

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

Ø ø Z Θ

BMJ Open

transmission. However, MERS outbreaks of varying sizes have since occurred across Saudi

Arabia; additionally, apparent cases of sustained secondary transmission have occurred in family

clusters^{12, 13} and healthcare facilities.^{14, 15} Much remains unknown about MERS, including risk factors associated with MERS-CoV transmissions in both outbreak and non-outbreak settings. Here, we aimed to increase our understanding of the spread and mode of transmission of MERS-CoV by comparing the epidemiologic, demographic, and clinical characteristics of outbreak and non-outbreak MERS-CoV infections from September 2012 to October 2015 as reported to the Saudi Arabian Ministry of Health (MOH). **Materials and Methods** Demographic and clinical data were obtained through the use of standardized contact tracing forms populated by the public health database maintained by the MOH Command & Control Center (CCC). According to the CCC, a confirmed MERS-CoV case is defined as a suspected case with laboratory confirmation of MERS-CoV infection. A suspected case of MERS-CoV in adults (>14 years) is defined as follows: (I) acute respiratory illness with clinical or radiological evidence of pneumonia or acute respiratory distress syndrome; (II) a hospitalized patient with healthcare-associated pneumonia based on clinical and radiological evidence; (III) upper or lower respiratory illness within 2 weeks of exposure to a confirmed or probable case of MERS-CoV infection; or (IV) unexplained acute febrile illness (\geq 38°C) presenting with body aches, headache, diarrhoea, or nausea/vomiting, with or without respiratory symptoms, and with leucopenia.

BMJ Open

100	
101	Data and Statistical Analyses
102	All data collected were stored and analysed using SAS (version 9.4) software. Univariate and
103	descriptive statistics were conducted to estimate proportions. Associations between age and two
104	variables (gender and death) were assessed using a χ^2 test. Chi-square analysis using Yates'
105	correction was performed on the dataset to compare case characteristics among outbreak and
106	non-outbreak cases. Distributions of time between onset and confirmation, onset and notification,
107	and onset and death (among patients that died) were also determined for both outbreak and non-
108	outbreak cases. All reported p values are two-tailed and were considered to be statistically
109	significant at p < 0.05.
110	
111	Results
112	Distribution of Confirmed MERS-CoV Cases over Time in Saudi Arabia
113	The prevalence of MERS-CoV was highest in the Riyadh region with (46.91%) of the total
114	reported cases, followed by the Jeddah (21%), AlAhsa (5.69%), AlMadinah Almonowarah
115	(4.81%), Eastern (4.73%), AlTaif (4.33%), and Makkah (3.29%) regions. The remaining regions
116	comprised 9.14% of the total reported cases (Figure 1). More than 31% of all confirmed cases of
117	MERS-CoV in Saudi Arabia were reported in May and April of 2014. The highest number of
118	outbreaks was reported to have occurred in May and April of 2014, the second highest in
119	September 2015, and the third highest in February and March of 2015.
120	
121	Demographic Characteristics
122	During the study period, a total of 1250 patients from 0 to 109 years old were reported as
	5

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

123	infected with MERS-CoV in Saudi Arabia. MERS-CoV was prevalent among individuals who
124	were 30 years or older; by contrast, individuals who were 26 years or younger exhibited very low
125	incidence. The distribution of age for all reported cases was approximately normal, with a mean
126	of 50.825 years and a standard deviation of 19.494 years. MERS-CoV was more prevalent in
127	males (64.77% of total reported cases) than in females. Females had an average age of 48 years
128	(SD, 19 years), with a minimum of zero and maximum of 90 years. Males had an average age of
129	52 years (SD, 19 years), with a minimum of zero and a maximum of 109 years (Table 1). We
130	found a significant association between age and gender ($\chi^2 = 15.22$; p < 0.01) and between
131	gender and death for patients diagnosed with MERS-CoV ($\chi^2 = 12.75$; p < 0.01).
132	Table 1. Patient characteristics in Middle East respiratory syndrome infection cases reported in

the Kingdom of Saudi Arabia from 2012 to 2015

Demographic characteristics (n)	Frequency	Percentage
Age in years (1244)		
0-10	41	3.30
11-25	63	8.36
26-39	292	31.83
40-109	848	68.17
Gender (1246)		
Female	439	35.23
Male	807	64.77
Occupational status (172)		
Employed	22	12.79
Jnemployed	40	23.26
Retired	31	21.51
Private	37	18.02
Other	42	24.42
Main reason for testing (1247)		
Healthcare worker	249	19.97
Household	138	11.07
Suspect	860	68.97
Healthcare worker (1244)		
í és	275	22.11
No	969	77.89
Does the patient raise camels? (205)		
res ,	29	14.15
No	176	85.85
During the 14 days before the patient became sick, di nside Saudi Arabia? (205)	d he/she travel outside or	
Yes	195	95.12
No	10	4.88

	Yes No	413 37	91.78 8.22
	Did the patient visit any healthcare facilities during the 14 days before onset of symptoms? (245)		
	Yes No	98 109	40 44.49
	Unknown Does the patient smoke? (205)	38	15.51
	Yes No	36 169	17.56 82.44
	Is the patient diabetic? (278) Yes	220	79.14
	No Did the patient die before October 2015? (1250)	58	20.86
	Yes No	535 715	42.80 57.20
	Supplementary Table 1 presents the nationalities of patie	nts diagnose	d with MERS-CoV
	in Saudi Arabia. Most patients were Saudi (66%), followed by F	ilinino (10 9	0%) Indian
	in Saudi Anabia. Most patients were Saudi (0070), followed by f	inpino (10.)	<i>770)</i> , interan
	(3.99%), and Yemeni (3.69%) nationalities.		
	(3.99%), and Yemeni (3.69%) nationalities.		
	(3.99%), and Yemeni (3.69%) nationalities.		
	(3.99%), and Yemeni (3.69%) nationalities.		
	(3.99%), and Yemeni (3.69%) nationalities. Univariate Analysis for Outbreak Versus Non-outbreak Case	es	
			n the mean age of
	Univariate Analysis for Outbreak Versus Non-outbreak Case	se older than	-
	Univariate Analysis for Outbreak Versus Non-outbreak Case Univariate analysis revealed that older individuals—namely, tho	se older than break than o	f non-outbreak cas
	Univariate Analysis for Outbreak Versus Non-outbreak Case Univariate analysis revealed that older individuals—namely, tho 50.825 years—represented a larger than expected fraction of out	se older than break than o mong men v	f non-outbreak cas
	Univariate Analysis for Outbreak Versus Non-outbreak Case Univariate analysis revealed that older individuals—namely, tho 50.825 years—represented a larger than expected fraction of out (p < 0.001; Table 2). The prevalence of MERS-CoV infections a	se older than break than o mong men v larly, approx	f non-outbreak cas vas comparable for kimately two-thirds
	Univariate Analysis for Outbreak Versus Non-outbreak Case Univariate analysis revealed that older individuals—namely, tho 50.825 years—represented a larger than expected fraction of out ($p < 0.001$; Table 2). The prevalence of MERS-CoV infections a both outbreak and non-outbreak cases ($p = 0.239$; Table 2). Simil	se older than break than o mong men v larly, approx or both outbr	f non-outbreak cas vas comparable for kimately two-thirds eak and non-
	Univariate Analysis for Outbreak Versus Non-outbreak Case Univariate analysis revealed that older individuals—namely, tho 50.825 years—represented a larger than expected fraction of out ($p < 0.001$; Table 2). The prevalence of MERS-CoV infections a both outbreak and non-outbreak cases ($p = 0.239$; Table 2). Simi of all Saudi MERS diagnoses occurred among Saudi nationals for	se older than break than o mong men v larly, approx or both outbre sed 22% of a	f non-outbreak cas vas comparable for kimately two-thirds eak and non- ll confirmed Saudi
3)) ; ; ; ; ; ; ; ;	Univariate Analysis for Outbreak Versus Non-outbreak Case Univariate analysis revealed that older individuals—namely, tho 50.825 years—represented a larger than expected fraction of out (p < 0.001; Table 2). The prevalence of MERS-CoV infections a both outbreak and non-outbreak cases (p = 0.239; Table 2). Simil of all Saudi MERS diagnoses occurred among Saudi nationals for outbreak cases (p = 0.558; Table 2). Healthcare workers comprise	se older than break than o mong men v larly, approx or both outbr sed 22% of a 0; Table 2).	f non-outbreak cas vas comparable for kimately two-thirds eak and non- ll confirmed Saudi However,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

151 Patients that became infected during outbreaks were more likely to die of MERS than those

infected during non-outbreak conditions (p < 0.001).

Of the patients reporting data on camel exposure, 17% of the 123 non-outbreak cases and 154 10% of the 81 outbreak cases indicated that they owned or raised camels; this difference was not 155 statistically significant.

Table 2. Characteristics of patients with confirmed Middle East respiratory syndrome

coronavirus infection in the Kingdom of Saudi Arabia from 2012 to 2015 evaluated by outbreak

		ik cases 485	Non-outbr N =		χ²	р
	n	%	n	%		
Age (years)						
≥51	281	58	362	47	12.66	< 0.001
<51	204	42	401	52		
unknown (UNK)	0		2			
Sex						
Male	323	67	484	63	1.39	0.239
Female	160	33	279	36		
UNK	2		2			
Nationality						
Saudi	331	68	509	67	0.34	0.558
Non-Saudi	153	32	255	33		
UNK	1		1			
Healthcare worker	(HCW)					
Yes	108	22	167	22	0.01	0.920
No	375	77	594	77		
UNK	2		4			
Patient hospitalize	d prior to onse	t of MERS symp	toms (nosocomia	l infection)		
Yes	193	40	220	29	15.84	< 0.001
No	292	60	545	71		
Reason for testing	(mode of trans	mission)				
Suspect	357	74	503	66	22.85	< 0.001
нсw	99	20	150	20		
Household	27	6	110	14		
UNK	2		2			
Reason for testing	(symptoms pro	esented)				
Group 1	107	22	288	28	100.84	< 0.001
Group 2	96	20	65	8		

159 versus non-outbreak conditions

Ø

Z

Ø

6) 8)

₿

BMJ Open

Group 3	11	2	35	5		
Group 4	140	29	288	28		
Group 5	128	26	85	11		
Group 6	1	0	3	0		
UNK	2		1			
Outcome						
Deceased	245	51	290	38	18.76	< 0.001
Alive	240	49	475	6%		

Yates' correction was used for all chi-square calculations.

163 Distributions of Time between Onset and the Confirmation, Notification, and Death

Average time from onset to confirmation was 6.6 days for outbreak cases and 11.9 days for nonoutbreak cases. For outbreak cases and non-outbreak cases, the average time from onset to notification was 5.3 days and 9.2 days, respectively. Among patients that died, the average time from onset to death was 15.6 days for outbreak cases and 19.5 days for non-outbreak cases. All three distributions were long-tailed, and non-outbreak cases were skewed further right (Figures

171 Discussion

2-5).

Using the Saudi MOH CCC public health dataset on MERS cases reported to have occurred from
September 2012 to September 2015, we found three factors distinguishing outbreak and nonoutbreak cases: (1) Patients older than the mean age of 51 years represented a larger than
expected fraction of outbreak than of non-outbreak cases, (2) nosocomial infections occurred
much more frequently among outbreak cases than among non-outbreak cases, and (3) patients
infected during outbreaks were more likely to die of MERS-CoV infection than those infected
during non-outbreak conditions (Table 2).

Page 10 of 26

6 Ø Z Θ Ø

Given that age was associated with death, it is worth noting that the third factor may be
explained in part by the over-representation of older individuals among the outbreak cases.
Although age was also associated with gender, we found that the proportion of male MERS-CoV
infections was approximately two-thirds for both outbreak and non-outbreak cases (Table 2).
However, the general over-representation of men is consistent with many previous studies
showing predominantly male MERS-CoV patients.^{3, 16, 17}

BMJ Open

Our results also showed that healthcare workers comprised 22% of all Saudi MERS cases diagnosed up to October 2015 (Table 2). This percentage is in agreement with a 2014 World Health Organization (WHO) report stating that 109 of the 402 (approximately 25%) reported MERS-CoV infections in the Jeddah (Saudi Arabia) 2014 outbreak occurred in healthcare workers.¹⁶ Areas neighbouring Saudi Arabia, including the city of Al-Ain in the United Arab Emirates, also reported MERS-CoV infections in 16 healthcare workers out of 23 total cases.¹⁷ Additionally, during the large South Korean outbreak in 2015, 14% of the infected cases were in healthcare workers.⁵

Another 2014 WHO report stated that most person-to-person MERS-CoV infections likely occurred in healthcare settings.¹⁸ We found that nosocomial transmissions comprised one-third of all Saudi MERS-CoV cases reported to date. Importantly, these nosocomial infections occurred more frequently in outbreak cases than in non-outbreak cases, suggesting that nosocomial infections fuelled outbreaks (Table 2). The first outbreak in Al-Hasa, Saudi Arabia, (2013) provided valuable information about MERS-CoV transmission in a healthcare setting. The outbreak started in a haemodialysis unit of a private hospital in Al-Hasa, but subsequently spread to three other hospitals. Phylogenetic analysis of the outbreak showed that only eight of

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright

the epidemiologic transmissions were related, indicating multiple zoonotic introductions of
 MERS-CoV.¹⁸

203	To date, MERS-CoV has been detected in camels from Saudi Arabia, Oman, Qatar,
204	Jordan, and Kenya, ^{7, 8, 10, 19, 20} and it has been shown that humans can acquire MERS-CoV
205	directly from dromedary camels. ²¹ Because camel exposure data (i.e., whether the patient owned
206	or raised camels) were gathered for only 204 of the 1250 cases in the database used by this study,
207	we did not include this information in Table 2. Nonetheless, we found that 17% of the 123 non-
208	outbreak cases and 10% of the 81 outbreak cases reporting data on camel exposure indicated that
209	the patients owned or raised camels. Although this difference was not statistically significant,
210	this result suggested that camel exposure, and thus zoonotic transmission, might be more
211	common among sporadic, non-outbreak cases than among outbreak cases. A full analysis of this
212	relationship will require more vigilant collection of camel exposure data.
213	This study was limited by the information available in the Saudi MOH CCC public health
214	dataset on MERS-CoV infections that were reported to have occurred between September 2012
215	and October 2015. The surveillance system and data collection forms were inconsistent over the
216	years during which these data were acquired, likely due to major leadership changes in the
217	MOH. The outbreak cases have thus far been confirmed faster than non-outbreak cases,
218	indicating that improved future surveillance may allow for faster identification of sporadic cases
219	(Figure 5).

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

221 Conclusions

Although it has been three years since MERS-CoV was first identified in humans, cases continue
to occur in household and healthcare settings, though our results indicated that most person-to-

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

person transmissions involved healthcare-associated infections. Nosocomial outbreaks likely
begin when a primary patient seeks care and then escalate due to insufficient implementation of
scalable infection control measures. Our results indicate that the best way to control MERS-CoV
infections may be to block its spread by practicing rigorous infection control measures in
hospitals. Therefore, strengthening of infection control measures in healthcare settings will be
critical to the prevention of future outbreaks.

- 231 Footnotes
- 232 Footnotes

Acknowledgments: We are grateful to the Ministry of Health staff who helped in datacollection.

Contributors: FA is the study PI and wrote the manuscript. MM developed the study design and conducted the analyses. JH interpreted the results. JB reviewed the study design. DO performed the statistical analyses. HA, AA, and ABS acquired patient demographic and clinical data from the Saudi Ministry of Health database. MA participated in interpreting the clinical results and reviewed the manuscript. All authors participated in critical revision of the manuscript and approved the final version. Funding: This study was partially supported by a summer grant from King Abdulaziz City for Science and Technology (15/3171). Competing interests: None declared.

Ethical approval: This study was approved by the Office of Research Affairs of King Faisal
Specialist Hospital and Research Centre (KFSH&RC; RAC #2130 033) and the Ministry of
Health in Riyadh, Saudi Arabia, and included a waiver of informed consent. Informed consent

1 2		
3 4	247	was waived because this study involved a retrospective evaluation of publicly available data, the
5 6 7	248	data collection was anonymous, and no patient identity was revealed.
7 8 9	249	Data sharing: No additional data available.
0 1	250	
2 3 4	251	
4 5 6	252	
7 8	253	
9 0 2	254	
2 2 2	255	
21 23 0	256	
ଡ Z ଥ		
9 0		
3 2 3		
3 5		
6 3		
8 9 Ø		
0 4 <u>2</u> 3		
4 5 6 7		
8 9		
6 5 2		
2 5 5		
5 6 3 8 9 6		
ະ 8 9		
0		13

References

258	1. Zaki AM, van Boheemen S, Bestebroer TM, et al. Isolation of a novel coronavirus from a man
259	with pneumonia in Saudi Arabia. N Engl J Med 2012;367:1814–20.
260	2. World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV).
261	2015. www.who.int/emergencies/mers-cov/en/ (accessed 17 October 2015).
262	3. Bermingham A, Chand MA, Brown CS, et al. Severe respiratory illness caused by a novel
263	coronavirus, in a patient transferred to the United Kingdom from the Middle East,
264	September 2012. Euro Surveill 2012;17:20290.
265	4. Breban R, Riou J, Fontanet A. Interhuman transmissibility of Middle East respiratory
266	syndrome coronavirus: estimation of pandemic risk. <i>Lancet</i> 2013;382:694–9.
267	5. Majumder MS, Kluberg SA, Mekaru SR, et al. Mortality risk factors for Middle East
268	respiratory syndrome outbreak, South Korea, 2015. Emerg Infect Dis 2015;21:2088–90.
269	6. Memish ZA, Mishra N, Olival KJ, et al. Middle East respiratory syndrome coronavirus in
270	bats, Saudi Arabia. Emerg Infect Dis 2013;19:1819–23.
271	7. Reusken CB, Haagmans BL, Muller MA, et al. Middle East respiratory syndrome coronavirus
272	neutralising serum antibodies in dromedary camels: a comparative serological study.
273	Lancet Infect Dis 2013;13:859–66.
274	8. Reusken CB, Ababneh M, Raj VS, et al. Middle East respiratory syndrome coronavirus
275	(MERS-CoV) serology in major livestock species in an affected region in Jordan, June to
276	September 2013. Euro Surveill 2013;18:20662.
277	9. Corman VM, Jores J, Meyer B, et al. Antibodies against MERS coronavirus in dromedary
278	camels, Kenya, 1992-2013. Emerg Infect Dis 2014;20:1319-22.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

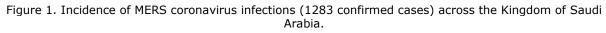
279	10. Meyer B, Muller MA, Corman VM, et al. Antibodies against MERS coronavirus in
280	dromedary camels, United Arab Emirates, 2003 and 2013. Emerg Infect Dis
281	2014;20:552–9.
282	11. Azhar EI, El-Kafrawy SA, Farraj SA, et al. Evidence for camel-to-human transmission of
283	MERS coronavirus. N Engl J Med 2014;370:2499–505.
284	12. Memish ZA, Zumla AI, Al-Hakeem RF, et al. Family cluster of Middle East respiratory
285	syndrome coronavirus infections. N Engl J Med 2013;368:2487–94.
286	13. Omrani AS, Matin MA, Haddad Q, et al. A family cluster of Middle East respiratory
287	syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild
288	case. Int J Infect Dis 2013;17:e668–72.
289	14. Tsiodras S, Baka A, Mentis A, et al. A case of imported Middle East respiratory syndrome
290	coronavirus infection and public health response, Greece, April 2014. Euro Surveill
291	2014;19:20782.
292	15. Hijawi B, Abdallat M, Sayaydeh A, et al. Novel coronavirus infections in Jordan, April
293	2012: epidemiological findings from a retrospective investigation. East Mediterr Health J
294	2013;19(Suppl 1):S12–8.
295	16. World Health Organization. WHO concludes MERS-CoV mission in Saudi Arabia. Geneva:
296	World Health Organization. www.who.int/emergencies/mers-cov/en/2014 (accessed 20
297	October 2015).
298	17. European Centre for Disease Prevention and Control. Severe respiratory disease associated
299	with Middle East respiratory syndrome coronavirus (MERS-CoV) Stockholm: European
300	Centre for Disease Prevention and Control. 2014.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 16 of 26

BMJ Open: first published as 10.1136/bmjopen-2016-011865 on 12 January 2017. Downloaded from http://bmjopen.bmj.com/ on April 17, 2024 by guest. Protected by copyright.

BMJ Open


301	18. Assiri A, McGeer A, Perl TM, et al. Hospital outbreak of Middle East respiratory syndrome
302	coronavirus. N Engl J Med 2013;369:407–16.
303	19. Hemida MG, Perera RA, Wang P, et al. Middle East respiratory syndrome (MERS)
304	coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013. Euro
305	Surveill 2013;18:20659.
306	20. Raj VS, Farag EA, Reusken CB, et al. Isolation of MERS coronavirus from a dromedary
307	camel, Qatar, 2014. Emerg Infect Dis 2014;20:1339–42.
308	21. Memish ZA, Cotten M, Meyer B, et al. Human infection with MERS coronavirus after
309	exposure to infected camels, Saudi Arabia, 2013. Emerg Infect Dis 2014;20:1012-5.
310	
311	
312	
313	
314	
315	
316	
317	
318	
319	
	16

1	
2	
3 4	
4	
5	
6	
7	
7 8 9 ⋒	
ğ	
0	
1	
1	
2	
3 4 5	
4+ £	
C) A	
6 7	
1	
0 A	
2	
2	
78902232	
2	
2	
24	
ø	
Ø Z 8 9 0 7	
8	
9	
0	
3	
2	
3	
3	
5	
6	
3 3 5 6 7 8	
8	
9	
0	
4	
2	
3	
4	
5	
6	
4	
8	
9	
θ	
5	
2	
5	
5	
5	
6	
5	
8	
9	
6	
U	

320	Figure legends
321	Figure 1. Incidence of MERS coronavirus infections (1250 confirmed cases) across the
322	Kingdom of Saudi Arabia.
323	Figure 2. Epidemiologic curve showing the number of cases of MERS-CoV infection and
324	various patient characteristics in the Kingdom of Saudi Arabia by month and year of
325	confirmation. HCW, healthcare worker.
326	Figure 3. Histogram of the time from disease onset to MERS-CoV confirmation for outbreak
327	and non-outbreak cases. Average time from onset to confirmation was 6.6 days for outbreak
328	cases and 11.9 days for non-outbreak cases.
329	Figure 4. Histogram of time from disease onset to notification for outbreak and non-outbreak
330	cases. Average time from onset to notification was 5.3 days for outbreak cases and 9.2 days for
331	non-outbreak cases.
332	Figure 5. Histogram of time from onset to death for outbreak and non-outbreak in those cases
333	ending in death. Average time from onset to death among patients that died was 15.6 days for
334	outbreak cases and 19.5 days for non-outbreak cases

86x72mm (300 x 300 DPI)

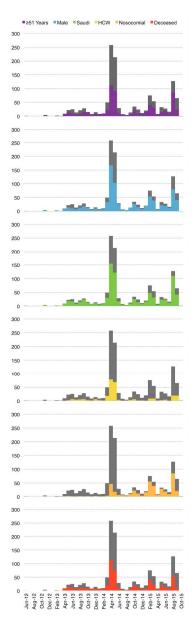


Figure 2. Epidemiologic curve showing the number of cases of MERS-CoV infection and various patient characteristics in the Kingdom of Saudi Arabia by month and year of confirmation. HCW, healthcare worker.

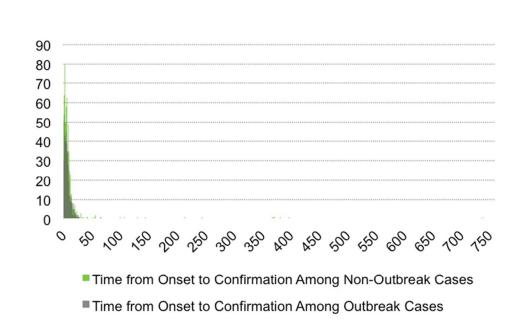


Figure 3. Histogram of the time from disease onset to MERS-CoV confirmation for outbreak and nonoutbreak cases. Average time from onset to confirmation was 6.6 days for outbreak cases and 11.9 days for non-outbreak cases.

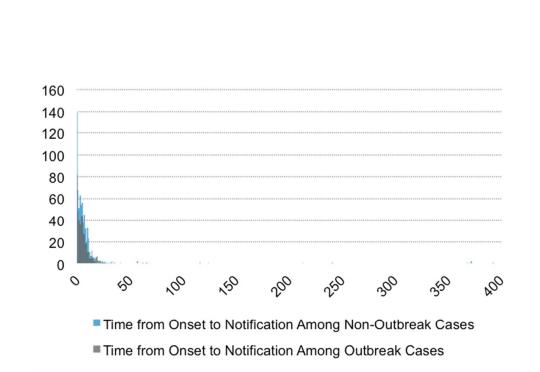


Figure 4. Histogram of time from disease onset to notification for outbreak and non-outbreak cases. Average time from onset to notification was 5.3 days for outbreak cases and 9.2 days for non-outbreak cases.

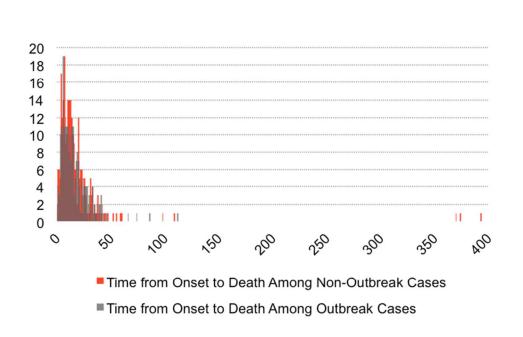
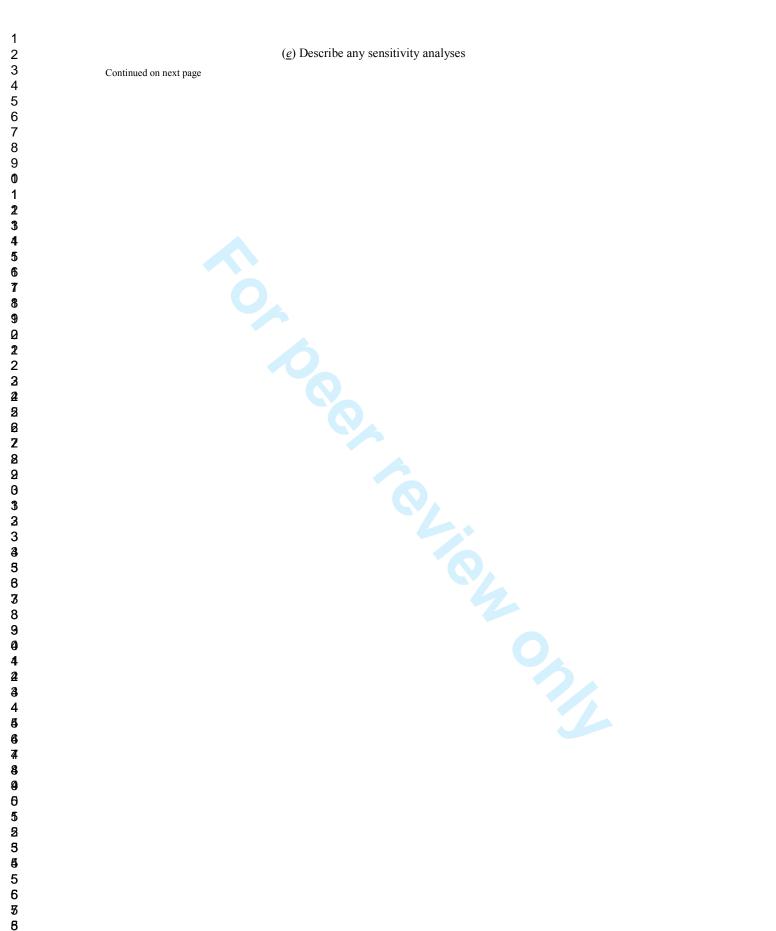



Figure 5. Histogram of time from onset to death for outbreak and non-outbreak in those cases ending in death. Average time from onset to death among patients that died was 15.6 days for outbreak cases and 19.5 days for non-outbreak cases

Supplementary Table 1

Nationality	Frequency	Percent
Saudi Arabia	793	66.25
Philippines	131	10.94
India	47	3.93
Yemen	44	3.68
Egypt	33	2.76
Syrian Arab Republic	24	2.01
Sudan	22	1.84
Bangladesh	19	1.59
Pakistan	18	1.50
Palestine	18	1.50
Jordan	7	0.58
Indonesia	6	0.50
Malaysia	6	0.50
Myanmar	5	0.42
Lebanon	4	0.33
Eritrea	3	0.25
South Africa	3	0.25
Somalia	2	0.17
United States	2	0.17
Australia	1	0.08
Azerbaijan	1	0.08
Chad	1	0.08
Ethiopia	1	0.08
Kuwait	1	0.08
Morocco	1	0.08
Sri Lanka	1	0.08
Tunisia	1	0.08
Turkey	1	0.08
United Kingdom	1	0.08

Item No	Recommendation	Page #
1	(<i>a</i>) Indicate the study's design with a commonly used term in the title	2
	or the abstract	
	(b) Provide in the abstract an informative and balanced summary of	2
	what was done and what was found	
2	Explain the scientific background and rationale for the investigation	3-4
3		4
4	Present key elements of study design early in the paper	4
		4-5
5		1.5
6		4-5
Ũ		
7		5-9
8*		4-5
-		
9		NA
	· · · · · · · · · · · · · · · · · · ·	4-5
		4-5
		-
12		4-5
	addressed	
	<i>Cross-sectional study</i> —If applicable, describe analytical methods	
	No 1 2 3 4 5 6 7	No Recommendation 1 (a) Indicate the study's design with a commonly used term in the title or the abstract (b) Provide in the abstract an informative and balanced summary of what was done and what was found 2 Explain the scientific background and rationale for the investigation being reported 3 State specific objectives, including any prespecified hypotheses 4 Present key elements of study design early in the paper 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection 6 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up <i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls <i>Cross-sectional study</i> —For matched studies, give matching criteria and number of exposed and unexposed <i>Case-control study</i> —For matched studies, give matching criteria and number of controls per case 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable 8* For each variable of interest, give sources of bias 10 Explain how the study size was arrived at 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why

Page

Results		
Participants	13*	(a) Report numbers of individuals eligible, examined for eligibility, of follow-up, and analysed
		(b) Give reasons for non-participa
		(c) Consider use of a flow diagram
Descriptive	14*	(a) Give characteristics of study pa
data	14	information on exposures and pote
uata		(b) Indicate number of participant
		(c) Cohort study—Summarise foll
Outcomo doto	15*	· · · · · · · · · · · · · · · · · · ·
Outcome data	13.	Cohort study—Report numbers of
		Case-control study—Report numb
		measures of exposure
	16	Cross-sectional study—Report nu
Main results	16	(a) Give unadjusted estimates and
		their precision (eg, 95% confiden
		adjusted for and why they were in
		(b) Report category boundaries with
		(c) If relevant, consider translating
		meaningful time period
Other analyses	17	Report other analyses done-eg a
		sensitivity analyses
Discussion		
Key results	18	Summarise key results with refere
Limitations	19	Discuss limitations of the study, ta
		imprecision. Discuss both direction
Interpretation	20	Give a cautious overall interpretat
		multiplicity of analyses, results from
Generalisability	21	Discuss the generalisability (exter
Other informati	ion	
Funding	22	Give the source of funding and th
-		applicable, for the original study of
	-	rately for cases and controls in case hort and cross-sectional studies.

1

5 5

esuits			rage #
rticipants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	5
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
escriptive ta	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	5-6
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)	
utcome data	15*	<i>Cohort study</i> —Report numbers of outcome events or summary measures over time	5-6
		Case-control study—Report numbers in each exposure category, or summary measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
ain results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	6-9
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
ther analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and	6-9
5		sensitivity analyses	
iscussion			
ey results	18	Summarise key results with reference to study objectives	11-12
mitations	19	Discuss limitations of the study, taking into account sources of potential bias or	12
		imprecision. Discuss both direction and magnitude of any potential bias	
terpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	9
		multiplicity of analyses, results from similar studies, and other relevant evidence	
eneralisability	21	Discuss the generalisability (external validity) of the study results	12
ther information	on		
inding	22	Give the source of funding and the role of the funders for the present study and, if	12
		applicable, for the original study on which the present article is based	

ontrol studies and, if applicable, for exposed and

checklist item and gives methodological background and hecklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

Correction: Case characteristics among Middle East respiratory syndrome coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to 2015

Alhamlan FS, Majumder MS, Brownstein JS, *et al.* Case characteristics among Middle East respiratory syndrome coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to 2015. *BMJ Open* 2017;7:e011865. doi: 10.1136/bmjopen-2016-011865.

There was an error in the affiliation of A BinSaeed.

The correct affiliation for A BinSaeed is 'Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia'.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

© Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

BMJ Open 2019;9:e011865corr1. doi:10.1136/bmjopen-2016-011865corr1

